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Abstract 

State-of-the-art catalytic converters need an ever-high amount of precious-metal catalysts to 

meet stringent emission regulations. This research reveals an alternative design based on micro-

structured ceramic hollow fibre substrates, yielding high conversion of pollutants at low 

catalyst costs, as well as a unique benefit of low pressure-drop, leading to high engine 

performances. 
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Surface Area.  

  



1. Introduction 

There is an enormous number of vehicles in the world powered by fossil fuels. For the UK 

only, around 99% of 31 million cars licensed by 2017 are fuelled by petrol or diesel (Statistical 

Release of Department for Transport, April 2018, GOV.UK), with 3.1 million new vehicles 

registered in 2017 of a similar case, despite the quick growth of alternatives to fossil fuels [1].  

Currently, each vehicle on roads needs at least one catalytic converter in the emissions control 

system converting toxic gases (CO, NOx, and hydrocarbons) into harmless emissions such as 

N2, H2O and CO2. As the key component within an emissions control system, a catalytic 

converter normally consists of a structured substrate (cordierite or metal-based monolith) with 

high geometric surface areas (GSA), in order to minimise the amount of expensive precious 

metal catalyst wash-coated onto it [2,3]. Other important design requirements for such 

structured substrates include low-pressure drops in order for good engine performance, e.g. 

less fuel consumption and as thus reduced CO2 emissions, and small volumes to enhance 

vehicle design flexibility etc.[4]. Generally, a monolithic substrate with a higher GSA has a 

larger number of smaller parallel channels and as thus higher values of cells per square inch 

(CPSI), as shown in Figure 1. This enables the formation of thinner catalytic wash-coating 

layers, and consequently lower diffusion resistance within the catalyst layer and higher 

conversion efficiency, by using possibly a less amount of precious-metal catalysts. 

Unfortunately, this can be at the expense of decreased engine performance due to the increased 

pressure drops of catalytic converters. As shown in Figure 1, increase of CPSI results in higher 

GSA at a given volume, while a sharp increase in pressure drop. As a result, conventional 

monolith substrates of 400 and 600 CPSI have been widely employed in automotive industry, 

even though higher CPSI values such as 900 can be manufactured.   

Cordierite or metal-based monolith substrates have served as the cornerstone of state-of-the-

art catalytic converters for over 40 years. With the more stringent emissions standards put into 



force, i.e. the dramatically tightened Euro-6 in 2014-2015, the design limitation of conventional 

substrates aforementioned is turning into a serious concern. To meet the required emission 

standards, more precious-metal catalysts have to be used, substantially increasing the costs of 

emissions control [5,6]. As a result, the emissions control system is becoming the single most 

costly bought-in component of a large commercial vehicle, even approaching the costs of the 

engine itself [7].   

To address such challenges, e.g., abating toxic emissions efficiently by using an as low as 

possible amount of precious-metal catalysts, and maintaining good engine performance at the 

same time, breakthroughs in catalytic converter designs are needed. In one of our previous 

researches [7], it was found that “impregnating” a small amount of Pd (without wash-coating) 

into a more porous ceramic hollow fibre substrate, which can be bundled together to form a 

mechanically and thermally robust monolithic configuration,  led to a very efficient conversion 

of CO to CO2. Based on this, we here reveal a further step change in catalytic converter design 

by addressing controlled incorporations of catalytic wash-coating materials into the oriented 

radial micro-channels of a ceramic hollow fibre substrate. CO oxidation and pure Pd supported 

on gamma-alumina were employed at example reaction and catalyst, respectively. As shown 

in Figure 1, the hollow fibre substrate with radial micro-channels provides GSA approaching 

to 900 CPSI, but still maintains a low pressure drop. In addition to the high conversion 

efficiency due to the low diffusional resistance inside catalytic layers, the incorporation of 

washcoating further lowers light-off temperatures without compromising pressure drops, by 

maintaining channel dimensions comparable to or even larger than monolithic counterparts of 

400 CPSI. 

  



2. Experimental 

2.1 Materials 

α-alumina (Al2O3) powder (1 µm, 99.9 % metal basis, surface area 6-8 m2 g-1, Inframat 

Corporation) was used as supplied. N-Methyl-2-pyrrolidone (NMP, synthesis grade, 

Merck) and Arlacel P135 (Polyethyleneglycol 30-dipolyhydroxystearate, Uniqema) 

were used as the solvent and dispersant respectively. Poly(methyl methacrylate) 

(PMMA) (Radel A-300, Ameco Performance, Greenville, SC) was used as the polymer 

binder. A mixture of NMP/ethanol (HPLC grade, VWR), and distilled water were used 

as the internal and external coagulants, respectively. 

γ-Alumina (Al2O3) powder (99.995%, surface area 100 ± 30 m2 g-1, Inframat Advanced 

Materials) was used for the wash-coating layer without further purification. 

Hydrochloric acid (HCl) and palladium(II) chloride (PdCl2) (99.9% metal basis, min 

59.0% Pd, Alfa Aesar) were used to prepare a metal salt precursor solution. 

2.2 Fabrication of ceramic hollow fibre catalytic converters 

Micro-structured ceramic hollow fibre substrates were first prepared via a phase-

inversion assisted process [8]. Controlled amounts of Gamma-Al2O3 (between 0 and 10 

wt.%) as the exampled wash-coating material were then incorporated into these 

substrates (W-0, W-3, W-5, W-8 and W-10 in Table 1), before the introduction of 

approximately less than 0.7 wt.% of Pd for all the samples by wet impregnation, forming 

the hollow fibre catalytic converter after reduction for CO oxidation. Further details of 

this process can be found in the supplementary document.  

2.3 Performance evaluation – CO oxidation 

The reaction was performed under an atmospheric pressure (Figure S2). Prior to the test, 

the hollow fibre catalytic converter was reduced at 450 oC for 1 hour, using a mixture 

of 5 ml min-1 H2 and 30 ml min-1 Argon. A hollow fibre catalytic converter sample of 



50 mm long was mounted within a cylindrical quartz tube, with the GHSV of ~ 43,250 

h-1. Mass flow controllers (Model 0154, Brooks Instrument) were used to maintain a 

total gas flow rate at 100 ml min-1. A reactant gaseous mixture of 50 ml min-1 air and 50 

ml min-1 (10% CO in 90% Argon) was fed into the reactor system, representing the lean-

burn conditions. The gas mixtures flow was pre-heated to the reaction temperature and 

placed in an upstream motion through the hollow fibre catalytic converter. An on-line 

gas chromatograph (Varian 3900) equipped with a thermal conductivity detector was 

connected to the reactor outlet via gas sampling tubing. In addition, a bubble flow meter 

was used to measure outlet flow rate. Sampling for analysis was recorded every 30 

minutes after stabilisation of each temperature intervals. A series of light-off 

temperature performance tests were carried out until 100% conversion was achieved.  

 

3.  Results and Discussion 

3.1 Micro-structures of hollow fibre substrate  

Different from the existing cordierite or metal-based monoliths, micro-structured 

alumina hollow fibres (Figure 2) offer unique radial micro-channel inside the fibre wall, 

significantly enlarging GSA to approximately 40 cm2 cm-3. This is comparable with the 

GSA of the commercial monolith of 750 CPSI (Table 2), while with the hydraulic 

channel diameter almost doubled, indicating pressure drops much lower than the 

commercial counterpart. Moreover, the inner diameter of hollow fibre substrate was 

measured at approximately 1.6 mm (Figure 2), which is approximately 60% and 170% 

larger than the channels of a 400 and 900 CPSI monoliths, respectively[7]. The 

correlation between pressure drops and hydraulic diameter has been well studied and 

can be calculated by Darcy-Weisbach Equation which was further proved by various 

studies on this subject[1]. Low pressure drops enable faster auto-ignition, due to the 



high intake pressure which reduces the premixing time before combustion happens in 

engines, and increases burning efficiency that reduces the unburned exhaust [9]. This 

means, by using the hollow fibre substrate, low pressure drops enabling good engine 

performance and the high GSA values can be achieved at the same time, which is so far 

challenging for state-of-the-art catalytic converter substrates commercially available. It 

is also worth to note that, an even higher value of GSA can be achieved by controlling 

the substrate fabrication parameters [7].  

The outstanding GSA values obtained would enable the formation of thinner catalytic 

wash-coating layers with lower diffusion resistance and reduce the amount of precious-

metal catalyst needed. Unfortunately, there are so far very limited investigations 

incorporating catalytic wash-coatings inside such oriented micro-channels, mainly due 

to the fact that the advantages of using hollow fibre substrates for emissions control are 

not yet well disseminated. As well as the challenge that the diameters of these micro-

channels are of only several tens of micrometres (Figure 2), which is almost same as the 

thickness of catalytic wash-coating employed in existing monolith substrates, thus 

requiring new ideas and methodologies for incorporating wash-coating materials. 

 

3.2 Distribution of the catalyst inside hollow fibre substrates  

The introduction of gamma-Al2O3 increases the specific surface area of the substrate 

samples effectively [10], between around 3 and 7 times when the loading of gamma-

Al2O3 was increased from 3wt.% to 10 wt.% (Table S5). Meanwhile, morphologies of 

gamma-Al2O3 inside the oriented micro-channels turn from wash-coating layers (W-3 

& W-5 in Figure 3) into micro-packings (W-8 & W-10 in Figure 3), indicating 

potentially increased transport resistance when over-loaded with the wash-coating 

material (Figure S3). Similar trends were also observed at the inner surface of the hollow 



fibre substrate (Figure S4), with a very thin and porous gamma-Al2O3 skin-layer, which 

“covers” the opening ends of micro-channels, formed at 5 wt.% of loading. With further 

increased loadings of gamma-Al2O3, this skin-layer becomes thicker, leading to higher 

BET surface areas but more transport resistance at the same time. 

Pd as the catalytic phase was found uniformly dispersed inside the wash-coated hollow fibre 

substrates, with the particle size of around 10 nm (Figure 4). The darker shades on the surface 

(Figure 4) were caused by the height differences of the sample during analysis, instead of 

agglomeration, which is in line with the EDX analysis. EDX analysis confirms the presence 

of Al, O, and Pd, with the intensities of the corresponding peaks of very similar ratios at 

different locations (Figure S5). Moreover, by incorporating an increasing amount of gamma-

Al2O3, with the very similar loading of Pd, the inner surface of hollow fibre catalytic 

converter looks darker (Figure S6), which can be linked to the presence of more gamma-

Al2O3 and thus deposition of metal catalyst on the inner surface (Figure S4).  

 

3.3 Catalytic performance for CO oxidation  

The resultant hollow fibre catalytic converters show excellent performance for CO 

oxidation (Figure 5). For W-3, W-5, W-8, and W-10, the one with various quantities of 

wash-coating materials, complete conversions of CO were achieved at temperatures 

below 200 C, which was around 30 C lower than the one without gamma-Al2O3 (W-

0). This demonstrates the effectiveness of incorporating suitable wash-coating materials 

inside the oriented micro-channels of hollow fibre substrates (Figure 5), considering the 

very similar loading of precious-metals for all the samples involved in this study (Table 

1).  

By comparing the light-off temperature of T50, the temperature when 50% of CO was 

converted into CO2 (Table 1), W-3 is almost 30 C lower than W-0, mainly due to the 



presence of around 12 mg of gamma-Al2O3 inside the oriented micro-channels (Figure 

3, Figure S4), considering the same amount of Pd incorporated. The similar trend applies 

for the further decreased T50 from W-3 to W-5, despite the formation of a porous skin-

layer on the inner surface of W-5, together with a slightly thicker wash-coat layer inside 

the micro-channels (Figure 3, Figure S4). This also indicates that a thin and porous 

wash-coat layer on the inner surface will not impair the efficiency of hollow fibre 

catalytic converter. The further increment of wash-coating materials leads to increasing 

T50 from 187 C of W-5 to 193 C of both W-8 and W-10, despite larger BET areas 

(Table S5). This can be linked to the thicker wash-coating layers on the inner surface of 

W-8 and W-10, as well as more densely packed gamma-Al2O3 inside their micro-

channels (Figure 3, Figure S4). This increases the diffusional resistance of the catalytic 

wash-coating, resulting in less effective interactions between emissions and precious-

metal catalyst, a typical case when thicker catalytic wash-coating layers are employed 

in monolithic catalytic converters[11]. Furthermore, the active catalytic phase of W-8 

and W10 is more concentrated in the wash-coating layer on the inner surface, instead of 

inside the micro-channels like W-5, a second reason for the higher T50. Such a 

segregation of catalytic active phase offers less effective surface to be in direct contact 

with reactants, thus reducing the number of sites taking place in reactions. This further 

addresses the importance of incorporating catalytic wash-coatings into the micro-

channels for promoting converting performance of this catalytic converter design.  

In contrast to our previous study [7] (Table 1), no wash-coating materials were used for 

neither W-0 nor MT3. W-0 has a much higher amount of Pd, while its T50 is nearly 25 

C higher. This is mainly due to the different reaction conditions, such as 10 times of 

CO concentrations involved in this study and less micro-channels. While under the 

similar testing conditions, W-3 to W-10 perform better than MT3 in terms of lower T50. 



For instance, T50 of W-5 is approximately 20 C lower. Combining with the difference 

between W-0 and MT3, it is clear that a suitable quantity and morphology of wash-

coating layer inside the oriented micro-channels of hollow fibre substrate is critical for 

good emissions control performance. 

By further comparing with M400, a commercially available sample, W-5 offers the 

same T50 as M400 under the conditions of 10 times of CO concentration, despite around 

the twice amount of PGM loading, yielding approximately 5 times of Turnover 

Frequency (TOF) if all the catalytic active phase participates in the reaction, another 

indicator of greater interactions between Pd and CO, when catalysts are incorporated 

inside the micro-channels. This enables further improvement of hollow fibre catalytic 

converter by forming more uniform wash-coating layers inside the oriented micro-

channels. Moreover, broader testing conditions, such as higher operating temperatures, 

testing gases containing HCs, NOx and H2O etc., as well as longer testing time etc. 

should be considered in order for a more comprehensive comparison with commercial 

counterparts.  

 

4. Conclusions 

We here reported the development of a new and efficient catalytic converter design, by 

incorporating exampled wash-coating materials into micro-structured ceramic hollow fibre 

substrate followed by impregnating Pd as the active phase. With less than 0.7 wt.% of catalyst, 

the reported new design lowers the light-off temperatures to the same level of existing 

commercial counterparts, at lower pressure drops and greater catalyst efficiency, by eliminating 

the design limitations of current monolithic counterparts. This could motivate further 

development of more advanced catalytic converter at lower costs, with greater engine 



performance saving fuels and reducing CO2 emissions, and of smaller volumes benefiting 

design flexibility of cars. 
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Highlights 

- New micro-structured ceramic hollow fibre substrate for automotive emissions 

control. 

- High geometric surface areas and low pressure drop can be achieved at the same time. 

- Catalytic wash-coating inside the radial micro-channels of several tens of 

micrometres. 

- Efficiently converting CO at light-off temperatures comparable to commercial 

monolithic substrate. 

 

  



Tables 

Table 1. Comparison of CO oxidation performance 

 

Sample 

PGM 

loading 

(g/ft3) 

Gamma-

Al2O3 (mg) 

Space 

velocity (h-1) 

CO 

(%) 

O2 

(%) 

Inert 

gas 

(%) 

Light-off 

temperature 

(T50, C) 

Reference 

M400* 75 (Pt) - 50,000 0.5 1 98.5 187 

[7] 

MT3** 16 (Pd) 0 50,000 0.5 1 98.5 201 

W-0 164 (Pd) 0 43,250 5 10 85 224 

This study 

W-3 168 (Pd) 12 43,250 5 10 85 195 

W-5 184 (Pd) 20 43,250 5 10 85 187 

W-8 180 (Pd) 31 43,250 5 10 85 193 

W-10 184 (Pd) 40 43,250 5 10 85 193 

 

Each sample of W-0 to W-10 is of approximately 130 mm in length 

* 400 CPSI commercial cordierite monolith substrates, coated with a 0.96 wt% Pt/CeO2 

wash-coat  

** Hollow fibre substrates without wash-coating materials 

  



 

Table 2. Comparison of GSA values between monolithic converter and hollow fibre 

converter 

Conventional monolith 

(CPSI)  

Geometric Surface Area (GSA) 

cm2 cm-3 

Reference 

400 29.3 

[12] 

600 

750 

36.2 

40.2 

900 43.7 

Ceramic hollow fibre 40.7 This study 
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