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Prediction of Surface roughness and Material removal rate in Wire Electrical 

Discharge Machining on Aluminum Based Alloys/Composites using Taguchi 

Coupled Grey Relational Analysis and Artificial Neural Networks 

Abstract 

In this research, a novel aluminum alloy and metal matrix composite was designed and 

developed for self healing purpose. Tin at varying weight percentages (5, 10, 15 & 20 wt %) was 

alloyed into aluminum along with other alloying elements to form a new set of metal alloy and 5 

wt% of SiC particles was dispersed to the above said combinations to develop new sets of 

composite materials. Optical microscope of the developed set of samples reveals a modification 

in the grain structure with dispersion of tin element and with respect to increment of tin content 

the hardness value tends to decrease. Investigated the effect of wire electric discharge machining 

(WEDM) process parameters such as Pulse On time (PON), Pulse Off time (POFF), wire feed 

rate (WFR) along with the material elemental composition parameters Sn wt% and SiC wt% 

using Taguchi coupled Grey Relational Analysis. On behalf of the above said parameters a L32 

orthogonal array based experimental design was finalized and based on the experimental studies 

single and multi criteria based optimization was conceded. Significance of each processing 

parameters over the output responses Material Removal Rate (MRR) and surface roughness (Ra) 

was examined through ANOVA method.  Machine learning techniques was used and Neural 

Network models was developed to predict the MRR and Ra values and the experimental 

confirmations identified the effectiveness of the developed models. 

Keywords: Surface Roughness; Machine Learning; Artificial Neural Network; Aluminum alloys; 

Metal matrix composites; wire electric discharge machining; Parametric optimization; 

1. INTRODUCTION 

Aluminum and its alloys are considered to be a widely accepted material after iron and its 

alloy; apart from the structural applications, the former is considered to be a replacement for the 

latter based on its enhanced properties. Aluminum posse’s low density thereby reducing the 

weight of the component and henceforth can be considered as a well suitable material in the field 

of civil, food processing, aerospace and automobile industries as weight is considered to be a 

major constrain during the design process [1-3]. Aluminum and alloys poses superior 
 



  

malleability, formability easing for the secondary processes such as hot rolling, forming etc., 

corrosion resistance and workability but its hardness and reduced wear resistance restricts its use 

to a large level in the field of transport industries [4-6]. In order to overcome such distinct, 

dispersion of certain ceramic particles into aluminum matrix will be carried out thereby 

increasing the overall hardness of the material [7]. It has been stated from literatures that the 

proper selection of processing techniques, reinforcements along with its characteristics has to be 

properly monitored so as to achieve aluminum MMC with better mechanical properties and the 

interfacial bonding between the matrix material and reinforcement plays majorly in governing 

the acquired property of the aluminum MMC [8]. Alloying of the material also has been carried 

out so as to achieve the required properties for the material as per requirements. Certain 

researches over the addition of small quantities of tin to the aluminum matrix have found to 

increase the corrosion resistance of the developed alloy [9-12]. Apart from this, the addition of 

tin in aluminum has showcased a reduction in grain leading to an increment in strength based on 

researches. Aluminum alloys are found to be easily machined but it has to notice that with the 

introduction of hard ceramic particles into the matrix will reduce the machinability of the 

material increasing the tool wear rate [13]. Machining the Metal Matrix Composites through 

traditional schemes gets bottleneck due to the enhanced hardness, strength, resistance and 

melting point offered by the developed composites material thereby tempting the researchers to 

focus on the nontraditional machining methods.  

Wirecut electrical discharge machining (WEDM) is a vital process mostly used in 

machining hard and brittle material and most often used in automotive, aviation, defense, 

medical instrument manufacturing, die and tool industry [14-18]. During WEDM operation, 

electrically charged electrode wire initiates rapid and cyclic spark discharges amid the gaps of 

tool electrode and work piece. Due to this practice a spark envelope is created covering the wire 

electrode producing a temperature of 12,000
o
C approx. This high temperature attained, melts and 

evaporates away the work piece material [19-21]. The functioning of WEDM is non contact base 

and henceforth the residual stress related problem emerging due to cutting pressure will be 

negligible [22,23]. Against to these boons of WEDM operations, one of the main constraints of 

this machining operation is selection of the correct machining parameters and its combinations 

so as to achieve the maximum surface integrity, maximum material removal rate or else the 

combination of both for the profit of the company. Based on the materials, the processing 



  

parameters that have to be considered changes and the information provided by the supplier 

won’t satisfy the machinist to select the correct parameter combination keeping different output 

responses such as surface roughness, material removal rate, heat affected zone etc. Certain 

WEDM process parameters that has to be monitored by the machinist in accordance to his output 

response requirements includes discharge current, voltage, pulse on time (PON), pulse off time 

(POFF), wire material, wire tension, wire feed rate (WFR), dielectric fluid and its flushing 

pressure [24,25]. 

The output responses of WEDM such as Material Removal Rate and surface roughness 

play a major role in industries and work piece applications. Literature has stated that higher 

surface integrity with balanced MRR is always recommended so as to achieve better results such 

as corrosion resistance, fatigue strength, wear resistance etc for the finished parts [26]. So as to 

achieve proportionate MRR with minimal Ra values, an optimal combination of WEDM 

machining parameters has to be considered and this vary based on the material which has 

propelled the researchers to narrow down their research in the field of optimization. Bobbili et al, 

machined armor steel employing WEDM and investigated the effect of process parameters on 

MRR and Ra values and concludes that PON, POFF and spark voltage are the significant factors 

for MRR and Ra values [27]. Baraskar et al, investigated the effect of input control factors on 

MRR and Ra values during Electrical Discharge Machining of EN8 Steel work piece and the 

multiobjective optimization of the output responses were carried out so as to achieve the better 

combination employing Non-dominated Sorting Genetic Algorithm (NSGA-II) [28]. 

Rajalakshmi and Ramaiah optimized the process parameters of WEDM process for machining 

Inconel 825 employing Taguchi Grey Relational Analysis (GRA) so as to achieve an improved 

MRR, Ra and spark gap and the optimal parameter was confirmed based on a L36 Orthogonal 

Array (OA) [29]. Varun and Venkaiah optimized the response parameters of a WEDM process 

for machining EN 353 so as to attain preeminent MRR, Ra and kerf width exploiting an 

optimization strategy that coupled GRA and genetic algorithm. An optimal solution from global 

space was concluded from the selected range of control factors [30]. Muthukrishnan and Davim 

studied the effect and optimized the process parameters for machining Al-SiC MMC and based 

on the experimental data a back propagation ANN model having the ability to predict the 

behavior of the operating system within the range was developed [31]. Panda put forward a 

hybrid optimization technique namely Neuro–Grey Modeling which carries out the parameter 



  

design and optimization of multi-machining characteristics of WEDM process and concluded 

that the model was reliable and can be implemented fast when compared with genetic algorithm 

[32]. It has been reported that the localized microstructural parameters such as phase distribution, 

grain size, distribution & grain structure also plays an important role on the effect of process 

parameters [35-42]. It also has been reported that the machine learning based ANN model has 

been used to predict the mechanical properties of metals & alloys [33, 34, 43]. 

Based on a detailed survey over literatures it was proved that development of Al-Sn 

alloys with higher quantities of Sn element has not been carried out by researchers and hence for 

a new composition of alloys and composites was developed in this study with varying weight 

percentage of Sn elements. Aluminum and its alloys has been considered as the metal with good 

machinability and numerous works proving this has been overviewed but the behavior of the 

newly developed set of alloys and composites are unknown and thereby a detailed study of the 

same has to be carried out. WEDM processing is considered in this research to study the 

machinability of the material, study the effect of each parameter over the MRR and Ra values 

and optimize the machine parameter so as to achieve a maximum MRR value with minimal Ra 

value through GRA. Based on the developed set of experimental design, ANN models will be 

developed to predict the MRR and Ra values so as to study the performance characteristics. 

1. MATERIALS AND METHODS 

2.1. Materials 

In this research pure Aluminum is considered as the base material into which a set of 

alloying elements were added so as to enhance the strength, workability and corrosion resistance. 

Alloying element tin (Sn) of 99 percentage purity is considered in this research for varying 

proportions (5 wt%, 10wt%, 15wt% and 20wt %) and the ceramic particle that has to be 

dispersed into the attained aluminum alloy is Silicon Carbide (SiC) particles of 20 microns at 5 

wt%. SiC particles are selected as the reinforcement particles owing to its enhanced mechanical 

properties and its ability to get dispersed into the matrix material. Chemical composition of the 

developed set of Al alloys and its composites are provided in table 1. 

Table 1. Chemical Composition of the developed set of alloys and composites 

Element 

(Wt.%) 
Mg Si Fe Sn Mn Cu Cr Zn Ni Ti SiC Al 



  

S1 0.95 0.54 0.22 5 0.13 0.17 0.09 0.08 0.02 0.01 0 Bal 

S2 0.95 0.54 0.22 10 0.13 0.17 0.09 0.08 0.02 0.01 0 Bal 

S3 0.95 0.54 0.22 15 0.13 0.17 0.09 0.08 0.02 0.01 0 Bal 

S4 0.95 0.54 0.22 20 0.13 0.17 0.09 0.08 0.02 0.01 0 Bal 

S5 0.95 0.54 0.22 5 0.13 0.17 0.09 0.08 0.02 0.01 5 Bal 

S6 0.95 0.54 0.22 10 0.13 0.17 0.09 0.08 0.02 0.01 5 Bal 

S7 0.95 0.54 0.22 15 0.13 0.17 0.09 0.08 0.02 0.01 5 Bal 

S8 0.95 0.54 0.22 20 0.13 0.17 0.09 0.08 0.02 0.01 5 Bal 

 

1.2.Alloy and Composite Preparation 

The development of Al-Sn alloy and Al-Sn-SiC composites was developed using stir 

casting techniques in which aluminum rods were cut into small pieces and melted in a graphite 

crucible. Once the melt is prepared, refining and skimming of the same is carried out and a 

mechanical stirrer is introduced into the melt for mechanical agitating. Once a vortex is created 

due to rotating motion of the mechanical stirrer, the alloying element viz. tin is gradually 

introduced into the vortex and then continuously stirred for an optimized time period maintained 

at 600 r.p.m of stirrer rotating speed so as to achieve a homogenous inclusion of the alloying 

element. The prepared aluminum alloy with tin (Sn) element alloyed into it at varying weight 

percentage (5, 10, 15, 20 wt %) is poured down into a preheated hot cast iron die. In order to 

achieve Al-Sn-SiC composites; into the prepared above said Al-Sn alloy a second phase ceramic 

particles SiC is introduced at a constant weight percentage of 5% through the vortex created due 

to continuous stirring. With the complete addition of SiC particles into the matrix, the stirrer 

speed is brought down to 300 rpm and stirred for 3 minutes thereby providing a homogenous 

dispersion of particles which is poured down to a preheated hot cast iron die for a defined shape. 

The developed Aluminum based alloys and composites specimens were prepared and 

polished according to the standard metallographic technique to carry out the microstructural 

characterization. The polished specimens were etched using Keller’s reagent and observed 

through an optical microscope (OM). The microhardness for the developed set of alloys and 

composites was measured using Vickers hardness tester at a load of 500 gm applied for a time 

period of 15 seconds. 

1.3.Machining Studies 



  

Aluminum based self healing alloys and composites with varying weight percentage of 

tin (5, 10, 15, 20 wt%) in the case of alloys and composites and a constant 5 wt% of SiC in the 

case composites has to be machined by WEDM. Based on literature survey over the WEDM of 

aluminum based alloys and composites, the various process parameters has been considered in 

which the material characteristics that may influence the output response in this research were 

considered to be the weight fraction of the reinforcement particles and alloying element 

respectively. The machining parameters considered in this study based on the expertise 

knowledge and literature survey are the pulse discharge ON and OFF time along with the wire 

feed rate. It is a known fact that an industry tries to attain the best results with minimal period of 

time and in this scenario an engineer tries to attain the minimal surface roughness value for the 

machined surface with maximum material removal rate and hence the above mentioned two 

factors were considered as the output response in this study. 

Selection of levels for the considered set of control factors was optimized to a smaller 

range of working parameters through a detailed survey over literatures, expertise knowledge and 

through pilot experiments in which one factor at a time approach was considered. Based on the 

above said methodology, the operating parameters for machining the Aluminum based Sn alloy 

and Sn-SiC composites were finalized and set of processing parameters along with its levels are 

as provided in table 2. 

Table 2. Levels of  Control Factors  

Sl. No Control Factors Symbol Unit Level I Level I Level III Level IV 

1 SiC Weight Percentage SiC wt% % 0 5   

2 Sn Weight Percentage Sn wt% % 5 10 15 20 

3  Pulse ON Time PON µs 110 115 120 125 

4 Pulse OFF Time POFF µs 40 45 50 55 

5 Wire Feed Rate WFR m/min 4 5 6 7 



  

 

Figure 1. WEDM machine and its parts 

The machining of the alloy and composite specimens were carried out by a CNC WEDM 

machine of make AgieCharmilles CUT 20P as shown in figure 1 along with which a set of 

machined pieces are also portrayed. A brass wire of diameter 0.25 mm was considered in this 

study as the wire electrode material and de-ionised water was considered as the dielectric 

medium. Certain important parameters of WEDM was kept constant in this study which includes 

peak current gap voltage etc., and all the operating paremeters of the WEDM machine 

considered in this study is reported in table 3. The output responses considered in this research 

includes Material Removal Rate (MRR) and surface roughness (Ra) in which MRR was 

evaluated by the formulae  as given in equation 1. 

    
  

   
    (1) 

in which ‘W’ represents the weight loss during machinining, ‘ ’ the density of the 

specimen and ‘t’ for time taken per cut respectively. Ra values of the machined surface was 

evaluated from a set of 5 Ra values analysed employing a Mitutoyo made SJ 201P model surface 

tester.  

Table 3. Experimental parameters 

Sl. No Experimental Facility and Machining Parameters Specifications 

1 Peak Current 10 A 

2 Gap Voltage  20 V 



  

3  PulseON (PON) 120, 125, 130 µs 

4 PulseOFF(POFF) 40, 45, 50 µs 

5 Wire Electrode Material Brass 

6 Wire Electrode Diameter 0.25 mm 

7 Wire Tension 8 N 

8 Wire Feed Rate (WFR) 5,6,7 m/min 

9 Dielectric Fluid De-ionized water 

10 Work Piece Height  6 mm 

 

1.4.Planning Experimental Design through Taguchi’s Method 

Based on the considered set of factors and levels in this research going forward with a 

full factorial design for experiments prompt to be expensive and time consuming. In this 

scenario, so as to reduce the number of experimental trials and at the same time analyzing the 

effect of each factor over the output response, an experimental design put forward by Taguchi 

was initiated. Considering each control factor to be independent to each other, based on 

Taguchi’s method an L32 Orthogonal Array (OA) was concluded by employing Statistical 

Software R programming. The L32 OA was concluded as per the factors and levels of 

parameters as shown in table 2 and comes under the mixture technique of Taguchi’s method. 

Analyzing the results through Taguchi’s method is carried out by changing the obtained 

results in the form of Signal to Noise ratio (SN ratio) and the based on the objective of the 

results, the SN ratio can be classified into three criteria which includes higher the better, nominal 

the better and smaller the better. In this research, MRR of the machine and Ra of the machined 

surface is considered as the output response and in which maximum MRR and minimum Ra 

value has to be attained, henceforth higher the better is considered for MRR and smaller the 

better for Ra value respectively. The equations used to obtain the SN ratios for higher and 

smaller the better are provided below as equation 2 and 3 respectively. 

                
 

 
     

    
       (2) 

               
 

 
   

  
         (3) 

in which ‘y’ represents the response value at a trial number of ‘m’, and ‘n’ denotes the total 

number of trials. The maximum value from the obtained set of SN ratio is considered as the best 



  

process parameter and based on this the best values for each control parameter was chosen to 

attain the optimal combination of parameters and thereby achieve an efficient output response. 

Analysis of Variance (ANOVA) was carried out for the validated experimental results to 

evaluate the conformity of the Taguchi analysis, figure out the sum of square, F values, P values 

and at the same time to authenticate the significance of each control factors over the output 

response along with its percentage contribution.  The desired level of contribution considered in 

this research was 95%. 

1.5.Empirical Model for the MRR and Ra 

An empirical model adapted based on a mathematical linear multivariable regression 

model to predict the MRR and Ra value based on the control factors was carried out in this 

research and the format of the empirical model is as shown in equation 4. The developed model 

can also be used to investigate the effect of each control factor over the output response. 

Y = C0+ C1×A+ C2×B+ C3×C+ C4×D   (4) 

Where C0, C1, C2, C3, C4 stands for constants, Y dependent variable relatively for response 

variables viz. MRR, Ra in this research and the independent variables A, B, C, D stands for the 

control factors. 

1.6.Grey Relational Analysis based Multi-Objective Optimization. 

 Taguchi’s method of Analysis has been prompt to be an efficient method to study the 

behavior and to finalize optimal combinations of the control factors so as to achieve the efficient 

output response. But the major limitations that has to be taken into account for Taguchi’s method 

in this research is that it can be able to evaluate only single-response problems whereas in this 

study regarding WEDM of samples, the machinist has to attain maximum MRR values with 

minimal Ra values as both are correlated to each other. Based on the Taguchi’s method of single 

response optimization it is easy to attain the maximum MRR value by changing the process 

parameters but it may affect the Ra value negatively. Hence to resolve this problem to an extent 

Multi-Objective Optimization technique is considered and in this research effective use of Grey 

Relational Analysis (GRA) was carried out. 

GRA comprises of mainly three steps which includes of the grey relational normalization 

of the output responses based on the response characteristics, computing the Grey Relational 



  

Coefficients (GRC) for the output response based on which the Grey Relational Grade (GRG) is 

evaluated. Grey relational normalization of SN ratio for the output responses based on its 

performance characteristics is the initial step in GRA analysis. In this step SN ratio for MRR and 

Ra are obtained based on equation 2 and 3 based on its characteristics higher the better and lower 

the better respectively. This step converts the value of SN ratio within the range of zero to one 

and thereby reduces the chances for prioritizing one parameter over another during the analysis. 

Based on the output characteristics, the grey relational normalization equations also vary and are 

provided in equations 5 and 6.  

In the case of MRR values, SN ratio values are obtained based on the objective higher the 

better and the normalization equation for the same is as shown in equation 5. While SN ratio 

values for Ra are based upon the performance characteristics lower the better and the grey 

relational normalizing equation for the same is as given in equation 6. 

  
     

              

                 
    (5) 

  
     

              

                 
    (6) 

Where xi
*
(k) and xi(k) represents the evaluated normalized value and the output response 

value respectively for the k
th
 response obtained from an i

th
 experimental trial.  From the obtained 

normalized output response values, the GRC values are evaluated based on equation 7.  

      
          

           
    (7) 

in which      can be defined as the absolute difference value between   
     and   

    ,     ,      

defines the global maximum  and minimum value of the normalized data set respectively. The 

distinguishing coefficient of GRA (   is used to expand or compress the GRG range and most often the 

value of the same is considered as 0.5 and the same is repeated in this research also. Based on the 

computed set of GRC values of the output response, the GRG value is evaluated by taking the average 

value of the GRC values and is done accordingly based on equation 8. 

   
 

 
      

 
       (8) 

where    stands for the GRG values and ‘n’ the number of output responses respectively. Based 

on the larger values, ranking of GRG values is carried out and the combination of process 



  

parameters with maximum GRG value in the OA considered is considered as the optimum 

combination. ANOVA for GRG values is carried out to study the contribution percent and 

statistical importance of each input parameters over GRG values. 

2. Results and Discussion 

3.1.Microstructural and Mechanical Characterization 

 

Figure 2. Optical micrographs of (a) S1, (b) S4, (c) S5, (d) S8 

Optical micrographs of the developed alloys and its components are shown in figure 2(a-

d) in which 2(a) and (b) portrays the optical image of aluminum alloys with 5 and 20 wt% of tin 

alloyed to it, while (c) and (d) demonstrates the image of aluminum composites with Sn and SiC 

particles dispersed into it. Comparing the optical micrographs of the developed alloys and 

composites with varying tin weight percentage, it can be stated that tin influences in defining the 

microstructural images of the developed alloys and composites, and it can also be stated that the 

introduction of tin particles into aluminum alloy has made grain structure coarser and thereby 



  

more eutectic phase. It has been previous report that manufacturing process affects the grain 

structure, grain size and microstructures which plays a vital role in the properties and 

performance of metals and alloys [46-49].  

 The hardness of the material governs the MRR and Ra value to a great extent and hence 

hardness and density evaluation was carried out in this research and the results thus obtained are 

provided in figure 3. It can be observed from figure that density values of the developed 

composites tends to increase with increase in tin weight percentage in both the scenario of alloys 

and composites and it has to be noticed that alloys showcased minimal density when compared 

with composites. The hardness value of the alloys tends to decrease with increase in the weight 

percentage of tin particles while the dispersion of SiC particles into the aluminum matrix 

enhanced the hardness of the developed composites when compared with the alloys. 

 
Figure 3. Hardness and Density plots of the developed alloys and composites. 

2.2.Single Objective Optimization  

 The analysis of process parameters through Taguchi method to establish the optimal 

conditions so as to achieve the better results were carried out in this research. The analysis was 

done and the parametric influence over each response is discussed in this section. Experimental 

design has been carried out using L32 orthogonal array. L32 orthogonal array dataset has the 



  

material elemental composition parameters (i.e. Sn wt% and SiC wt %) data, WEDM process 

parameters data and output responses such as Material Removal Rate and surface roughness data. 

Figure 4 shows the visualization of L32 orthogonal array dataset in matrix scatter plot. R 

programming has been employed for data visualization. 

 



  

 
Figure4. Visualization of L32 orthogonal array dataset in matrix scatterplot. 



  

 

Figure.5 Hierarchical clustering of correlation coefficient matrix of input variables (i.e. both 

material elemental composition parameters and WEDM process parameters) and response 

variables (i.e. Material removal rate and Surface roughness). 

Figure 5 shows the visualization of correlation matrix of input variables such as material 

elemental composition parameters, WEDM process parameters and response variables such as 

Material Removal Rate and surface roughness. The correlation matrix was reordered based on 

hierarchical clustering order according to the correlation coefficient to identify the structure and 

pattern in the matrix. The color intensity and size of square are proportional to the correlation co-

efficient and then the positive and negative correlations are displayed in red and blue color 

respectively.  The four black rectangles boundaries drawn inside the correlation matrix are shows 

the results of hierarchical clusters. 



  

Analysis of the acquired MRR value based on the designed set of parameter 

combinations were carried out by converting the MRR response value to its SN ratio based on 

larger the better criteria. The attained MRR values along with its SN ratio values are provided in 

figure6. Based on the Taguchi analysis of the L32 OA, a SN ratio response graph was attained 

which briefs the effect of each control parameters over the output response MRR and the same is 

plotted as figure 6. Figure 6 demonstrates the effect of both material and machining parameters 

and aids to conclude the optimal set of processing parameters so as to achieve the maximum 

MRR value by the machinist. 

 

Figure 6. SN ratio response graph for (a) MRR (b) Ra 

The results of analysis of variance between of MRR with SiC and Sn for various WDEM process 

parameter are shown in box plot. The analysis of variance and its visualization plots modeled 

using R programming in R Studio.  From figure 6(a) and 7 it can be surveyed that the material 

parameters have made a great impact in governing the MRR value and it can be observed that 

with increase in the weight fractions of SiC particles, the MRR values tends to decrease. The 

increment in the hardness values of the developed composites when compared to the developed 

alloys with introduction of SiC particles can be stated as the major hitch causing the reduction of 

MRR values. The insulating nature of SiC particles dispersed into the matrix of aluminum alloys 

limits the generation of electric sparks, which can also be attributed, for the reduction of the 

MRR values. It can be viewed from figure 6(a) and figure 7 that with introduction of the alloying 

Sn element, the MRR values tends to increase. Tin being a soft material when alloyed with the 

matrix aluminum alloy showcase a tendency to decrease hardness of the developed alloy and 



  

composite specimens, thus enabling the easy passage of the wire through the material boosting 

the WFR thereby increasing the MRR value. Again to this, it can be added that Sn element with a 

melting point of 231
o
C even though alloyed with the aluminum metal showcases a tendency to 

melt down once the temperature surpasses the melting point. It is a known fact that during 

WEDM, electric sparks are produced creating a high temperature between the interface of work 

piece and wire electrode leading to crater formation due to the melting and vaporizing of the 

minute part of the cutting specimen [44]. In this scenario, the electric sparks produced during the 

machining tends to melt the alloyed tin element due to the increased temperature which gets 

vaporized and flushed away leading to the increment of MRR values.  
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Figure 7 Visualization of analysis of variance between of MRR with SIC and Sn for various 

WDEM process parameter in box plot. 

 

Considering the operating parameters based on Taguchi analysis, it can be observed that 

with increase in the PON time, the MRR value tends to increase as shown in figure 5 and 7. 

WEDM is a discontinuous machining process in which electric sparks will be created during 

PON time and will be idle over POFF time. The increase in MRR value in this study with respect 

to PON time can be attributed to the reason that with increase in PON time, the discharged 

electric sparks tends to increase and this high intensity electric sparks tends to deepen the cut, 

forming craters on the work piece and thereby increases the MRR values. Apart from the above 

said reason it can also be stated that the heat generated during the PON time widens the HAZ 

zone of the work piece which produces deeper craters during next PON cycle. Chances are there 

that the softened material gets flushed away with high pressure dielectric fluid during the idle 

time. In the case of composite materials considered in this study, the melting point of SiC 

particles is far ahead of that of aluminum and with respect to the intensity of PON the HAZ area 

widens loosening the SiC particles from the matrix material and gets flushed away along with the 

dielectric fluid increasing the MRR values. 

POFF time in this study is considered as one of the major parameter that influence the 

MRR value and the effect of POFF time increment over the MRR value is as shown in figure 

6(a) and 7. It can be observed that with increase in the POFF value, the MRR value decreases 

and this phenomenon of MRR decrement is due to the reduction in number of electric sparks 

during the full machining cycle. Again to this, increase in POFF time increasing the flushing 



  

time of dielectric fluid which reduces the HAZ zone thereby hardens the soft zone reducing the 

MRR values. The effects of WFR in influencing the MRR are investigated through Taguchi 

method and the same is depicted in figure 6(a) and 7. It can be observed that with increase in the 

WFR values, the MRR values tend to increase slightly. During WEDM, the wire electrode also 

tends to get eroded during the spark generation and the MRR can be affected by the nature of the 

wire surface to an extent. With a lower WFR value, the wire electrode exposed to produce sparks 

gets eroded away leading to production of improper electric sparks which automatically reduces 

the MRR value on the other hand with increased WFR value unexposed wire electrode gets 

exposed with the work piece continuously which produces high intensity electric sparks eroding 

away the work piece material.   

Table 4. Analysis of Variance for MRR 

Source DF Seq SS Adj SS Adj MS F P Contribution% 

SiC wt.% 1 22.6128 22.6128 22.6128 591.36 0.000 28.64 

Sn wt%  3 23.6691 23.6691 7.8897 206.33 0.000 29.98 

PON   3 16.7987 16.7987 5.5996 146.44 0.000 21.28 

POFF   3 10.2956 10.2956 3.4319 89.75 0.000 13.04 

WFR 3 4.8805 4.8805 1.6268 42.54 0.000 6.18 

Error 18 0.6883 0.6883 0.0382 
  

0.87 

Total  31 78.9451 
     

 Significance of the processing parameters over the MRR value based on its ‘P- value’ 

were investigated based on the evaluated ANOVA table and the contribution percentage of each 

control factors were calculated and is provided in table 4. R and R Studio was employed for the 

investigation of ANOVA. From the table it can be observed that the most contributing factors 

over the MRR values are the material based parameter, which includes Sn wt% (29.98%) and 

SiC wt% (28.64) respectively. Apart from the material based control factors, PON time 

influences the MRR value to a significant rate, i.e. 21.28% followed by POFF time (13.04%) and 

WFR (6.18%). Based on the P value it can be stated that all the processing parameters considered 

in this study has a significant effect in governing the MRR values of the considered Aluminum 

based alloys and composites with varying weight fraction of Sn element. The optimal 

combination of significant control factors to accomplish the maximum output response MRR can 

be achieved based on the analysis of the SN ratio of the attained MRR values. Based on figure 

6(a) and 7, the optimal combination to attain the maximum MRR value are been finalized as 



  

A1B4C4D1E4 in which A, B, C, D and E stands for SiC wt% , Sn wt%, PON, POFF and WFR 

respectively at levels 1,4,4,1 and 4 accordingly.  
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Figure 8. Visualization of analysis of variance between Ra with SIC and Sn for various WDEM 

process parameter in box plot. 
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Figure 8 shows the results of analysis of variance between of Ra with SIC and Sn for 

various WDEM process parameter in box plot. R packages and R Studio are employed for the 

analysis of variance and its visualization plots. The attained surface roughness value for the 

designed L32 OA is converted to its SN ratio values based on smaller the better characteristics 

and is as shown in figure 6(b). Based on the SN ratio value, the influence of each control factors 

over the Ra value is analyzed using Taguchi method and the same is as shown in figure 6(b). It 

can be perceived from figure 8 and 6(b) that introduction of SiC particles into Al alloy had an 

adverse effect over the surface roughness. This reduction in surface roughness value with respect 

to introduction of SiC particles can be attributed to the presence of hard ceramic particles 

dispersed into the aluminum alloy matrix. The presence of insulating SiC particles into the 

aluminum alloy restricts the electric spark generation and at the same time reduces the WFR 

thereby reducing the Ra values. Improper spark generation leads to uneven melting of work 

piece material thereby forming craters with irregular depth reducing the surface integrity of the 

developed material. It can also be stated that with the melting of the aluminum alloy due to 

electric sparks protrudes the SiC particles over the machined area increasing the Ra values. 

Influence of Sn wt% as alloying element over the Ra response is described in figure 8 and 6(b) 

which reveals that with increase in wt% of Sn particles the Ra value tends to increase slightly. 

This increase in Ra value with respect to increase in tin wt% can be stated as the low melting 

point and hardness of the Sn element which reduces the overall hardness of the developed set of 

alloys and composites and at the same time tin gets vaporized due to the high temperature 

generated during the electric spark generation. 

 SN ratio based analysis to study the influence of PON over the Ra value is as shown in 

figure 6(b) and it reveals that with respect to increase in the PON time value, the Ra value is 

suspect to increase reducing the surface integrity of the machined surface. This reduction in the 

surface integrity can be an after effect of the localized erosion with increase in the PON time. 

The increment in PON time increases the HAZ of the work piece specimen melting away the 

aluminum alloy and tin element in an uneven proportion leading to the formation of irregular 

craters. This uneven melting of Al alloy and tin will lead to protrusion of the SiC particles in the 

case of composite thus reducing the surface integrity of the work piece specimen. It can also be 

seen during the WEDM process that during high PON time value, the electric sparks last long 

leading to the formation of melt expulsion from the matrix material thereby reducing the surface 



  

integrity of the machined surface. Henceforth based on this research it can be stated that to 

achieve a minimal Ra value, the minimum PON time has to be concentrated. 

 POFF time and its effects on Ra value based on Taguchi analysis of SN ratio is carried 

out and the results are demonstrated in figure 6(b). It can be observed that with respect to 

increase in POFF time, the Ra value of the machined surface tends to decrease. This 

phenomenon can be due to the reason that as the POFF time increases the flushing time of the 

dielectric fluid also tends to increase which flushes away the debris and molten expulsions to a 

large extent so as to attain a clean surface for the subsequent PON time. This flushing of 

dielectric fluid during the POFF time helps to a great extent in increasing the surface integrity of 

the work piece specimen. These happenings during the POFF time at higher level attribute to 

increase the surface finish of the machined specimen during WEDM process. Considering the 

influence of WFR over the Ra values based analysis of the SN ratio through Taguchi methods 

was portrayed in figure 6(b) and it consolidates that with increase in WFR value the Ra value 

tends to decrease. This decrease in Ra value with respect to WFR is due to the high intensity 

sparks discharged through the newly introduced wire surface during high WFR which creates 

deeper cracks leading to increased MRR value but reduces the surface integrity of the machined 

surface. 

Table 5. Analysis of Variance (ANOVA) for Ra 

Source DF Seq SS Adj SS Adj MS F P Contribution% 

SiC wt.% 1 0.83625 0.83625 0.83625 114.52 0.000 38.39 

Sn wt%  3 0.22929 0.22929 0.07643 10.47 0.000 10.53 

PON   3 0.41347 0.41347 0.13782 18.87 0.000 18.98 

POFF   3 0.39077 0.39077 0.13026 17.84 0.000 17.94 

WFR 3 0.17699 0.17699 0.059 8.08 0.001 8.13 

Error 18 0.13144 0.13144 0.0073 

  

6.03 

Total  31 2.17821 

     
Significance of each processing parameter in governing the Ra value during the WEDM 

processing of the developed alloys and composites were studied and the attained results are as 

shown in table 5. Based on table 5 it can be notified that the Ra value of the machined work 

piece is influenced at the maxima by the presence of SiC particles which means that the 

composites exhibits the maximum Ra value and hence forth the less surface finish when 

compared with the alloys. Followed by the SiC particles presence the machining parameter PON 



  

time has significant effect over Ra value which is about18.98% trailed by the POFF time with a 

contribution percentage of 17.94%. Sn wt% contributes to the Ra value at 10.53% followed by 

the WRF at a percentage of 8.13% contribution percentage. 

The optimal combination of the considered set of processing parameters so as to achieve 

the minimal surface roughness value for the machined set of specimens were figured out from 

the SN ratio plot graph as shown in figure 6(b). It can be concluded from figure 6(b) that 

A1B4C1D4E1 set of process parameters can be considered so as to acquire the minimal surface 

roughness value, were A, B, C, D and E stands for SiC wt% , Sn wt%, PON, POFF and WFR 

respectively. 

2.3.Multi-Objective Optimization Using Grey Relational Analysis 

 Taguchi based method focuses on single objective optimization of an output response and 

in the case of industries, the engineers or machinist try to attain the maximum production without 

sacrificing the surface roughness criteria and in these cases, single objective optimization 

techniques gets pushed back and multi-objective optimization techniques comes into the focus. 

Grey Relational Analysis is a technique among many multi criteria optimization techniques 

which has been proved to be efficient in finding out the optimal set of process combinations so 

as to achieve maximum efficiency for a particular process. In this research, the machined surface 

of the developed set of alloys and compounds should have the minimal surface roughness value 

and at the same time the production time also should be minimal so as to attain the maximum 

productivity. 

Table 6. Normalized values, GRC, GRG and Grade 

Exp 

No 

Normalized SN ratio  GRC 

GRG Rank MRR Ra MRR Ra 

1 0.4986 0.3608 0.4993 0.44 0.4691 29 

2 0.6027 0.5224 0.5573 0.51 0.5344 20 

3 0.6524 0.5758 0.5899 0.54 0.5655 17 

4 0.7024 0.6374 0.6269 0.58 0.6033 14 

5 0.6594 0.4139 0.5949 0.46 0.5276 22 

6 0.6440 0.1600 0.5841 0.37 0.4786 26 

7 0.7675 0.5116 0.6826 0.51 0.5942 15 

8 0.7940 0.4395 0.7083 0.47 0.5899 16 



  

9 0.7980 0.2411 0.7123 0.4 0.5547 19 

10 0.9842 0.4252 0.9694 0.47 0.7173 5 

11 0.7419 0 0.6596 0.33 0.4965 24 

12 0.9337 0.3066 0.8831 0.42 0.651 9 

13 0.9049 0.2422 0.8403 0.4 0.6189 10 

14 1 0.3661 1 0.44 0.7205 4 

15 0.8359 0.1404 0.753 0.37 0.5604 18 

16 0.9325 0.0533 0.8811 0.35 0.6134 13 

17 0 0.3598 0.3333 0.44 0.3859 30 

18 0.2334 0.7292 0.3948 0.65 0.5217 23 

19 0.4925 0.8218 0.4963 0.74 0.6168 11 

20 0.7270 1 0.6469 1 0.8234 2 

21 0.1755 0.2849 0.3775 0.41 0.3945 29 

22 0.3514 0.5224 0.4353 0.51 0.4734 28 

23 0.6678 0.7869 0.6008 0.7 0.651 8 

24 0.7661 0.9839 0.6814 0.97 0.8251 1 

25 0.4516 0.4374 0.4769 0.47 0.4738 27 

26 0.4910 0.4374 0.4956 0.47 0.4831 25 

27 0.6341 0.7373 0.5774 0.66 0.6165 12 

28 0.7365 0.8984 0.6549 0.83 0.743 3 

29 0.5912 0.4678 0.5502 0.48 0.5173 24 

30 0.6127 0.4878 0.5636 0.49 0.5288 21 

31 0.8346 0.7551 0.7515 0.67 0.7114 6 

32 0.8151 0.7516 0.7301 0.67 0.6991 7 

 

 The GRA initiates with considering the SN ratio of the considered output responses and 

in this study SN ratio values for the MRR and Ra values were evaluated based on larger the 

better and smaller the better criteria respectively. The SN ratio values were calculated based on 

equations 2 and 3 and the attained SN ratio values are provided in table 3.  Normalizing the 

output response values is an unavoidable process in GRA technique which gives all the outputs 

the same influence over the GRG which has to be calculated. In this research maximization and 

minimization occurs and henceforth the normalization of SN ratios within 0 to 1 is done based on 

equations 5 and 6 respectively for MRR and Ra values. Based on the normalized values obtained 

and produced in table 6, the GRC values were established as per equation 7 for both output 

response values and average of the two were carried out to determine the GRG values and the 



  

same is ranked accordingly. The calculated GRC, GRG and rank is produced in table 6. The 

grading of the GRG is carried out by considering the maximum as rank 1 and the least GRG as 

the last rank and vice versa. The parameter combination with GRG value ranked 1 is considered 

as the optimal set of combination that provides the maximum MRR value with considerable Ra 

value and in this study trial 24 has the maximum GRG value (0.8251) and henceforth is 

considered as the optimal combination for the machinist to machine for the provided set of alloy 

and composite specimens. Based on the evaluation the optimum condition can be identified from 

table 3 and confirmed as the composite material with 5 wt% SiC, 10 wt% Sn element at a PON 

time of 125, POFF time 40 and WFR value of 6 respectively. 

Table 7. Response table for GRG 

Parameters Level 1 Level 2 Level 3 Level 4 Max-Min 

SiC content 0.5810 0.5916 

  

0.0106 

Sn wt% 0.5650 0.5668 0.5920 0.6212 0.0562 

PON 0.4927 0.5572 0.6016 0.6935 0.2008 

POFF 0.6764 0.6121 0.5513 0.5053 0.1711 

WFR 0.5291 0.5805 0.6094 0.6261 0.0970 

The response table for the GRG values is as produced in table 7 based on which the 

optimal levels can be finalized for the multi-machining characteristics in this study. The analysis 

of the GRG data is mainly carried out with higher the better criteria and in the optimal parameter 

for the multi-machining characteristics can be obtained by considering the larger value. Based on 

larger the better criteria, the optimum levels for the parameters was selected from the response 

table which is found to be SiC = 5wt%, Sn = 20wt%, PON= 125µs, POFF= 40µs, and WFR= 7 

m/min respectively. 

2.4.Mathematical Modeling 

 Based on the significance of each control factors from ANOVA table, it was concluded 

that all the parameters affect in governing the MRR and Ra value and hence a mathematical 

model was developed to predict the MRR and Ra values which is as provided in the form 

equation 9 and 10. The predicted values for MRR and Ra values were plotted against the 

experimentally validated set of readings and are provided in figure 9 and 10 respectively. The 

regression model developed for the set of MRR values based on the considered set of input 



  

control factors yielded an R-Square value of 98.91% while the model for Ra yields an R-square 

value of 91.89%.It can be concluded from these pictorial representations that the experimental 

and predicted results correlates to each other to an extent and the same can be used to predict the 

results for a set of reading for the given set of alloys and composites. 

MRR = 3.241 - 0.33625 SiC wt.% + 0.15375 Sn wt% + 0.12945 PON -0.10125 POFF + 0.34725 

WFR            (9) 

Ra  =  0.61655 + 0.0646625 SiC wt.% - 0.0146575 Sn wt% + 0.0203325 PON - 0.0197225 

POFF + 0.0608375 WFR         (10) 

 

 

Figure 9. Experimental and Regression Based MRR Results. 



  

 
Figure 10. Experimental and Regression Based Ra Results. 

2.5.Artificial Neural Network based Modeling 

Mathematical modeling has always been in the substantial side when it comes to the 

correlation of a set of data with its other. In the case of materials, mathematical models has 

played major role is correlating its parameters with that of its properties, machining 

characteristics, etc. Even though a large study based on the material property and its control 

factors has been carried out through mathematical modeling, it can be noticed that the error 

shown by the developed mathematical model can be considerably high unless all the parameters 

that affects the output response has been investigated minutely and selected. Such condition of 

detailed investigation of parameters in the case of material based study is tough, as despite of the 

out seen parameters various other metallurgical aspects also take place along with every process 

and that can’t be considered during the mathematical modeling of the same. In such scenario the 

practice of Artificial Neural Network (ANN) based modeling comes into handy where a model 

will be developed successfully based on the provided set of inputs and outputs. 

Artificial Neural Networks developed based on the principle of human brain working has 

been utilized as an advanced tool in the field of materials to a great extent in developing and 

correlating the properties of the materials to its relevant properties based on the type of 



  

processing carried out. Its computing ability has made it an advanced tool in the field of pattern 

recognition, optimization, estimation, prediction etc. Similar to neurons in human nervous 

system, ANN comprises of computing nodes interconnected to each other and organized in 

layers that enables it to study from a given set of training data and gets trained accordingly to 

perform the approximation, classification and pattern recognition. ANN model comprises of an 

input layer, hidden layer and output layer in which nodes from input layer receives all the inputs 

and sent to the hidden layer where processing of data will be carried out and provided to the user 

as results through the nodes in output layer.  

In this research, ANN models were developed so as to predict the MRR and Ra values 

based on the input control factors considered in this research including the weight percentage of 

SiC and tin as the material parameters and machining process parameters which includes PON 

time, POFF time and WFR. The models were trained based on the designed L32 OA and the 

attained output response, MRR and Ra values. Feed forward back propagation algorithm which 

proved to be used for solving non- linear and complex problems was considered in this study 

based on a detailed survey over literatures and Levenberg-Marquardt was finalized as the 

training function for updating the weight and bias values during the training procedure [33, 34, 

45]. The transfer function considered in this research includes tan-sigmoid transfer function for 

the hidden layers and purelin transfer function for the output layer respectively. In regards of the 

above said algorithms and training functions, feed forward back propagation ANN models were 

trained with a single hidden layer consisting of various hidden nodes. L32 OA parametric 

combinations with SiC wt%, Sn wt%, PON, POFF and WFR were considered as the input 

parameters and MRR and Ra values were taken individually as the output response for training 

the models.  Normalization of the inputs and output values were carried out such that all input 

control factors put forth an identical influence over the output during the training phase and 

normalization of all values between -1 to 1 were carried out based on equation 11 and is as 

produced below.  

   
         

         
         (11) 

where Xn symbolize the normalized outcome, xmax and xmin representsthe maximum and 

minimum value from the given set of  training data. Each model with varying number of hidden 

nodes were considered in this research and trained with the given set of inputs as optimizing the 



  

correct number of hidden nodes in the hidden layer is not practical based on certain relationships. 

Each model was trained for 1000 epochs and to find out efficient model the same were trained 

for an iteration of 10,000 in number. Performance of the developed set of models were evaluated 

based on Mean Square Error(MSE) performance function and the model with the least MSE 

value were considered as the efficient and best model for prediction purpose. Schematic 

representation of the model developed to predict the MRR and Ra value is provided in figure 

11(a) in which different layers are clearly displayed. 

 

Figure 11. (a) Schematic Representation of  ANN model (b) MAE value for the developed 

models 

 

Based on the Mean Absolute Error (MAE) values, the developed set of ANN models 

were evaluated and the the model with the minimum MAE value was considered as the best 

model with better predictability. In this research, MAE values for all the developed set of models 

for predicting MRR and Ra values were computed and the obtained results were as potrayed in 

figure 11(b). From figure it can be stated that a feed forward back propagation ANN model with 

network topology 5-7-1 can be effectively used to model the MRR value and a model with 

topology 5-10-1 can be successfully utilized for predicting Ra values with better predictability 

nature. The considered ANN models finalized based on this research was then used to predict the 



  

MRR and Ra values for the given set of inputs that has been used to train the model and the 

values are as shown in figure 9 and 10. 

Results from the developed set of ANN model with topology 5-7-1 to predict the MRR 

values were attained for the L32 OA combinations and the same were compared with the 

experimentally validated results as shown in figure 9 which states that the predicted results had a 

better correlation with the experimental results. The R-Square value for the developed feed 

forward back propagation ANN model to predict MRR value was estimated to be 99.42% which 

states that the model seems to be more efficient when compared with that of the mathematical 

model developed to predict the results. Similarly the other developed ANN model to predict the 

Ra were used to forecast the results for the considered L32 OA and compared with the 

experimental results. The predictability of ANN model with network topology 5-10-1 and the R-

square value of the developed model tends to be 98.51% which was comparatively higher when 

compared with the developed regression model.  

2.6.Confirmation Results 

 The optimal parameter combination attained based on the research has to be evaluated to 

study the improvement of the considered output. The optimal combinations of parameters were 

considered and the validation experiments were carried out to evaluate the study. 

2.6.1. Single-Objective Optimization  

 The optimal combination for attaining the maximum MRR values during WEDM process 

was finalized and the combination code for parameters obtained as A1B4C4D1E4 states 

maximum MRR value can be achieved for aluminum alloyed with 20 wt% of Sn content 

machined at an operating conditions of PON=125µs, POFF= 40µs and WFR= 7m/min. The 

parameter combination code to attain the minimal surface roughness value during the WEDEM 

machining canbe put forward as A1B4C1D4E1 in which the aluminum metal with 20wt% of Sn 

content can attain the minimum surface roughness value at a minimum PON time(110µs), 

maximum POFF time (55µs) and minimum WRF value(4 m/min). The experimentaly validated 

MRR and Ra values along with the regression based model and ANN predicted results are 

provided in table 8 for the optimal combination of process parameters. This MRR and Ra values 

obtained for the optimum combination of parameters has proved that these combination can 



  

improve the MRR rate and increase the surface integrity of the machined workpiece when 

considering with the L32 OA parameter combination. 

Table 8. Results for Optimal Combination of Control Factors 

Output Response 
Optimal 

Combination 

Code 

Experimental Predicted 

Regression ANN 

MRR(mm
3
/min) A1B4C4D1E4 20.607 20.878 20.595 

Ra (µm) A1B4C1D4E1 1.816 1.716 1.823 

2.6.2. Multi-Objective Optimization  

 To validate the optimal combination of the multi- machining characteristics carried out 

through GRA, a confirnmation test was carried out and further evaluation of the GRG was 

carried out. Results obtained from the optimum parameter combination (A2B4C4D1E4) is 

compared with that of the initial optimum parameter combination (A2B2C4D1E3) obtained 

during the grey ralational analysis of L32 OA based output response. The results for the MRR 

and Ra values for the optimum set of parameter combination based on experiments, regression 

prediction and ANN prediction is produced in table 9. It puts forward that an increase in GRG 

grade was observed when compared with the intial set of parameters attained from the L32 OA 

design system. An increase of 0.0205 was distinguished in GRG values between the initial set of 

parameters and the optimum parameter set which indicates the improvement that takes place in 

WEDM machining. From table 9 it can also be confirmed that a reduction in Ra value has 

happened with an increase in MRR and hence made known that at this combination the work 

piece can be machined for better surface integrity even at higher rate of production. 

 

Table 9. Confirmation Test 

 Initial Predicted Experimental 

Regression ANN 

Combination Code A2B2C4D1E3 A2B4C4D1E4 

MRR(mm
3
/min) 17.350 19.197 19.423 19.323 

Ra(µm) 2.914 2.825 2.621 2.668 

GRG 0.8251 0.9245 0.8266 0.8456 

Improvement in grade  0.0994 0.0015 0.0205 

 

3. Conclusions 



  

In current research aluminum was elected as the matrix material into which 5, 10, 15 and 

20 wt% of Sn material is added in order to develop a newer alloy grade namely Al-Sn alloy into 

which 5 wt% of SiC was further added so as to develop four sets of composite with varying 

weight percentage of Sn content. The WEDM  process parmeters PON, POFF, WFR along with 

material parameters Sn wt%, SiC wt% were considered in this study based on which L32 OA 

based experimental design of parameter combinations was formed and trials were taken. The 

attained results were analysed, optimized and ANN modeled and the results are as provided 

below. 

Taguchi analysis of the MRR results for the defined L32 OA states that with introduction 

of SiC particles MRR value decreases while it increases with respect to increase in Sn wt%. 

Outcomes considering the machining parameters states that increase in PON, WFR and decrease 

in POFF value increases the MRR values.  

Taguchi analysis on the Ra values claims that with introduction of hard ceramic SiC 

particles into the Al-Sn alloy, the Ra values tends to increase reducing the surface quality while 

with increment in Sn wt% , reduction in Ra value was observed.  

Multiple linear regression and ANN models was developed for predicting MRR and Ra 

values based on the significant input parameters and the results achieved from the models were 

compared with experimentalvalues and was found efficient. 

Multicriteria optimization of the considered WEDM process parameters were performed 

employing GRA and the optimal combination code of parameters obtained 

isA2B2C4D1E3which states that the maximum MRR with minimal Ra value can be obtained for 

an aluminum composite with 5 wt% SiC, 20wt% Sn when operated at an operating condition of 

125µs PON, 40µs POFF, and 7 m/min WFR respectively. 
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Highlights for review 

 

 

 Designed and manufactured aluminum alloys and metal matrix composites  

 Investigated the effect of surface roughness, microstructures and hardness. 

 Investigated the effect of elemental composition and wire electric discharge machining 

(WEDM) process parameters  

 Neural network models was developed using R programming & MATLAB to predict the 

MRR and Surface roughness. 

 Experimental confirmations identified the effectiveness of the developed models to 

predict the process parameter. 
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