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Abstract

Failure Prediction has long known to be a challenging problem. With the evolving trend of technology and
growing complexity of high-performance cloud data centre infrastructure, focusing on failure becomes very
vital particularly when designing systems for the next generation. The traditional runtime fault-tolerance
(FT) techniques such as data replication and periodic check-pointing are not very effective to handle the
current state of the art emerging computing systems. This has necessitated the urgent need for a robust
system with an in-depth understanding of system and component failures as well as the ability to predict
accurate potential future system failures. In this paper, we studied data in-production-faults recorded
within a five years period from the National Energy Research Scientific computing centre (NERSC). Using
the data collected from the Computer Failure Data Repository (CFDR), we developed an effective failure
prediction model focusing on high-performance cloud data centre infrastructure. Using the Auto-Regressive
Moving Average(ARMA), our model was able to predict potential future failures in the system. Our results
also show a failure prediction accuracy of 95%, which is good. We thus believe that our strategy is practical
and can be adapted to use in existing real-time systems.
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1 Introduction

Failure is the inability of a component or system to execute a required task or

function according to its specification. As our growing needs for computing re-
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sources and performance keeps on fueling the development of high-performance

systems and cloud data centres, there continue to be a growing need for an in-

depth understanding of cloud system failure and errors as well as their statistical

and empirical properties[3]. The understanding of this key properties can help in

predicting possible failures and evaluating the effectiveness of different techniques

for improving the overall system availability. It could also empower researchers in

designing and developing a new state of the art solutions for both cloud service

providers and customers. Cloud computing is a term used in describing a broad

range of online services. According to the National Institute of Standards and Tech-

nology (NIST)[32], cloud computing is defined as ”a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing

resources that can be rapidly provisioned and released with minimal management

effort or service provider interaction. A cloud computing service provides conve-

nient, scalable, on-demand access to a pool of online computing resources, such as

virtual machines, compute server clusters or networked storage[6]. It is pertinent to

note that the size and complexity of cloud computing systems have made failure to

become inevitable. These failures could be caused by the system having insufficient

resources or an unexpected failure in the system itself. Therefore it is of critical

importance to ensure the reliability and availability of such systems[25].

There is also an urgent need for cloud service providers (CSP) to offer a scalable,

efficient and reliable on-demand resource to their customers in the presence of faults

thereby fulfilling their service level agreement (SLA). Component failures within the

cloud infrastructure are common, but large cloud data centres should be designed to

guarantee a certain level of availability to the business system[24]. Infrastructure-as-

a-Service (IaaS) cloud presents computational resources (e.g., CPU and memory),

storage resources and networking capacity that ensures high availability in the face

of such failures [1]. Cloud systems can have tremendous failure rates as they feature

many servers that are geographically dispersed with a high workload. The avail-

ability of such systems can be quickly endangered if the failure is not sufficiently

handled [1].To guarantee the availability of services to cloud users, cloud infras-

tructures should be designed such that they should have minimal or insignificant

system downtime. Replication of data and checkpointing technique are some of the

common existing strategies used to ensure availability of cloud services [2].

Failure prediction is necessary for predictive maintenance due to its ability to

prevent failure incidents and maintenance costs[38]. Predictive maintenance is

about anticipating failures and taking proactive actions[40]. Recent advances in

machine learning and cloud storage have created a great opportunity to utilize

the huge amount of data generated from cloud infrastructures which provide room

to predict when a component is likely to malfunction or fail[3]. Currently, math-

ematical and statistical modelling are the prominent approaches used for failure

predictions, these are based on equipment degradation, physical models and ma-

chine learning techniques respectively [29]. According to [4], cloud computing is

usually associated with failures. The risk of failure can be viewed as the possibility

of suffering loss or exposure in the cloud-computing life cycle [33]-[36]. Generally,
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cloud computing risk management consists of processes, approaches, and techniques

that are employed to reduce cloud computing risks failure.

There are three levels of essential services offered by cloud computing: Infras-

tructure as a service (IaaS), platform as a service (PaaS) and software as a service

(SaaS).

• Infrastructure as a service (IaaS) is the most basic and important cloud service

model under which virtual machines, load balancers, fault tolerance, firewalls

and networking services are provided. The client or cloud user is provided with

the capability to provision processing, storage, network and other fundamen-

tal computing resources to deploy and run arbitrary software such as operating

system and applications. Common examples of these services include Rackspace,

GoGrid, EC2, Google Apps, Concur, Cisco Webex, Citrix GoTo Meetings, Adobe

Marketing Cloud, Facebook, Flickr) and Amazon cloud [8].

• Under the PaaS model, a computing platform including APIs, operating system

and development environment are provided as well as programming language exe-

cution environment and web servers. The client maintains the applications, while

the cloud provider maintains the service run-time, databases, server software,

integrated server oriented architectures and storage networks. Various types of

PaaS vendors offerings can include complete application hosting, development,

testing and extensive integrated services that include scalability and maintenance.

Some key players include Microsoft Windows Azure and Google Apps engine Go-

Daddy, Windows Azure, Apprenda, Google App Engine, Amazon Web Services,

WordPress. The main benefit of these services includes focus on high-value soft-

ware rather than infrastructure, leverage economies of scale and provide scalable

go-to-market capability [39].

• SaaS provides clients with the capability to use provider application executing on

a cloud infrastructure. An entire application is available remotely and accessible

from multiple client devices through thin client interfaces such as web browsers.

Cloud user does not manage or control the underlying cloud infrastructure

[2]but providers install and operate the application software. Example providers

for this service include Salesforce, Facebook and Google Apps, Amazon EC2,

Rackspace, Microsoft Azure, Google Compute Engine and Amazon Web Services

[9]-[11].

The aim of this research is to develop an accurate model for predicting future

failure trends of system components in a high-performance data centre cloud infras-

tructure.

The main contribution of this work is as follows:

• To investigate the significance of analysing and predicting publicly available fail-

ure dataset.

• To develop and test time series models failure prediction, sensitivity and accuracy

for a distributed computing system.
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• To estimate the availability characteristics of the selected failure dataset in precise

quantitative terms.

• To test and validate the prediction accuracy of our developed model using data

in-production-failure dataset.

The remaining sections of this paper are organized as follows: Section 2 presents

a brief summary of work related to this study. Section 3 presents a vivid description

of our methodology, our proposed system model formulation and a brief overview

of our dataset. Section 4 discusses the results, the analysis of the system failure

distribution across the time under study and the failure prediction. Section 5 finally

concludes the paper.

2 Related Work

Failures impact on availability and dependability of cloud data centre infrastructure,

high-performance computing and distributed server systems has gained enormous

attention in recent times. However, very few work has attempted to fully analyse

and predict high performance and cloud failure data characteristics empirically. The

authors in [12] have made a good attempt to analyse the failure data of a large-

scale production cloud environment consisting of over 12,500 servers, which includes

a study of failure and repair times and characteristics for both cloud workloads and

servers, but they never looked at the failure correlation between workload intensity

and size of the system respectively.

Authors in [13] characterizes the hardware reliability of Cloud datacenters from a

number of data sources, but failed to analyse the failure of workloads and did not

utilised publicly available dataset in their experiment. Kavulya et al.[14] present

workload failure characteristics from a production MapReduce supercomputing clus-

ter, but this work is confined to MapReduce type jobs and does not consider work-

load repair or server failure characteristics. They also did not utilise publicly avail-

able dataset in their work. The authors in [3] used the Bayesian network to predict

failure probabilities. While the research seemed interesting, they did not disclose

the dataset they used, thus making it hard to replicate or compare other Machine

Learning (ML) Algorithms with their proposed model.[15] used an ensemble classi-

fier to achieve hard drive failure prediction on a cloud infrastructure. The data they

conducted their work on was acquired through two sources; Windows performance

counts and Self-Monitoring, and Analysis and Reporting Technology (S.M.A.R.T

or SMART). This research closely resembles the intended work. However, they only

considered hard disk failure in their cloud architecture while business systems rely

on other components (such as CPU, Disk, DIMM, Cable.etc) and not only hard

drive. Recently,[16] used data acquired from cycles to predict Integrated Circuit

(IC) failures. As in the case of [15] they also considered only one hardware failure

occurrence. They analyzed fourteen (14) hardware samples but the data they used

has not been made publicly available.

Our approach is to use publicly available hardware dataset to gain a machine

learning (ML) classifier to predict hardware failures, contrary to most of the state-
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of- the artworks. We decided to use a public dataset to enable other researchers in

the field to compare their outcome with our obtained results. Furthermore, in this

work we are not limiting our experiments to a single hardware, rather we attempt

to predict several component failures. For a more comprehensive review of other

works of literature by other scholars, the reader is referred to[17]-[25].

3 Methodology

This section presents a vivid description of our methodology. As the study focus

on data-driven modelling of system failure frequency in a large-scale cloud-based

infrastructure. Fundamentally, a failure data stream is usually time-dependent and

are recorded over a given regular span of time. This scenario makes the possi-

bility of applying time series models such as auto-regressive (AR) and moving-

average (MA) and see the ramification[30]. For the preliminary analysis and the

time series modeling[31], R programming language version 3.4.1 would be deployed.

3.1 Time Series

We define time series in the context of cloud-based infrastructure as a number of

failures occurred to a system over a given period of time. Let X1, X2, X3, · · · , Xt

be the number of failures of a system, and is mathematically defined as:

Xt = f(Xt−1, Xt−2, Xt−3, · · · , Xt−n) + εt (1)

where Xt is the value of X at time t, then Xt−1, Xt−2, Xt−3, · · · , Xt−n repre-

sents the past values of Xt, and εt denotes white noise which has the distribution

εt ∼ WN(0, σ2). The εt is a stochastic term which does not follow any pattern

and cannot be predicted. Basically, system failures are random, but it is rarely

deterministic in a narrow sense from some identifiable causes.

For several decades, time series models have been utilized in all fields of study

for prediction [28]. The models like autoregressive (AR), moving average (MA) and

exponential smoothing ranging from linear to non-linear regression and a host of

many others. Box and Jenkins [31] developed a classical time series model called

autoregressive integrated moving average (ARIMA). These techniques were success-

fully applied in various domians such as data centre, complex industrial system and

transportation networks and healthcare to predicts the failure of their systems [28]-

[31].

3.1.1 Autoregressive process (AR)

Suppose the time series {Xt} at time t has p past values Xt−1, Xt−2, Xt−3, · · · , Xt−p,

then AR process of order p is denoted by AR(p) defined as:

Xt = ϑ1Xt−1 + ϑ2Xt−2 + ϑ3Xt−3 + · · ·+ ϑpXt−p + εt, (2)

where εt ∼ WN(0, σ2) and εt is uncorrelated with Xr for each r < t. Using

backshift operator (2) can be written in short form as concise by Xt = ϑ(L)−1εt.
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In this process, the failure of a system dependent on the past causes or failure.

3.1.2 Moving average process (MA)

This process is memoryless because the failure of a system does not depends on past

causes or failure. In many situations, cloud-based infrastructures failed erratically

and this type of process could be best to describe such scenario. Let the time

series {Xt} is a moving average of order q denoted by MA(q) and mathematically

defined as:

Xt = εt + φ1εt−1 + φ2εt−2 + φ3εt−3 + · · ·+ φqεt−q (3)

where εt ∼ WN(0, σ2) and φ1, φ2, φ3, · · · , φq are constants. The Xt is a linear

combination of q + 1 white noise variables and are uncorrelated for all lags s > q,

e.g Xt and Xt−s. The MA(q) process can written in short form as Xt = φ(L)εt

3.1.3 Autoregressive moving average (ARMA)

This process is a hybrid of AR and MA where the pattern of failure of a system can

be attributed to two causes. The ARMA model is a combination AR and MA mod-

els of order p and q respectively. Then, ARMA(p, q) model is given by:

ϑ(L)Xt = φ(L)εt (4)

3.2 Overview of NERSC dataset

This NERSC data [26] was collected with the purpose of providing failure specifics

for I/O related systems and components in as much detail as possible so that

analysis might produce some useful findings. Data were collected for storage,

networking, computational machines, and file systems for production use at NERSC

from the 2001-2006 time frame. The data was extracted from a database used

for tracking system troubles, called Remedy, and is currently stored in a MySQL

database and available for export to Excel format. As part of the SciDAC Petascale

Data Storage Institute (PDSI) project Collaboration this is the failure data for the

High-Performance Computing System-2 (MPP2) operated by the Environmental

and Molecular Science Laboratory EMSL), Molecular Science Computing Facility

(MSCF)[26], [27].

The MPP2 computing system has the following equipment and capabilities:

• HP/Linux Itanium-2

• 980 node/1960 Itanium-2 processors (Madison, 1.5 GHz) configured as follows:

• 574 nodes are ”fat” compute nodes with 10 Gbyte RAM and 430 Gbyte local disk

• 366 nodes are ”thin” compute nodes with 10 Gbyte RAM and 10 Gbyte local disk

• 34 nodes are Lustre server nodes (32 OSS, 2 MDS)

• 2 nodes are administrative nodes

• 4 nodes are login nodes
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• Quadrics QsNetII interconnect

• 11.8 TFlops peak theoretical performance

• 9.7 terabytes of RAM

• 450 terabytes of local scratch disk space

• 53 terabytes shared cluster file system, Lustre

3.3 Proposed System Model

Input

  Failure causes/

Sources of failure

           HPC infrastructure

   (Various HPC Cluster 980 Nodes)

    Collected Storage,Networking 

   &  Computational machine data

Failure Component

(Specific Failures)

Classification Training
  Prediction

Failure Pattern)

Real Time

   Data

    Model 

Identification

    Model

 Procesing

& Estimation

     Model

 Checking

& Validation

  Model

 Prediction

Level 1

Level 3

Predicted 

  Output

Level 2

Fig. 1. Proposed System Model

Our proposed system model comprises three different levels as depicted in Fig.1.

However, this research will only focus on Level-1 and Level-2. Level-3 is out of the

scope of this work because the sources of failure are not considered.

Our failure prediction model is made up of the following main components:

• Identification

The model identification is the first stage of building time series model after

stationarity is achieved. With the aid of the autocorrelation function (ACF) and

partial autocorrelation function (PACF), we can identify the appropriate model

based on the pattern and order shown by the correlogram.

• Parameter Estimation

After the appropriate model is identified, next is the estimation of parameters

using some conventional techniques such as least squares method, maximum like-

lihood estimation and method of moment etc.

• Evaluation

In this stage, the model is to be checked for accuracy and validation, even though

postulation has been made that all models are wrong but some are better than

others. For example, considering the properties of the residuals and check whether
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the residuals from an ARMA is a normal regular distribution or random.

• Prediction

At this stage, the identified model would be used to forecast future ahead. The

estimated residuals of the model would be carefully examined to follow a white

noise process.

4 Results and Discussion

In this section, we present the analysis of system failure distribution across the time

under study. The model formulation and their properties, prediction and evaluation

are also presented.

4.1 Preliminary analysis

In Fig.2, we present the frequency of pooled system failure using the histogram

and also by superimposing a normal density function. We observed that the fre-

quency of the system failure is fairly distributed normally. Furthermore, we per-

formed normality test using Shapiro-Wilk test at α = 5% level of significant and

the p− value = 0.02. The null hypothesis has to be rejected and conclude that the

frequency of the system failure is normally distributed.
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-3 Histogram with Normal Failure Distribution 

Fig. 2. Normality test of the failure data

4.2 System failure model

In Fig.3, we plot the frequency of time-dependent system failure in order to under-

stand the pattern of its occurrence. The pattern of the system failure shows that

it is not stationary as the mean and variance of the series keep changing over time.
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To remedy this scenario, we need to deploy some technique of data transforma-

tions such as log-transformation, trig-transformation, differencing method and also

discuss their properties.

We present the plots of system failure frequency transformation in Fig.4(a)–(d)

using differencing, log, cosine and sine respectively. The log-transformation would

not be appropriate in this case because there are some indefinite outcomes as a

result of zero recorded system failure. However, the trig-transformation cosine and

sine are also not appropriate. This is shown by the pattern of the system failure

where the means and variances of the two series are considerably unstable. In this

study, we choose differencing method over log, cosine and sine. This is because

the pattern exhibited by the differencing shows that mean and variance of system

failure series is fairly constant.

Fig. 3. Time Series Plot for Failed Components

In Table1, we present the summary of the frequency of the system failure series

transformation using differencing, log-transformation and trig-transformation and

also their limitations.
Table 1

Data Normalization Comparison Table

Transformation function Outcome

Differencing The mean and variance are stationary

Log This transformation is indeterminant at some values

Cosine The mean and variance are not stationary

Sine The mean and variance are not stationary

4.3 Model Identification

We plots correlogram showing autocorrelation function (ACF) and partial autocor-

relation function (PACF) of the system failure series (see Fig.5(a)–(b)). Using the
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Fig. 4. Failure Component data transformation process

ACF correlogram, we were able to identify a moving average model of order 1, MA

(1). While the autoregressive model of order 1 as well, AR (1). The combination

of the two models gives ARIMA (1,1,1) model, where 1 at the centre is the number

of times the model is differenced. The system failure frequency of the series was

differenced ones before the stationarity was achieved. All the values of the auto-

correlation that fall within the two blue dotted lines are indicating non-significant

at 95%. While those values that fall outside the 95% confidence interval indicates

that they are significant.

4.3.1 Estimation of Parameter

Having identified the ARIMA (1,1,1) model for the system failure frequency, we

can then estimate the parameters of the model. The ARIMA (1,1,1) model is

mathematically represented by

yt = φyt−1 + εt + ϑ1εt−1 (5)

where εt is the random shock occurring at time t, which has the distribution

as εt ∼ WN(0, σ2). We estimated the following parameters φ1 = −0.1016 and

ϑ1 = −0.5784, log-likelihood = -178.3, AIC = 362.61, and the association stan-

dard errors of the model are 0.2531 and 0.2085 respectively. We therefore write the
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Fig. 5. ACF and PACF plots

ARIMA (1,1,1) model for system failure frequency as

yt = −0.1016t−1 + εt − 0.5784εt−1 (6)

where εt ∼ WN(0, 1.534).

We present in Fig.6, the prediction capability of ARIMA (1,1,1) and we also

evaluate the accuracy of the model. After evaluating the model, we were able to

obtain the following indices RMSE = 38.6%, MAE = 31.6% and MASE = 23.5%

respectively. This shows that the model is very robust as it gives error allowance of

less than 40%.

Fig. 6. This figure shows two regions, the first is the pattern of system failure frequency and while the
second is the prediction region of the failure series..
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5 Conclusion

In this research time series models for predicting failures have been examined and the

results have been discussed. The significance of analysing and predicting component

failures has been studied in this paper and verified through literature review. This

research was undertaken with the prior motive to develop an adequate model for

predicting future failure trends of components in a high-performance data centre

cloud infrastructure. It evolved that ARIMA (1, 1, 1) fits the data well. The

trend analysis indicated that the disk rate of failure is increasing at a fast rate.

Therefore there should be more attention and focus on the disk component of the

infrastructure. The model also proved that the model is adequate for predicting

of monthly failure rates of components. Moreover, the model was found to have a

good fit of 95% accuracy, hence appropriate for the study. In the future, we will

further examine a huge real-time publicly available dataset like Google cluster by

applying different machine learning approaches and comparing them to enable us

to improve and get a more accurate prediction.
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