
Contents lists available at ScienceDirect

BBA - Molecular Basis of Disease

journal homepage: www.elsevier.com/locate/bbadis

As time flies by: Investigating cardiac aging in the short-lived Drosophila
model☆

Anna C. Blice-Bauma,1, Maria Clara Guidab,1, Paul S. Hartleyc, Peter D. Adamsb, Rolf Bodmerb,⁎,
Anthony Cammaratod,e,⁎⁎

a Science Department, Cabrini University, Radnor, PA, USA
bDevelopment, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
c Bournemouth University, Department of Life and Environmental Science, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK
dDivision of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
e Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

A R T I C L E I N F O

Keywords:
Cardiac aging
Fruit fly
Proteostasis
Obesity
Epigenetics

A B S T R A C T

Aging is associated with a decline in heart function across the tissue, cellular, and molecular levels. The risk of
cardiovascular disease grows significantly over time, and as developed countries continue to see an increase in
lifespan, the cost of cardiovascular healthcare for the elderly will undoubtedly rise. The molecular basis for
cardiac function deterioration with age is multifaceted and not entirely clear, and there is a limit to what
investigations can be performed on human subjects or mammalian models. Drosophila melanogaster has emerged
as a useful model organism for studying aging in a short timeframe, benefitting from a suite of molecular and
genetic tools and displaying highly conserved traits of cardiac senescence. Here, we discuss recent advances in
our understanding of cardiac aging and how the fruit fly has aided in these developments.

1. Introduction

Aging can be defined as the time-dependent, progressive loss of
physiological integrity, leading to impaired organ, tissue, and cellular
function and increased susceptibility to death [1]. It is the main risk
factor for a number of debilitating and life-threatening disorders, in-
cluding cardiovascular disease (CVD) [2]. As life expectancy continues
to rise around the world, so does the financial burden of healthcare for
the elderly and CVD in particular. Globally, it is expected that the cost
to treat CVD will double to triple by 2030 [3–5]. Over time, the heart
exhibits characteristic gene expression and morphological changes that
are associated with declining performance, which ultimately increases
mortality. Age-related changes include impaired systolic and diastolic
function, extracellular matrix remodeling, and elevated propensity for
arrhythmia [6–8]. As technology has advanced drastically in the field of
genomics, transcriptomics, and proteomics, connections have been in-
creasingly identified between the physiological variations observed in
aging hearts and the molecular processes involved. Cellular aging, in

general, is accompanied by an accumulation of damaged proteins and
increased proteotoxicity, dysfunction of mitochondria, genomic in-
stability, reduced autophagic flux, increased activation of NF-κB, and
telomere attrition [9]. These changes are particularly detrimental to the
function of post-mitotic cells like cardiomyocytes, which, when da-
maged beyond repair, cannot be readily replaced.

Drosophila melanogaster has proven to be a valuable animal model
for studying the aging heart. Flies age in a matter of weeks (five to
seven for a typical cardiac aging study) [10–15] and are amenable to
extensive genetic manipulation [16,17]. Genes that are differentially
expressed over time can be readily tweaked temporally and spatially in
large, isogenous populations of offspring [17–19]. The adult fruit fly
heart comprises approximately 80 mature cardiomyocytes that are
aligned along two opposing bilateral rows to form a linear cardiac tube
(Fig. 1) [20]. Coordination of contractility is governed by two pace-
makers believed to exist at posterior and anterior regions of the heart.
Depending on which pacemaker is dominant, the circulation can flow
toward the head or posterior of the fly [21,22]. The cardiomyocytes
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consist of conserved, minimally-redundant components including those
involved in the cytoskeleton, calcium handling, protein homeostasis
(i.e. proteostasis), metabolism, and chromatin structure
[10,12,13,15,23–25]. Overall, the relative simplicity of the fruit fly
heart renders it an attractive model for rapid cardiac senescence in-
vestigations.

With the emergence and advancement of techniques for assessing
whole genomes, transcriptomes, and proteomes under differing condi-
tions and with age, considerable data have been collected on cardio-
myocytes from invertebrate and vertebrate models. Here, we discuss
how the fly has been utilized to investigate the physiological, genetic,
and epigenetic bases of cardiac aging. Drosophila and mammalian hearts
and cardiomyocytes share many of the same traits of cardiac senes-
cence, including systolic and diastolic dysfunction, increased ar-
rhythmia, a decline in proteostasis, and decreased metabolic fitness
[11,12,24,26–28]. Additionally, the fruit fly has been successfully used
as a model of obesity and its exacerbation of normal cardiac aging as
well as to investigate the effects of exercise on heart health over time
[29–31].

2. Conserved age-related myocardial changes in Drosophila

Cardiac aging is characterized by several histological, physiological,
and biochemical changes. Aged myocardium from rodents and humans
demonstrates structural remodeling, which includes left ventricular
(LV) hypertrophy due to increased cardiomyocyte size [7,32–39].
Concomitant with hypertrophy are alterations in LV shape and di-
mensions [8,40–42]. For example, using cardiac magnetic resonance
imaging, age-associated changes in LV structure and function were as-
sessed in a multi-ethnic cohort of ~5000 individuals free of cardio-
vascular disease [42]. The authors reported a marked age-related in-
crease in LV mass/volume ratio. This was ~25% higher in the old vs.
young age group and was driven by a proportionately greater magni-
tude of age-associated decline in LV end diastolic volume compared to
that of LV mass. Moreover, the significant age-dependent decrease in LV

end diastolic volume exceeded the decrease in LV end systolic volume,
which resulted in reduced stroke volume. While the cardiac tube of
Drosophila has been reported to hypertrophy in response to genetic
manipulation [43], altered wall thickness or mass with age has not been
reported. However, several studies have demonstrated changes in shape
and dimensions of fruit fly hearts over time [15,23,44], akin to those in
humans described above [42]. Wild-type Drosophila heart tubes display
a progressive decrease in both diastolic and systolic diameters with age
[15,23,24]. The decline in diastolic dimensions is greater than that for
systolic dimensions, which highlights deterioration in contractile per-
formance, as manifest by significantly reduced fractional shortening
[15,23,24].

Healthy aging is accompanied by additional variations in cardiac
contraction. The mean shortening velocity during systole has been re-
ported to decrease in mammals [8,45–47]. The slowing of myocardial
contraction with advanced age, including that observed during lightly
loaded isotonic contractions using heart muscle from senescent vs.
younger adults rats, may be in part due to the switching from α- to β-
myosin heavy chain gene expression [8,45,46,48,49]. The cardiac tubes
of wild-type Drosophila lines likewise exhibit depressed shortening ve-
locities in five- relative to one-week-old flies under basal and/or loaded
conditions [13]. While there is currently no evidence of a switch in
myosin heavy chain isoforms that have distinct hydrolytic and me-
chanical activities, aging fly hearts do show changes in the expression
of several myofilamentous genes, including tropomyosin, actins, α-ac-
tinin, troponin-C, and tropomodulin [15,24], which may contribute to
reduced contractile speeds.

In conjunction with decreased mean shortening velocity, vertebrate
cardiac aging is characterized by a prolongation of systolic contraction
time [8,50–52]. The Drosophila heart similarly displays increasingly
longer systolic intervals with advancing age [23,44]. The mechanistic
basis of these changes likely involves variations in, and modifications
to, several conserved cardiomyocyte calcium handling components
across species. In mammals, various studies have documented co-
ordinated changes in protein function and/or gene expression with

Fig. 1. The adult Drosophila heart and associated structures. (A) The abdominally located fly heart tube (HT) contains roughly 80 cardiomyocytes, arranged along
two opposing bilateral rows. These aligned cells form a central luminal space and are flanked by adjacent pericardial nephrocytes (pns) that filter the hemolymph
(insect's blood) and alary muscles (ams), which tether the heart to the dorsal cuticle [20,256–258]. The alary muscles span from epidermal attachments to the heart
and contact the heart tube indirectly through an interface formed from extracellular matrix components, such as the collagens Pericardin and Viking. They serve as a
flexible heart suspension system to maintain the cardiac tube in an anatomically correct position. (B) Heart tubes showing cardiac collagen-IV (Viking) and Pericardin
(a collagen IV-like protein) deposition. Hemolymph enters the heart through the ostia (os), which are inflow openings formed by specialized cardiomyocytes. The
adult Drosophila heart has three intracardiac valves (v), which subdivide the organ into distinct chambers, close the luminal space during systole, and permit
unidirectional flow. Pericardial nephrocytes are analogous to mammalian reticuloendothelial cells and, being situated close to ostia, are ideally placed to filter the
passing hemolymph entering the heart tube. Scale bar= 100 μm. (C) Illustration depicting the aforementioned anatomical structures.
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aging that prolong the calcium transient that drives myocardial con-
traction [8,52,53]. Upon membrane depolarization, calcium enters the
cardiomyocyte through L-type calcium channels, prompting the release
of additional calcium from the sarcoplasmic reticulum (SR), the cardi-
omyocyte's intracellular storage compartment. Although L-type calcium
channel density is not apparently affected by age, its function seems to
decline, as illustrated by a reduction in the calcium transient amplitude
and slower channel inactivation [8,41,54,55]. Moreover, the rate of
calcium reuptake into the SR decreases in senescent myocardium
[48,53,56,57]. An age-associated reduction in the transcription of
SERCA2, the gene that encodes the SR calcium pump, accounts in part
for decreased SR pump site density and the impaired sequestration of
intracellular calcium [48,55,58]. However, expression of the Na+/
Ca2+ exchanger, which extrudes intracellular calcium from the cell,
increases between adulthood and senescence, and enhanced antiporter-
mediated flux may partially compensate for impaired calcium reuptake
into the SR [48].

The calcium cycling properties of the Drosophila cardiac tube are
also negatively impacted by age. Old flies display altered intracellular
cardiomyocyte calcium dynamics, with a prolonged transient decay,
which promotes the extended periods of systole observed in senescent
animals [23,44,59]. Recently, whole-cell patch clamp recordings of
calcium currents across the membrane of isolated Drosophila cardio-
myocytes confirmed the cells possess a conserved compendium of L-
and T-type calcium channels [60]. As in mammals, L-type (A1D in
Drosophila) channels in flies serve as the main conduits for sarcolemmal
calcium flux. These channels share regulatory properties, such as cal-
cium dependent inactivation, a critical negative feedback process that
modulates the rate of channel inactivation, with their vertebrate
counterparts. While not studied directly, these properties may analo-
gously deteriorate with age, slow inactivation, and extend contraction.
Furthermore, microarray data reveal that the expression of genes in-
volved with calcium handling, including both L- and T-type channels,
the ryanodine receptor, SERCA, and the Na+/Ca2+ exchanger, is sig-
nificantly reduced over time [15,24], which could further engender
altered calcium transients in aged fly cardiomyocytes. Importantly,
cardiac arrhythmias are a byproduct of aberrant calcium handling, and
their incidence increases in both elderly humans and flies [8,23,44,61].

Diminished adrenergic signaling and autonomic modulation of
cardiac function is an important factor in mammalian age-associated
cardiovascular change [8,48,62]. For example, the ability of β-adre-
nergic receptor stimulation to increase contractility declines over time.
This results from a failure of β-adrenergic receptor stimulation to
augment the intracellular calcium transient to the same extent in car-
diomyocytes from senescent hearts relative to those from younger
hearts [48,63]. The observed age-related reduction in β-adrenergic re-
ceptor modulation of cardiac contraction is attributable, at least in part,
to insufficient enhancement of the activity of L-type calcium channels
[48,63]. The root cause of these changes is not completely understood,
but several lines of evidence indicate reduced myocardial β-adrenergic
receptor density, their functional decline, and deficits in the β-adre-
nergic signaling cascade with advanced age [48,64,65]. Interestingly,
Drosophila express components homologous to those of the vertebrate
pathway, including adrenergic-like octopamine receptors (OctαRs, and
OctβRs), adenylyl cyclase (rutabaga), phosphodiesterase (dunce), and
both regulatory and catalytic subunits of protein kinase A (PKA), and
their cardiac L-type calcium channels exhibit PKA-mediated current
enhancement [60]. The expression of all aforementioned genes uni-
formly declines with age in Drosophila cardiomyocytes [15,24,66],
suggesting old fly hearts may also exhibit blunted responses to adre-
nergic stimulation.

A profound, well-characterized, and frequently-cited hallmark of
cardiac aging is impaired diastolic function. In addition to decreased LV
end diastolic volumes in humans and reduced cardiac tube diastolic
diameters in flies, several indices of age-related diastolic dysfunction
are shared among the species. Older vertebrate hearts fill more slowly

than younger hearts and exhibit increased relaxation times [8,67]. The
velocity at which the Drosophila heart reestablishes diastolic volumes is
significantly lower for five- vs. one-week-old flies, at baseline and/or
against elevated afterloads, consistent with impaired relaxation kinetics
[13]. These changes are plausibly associated with the disruption of
calcium homeostasis and cycling observed in aged myocardium and,
potentially, with altered passive recoil of elastic elements compressed
during systole [68].

Mammalian hearts normally experience changes in their material
properties, including myocardial stiffening, with age [8,69–73]. Simi-
larly, fly hearts display changes in passive mechanical properties over
time [13,15,26,74]. Using an atomic force microscopy-based approach,
five-week-old wild-type hearts were found to be significantly stiffer
than one-week-old hearts [12,13,15,74]. The molecular basis of altered
heart wall and cardiomyocyte compliance likely involves several fac-
tors. These include aberrant diastolic calcium handling, myofilament
dysfunction, and extracellular matrix modifications and remodeling
[26,68,75–78].

3. Extracellular matrix and matricellular proteins in cardiac aging

Extracellular matrix and matricellular proteins (for brevity in this
review, collectively termed ECM) are a large family of evolutionarily
conserved proteins contributing to the structure and function of mul-
ticellular organisms [79]. The matrix proteins help form a structural
“scaffold” that supports cell-cell and cell-matrix interactions, whereas
the matricellular proteins contribute to the formation of the scaffold but
do not integrate into it. ECM regulation in the heart is linked to cardiac
output, with disruption or experimental modulation of ECM deposition
causing cardiomyopathy in both mammalian and Drosophila models
[80].

Abnormal or pathological accumulation of ECM proteins (fibrosis),
particularly of collagens, occurs in the aging human heart and is asso-
ciated with increased mortality [81,82]. Additionally, markers of fi-
brosis can be predictive of mortality in aged populations [83] and are
generally associated with cardiac dysfunction [84]. Importantly, the
mechanistic underpinnings of ECM turnover are of intense interest due
to the clinical significance of fibrosis and intractability of its treatment.

Most experimental research requires whole organisms to establish
the pathophysiology of aging on organs and systems. Although mam-
malian models recapitulate the fibrosis-like features of aging human
hearts [85,86], such models are costly, and long-term studies of aging
are not widely reported. Thus, simpler systems to study ECM deposition
in age-dependent cardiac dysfunction are beneficial. Although Droso-
phila may not provide the complexity of ECM components seen in hu-
mans and mammalian models, the fly provides enormous advantages in
terms of genetic tractability, brevity of lifespan, and resource usage.

With reference to collagens, Drosophila development is dependent
on expression of the type-IV collagen α2 and α1 chains encoded by
viking and Cg25C [87]. Alternatively, cardiac development is reliant on
Multiplexin (COL18A1 in humans [88]) and Pericardin, a type-IV-like
collagen that tethers the Drosophila heart to the underlying cuticle and
to supportive alary muscles (Figs. 1, 2), which run perpendicular to the
cardiac tube [89,90]. Although Pericardin was initially described as a
matrix-forming type-IV-like collagen, it adopts prominent fiber-like
structures, acting as a “tendinous bridge” between the heart and alary
muscles [90,91].

Both Pericardin and Viking show age-dependent accumulation in
the Drosophila heart (Fig. 2), a phenotype that accompanies severe
cardiomyopathy, suggesting that cardiac fibrosis may develop from
evolutionarily conserved mechanisms [91,92]. In mouse models of
aging, ECM composition around the heart changes considerably and
correlates with cardiac dysfunction [86]. Collagen deposition is medi-
ated by direct interaction with an evolutionarily conserved ma-
tricellular protein called Secreted Protein Acidic and Rich in Cysteine
(SPARC). SPARC expression is required for normal heart development
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in the Drosophila model [93], increases in the aging mouse heart [85],
but decreases significantly in the aging Drosophila heart [15]. In
mammals, changes to SPARC expression are dependent on tissue type
(for example, it decreases in tendons [94]), indicating that such var-
iations are sensitive to the local signaling environment. Upstream sig-
nals coordinating collagen deposition and turnover in Drosophila re-
main to be elucidated.

In mice, collagen accumulation in the aging heart can be amelio-
rated by reducing SPARC expression [85,86]. Interestingly, reduced
dosage of Drosophila SPARC also attenuates age-dependent changes in
cardiac function in flies [91]. Although overexpression of SPARC leads
to dramatic deposition of Pericardin around the heart tube and causes
cardiomyopathy, its role in age-dependent changes in cardiac function
may be independent of gross collagen accumulation and related to a
non-structural role of the protein in cell signaling [91]. Recent data
from the mouse model, where cardiac fibrosis accompanies inflamma-
tion, suggests that SPARC mediates activation of pro-inflammatory
macrophage pathways [95], which may explain the pro-fibrotic shift in
ECM turnover as animals age. The possibility that such phenotypes are
evolutionarily conserved has not yet been examined in flies. Notably,
there are few, if any, studies regarding age-dependent changes to the
ECM of other organ systems in Drosophila.

4. Loss of proteostasis in cardiac aging

Proper cellular homeostasis depends upon quality control mechan-
isms to preserve the stability, functionality, and turnover of the pro-
teome [1,96,97]. If a protein fails to fold into its native conformation, is
damaged beyond repair, or is no longer needed, the cell must degrade it
and, if possible, recycle its constituents. Protein synthesis, folding/re-
folding, and degradation are carried out in the overall process of pro-
teostasis. Proteostasis involves the interplay of a multi-branched co-
ordinated network, which includes the ubiquitin-proteasome system
(UPS), autophagy, and chaperone-mediated protein refolding [98–102].
The pathways of this network are able to respond to deficiencies in the

others to help ensure proteins are maintained in a soluble, non-
aggregated, nontoxic state [98,99,102–106]. Maintaining this delicate
balance of protein quality control (PQC) is especially critical in post-
mitotic cells, including cardiomyocytes and neurons, since their limited
regenerative capacity means they rely upon proper proteostasis for
delaying age-related functional decline [107–109]. When PQC is not
maintained in such cells, irreversible proteotoxicity and cell death can
ensue [106,108].

Reduced proteostasis is a highly conserved hallmark of non-patho-
logical cellular aging [1,110,111] that has been well-documented in
vertebrate cardiomyocytes and human patients [112–115]. For ex-
ample, a Finnish study observed that a quarter of the hearts of patients
at advanced age (85 years or older) contained amyloid plaques and
protein aggregates similar to those found in the brains of Alzheimer's
disease patients [116], indicating problems potentially with all bran-
ches of the proteostasis network. The time-dependent, progressive ac-
cumulation of cellular damage and misfolded protein aggregates in
heart cells has additionally been linked to several cardiovascular dis-
orders, including desmin-related cardiomyopathy, dilated cardiomyo-
pathy, hypertrophic cardiomyopathy, ischemic heart disease, and heart
failure [97,108,110,117–121].

While all branches of the proteostasis network are affected by age, a
temporal decline in autophagy is believed to be a major contributor to
time-dependent changes in cardiac function [122–124]. Autophagy
plays an integral role in removing dysfunctional organelles and protein
aggregates by lysosomal degradation [1,108–110]. It is activated in
response to many cues, including low nutrient availability and tran-
scription factors, such as longevity-associated FoxO. Indirect enhance-
ment of autophagy has been shown to alleviate age-associated hyper-
trophy, fibrosis, and apoptosis in studies using vertebrate myocytes
[125,126], and thus interventions to increase the level of autophagy
have been proposed to prevent or slow the progression of aging in the
heart [124]. However, evidence in which autophagy is directly and
exclusively augmented in cardiomyocytes to produce the averred ben-
eficial effects is lacking. Additionally, while maintaining basal levels of

Fig. 2. Changes to cardiac collagen deposition in
aging fly hearts. Under normal laboratory conditions,
the fly's lifespan is approximately 8–10weeks. Prior
to the onset of mortality, in the general population at
around six weeks, a significant increase in the amount
of cardiac collagen-IV (Viking) and Pericardin (a
collagen IV-like protein, restricted to the heart) can
be seen around the heart. With advanced age, there is
an increased accumulation of collagen. Confocal mi-
crographs demonstrate age-associated changes to (A)
Viking:GFP levels on the luminal side of the valve
cells and (B) the Pericardin network. Scale
bar= 20 μm.
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autophagy in the heart is vital for cell survival, insufficient autophagy
results in the accumulation of toxic proteins, while excessive autophagy
is maladaptive and induces disproportionate catabolism and cell death
[127]. Therefore, more research is needed, and enthusiasm for en-
hanced autophagy as a therapeutic modality should be tempered
[128–133].

The rapidly aging Drosophila model has been used to examine the
functional impact of enhanced and repressed activity of the proteostasis
network in diverse tissues. In both Drosophila cardiac and skeletal
muscle an accumulation of misfolded and ubiquitinated proteins is
observed over time accompanying age-associated decline in function
[15,134]. In skeletal muscle, ubiquitinated protein accumulation was
attributed mainly to decreased cellular autophagy [134]. In the fly
heart, however, age-associated functional decline correlated with de-
creased transcript levels of dozens of genes associated with UPS and to a
lesser extent chaperone-mediated protein refolding, but not autophagy
[15]. Only one autophagy-associated gene, Atg8b, was significantly
downregulated with age according to cardiac-restricted microarray
analysis [15]. It is unclear if UPS-associated genes were similarly
downregulated in skeletal muscle with age. In both studies, dfoxo, the
Drosophila ortholog of FoxO, was overexpressed either exclusively in the
heart or in all muscle. In the heart, modest overexpression of dfoxo
comprehensively ameliorated all hallmarks of cardiac aging described
above [15], although increased lifespan was not observed [135].
Compared to aged controls, dfoxo-overexpressing hearts displayed sig-
nificantly decreased arrhythmia, stiffness, pacing-induced heart failure,
and diastolic interval, and increased cardiac output, myocardial re-
lengthening rate, and heart rate [10,15,135,136]. Furthermore, im-
proved function was accompanied by a marked reduction of ubiquiti-
nated cardiac proteins as well as a significant reversal of transcriptional
activity of genes associated with each step along the UPS pathway [15].
In skeletal muscle, autophagy-associated transcripts reportedly in-
creased systemically upon dfoxo overexpression, in addition to in-
creased lifespan [134]. However, it was also determined that the dfoxo-
overexpressing flies consumed less compared to controls [134]. Con-
sequently, it is plausible that the lower nutrient intake potentially
contributed to the systemic increase in autophagy rather than ex-
clusively the increase in skeletal muscle dfoxo expression. Nonetheless,
dFOXO may play different but related roles in cardiac vs. skeletal
muscle over time. More evidence correlating non-pathological cardiac
aging and loss of UPS function is needed, as it remains vastly under-
studied among invertebrate and vertebrate models [109]. It should be
noted that increasing the dosage of dfoxo in the heart beyond modest
overexpression, or reducing its expression, had toxic effects on cardiac
function and organismal development, but the direct cause remains
unknown [15]. Similarly, excessive dfoxo overexpression in skeletal
muscle did not afford systemic health benefits but caused premature
organismal death, possibly due to excessive catabolism and cytotoxicity
[15]. Thus, there appears to be an optimal stoichiometric range that
undermines the benefits of manipulating FoxO expression [127]. Be-
cause cardiac proteostasis appears to be maintained over time when
dfoxo is expressed in optimal doses, and these changes seemingly cor-
relate with improved UPS activity in particular, UPS-associated com-
ponents may be attractive targets for therapeutic intervention to im-
prove heart function in the elderly. Regardless, downstream effectors of
dFOXO transcriptional control must be studied in more depth to de-
termine a mechanism by which to reap the benefits observed in re-
sponse to mild overexpression and bypass the negative outcomes of
deleterious levels of dFOXO in both cardiac and skeletal muscle.

Substantiating the role of proteostasis in the aging heart remains a
challenging task between species and even among individuals of the
same species with similar genetic backgrounds [24]. As described
above, microarray analysis of roughly 30 pooled adult Drosophila hearts
highlighted an important role of the UPS in cardiac aging and dFOXO-
mediated functional improvement [15]. However, a nanofluidic
RNAseq evaluation of single Drosophila cardiac tubes indicated

expression variation with age and no definitive role of UPS-associated
genes in every fly [24,66]. Additional investigation into transcriptomes
and proteomes of aged murine and simian LVs revealed that a number
of components of the proteasome were actually upregulated rather than
downregulated [13,24], a seemingly paradoxical result. While initially
surprising, as there is a consensus that cellular aging is generally ac-
companied by decreased proteostasis [97], in many cases, decreased
proteasome activity is not necessarily met by a decrease in proteasome
components [118,120]. The presence of inactive or defective protea-
somal proteins may contribute to or result from the age-associated loss
of proteostasis. Alternatively, it is possible that the UPS is upregulated
to counteract failing and/or downregulation of other branches of the
proteostasis network [97,124]. Evidence suggests that autophagy and
UPS each compensates for the other in cardiac pathologies [137], an
interplay that may likewise accompany cardiac aging. Genes encoding
proteins involved in chaperone-mediated refolding were also observed
to exhibit disparate aging expression patterns among species
[13,15,24]. Despite this, the mammalian heat shock protein HSPB8
(Hsp27 in Drosophila) exhibited conserved downregulation in cardio-
myocytes over time among several species tested [13,15,114,138].
Further examination of molecular cardiac aging data across the animal
kingdom is needed to confirm these findings and to test the potential
universally cardioprotective properties of conserved targets.

5. The decline of metabolic cardiac fitness with age

It is well established that obesity and its associated metabolic dis-
turbances are major risk factors for CVD [139]. Furthermore, the risk of
obesity as well as CVD increases with age [7,140,141]. In addition to
changes in PQC, an important hallmark of the aging process is the
progressive dysfunction of white adipose tissue and the related meta-
bolic alterations that lead to multi-organ damage [142]. In humans as
well as in flies, fat progressively accumulates in non-adipose tissues
[143,144]. This is a key factor in a vicious cycle that accelerates aging
and the onset of age-related diseases, such as type 2 diabetes, cancer,
and CVD [145].

The heart has a continuously high energetic demand. Therefore,
cardiomyocytes are extremely mitochondria-rich in order to generate
the ATP required for contraction, calcium handling, and cellular
homeostasis in general. Heart tissue is thought to be especially sensitive
to dietary changes, such as increased consumption of sugar and fat,
since it is heavily dependent upon fatty acids for ATP production [146].
Excessive body fat accumulation causes maladaptive changes in the
heart. Over time, in humans and vertebrate animal models, obesity may
result in cardiomyocyte growth, interstitial fat infiltration, and trigly-
ceride accumulation in the cells and contractile elements [30,147–150].
These changes contribute to LV mass accrual, hypertrophy, altered
chamber dimensions, and eventually dysfunction reminiscent of the
age-associated myocardial disturbances described above [151–153].

Similarly, flies fed a high fat diet (HFD, 30% coconut oil) accumu-
late high levels of triglycerides, become hyperglycemic, and exhibit
functional and structural changes in their cardiac tubes [30,31]. These
alterations include elevated heart rate, reduced fractional shortening,
and increased incidence of arrhythmia and non-contractile heart re-
gions, resembling age-related changes in function [30,31]. Even a
small, 2% increase in fat consumption during midlife, over the course of
three weeks, has a significantly detrimental impact on Drosophila car-
diac function and overall healthspan [154]. Restricting food con-
sumption to only 12 daylight hours per day, compared to ad libitum-fed
flies, partially protected against diet- and age-induced decline in car-
diac function as evidenced by preserved fractional shortening and heart
rate parameters and reduced arrhythmicity [154]. Time restricted
feeding also prevented the body weight gain observed in ad libitum-fed
flies over time [154]. Transcriptomic analysis of heart samples sug-
gested that mitochondrial electron-transport chain complexes and cir-
cadian clock pathways mediate these benefits, at least to some degree
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[154]. These data provide evidence supporting the general idea that
healthy heart aging depends on efficient metabolism and cardiac se-
nescence can be improved by modifying diet.

A multitude of evidence suggests that metabolism is altered with
age. In liver as well as in muscle tissue from old mice, glycolysis has
been reported to be increased [155]. Additionally, aging murine hearts
exhibit an increase in proteins involved in glycolysis and oxidative
stress-response [156,157]. Interestingly, glycolysis also increases in
some animal models of heart failure [158], and augmented myocardial
consumption of glucose has been reported in patients with idiopathic
dilated cardiomyopathy [159]. These results are in line with a reduc-
tion in oxygen utilization and ATP synthesis in aging rat ventricles
[160]. In flies, a decrease in ATP levels and in NADH/NAD+ and GSH/
(GSH+GSSG) ratios was also found in muscle tissues, supporting a
bioenergetic decline with age [161]. However, it is well documented
that transcription of genes related to glycolysis declines with age in
Drosophila heart and muscle tissues [15,24,161]. Furthermore, Ma et al.
provided metabolomic data from fly heads supporting a reduction in
glycolysis [161]. While the mechanistic underpinnings of energetic
decline between certain animal models and discrete tissues might differ,
it is possible that they converge and impact analogous downstream
effectors. For instance, flies heterozygous for different subunits of the
Polycomb Repressive Complex 2 (Pclc421/+; Su(z)12c253/+), which are
long-lived, have elevated ATP and cellular redox levels [161]. There-
fore, metabolomic studies on young vs. old fly hearts would be crucial
to determine the conservation of mechanisms underlying the cardiac
energetic imbalance that occurs with age.

The strong connection between age- and obesity-related disorders
implies that they may be controlled by similar or intersecting pathways.
Accumulating evidence suggests that caloric restriction (CR) can in-
crease longevity in yeast, worms, fruit flies, rats, and mice [162].
Conversely, humans who are overweight or obese have a higher risk of
mortality [163]. This seems to be corroborated by experiments in which
flies fed a HFD experienced severely shortened lifespans [144,164]. The
nutrient sensor target of Rapamycin (TOR) is believed to be a key
component in mediating the CR-induced increase in lifespan [165].
TOR activation stimulates cell growth, increases lipid and protein
synthesis (anabolism), and decreases autophagy (catabolism) [162].
The TOR pathway is activated by insulin, insulin-like growth factors,
and amino acids and inhibited in response to stress, such as energy
depletion and caloric restriction. Thus, this pathway plays an essential
role in orchestrating metabolic homeostasis.

While complete depletion of TOR induced heart failure in mice
[166], mild reduction may be cardioprotective [167]. For example,
mTORC1 inhibition attenuated load-induced cardiac hypertrophy [168]
and reduced infarct size after ischemia by restoring cardiac autophagy
in obese mice [169]. These effects were proposed to be partially
mediated by autophagy-induced removal of misfolded proteins and
dysfunctional mitochondria. In flies, there is robust evidence indicating
that HFD induces lipotoxic cardiomyopathy by activating the TOR
pathway [30,31]. For instance, hypomorphic TOR7/P mutant flies did
not develop lipotoxic cardiomyopathy when fed HFD, since they have
constitutively increased transcript levels of the adipose triglyceride li-
pase, ATGL (brummer in Drosophila), which prevented the flies from
accumulating triglycerides [31]. Additionally, heart-specific inhibition
of TOR activity by overexpressing the downstream effector d4EBP also
prevented the deleterious effects of HFD on heart function [31]. Upon
stress, cells accumulate Sestrins, a family of evolutionarily conserved
antioxidant proteins, resulting in AMPK-dependent inhibition of TOR
signaling. dSesn null flies displayed accumulation of triglycerides ac-
companying cardiac dysfunction, which could be rescued by inhibiting
the TOR pathway with Rapamycin [170]. Overall, these studies suggest
that partial inhibition of TOR can improve metabolic balance by re-
ducing triglyceride accumulation and, therefore, prevent the deleter-
ious effects of HFD on heart performance. Conversely, TOR7/P hypo-
morphs showed reduced physical activity levels, as assessed by a

negative geotaxis assay [31], implying that each tissue may have a
specific energy balance requirement. Therefore, different TOR activity
levels might be required to counteract the deleterious effects of meta-
bolic imbalance induced by obesity, stress, or aging, each posing a
threat to healthy heart function.

The TOR pathway can be activated directly by amino acids and
indirectly by dietary sugar or fat (see above) through insulin-IGF sig-
naling [171]. Reduced insulin-IGF signaling is known to prolong life-
span in different animal models by regulating growth, metabolism, and
stress response [172,173]. In the fly, heart-specific reduction of signal
transduction by InR, the single Drosophila insulin-like receptor, evi-
dently improves cardiac physiology at advanced age [10,135]. In ad-
dition, overexpression of dfoxo, a negative effector of insulin signaling,
in the adipose tissue (fat body in flies) protects flies from fat accumu-
lation and HFD-induced heart dysfunction [31]. As discussed above,
modest heart-specific overexpression of dfoxo ameliorated the func-
tional decline of the aging heart [15]. Moreover, it prevented the de-
leterious effects of HFD on cardiac function, though systemic fat ac-
cumulation was not avoided [31]. High-sugar diet (HSD) in flies, as in
mammals, results in augmented fat content and hyperglycemia, in turn
inducing insulin resistance and cardiomyopathy [146,174–176]. Inter-
estingly, findings in Drosophila suggest that consumption of diets high
in sugar early in life leads to shortened lifespan due to maladaptive
nutritional reprogramming [177]. HSD inactivates dFOXO, which
seems to execute long-term transcriptional changes that affect the fit-
ness of flies later in life [177]. Likewise, in the heart specifically, RNAi-
mediated dFOXO suppression engenders a cardiac phenotype re-
miniscent of accelerated aging [15].

Taken together, aging and obesity seemingly share a low energy
demand state, leading to pathological inhibition of FoxO and persistent
TOR hyperactivation. Consequently, cells accumulate lipids, misfolded
proteins, reactive oxygen species (ROS), and dysfunctional mitochon-
dria, all of which lead to seemingly premature aging and heart function
decline. The fly model, with simpler but largely conserved biochemical
pathways, can aid in understanding the molecular and genetic changes
induced by the metabolic imbalance that apparently stimulates ac-
celerated cardiac aging. Thus, Drosophila can help in developing new
targeted therapeutics.

6. Epigenetic modifications of the aging heart

An additional, primary hallmark of aging is the progressive accu-
mulation of alterations to the epigenome [1]. While all cells of an or-
ganism contain the same DNA (with some exceptions, e.g. immune
cells), their specific gene expression programs differ in response to in-
ternal and external cues. Such cues can trigger complex biological
events including differentiation and environmental adaptation. Cellular
differentiation is a highly regulated process. It is achieved in large part
by altering the chromatin state, which enables proper gene expression
to drive the process and thus control cellular phenotypes. Additionally,
the chromatin state changes to match gene expression with fluctuating
energetic demands. Thus, aging cells must face the challenge of staying
healthy and remaining functionally competent by maintaining their
epigenetic program and simultaneously retaining their capacity to re-
spond to environmental fluctuations (e.g. diet or stress). This is of
particular importance for long-lived cells, such as cardiomyocytes,
which are terminally differentiated very early in life [178,179].

Chromatin structures are dynamically controlled by epigenetic
modifications. These include heritable changes in DNA methylation,
histone modifications, and non-coding RNAs, all of which can regulate
gene expression without changing the genetic code. While the epi-
genome is maintained in a state of dynamic equilibrium [180–183],
evidence suggests that it is prone to “drift” over the lifespan of an or-
ganism [184]. Age-associated changes to the epigenome have been
correlated with an abnormal transcriptome, which contributes to age-
related pathologies including cancer, Alzheimer's disease, dementia,
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and CVD [185–187]. Additionally, experimental manipulation of epi-
genetic factors in various animal models suggests that they can mod-
ulate healthy lifespan [184].

Hence, a dynamic and drifting epigenome likely makes it difficult
for cells and tissues to achieve phenotypic stability, healthy aging, and
longevity. Minor alterations to the epigenome may have major impacts
on gene expression. Indeed, a significant change in transcription with
age has been consistently reported at the cellular and tissue levels in
different species ranging from flies to mice to humans [15,24,188–190].
The meta-transcriptomic analysis by Cannon et al. revealed that the
pathways whose components displayed age-associated expression
changes, and thus are potentially involved in cardiac aging, are con-
served between fly and rodent hearts [24]. Despite conservation of the
pathways, however, there was considerable variability in age-asso-
ciated expression changes of particular genes among species. Interest-
ingly, even between individual Drosophila hearts there was substantial
transcriptome variability with age [24], perhaps reflecting the same
phenomenon as has been reported in single cardiomyocytes from mice
[191]. Thus, the accumulation of changes in gene expression over time
may ultimately lead to similar cardiac aging phenotypes across species
[24]. In line with these results, a recent study performed in three dif-
ferent tissues on 168 pairs of genetically identical, human female,
monozygous twins identified a total of 137 genes with similar age-re-
lated expression changes and 42 genes with unique age-related changes
between co-twins [192]. These data support the idea that with age,
gene expression differences depend not only on genetic factors but also
on environmental cues as well as stochastic variations that may happen
simply by chance. These alterations could result from a combined im-
balance in the activity of transcription factors, splicing factors, or epi-
genetic modifiers and could contribute to the characteristic individual
variability observed during age-associated functional decline.

There is growing evidence that chromatin structure is altered in an
age-dependent manner in different animal models and that modulation
of epigenetic factors significantly impacts lifespan [193]. Indeed, de-
leterious age-associated epigenetic changes are well documented in
many tissues. For example, an age-related gain of methylation at pro-
moter CpG islands, which are CG-rich regions typically located 5′ to the
transcriptional start site, is thought to increase the incidence of cancer,
in part by silencing tumor suppressor genes [194–196]. Conversely,
age-associated loss of DNA methylation at other regions of the genome
may contribute to de-repression of retrotransposons, thereby causing
genome instability [197]. Remarkably, the epigenetic clock, based on
the methylation state of CpGs, is an accurate marker of chronological
age. It is also believed to be a promising molecular biomarker of bio-
logical age, showing a strong correlation with age-associated pheno-
types [187,198,199]. For instance, using the Horvath estimation for
biological age based on DNA methylation, a 4% increase in the risk of
developing CVD was observed per year of advanced biological age
[200].

Epigenetic modifiers control chromatin packaging into at least two
distinct states, heterochromatin or euchromatin, in part by modifying
DNA methylation, by acetylation or methylation of histone tails, or by
binding to the DNA or to nucleosome core particles. In flies, systemic
mild overexpression of the Heterochromatin Protein 1 (HP1) led to an
increase in heterochromatin levels and lifespan extension with im-
proved muscle integrity and function [201]. HP1 helps in the main-
tenance of heterochromatin by interacting with nuclear lamins. Ex-
pression of nuclear lamins has been shown to decline with age in fly and
human cells [202–204]. Loss of Lamin-B in the Drosophila fat body
correlates with an increase in retrotransposon activation [205]. Indeed,
there is a progressive de-repression of retrotransposons with age, shown
by a 2-fold increase in RNA expression of previously annotated retro-
transposon elements [205]. Retrotransposons are the most common
type of transposable elements (TEs). Upon activation, some TEs can
move to new locations in the genome, which can lead to mutations and
DNA damage. Thus, the age-dependent reduction in heterochromatin

documented in yeast, flies, and senescent mammalian cells could trigger
activation of retrotransposons, leading to DNA instability and aging
phenotypes [205–207]. Interestingly, using a position effect variegation
reporter, a delay in age-related gene de-repression was found when flies
underwent caloric restriction, which increases lifespan, as discussed
earlier [206]. This exemplifies the plasticity of the epigenome and
underscores a challenge that long-lived cardiomyocytes must overcome
to maintain vital functionality over a lifetime, whether that be weeks or
decades.

7. Crosstalk between epigenetics and metabolism with age

Energy balance and tight metabolic control are key determinants of
organism-wide functional maintenance and healthy aging. The ability
of an animal to respond to stress, such as changes in temperature,
oxygen levels, and nutrient availability, gradually declines with age.
Variations in the epigenome allow for the adjustment of gene expres-
sion to match environmental changes and energy requirements by
regulating accessibility of the transcriptional machinery to DNA. This
interplay between metabolism and epigenetics depends on the fact that
histone-modifying enzymes utilize substrates, including the metabolites
NAD+, ATP, S-adenosylmethionine (SAM), acetyl-CoA, and α-ketoglu-
tarate [208–210], which are dysregulated with extreme diets and age.

In Drosophila, acute as well as maternal HFD and HSD are known to
modify the expression of metabolic genes in adult offspring [211,212].
Paternal HSD can modify the offspring's chromatin state and gene
transcription in a manner dependent upon tri-methylation of histone H3
at lysine 9 (H3K9me3) or lysine 27 (H3K27me3) [213]. In addition,
HSD was found to cause lifelong changes in gene expression via in-
hibition of dFOXO activity [177]. Not surprisingly, null dfoxoΔ mutants
and HSD-fed flies displayed overlapping changes in gene expression and
specifically an enrichment in transcripts encoding epigenetic modifiers,
such as Sirt-1 and -2, Histone deacetylase 1 (HDAC1), Su(z)12, and
Enhancer of zeste (Ez) [177,214].

Ez is the primary catalytic subunit of the evolutionarily-conserved
Polycomb repressive complex 2 (PRC2). PRC2 mediates gene silencing
by promoting H3K27me3 [215]. Upon aging, there are also profound
tissue-specific changes in metabolism and energy balance analogous to
those induced by HFD and HSD, as discussed earlier. In addition to an
age-dependent decline in glycolysis in fly heads, and reduced ATP le-
vels and NADH/NAD+ ratio in muscles, Ma et al. also identified a
dramatic drift in the H3K27me3 repressive marks in Drosophila mus-
culature [161] (note the brain, as opposed to the heart, preferentially
uses glycolysis over fatty acid oxidation for ATP production [216,217]).
Interestingly, mutants heterozygous for PRC2 components, including
Pcl, Su(z)12, Ez, and esc, showed an increase in lifespan that correlated
with reduced levels of H3K27me3 and a reduction in the age-associated
shift in H3K27me3 modifications in muscles [161,218]. The authors
additionally found an increase in transcripts involved in glycolysis in
muscle tissues from Pcl and Su(z)12 compound heterozygous mutant
flies [161]. Similarly, PRC2 heterozygous mutants had ATP levels and
NADH/NAD+ ratios comparable to those of young wild-type flies, as
mentioned above [161]. These data suggest that aging leads to a
genome-wide drift in H3K27me3 repressive modifications, which
causes changes in transcription that result in reduced glycolysis and/or
defective glucose metabolism. In aging fly hearts, an opposite shift from
fatty acid oxidation to glycolysis is expected with age, but definitive
studies have yet to be conducted. Since histone methyltransferases rely
on the availability of the universal methyl donor SAM, it would be
interesting to study the regulation of this metabolite in old flies and
their hearts. Evidence currently suggests that SAM is important for
heart function and healthy aging [219], possibly in part by regulating
the levels of histone methylation. In fact, the Radical S-Adenosyl me-
thionine Domain containing 1 (RSAD1) enzyme has been linked to
heart development, and mutations lead to congenital heart disease
[220].
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NAD+ is an important co-factor for the Sirtuin group of protein
deacetylases. The age-associated reduction in NADH/NAD+ ratio re-
ported by Ma, et al. in Drosophila muscles [161] contrasts with findings
in mammals (various tissues) in which NAD+ levels have been shown to
decline with age, and replenishment of the NAD+ pool by supple-
mentation with dietary precursors could drive the observed increase in
healthspan [221]. However, we would like to emphasize again that
tissue and species discrepancies would have to be more extensively
scrutinized to determine potential fundamental differences. Indeed,
overexpression of the NAD+ synthase CG9940 in flies resulted in a mild
but significant extension of lifespan [222]. Consistently, NAD+ de-
pendent Sir2 (Sirt1 in mammals) has been implicated in lifespan ex-
tension not only in flies but also in yeast and mammals in a tissue- and
dose-dependent manner [223–225]. For instance, in Drosophila, modest
overexpression of dSir2 increased lifespan, while excessive levels of
dSir2 resulted in decreased lifespan [225]. Importantly, the extension of
lifespan achieved by CR in flies has been shown to be dependent on
dSir2 expression levels [226]. A loss in age-related gene silencing of a
position effect variegation reporter was also observed upon global mild
overexpression of dSir2 [206]. Finally, evidence suggests that re-
plenishing the NAD+ pool by overexpressing NAD+ synthase decreases
arrhythmia and fibrillations in old flies compared to age-matched
controls [222]. However, these studies are not entirely conclusive, and
the specific roles of NAD+ and Sir2 in cardiac aging need to be char-
acterized in greater detail.

While there is increasing evidence showing that manipulation of the
chromatin state and epigenetic modifiers can alter/extend lifespan
[184], little is known about the epigenetic mechanisms that may pre-
serve healthy cardiac aging, specifically. To make headway, its low
genetic redundancy makes the fly a well-poised model for epigenetic
cardiac aging studies [20,178,227,228]. The histone deacetylases
HDAC1 and HDAC2 regulate the expression of genes involved in cardiac
morphogenesis and heart physiology in mammals [229]. The Drosophila
protein reduced potassium dependency-3 (Rpd3) shows high homology
with human HDAC1 and moderate homology with human HDAC2
[138]. Heterozygous fly [230] and yeast [231] rpd3 mutants (rpd3+/−)
exhibited increased lifespan. Rpd3 works in a complex with SIN3 to
repress expression of multiple glycolytic genes, genes involved in the
oxidation of fatty acids into acyl-CoA in the mitochondrial matrix, and
genes involved in ROS response [232]. It remains unclear if the rpd3+/

− mutant fly lifespan extension is accompanied by improved cardiac
aging. However, heart-restricted knockdown of rpd3 was found to ex-
tend lifespan and prevent the age-related reduction in heart rate of old
flies [233]. While transcriptomic analysis of Drosophila heart samples
suggested that rpd3 transcript levels are not modified with age [15], the
beneficial effects of rpd3 knockdown on healthspan might result from a
change in global acetylation levels. Heart-specific rpd3-knockdown flies
experienced an increase in resistance against oxidative stress (20mM
methyl viologen hydrate), elevated ambient temperature (37 °C), and
starvation compared to single transgenic controls. Whole-fly transcript
levels of sod2, dfoxo, and sir2 were also found to be increased upon
heart-specific reduction of rpd3 [233]. sod2 expression could potentially
lead to a more efficient removal of superoxide radicals produced in the
mitochondria upon induction of oxidative stress. These results are in
agreement with the reported lifespan extension achieved upon ubiqui-
tous moderate overexpression of sir2 [225] and improved cardiac aging,
but not lifespan, upon modest heart-specific overexpression of dfoxo
[15,135]. Altogether, these data suggest that mild reduction of rpd3 can
alter gene expression, thus improving the aging heart by enhancing the
responses to stress and de-repressing expression of genes involved in
energy balance such as dfoxo. Therefore, during normal aging, other
epigenetic modifiers, including those potentially controlled by dFOXO
[177], may have profound effects on gene programs, possibly leading to
energy imbalance and cardiomyocyte malfunction.

Epigenetic modifications have been shown to be at the intersection
of metabolic equilibrium and gene expression. The exact mechanisms

underlying the energy imbalance and loss of chromosome homeostasis
upon aging remain unknown. However, there is increasing evidence
indicating that epigenetic modifications can have a significant impact
on the quality of aging [234]. Because epigenetic changes are re-
versible, reestablishing a healthy epigenome might reduce the func-
tional decline observed in cardiomyocytes over time. A potential me-
chanism by which epigenetic cardioprotection can be promoted is
through pro-longevity metabolic interventions such as CR, rapamycin,
and exercise [235,236].

8. Reduction of age-related heart deterioration as result of aerobic
exercise

Accumulating evidence suggests that switching to a healthier life-
style (e.g. reduced sugar and fat consumption, increased physical ac-
tivity, etc.) can reduce the risk of heart failure [237]. Many animal
models and cohort analyses have shown that aerobic exercise reduces
the risk of death from CVD [238,239]. Indeed, the strongest inverse
correlation between exercise and heart failure was observed in the el-
derly [240]. A two-year clinical trial showed that high-intensity ex-
ercise increased maximal oxygen uptake (VO2max) and reduced LV
stiffness in previously sedentary, but otherwise healthy, middle-aged
male participants [241]. These studies suggest that aerobic exercise not
only improves cardiac function but also reverses the effects of sedentary
aging on the heart to some extent. While there is compelling evidence
supporting the benefits of exercise on heart function and healthy aging,
the mechanisms underlying these phenomena are poorly understood.

The Drosophila model is well-suited to study the effects of exercise
on heart function in a controlled manner. Because flies have an innate
reaction to climb up in response to a negative geotaxis stimulus, they
can easily be subjected to an exercise routine on a large scale [242].
Evidence supports the idea that regulated exercise training prevents
age-related heart dysfunction in flies and has beneficial effects similar
to those from aerobic exercise in humans [29,243–245]. A pacing
protocol developed for Drosophila allows for the study of cardiac per-
formance in response to increasing the normal heart rate through ex-
ternal electrical field stimulation [135,136]. This is comparable to an
exercise stress test used to evaluate the fitness of the human heart
[10,136,227]. As flies age, they normally exhibit an increase in cardiac-
arrest rate after external electrical pacing, a measurement of heart
failure, and a decrease in arrest recovery [136]. However, in exercise-
trained elderly flies, a decrease in cardiac-arrest rate and increase in
recovery compared to same-age unexercised flies was observed [29].
These findings suggest a beneficial effect of exercise on the Drosophila
aging heart. A line of flies selectively bred for increased longevity de-
monstrated similar cardioprotection accompanied by improved mi-
tochondrial efficiency [244]. Interestingly, such longevity-bred flies as
well as three-week-old exercised flies have overlapping changes in
whole-body transcript levels, including those for gustatory receptors
and genes involved in carbohydrate metabolism, xenobiotic/drug me-
tabolism, and folate biosynthesis [244]. Of note, the extension in life-
span observed upon CR was significantly reduced when flies under-
going CR were allowed to smell, but not to eat, yeast [246]. In line with
these results, null mutant flies for the odorant and gustatory receptors
Or83b and Gr64a, exhibited improved cardiac stress tolerance in a si-
milar manner to ubiquitous knockdown of the G-protein coupled re-
ceptor Mthl3 [244]. The authors suggested that reducing flies' sensory
perception of food can enhance exercise capacity, improve cardiac
aging, and increase longevity in a manner similar to CR [244]. Indeed,
experimental evidence suggests that the beneficial effects of exercise
are mediated by octopaminergic activity [247].

Sirt1 (dSir2 in Drosophila) is a NAD+-dependent histone deacetylase,
which functions as an energy status sensor and has been implicated in
longevity, obesity, and cancer [248]. Upon increased energy demand,
when NAD+ levels are highest, Sirt1 deacetylates PGC-1α, producing
NADH in the process. This deacetylation activates PGC-1α and in turn
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induces the transcription of genes involved in gluconeogenesis, glyco-
lysis, and fatty-acid oxidation in a tissue-specific manner [249]. Ex-
ercise is known to increase mitochondrial activity [29,250,251] and,
more specifically, improve cardiac mitochondrial biogenesis by acti-
vating PGC-1α [252]. PGC-1xp heterozygous mutant flies exhibited
cardiac dysfunction remarkably similar to that observed in HFD-fed
control flies [30]. Interestingly, another mutant line for PGC-1, srl1, was
reported to have delayed development and reduced lifespan [253].
Moreover, overexpression of PGC-1 in adult muscles, including the
cardiac tube, protects against heart failure in response to electrical
pacing [253]. This protection was increased when PGC-1-over-
expressing flies were subjected to exercise training, suggesting that
PGC-1 and exercise both have cardioprotective roles [253]. However,
cardioprotection achieved by exercise and PGC-1 overexpression may
also be mediated by a reduction in triglyceride accumulation [30,144].
In fact, knockdown of dSir2 in the fat body led to a significant increase
in total triglyceride levels and free fatty acids [254]. In line with these
data, whole-fly dSir2 transcript levels were found to be reduced with
age but elevated upon exercise [144]. Microarray data revealed the
expression of dSir2 was not changed in the Drosophila heart with age.
However, expression of sirt2, which has high identity to human SIRT2
and SIRT3, was found to be significantly decreased [15]. The direct
effect of dSir2 overexpression on heart function and cardiac aging re-
mains to be determined. Overall, research in Drosophila has shown that
exercise ameliorates heart function decline [29,244,245] and prolongs
healthspan [144,244], as similarly demonstrated in vertebrate models
[255].

9. Conclusions

Drosophila melanogaster has increased our understanding of the
molecular bases of cardiac aging over recent decades. During which, the
tools available for investigating the gene expression patterns and phy-
siological changes involved, have advanced considerably. In humans,
cardiac aging studies are frequently limited to analysis of heart per-
formance, genomic testing, and family history records. While these are
highly valuable for understanding genetic and phenotypic trends in
cardiac function over time, the ability to non-invasively investigate
acute transcriptomic and proteomic changes in human tissue is im-
possible. Cardiac senescence is a complex event, and evidence sup-
porting the use of Drosophila melanogaster to examine various facets of it
that are difficult to study in humans grows each year. It is clear from the
information presented here that multiple conserved changes inside the
cell and in the ECM contribute to the overall decline in heart function

over time, and there is not likely a single molecular target that will
reverse this deterioration (Fig. 3). Thus, the molecular mechanisms
behind the physiological changes of the aging heart must be studied
further, and the Drosophila model with its limited redundancy of con-
served pathways continues to be valuable for such studies. Moreover,
the fly is ideally suited for probing epigenetic plasticity and drift since
environmental cues can be tightly controlled and the genetics and
epigenetics precisely manipulated. Overall, understanding the me-
chanisms behind known physiological and molecular hallmarks of
cardiac aging is essential to improving heart health in our aging po-
pulations.
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