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Abstract

The overall aim of this research project is to investigate nucleophilic substitution 

reactions of the thiomethyl group of 3-ethyloxycarbonyl-2-methylthiothieno[2,3- 

bjpyridine. The multistep synthesis of this compound is reviewed and 

improvements described. The first step is the N-oxidation of ethyl 3- 

pyridylacetate, so reagents for the preparation of this and other 3-substituted 

pyridines were investigated and a novel workup procedure for oxidation with m- 

CPBA (m-chloroperbenzoic acid) is described. The preparation of ethyl 2-chloro-

3-pyridylacetate and several polychlorinated pyridine derivatives are reported. 

Novel ketene dithioacetals were prepared from ethyl 5-chloro-3-pyridylacetate and

5-chloro-3-pyridylacetonitrile and some were converted to highly substituted 

thiophenes. Novel thieno[2,3-b]pyridines and [3,2-c]pyridines were prepared from 

ethyl 2-chloro-3-pyridylacetate, ethyl 4-chloro-3-pyridylacetate and their N-oxides. 

Preparation of the sulphoxide and sulphone of 3-ethyloxycarbonyl-2- 

methylthiothieno[2,3-b]pyridine was investigated and their relative susceptibility to 

substitution by some nitrogen nucleophiles examined. The conversion of 

benzylamine to benzaldehyde by the N-oxide group during the reaction of 3- 

ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine N-oxide with benzylamine was 

studied in some detail. Attempts were made to develop a synthetic route to the 

potential agonist of serotonin, 3-(2-aminoethyl)-5-hydroxythieno[2,3-b]pyridine 

from 3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine. Successful removal of 

the thiomethyl group at C-2 of 3-ethyloxycarbonyl-2-methylthiothieno[2,3- 

bjpyridine and progress made in development of the side chain at C-3 is reported. 

This thesis exhibits evidence of clear progress towards the development of a novel 

synthetic route to potential agonists of serotonin.

XI
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Introduction

1.1 Pyridine N-oxides

It would be unrealistic to give, in this introduction, a complete review of the 

chemistry of pyridine N-oxides. It is therefore an attempt to cover the main 

aspects of this subject including, as extensively as possible, preparation by direct 

oxidation as this was an important part of this project. There are several 

monographs1-4 available which give a much more comprehensive overview of 

heterocyclic N-oxides. More recently a review5 has been published covering the 

period 1990 to 2000 and focusing on the chemistry of pyridine N-oxides only. A 

brief review6 of methods for the preparation of pyridine N-oxides by direct oxidation 

has also been published.

Pyridines are generally resistive to electrophilic substitution due to the uneven n 

electron distribution around the ring. The 7r-electron density is slightly higher at the

3-position than at the 2- and 4- positions because the nitrogen atom is more 

electrophilic than carbon causing a drift of electrons in its direction7. (A typical set 

of electron densities is shown in figure 1).

0.979
1.010

\  ^  0.951 
N

1.100 
Figure 1

Therefore electrophilic aromatic substitution usually takes place at the 3-position 

under vigorous conditions. By the same arguments, nucleophilic substitution takes 

place readily at the 2- and 4-positions.
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Introduction

Pyridine N-oxides however, show greater susceptibility to both electrophilic and 

nucleophilic substitution. Examination of the dipole moment of pyridine N-oxide 1, 

4.24D8, show that of the canonical structures 1-7, structures 5-7 make significant 

contributions to the resonance hybrid. However, considering that 2-4 also make 

contributions to the resonance hybrid, these canonical structures are indicative of 

the versatility of the molecule [figure 2].

+

+N +i Ni Niio - i0 "
I0“

1 2 3

N'
I

O
4

+
'l\TII
O

5

+
N'II
O

6

+
'1ST
II
O

7

Figure 2

The N-oxide group acts as both an electron acceptor and an electron donor, 

facilitating both electrophilic and nucleophilic substitution at the 2- and 4-positions, 

depending on the reagents employed. It has been found9 experimentally that both 

types of reactions occur.

1.1.1 Preparation of pyridine N-oxides

1.1.1.1 By direct oxidation with organic peracids

Pyridine N-oxide 1 was first prepared by Meisenheimer10 using peroxybenzoic acid 

as the oxidising agent. Peracids are widely used as reagents in this 

transformation, the most common being peracetic acid11'20 usually created in situ 

from glacial acetic acid and 30% hydrogen peroxide. The mechanism is shown in

3



Introduction

scheme 1. It involves reaction between the two neutral species, the pyridine and 

the peracid, with the latter acting as the electrophile.

yC o
H O

C o A

N +
0  -

1

CK

Scheme 1

It is known21 that sodium perborate and glacial acetic acid rapidly form peracetic 

acid under anhydrous conditions, and these have proved22 to be effective reagents 

for the transformation of substituted pyridines to their corresponding N-oxides. No 

clear trends in steric or electronic effects have been reported, however while 

pyridine-3-carboxylic acid is N-oxidised in 63% yield, the 2- and 4- isomers have 

proved unreactive implying that electron-withdrawing groups in these positions 

inhibit oxidation.

Nowadays, the most popular reagents for this transformation are m- 

chloroperbenzoic acid (m-CPBA)23,24 (commercially available with a 55% titre) and 

the equally effective25 and safer magnesium monoperphthalate. Treatment of 3- 

trichloromethylpyridine with m-CPBA in dry chloroform24 gives 3- 

trichloromethylpyridine N-oxide. The oxidation of heterocyclic compounds by m- 

CPBA/HCI/DMF has been reported; for example, 3,5-lutidine 8 and nicotinic acid 9 

when treated with m-CPBA in DMF/methanol in the presence of hydrofluoric acid 

form their N-oxides in 85 and 87% yields26 respectively [equation 1].

4
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8 R = R' = CH3 O -
9 R = COOH R' = H

Equation 1

For difficult transformations such as the oxidation of 2,6-bis(trifluoromethyl)pyridine 

10 , peroxytrifluoroacetic acid27,28 has been used [equation 2].

f 3c ' ^ i s r

1 0
CF.

CF3COOH

H202
f 3C' N + 

O -

CF,

Equation 2

This reagent has also been used for the N-oxidation of 2,6-dibromopyridine, which 

has low basicity29,30 due to the inductive effect of the two a-bromine atoms of the 

molecule rendering the lone pair on the nitrogen less available for coordination. 

By using hydrogen peroxide in trifluoroacetic acid,31 2-pyridyl-2,4,5-trichlorophenyl 

sulphide has been converted into the corresponding sulphone N-oxide. N- 

Oxidation of pentachloropyridine with hydrogen peroxide (90%) and either acetic 

or trifluoroacetic acid in the presence of concentrated sulphuric acid32 gives the 

desired product in 85% yield. It has been reported33 that peroxymaleic acid has 

stronger oxidative powers than peroxybenzoic or peroxyphthalic acids and is more 

stable and well adapted as a reagent for N-oxidations.

5
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1.1.1.2 Side reactions with organic peracids

N-oxidation is often accompanied by other oxidations especially when the 

reagents are hydrogen peroxide and glacial acetic acid. Hydrolysis by the acid, 

oxidation of functional groups on the pyridine or ring cleavage may occur.

1.1.1.2.1 Oxidation of nitrogen substituents

The primary amine group of molecules such as 4-amino-3-methylpyridine 11 may 

be oxidised to a nitro group by peracids34 or by a mixture of 30% fuming sulphuric 

acid and 27% hydrogen peroxide35,36 [equation 3].

N°2 NO,

X r/Me H2S04.S03 (30%) X Me
■ rSH202 (27%)

T

I T
11 O -

Me

Equation 3

The amino group can be protected by acylation, then deprotected by hydrolysis 

after N-oxidation.37 However urethane 1-oxide 12 tends to cyclise to a 1,2,4- 

oxadiazolone derivative [scheme 2].

V |'T 'N H C 0 2Et

H202
AcOH

N+ NHCCLEt
I 2o -

12

150 °C

Scheme 2

N ^ N
o - U

O
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For tertiary amines the situation is complex in that the substituent nitrogen is 

preferentially oxidised in 2-dimethylaminopyridine, whereas in the 4-substituted 

isomer38-41 it is the ring nitrogen. In the N-oxidation of the sulphonamide 13, it is 

found42 that part of the sulphonamide group is oxidised to a hydroxylamine 

[scheme 3].

0
| II

1 0
H
13 NHAc

Scheme 3

When compound 14 is treated with perbenzoic acid, the dimethylamino group is 

oxidised first, followed by the pyridine nitrogen43 [figure 3].

Figure 3

With nicotine 15, which also contains an aliphatic tertiary amine and an aromatic 

tertiary amine, the formation of a double N-oxide is observed44 when a peracid is 

used. However, if the original compound is oxidised under mild conditions e.g. 

standing in dilute aqueous acidic hydrogen peroxide at room temperature, only the 

aliphatic amine is oxidised [scheme 4].

7
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Scheme 4

Phenylazopyridines45-47 are oxidised to give both azo and azoxy-1-oxides. The 

azo group is less readily oxidised than the ring nitrogen [equation 4].

Equation 4

Decomposition of the azido group occurs during N-oxidation of 4-azido-2-picoline 

16 and 4,4’-azoxy-2-picoline-1,T-dioxide 17 is formed via the intermediate which 

contains an azo group48 [scheme 5].

8
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Scheme 5

1.1.1.2.2 Oxidation of sulphur substituents

Alkylthio substituents, as in 2-alkylthio49 and 3-alkylthio-2-chloro-pyidines50 are 

oxidised preferentially by peracids to give the corresponding sulphoxides and 

sulphones with no reaction at the nitrogen. Stronger oxidising agents such as 

pertrifluoroacetic acid31 or 3,5-dinitroperbenzoic acid50 can oxidise the nitrogen 

atom. Pyridyl sulphides can be selectively oxidised depending on the reagents 

employed e.g. 2-pyridyl benzyl sulphide 18 is converted to the sulphoxide 19 with 

perbenzoic acid51 [equation 5].

Equation 5

Alternatively 2-pyridyl-4-chlorophenyl sulphide 20 on reaction with hydrogen 

peroxide and acetic acid gives the corresponding sulphone N-oxide31 21 [equation

6].

9
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2 1
Equation 6

1.1.1.2.3 Oxidation of carbon substituents

When a side chain in the ring is activated, as with the groups CH2OH,52 
CHRCOOR’ and CHRCOR’53, 54 attack at the a-position of the chain occurs 

resulting in the formation of acyl or hydroxy derivatives. In the case of ethyl 2- 

pyridylacetate 22, oxidation of the ester group accompanies N-oxidation56 
[equation 7].

^ l \ i ^ C H 2C02Et
22

H2 ° 2
AcOH

O -

COOH

Equation 7

The formation of pyridine N-oxide derivative 24, without oxidation of the hydroxyl 

groups, was achieved56 by reacting acylated pyridine 23 with hydrogen peroxide 

and acetic acid, followed by acid hydrolysis [scheme 6].

Scheme 6

10
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The preparation of 2- and 4-epoxyethylenepyridine N-oxides by reaction57 of 2- 

and 4-vinylpyridines with m-CPBA has been reported.

1.1.1.2.4 Other side reactions

The use of hydrogen peroxide and acetic acid as reagents frequently causes 

hydrolysis of functional groups (acyloxy,58 alkoxycarbonyl,59 carboxyamido60 or 

carbonitrile61) especially when heating is employed over long periods. It is 

possible to regard the reaction not merely as hydrolysis but as nucleophilic 

substitution58,59 by a peracid. This can usually be avoided by the use of aromatic 

peracids in nonpolar solvents62 however, 4-benzoyloxypyridine 25 still undergoes 

hydrolysis even under these conditions58 [equation 8].

OCOPh

N
25

PhCQ3H

0 OH

A
| | +

Ni N +
l
H 0-

Equation 8

1.1.1.2.5 Steric hindrance or electronic effects

N-oxidation with a peracid is due to electrophilic attack by the peracid on the lone 

pair of the nitrogen. This is affected not only by the basicity of the nitrogen but 

also by steric or polar influences of adjacent or conjugated substituents. A study63 
of the N-oxidation of pyridine and some of its methyl homologues with perbenzoic
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acid has shown the reaction to be second order. Some typical rate constants are 

given below (25°C) [figure 4].

Me Me Me

N N Me

Kx103= 4.80 S'1mol'1 7.25 S’1moM 10.20 S'1moM

Figure 4

These figures indicate that the polar effects of methyl groups in the 2- and 4- 

positions increase the basicity of nitrogen and hence the ease of N-oxidation 

increases. The spatial hindrance of methyl groups in the 2- and 6- positions is 

only slight. Steric hindrance of an alkyl group becomes more pronounced within 

an alkoxyl group. In the following example the yield is low when R is methyl, but 

the reaction does not proceed at all when R is benzyl64 [equation 9].

Chi ? h3

RO N OR

PhC03H

CHCU RO H +  OR
I

O -

Equation 9

The steric hindrance of the methyl group is prevailed over by the polar effect in 

increasing the basicity of the nitrogen atom and promotes N-oxidation to a small 

degree. The basicity of the nitrogen is decreased by the introduction of a phenyl 

group into the 2-position [equation 10]. When phenyl groups occupy both the 2- 

and 6-positions the electronic effects becomes apparent65 [equation 11]. When 

two of these groups are substituted in pyridine the availability of the unshared 

electron pair of the nitrogen for coordination with oxygen is sharply decreased.

12
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PhCOjH

c 6h5 CHCI.
N+ CcH

(67%)

I
o -

6 '5

Equation 10

c 6h 5- N

PhCOjH

CHCI,
c 6h 5 c 6h 5" N+ CcH

I
o -

(14%)

6' '5

Equation 11

Halogens in the 2- and 6- positions strongly inhibit N-oxidation29, 30 by polar 

effects. Such hindrance can be overcome30 by the use of stronger oxidising 

agents, for example trifluoroperacetic acid [equation 12].

Br

CF3CO3H

o -

Equation 12

1.1.1.3 By direct oxidation with other reagents

Pyridine N-oxides have been obtained66 by heating the pyridine and hydrogen 

peroxide alone in a sealed tube at 115-120 °C. Tris(2,2’-bipyridyl)iron(lll) 

complexes were found67 to disproportionate in basic solution to pyridine N-oxide 

iron(ll) complexes.
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Peroxymonosulphuric acid (Caro’s acid68) has been found69 to be effective in the 

N-oxidation of aminopyridines, removing the need for protection of the amino 

group and allowing the reaction to proceed under mild conditions. Potassium 

peroxomonosulphate (commercially available as OXONE68), when used in 

conjunction with acetone forms dimethyldioxirane 26. This dioxirane when created 

in situ at a carefully controlled pH of between 7.5 and 9.0 affords pyridine N-oxide 

1 in 96% yield70,71 [scheme 7].

Me
OXONE Me^ .0

X /  + ------------ I
Me 0 N+

26 0-
1

Scheme 7

Addition of excess dimethyldioxirane 26 to a solution of a pyridine in ice cold 

dichloromethane72 leads to quantitative yields of the corresponding pyridine N- 

oxide. When 4-dimethylaminopyridine is treated with dimethyldioxirane 26 the 

prepared N-oxide is partially deoxygenated73 by excess dimethyldioxirane 26 in 

the reaction mixture. It is thought that nucleophilic attack by the N-oxide oxygen 

atom on the dioxirane peroxide bond takes place.

Pentachloropyridine when reacted74 with sulphuric or polyphosphoric acid (PPA) 

and hydrogen peroxide (90%) only produced the N-oxide in 10% yield. A mixture 

of hydrogen peroxide and sodium tungstate75,76 has been reported as effective and 

avoids some of the side reactions found when peracids are used. Hypochlorite 

under basic conditions77, radiolysis78 and photolysis79 as methods for N-oxidation 

have also been mentioned in the literature. When hydrogen peroxide in the

14
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presence of catalytic amounts of methyltrioxorhenium80 is used on 3- and 4- 

substituted pyridines, yields greater than 80% of the N-oxides were obtained. 

However, larger quantities of the catalyst were required for 2-substituted pyridines. 

The same group reported81 the substitution of inorganic rhenium derivatives for 

methyltrioxorhenium and of bis(trimethylsilyl)peroxide for hydrogen peroxide in the 

N-oxidation of pyridines such as methyl isonicotinate. As well as being a useful 

reagent for N-oxidation, perfluoro-(cis-2,3-dialkyloxaziridine)82 can also form N- 

aminides as a side reaction.

1.1.1.4 By synthesis of the heterocyclic ring

1.1.1.4.1 Intramolecular processes

y-Pyrone and its derivatives have been used in the preparation of pyridine N- 

oxides. a,p-Unsaturated hydroxylamines are intermediates83"87 in the synthesis of

4-hydroxylaminopyridine N-oxides from y-pyrones. Heating coumaric acid with 

hydroxylamine gives 4-hydroxy-2-picolinic acid N-oxide88 27 [equation 13]. The 

same methodology has been utilized to prepare 5-ethoxy-4-hydroxy-2-picolinic 

acid N-oxide89 and 2,6-diphenyl-4-hydroxypyridine N-oxide90 from the 

corresponding appropriately substituted y-pyrones.
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Equation 13

When y-pyrone 28 and hydroxylamine hydrochloride in base were allowed to stand 

together at room temperature for a few days 4-hydroxyaminopyridine N-oxide 29 

was produced in good yield83 [scheme 8]. 4-Hydroxyamino-2,6-lutidine N-oxide 30 

was prepared84 by mixing the barium salt of the di-enol compound of 

diacetylacetone and hydroxylamine hydrochloride in ethanol and storing in a dark 

place. The same product was obtained from 2,6-dimethyl-y-pyrone 31 by similar 

methodology85 [scheme 9].

O

'O
28

h2noh.hci

Na2C03*’

O

M e ^ ^ Q  Q ^ ^ M e\ I \ i
3 a

HO NHOH

NH
I

OH

CHO

H2NOH.HCI
EtOH

NHOH

O

Scheme 8 
NHOH

Me

NK 
I " 

OH

H2NOH.HCI 
‘ H P

NHOH

"kKN+
Io-

29

O

Scheme 9

Condensation of enaminonitriles with hydroxylamine leads to the formation of 2- 

aminopyridine N-oxides91 [equation 14].
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o -
Equation 14

Reaction of glutaconaldehyde, a 1,5-dicarbonyl and hydroxylamine in acidic 

methanol leads92 to the formation of 1, via the dioxime 32 [scheme 10]. 4,4’- 

Azoxy-2,6-lutidine 1,1’-dioxide is likewise obtained93 from diacetylacetone. This 

methodology is limited by poor availability of the required dicarbonyls. However 3- 

alkoxypyridine N-oxides have been prepared94 from 6H-6-alkoxy-3-acyl-4,5- 

dihydro-1,2-oxazines via a nitrone intermediate.

H2NOH

CHO CHO MeOH/HCI
n  _____ - f S
CH CHII II N+NOH NOH I +

32 o-
1

Scheme 10

Ring closure via elimination may involve an unsaturated carbon and a heteroatom. 

Thus when 2,3,4,5-tetrachloro-5-phenyl-2,4,pentadienal 33 is treated with 

hydroxylamine, cyclisation with elimination of hydrochloric acid, gives 3,4,5- 

trichloro-2-phenylpyridine N-oxide95 34 [equation 15].

Cl

H2NOH

0 ^ \  / Ph
H Cl

33
Equation 15

Cl

Ph
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In a reaction course that is analogous to that seen with y-pyrones, 2-pyrones are 

converted into 1-hydroxy-2-pyridone 35 by reaction with hydroxylamine96, 97 
[equation 16].

H2NOH

0 ^ 0
I

OH
35

Equation 16

1.1.1.4.2 Intermolecular processes

Ethyl cyanoacetate and hydroxylamine, react with acetylacetone in the presence 

of base, to give 1-hydroxy-3-cyano-4,6-dimethyl-2-pyridone98 36 [equation 17]. 

The yield is improved99 when the preformed potassium salt of 

cyanoacetohydroxamic acid is used.

CN
ChL + H2NOH
I 2 2

COOEt

MeCOCH2COMe

Me

OH
36

Equation 17

Cyclisation of aliphatic nitro compounds involves elimination of a leaving group, 

hence when the morpholino salt of 1,3,5-tricyano-1,3,5-trinitropentane dianion is 

reacted with sulphuric acid 2,4,6-tricyanopyridine N-oxide is formed100 37 [figure

5].

18



Introduction

CN

CN

Figure 5

1.1.2 Reactions of pyridine N-oxides

1.1.2.1 Deoxygenation of pyridine N-oxides

Deoxygenation of pyridine N-oxides has been effected by a variety of reducing 

agents. The reagent employed depends on the nature of any substituents on the 

pyridine ring, hence strong reducing agents should be avoided where easily 

reducible groups are present other than the N-oxide.

The most frequently used reducing agents are phosphorus (III) compounds 

particularly PX3 (where X = Cl or Br). The mechanism is thought to involve 

nucleophilic attack on the electron deficient phosphorus atom followed by 

cleavage of the N-0 bond101'105 [equation 18].

+ CI3P=0

Equation 18

t N+

o C

N

PCL

19



Introduction

Triphenylphosphine106 acts similarly although it is less reactive and heating is often 

required. The same reagent in the presence of catalytic amounts of molybdenum 

(IV) compounds has been found107 to offer mild reaction conditions for 

deoxygenation. The use of triethylphosphite is facilitated103,108 by the presence of 

peroxide and oxygen and it is thought that a free radical mechanism is operating 

[scheme 11].

(EtO)3P RO-OR
0 2

EtO
/F

R O - P f O - O -  
Etc/ OEt

1
N

Scheme 11

A nitro group in the a- or y-positions is susceptible to substitution by a halogen 

when PX3 is employed108'111 however this is not the case34 for the p position. 

While this may be desirable in some cases, deoxygenation alone104 may be

achieved by using lower temperatures and shorter reaction times. In the presence

of hydrogen halide, substitution is highly favourable, hence if PCI3 is reacted with

3-methyl-4-nitropyridine N-oxide 38  in hydrogen chloride saturated solvent112 both 

deoxygenation and substitution of the nitro group take place to form 3-methyl-4- 

chloropyridine 39  [equation 19].

NO, Cl

r PCI3 n ^ i------------ ►
HCI

N + N
I0- 39

38
Equation 19

Me

Heteroaromatic N-oxides are resistive113 to reduction by sulphur dioxide or sodium 

sulphite at room temperature. This is useful for the selective deoxygenation44 of,
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for example, nicotine 1,1’-dioxide 40 to nicotine 1-oxide 41 [equation 20], where 

the aliphatic tertiary amine oxide is exclusively reduced by sulphur dioxide.

40 41

Equation 20

Although Relyea114 reported that sulphur dioxide does not deoxygenate pyridine 

N-oxide 1, it was subsequently shown that at higher temperatures115 this reagent 

or a trimethyl(ethyl)amine sulphur dioxide complex116 are effective. When 

reacted117 with sodium hydrosulphite, sulphite or bisulphate, 4-nitro-2,6-lutidine N- 

oxide 42 is reduced to 4-amino-2,6-lutidine 43. Additionally some 4-amino-2,6- 

lutidine-3-sulphonic acid 44 is formed in a side reaction [equation 21].

Me

1. Na2S204
2. HCI

Equation 21

Arenesulphenyl and sulphinyl chloride118'120 and thionyl chloride121 all form 

quaternary salts with pyridine N-oxides which subsequently decompose on heating 

to give the free base. For example 2-picoline N-oxide 45 is reduced by thionyl 

chloride at reflux temperatures121 in 92% yield [scheme 12].
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^ N ^ T / le
Io -

45

SOCI2
^ n^ ch3

I 3
/O

CIOS ci-

Scheme 12

Sulpholenes122 (2,5-dihydrothiophene-1,1-dioxides), as an alternative to sulphur 

dioxide, and trans-stilbene episulphoxide123 (as an in situ source of sulphur 

monoxide), have both been reported as useful reagents for deoxygenation of 

pyridine N-oxides. Other notable reagents for this transformation in the pyridinic 

series include: dialkylsulphoxylates129 (which react similarly to trialkylphosphites), 

dimethylsulphoxide (DMSO),124 sulphur,114, 125-127 mercaptans,114, 128 thiophenol 

and thiourea114 and diaryldisulphides.129

Catalytic reduction of the N-oxide group with reagents such as Raney130'133 or 

Urushibara134 nickel or palladium on charcoal135 are relatively quick, high yield 

processes (although the last is by far the slowest). The reaction is slowed by a- 
substitution of the pyridine ring, such as in 2,6-lutidine N-oxide,130 which is 

resistive due to steric effects. The formation of intramolecular hydrogen bonds in, 

for example, 2-hydroxypyridine N-oxide130 also inhibits this reduction. 2- 

Styrylpyridine N-oxide 46 and similar compounds containing a conjugated carbon- 

carbon or nitrogen-nitrogen double bond when hydrogenated in the presence of 

nickel catalysts133,136 undergo deoxygenation prior to hydrogenation of the double 

bond [scheme 13].
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O-
46

Scheme 13

Also known to occur subsequent to deoxygenation using these reagents are 

dehalogenation132,134 and hydrogenolysis of benzyloxyl132'134 and acyloxymethyl133 
groups. This selectivity of Raney nickel is general and useful. When it is desirable 

to deoxygenate without reducing any other functional group present the reaction 

can be stopped after the absorption of one mole of hydrogen. Advantage can be 

taken of the relatively slow reduction of the N-oxide group by palladium on 

charcoal. Aminopyridine N-oxides can be prepared133, 137-141 from their nitro 

precursors. Other catalytic hydrogenations of substituents preceding N-oxide 

reduction include azo to hydrazo and reduction of the azoxy group136 and 

hydrogenolysis133’142 of alkoxy groups. Reduction of a nitro group to an amine 

with reduction of the N-oxide117’143-146 has been extensively reported.

Dissolving metals such as iron, zinc or tin under both acidic and basic conditions 

have been used widely147'150 for the deoxygenation of pyridine N-oxides. Salts of 

iron (II) have also been reported151, 152 for this reaction. Pyridine N-oxide 1 is 

completely reduced153 to piperidine by nickel-aluminium alloy in sodium hydroxide 

solution. Nitro groups are reduced to amines under these conditions, and again, 

partial reduction of the nitro prior to deoxygenation of the N-0 function145,154,155 
has been observed. Sulphones are resistive to these reagents156,157 hence it is 

expeditious, as in the case of pyridine derivative 47, to oxidise to the disulphone
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N,N’-dioxide then selectively N-deoxygenate157 in this case using iron and 

trifluoroacetic acid [scheme 14].

47
Scheme 14

Metal ions of low valency, molybdenum (III)158 chromium (II)159 and titanium (III)160' 

162 typically, provide effective, mild conditions for deoxygenation. The products of 

hydride reduction of titanium (IV) chloride163'166 or tungsten (VI) chloride167 have 

also been reported for this reaction. Zinc in the presence of sodium iodide and 

trimethylsilylchloride168 provide even milder conditions.

Pyridine N-oxides react with diborane and alkylboranes to give either a pyridine or 

a hexahydropyridine depending169'172 on the choice of reagent employed. Tri(n- 

butyl)tin hydride and a free radical initiator have been reported173 as effective in 

the deoxygenation of pyridine N-oxides. Pyridine N-oxide 1 has been reacted with 

mixed borohydrides174, 175 with varying results. A single electron transfer (after 

complexation) mechanism has been proposed for the deoxygenation of crown 

ether 48 and its analog 49 [figure 6] on reaction176 with potassium tri(sec- 

butyl)borohydride.
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48
Figure 6

In the presence of fluorides177 or methyllithium,178 hexamethyldisilane and 

tetrabutyldichlorostannane179 deoxygenate pyridine N-oxide 1. Deoxygenation has 

also been reported180 by heating with alcohols and sodium hydroxide. Thermal 

deoxygenation has been observed181 in the case of 2-(2’-hydroxyphenyl)pyridine 

N-oxide. Deoxygenation is effected182 by electrolysis at carefully controlled 

potential of pyridine N-oxide 1 in methanol solution using a mercury cathode. 

Enzymatic deoxygenation by xanthine oxidase183 has also been reported.

1.1.3.1 Electrophilic substitution

1.1.3.1.1 Hydrogen/deuterium exchange

Under neutral conditions, hydrogen/deuterium exchange, with D20 at 180 °C, is 

observed in pyridine N-oxide 1 at the 2- and 6- positions184 as the unprotonated N- 

O group is ortho/para directing. Similarly 3,5-dimethylpyridine N-oxide is 

deuterated at the 2-, 4- and 6- positions, while 2,6-dimethylpyridine N-oxide reacts 

at the 4-position under acidic conditions. At higher acidities 2,4,6-trimethylpyridine 

N-oxide and 2,6-dimethylpyridine N-oxide are deuterated185 at the 3- and 5- 

positions.
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1.1.3.1.2 Nitration

This much studied reaction was first reported by Ochiai186 and later by den 

Hertog187 and produces 4-nitropyridine N-oxide 50 in yields up to 95% when 

pyridine N-oxide 1 is heated with a mixture of fuming nitric acid in sulphuric acid at 

90 °C. Some 2-nitropyridine 51 is obtained as a by-product [equation 22].

NO,

f. HNOo XI + |
h2s o 4

N + N+ N
I0-

Io - 51

1 50

Equation 22

Nitration involves reaction between the nitronium ion and the non-protonated N- 

oxide function. As the N-oxide group is ortho/para directing, nitration takes place 

predominantly at the 4-position [scheme 15].

Scheme 15

4-Nitro derivatives of alkylpyridine N-oxides have been prepared146,188-190 by the 

same nitration reaction, however when the 4- position is occupied no reaction 

takes place191 under these conditions. The presence of an alkyl group in the 2-
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position, due to the inductive effect, increases the electron releasing effect of the 

N-0 group and promotes nitration in the 4-position. An alkyl group in the 3- 

position causes slight steric hindrance. In the case of 3-f-butylpyridine N-oxide, 

nitration takes place at the positions a- to the nitrogen190 and deoxygenated 3-f- 

butyl-2- or 3-f-butyl-6-nitropyridines that are formed. Steric hindrance is less for 

halogens, e.g. Cl or Br, as both 3,5- and 2,6-disubstituted pyridine N-oxides give

4-nitro derivatives192'195 in good yield. The orientating effect of the N-oxide group 

is larger than that of an alkoxy group towards nitration. For example, 2- 

ethoxypyridine 52 gives196'198 5-nitro-2-ethoxypyridine while the corresponding N- 

oxide is nitrated192 at the 4-position, and for 3-ethoxypyridine 53 nitration takes 

place199'201 at the 2- position whereas for the N-oxide192 the reaction is at the 4- 

position [schemes 16 and 17].

N OEt

H2S04
hno3

OEt

Scheme 16

OEt
h2s o 4 .OEt

[O] X

no2 hno3
53

2. h2s o 4/hno*
X

o -

OEt

Scheme 17

Similarly for 2- and 3-methoxypyridine N-oxides, nitration202 is at the 4-position. It 

has been reported195, 203'205 however that some substituted 3-alkoxypyridine N-

27



Introduction

oxides are nitrated in the 2- or 6-positions, for example, in the case of 3-bromo-5- 

methoxypyridine N-oxide 54, reaction202 is at the 2-position [equation 23].

OMe KN03/H2S04 .OMe

0 2N

o -
Equation 23

Hydroxyl groups have a predominating effect over that of the N-oxide so positions 

ortho and para to the hydroxyl are nitrated. Examples being: nitration in the 2- 

position206 of 3-hydroxy pyridine N-oxide, in the 3- and 5- positions of 4- 

hydroxypyridine N-oxide207 and in the 5- position208 of N-hydroxy-2-pyridone. 

Examination209,210 of the nitration of 2-, 3- and 4-phenylpyridine N-oxides shows 

that substitution only occurs in the phenyl rings and not at the 4-position of the 

pyridine ring. The site nitrated is dependant on the position of the phenyl group on 

the pyridine ring. The N-oxides of 2- and 4-phenylpyridine are substituted mainly 

at the meta position of the phenyl ring, while 3-phenylpyridine N-oxide is 

substituted almost exclusively at the para position. It has also been shown209 that 

N-oxidation increases the rate of meta substitution and decreases para 

substitution when compared to the corresponding phenylpyridines.

If p-nitrobenzoylchloride and silver nitrate are employed, 3-nitropyridine N-oxide 55 

and 3,5-dinitropyridine N-oxide 56 are each produced in approximately 10% 

yield211 [equation 24]. The presence in the ring of a nitrile or ethyl ester group in 

the 3-position212 increases the yields of the corresponding 5- nitro derivatives to 

40-50% [equation 25].
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p-N02-C6H4C0CI no2 o 2n
[ + I

N+i
AgN03

■̂ ivTN + N+ii
O '1

I0-
55

i0“
56

.NO,

Equation 24

R p-N02-C6H4C0CI ° 2N R

N+
AgNO,

O '

R = C02Et, CN

N +
I

O '

Equation 25

1.1.3.1.3 Bromination

Direct bromination213 of pyridine N-oxide 1 takes place at the 3- position under 

acidic conditions via the N-O / S03 complex [scheme 18].

-------------  ^  ^  . Br
Br,/65% oleum

N+
o -
1

N+
o s o

Scheme 18

N+
O- (18%)

However if bromine together with silver sulphate (a source of bromonium ions) in 

90% sulphuric acid is used a mixture of 2-bromopyridine N-oxide 57 and 4- 

bromopyridine N-oxide 58 is formed214 [equation 26].
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BrI
Br2 / Ag2S04

--------------------- +
90% H2S04

N+ N+ Br N+
o - o - (3%) 0-
1 57 58

Equation 26

4-Bromination of 2,6-dimethylpyridine N-oxide has been achieved in 49% yield 

using bromine in the presence of thallium (III) acetate, however these conditions215 
will not brominate pyridine N-oxide 1 or 2-methylpyridine N-oxide. When a 

strongly electron-donating group such as an amino216 or hydroxy208,217,218 group is 

present, bromination is directed ortho or para to that group. Less activating 

species (alkoxy) only influence bromination216 when there is correspondence with 

the effect of the N-oxide function, so the only methoxypyridine N-oxide that is 

reactive is the 3- isomer. Generally under acylating conditions bromination takes 

place in the 3- position however pyridine N-oxide 1 with bromine in the presence of 

acetic anhydride and sodium acetate is converted to 3,5-dibromopyridine N-oxide 

59 in 35% yield219 [equation 27].

Ac20 / NaOAc ^ fl I
Br2

N+ N+
o - o -
1

Equation 27
59
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1.1.3.1.4 Sulphonation

Sulphonation occurs with difficulty and at the 3- position220'222 when pyridine N- 

oxide 1 is reacted with fuming sulphuric acid and mercuric sulphate at high 

temperatures [equation 28].

20% oleum

Equation 28

•SOjH

HgS04 / 220 °C
v + N+
0-
1

I
o -

1.1.3.1.5 Other electrophilic substitutions

When mercury (II) acetate is employed, mercuration takes place predominantly at 

the 2-position of pyridine N-oxide 1 with some 3- isomer produced. The yield of 

the 3-isomer is improved223 if mercuric sulphate in sulphuric acid is used. 

Benzylation in the 3-position is reported when pyridine N-oxide 1 is reacted with 

benzyl chloride and aluminium chloride224 and nitrosation,225, 226 coupling with 

diazonium salts211 and aminomethylation227'230 have all been reported on hydroxy- 

or amino- substituted pyridine N-oxides.

1.1.3.2 Nucleophilic substitution

Nucleophilic substitution generally occurs when there is a leaving group a- or y- to 

the N-oxide function, usually through the addition-elimination mechanism. In some

31



Introduction

cases a leaving group in the p position is sufficiently activated towards 

nucleophiles. As the rate of reaction is notably increased, over the free base, it is 

often advantageous to carry out the substitution on the N-oxide and then 

deoxygenate. Direct substitution onto the ring with loss of H' is also possible, 

either with or without deoxygenation.

1.1.3.2.1 Substitution of a leaving group

Nucleophilic substitution is easier at the a- or y-positions when a good leaving 

group in these positions is coupled with N-oxidation, which enhances the electron 

withdrawing effect of the ring nitrogen. Hence, 2-chloropyridine N-oxide 60 reacts 

readily with nucleophiles such as hydroxy,219 ethoxy,231 fluoride,232 and 

ethylmercapto219 [scheme 19].

When pentachloropyridine N-oxide 61 is treated233 with hydrogen sulphide and 

base, substitution only takes place at the 2-position. Further reaction at reflux 

leads to 2,6-disubstitution only [scheme 20].

I
O - 80%

I ^
O - 32%

Scheme 19
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Scheme 20

Similar reactions take place when a bromo atom is in the 2-position. Substitution 

by hydroxy234 [equation 29] or selenyl235 [equation 30] groups is readily achieved 

under mild conditions.

o -  o -
Equation 29

o -  o -
Equation 30

The p-position of the pyridine N-oxide is activated by the inductive effect of the N- 

oxide and so leaving groups at this position will be substituted by nucleophiles, 

although under more severe conditions than for the 2- or 4-positions. For 

example, 3-chloropyridine N-oxide 62, when heated with sodium methylsulphide 

and copper sulphate236 in methanol, produced 3-pyridylmethylsulphide N-oxide 63 

in 60% yield [equation 31].
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MeSNa/CuSO,

MeOH/A

.SMe

N +
0 “
63

Equation 31

3,5-Dibromopyridine N-oxide 59 is transformed stepwise into 3-methoxy-5- 

aminopyridine N-oxide 64 by reaction first with potassium hydroxide in methanol, 

then with ammonia in the presence of copper sulphate237 [scheme 21].

OMe

4-Nitropyridine N-oxide 50 yields 4-chloropyridine N-oxide 65 on reaction with 

phosphorus oxychloride238 at 70 °C [equation 32] (however, deoxidative 

chlorination is usually observed with this reagent).

NO,X POCI3 Xy 70 °C v
0- 0-
50 65

Equation 32

Substitution with other nucleophiles such as bromide239 and ethoxide240 also take 

place under mild conditions. Carbanions derived from compounds containing a 

methylene activated by adjacent electron withdrawing groups, such as
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phenylacetonitrile, nucleophilically substitute241 the leaving group in 4- 

chloropyridine N-oxide 65 or 4-nitropyridine N-oxide 50.

When there are two different leaving groups in the a- and y-positions, substitution 

depends on the nature of the nucleophile employed. In one example, with 2-halo-

4-nitropyridine N-oxides,242 the halogen is replaced by amines and the nitro by 

alkoxides. In the case of 3-fluoro-4-nitropyridine N-oxide, oxygen, nitrogen and 

sulphur nucleophiles replace the fluoro group, while the nitro is replaced243 by 

halides. Another example, in 3-halo-4-nitro-2,6-dimethylpyridine N-oxides it is the 

nitro proup that is substituted244 by oxygen, nitrogen and sulphur nucleophiles. 

When 3-bromo-4-nitropyridine N-oxide 66 is treated245,246 with the carbanion of 

ethylacetoacetate, substitution of the bromo group takes place first, then a 

secondary intramolecular substitution by the enol leads to 3-ethyloxycarbonyl-2- 

methylfuro[3,2-c]pyridine N-oxide 67 [scheme 22].

NO,
Br

N+
o -
66

“C02Et

Me

C02Et

67

Scheme 22

Condensation between aromatic or heterocyclic dianions with 3-chloro-4- 

nitropyridine N-oxide 68 allows entry to polyheterocycles. When the 

nucleophile247'250 is the dianion of 2-hydroxythiophenol, the first substitution is of 

the chloro group by the sulphur anion then the oxygen anion replaces the nitro to 

form the N-oxide 69 [equation 33].
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NO, 0-

r ^ clI + r "V s"
N+
I

o-
68

69

Equation 33

1.1.3.2.2 Halogenation

Treatment of pyridine N-oxide 1 with phosphorus (V) or sulphur (VI) halides such 

as phosphorus pentachloride, phosphorus oxychloride or sulphuryl chloride leads 

to the formation of halogenopyridines where the substitution takes place 

exclusively at the 2- and 4- positions and is known as the Meisenheimer10 
reaction. In the case of the halogenation of pyridine N-oxide 1 with phosphorus 

pentachloride the reaction proceeds by either an intermolecular mechanism, attack 

by a separated anion after electrophilic attack on the oxygen atom [scheme 4], or 

an intramoleclar mechanism involving concerted shift or recombination of the O- 

phosphorylated pyridine-chloride ion pair [scheme 23].
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^ N ^ C I

Scheme 24

Choice of reagent is important as different product ratios251,252 are observed with 

different reagents on reaction with pyridine N-oxide 1 [table 1].
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Reagent 2-CI (%) 4-CI (%)

s o 2ci22i2 57 43
p c i?51 41 58

POCI3261 68 32
Table 1: Product Ratios by Reagent

When a stoichiometric amount of triethylamine is added to the reaction253 of 

phosphorus oxychloride with pyridine N-oxide 1 chlorination is directed almost 

exclusively to the 2-position in 90% yield. With sulphur (VI) chlorides the same is 

observed although the yields are lower.

Substituents on the ring affect the regioselectivity of this reaction. 4-Substituted 

pyridine N-oxides are, for the most part, 2-halogenated. Notable exceptions 

include 4-cyanopyridine N-oxide254 which gives 3-chloro-4-cyanopyridine, and 4- 

nitropyridine N-oxide255, 256 which undergoes substitution at the 4-position. For 

groups at the 3-position, 2-halogenation usually257'259 takes place exclusively.

In the cases of ethyl 3-pyridylacetate N-oxide 70 and pyridine-3-acetonitrile N- 

oxide 71, competition between the inter- and intramolecular mechanisms leads to 

mixtures of the 2-, 4- and 6-chlorinated pyridines260,261 [equation 34]. The ratio of 

isomers differs for each substituent at the 3-position [table 2].

70, 71
74, 75

Cl

R

70, 72, 74, 76; R = CH2C02Et and 71, 73, 75, 77; R = CH2CN

Equation 34
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Substitution pattern R = CH2CN (%) R = CH2C02Et (%)

2,5- (72, 73) 21 22
2,3- (74, 75) 37 33
3,4- (76, 77) 5 13

Product Ratio by Subsltituent at C-3

A phenyl262 or methyl263 group at the 2-position allows chlorination at the 4- 

position, but the 6-position is substituted when a chloro219 or carboxy264 is in the 2- 

position. When 2- or 4-hydroxypyridine N-oxides are reacted with phosphorus 

oxychloride substitution265 of the hydroxy group takes place. An amide is 

dehydrated to a cyano group during chlorination, which takes place at the 2- 

position, as in the case of the chlorination266 of nicotinamide N-oxide 78 which 

yields 2-chloro-3-cyanopyridine 79 [equation 35] and similarly267 for 

isonicotinamide N-oxide which gives 2-chloro-4-cyanopyridine.

.CONK
POCI,

N +
O -
78

79

Equation 35

1.1.3.2.3 Formation of hydroxy or acyloxypyridines

Pyridine N-oxides are easily N-acylated by acetic anhydride to form acetate salts 

which rearrange to a-acetylypyridines and are then hydrolysed to the 

corresponding 2-pyridone derivative. This is known as the Katada268 reaction and 

when it is applied to pyridine N-oxide 1, 2-pyridone 35 is produced in 60% yield 

[scheme 25].
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Ac20
OAc

Scheme 25

Leaving groups such as chloro, ethoxy or phenoxy in the 2-position219 are easily 

replaced, while 3-substituted pyridine N-oxides generally give269 the corresponding

3-substituted-2-pyridones, but 3-methylpyridine N-oxide270,271 yields a mixture of

3- and 5-methyl-2-pyridones.

1.1.3.2.4 Cyanation

Cyanation is most conveniently carried out by a variation of the Reissert-Henze 

reaction, which employs silicon or phosphorus cyanides such as 

trimethylsilanocarbonitrile272, 273 (TMSCN) or diethylphosphorocyanidate274 
(DEPC). Hence, pyridine N-oxide 1 is converted exclusively to 2-cyanopyridine 80 

[equation 36], by TMSCN, which can be generated in situ from 

trimethylsilylchloride, sodium cyanide and triethylamine.

f f ^ l
Me3SiCI / NEt3

[ f ^NaCN
N + NIo - 80

1
Equation 36

CN

Exclusive 2-cyanation takes place when there is a halo, amino or alkoxy group in 

the 3-position, however when this position is occupied by an aryl, carbonyl or
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cyano group, either 2- or 6-substitution275,276 occurs. 4-Nitropyridine N-oxide 50 

gives 3,4-dicyanopyridine 81 with DEPC274 [equation 37].

NO, CN

X DEPC-----------------------^

N+ N
I0- 81

50

CN

Equation 37

Cyanopyridines are also obtained by reaction of aqueous potassium cyanide on N- 

alkoxypyridines. Substituents in the 4-position lead to 2-cyanated pyridine 

derivatives277, 278 while 3-alkylpyridine N-oxides give mixtures of 2-, 4-, and 6- 

cyanated pyridines279,280 and the ratios depend on both the substituent and the 

alkylating agent.

1.1.3.2.5 Alkylation

Pyridine N-oxides do not react directly with stabilised carbanions of the malonic 

ester type. However, in the presence of an acylating agent281 such as acetic 

anhydride, which also acts as solvent, deoxidative alkylation takes place under 

mild conditions. For example, pyridine N-oxide 1 is deoxygenated and alkylated in 

the 2-position by ethyl cyanoacetate in the presence of acetic anhydride [equation 

38].
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C02Et

Equation 38

Enamines282'286 also react with pyridine N-oxides, again in the presence of 

acylating reagents. Pyridine N-oxide 1 is alkylated at the 2-position282 by 

morpholinocyclohexene (MCH) [equation 39], while for 2-methylpyridine N-oxide 

45 the reaction takes place at the 6-position283 [equation 40].

N+
I

O"
1

Equation 39

Me^ ^N+
I

O "
45

When pyridine N-oxide 1 is activated by p-toluenesulphonylchloride (TsCI), 

substitution287 with ethyl 3-aminocrotonate takes place at the 4-position [equation

41].
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NH

1

Me

2

Equation 41

Grignard reagents, as strong nucleophiles, react288 with N-alkoxypyridines to give 

a mixture of 2- and 4-alkylated pyridines. For N-alkoxycarboxypyridines,289 
prepared in siyu from the N-oxide and a chlorocarbonate, the reaction occurs 

exclusively at the 2-position. It has also been reported290 that organozinc 

compounds react similarily.

1.1.3.2.6 Formation of carbon-heteroatom bonds

Amines are generally too weak nucleophiles for direct reaction but substitution can 

occur when good leaving groups are present and deoxygenation also usually 

occurs. Activation by tosyl or benzoylchlorides enhances deoxygenated amination 

for reagents such as ammonia,291 amines292, 293 and sulphonamides.292 
An example of a bifunctional reagent giving deoxidative substitution, rather than 

nucleophilic attack promoted by an auxiliary electrophilic reagent294'297 is pyridine 

N-oxide 1 reacting with an imidoylchloride to give an acylaminopyridine [equation 

42].
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/RN+
N+ xCI^^R'
I0-
1

R

c r  R'

Equation 42

The nature of a substituent297 in the 3-position has a directing effect on 

acylamination, hence for 3-methylpyridine N-oxide reaction takes place largely at 

the 2-position, while substitution occurs at the 6-position in 2-methoxypyridine N- 

oxide. Insufficiently basic N-oxides294 such as 4-nitropyridine N-oxide 50 do not 

react.

Pyridine N-oxide 1 when reacted with thiols in the presence of auxiliary acylating 

agents298 such as benzoylchloride or acetic anhydride, give 2- and 3- 

pyridylsulphides [scheme 26].

RSH

PhCOCI
I

OCOPh
SR

SR -

PhCOO 

Scheme 26

If the 2-position is occupied, as in 2-methylpyridine N-oxide 45, then substitution 

takes place299 at the 5- and 6-positions. A mixture of 2-, 5- and 6-pyridylsulphides
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is obtained from 3-methylpyridine N-oxide299 and with 4-methylpyridine N-oxide, 

substitution again occurs299 at the 2- and 3- positions.

1.1.3.2.7 Ring cleavage

The reaction of pyridine N-oxide 1 with Grignard reagents, when carried out at -40 

°C leads to the formation of an adduct that ring opens to a conjugated oxime 82. 

However, protonation of the adduct gives a 2,5-dihydropyridine N-oxide 83 that 

can be either trapped with phenylisocyanate or allowed to disproportionate to a 2- 

substituted pyridine N-oxide 84 and its tetrahydro derivative 85300 [scheme 27],

RMgBr --------►

y  h

OMgBr

HON: :CHR
82

^N+ R
r

o -
84
+

PhNCO

R = Alkyl or Phenyl
Scheme 27
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Reaction of N-alkoxypyridines with a base301, 302 can lead to several different 

reactions. The base adds at the 2-position which leads to either ring opening 

(when the base is hydroxide), or deoxidative substitution (when the base is 

cyanide) [scheme 28].

OCH2R

Z = CN-

N H
och2r

Z = OH-

N CN

I I
och2r och2r

Scheme 28

OCH2R

1.1.3.2.8 Cycloaddition

Pyridine N-oxide 1 reacts303 with hexafluoropropene to form, after rearrangement 

of the postulated isoxazolidine intermediate, 2-(1,2,2,2-tetrafluoroethyl)pyridine.

3,5-Lutidine N-oxide 86 reacts stereospecifically with arylmaleimides to give 

products of type 88 after a 1,5-sigmatropic shift304,305 from adduct 87 [scheme 29].
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O

I
Ar
88

Scheme 29

Reactions with alkynes can lead to N-ylides, 2- and 3-alkylpyridines or 

furanopyridines; the last are formed if suitable leaving groups are present on the 

pyridine. Thus, reaction of phenylpropionitrile with pyridine N-oxide 1 gives306'309 
mainly the 3-alkylated pyridine. A mixture of furano[3,2-b] and [3,2-c]pyridines is 

obtained310 from 3,5-dichloropyridine N-oxide. Similar reactions have been 

reported311 with benzyne. Pyridine N-oxides react312'319 readily with 

phenylisocyanates to give oxazolo[4,5-b]pyridines after a 1,5 sigmatropic shift of 

the initially formed cycloadduct. In the case of 3,5-dibromopyridine N-oxide 59, 

dehydrobromination yields a 2-oxazolo[4,5-b]pyridine317 [scheme 30].
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Br Br
+ PhNCO

Br

- P h

O

Br
- HBr

Scheme 30

Br
Br

N\
Ph

1.2 Thieno[2,3-b]pyridines

1.2.1 Introduction

Thienopyridines can be considered in two ways: as analogues of quinoline, the [b] 

fused bicycles 89-91 or as analogues of isoquinoline, the [c] fused bicycles 92-94 

[figure 7], These compounds have attracted a lot of interest over the years as they 

consist of a 7i-excessive thiophene ring fused to a -̂deficient pyridine ring and as 

analogues of quinoline and isoquinoline they have attracted attention as they have 

potential pharmacological value. In contrast to quinoline and isoquinoline, 

thienopyridines do not occur extensively in nature, in fact their only natural 

occurrence320 is in shale oil of high sulphur content. The first reported preparation 

was by Steinkopf321,322 in 1912 in which the Skraup synthesis was carried out on

2-aminothiophene as the tin double salt to form thieno[2,3-b]pyridine 89.
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N 8

[2,3-b] 89

/ /
N 9

[3,2-b] 90

N 9

[3,4-b] 91

[2,3-c] 92

Figure 7

The current work has focused on thieno[2,3-b]pyridines and so it is the intention of 

this introduction to only cover the synthesis and reaction of these compounds. For 

a more comprehensive picture of the chemistry of all the thienopyridines several

reviews323-326 are available. From a synthetic point of view the preparative routes

can be grouped together as those beginning from either a pre-formed pyridine ring 

or a pre-formed thiophene ring.

1.2.2 Preparation from a pre-formed pyridine

1.2.2.1 From thioacetic acids

Koenigs and Gesseler327 claimed that treating 2-pyridylthioacetic acid 95 with 

acetic anhydride lead to the formation of 3-hydroxythieno[2,3-b]pyridine 96 

[equation 43].
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OH

(MeC0)20

96

Equation 43

Chichibabin328 challenged this when he prepared 96 from 3-methyloxycarbonyl-2- 

chloropyridine and found it to be different to Koenigs’ product. The true structure 

was eventually established by Duffin and Kendall329 [figure 8].

1.2.2.2 From 2-halo-3-cyanopyridines

3-Amino-2-ethyloxycarbonylthieno[2,3-b]pyridine 97, has been prepared330 by 

reacting 2-chloro-3-cyanopyridine 79 with ethyl mercaptoacetate. The nucleophilic 

substitution of the chlorine by the mercaptoacetate is followed by base promoted 

cyclisation [scheme 31].

O - o -
Figure 8
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Scheme 31

The same author331 reported the formation of 2-acetamido-3-aminothieno[2,3- 

b]pyridine from 2-chloro-3-cyanopyridine 79 when the nucleophile was 

mercaptoacetamide. Highly substituted thieno[2,3-b]pyridines have also been 

prepared332’335 by similar routes. In a related reaction 2-chloro-3-cyanopyridinium 

salts have been reacted336 with methyl thioglycollate and sodium methoxide to 

form 4-iminothieno[2,3-b] pyridines [equation 44].

Equation 44

1.2.2.3 From pyridinethiol derivatives

Pyridine-2-thiol derivatives with a group such as a cyano or acid in the 3-position 

react337’348 with halogen compounds containing a methylene group activated by an 

electron withdrawing group to form thieno[2,3-b]pyridines. A typical example343 is
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the preparation of 3-amino-2-ethyloxycarbonyl-4,6-dimethylthieno[2,3-b]pyridine 

98 by alkylation of 3-cyano-4,6-dimethylpyridine-2-thiol 99 with ethyl chloroacetate 

followed by base promoted cyclisation [scheme 32].

Scheme 32

In a related reaction349 the potential antiviral agent 101 is formed by reaction of 

chloroacetic acid with 2,6-dimethylthiopyridine-3-carboxaldehyde 100 [equation

45].

Equation 45
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1.2.2.4 From pyridinethiones

Pyridinethiones have been extensively utilised by Russian workers350'376 in the 

preparation of thieno[2,3-b]pyridines. Generally, the thione, in the form of a 

substituted 3-cyanopyridine-2(1H)-thione, is alkylated by a compound with a 

halogen adjacent to a methylene activated by an electron withdrawing group. 

These intermediates are then cyclised by the Zeigler method, in the presence of a 

base to thieno[2,3-b]pyridines. In a typical example360 3-cyano-6-phenylpyridine- 

2(1H)-thione 102 is alkylated by phenacylbromide in DMF with aqueous potassium 

hydroxide, followed by cyclisation to afford 3-amino-6-phenylthieno[2,3-b]pyridine 

103 [scheme 33].

-OH

▼ NH2

103
Scheme 33
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Attaby and co-workers have carried out considerable work with pyridine-2(1H)-

thiones. In a series of papers377-386 they report the formation of substituted 3-

cyanopyridine-2(1H)-thiones from cyanothioacetamide and a.p-unsaturated 

carbonyl compounds. These were then reacted with active halogen compounds. 

Typically385 cyanothioacetamide on reaction with but-2-enal yields 3-cyano-4- 

methylpyridine-2(1H)-thione 104, which with 1-chloroacetone and base forms the

3-aminothieno[2,3-b]pyridine 105 [scheme34].

Me Me
.CN

H ^ O  H9N

CN

I
H

104

■ COMe

Scheme 34

Other synthetic routes to thieno[2,3-b]pyridines via 3-cyanopyridine-2(1H)-thiones, 

which were prepared from cyanothioacetamides reacting with enaminones387'389 or 

diketones cyclised with thiocarboxamidocinnamonitriles390'397 have been reported. 

In a similar manner365,366 the salts of pyridine-2-thiolates have been alkylated then 

cyclised to form thieno[2,3-b]pyridines.

3-Formylpyridine-2(1H)-thione 106 on reaction375 with a-bromocarbonyl 

compounds and a base gives 2-substituted thieno[2,3-b]pyridines in good yield 

[equation 46].
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H
106

X = OC2H5, C6H5, pBrC6H4
Equation 46

1.2.2.5 From 2-chloropyridines containing an active methylene group

Thieno[2,3-b]pyridines have been prepared260,398,399 by heating ethyl 2-chloro-3- 

pyridylacetate 74, 2-chloro-3-cyanomethylpyridine 75 or methyl 2-chloro-3- 

pyridylacetate 107 with carbon disulphide and sodium hydride in 

dimethylsulphoxide (DMSO). On cooling, the addition of methyl iodide gave 2,3- 

disubstituted thieno[2,3-b]pyridines 108, 109 and 110 [equation 47].

^ is r^ c i 
74, 75, 107

Z
1. dm so/c s2
2. NaH
3. Mel

108-110

74, 108; Z=C02Et, 75, 109; Z=CN, 107, 110; Z=C02Me

Equation 47

In each case the reaction is thought to proceed by base abstraction of the 

methylene protons and subsequent formation, with carbon disulphide, of a ketene 

dithioacetal dianion. On heating, one thiolate anion displaces the chlorine to form 

the bicycle and the other is alkylated by methyl iodide [scheme 35].

55



Introduction

H
-B

cCHCN

"Israel
74

CN

Hx CN

C— S=C=S

N Cl

CN

SMe

Scheme 35

A similar260 alkylation step utilises ethyl chloroacetate. When the heterocumulene 

is phenylisothiocyanate, 2-anilinothieno[2,3-b]pyridines400 111-113 are produced. 

The alkylation step is not necessary and the products are formed via protonation 

by water [equation 48].

74, 75, 107

PhNCS/NaH/DMSO

Mel/H20

Z

NHPh

74, 111; Z=C02Et, 75, 112; Z=CN, 107, 113; Z=C02Me

Equation 48
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1.2.2.6 Miscellaneous preparations

2-Mercapto-3-(2-hydroxy-2,2-diphenylethyl)pyridine 114 undergoes cyclisation401 
with cold concentrated sulphuric acid to 2,2-diphenyl-2,3-dihydrothieno[2,3- 

b]pyridine 115 [equation 49].

Ph
H2S04

114

Equation 49

The reaction402 of 3-vinylpyridine 116 with hydrogen sulphide at 630 °C with an 

alumina catalyst gives thieno[2,3-b]pyridine 89 in 6% yield together with some 

thieno[3,2-c]pyridine 91 [equation 50]. Under the same reaction conditions 2- 

methyl-5-vinylpyridine or 2-methyl-5-ethylpyridine gave 6-methylthieno[2,3- 

b]pyridine in 2% yield.

N
116

Treatment of pyridin-3-ylpropiolic acid 117 with thionyl chloride at reflux for six 

days followed by reaction with ethanol gives 2-ethyloxycarbonyl-3- 

chlorothieno[2,3-b]pyridine 118 in 4% yield403 [equation 51].
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C02H Cl

SOCI2/6 days 
ethanol

C02Et

Equation 51

2-Phenylthieno[2,3-b]pyridine 120 was obtained in 69% yield from the reaction of

2-chloro-3-phenylethynylpyridine 119 with a hydrogen sulphide saturated solution 

of sodium ethoxide in ethanol404 [equation 52].

Ph

H2S/NaOEt

ethanol

120

Equation 52

An intramolecular Diels-Alder reaction to thienopyridines has been reported405,406 
involving substituted 3-(3-butynylthio)-1,2,4-triazines 121 containing an electron 

rich dienophile. It forms a 2,3-dihydrothieno[2,3-b]pyridine 122, which on refluxing 

with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), dehydrogenates to the 

thieno[2,3-b]pyridine 123 [scheme 36].

N

R1=R2= H, Me, Ph Scheme 36
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It was discovered that oxidising the sulphur altered the reactivity with the rate of 

cyclisation in the order sulphoxide »  sulphone > sulphide. It is suggested that 

there is a correlation between C-S-C bond angle and rate of reaction. 2,3- 

Dihydrothieno[2,3-b]pyridine S-oxide 125 formed from triazine S-oxide 124 is 

dehydrated with refluxing acetic anhydride to thieno[2,3-b]pyridine 126 [scheme

37].

R1=R2= H, Me, Ph
Scheme 37

1.2.3 Preparation from a pre-formed thiophene

1.2.3.1 Skraup synthesis

Steinkopf321,322 used the stable tin double salt of 2-aminothiophene 127, which 

was obtained directly from 2-nitrothiophene by reduction, with glycerol to give 

thieno[2,3-b]pyridine 89 [equation 53].
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S NH
+

'3

glycerol/H2S04

A
2 SnCI62' 89

127

Equation 53

As an alternative to acrolein as an intermediate in the Skraup synthesis, the a,p- 
unsaturated carbonyl compound, methyl vinylketone, has been employed407 to 

prepare 4-methylthieno[2,3-b]pyridine 128 [equation 54].

Klemm408 reported however that some 6-methylthieno[2,3-b]pyridine is also 

produced in this reaction.

1.2.3.2 Aminothiophenes and 1,3-dicarbonyl compounds

The reaction of 2-aminothiophene double salt 127 with acetylacetone409 gives 4,6- 

dimethylthieno[2,3-b]pyridine 130 via cyclisation of the formed Schiff base 129 

[scheme 38].

Me

127

Equation 54
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Me

127

ch3co ch 2coch3

SnCI62-
s

129

H2so4

Me

Scheme 38

Malondialdehyde tetraethylacetal, as a source for a 1,3-dicarbonyl, forms 

thieno[2,3-b]pyridine when treated408 with zinc chloride and the double salt 127 

[equation 55]. The proposed mechanism suggests a combination of, stepwise 

hydrolysis of the acetal plus a sequence of Schiff base formation with the amine 

salt then cyclodehydrative substitution into the thiophene ring.

Equation 55

2-Aminothiophene double salt 127 was reacted408 with acetylacetone and 3- 

methylpentane-2,4-dione to form 4,6-dimethylthieno[2,3-b]pyridine 130 and 4,5,6- 

trimethylthieno[2,3-b]pyridine respectively. Heating the tin salt 127 with 

acetoacetaldehyde dimethylacetal (ADMA) in ethanolic hydrochloric acid solution 

gave 5-acetylthieno[2,3-b]pyridine 131 in 32% yield408 [equation 56].
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Equation 56

Trace amounts of 4-methylthieno[2,3-b]pyridine 128 and the 6-methyl isomer were 

also identified. It had been previously claimed337 however, that the only product 

from this reaction was 6-methylthieno[2,3-b]pyridine.

The synthesis410 of 3-substituted thieno[2,3-b]pyridines was attempted using 4- 

acetyl-2-nitrothiophene 132. This proved difficult to reduce to the appropriate 

amine, so the acetyl function was reduced first. Subsequent formation of the 

amine tin salt lead to some further reduction of the carbinol and hence a mixture of 

thieno[2,3-b]pyridines 133 and 134 [scheme 39].
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Scheme 39

Thieno[2,3-b]pyridines were also prepared410, 411 by reacting the sodium salt of

3,3-dimethoxy-2-formylpropionitrile with substituted 2-aminothiophene tin salts 

[equation 57].

MeO CN

Equation 57
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1.2.3.3 From 2-amino-3-carbonylthiophenes

6-Phenylthieno[2,3-b]pyridine 136 was synthesised412 from 2-nitrothiophene-3- 

carboxaldehyde 135 and acetophenone in a Friedlander type synthesis [scheme 

40].

Scheme 40

Polysubstituted thieno[2,3-b]pyridines have been prepared413 from 2- 

aminothiophenes and substituted ketones in a similar fashion [equation 58].

R4CH,COR5
R1

Equation 58

Formylation, by Vilsmeier’s method, of substituted 5-acylaminothiophenes lead to 

their 3-formyl derivatives. Formation414, 415 of thieno[2,3-b]pyridines followed 

cyclisation with compounds containing an active methylene group [scheme 41].
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Scheme 41

2-Amino-3-benzoylthiophenes on reaction416 with ketones afford thieno[2,3- 

b]pyridines. Reaction417 of these aminothiopenes with 1,1-dimethylthio-2- 

nitroethylene also leads to thieno[2,3-b]pyridines [equation 59].

Equation 59

1.2.3.4 Base catalysed cyclisation of amides

Thiophene 137 was converted418 to its chloroacetyl derivative and then cyclised to 

thieno[2,3-b]pyridine 138 by refluxing with sodium hydride in toluene [scheme 42].
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Me COMe
CICH2COCI

Me COMe

Et02C
'/

NCOCHXI
\ 2 
Me

NaH/toluene

C02Et

Scheme 42

Base catalysed intramolecular cyclisation of adduct 139 to thieno[2,3-b]pyridine 

140 has been described419 [equation 60].

t-BuOK
t-BuOH

OH

Equation 60

Ethyl 2-acetamido-3-thienocarboxylates 141 have been converted420 to 4,6- 

bis(dimethylamino)thieno[2,3-b]pyridines 142 by refluxing in hexamethyl 

phosphoric triamide (HMPT) [equation 61]. When hydrogen is in the 4- position of 

141 the yields obtained of 142 were between 30 and 40%. However when methyl 

or methylene groups are in this position the yields reduce to less than 10% and for 

a phenyl group no thienopyridine was isolated. Steric hindrance has been 

suggested420 as a rationale for this.
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Equation 61

2-Amino-3-cyanothiophenes 143 were reacted421 with ethyl aminocrotonate 

together with p-toluenesulphonic acid as a catalyst to form 2-[N-(3’- 

ethyloxycarbonyl)-2’-propenylamino]-3-cyanothiophenes which are readily cyclised 

by sodium ethoxide to the corresponding thieno[2,3-b]pyridines 144 with yields 

greater than 80% [scheme 43].

4,6-Dichloro-5-ethyloxycarbonylthieno[2,3-b]pyridine 146 was prepared422 from 

ethyl 2-aminothiophene-3-carboxylate 145 in three steps as shown in equation 62.

C02Et

145

Cl
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1.2.3.5 Gould-Jacobs synthesis

The Gould-Jacobs synthesis was first utilised423 for the preparation of 

thienopyridines by heating 2-aminothiophene tin double salt 127 with 

ethoxymethylene derivatives of active methylene compounds at 40-50 °C in

pyridine for 24 hours. The resulting aminoacrylate intermediate was cyclised to 

the corresponding thieno[2,3-b]pyridine 147 by refluxing in diphenyl ether [scheme 

44].

The Gould-Jacobs synthesis was applied424 to 4,5-disubstituted 2- 

aminothiophenes 148. Condensation with diethylethoxymethylenemalonate 

(EMME) gave a diethyl-(2-thienyl)aminomethylenemalonate which, when refluxed 

in diphenyl ether, cyclised to the 5-ethyloxycarbonyl-4-hydroxythieno[2,3- 

bjpyridine 149 [scheme 45].

R

R = CN, COMe, C02Me 147

Scheme 44
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OH R1

Alternatively425 if the cyclisation step is carried out in refluxing phosphorus 

oxychloride, chlorination takes place at the thienopyridine 4- position to give 150 in 

55% yield [equation 63].

Equation 63

Similarily, 4-aminothieno[2,3-b]pyridine derivatives have been prepared426 via 

cyclisation of a 2-(1,1-dicyanovinylamino)thiophene by refluxing in chlorobenzene 

in the presence of aluminium chloride [equation 64].

1.2.3.6 Vilsmeier synthesis

Meth-Cohn427 found that by using 4- and 5- substituted 2-acetamidothiophenes 

151, 6-chlorothieno[2,3-b]pyridines 152 and 6-chloro-5-formylthieno[2,3-
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b]pyridines 153 could be prepared by the Vilsmeier-Haack reaction [equation 65]. 

In a study428 of these reactions it was discovered that altering the ratio of the 

Vilsmieier reagents phosphorus oxychloride and DMF profoundly changed the 

ratio of products formed. Using them in the ratio POC^DMF; 3:1, gave 152 in 

80% yield. When the ratio was POC^DMF; 7:3, the major product was 153 

produced in 88% yield.

1.2.4 Reactions of thieno[2,3-b]pyridines

1.2.4.1 Electrophilic substitution

Klemm408 observed, based on quantum chemical reactivity indices, that 

electrophilic substitution into thieno[2,3-b]pyridine 89 should occur predominantly 

at the 3- position rather than the 2- position. Reaction of 89 with elemental 

halogen in concentrated sulphuric acid and silver sulphate gave429 3- 

halothieno[2,3-b]pyridine 154-156 in yields of 27-40% [equation 66].
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154; X=CI, 155; X=Br, 156; X=l
Equation 66

Reaction of 89 with deuterosulphuric acid at 98.5 °C gave faster 

deuterodeprotonation408,430 at the 3- position. Treatment408 of 89 with bromine in 

carbon tetrachloride however led to 2,3-dibromothieno[2,3-b]pyridine 157 in 17% 

yield [equation 67].

Equation 67

When 89 was treated429 with bromine in carbon tetrachloride and a phosphate 

buffer, 3-bromothieno[2,3-b]pyridine 155 was produced in 57% yield. Refluxing 

89 in chloroform/water mixture with the introduction of chlorine gas gave a mixture 

of 3-chlorothieno[2,3-b]pyridine 154 and 2,3-dichlorothieno[2,3-b]pyridine 158 

[equation 68].
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Equation 68

3-Halothieno[2,3-b]pyridines 154-156 were nitrated429 with nitric and sulphuric 

acids to give the corresponding 2-nitro-3-halothieno[2,3-b]pyridines 159-161 in 22- 

47% yields [equation 69].

N02

154, 159; X=CI, 155, 160; X=Br, 156, 161; X=l

Equation 69

Mixed acids were also used431 to nitrate thieno[2,3-b]pyridine 89 in the 3- position 

and to produce432 5-ethyl-3-nitrothieno[2,3-b]pyridine. Nitration427 of 2-bromo-6- 

chlorothieno[2,3-b]pyridine gives 2-bromo-3-nitro-6-chlorothieno[2,3-b]pyridine in 

96% yield.

Barker433 has reported on the electrophilic substitution reactions of some 

hydroxythienopyridines and thienopyridones. When 4-hydroxythieno[2,3- 

b]pyridine 162 is treated with one equivalent of bromine in acetic acid 5- 

bromination takes place while 2,5-dibromo-4-hydroxythieno[2,3-b]pyridine 163 is
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formed with excess bromine. Substitution at C-5 also takes place when the 

reagents are diethylamine and formaldehyde. Nitration with nitric acid takes place 

at the 2-position [scheme 46].

with similar results except the bromination was slower and the Mannich base could 

not be formed. The only electrophilic substitution reactions reported433 on 4- 

hydroxythieno[2,3-b]pyridin-6(7H)-one 164 were brominations [scheme 47].
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Scheme 47

1.2.4.2 Nuceophilic substitution

Treatment408 of thieno[2,3-b]pyridine 89 with n-butyllithium gave 6-n- 

butylthieno[2,3-b]pyridine 165 in 47% yield, while methyllithium gave 25% of 6- 

methylthieno[2,3-b]pyridine 166 [scheme 48]. At -25 °C, reaction with 

methyllithium followed by hydrolysis, first with D2O, then water gives 166 in 11% 

yield and 2-deuterothieno[2,3-]pyridine apparently408 formed from metalation at the

2- position of 89 which competes with the nucleophilic attack.
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Scheme 48

Reaction429 of 3-bromothieno[2,3-b]pyridine 155 with cuprous chloride in DMF 

gave 3-chlorothieno[2,3-b]pyridine in 45% yield. Similarily the 5-bromo isomer 

was converted434 to the corresponding cyanothienopyridine in 29% yield. 

Treatment435 of 6-chlorothieno[2,3-b]pyridine with y-diethylaminopropylamine and 

copper powder gave 6-(y-diethylamino)propylaminothieno[2,3-b]pyridine in 58% 

yield. The chlorine in 2-bromo-6-chlorothieno[2,3-b]pyridine is readily replaced436 

by piperidine or thiophenol. 4,6-Dichloro-5-ethyloxycarbonylthieno[2,3-b]pyridine 

146 when reacted422 with 1 equivalent of ethoxide is substituted in the 4-position 

while excess ethoxide causes 4,6-disubstitution to occur [scheme 49].
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A similar substitution pattern was found422 when 4,6-dichlorothieno[2,3-b]pyridine 

was treated with methoxide.

3-Cyano-2-methylthiothieno[2,3-b]pyridine 109 is substituted260 in the 2-position by 

some nitrogen nucleophiles but not oxygen nucleophiles [equation 70]. Oxidation 

of the thiomethyl group of 109 gave the corresponding sulphoxide and sulphone. 

Reaction with the anion of diethylmalonate showed the sulphone260 to be most 

reactive followed by the sulphoxide while the sulphide did not react.

1.2.4.3 Metalation of thieno[2,3-b]pyridines

Reaction427 of 2-bromo-6-chlorothieno[2,3-b]pyridine 167 with n-butyllithium 

followed by either dimethylsulphate or water gives 2-methyl-6-chlorothieno[2,3- 

b]pyridine 168 or 6-chlorothieno[2,3-b]pyridine 169 respectively [scheme 50].
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In a related reaction436 167, when treated with n-butyllithium followed by DMF, 

gave 2-formyl-6-chlorothieno[2,3-b]pyridine 170 [scheme 51].

Scheme 51

Treatment437 of thieno[2,3-b]pyridine 89 with n-butyllithium and 

tetramethylethylenediamine (TMED) at -70 °C gave 2-lithiothieno[2,3-b]pyridine 

171 which in turn reacts with DMF to give 2-formylthieno[2,3-b]pyridine 172 in 66% 

yield [scheme 52].
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Scheme 52

3-Lithiothieno[2,3-b]pyridine 173 was prepared437 by halogen-metal exchange 

between 3-bromothieno[2,3-b]pyridine 155 and n-butyllithium at -70 °C. 

Subsequently 173 was reacted in situ with various carbonyl compounds. The 3- 

formyl derivative 174 was produced in 77% yield however other products were 

obtained in only moderate yields [scheme 53].

Br Li
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1.2.4.4 Oxidation of thieno[2,3-b]pyridines

Thieno[2,3-b]pyridines have been converted to their N-oxides using hydrogen 

peroxide and glacial acetic acid,429, 438 m-chloroperoxybenzoic acid425, 439 and 

magnesium monoperoxyphthalate440, 441 by methods similar to those used for 

pyridines.

Treatment442 of thieno[2,3-b;4,5-b]dipyridine 175 with one equivalent of 

iodobenzene dichloride (IBDC) gave the corresponding sulphoxide 176. Reaction 

of 175 in carbon tetrachloride with chlorine gas followed by hydrolysis gave 

sulphone 178. Hydrogen peroxide in glacial acetic acid converted 175 to N,N’- 

dioxide 177, and 178 to the 1,1,5-trioxide 179 [scheme 54].

Scheme 54

Sodium hypochlorite and dilute sulphuric acid were employed443 to convert 

thieno[2,3-b]pyridine 89 to its sulphone 180 in 37% yield [equation 71]. Similar
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reagents, sodium hypochlorite and dilute hydrochloric acid, transform 

benzothieno[2,3-b]pyridine to the sulphone in 73% yield.

1.2.4.5 Reactions of thieno[2,3-b]pyridine oxides

Thieno[2,3-b]pyridine N-oxide 181, when treated438 with a mixture of nitric and 

sulphuric acids at 90-120 °C, nitrates in the 4-position to give 182 in 50% yield. 

Alternatively with nitric and acetic acids 5-nitrothieno[2,3-b]pyridine N-oxide 183 is 

formed in 56% yield [scheme 55]. 182 is thought438 to form by electrophilic

substitution by the nitronium ion while 1,3-dipolar addition to the nitrone followed 

by electrophilic substitution accounts for 183.

Reaction438 of 182 with acetyl chloride replaces the nitro group with a chloro which 

then undergoes further substitution by nitrogen nucleophiles [scheme 56].
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Scheme 56

Refluxing444 181 with acetic anhydride followed by hydrolysis gives thieno[2,3- 

b]pyrid-6(7H)-one 184 in 13% yield together with 4% of 5-hydroxythieno[2,3- 

b]pyridine 185 [equation 72],

Ac20

Equation 72

Chlorination444 takes place at either the 4-position (54%) or the 6-position (31%) 

on reaction of 181 with phosphorus oxychloride by the SnA mechanism (see 

section 1.1.3.2.2) [equation 73].

Cl

Equation 73
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Reissert-Henze reactions successfully445 introduce a cyano group into the 6- 

position of 181. For 4-substituted thieno[2,3-b]pyridines, the functional group at C- 

4 is retained [equation 74], but445 when this group is nitro it is replaced by either 

hydrogen or chloride when subsequently refluxed in water/chloroform [equation 

75].

Equation 75

An extension440 to the Reissert-Henze reaction involves potassium thiocyanate, 

however only dimer 188 was formed in 2% yield [equation 76].

188

Reaction446 of 181 with carbon nucleophiles gives substitution at C-4 with loss of 

the N-oxide function. Benzoyl chloride and enamines of cyclohexanone give the

4-cyclohexanonyl derivative 189 [equation 77]. When 181 is treated with acetic 

anhydride and ethyl cyanoacetate a product forms which on analysis contains an
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acetyl group in addition to the expected ethylcyanoacetate. It is thought446 that 

this compound exists as two tautomeric forms 190 and 191 [scheme 56].

Ac20
NCCH2C 0 2Et

Thieno[2,3-b]pyridine sulphones are known to act as dienophiles and undergo 

Diels-Alder reactions443, 447 with anthracene, cyclopentadiene and other dienes. 

For example443 180 condenses with furan to form two products; the exo adduct 

192 and the endo 193 [equation 78].
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1.2.4.6 Reactions of aminothieno[2,3-b]pyridines

5-Aminothieno[2,3-b]pyridine 194 shows434 two kinds of reaction typical of primary 

aryl amines. Firstly, when 194 is diazotised with sodium nitrite and concentrated 

sulphuric acid, the resulting salt can be converted by Sandmeyer reactions to the

5-hydroxy 185, 5-cyano 195, 5-chloro 196, and 5-bromo 197 thieno[2,3-b]pyridines 

[scheme 58].

Secondly condensation434 of 194 with benzaldehyde, dimethylaminobenzaldehyde 

and fufuraldehyde gives the corresponding imines in good yield [scheme 59].
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Scheme 59

Reaction438 of 4-aminothieno[2,3-b]pyridine 198 with p-dimethylamino 

benzaldehyde or p-nitrobenzaldehyde, molecular sieve and a catalytic amount of 

acetic acid in refluxing xylene led to the formation of the corresponding imines. 

Benzaldehyde likewise reacted under these conditions but gave the 2:1 

condensate 199 [scheme 60].
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Scheme 60

Diazotisation448 of 3-amino-2-ethyloxycarbonylthieno[2,3-b]pyridine 97 followed by 

hypophosphorus acid mediated reduction of the intermediate diazonium salt 

produced 2-ethyloxycarbonylthieno[2,3-b]pyridine 200 in 38% yield [equation 79].

Equation 79

1.2.4.7 Miscellaneous reactions

Heating 3-nitrothieno[2,3-b]pyridine 201 with acetic acid, acetic anhydride and iron 

produced449 3-acetamidothieno[2,3-b]pyridine 202 [equation 80]. In the case of 2-
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nitro-3-bromothieno[2,3-b]pyridine 160 the reaction is accompanied by some 

debromination.

NO, NHAc

AcOH/Ac20  
Fe powder

Equation 80

The methyl groups of 4,6-dimethylthieno[2,3-b]pyridine 130, being relatively acidic, 

readily condense409 with two equivalents of benzaldehyde to form 4,6- 

distyrylthieno[2,3-b]pyridine 203, when mixed with zinc chloride [equation 81].

Me PhCH=CH

Equation 81

Treatment434 of 5-bromothieno[2,3-b]pyridine 197 with potassium amide in liquid 

ammonia at -70 °C gave 4-aminothieno[2,3-b]pyridine 198 in 40% yield together 

with 0-13% of 194. The reaction is thought to proceed via the thienopyridyne 204 

[scheme 61].
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NHlo

Br KNH2/NH3 
-70 °C

197 204 198
+

H2N

194

Scheme 61

There has been considerable interest in thieno[2,3-b]pyridines as precursors to 

tricycles and other polycyclic compounds. It is not feasible to review this topic 

here as it is outside the scope of this investigation, however a recent review450 

covers the subject in considerable detail. Most cyclisation reactions take place on 

polysubstituted 3-aminothienopyridines containing a carbonyl or nitrile in the 2- 

position. For example338 the cyclocondensation of 2-acetyl-3-aminothieno[2,3- 

bjpyridine 205 with N,N-dimethylformamide dimethylacetal or triethyl orthoformate 

gave 4-hydroxypyrido[2’,3’:4,5]thieno[2,3-b]pyridin-2(1H)-one 206 [equation 82].

206

Equation 82
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2 Discussion
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2.1 Overview

The overall aim of this research project was to investigate nucleophilic substitution 

of the thiomethyl group of 3-ethyloxycarbonyl-2-thiomethylthieno[2,3-b]pyridine 

108 with various nitrogen, carbon and oxygen nucleophiles in an attempt to 

produce novel thienopyridines and gain entry into polycyclic systems. The 

synthetic route to 108 is in three steps: oxidation of ethyl 3-pyridylacetate 207 to its 

N-oxide 70, followed by chlorination of 70 to obtain ethyl 2-chloro-3-pyridylacetate 

74, then reaction of 74 with carbon disulphide and subsequent cyclisation to 108 

[scheme 63]. Each step in this route is examined and any improvements 

discussed.

CH2C 0 2Et CH2C 0 2Et

O"
70

CH2C 0 2Et

Cl

Scheme 63

During the attempted nucleophilic substitution reactions of 108, an interesting 

reaction was observed, the conversion of benzylamine to benzaldehyde by action 

of an N-oxide group. This transformation was investigated to see whether it was a 

general reaction of pyridine N-oxides and if optimum reaction conditions could be 

found.
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Additionally, the preparation of other chloropyridines, thieno[2,3-b] and [3,2-

c]pyridines, ketene dithioacetals and thiophenes, arising from byproducts of the 

preparation of 74, are described.

Molecular modelling studies, undertaken previously399 within the research group, 

identified a possible thieno[2,3-b]pyridine agonist of serotonin (5- 

hydroxytryptophan, 5-HT) 208 [figure 9]. A synthetic route to this compound 

starting with thieno[2,3-b]pyridine 108 was investigated.

The final section concerns the position of the carbonyl stretching absorbance 

observed in the infrared spectra of prepared compounds containing an ethyl ester 

group. Other functional groups in these molecules influence this vibration and 

these observations are discussed.

This discussion is therefore divided into the following sections:

• Preparation of pyridine N-oxides

• Preparation of chloropyridines

• Preparation of thienopyridines

• Preparation of ketenedithioacetals and thiophenes

• Reactions of thienopyridines

• Route to an agonist of serotonin
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• Reaction of benzylamine with pyridine N-oxides

• Ester carbonyl stretching absorbances.

2.2 Preparation of pyridine N-oxides

The preparation of ethyl 3-pyridylacetate N-oxide was carried out using peracetic 

acid generated in situ from hydrogen peroxide and glacial acetic acid. Hence, 

ethyl 3-pyridylacetate 207 was dissolved in glacial acetic acid and a slight 

stoichiometric excess of hydrogen peroxide (30% v/v) was added. The mixture 

was heated at 70 °C for seven days with the addition of more hydrogen peroxide 

as required (section 5.1). The presence of excess peroxide in the reaction mixture 

was determined by moist starch/iodide paper. The workup procedure involved 

destruction of any excess peroxide by the addition of activated carbon, filtration, 

and the removal of the solvent in vacuo, to give a brown oil which consisted of 

ethyl 3-pyridylacetate N-oxide 70, some unreacted ethyl 3-pyridylacetate 207, 

residual acetic acid and some dark coloured decomposition products. Separation 

by column chromatography was time consuming and did not fully separate ethyl 3- 

pyridylacetate N-oxide 70 from the coloured material. Further purification by 

recrystallisation led to an overall yield of 69%, based on the starting material. The 

reaction proceeds by nucleophilic attack by the nitrogen lone pair on the peracid 

[scheme 64].
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Scheme 64

As this was the first of a multistep reaction sequence it was important to maximise 

the yield and so this resulted in other oxidising agents being investigated.

Potassium peroxymonosulphate, commercially available as OXONE,68 was the 

first reagent employed using the method, describing the preparation of 

sulphoxides and sulphones, published451 by Greehalgh. OXONE consists of a 

mixture of two parts potassium peroxymonosulphate, one part potassium 

bisulphate and one part potassium sulphate, and is considered a powerful, more 

stable alternative to Caro’s acid (peroxysulphuric acid). Ethyl 3-pyridylacetate 

207, together with OXONE (1.1 equivalents) and wet alumina, present as a 

surface catalyst, were refluxed in dichloromethane for four hours. Filtration, 

evaporation of the solvent, and recrystallisation of the resulting solid led to 

production of the ethyl 3-pyridylacetate N-oxide 70 in 50% yield, with unreacted 

ethyl 3-pyridylacetate 207 recovered quantitatively (section 5.2). Attempts were 

made to improve the yield. Increasing the quantity of OXONE used proved 

unsuccessful, and refluxing in a higher boiling solvent led to degradation of the 

starting pyridine, while the application of ultrasound to the reaction mixture had no 

marked effect. This oxidation was consistently incomplete (according to tic). It 

was thought the problem lay in the solubility of ethyl 3-pyridylacetate 207 in water,
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which was present as a requirement of this method. Eliminating water entirely 

from the reaction however led to a further reduction in yield. The mechanism is 

similar to that for oxidation by an organic peracid, with nucleophilic attack by the 

nitrogen lone pair as the first step, followed by proton abstraction by the sulphate 

anion [scheme 65].

.CHXCLEt .CH2C02Et

0 1 | I ^

N +
207 ^

H O 0"1

1o-
70

_ 1 +o-s=o o-s=o1
OK OK

CH2C02Et

Scheme 65

Sodium perborate monohydrate has been reported22 as an oxidising agent for the 

preparation of pyridine N-oxides. The structure of sodium perborate has been 

shown452 to be a six-membered heterocyclic bisanion [figure 10].

Na+ Na+OH 

ho.-/°ô P 7 b- oh
B-
/

HO
O

Figure 10

It is considered a “dry carrier” of hydrogen peroxide and releases hydrogen 

peroxide spontaneously453 in water. Oxidation of acetic acid to peracetic acid by 

sodium perborate has been demonstrated454 and is thought to be the reagent 

responsible for the production of pyridine N-oxides in this reaction. Thus, sodium 

perborate monohydrate and ethyl 3-pyridylacetate 207 were stirred in glacial acetic 

acid at 60 °C for 24 hours. The solution was then filtered and the solvent removed 

in vacuo. Acetone was added and the solution filtered and concentrated.
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Purification by column chromatography and recrystallisation gave ethyl 3- 

pyridylacetate N-oxide 70 in 73% yield (section 5.3).

N-oxidation of pyridine with dimethyldioxirane 26, formed in situ from acetone and 

OXONE, has also been described71 and hence investigated. An aqueous solution 

of OXONE was added dropwise to a mixture of acetone and ethyl 3-pyridylacetate 

207 in a phosphate buffer, kept at pH 7.5-8.0 by the constant addition of 1M 

potassium hydroxide. After stirring at room temperature for 2 hours the mixture 

was extracted with four portions of dichloromethane. The solvent was removed in 

vacuo and the resulting solid purified by recrystallisation to give ethyl 3- 

pyridylacetate N-oxide 70 in 57% yield (section 5.4). The mechanism of N- 

oxidation is by nucleophilic attack of the nitrogen lone pair on the peroxide bond, 

followed by regeneration of acetone [scheme 66]. The reaction medium is held at 

neutral pH to avoid the side reaction involving Baeyer-Villiger oxidation of the 

ketone, known455 to take place at low pH.

.CH2CQ2Et

N
207

.CH2C02Et

N
I Me 

Me

Co
Scheme 66

CH2C02Et

+
Me
Me

The final reagent23 investigated was m-chloroperbenzoic acid. Initially the method 

reported by Paquett and Barrett456 was followed. Ethyl 3-pyridylacetate 207 and 

/77-CPBA (1.1 equivalents) were stirred together in chloroform for 1 hour at room
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temperature. The chloroform solution was then washed, first with sodium 

metabisulphite solution, to destroy excess m-CPBA, then with sodium bicarbonate 

solution to neutralise the m-chlorobenzoic acid (m-CBA) formed. The solvent was 

removed in vacuo to give ethyl 3-pyridylacetate N-oxide 70 in 66% yield. The 

aqueous washings were combined and extracted repeatedly with chloroform to 

give a further 8% of product (section 5.5). This process was inefficient and time 

consuming; therefore an improved method was developed. It was found that if 

solid reagents were added directly to the chloroform solution, i.e. sodium 

metabisulphite to destroy excess oxidising agent, potassium carbonate to 

neutralise m-CBA, followed by the usual workup, ethyl 3-pyridylacetate N-oxide 70 

was isolated in 93% yield (section 5.6). The mechanism is thought to be 

essentially the same as for other organic peracids.

It was decided to study these reagents with other 3-substituted pyridines in order 

to gauge their effectiveness in the general preparation of N-oxides. The readily 

available pyridines chosen were 3-methylpyridine 209, 3-ethylpyridine 210, and 

nicotinamide 211 [figure 11].

.Me ^  .Et ^  .CONFL

N
209

N
2 1 0

N
211

Figure 11

Each pyridine was oxidised using the methods already described and the yields 

obtained are detailed [table 3].
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Pyridine CH3CO3H m-CPBA OXONE NaB03 Dioxirane

207 69% 93% 50% 73% 57%
209 94% 84% 50% 77% 23%
210 64% 83% 52% 69% 52%
211 74% 70% 52% 52% 1%

Table 3: Yields of N-oxides by Oxidising Agent.

Although reasonable yields were obtained in some individual cases, we 

concluded457 that m-CPBA, using the improved procedure described, gave the 

greatest yield. This involved the utilisation of solid reagents in the work-up and 

provided the most efficient method for the transformation of these pyridines to their 

N-oxides.

2.3 Preparation of chloropyridines

See appendix 1 for a summary of the reactions discussed in this section.

The method used in this programme for the preparation of ethyl 2-chloro-3- 

pyridylacetate 74 was developed260,261 in this laboratory, and was in turn based on 

the procedure reported by Okuda and Robison259 for the preparation of chloro-3- 

cyanomethylpyridine. Ethyl 3-pyridylacetate N-oxide 70 was added slowly to 

phosphorus oxychloride and the mixture refluxed for 3 hours. Excess phosphorus 

oxychloride was removed by distillation and the residue poured onto ice, basified 

with ammonia solution and extracted with ethyl acetate (section 5.7). Evaporation 

of the solvent gave a brown oil which when examined by tic was seen to consist of 

two products with very similar Rfs and one more polar component. Column 

chromatography resulted in poor separation of ethyl 2-chloro-5-pyridylacetate 72 

and ethyl 2-chloro-3-pyridylacetate 74, only affording small quantities of the pure
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substances both of which were identified by comparison260,261 of their infrared and 

pmr spectra with those reported. The more polar third isomer ethyl 4-chloro-3- 

pyridylacetate 76 was readily separated and was isolated in 13% yield [equation 

83]. Again the structure was confirmed260,261 by comparison of spectroscopic data 

with the literature.

'N+
Io -

70

,CH2C02Et
POCI,

Cl'

Cl

,CH2C02Et
N
72

CH2C02Et

Equation 83
There are two mechanistic routes that this reaction can take, an intramolecular 

mechanism involving concerted shift or recombination of the O-phosphorylated 

pyridine-chloride ion pair [scheme 67], or an intermolecular mechanism via attack 

by a separated anion after electrophilic attack on the oxygen atom [scheme 68]. 

The intermolecular mechanism accounts for the formation of all three isomers 72, 

74 and 76, while the intramolecular mechanism also explains the formation of 72 

and 74.
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Cl-
,CH2C02Et

CH2C02Et

'N +
II Cl 70 O

CH2C02Et

74

CH2C02Et
N Cl 72

Scheme 67

70 R=H, R'=CH2

R R'
Cl72 R=CH2C02Et, R-H 74 R=H, R'=CH2C02Et

Cl

76 R=H, R-CH2C02Et
Scheme 68

99



Discussion

As ethyl 2-chloro-3-pyridylacetate 74 was the required isomer for further reaction a 

good separation was essential. It was envisaged that conversion of ethyl 2-chloro-

5-pyridylacetate 72 and ethyl 2-chloro-3-pyridylacetate 74 to their N-oxides may 

lead to differences in Rf and allow separation; therefore they were treated with m- 

CPBA using the method previously described (section 2.2). Examination of the 

reaction by tic indicated that a better separation had been achieved, however it 

also showed a significant amount of unreacted ethyl 2-chloro-5-pyridylacetate 72 

and ethyl 2-chloro-3-pyridylacetate 74 remaining (section 5.8). This was thought 

to be due to the presence of a chlorine atom a to the nitrogen atom. Not only does 

it sterically hinder the nitrogen site but the chlorides inductive effect, which 

predominates over it’s mesomeric effect, reduces the susceptibility29, 63 of the 

nitrogen to N-oxidation by making it less basic. It has been reported32 that the 

addition of a mineral acid improves the oxidising ability of an organic peracid; 

therefore the oxidation was repeated in the presence of a little concentrated 

sulphuric acid (section 5.9). Again some unoxidised ethyl 2-chloro-5- 

pyridylacetate 72 and ethyl 2-chloro-3-pyridylacetate 74 were found in the reaction 

mixture, however there appeared to be substantially less than before. Separation 

by column chromatography gave unreacted ethyl 2-chloro-5-pyridylacetate 72 and 

ethyl 2-chloro-3-pyridylacetate 74, recovered in 28% yield as a mixture. Further 

elution gave, firstly, a white solid after recrystallisation from ethyl acetate. 

Examination of the infrared spectrum showed a strong absorbance at 1735cm'1 

characteristic of an ester group, a strong absorbance at 1250cm'1 from an N-oxide 

group and both aromatic (3075, 3010cm'1) and aliphatic (2950, 2960cm'1) C-H 

stretching absorbances. (For convenience, peaks in the infrared spectra around 

1700cm'1 are assigned to ester carbonyls, where appropriate. A more
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comprehensive discussion of these absorbances is in section 2.9). The pmr 

spectrum showed a triplet at 1.248 and a quartet at 4.148 characteristic of an ethyl 

ester and there was the expected singlet for a methylene function at 3.748. The 

singlets observed at 7.088, 7.148 and 8.188 were indicative of a 2,5-disubstituted 

pyridine N-oxide. As a result the compound was assigned the structure ethyl 2- 

chloro-5-pyridylacetate N-oxide261 (212, 30%). This structure was supported458 by 

mass spectometry and elemental analysis. Further elution gave a second white 

solid after recrystallisation from toluene. The infrared spectrum showed aliphatic 

and aromatic C-H stretching at 2980 and 3060cm'1 respectively, a strong 

absorbance at 1734cm'1 due to an ester function and a further strong signal at 

1275cm'1 characteristic of an N-oxide group. The pmr spectrum again showed a 

triplet at 1.208 and a quartet at 4.038 characteristic of an ethyl ester and there was 

the expected singlet for methylene protons at 3.478. The pattern observed for the 

pyridine protons, i.e. a doublet of doublets at 6.998, a doublet at 7.258 and a 

doublet of doublets at 8.078, is of the type expected for a 2,3-disubstituted pyridine 

N-oxide and hence this product was assigned the structure ethyl 2-chloro-3- 

pyridylacetate N-oxide261 (213, 31%). Elemental analysis458 coupled with mass 

spectrometry corroborated this structure, [equation 84].

(72 and 74)
m-CPBA

O"
212

O"
213

Equation 84
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Deoxygenation of ethyl 2-chloro-5-pyridylacetate N-oxide 212 and ethyl 2-chloro-3- 

pyridylacetate N-oxide 213 to their parent compounds ethyl 5-chloro-3- 

pyridylacetate 72 and ethyl 2-chloro-3-pyridylacetate 74 was achieved with 

phosphorus tribromide (see section 1.1.2.1). The method used in this work was 

based on that described105 by Hamana. The pyridine N-oxide was dissolved in 

DMF at 0 °C and treated with phosphorus tribromide. After one hour the mixture 

was poured onto saturated sodium bicarbonate solution and extracted with ethyl 

acetate. The solvent was dried and removed in vacuo to give chloropyridines 72 

and 74 as, in each case, a colourless oil, which were positively identified260,261 by 

comparison (infrared, pmr and tic) with the literature (section 5.10 and 5.11). The 

mechanism involves nucleophilic attack on the electron deficient phosphorus atom 

of phosphorus tribromide, followed by cleavage of the N-0 bond [schemes 69 and 

70].

.CH2CQ2Et CH2C02Et .CH2C02Et

Cl' ^N+

< k
2 1 2

Cl*
PBr,

) n+ c r  ' n
72

PBr.

Scheme 69

.CH2C02Et ,CH2C02Et .CH2C02Et

^N+ Cl
I

0^__ 
213

PBr-, 1 '
N+ Cl

io
PBr.

N Cl 
74

Scheme 70

Ethyl 4-chloro-3-pyridylacetate 76, also a colourless oil, was found to decompose 

rapidly in the atmosphere and even storage as a dilute solution at low
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temperatures was not effective. It was anticipated, based on previous 

observations, that the N-oxide of this pyridine would be a solid and hence, 

hopefully, more stable. Oxidation of ethyl 4-chloro-3-pyridylacetate 76 with 

m-CPBA gave after recrystallisation from ethyl acetate a white crystalline solid 

(section 5.12). The infrared spectrum showed the expected absorbance at 

1734cm'1 for an ester group, at 1245cm'1 for an N-oxide function and at 2990cm'1 

(aliphatic) and 3040cm'1 (aromatic) C-H bonds. The pmr spectrum showed a 

triplet at 1.255 and a quartet at 4.205 characteristic of an ethyl ester and there was 

the expected singlet at 3.605 for a methylene function adjacent to an ester group. 

A doublet at 7.255, a doublet of doublets at 8.035 and a doublet at 8.155 were 

indicative of a 3,4-disubstituted pyridine N-oxide. The compound was therefore 

assigned the structure ethyl 4-chloro-3-pyridylacetate N-oxide261 214 and was 

obtained in 70% yield. This structure was supported by elemental analysis458 and 

mass spectrometry, [equation 85]. Ethyl 4-chloro-3-pyridylacetate N-oxide 214 
proved to be stable under normal storage conditions over long time periods.

Cl Cl

fl
.2wv^2._.

m-CPBA h
I

CH2C02Et

"N"
76

N+
I

0 “

214
Equation 85

As there was a significant amount of ethyl 2-chloro-5-pyridylacetate N-oxide 212 
obtained from these reactions this was further chlorinated to produce novel poly­

chlorinated pyridines. Theoretically there could be two dichloropyridines formed,
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as the nucleophilic chlorination of pyridine N-oxides usually proceeds by two 

mechanistic routes (see section 1.1.3.2.2): via a complex of the N-oxide function 

and the inorganic acid halide.

Ethyl 2-chloro-5-pyridylacetate N-oxide 212 was added to phosphorus oxychloride 

and the mixture refluxed for three hours, then the solvent removed in vacuo. The 

resulting brown oil was poured onto ice, basified with ammonia solution and 

extracted with ethyl acetate. Examination by tic indicated that only one product 

had been formed. The solvent was evaporated and the oil distilled under reduced 

pressure (section 5.13). The infrared spectrum confirmed the presence of an ester 

group (1736cm'1) while the pmr spectrum showed the characteristic peak pattern 

for a 2,3,6-trisubstituted pyridine, two doublets at 7.185 and 7.585 (for both 

J=7.2Hz) for protons C-5 and C-4 respectively. A triplet at 1.255 and a quartet at 

4.155 were characteristic of an ethyl ester and there was the expected singlet at 

3.695 for a methylene function adjacent to an ester group. As a result the 

compound was assigned the structure ethyl 2,6-dichloro-3-pyridylacetate 215 

obtained in 58% yield [equation 86]. This structure was supported by mass 

spectrometry458 and elemental analysis.

O "
2 1 2

215

Equation 86
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As no other product was isolated from this reaction it would appear that the intra­

molecular mechanism [scheme 67] overwhelmingly predominates in this case, and 

if any other isomer had formed, it was in a quantity too small to be detected.

An attempt to produce the 2,4,6-trichloropyridine derivative from ethyl 2,6-dichloro-

3-pyridylacetate 215 was now undertaken to allow the later preparation of more 

novel thienopyridines. As has been described earlier, chlorine atoms a- to the 

nitrogen reduce the susceptibility of pyridines to N-oxidation. Ethyl 2,6-dichloro-3- 

pyridylacetate 215 was treated with m-CPBA and a little concentrated sulphuric 

acid. After stirring for four days tic indicated a substantial amount of 215 

remaining in the reaction mixture. Following work up the only compound isolated 

was the starting material 215 (section 5.14). It has been reported27,28,30 that 

peroxytrifluoroacetic acid, which contains a powerful electron attracting group 

(CF3) and offers a more highly reactive electrophilic peracid, was effective in the 

N-oxidation of less basic pyridines. Thus, ethyl 2,6-dichloro-3-pyridylacetate 215 

was dissolved in trifluoroacetic acid and 30% hydrogen peroxide added. The 

mixture was stirred for four days at room temperature then examined by tic which 

showed mostly starting material in the reaction mixture. A further portion of 

hydrogen peroxide was added and the reaction was heated to 90 °C for sixteen 

hours when tic indicated that no starting material remained. The mixture was 

cooled and carbon added to destroy any remaining peroxide. The solution was 

filtered and concentrated in vacuo to leave a brown solid, which on 

recrystallisation from methanol gave colourless crystals (section 5.15). The 

infrared spectrum showed a strong carbonyl absorbance (1715cm'1) while the pmr 

spectrum again showed characteristic peak patterns for a 2,3,6-trisubstituted
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pyridine N-oxide; two doublets at 7.286 and 7.676 (for both J=7.2Hz) for protons C- 

4 and C-5 respectively. Surprisingly there were no characteristic signals for an 

ethyl ester group, but a singlet at 3.746 confirmed the presence of a methylene 

function downfield shifted by an electron-withdrawing group. A further broad 

singlet, which integrated for one proton, was observed at 10.916 indicating the 

molecule was an organic acid. Based on these observations the product was 

assigned the structure 2,6-dichloro-3-pyridylacetic acid N-oxide (216, 56%). 

Elemental analysis459 corroborated the structure; although the analytical figure 

found for carbon was slightly high [equation 88].

Acid catalysed hydrolysis of an ester usually requires heating with an excess of 

water present. The use of 30% hydrogen peroxide would appear to provide 

sufficient water for this reaction to take place [scheme 71].

215 o -
216

Equation 88
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2 1 6

H

H
O' H
----0 +

OEt H

Scheme 71
The ethyl ester of 2,6-dichloro-3-pyridylacetic acid N-oxide 216 was required as a 

precursor to thienopyridines, so 216 was refluxed in ethanol together with a drop 

concentrated sulphuric acid for 7 hours. Following work-up, white needles were 

obtained after recrystallisation from ethyl acetate [equation 89] (section 5.16). The 

infrared spectrum contained absorbances for a carbonyl (1721 cm-1), aromatic C-H 

stretching (3048 and 3087cm'1) and aliphatic C-H stretching (2932 and 2985cm'1). 

The pmr spectrum showed a triplet at 1.305 and a quartet at 4.245, characteristic 

of an ethyl ester together with a singlet at 3.815 for the methylene protons shifted 

downfield by the ester group. There were doublets at 7.18 and 7.475 (for both J =

8.3 Hz) which were assigned to H-4 and H-5 respectively. Microanalysis459 
corroborated the structure as ethyl 2,6-dichloro-3-pyridylacetate N-oxide 217, 

isolated in 64% yield.
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Cl

CH2C02H

Cl

o -
216

EtOH / H2S04

Cl

CH2C02Et

Cl

O "
217

Equation 89

Acid catalysed esterification usually takes place in the presence of excess alcohol 

via an acid catalysed nucleophilic substitution mechanism [scheme 72].

Ethyl 2,6-dichloro-3-pyridylacetate N-oxide 217 was added to phosphorus 

oxychloride and the mixture refluxed for three hours, and after work-up a pink oil 

was obtained (section 5.17). The infrared spectrum showed an absorbance for an 

alkyl ester group (1732cm'1). The pmr spectrum revealed a three proton triplet at 

1.275, a 2 proton singlet at 3.935 and a two proton quartet at 4.205: the expected 

pattern for the acetate moiety. A singlet at 7.385 was assigned to H-5. The 

compound formed in 82% yield was assigned the structure ethyl 2,4,6-trichloro-3- 

pyridylacetate 218 based on these data [equation 90]. This oil was unstable and 

decomposed rapidly on storing and so no elemental analysis was obtained.

108



Discussion

O "
217

POCI3 / A

Cl

CH2C02Et

Cl

Equation 90

Having previously prepared ethyl 4-chloro-3-pyridylacetate N-oxide 214 [figure 

12], it was again decided to attempt further chlorination of this compound.

Cl

I
0 “

214

Figure 12

As the only available sites for chlorination are those a- to the nitrogen atom, any 

reaction should lead to the formation of two products. Ethyl 4-chloro-3- 

pyridylacetate N-oxide 214 was added to phosphorus oxychloride and the mixture 

refluxed for three hours. The solvent was removed in vacuo and the residue 

poured onto ice, made basic with dilute ammonia solution then extracted with ethyl 

acetate (section 5.18). Examination by tic surprisingly indicated only one product 

had been formed. The solution was concentrated and the resulting oil distilled 

under reduced pressure to give a colourless oil. The infrared spectrum confirmed 

the presence of an ester group (1733cm'1) while the pmr spectrum showed what 

appeared to be the overlaid spectra of two similar compounds. There were two 

sets of signals for an ethyl ester group and two signals for methylene groups. The 

patterns for the ring protons suggested that there was as a mixture a 2,4,5-
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trisubstituted pyridine and a 2,3,4-trisubstituted pyridine, therefore they were 

tentatively assigned the structures ethyl 2,4-dichloro-5-pyridylacetate 219 and 

ethyl 2,4-dichloro-3-pyridylacetate 220. N-oxidation was again employed to effect 

separation. The pyridine mixture was dissolved in chloroform and m-CPBA and a 

little concentrated sulphuric acid added. The reaction was monitored by tic and 

continued for four days until there appeared to be no further reaction. Sodium 

metabisulphite, followed by potassium carbonate were added and the resulting 

solids removed at the pump. The solution was concentrated in vacuo to give a 

pale yellow oil which was separated by column chromatography (section 5.19). 

Elution with ethyl acetate gave first, after recrystallisation from ethyl acetate, white 

needles. The infrared spectrum showed the expected absorbance at 1732cm'1 

for an ester group and at 1273cm'1 for an N-oxide function. The pmr spectrum 

showed a triplet at 1.286 and a quartet at 4.186 characteristic of an ethyl ester and 

there was the expected singlet at 3.656 for a methylene group adjacent to the 

ester. Singlets at 7.526 and 8.286 were assigned to H-3 and H-6 respectively. 

Elemental analysis459 verified the structure as ethyl 2,4-dichloro-5-pyridylacetate 

(221, 23%). Further elution gave as a colourless crystalline solid after 

recrystallisation from ethyl acetate. The infrared spectrum showed the expected 

absorbances for an ester (1733cm'1) and an N-oxide (1282cm'1). The pmr 

spectrum showed a triplet at 1.356 and a quartet at 4.306 characteristic of an ethyl 

ester and there was the expected singlet at 4.096 for a methylene group adjacent 

to the ester. Two sets of doublets were observed at 7.376 and 8.356 (for both 

J=7.2Hz), which were assigned to the protons H-5 and H-6 respectively.
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Elemental analysis459 supported the structure as ethyl 2,4-dichloro-3- 

pyridylacetate N-oxide (222, 26%) [equation 91].

CH2C02Et CH2C02Et ^ / C H 2C02Et CH2C02Et

222

Equation 91
In order to regenerate ethyl 2,4-dichloro-5-pyridylacetate 219, deoxygenation with 

phosphorus tribromide was employed, to give after distillation, a colourless oil 

(section 5.20). The infrared spectrum confirmed the presence of an ester group 

(1737cm'1), aliphatic (2932, 2982cm'1) and aromatic (3087cm'1) C-H stretching, 

while the pmr spectrum showed characteristic peak patterns for a 2,4,5- 

trisubstituted pyridine, two singlets at 7.565 and 8.365 for protons H-3 and H-6 
respectively. A triplet at 1.245 and a quartet at 4.105 characteristic of an ethyl 

ester were also present and there was the expected singlet at 3.845 for methylene 

protons adjacent to an ester group. Corroboration of the structure as ethyl 2,4- 

dichloro-5-pyridylacetate 219, obtained in 41% yield, was from the elemental 

analysis459 [equation 92].

Cl

CH2C02Et
Cl

PBr,

C I ^ ^ N *
0 “

221

CH2C02Et

Equation 92

Ethyl 2,4-dichloro-3-pyridylacetate N-oxide 222 was deoxygenated with 

phosphorus tribromide in a similar manner and a colourless oil was obtained after
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distillation (section 5.21). The infrared spectrum showed the expected absorbance 

at 1715cm'1 for an ester group and aliphatic (2936 and 2982cm'1) and aromatic 

(3077cm'1) C-H stretching. The pmr spectrum contained a triplet at 1.228 and a 

quartet at 4.208 characteristic of an ethyl ester and there was the expected singlet 

at 4.008 for a methylene function adjacent to an ester group. Two sets of doublets 

were observed at 7.468 and 8.258 (for both J=4.8Hz), which were assigned to the 

protons H-5 and H-6 respectively. Elemental analysis459 supported the structure 

as ethyl 2,4-dichloro-3-pyridylacetate (220, 77%) [equation 93].

Overall the preparation of pyridine N-oxides and chloropyridines was easily 

achieved in moderate to good yields. The use of m-CPBA in the presence of 

sulphuric acid appears to have been a strong enough reagent to N-oxidise the 

mixture of ethyl 2,4-dichloro-5-pyridylacetate 219 and ethyl 2,4-dichloro-3- 

pyridylacetate 220. Although both have chlorine atoms a and y to the nitrogen in 

the ring the combined inductive effect does not seem to reduce the basicity 

enough to prevent N-oxidation occuring under these conditions. The reduced 

basicity of ethyl 2,6-dichloro-3-pyridylacetate 215, due to electronic effects of the 

two a- chlorine atoms requires the use of the much stronger oxidising agent 

pertrifluoroacetic acid to effect N-oxidation. With these chloropyridines in hand, 

the next stage in the project was their convertion to thienopyridines.

Cl

0 “

222
220

Equation 93
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2.4 Preparation of thienopyridines

2.4.1 Thieno[2,3-b]pyridines

See appendix 1 for a summary of the reactions described in this section.

3-Ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 was prepared using the 

method of Wilson, who reported260,261 a yield of 36%. Ethyl-2-chloro-3- 

pyridylacetate 74 and carbon disulphide were dissolved in DMSO under dry 

nitrogen and sodium hydride added in portions with constant stirring. The reaction 

was heated for 1.5 hours, cooled and methyl iodide added. After a further 1 hour 

at room temperature the mixture was poured onto ice and extracted with ethyl 

acetate. The solvent was removed in vacuo and the resulting solid recrystallised 

from ethyl acetate to give pale yellow crystals of 108 in 40% yield [equation 94] 

(section 5.22).

Equation 94

This reaction proceeds by base catalysed abstraction of the methylene protons 

and subsequent formation, with carbon disulphide, of a ketenedithioacetal dianion. 

Heating displaces the chlorine with one thiolate anion to form the bicycle, while the 

other anion is alkylated by methyl iodide [scheme 73].

113



Discussion

Scheme 73

It was of interest to see whether ethyl 2-chloro-3-pyridylacetate N-oxide 213 would 

undergo the same reaction to form the corresponding thienopyridine N-oxide and if 

the N-oxide group had any influence on the yield of the reaction. Hence, ethyl 2- 

chloro-3-pyridylacetate N-oxide 213 was similarly treated to produce pale yellow 

needles after recrystallisation from ethyl acetate (section 5.23). The infrared 

spectrum of this compound showed the expected absorbances for an ester 

(1675cm'1) and for an N-oxide group (1240cm'1). The pmr spectrum showed a 

triplet at 1.488 and a quartet at 4.468 characteristic of an ethyl ester and there was 

the expected singlet at 2.708 for the thiomethyl protons. A doublet of doublets at 

7.368 (J= 8.0 and 6.3Hz) for the H-4 proton was observed together with a multiplet 

at 8.228, which integrated for two protons and was assigned to the H-5 and H-6
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protons. This data together with the elemental analysis458 and mass spectrometry 

corroborated the structure as 3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 

N-oxide261 (223, 65%) [equation 95].

CH2C02Et

Cl

o -
213 223

Equation 95

Conversion of 223 to 3-ethyloxycarbonyl-2-methyl thiothieno[2,3-b]pyridine 108 in 

72% yield was achieved with phosphorus tribromide (section 5.24).

The route from ethyl 2-chloro-3-pyridylacetate N-oxide 213 to ethyl 2-chloro-3- 

pyridylacetate 74 and hence to 3-ethyloxycarbonyl-2-methylthiothieno[2,3- 

b]pyridine 108 has an overall yield of 33% [scheme 74]. This route is somewhat 

cumbersome, involving the N-oxidation and subsequent deoxygenation of 72 and 

74 to effect their separation before conversion of 74 to 108. If ethyl 2-chloro-3- 

pyridylacetate N-oxide 213 however is converted to 3-ethyloxycarbonyl-2- 

methylthiothieno[2,3-b]pyridine N-oxide 223 prior to deoxygenation to 108, an 

overall yield of 47% is obtained. Additionally this conversion appeared to produce 

fewer by-products in the final step and those formed were more soluble in ethyl 

acetate than the desired compound allowing purification by recrystallisation. This 

route261 was found to be the better of the two in terms of yield and overall 

simplicity.
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CH2C02Et

Cl

1. DMSO/CS2
2. NaH
3. Mel

CT
213

1. dmso/c s2
2. NaH
3. Mel

Scheme 74

When ethyl 2,6-dichloro-3-pyridylacetate 215 was reacted with carbon disulphide 

and sodium hydride followed by quenching with methyl iodide, a white solid was 

obtained, after recrystallisation from ethyl acetate (section 5.25). The pmr 

spectrum had the expected pattern for an ethyl ester (a triplet at 1.415 and a 

quartet at 4.405), and a singlet at 2.635 for the thiomethyl protons. Doublets at 

7.205 and at 8.385, J=8.0Hz for both, were the expected pattern for a 2,3,6- 

trisubstituted pyridine. The infrared spectrum indicated the presence of an ester 

group (1670cm'1). Elemental analysis458 and the mass spectrometry supported 

the structure of the product as 6-chloro-3-ethyloxycarbonyl-2-methylthiothieno[2,3- 

b]pyridine 224, obtained in 13% yield [equation 96].

Cl

215

CHXCLEt 1- DMSO/CS2 2 2 2. NaH
3. Mel 

Cl

Equation 96
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Reaction of ethyl 2,4,6-trichloro-3-pyridylacetate 218 with carbon disulphide and 

sodium hydride followed by alkylation with methyl iodide led to the formation of a 

mixture of two products, as shown by tic. This mixture was separated by column 

chromatography on silica gel using petroleum ether / diethyl ether as eluant 

(section 5.26). First separated was a white crystalline solid. The pmr spectrum 

showed a three-proton triplet at 1.435 and a two-proton quartet at 4.455, indicative 

of an ethyl ester group and the expected three-proton singlet at 2.655 for a 

thiomethyl group. There was also a one-proton singlet at 7.385 for the lone 

pyridine hydrogen. The infrared spectrum showed an absorbance for an ester at 

1694cm'1. The more polar compound, obtained as colourless crystals, showed an 

absorbance for an ester group at 1726cm'1 in the infrared spectrum. The pmr 

spectrum contained an ethyl ester group: a triplet at 1.455 and a quartet at 4.485. 

There was also a singlet at 2.625 due to the thiomethyl group and a singlet at 

7.615 for the pyridine hydrogen. As the spectroscopic data for these two 

compounds were very similar it was not considered possible to differentiate 

between them. Microanalysis would not have provided any further clarification as 

the molecular formulae of the compounds were the same and hence was not 

sought. It is postulated, based on the available data, that the structures of these 

products were 4,6-dichloro-3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 

225 (38% yield) and 4,6-dichloro-3-ethyloxycarbonyl-2-methylthiothieno[3,2-

c]pyridine 226 (58% yield) [equation 97]. This reaction was carried out with the 

assistance of Claire Milne, as part of an Honours degree project460 under my 

supervision.
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Cl

CH2C02Et

Cl

1. DMSO/CS2
2. NaH
3. Mel

Equation 97

+

2.4.2 Thieno[3,2-c]pyridines

See appendix 1 for a summary of the reactions described in this section.

The preparation and reactions of 3-ethyloxycarbonyl-2-methylthiothieno[2,3- 

b]pyridine 108 was the main aim of this research programme. However, ethyl 4- 

chloro-3-pyridylacetate 76 and ethyl 4-chloro-3-pyridylacetate N-oxide 214 [figure 

13] were isolated as byproducts of the preparative route to ethyl 2-chloro-3- 

pyridylacetate 74. This presented an opportunity to prepare some novel 

thieno[3,2-c]pyridines.

Cl
i ^ C H 2C02Et X

V
76 CD-

214

CH2C02Et

Figure 13
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Thieno[3,2-c]pyridines, as isosters of isoquinoline, have been prepared by 

adaptations of many of the common synthetic routes to isquinolines. The Bischler- 

Napieralski461-465 synthesis has been used on 2-thienylethylamides. Reaction with 

phosphoryl chloride and phosphorus pentoxide causes cyclisation usually to a 6,7- 

dihydrothieno[3,2-c]pyridine. In the case461 of N-acyl-p-2-thienylethylamine 227 

the intermediate 6,7-dihydro derivative is oxidised to 4-methylthieno[3,2-c]pyridine 

228 [scheme 75].

Variations on the Bischler-Napieralski reaction are also reported. The Pictet- 

Spengler synthesis466 is used to condense thiophene 2-aldehyde 229 with 

nitromethane. The co-nitrovinylthiophene formed is reduced then condensed with 

formaldehyde to give an imine which cyclises in acid to 230. Oxidation with 

potassium ferricyanide gave 231 [scheme 76].

N Me 
228

Scheme 75
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229

CH3N 0 2
CHO

231

ch=chno2
1. LiAIH4
2. HCHO

Scheme 76

The Pictet-Gams modification462 has been used on 5-methoxythiophene 

derivatives. Cyclisation in this case was accompanied by demethylation of the 

methoxy group.

A modification467 of the Pomeranz-Fritch reaction was employed to transform 

thiophene 3-aldehyde 232 via the imine 233 to the tetrahydrothieno[3,2-c]pyridine 

234. Treatment first by tosyl chloride then acid gave 231 in 54% yield [scheme 

77].
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In a variation,468 3-acetylthiophene 235 was converted in several steps to the 

amide 236. Heating with hydrobromic and acetic acids gave 6-hydroxy-4- 

methylthieno[3,2-c]pyridine 237 [scheme 78].

Me Me

Scheme 78

Thieno[3,2-c]pyridines have also been formed from thiophenevinyl isocyanates469 
and isothiocyanates 470 treatment471 of pyrillium salts with ethanolic ammonia, 2(2- 

chloroethyl)thiophene and nitrile/tin IV complexes 472 thermolysis of azides 473 the 

Beckman rearrangement474 and acid induced cyclisation475-477 of 2[(3- 

methylamino)thienyl]propanal diacetals.

Pyridinethioacetic acid derivatives have been prepared478 by nucleophilic 

displacement of a chlorine in the 4- position of 238 by ethyl mercaptoacetate 

followed by a Dieckmann type condensation of the intermediate to form thieno[3,2- 

c]pyridine 239 [scheme 79].

Scheme 79

Other reactions involve the high temperature catalytic (Cu/Cr) cyclisation by PPA 

of pyridinethioacetic acids479-481 and cyclisation404 of a 3-phenylethynylpyridine
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with sodium hydrosulphide. Thieno[3,2-c]pyridines have also been prepared by 

methodology developed in this laboratory260,261 as described previously (sections

1.2.2.5 and 2.4.1).

Ethyl 4-chloro-3-pyridylacetate 76 was found to be relatively unstable and 

decomposed rapidly in the atmosphere (see section 2.1) and hence had to be 

reacted timeously. Conversion260,261 to 3-ethyloxycarbonyl-2-methylthiothieno[3,2- 

c]pyridine 240, however, was only achieved in 37% yield [equation 99] (section

5.27).

Cl

76

CH2C02Et

SMe

C02Et

Equation 99

So that full use could be made of all the chloro-3-pyridylacetates prepared, ethyl 4- 

chloro-3-pyridylacetate N-oxide 214 was reacted with carbon disulphide in the 

presence of base then cyclised and alkylated with methyl iodide to give colourless 

needles after recrystallisation from ethyl acetate (section 5.28). Examination of 

the infrared spectrum showed the expected absorbances for an ester (1681cm'1) 

and for an N-oxide (1221 cm'1). The pmr spectrum showed a triplet at 1.388 and a 

quartet at 4.388 characteristic of an ethyl ester and there was the expected singlet 

at 2.718 for the thiomethyl protons. Three doublets of doublets at 8.028 (J= 6.9 

and 0.66Hz), 8.128 (J=6.9 and 1.8Hz) and 8.888 (J=1.8 and 0.66Hz) were 

assigned to the protons H-7, H-6 and H-4 respectively. The structure 3-
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ethyloxycarbonyl-2-methylthiothieno[3,2-c]pyridine N-oxide261 (241, 79%) was 

supported459 by elemental analysis [equation 100].

SMe
Cl

■ 2 v ^ 2 i

A-
214

C02Et

241

Equation 100

While measuring the melting point of this product 241, it was noticed that there 

was some evolution of gas as the compound melted (221-224°C). A larger sample 

was therefore heated in a Woods Metal bath to its melting point until gas evolution 

could no longer be observed. Tic indicated that the compound was no longer 3- 

ethyloxycarbonyl-2-methylthiothieno[3,2-c]pyridine N-oxide 241. The infrared 

spectrum of this substance was found to be identical to that of 3-ethyloxycarbonyl-

2-methylthiothieno[3,2-c]pyridine 240 showing that deoxygenation had taken 

place. It is known30,482,483 that for some heterocyclic N-oxides, varying degrees of 

deoxygenation takes place at elevated temperatures (see section 1.1.2.1). This 

observation was further tested by heating 3-ethyloxycarbonyl-2- 

methylthiothieno[2,3-b]pyridine N-oxide 223 to it’s melting point. While no gas 

evolution was evident and the melting point took place over approximately one 

degree Celsius, comparison with pure samples of 3-ethyloxycarbonyl-2- 

methylthiothieno[2,3-b]pyridine N-oxide 223 and 3-ethyloxycarbonyl-2- 

methylthiothieno[2,3-b]pyridine 108 by tic showed that some thermally induced 

deoxygenation had in fact taken place. The gas evolved was therefore presumed 

to be oxygen. Although this was not novel for N-oxides, it was however, quite an
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interesting phenomenon. No mention could be found in the literature for this 

occurring in the thienopyridine series, and as no other thienopyridines prepared in 

this work, exhibited this behaviour, no further attempts were made to examine 

these transformations.

3-Ethyloxycarbonyl-2-methylthiothieno[3,2-c]pyridine N-oxide 241 was 

successfully deoxygenated with phosphorus tribromide to 3-ethyloxycarbonyl-2- 

methylthiothieno[3,2-c]pyridine260,261 240 in 83% yield [equation 101] (section 

5.29). This was confirmed by comparing260,261 the melting point and infrared 

spectrum with the literature.

SMe SMe

Equation 101

In an attempt to produce more novel thieno[3,2-c]pyridines, ethyl 4-chloro-3- 

pyridylacetate N-oxide 214 was treated with carbon disulphide and sodium hydride 

then alkylated with benzyl bromide [equation 102] (section 5.30). 3-

Ethyloxycarbonyl-2-benzylthiothieno[3,2-c]pyridine N-oxide 242, produced in 79% 

yield, was identified from spectroscopic data. The infrared spectrum showed the 

expected absorbances for an ester (1690cm'1), an N-oxide (1223cm'1) and 

aliphatic (2978cm'1) and aromatic (3131 cm'1) C-H stretching. The pmr spectrum 

showed a triplet at 1.405 and a quartet at 4.345 characteristic of an ethyl ester and 

there was the expected singlet at 4.365 for the methylene protons of the benzyl
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group. Three signals at 7.745 (J= 7.2Hz), 8.026 (J=7.2 and 2.4Hz) and 8.945 

(J=2.4Hz) were assigned to the protons H-7, H-6 and H-4 respectively. A multiplet 

at 7.345, which integrated for 5 protons, was assigned to the phenyl ring. The 

proposed structure was supported459 by elemental analysis.

Cl
1. DMSO/CS.

2 2 2. NaH

N + 3. PhCH2Br N +

SCH2Ph

C02Et

Io -
214

I
O -

242

Equation 102

Deoxygenation of 3-ethyloxycarbonyl-2-benzylthiothieno[3,2-c]pyridine N-oxide 

242 with phosphorus tribromide, (section 5.31), gave 3-ethyloxycarbonyl-2- 

benzylthiothieno[3,2-c]pyridine 243 as expected, although in a disappointingly low 

yield of 42% [equation 103].

SCH2Ph

CQ2Et

SCH2Ph

C02Et

242

Equation 103

Analysis of the pmr spectrum revealed: a triplet at 1.445 and a quartet at 4.405 for 

the ethyl ester group, a singlet at 4.245 for the methylene protons of the benzyl 

group and a five-proton multiplet centred at 7.266 characteristic of a benzene ring. 

The presence of a 3,4-disubstituted pyridine was concluded from the chemical
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shifts and coupling constants of the signals at 7.465, 8.305 and 9.445 and 

assigned to H-7, H-6 and H-4 respectively. The infrared spectrum had the 

expected absorbances for aromatic (3070, 3026cm'1) and aliphatic (2972, 2934 

and 2902cm'1) C-H stretching, an ester (1683cm'1). Microanalysis459 supported 

the structure.

2.5 Preparation of ketenedithioacetals and thiophenes

See appendix 1 for a summary of the reactions described in this section.

Over a number of years, Shell and other companies have showed interest in novel 

heterocyclic compounds as potential agrochemicals and pharmaceuticals, and 

many synthesised260 at the University of Abertay Dundee have been evaluated for 

bioactivity including ketenedithioacetals prepared from substituted pyridines. Ethyl

2-chloro-5-pyridylacetate 72 was a major by-product in the preparation ethyl 2- 

chloro-3-pyridylacetate 74 (section 2.3), and was therefore readily available. The 

related compound 2-chloro-5-cyanomethyl pyridine 73 was also to hand arising 

from work260 previously carried out in this laboratory [figure 14]. 73 was used 

initially in this reaction so that experience could be gained in the synthetic 

methodology used to prepare thienopyridines.

72 73

Figure 14
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The chlorine atom is not a  to the active methylene group in these molecules, so no 

cyclisation can take place when reacted with CS2 and base, hence they should 

lead to novel ketene dithioacetals.

It is known484-494 that polyfunctionalised ketene dithioacetals are available from 

reaction of carbon disulphide with appropriately functionalised carbanionic species 

followed by alkylation of the sulphur anions [scheme 80].

EWGx CS2/base EWG
/CH2 --------------

EWG EWG

2 RX EWG

EWG

SR

SR

EWG = COR, C02R, CN, N02, halogen, OR, SR, S(0)R, S(0)2R 
X = halogen 
R = alkyl, aryl

Scheme 80

Ketene dimethyldithioacetals have been prepared490 from 2-, 3-, and 4- 

cyanomethylpyridines. For example 3-cyanomethylpyridine 244 was added to a 

suspension of sodium hydride in THF at 0 °C, followed by addition of carbon 

disulphide then methyl iodide to produce cyano(3-pyridyl)ketene dimethyl 

dithioacetal 245 [equation 104].

Equation 104

The preparation of some ketene dithioacetals was attempted using available 

alkyating agents containing an active methylene group. Hence, 2-chloro-5- 

cyanomethylpyridine 73 and carbon disulphide were dissolved in DMSO under dry
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nitrogen and sodium hydride added in portions with constant stirring. The reaction 

was stirred for 1.5 hours and ethyl chloroacetate added. After a further one hour 

stirring, the mixture was poured onto ice and extracted with ethyl acetate. Tic 

indicated that there was one major product and a small but significant amount of a 

second less polar compound but no starting material 73. The solution was then 

dried and the solvent removed in vacuo and the resulting solid chromatographed 

on silica gel using petroleum ether / ethyl acetate as eluant (section 5.32). 

Separated first was a white crystalline solid. The infrared spectrum showed the 

presence of a primary amine (3447 and 3343 cm'1) and two ester groups (1724, 

1661cm'1). The pmr spectrum showed two triplets, 1.17 and 1.265, which 

integrated for three protons each and two quartets at 4.02 and 4.185, which 

integrated for two protons each, indicating two ethyl ester groups in the molecule. 

A singlet was found at 3.465, which integrated for two protons, typical of a 

methylene group. The expected pattern for a 2,5-disubstituted pyridine was 

observed, a doublet at 7.305 (J = 8.4 Hz), a doublet of doublets at 7.645 (J = 8.4 

and 2.4 Hz) and a doublet at 8.265 (J = 2.4 Hz), all integrating for one proton each, 

for H-3, H-4 and H-6 respectively. There was also a broad singlet at 5.365 that 

integrated for two protons and was most likely a primary amino group. The 

structure was therefore considered to be 2-chloro-5-(3-amino-2-

ethyloxycarbonyl-5-ethyloxycarbonylmethylthio-4-thienyl) pyridine 246. This was 

supported by elemental analysis458 and mass spectrometry (401).

Eluted second was a pale yellow oil. The infrared spectrum showed the molecule 

to contain a nitrile group (2209cm'1) and an ester (1736cm'1). The pmr spectrum
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revealed three-proton triplets at 1.285 and 1.325 and two-proton quartets at 4.165 

and 4.205 indicating two ethyl ester groups. A pair of two-proton singlets were 

found at 3.725 and 3.805, which were assigned the methylene protons of the ethyl 

thioacetate groups. A doublet at 7.335 (J = 8.4 Hz), a doublet of doublets at 

7.855 (J = 8.4 and 2.4 Hz) and a doublet at 8.525 (J = 2.4 Hz), all integrated for 

one proton each, were assigned to H-3, H-4 and H-6 of the pyridine ring 

respectively. This compound was assigned the structure 2-chloro-5-(1-cyano-2,2- 

di(ethyloxycarbonylmethylthio)-1-vinyl)pyridine (247, 58%), which was

supported458 by microanalysis [equation 105].

CN

Equation 105

The mechanism for the formation of 247 is similar to that of the thienopyridine 

series. It proceeds by base catalysed abstraction of the methylene protons and 

subsequent formation, with carbon disulphide, of a ketenedithioacetal dianion. 

These anions are then alkylated with ethyl chloroacetate [scheme 81].
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CN

Cl

S

CI-CH2C02Et t
B-

H CN

CN
CN

Scheme 81

The minor product formed in this reaction appears to arise from the base catalysed 

cyclisation of 247. It is well known484,486,488,489,492,494 that polyfunctional ketene 

dithioacetals containing an active methylene on a sulphur will cyclise onto a nitrile 

or ester group. For example488 ketenedithioacetal 248 treated with sodium 

ethoxide affords thiophene 249 [equation 106].

PhS02 SCH2C02Et

NC SCH2C02Et 
248

NaOEt
H2N S02Ph

Et02C
'/ \'

S
249

SCH2C02Et

Equation 106

130



Discussion

The mechanism for the preparation of 2-chloro-5-(3-amino-2-ethyloxycarbonyl-5- 

ethyloxycarbonylmethylthio-4-thienyl)pyridine 246 involves firstly the sequential 

abstraction of the active methylene protons of 247 followed by nucleophilic attack 

on the nitrile carbon to form the thiophene ring. The nitrogen anion picks up two 

protons to form the amine [scheme 82].

Scheme 82

To further investigate these reactions, ethyl 2-chloro-5-pyridylacetate 72, 

(available from the chlorination of ethyl 3-pyridylacetate N-oxide 70; section 2.3),
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and carbon disulphide were dissolved in DMSO under dry nitrogen and sodium 

hydride added in portions with constant stirring. The reaction was stirred for 1.5 

hours then quenched with ethyl chloroacetate and stirred for a further one hour. 

The mixture was poured onto ice and extracted with ethyl acetate. Tic indicated 

that the reaction mixture contained one major product and small amounts of 

impurities. Hence the solution was dried and the solvent removed in vacuo and 

the resulting oil was collected after distillation at reduced pressure (section 5.33). 

The infrared spectrum of this compound showed an ester group (1736cm*1) to be 

present. The pmr spectrum contained a three-proton triplet at 1.245 and a six- 

proton triplet at 1.285. These, together with a four-proton quartet at 4.085 and a 

two-proton quartet at 4.145, (J = 7.2 Hz for all), signified three ethyl ester groups, 

two almost identical and in a different environment from the third. Two 2-proton 

singlets were observed at 3.56 and 3.685 and assigned to the methylene protons 

of ethyl thioacetate groups. A doublet at 7.285 (J = 8.4 Hz), a doublet of doublets 

at 7.725 (J = 8.4 and 2.4 Hz) and a doublet at 8.345 (J = 2.4 Hz), integrating for 1 

proton each, were assigned to H-3, H-4 and H-6 respectively. The compound was 

therefore 2-chloro-5-(1-ethyloxy carbonyl-2,2-di(ethyloxycarbonylmethylthio)-1- 

vinyl)pyridine (250, 43%) [equation 107]. This structure was supported by 

microanalysis458 and mass spectrometry.

Cl

CS2 / NaH 

CICH2C02Et

Equation 107
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Further reaction of 2-chloro-5-(1-ethyloxycarbonyl-2,2-di(ethyloxycarbonyl- 

methylthio)-1-vinyl)pyridine 250 with base was attempted. The ketenedithioacetal 

was dissolved in ethanol, sodium ethoxide added, and stirred at room temperature 

for 24 hours. The mixture was then flooded with water and extracted with ethyl 

acetate. The extracts were dried and the solvent removed in vacuo to give a pale 

yellow solid after recrystallisation from diethyl ether (section 5.34). The infrared 

spectrum revealed the presence of two ester groups (1748, 1666cm'1). The pmr 

spectrum contained two triplets (1.20 and 1.325), both integrated for three protons 

and two quartets (4.02 and 4.245), that integrated for two protons each, indicating 

two discrete ethyl ester groups. A methylene group was also in evidence as a 

singlet at 3.485. The expected pattern for a 2,5-disubstituted pyridine was also 

found: a doublet at 7.225 (J = 8.4 Hz), a doublet of doublets at 7.665 (J = 8.4 and

2.4 Hz) and a doublet at 8.345 (J = 2.4 Hz), for H-3, H-4 and H-6 respectively. 

There was also a broad singlet at 9.705, that integrated for one proton, for a 

hydroxy group. The position of this signal is typical of salicylate type ester, where 

hydrogen bonding is occurring between the hydroxy hydrogen and the ester 

carbonyl oxygen. The compound was therefore assigned the structure 2-chloro-5- 

(2-ethyloxycarbonyl-5-ethyloxycarbonyl methylthio-3-hydroxy-4-thienyl)pyridine 

251, obtained in 33% yield [equation 108]. Elemental analysis459 supported this 

assignment.

133



Discussion

NaOEt

EtOH

Equation 108
This reaction sequence was repeated using chloroacetonitrile as the alkylating 

agent. Ethyl 2-chloro-5-pyridylacetate 72 and carbon disulphide were dissolved in 

DMSO under dry nitrogen and sodium hydride added in portions with constant 

stirring. The reaction was allowed to stir for 1.5 hours then chloroacetonitrile 

added and stirring continued for a further one hour. The mixture was poured onto 

ice and extracted with ethyl acetate. Tic indicated the presence of only one 

product, so the solution was dried and the solvent removed in vacuo to give white 

needles after recrystallisation from ethanol (section 5.35). The infrared spectrum 

showed that the molecule contained a nitrile function (2246cm'1) and an ester 

group (1720cm'1). The pmr spectrum revealed a three-proton triplet at 1.255 and a 

two-proton quartet at 4.245, (J = 7.2 Hz for both), typical of an ethyl ester group. 

Two singlets at 3.565 and 3.685, each integrating for two protons, were assigned 

to the methylene hydrogens of the acetonitrile groups. A doublet at 7.245 (J = 8.4 

Hz), a doublet of doublets at 7.585 (J = 8.4 and 2.4 Hz) and a doublet at 8.24 (J =

2.4 Hz), each integrating for one proton, were assigned to H-3, H-4 and H-6 of the 

pyridine ring respectively. Elemental analysis459 corroborated the structure as 2- 

chloro-5-(1 -ethyloxycarbonyl-2,2-di(cyanomethylthio)-1 -vinyl)pyridine 252,

obtained in 57%  yield [equation 109].
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Equation 109

To promote cyclisation to a thiophene, 252 was dissolved in ethanol and sodium 

ethoxide added with stirring. The reaction was stirred for 24 hours when tic 

indicated no starting material remained. The mixture was then poured onto ice 

and the resulting solid collected by filtration, dried and recrystallised from ethyl 

acetate to give pale yellow needles (section 5.36). The infrared spectrum showed 

a nitrile group (2211cm'1) and a hydroxy group (3452cm'1) present in the molecule. 

The pmr spectrum contained a two-proton singlet at 4.045 which was assigned to 

the methylene hydrogens of an acetonitrile group and the expected pattern for a 

2,5-disubstituted pyridine i.e. a doublet at 7.585 (J = 8.4 Hz), a doublet of doublets 

at 7.865 (J = 8.4 and 2.4 Hz) and a doublet at 8.425 (J = 2.4 Hz), each integrating 

for one proton, for H-3, H-4 and H-6 respectively. The compound was therefore 

named 2-chloro-5-(2-cyano-5-cyanomethylthio-3-hydroxy-4-thienyl)pyridine (253, 

46%). Elemental analysis459 supported this structure [equation 110].

Equation 110

Ethyl 2-chloro-5-cyanomethylpyridine 73 was dissolved, together with carbon 

disulphide, in DMSO under dry nitrogen and sodium hydride added in portions with
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stirring. The mixture was stirred for 1.5 hours and then benzylbromide was added. 

After a further one hour stirring the mixture was poured onto ice and extracted with 

ethyl acetate. Tic indicated the presence of one major product, so the solution 

was dried and the solvent removed in vacuo to give a white crystalline solid after 

recrystallisation from ethyl acetate / petroleum ether mixture (section 5.37). The 

infrared spectrum showed the molecule to contain a nitrile group (2202cm'1). The 

pmr spectrum showed two singlets at 3.92 and 4.206 due to the methylene 

hydrogens of the benzyl groups. A multiplet was observed at 7.246 that integrated 

for 12 protons and was considered to be for two phenyl groups and H-3 and H-4 of 

the pyridine. A one-proton doublet at 7.966 was assigned to H-6 of the pyridine. 

From this spectroscopic data the compound was given the structure 2-chloro-5-(1- 

cyano-2,2-di(benzylthio)-1-vinyl)pyridine (254, 54%) [equation 111]. Microanalysis 

was in agreement459 with the proposed molecular formula.

Cl

CH2CN
NaH / CS2 

BrCH2Ph

CN

Equation 111

To effect cyclisation of 2-chloro-5-(1-cyano-2,2-di(benzylthio)-1-vinyl)pyridine 254 

to a thiophene, it was dissolved in ethanol and sodium ethoxide added. After 24 

hours tic indicated that there was only starting material in the reaction mixture. So 

the mixture was poured onto ice and the resulting solid collected by filtration 

(section 5.38). It was positively identified as unreacted 254 (tic, ir). It would 

appear that the benzene rings in the molecule are insufficiently electron

136



Discussion

withdrawing to allow abstraction of the adjacent methylene protons and hence the 

cyclisation could not proceed.

Ethyl 2-chloro-5-pyridylacetate 72 was reacted with carbon disulphide in the 

presence of base and alkylated with 1,3-dibromopropane (section 5.39). The 

mixture was poured onto ice and extracted with ethyl acetate. The solution was 

dried and the solvent removed in vacuo to give pale yellow needles after 

recrystallisation from diethyl ether / petroleum ether [equation 112]. The infrared 

spectrum revealed the presence of an ester group (1684cm'1). Furthermore, the 

pmr spectrum showed the expected patterns for an ethyl ester and a 2,5- 

disubstituted pyridine. Also observed was a two-proton triplet at 2.165 and a four- 

proton triplet at 3.905 (J = 6.0 Hz for both). These were assigned to a propyl 

chain, linking the sulphur atoms of a dithiane, hence explaining the chemical shift 

of the signal at 3.905. The structure assigned therefore, was (2’-[3-(5- 

chloropyridyl)]-2’-ethyloxycarbonyl)-T-vinyl-1,3-dithiane (255, 53%), which was 

verified by elemental analysis458 and mass spectrometry.

.CH2C02Et

Cl N
72

The preparation of ketene dithioacetals and highly substituted thiophenes served 

two purposes: they provided experience for the later preparation of thienopyridines 

and produced new compounds for evaluation as potential agrochemicals. Several
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compounds were tested by Shell but no bioactivity was observed. Use of a wider 

range of functionalised alkylating agents could allow entry into novel polycyclic 

compounds but no further attempt was made to expand upon this line of work in 

this programme.

2.6 Reactions of thieno[2,3-b]pyridines

See appendix 1 for a summary of the reactions described in this section.

In an attempt to prepare novel substituted thieno[2,3-b]pyridines and possibly 

tricyclic compounds, nucleophilic substitution reactions at C-2 of 3- 

ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 were investigated. 

Previously reported260 attempts to replace the thiomethyl group were largely 

unsuccessful and it was suggested260 that reactions with nitrogen nucleophiles 

would be more efficient if the thiomethyl were converted to its sulphone derivative.

Reaction of 3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 with excess 

A77-CPBA was therefore employed to try and effect this conversion [equation 113]. 

After workup, tic indicated the product was a mixture of two components (section 

5.40). Column chromatography, using ethyl acetate as eluent, gave as a white 

crystalline solid. The infrared spectrum indicated the presence of an ester group 

(1724cm'1). The pmr spectrum showed a triplet at 1.495 and a quartet at 4.485 

expected for an ethyl ester and there was a singlet at 3.515 characteristic of the 

methyl protons of the sulphone. A doublet of doublets at 7.365 (J= 8.0 and 4.0Hz)
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for the H-5 proton was observed together with a doublet of doublets at 8.406 

(J=8.0 and 2.0Hz) for H-4 and a doublet of doublets at 8.576 (J=4.0 and 2.0Hz) for 

H-6. This data together with the elemental analysis458 and molecular ion (286) 

verified the structure as 3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 

(256,15%). Further elution gave a pale yellow solid. The pmr spectrum contained 

the usual pattern expected for an ethyl ester and a singlet for the sulphone. The 

signal pattern typical of a 2,3-disubstituted pyridine N-oxide: a doublet of doublets 

at 7.366 (J=8.4 and 6.0Hz) for H-5, a doublet at 8.046 (J=8.4Hz) for H-4 and a 

doublet at 8.286 (J=6.0Hz) for H-6, was also found. The structure 3- 

ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine N-oxide (257, 71%) was 

corroborated by elemental analysis458 and mass spectrometry.

257
Equation 113

It would appear that oxidation at the pyridine nitrogen and thiomethyl sulphur 

atoms takes place sequentially, so it was of interest to investigate these reactions 

to attempt to determine that sequence. When this reaction was repeated using 

one equivalent of m-CPBA [equation 114] a single product was isolated (section 

5.41). The pmr was essentially that expected for 3-ethyloxycarbonyl-2-
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methylthiothieno[2,3-b]pyridine 108 except the singlet for the thiomethyl group in 

the 2- position had shifted to 3.045 indicating that the sulphide had been oxidised 

to a sulphoxide. The infrared spectrum indicated the presence of an ester group 

(1697cm'1). This compound was assigned the structure 3-ethyloxycarbonyl-2- 

methylsulphinylthieno[2,3-b]pyridine 258, obtained in 96% yield, based on the 

spectroscopic data, the elemental analysis458 and mass spectrometry.

Equation 114

Next 258 was treated with a further one equivalent of m-CPBA in the usual 

manner. Examination by tic after workup showed the presence of four compounds 

[equation 115]. This mixture was separated by column chromatography using 

ethyl acetate as eluent (section 5.42). The first compound isolated, proved, on 

examination of the infrared spectrum, to be unreacted 3-ethyloxycarbonyl-2-methyl 

sulphinylthieno[2,3-b]pyridine 258, collected in 10% yield. The second compound 

was found from the infrared spectrum to be identical to a pure sample of 3- 

ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 256 and was obtained in 

55% yield. Further elution gave 3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3- 

b]pyridine N-oxide 257 in 12.5% yield, evidenced again by comparison of the 

infrared spectrum with that of a pure sample. The final product was obtained after 

recrystallisation from ethyl acetate. The infrared spectrum showed an ester group 

(1694cm'1) and an N-oxide function (1261cm'1). The pmr spectrum showed a 

triplet at 1.495 and a quartet at 4.485 expected for an ethyl ester and there was a
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singlet at 3.065 characteristic of the methyl protons of the sulphoxide. A doublet of 

doublets at 7.395, a doublet at 8.175 and a doublet at 8.245 were also observed 

indicating the presence of a 2,3-disubstituted pyridine N-oxide. The product was 

therefore assigned the structure 3-ethyloxycarbonyl-2-methylsulphinylthieno[2,3- 

bjpyridine N-oxide (259, 22%). This structure was further supported by elemental 

analysis458 and mass spectrometry.

Equation 115

Oxidation of 3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 with one 

equivalent of m-CPBA yields exclusively 3-ethyloxycarbonyl-2- 

methylsulphinylthieno[2,3-b]pyridine 258. On reaction of 258 with a further one 

equivalent of oxidising agent there appears to be competition between the 

formation of a methylsulphonyl group and an N-oxide. The relative abundances of 

derivatives 256 and 257, 45% and 13.5% respectively, over derivative 259, 23%, 

suggest that oxidation of the methylsulphinyl to the methylsulphonyl moiety 

predominates over the formation of the N-oxide function. However the latter does 

offer some competition. The mechanism for the production of sulphoxides and 

sulphones with m-CPBA involves, initial nucleophilic attack by the sulphide sulphur
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on the peracid to form the sulphoxide, followed by a second reaction to form the 

sulphone [scheme 83].

.Cl

Cl

Cl

Scheme 83

The major product from these reactions was the, inadvertently, over-oxidised 3- 

ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine N-oxide 257, however it 

contained the desired sulphone function. It was decided to attempt nucleophilic 

substitutions at C-2 as it was not envisaged that the N-oxide group would interfere
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as there was no leaving group at the a- or y- positions of the pyridine N-oxide ring 

that would facilitate nucleophile substitution at these positions.

3-Ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine N-oxide 257 was 

refluxed together with one molar equivalent of benzylamine for three hours in 

chloroform, when tic indicated that only starting material was present in the 

reaction mixture. The chloroform solution was washed with dilute hydrochloric 

acid and the solvent removed in vacuo after drying with magnesium sulphate 

(section 5.43). The infrared spectrum of the resulting solid, showed it to be 

unreacted starting material. The reaction was attempted again this time refluxing 

257 in neat benzylamine for three hours. As tic indicated that all the starting 

material had reacted, the mixture was cooled, then poured onto ice and 

neutralised with dilute hydrochloric acid. The aqueous solution was extracted with 

ethyl acetate, dried with magnesium sulphate, and the solvent removed in vacuo 

to give a brown oil (section 5.44). Column chromatography, eluting with ethyl 

acetate:petrol, 1:1, gave, first a pale yellow oil that had a characteristic almond 

odour and examination by infrared spectroscopy revealed it to be substantially 

benzaldehyde, though at the time of analysis a considerable amount had aerially 

oxidised to benzoic acid and therefore it could not be accurately quantified. 

Further elution gave a white solid. The infrared spectrum had a sharp peak at 

3318cm'1 indicative of a secondary amine and the expected absorbance of an 

ester (1650cm1). The pmr spectrum showed a triplet at 1.405 and a quartet at 

4.325 characteristic of an ethyl ester. A doublet at 4.485 (J=6.0Hz) that integrated 

for two protons and a one-proton triplet at 8.805 (J=6.0Hz) were strong evidence of
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a secondary amine attached to a methylene group. An unresolved multiplet at 

7.125 (six protons) was thought to correspond to the phenyl ring protons and H-5, 

while an unresolved two-proton multiplet at 8.125 accounted for the remaining 

protons H-4 and H-6. The elemental analysis459 corroborated the structure 

assignation as 3-ethyloxycarbonyl-2-benzyl aminothieno[2,3-b]pyridine 260, 

obtained in 64% yield. The more polar compound was collected as a white solid. 

The infrared spectrum contained absorbances for a secondary amine (3317cm'1), 

an ester (1649cm'1) and an N-oxide group (1244cm"1). The pmr spectrum again 

showed a triplet at 1.445 and a quartet at 4.385 for the ethyl ester group. A 

doublet at 4.575 and a triplet at 8.955 for the secondary amine attached to a 

methylene carbon were also observed. The phenyl protons gave an unresolved 

multiplet at 7.365 and the expected pattern for a 2,3-disubstituted pyridine N-oxide 

was also found. Based on this evidence the compound was assigned the 

structure 3-ethyloxycarbonyl-2-benzylamino thieno[2,3-b]pyridine N-oxide (261, 

28%). Elemental analysis459 supported this structure [equation 116].
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Equation 116

The production of benzaldehyde in this reaction was unexpected and was 

considered to arise from the oxidation of benzylamine by either the sulphone or 

the N-oxide function. Examination of the literature revealed that heterocyclic N- 

oxides are well known as oxidising agents. Typical examples include 

dehydrogenation495 of diphenylethanes to stilbene derivatives, aromatisation of 

hydroaromatics496 and the conversion497 of aromatic alcohols to ketones. The 

conversion of halogen derivatives to carbonyl compounds498'503 by N-oxides has 

also been reported. Sulphones are not known to participate in these reactions.

To investigate, experimentally, which functional group was responsible for this 

transformation, 3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 256 

was refluxed in neat benzylamine for three hours then worked up as previously 

described (section 5.45). There was no evidence of benzaldehyde present and 

the solid obtained in 22% yield after recrystallisation from ethyl acetate, was found,
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from its infrared and pmr spectra, to be identical to 3-ethyloxycarbonyl-2- 

benzylamino thieno[2,3-b]pyridine 260 [equation 117]. From this it would appear 

that the methylsulphonyl group plays no part in the production of benzaldehyde.

Equation 117

The nucleophilic substitution of the sulphone at C-2 is thought to take place by an 

addition/elimination mechanism. The nitrogen lone pair of benzylamine attacks 

the carbon and the electrons of the double bond are delocalised into the ester at 

C-3. A second benzylamine molecule abstracts a proton from the tertiary 

ammonium cation and the double bond reforms with elimination of the sulphone 

[scheme 84] as methanesulphenic acid after protonation.

Scheme 84
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Furthermore, 3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine N-oxide 223 

was treated with benzylamine in the same fashion (section 5.46). Tic indicated 

three major products together with some baseline material. The mixture was 

separated by column chromatography using ethyl acetate / petrol mixture as 

eluent. Separated first was a pale yellow oil (50mg) which from it’s characteristic 

odour, infrared and pmr spectra was found to be benzaldehyde. Eluted next was a 

white crystalline solid, the infrared and pmr spectra of which were identical to a 

pure sample of 3-ethyloxycarbonyl-2-benzylaminothieno[2,3-b]pyridine 260, with a 

yield of 64%. Eluted last was 3-ethyloxycarbonyl-2-benzylaminothieno[2,3- 

bjpyridine N-oxide 261, which was also identified by comparison with a pure 

sample [equation 118].

Equation 118

These reactions confirmed that the conversion of benzylamine to benzaldehyde 

was due to the N-oxide rather than the methylsulphonyl group. It is believed that 

the reaction proceeds via attack by the oxygen of the N-oxide on the benzylic 

position of benzylamine. At refluxing temperatures the amine anion is displaced

147



Discussion

and picks up a proton from intermediate 262, to then form benzaldehyde. Since 

there was excess benzylamine present, this now reacts with benzaldehye to give 

the corresponding imine 263, which reacts no further [scheme 85]. The imine 263 

then decomposes to benzaldehyde during the aqueous work up.

Scheme 85

To establish whether this is a general reaction of pyridine N-oxides, a series of N- 

oxides were reacted with benzylamine. These reactions are discussed in section 

2 .8.
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To try and avoid further unexpected side reactions during this work, the N-oxide 

function of 3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine N-oxide 257 

was reduced with phosphorus tribromide under the usual conditions to give 3- 

ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 256 in 95% yield 

[equation 119] (section 5.47).

Nucleophilic substitution at C-2 was then attempted with aniline. 3- 

Ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 256 was refluxed in neat 

aniline for three hours, cooled, diluted with ethyl acetate and washed with dilute 

hydrochloric acid. The organic solution was dried and the solvent removed in 

vacuo. Tic of the resulting solid indicated that there was no starting material 

remaining and that there was one major product and some baseline material. The 

mixture was chromatographed on silica gel with ethyl acetate/petrol as eluant, and 

gave a white crystalline solid (section 5.48). The infrared spectrum contained 

absorbances at 3437cm'1 (primary amine) and 1653cm'1 (ester). The pmr 

spectrum had the expected pattern for an ethyl ester: a triplet at 1.525 and a 

quartet at 4.495. There was no signal at about 3.505 for the methylsulphonyl 

group, however a multiplet at 7.205 (five protons) and a singlet at 10.675 (one 

proton) were indicative of the anilino group. There was the expected pattern for a

2,3-disubstituted pyridine also present. The compound was therefore assigned

O -  257 256

Equation 119
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the structure 3-ethyloxycarbonyl-2-anilinothieno[2,3-b]pyridine 111, obtained in 

45% yield. Elemental analysis459 and comparison of the melting point with the 

reported260,400 value, supported this structure assignation [equation 120].

Equation 120

The mechanism for the preparation of 111 was thought to be similar to that for the 

reaction of 256 with benzylamine. Nucleophilic attack at C-2 by aniline, followed 

by elimination of the sulphone [scheme 86].

Scheme 86

This reaction was repeated under identical conditions with 3-ethyloxycarbonyl-2- 

methylthiothieno[2,3-b]pyridine 108 (section 5.49). A white crystalline solid,
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obtained after purification by column chromatography in 36% yield, was identified 

from spectroscopic data as recovered starting material.

In a further attempt to expand the scope of these nucleophilic substitutions, 3- 

ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 256 was treated with 

sodium ethoxide and diethyl malonate at 100 °C for three hours [equation 121]. 

Tic showed no starting material, one major product and some baseline material. 

Separation by column chromatography with petrol/ethyl acetate as eluent gave a 

pale yellow oil (section 5.50). The infrared spectrum showed the presence of 

more than one ester group (1736 and 1708cm"1) and aliphatic C-H stretching 

(2983cm'1). The pmr spectrum showed a triplet at 1.415 (three protons) and a 

quartet at 4.365 (2 protons), typical of an ester group at the 3- position of the 

thienopyridine system, based on previous observations. There was a triplet at 

1.285, which integrated for six protons and a quartet at 4.225, which integrated for 

four protons. These together with a singlet at 6.075, which integrated for one 

proton, were assigned to a diethylmalonyl group. As there was no three-proton 

singlet in the region of 3.55, which would be evidence for the presence of a 

methylsulphonyl group in the molecule, it was considered that nucleophilic 

substitution of this group by a diethylmalonyl function had taken place. There was 

also the expected pattern for a 2,3-disubstituted pyridine present. However 

attempted purification by distillation at reduced pressure led to substantial 

decomposition and it was therefore not possible to obtain any analytical data for 

this compound. Based solely on the spectroscopic evidence, the structure 3- 

ethyloxycarbonyl-2-diethylmalonyl thieno[2,3-b]pyridine 264 was assigned to this 

compound.
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CH2(C02Et)2

NaOEt

Equation 121

In this reaction, an ethoxide ion abstracts an acidic proton from diethylmalonate to 

form the anion, which nucleophilically attacks the thienopyridine 256 at C-2. The 

sulphone group is then eliminated [scheme 87].

Scheme 87

An attempt was made to replace the methylsulphonyl group of 3-ethyloxycarbonyl-

2-methylsulphonylthieno[2,3-b]pyridine 256 with an ethoxide group in the form of 

the ethoxide anion. 3-Ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 

256 was refluxed with sodium ethoxide using ethanol as solvent for three hours. 

The solvent was removed in vacuo and the resulting solid washed with water. 

Redissolving in ethyl acetate followed by drying and evaporation of the solvent 

gave a white solid which was identical by tic and spectroscopic analysis to the
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starting material 3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 256, in 

37% yield (section 5.51).

This reaction was again repeated using 3-ethyloxycarbonyl-2-methylthiothieno[2,3- 

b]pyridine 108 under the same conditions. After workup the only isolable 

compound obtained was unreacted 108 in 70% yield (section 5.52).

Previously, (section 2.3), the preparation of 6-chloro-3-ethyloxycarbonyl-2- 

methylthiothieno[2,3-b]pyridine 224 was achieved by reaction of ethyl 2,6-dichloro-

3-pyridylacetate 215 [equation 97].

Cl
215

ChLCCLEt 1- DMSO/CS2 
2 2 2. NaH

3. Mel 
Cl

Equation 97

Alternatively 224 and the isomeric 4-chloro-3-ethyloxycarbonyl-2- 

methylthiothieno[2,3-b]pyridine 265 should be formed by chlorination of 3- 

ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine N-oxide 223. The brown oil 

obtained from the reaction of 223 with phosphorus oxychloride was 

chromatographed on silica gel to give 224 in 52% yield. Also obtained was a pale 

pink oil [equation 122] (section 5.53). The expected pattern for an ethyl ester was 

found in the pmr spectrum along with a three-proton singlet at 2.606 for a 

thiomethyl group. Doublets at 7.19 and 8.216 (J=5.0 Hz) were assigned to H-5 

and H-6 respectively. The infrared spectrum showed absorbances for an ester 

(1695cm'1) and aliphatic C-H bonds (2880 and 2940cm'1). Microanalysis458 and
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the mass spectrometry supported the structure assignation as 4-chloro-3- 

ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 265, collected in 34% yield.

+

Equation 122

Overall the nucleophilic substitution reactions had not proved to be particularly 

successful. It is interesting that in these reactions, it was found that the 

methylsulphonyl group in the 2- position of the thienopyridine was more labile than 

the thiomethyl group, with both aniline and diethylmalonate [table 4].

Group at C-2 Nucleophile

Benzylamine Aniline Diethylmalonate
-SMe 64% 0% 0%

-S02Me 22% 45% 8%
Table 4: Yields by Nucleophile Employed

This appears to corroborate the findings of other workers260 in this laboratory, 

however, that work centred on 3-cyano-2-methylthiothieno[2,3-b]pyridine 109, its 

sulphoxide and sulphone [figure 16]. Conversely when the nucleophile employed 

was benzylamine, the order of reactivity appears to be reversed, with the 

thiomethyl group as the more labile substituent.
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CN

SMe

Figure 16

The oxidation of benzylamine to benzaldehyde was unexpected and further work 

was carried out to investigate this more fully (see section 2.8). It was decided 

therefore to abandon this line of work in favour of an investigation into a synthetic 

route from prepared thienopyridine 3-ethyloxycarbonyl-2-methylthiothieno[2,3- 

b]pyridine 108 to a possible agonist for serotonin (5-hydroxytryptophan).

2.7 Route to a potential agonist for serotonin

See appendix 1 for a summary of the reactions described in this section.

Serotonin was first isolated in 1948 by Rapport504 from blood serum and later 

Erspamer505, 506 found enteramine in the gastrointestinal tract. Both substances 

were found to be identical to synthetically prepared507 5-hydroxytryptamine (5-HT) 

[figure 17]. Serotonin has been suggested as a neurohormone508 after its 

discovery in the mammalian central nervous system509 and has been implicated in 

several processes including migraine,510 anxiety,511 schizophrenia,512 sleep513 and 

obesity.514

155



Discussion

CH2CH2NH2
HO

H

Figure 17

Previous work399 in this laboratory centred on the molecular modelling of 5- 

hydroxytryptamine receptors that may be involved in migraine headaches510 and 

an agonist binding site identified. As a potential thieno[2,3-b]pyridine analog of 5- 

HT, 3-aminoethyl-5-hydroxythieno[2,3-b]pyridine 208 [figure 9], had been 

modelled, synthetic routes to this compound were studied.

In parallel to that synthetic programme399 it was proposed that an alternative route 

to 3-aminoethyl-5-hydroxythieno[2,3-b]pyridine 208 would be investigated. 

Starting from 3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108, removal of 

the thiomethyl group at C-2 would be a priority. This would then be followed by 

reduction of the ethyl ester function of 266 to the corresponding alcohol 267 then 

conversion of this to the nitrile, which on reduction would yield the desired 

ethylamine moiety at C-3 (protection would be necessary). Introduction of a nitro 

group at C-5 would result in, via diazotisation, the required hydroxy group [scheme

88]. Although not shown in scheme 88, it is possible to introduce a nitro group at 

C-5 at an earlier stage in the reaction scheme.

CH2CH2NH2

208

Figure 9
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CH2CH2NHBoc ch2ch2nh2

Scheme 88
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2.7.1 Removal of thiomethyl group at C-2

It has been reported515 that Raney Ni in acetone provides an effective method of 

desulphurisation and it has been further reported399 that this reagent was 

successfully used in the removal of the thiomethyl group from 3-cyano-2- 

methylthiothieno[2,3-b]pyridine 109 but it was found that the outcome was variable 

and the one good yield obtained was unrepeatable. Milder conditions were 

described516 where Raney Ni in methanol was utilised. Thus, 3-ethyloxycarbonyl-

2-methylthiothieno[2,3-b]pyridine 108 in a methanol solution was added dropwise 

to a stirred suspension of Raney Ni in dry methanol under dry nitrogen gas and the 

mixture stirred for six hours. The solids were filtered and washed with hot 

methanol. The combined organic solutions were concentrated to give a brown 

solid, which was recrystallised from diethyl ether (section 5.54). Spectroscopic 

examination showed the product to be unreacted 3-ethyloxycarbonyl-2- 

methylthiothieno[2,3-b]pyridine 108.

It was postulated that perhaps the bulky ethyl ester group at C-3 was inhibiting this 

reaction either by virtue of its electron withdrawing properties or by steric effects. 

Reduction of the ester to the corresponding hydroxymethyl function with lithium 

aluminium hydride (LiAIH4) was attempted. A solution of 3-ethyloxycarbonyl-2- 

methylthiothieno[2,3-b]pyridine 108 in dry diethyl ether was added dropwise to a 

stirred suspension of UAIH4 in dry diethyl ether and the mixture was refluxed for 

forty-eight hours (additional portions of the ether were added occasionally to 

prevent the reaction mixture drying out). The reaction was cooled and a portion of 

ethyl acetate added to destroy any unreacted LiAIH4, followed by dilute sulphuric
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acid. The layers were separated and the aqueous phase washed with diethyl 

ether. The organic solution was combined with the washes, dried and the solvent 

removed in vacuo to give a white crystalline solid after recrystallisation from ethyl 

acetate/hexane (section 5.55). Examination of the infrared spectrum revealed an 

aliphatic C-H stretching absorbance at 2911cm'1 and a broad peak at 3204cm'1 

indicative of a hydroxy group, but no peak for an ester in the region of 1700cm'1. 

The pmr spectrum contained a singlet at 2.555, expected for thiomethyl protons. 

Also observed were a one-proton singlet at 3.055, together with a two-proton 

singlet at 4.935, strongly suggestive of a benzylic hydroxymethyl group. A doublet 

of doublets at 7.245 (J=8 & 4 Hz) for H-5, a doublet of doublets at 8.085 (J=8 & 2 

Hz) for H-4 and a doublet of doublets at 8.405 (J=4 & 2 Hz) for H-6 formed the 

expected pattern for a 2,3-disubstituted pyridine. This agrees with previous 

data399 for 3-hydroxymethyl-2-methylthiothieno[2,3-b]pyridine 268, obtained in 60% 

yield [equation 123].

LiAIH4

Equation 123

Reduction with LiAIH4 of an ester to an alcohol is in two steps, first reduction to an 

aldehyde by hydride transfer and elimination of ethoxide, then to an alcohol, again 

by hydride transfer followed by protonation with water [scheme 89].
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Scheme 89

3-Hydroxymethyl-2-methylthiothieno[2,3-b]pyridine 268 was stirred for 24 hours 

with Raney Ni in dry methanol. Examination of the reaction mixture showed there 

to be only starting material present so the mixture was refluxed for two hours. The 

solids were filtered under vacuum and washed with methanol. The combined 

filtrates were evaporated in vacuo to give a solid which was purified by 

recrystallisation from diethyl ether. Examination (tic, ir, pmr) confirmed that the 

product was unreacted starting material (section 5.56).

Hypophosphorous acid and various salts of this acid are known517,518 to be facile 

radical reducing agents for organic halides, thionoesters and isocyanides affording
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the corresponding hydrocarbons. It was envisaged that this reagent could effect 

the desired transformation. Hence, a solution of 3-ethyloxycarbonyl-2-methyl 

thiothieno[2,3-b]pyridine 108 and sodium hypophosphite in dry dioxane was 

refluxed under dry argon. The radical initiator 1, T-azob/s(cyclohexane 

carbonitrile) (ABCHC) was added in portions every 30 minutes over 4 hours. The 

solution was cooled, diluted with water and dioxane removed by evaporation. The 

aqueous residue was extracted with ethyl acetate. After drying and removal of 

solvent unreacted 108, as confirmed by comparison with a pure sample, was 

recovered (section 5.57).

A similar method518 was then employed using an organic salt of hypophosphorous 

acid. 3-Ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 together with 

hypophosphorous acid, triethylamine and the radical initiator, ABCHC, were 

refluxed in dry dioxane under nitrogen for five hours. During this time further 

portions of ABCHC were added at hourly intervals. Examination of the reaction by 

tic showed only one major spot which had the same Rf as starting material. The 

reaction mixture was then concentrated, diluted with water and extracted with ethyl 

acetate. The extracts were dried, filtered and the solvent removed in vacuo to give 

a solid, which was identical (tic, ir) to a pure sample of starting material 108 

(section 5.58).

Organo-tin reagents, mainly tri-n-butyltin hydride (TBTH), have been used in a 

variety519 of reactions of organic compounds. Principally, replacement of 

substituents such as halide, nitro, amino or hydroxy groups with hydrogen; 

addition to carbon carbon and carbon heteroatom multiple bonds; and generating
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carbon radicals for carbon to carbon inter- or intra-molecular coupling. They have 

also been reported520 as powerful and selective reagents for free radical 

desulphurisation of unsymmetrical sulphides. The cleavage of thioethers by 

stannyl radicals follows the S h2 mechanism and the sequence of removal is:

Phenyl «  methyl < sec. Alkyl < tert. Alkyl < allyl * benzyl

i.e. the rate of reaction increases with increasing stability of the radical cleaved. It 

has been postulated that stannylation occurs when one equivalent of TBTH, in the 

presence of a free radical initiator, is used. Protonolysis is achieved by reaction 

with a second equivalent of TBTH. Consequently, the method published520 for the 

cleavage of unsymmetrical sulphides was adapted and it involved refluxing the 

sulphide together with TBTH and an initiator in a hydrocarbon solvent such as 

benzene or cyclohexane.

The first attempts at this reaction were undertaken under mild conditions, so 3- 

ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 and TBTH were refluxed 

together with free radical initiator ABCHC in dry cyclohexane for 24 hours. A 

strong smell of methanethiol accompanied this procedure. The resulting oil, 

obtained after removal of solvent, was chromatographed on silica gel using 

petroleum ether / ethyl acetate as eluant (section 5.59). First separated was a 

colourless oil that when examined by pmr spectroscopy, appeared to contain only 

alkyl groups as unresolved multiplets between 0.855 and 1.605. These signals 

integrated for about 43 protons and were thought to be tri-r?-butyltin byproducts. 

Eluted second was a colourless oil. The pmr spectrum showed the usual pattern 

for a 2,3-disubstituted pyridine and a 2-proton quartet at 4.385, usually associated
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with an ethyl ester group. There was no signal in the region of 2.606 that would 

signify a thiomethyl group. There was again an unresolved multiplet between

0.835 and 1.665. This signal integrated for 35 protons which was more than was 

required had the compound been the expected 3-ethyloxycarbonyl-2-(tri-A?- 

butylstannyl)thieno[2,3-b]pyridine 269. The infrared spectrum showed the 

molecule to contain an ester at 1703cm'1. No further attempt was made to purify 

this compound as further reaction with a second equivalent of TBTH should give 

the desired dethiomethylated thienopyridine derivative. The oil, obtained from this 

second reaction with TBTH under the same conditions, was dissolved in 

acetonitrile and washed with n-hexane. It had been reported521 that by-products of 

reactions involving TBTH tend to be soluble in hydrocarbons while the desired 

products are not and remain dissolved in acetonitrile. The resulting oil, after 

removal of solvent in vacuo, was stored in a stoppered flask at room temperature 

while other work was undertaken. Re-examination of this oil revealed the 

formation of a solid, which was collected by filtration and recrystallised from n- 

hexane to give a white crystals (section 5.60). The pmr spectrum contained the 

expected signal pattern for an ethyl ester and a 2,3-disubstituted pyridine. There 

was also a one-proton singlet at 8.466 that was characteristic of the hydrogen at 

the 2-position of a thiophene. The infrared spectrum showed an absorption at 

1703cm'1 (ester) and both aromatic (3087cm'1) and aliphatic (2983cm'1) carbon- 

hydrogen bonds. Elemental analysis459 supported the structure as 3- 

ethyloxycarbonylthieno[2,3-b]pyridine 266 in 50% yield [equation 124].
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Equation 124

In order to confirm that the precursor to 266 was in fact the postulated 3- 

ethyloxycarbonyl-2-(tri-/7-butylstannyl)thieno[2,3-b]pyridine 269, the reaction of 3- 

ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 with one equivalent of 

TBTH was repeated (section 5.61). The product mixture, an oil, was 

chromatographed on silica gel to give a pale yellow powder after recrystallisation 

from ethyl acetate [equation 125]. The infrared spectrum contained strong 

absorbances due to aliphatic carbon-hydrogen bonds (2956 and 2924cm'1) and an 

ester group (1696cm'1). The pmr spectrum showed a triplet at 0.885 and a 

multiplet centred at 1.455, which together were due to the /7-butyl hydrogens and 

the methyl hydrogens of the ester group. The presence of an ethyl ester was 

confirmed by the two-proton quartet at 4.475. The expected pattern for a 2,3- 

disubstituted pyridine was also observed. The structure was supported by 

microanalysis459 as 3-ethyloxycarbonyl-2-(tri-/7-butylstannyl)thieno[2,3-b]pyridine

(269, 66%).

Equation 125
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It is known522 that for the ethylthiopenem 270, reaction with TBTH, in refluxing 

toluene with an initiator, affords the 2-stannyl derivative 271 in 96% yield although 

no mechanism is proposed [equation 126].

(n-Bu)3SnH

Toluene/A

Equation 126

In the cleavage519 of unsymmetrical sulphides with TBTH, a methyl group is less 

readily cleaved than a secondary alkyl group. In this transformation, 108 with the 

thiomethyl at C-2, is acting more like a ketenedithioacetal than a thiophene, i.e. 

more like an aliphatic system than an aromatic one. Hence, the production of 

stannylated derivative 269 by the Sh2 mechanism [scheme 90].

Scheme 90

Protonolysis of stannylated compounds can be achieved by treatment with acids 

such as trifluoroacetic acid523 or benzoic acid524 and is considered525 to be 

electrophilic substitution at the carbon of the C-Sn bond. So, 50% trifluoroacetic
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acid was investigated for the protonolysis of the tri-n-butylstannyl derivative 269. 

Hence, 3-ethyloxy carbonyl-2-(tri-A7-butylstannyl)thieno[2,3-b]pyridine 269 was 

dissolved in ethanol, trifluoroacetic acid (50%) added and the mixture refluxed for 

16 hours (section 5.62). Removal of solvent, then column chromatography gave

3-ethyloxycarbonyl thieno[2,3-b]pyridine 266 in 73% yield [equation 127].

C02Et

(n-Bu)3SnOCOCF,

Equation 127

This method was used therefore, in place of the second treatment with TBTH, in 

subsequent reactions of this nature as an inexpensive and simple alternative for 

the formation of 266 from 269.

Overall the dethiomethylation sequence is relatively straight forward, although care 

must be taken in the purification of 269 as tin byproducts are not always easy to 

remove, especially when the reaction is carried out on a larger scale. However, 

the desired product 266 was obtained, which allowed further transformations to be 

attempted on the side chain at C-3.

2.7.2 Manipulation of the side chain at the C-3

Having prepared 3-ethyloxycarbonylthieno[2,3-b]pyridine 266, the next step was to 

reduce the ester at the 3-position to the corresponding primary alcohol. A solution
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of 3-ethyloxycarbonylthieno[2,3-b]pyridine 266 in dry diethyl ether was added 

dropwise to a stirred suspension of LiAIH4 in dry diethyl ether and the mixture 

refluxed for 48 hours. Excess LiAIH4 was destroyed by careful addition of ethyl 

acetate, followed by dilute sulphuric acid. Extraction with diethyl ether and 

removal of the solvent in vacuo gave white needles, after recrystallisation from 

diethyl ether [equation 128] (section 5.63). There was a broad O-H stretch 

absorption (3216cm*1) but no peak for an ester in the infrared spectrum. The pmr 

spectrum showed a one-proton singlet at 3.296 and a two-proton singlet at 4.916. 

These signals were comparable to those in the pmr spectrum of 3-hydroxymethyl-

2-methylthiothieno[2,3-b]pyridine 268, so were assigned to the hydroxyl hydrogen 

and the methylene hydrogens respectively. Also present were the expected peak 

pattern for a 2,3-disubstituted pyridine ring and a one proton singlet at 7.436 for 

the hydrogen at C-2. Microanalysis459 supported the structure 3- 

hydroxymethylthieno[2,3-b]pyridine (267, 50%).

Equation 128

The transformation of a primary alcohol to a nitrile is well documented in the 

literature and usually involves conversion of the hydroxyl group to a halide or 

tosylate before nucleophilic substitution by a nitrile anion takes place. There are 

several methods for the direct conversion, with the simplest526 of them being 

refluxing the alcohol with sodium cyanide in DMF. So, 3-hydroxymethylthieno[2,3- 

bjpyridine 267 and sodium cyanide were refluxed in DMF for 20 hours. The
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mixture was then basified with solid sodium hydroxide and the solvent replaced 

with water. Neutralisation, followed by extraction with dichloromethane and 

removal of solvent in vacuo gave a pale yellow solid which was identified as 

unreacted 3-hydroxymethylthieno[2,3-b]pyridine 267 (section 5.64)

The reaction of primary alcohols with 2 equivalents each of sodium cyanide and 

trimethylsilylchloride, together with acetonitrile, in the presence of a catalytic 

amount of sodium iodide has been reported527 to produce the corresponding 

nitriles in good yield. It is proposed that the reaction proceeds via the in situ 

generation of a trimethylsilyl ether of the alcohol and then reaction of this with the 

complex formed between acetonitrile and trimethylsilyliodide to form an oxonium 

ion, which is nucleophilically diplaced, by a cyanide anion. In the absence of 

sodium iodide no reaction takes place. An acetonitrile solution of 3- 

hydroxymethylthieno[2,3-b]pyridine 267 was therefore added to a suspension of 

sodium cyanide and a catalytic amount of sodium iodide in DMF. To this was 

added trimethylsilylchloride and the mixture heated to 60 °C for 6 hours. Tic 

indicated at this point that starting material remained largely unreacted. After 

workup a solid was obtained which indeed proved to be unreacted 3- 

hydroxymethylthieno[2,3-b]pyridine 267 and so the reaction was discontinued 

(section 5.65).

Nitriles have been produced in good yields528 by the treatment of primary alcohols 

with a mixture of tri-n-butylphosphine, carbon tetrachloride and potassium cyanide 

in acetonitrile in the presence of 18-crown-6 ether. 18-Crown-6 ether is vital to the 

reaction as it complexes with potassium ions allowing unsolvated nitrile ions to
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become available for reaction. No nitrile was produced in the absence of 18- 

crown-6, however it was reported that benzyl chloride was synthesised from 

benzyl alcohol under these conditions. 15-Crown-5 ether was available in the 

laboratory and it has been reported490 that this smaller crown ether, in conjunction 

with sodium cyanide, would complex with sodium ions allowing the nitrile anions to 

react. 3-Hydroxymethylthieno[2,3-b]pyridine 267, sodium cyanide and 15-crown-5 

in acetonitrile were stirred at room temperature under dry nitrogen gas. A solution 

of tri-n-butylphosphine in acetonitrile was added followed by the dropwise addition 

of an acetonitrile solution of carbon tetrachloride at 0 °C. The mixture was stirred 

at room temperature for 5 hours, when tic showed that the starting material was 

largely unreacted. The reaction was then heated at reflux for 16 hours cooled, 

diluted with diethyl ether and washed with citric acid solution. After workup the 

residue was chromatographed on silica gel using petroleum ether / ethyl acetate 

as eluant. The only compound isolated was unreacted 3-hydroxymethylthieno[2,3- 

bjpyridine 267 (section 5.66). This was disappointing as even if the desired nitrile 

had not been formed, it was hoped that 3-chloromethylthieno[2,3-b]pyridine may 

have been produced as an alternative.

As the hydroxyl group was proving to be unreactive, it was decided to attempt to 

increase its lability by converting it to its tosylate. Generally529 tosylation of an 

alcohol takes place in the presence of a base and usually requires an excess of 

both p-toluenesulphonylchloride and base. However there are problems 

encountered with this reaction, for example, the formation of pyridinium salts 

(when the base is pyridine) that reduce the overall yield of the reaction. In spite of 

these reservations the method described by Kabalka530 was followed. The
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thienopyridine 267 was dissolved in chloroform at 0 °C and pyridine added 

followed by p-toluenesulphonyl chloride in portions with constant stirring. 

Examination by tic showed significant amounts of starting material remained after 

3 hours at 0 °C, so the mixture was allowed to warm to room temperature and 

stirring was continued for a further 24 hours. The reaction mixture was diluted with 

diethyl ether and washed with dilute hydrochloric acid, sodium bicarbonate 

solution and water. Removal of diethyl ether in vacuo resulted in recovery of 

unreacted p-toluenesulphonyl chloride. The aqueous solution was made strongly 

basic with solid potassium hydroxide and extracted with ethyl acetate. The solvent 

was dried and removed in vacuo to give unreacted 3-hydroxymethylthieno[2,3- 

b]pyridine 267 (section 5.67). It is possible, as the p-toluenesulphonyl chloride 

used was not absolutely fresh, that it contained sufficient tosic acid to render it 

ineffective. This, coupled with the known problem of formation of pyridinium salts 

in the reaction mixture, may have caused the reaction to fail.

Due to time constraints no further work on this was carried out. However some 

progress has been made towards the goal of synthesising a potential agonist of 

serotonin. Having prepared the hydroxythienopyridine 267, it is now possible that 

other reactions to replace the hydroxy group with a nitrile can be investigated.

2.8 Oxidation of benzylamine to benzaldehyde with pyridine N-oxides

The nucleophilic substitution reaction at the 2-position of 3-ethyloxycarbonyl-2- 

methylsulphonylthieno[2,3-b]pyridine N-oxide 257 with benzylamine led to the 

production of benzaldehyde by a side reaction (section 2.4) [equation 116].
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Equation 116

It was postulated that the formation of benzaldehyde was due to either the 

sulphone or the N-oxide function. This was tested by also reacting benzylamine 

with 3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 256 and 3-ethyloxy 

carbonyl-2-thiomethylthieno[2,3-b]pyridine N-oxide 223. As benzaldehyde was 

only isolated from the reaction involving the latter, it appears that the N-oxide 

function was responsible for this transformation. In order to further explore the 

involvement of the N-oxide group, the readily available pyridine N-oxides 3- 

methylpyridine N-oxide 272, 3-amidopyridine N-oxide 78, 4-amidopyridine N-oxide 

273, isonicotinic acid N-oxide 274 and 4-nitropyridine N-oxide 50 [figure 18] were 

investigated as potential oxidising agents for this transformation.
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Figure 18

Firstly, 3-methylpyridine N-oxide 272 was refluxed in neat benzylamine for three 

hours, cooled, acidified with dilute hydrochloric acid and extracted with diethyl 

ether. The extracts were combined, dried with magnesium sulphate and the 

solvent removed in vacuo to give benzaldehyde, confirmed by comparison with the 

ir spectrum of a genuine sample, as a pale yellow liquid in 39% yield (section 

5.68). In an attempt to improve this yield, 3-methylpyridine N-oxide 272 was 

purified by distillation and the reaction repeated. This however led to a reduction 

in yield to 10%. As anhydrous conditions were unsuccessful, the reaction was 

again repeated with the addition of a few drops of water. In this case the yield was 

further reduced to 3%. There seems to be no clear trend to these observations so 

the other pyridine N-oxides were used with no further purification and are listed 

together with the yields of benzaldehyde obtained [table 5]. The yields are the 

best found, as repeatability proved difficult under these reaction conditions.

N-oxide Yield (%)

3-methylpyridine 272 39
3-amidopyridine 78 6

4-amidopyridine 273 4
isonicotinic acid 274 32

4-nitropyridine 50 93
Table 5: Yields of Benzaldehyde
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Initially, when 4-nitropyridine N-oxide 50 was heated in neat benzylamine, a violent 

reaction occurred when the temperature exceeded 120 °C, which precluded the 

collection of any benzaldehyde. However, when the reaction was stopped just 

below this temperature, benzaldehyde was isolated in 93% yield. It proved on 

repetition to be very difficult to predict at exactly what temperature the reaction 

could be stopped to maximise the yield and hence it was not studied further.

The problem of variable yields was thought to be largely due to the volatility and 

reactivity in air of benzaldehyde, so it was decided to collect the product as its 2,4- 

dinitrophenylhydrazone. 3-Methylpyridine N-oxide 272 was refluxed with 

benzylamine and after cooling, neutralisation with dilute hydrochloric acid and 

extraction of benzaldehyde into diethyl ether, an acidic solution of 2,4- 

dinitrophenylhydrazine (DNP) in methanol was added. The reaction mixture was 

concentrated, refrigerated for two hours and the resulting precipitate collected by 

filtration to give a 40% yield of benzaldehyde-2,4-dinitrophenylhydrazone, 

identified by comparison (mp, tic, ir) with a genuine sample (section 5.69). When 

this procedure was extended to the pyridine N-oxides listed in table 3, the yields 

obtained, although not markedly improved upon, did become repeatable. In the 

hands of co-workers531 reproducibility was confirmed [table 6].

N-oxide Yield (%)

3-methylpyridine 272 40
3-amidopyridine 78 9

4-amidopyridine 273 6
isonicotinic acid 274 28

Table 6: Yields of Benzaldehyde as the 2,4-Dinitrophenylhydrazone
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The reaction of 4-nitropyridine N-oxide 50 with benzylamine was revisited as, 

although unreliable, it did produce the highest yield of benzaldehyde. 

Mechanistically, the transformation of benzylamine to benzaldehyde involves two 

moles of benzylamine for each mole of pyridine N-oxide employed, so 50 was 

refluxed together with two equivalents of benzylamine in o-xylene (25 ml). It was 

considered that o-xylene would not only act as a diluant but as it boils at 118 °C 

would reduce the possibility of explosive decomposition. The reaction was 

monitored by tic and after seven hours 4-nitropyridine N-oxide 50 was still in 

evidence, so the reaction mixture was cooled and neutralised with dilute 

hydrochloric acid. An acidic solution of 2,4-dinitrophenylhydrazine in methanol 

was added, and the reaction worked up as previously described to give 

benzaldehyde-2,4-dinitrophenylhydrazone in 22% yield. Lengthening the reaction 

time improved the yield, however it became apparent after refluxing for 96 hours, 

that to achieve a maximum yield would require an unfeasibly long reaction time. 

Reducing the amount of solvent employed was then investigated as a possible 

way to improve the yield without causing the reaction to become unstable. 4- 

Nitropyridine N-oxide 50 and benzylamine were refluxed in o-xylene (15 ml) for 7 

hours and the reaction mixture treated as previously described to give 

benzaldehyde-2,4-dinitrophenylhydrazone in 45% yield. Increasing the reaction 

time improved the yield, however times beyond 24 hours led to marked reductions 

in the yield [table 7].
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o-xylene volume (ml) Reaction time (h) Yield (%)

25 7 22
25 17 45
25 24 62
25 96 67
15 7 45
15 16 64
15 24 78
15 48 62
15 96 54

Table 7: Variation in Yield by Time and Solvent Volume

It can be seen from the above table that the most productive conditions for the 

transformation of benzylamine to benzaldehyde using 50 are when the reagents 

are in the molar ratio of amine : N-oxide; 2 : 1 and are refluxed in o-xylene (15 ml) 

for 24 hours (section 5.70).

It was decided to extend this methodology to the other pyridine N-oxides used in 

this investigation. Each was, in turn, refluxed in o-xylene (15 ml) with 2 

equivalents of benzylamine for 24 hours, then subjected to the usual work-up and 

benzaldehyde collected as its 2,4-diphenylhydrazone. The yields found [table 8], 

although reproducible were not a significant improvement on those obtained when 

neat reagents were used and hence this particular methodology appears to be 

most useful for 4-nitropyridine N-oxide 50.

N-oxide Yield (%)

3-methylpyridine 272 8
3-amidopyridine 78 13

4-amidopyridine 273 4
isonicotinic acid 274 54

Table 5: Yield from Reaction in o-xylene

An alternative mechanism to that shown in scheme 85 has been proposed 

(personal communication from Dr P N Preston). It was pointed out that, as an
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amino group is not a particularly good leaving group, an alternative mechanistic 

route could involve a pyridine N-oxide reacting in one of its canonical forms 5, 6 or 

7 [figure 2].
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Figure 2

In these forms the oxygen atom is relatively electron deficient and hence 

susceptible to nucleophilic attack by the nitrogen atom of benzylamine. The 

hydroxylamine thus formed could lose water to form the imine 275 that would 

hydrolyse during work up to produce benzaldehyde [scheme 91].

Supporting evidence for this is the reactivity of 4-nitropyridine N-oxide 50 [figure 

19]. The nitro group being strongly electron withdrawing will enhance this effect 

and render the N-oxide oxygen more susceptible to nucleophilic attack.

50
Figure 19
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This interesting reaction is worthy of further investigation into its scope and 

limitations in order to develop a general procedure for the conversion of primary 

amines to aldehydes. It was not, in terms of the objectives of this project, 

considered worth devoting more resources to and was satisfactorily concluded at 

this point.

2.9 Ester carbonyl stretching absorbances

A number of different types of compound were prepared in this programme, the 

majority of which contain an ethyl ester group. Other groups in these molecules 

influence the position, in the infrared spectra, of the ester carbonyl stretching 

absorbance.
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For the chloropyridine derivatives 72, 74, 76, 215, 218, 219 and 220, [figure 20], all 

the ester groups are aliphatic and the expected532 absorbance range for carbonyl 

stretching for this type of ester is 1750-1720cm"1.

Cl
,CH2C02Et

Cl' N
72

(?>

74

CH2C02Et ,CH2C02Et

Cl Cl Cl
î XH2C02Et .L,CH2C02Et rV

^ n^ x i c r N
218 219 220

Figure 20

c r  N Cl
215

CH2C02Et

As can be seen in Table 9, the carbonyl stretching absorbances for these 

compounds all fall within the expected range.

Pyridine Absorbance (cm")
72 1732
74 1735
76 1737

215 1736
218 1732
219 1737
220 1738

Table 9. Carbonyl Stretching Absorbances for Chloropyridines

Chloropyridine N-oxide derivatives 212, 213, 214, 217, 221 and 222 also have 

aliphatic ester groups in their structure. Chloropyridine N-oxide 216 contains an 

aliphatic acid group [figure 21].
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The stretching vibration for the carbonyl of the aliphatic ester groups, again, all fall 

within the expected range532 for this type of compound, although for 217 the 

wavenumber is slightly lower than the others. The aliphatic acid group of 216 

shows an absorbance within the range532 for this type of group (1725-1700cm'1) 

[table 10].

Pyridine N-oxide Absorbance (cm')
212 1735
213 1734
213 1734
216 1715
217 1721
221 1732
222 1733

Table 10. Carbonyl Stretching Absorbances for Chloropyridine N-oxides.

Thienopyridines containing a thiomethyl group at C-2, 108, 223, 224, 225, 226, 

240, 241, 242, 243 and 265, [figure 22], have an aromatic ethyl ester group at C-3.
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Figure 22

This type of ester would be expected532 to have a carbonyl stretching absorbance 

between 1730 and 1705cm'1. The actual absorbances recorded are at lower

wavenumbers [table 11].

Thienopyridine Absorbance (cm')
108 1695
223 1675
224 1670
225 1690
226 1726
240 1690
241 1681
242 1690
242 1683
265 1695

Table 11. Carbonyl Stretching Absorbances for Thienopyridines.
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This can be explained by the presence of the thiomethyl group at C-2. A lone pair 

of electrons of the sulphur can delocalise into the conjugated system leading to a 

reduction in double bond character of the ester carbonyl [figure 23]. It is known532 
that esters of salicylic or anthranilic acids show this behaviour and their carbonyl 

stretching absorbances are normally within the range 1690-1670cm'1. However, 

226 does not appear to exhibit this phenomenon.

Figure 23

Prepared ketenedithioacetals with ester groups in their structures are shown in 

figure 24.

CN

Figure 24

The infrared spectra for 246 and 250 show a carbonyl stretching absorbance in the 

expected region for aliphatic esters [table 12]. This was unexpected for 250, as it 

also contains a,(3-unsaturated ethyl ester group and a second peak should have
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been observed at a lower wavenumber, typically532 1730-1705cm"1. The carbonyl 

absorbance in the spectrum of 252 is in the correct region for an a,p-unsaturated 

ester group, but for the corresponding group in 255 a lower wavenumber was 

found.

Ketene dithioacetals Absorbance (cm")
246 1736
250 1736
252 1720
255 1684

Table 12. Carbonyl Stretching Absorbances for ketene dithioacetals.

The substituted thiophenes 247 and 251, [figure 25], both show two carbonyl 

stretching absorbances. One, in each spectrum, can be interpreted as due to the 

aliphatic ethyl ester. The second, at lower wavenumbers, would be for the esters 

directly attached to the thiophene rings, behaving in a similar manner to salicylate 

or anthranilate esters [table 13]. There will also be some hydrogen bonding 

between the ester carbonyl and the amino hydrogens 247 or the hydroxy hydrogen 

251. This phenomenon is known532 to move the absorbance to a lower 

wavenumber.

Figure 25

Thiophene Absorbance (cm")
247 1724, 1661
251 1748, 1666

Table 13. Carbonyl Stretching Absorbances for Thiophenes.
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Thieno[2,3-b]pyridine sulphoxides and sulphones 256, 257, 258 and 259 are 

shown in figure 26.

For 256 and 257, the carbonyl stretching absorbances are typical of aromatic ester 

groups. Those for 258 and 259, are as expected for salicylate type esters, where 

again the lone pair of electrons of the sulphoxide sulphur at C-2 is delocalising into 

the conjugated system leading to a reduction in double bond character of the ester 

carbonyl [table 14].

Sulphoxide, Sulphone Absorbance (cm'1)

256 1724
257 1718
258 1697
259 1694

Table 14. Carbonyl Stretching Absorbances for Thieno[2,3-b]pyridine sulphoxides 
and sulphones.

The other thieno[2,3-b]pyridines, prepared by substitution of the thiomethyl at C-2 

of 108 are listed in figure 27.
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For the thieno[2,3-b]pyridines with secondary amino groups at C-2, 111, 260 and 

261, the carbonyl stretching absorbances are all at wavenumbers much lower than 

normally seen for this vibration in aromatic esters [table 15]. This may be due to 

the influence of the amine on the conjugated system, coupled with hydrogen 

bonding between the amine hydrogen and the carbonyl. Thieno[2,3-b]pyridine 264 

shows two peaks for carbonyl stretching; at 1736cm'1 for the aliphatic ester groups 

and at 1708cm'1 for the aromatic ethyl ester group at C-3. The absorbance seen 

in the spectrum of 266 is typical of an aromatic ethyl ester group. The stannylated 

derivative 269 has a carbonyl stretching absorbance in a position slightly lower 

than for an aromatic ethyl ester group, therefore it would appear that the tin atom 

at C-2 is contributing electrons to the conjugated system by a +l effect, but this 

influence is not as pronounced as for the amines where electrons can be 

delocalised.

Thienopyridine Absorbance (cm'1)

111 1653
260 1650
261 1649
264 1736, 1708
266 1703
269 1696
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Table 15. Carbonyl Stretching Absorbances for substituted thieno[2,3-b]pyridines. 

Interpretation of the positions of these signals is useful in confirming the structure 

of the prepared compounds. It should be noted that not all compounds gave 

absorbances exactly in the expected regions, hence, the predictive power of this 

type of analysis is limited.
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3 Conclusions
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The preparation of 3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 is the 

result of a multi-step reaction sequence. Improving the yield of ethyl 3- 

pyridylacetate N-oxide 213, using m-CPBA with the improved procedure457 

described, together with the more effective separation of ethyl 2-chloro-3- 

pyridylacetate 74 allowed the desired thienopyridine 108 to be synthesized in 

greater yield261 than that reported260 previously. Additionally, N-oxidation of the 

unstable ethyl 4-chloro-3-pyridylacetate 76 gave the opportunity to prepare some 

novel thieno[3,2-c]pyridines [figure 28].

CH2C02Et

0 “
70

CH2C02Et

Cl

Figure 28

The preparation of other pyridine N-oxides was easily achieved in moderate to 

good yields. Separation of the mixture of ethyl 2,4-dichloro-5-pyridylacetate 219 

and ethyl 2,4-dichloro-3-pyridylacetate 220 was accomplished by conversion to the 

N-oxides by the use of m-CPBA with concentrated sulphuric acid. 

Pertrifluoroacetic acid was necessary to convert the less basic ethyl 2,6-dichloro-

3-pyridylacetate 215 to the N-oxide. It was found that the ester was hydrolysed 

during this process; however, esterification of the acid 216 was easily achieved
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[figure 29]. Chlorination of these compounds with phosphorus oxychloride gave 

polychlorinated pyridines that were converted to novel thienopyridines.
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Figure 29

The initial preparation of ketene dithioacetal 246 from 2-chloro-5-pyridylacetonitrile 

73 was carried out to gain experience of the synthetic methodology to be used in 

the formation of thienopyridines. The subsequent cyclisation to highly substituted 

thiophenes proved to be very interesting, although not unknown and extension of 

this work to 2-chloro-5-pyridylacate 72 proved fruitful as more novel thiophenes 

were synthesized. It was seen however, that for the ketene dithioacetal 254, the 

phenyl groups were insufficiently electron withdrawing to allow abstraction of the 

methylene protons and hence no cyclisation occurred [figure 30].

188



Conclusions

.CH2C02Et CH2CN

Cl' N
72

Cl N
73

CN CN

Figure 30

The nucleophilic substitution reactions carried out on thieno[2,3-b]pyridines 108 

and 256 with nitrogen, and carbon nucleophiles did not prove to be particularly 

successful [figure 31]. Interestingly, it was found that the methylsulphonyl group in 

the 2- position was more labile than the thiomethyl group, with both aniline and the 

diethylmalonate anion. Conversely when the nucleophile employed was 

benzylamine, the order of reactivity appears to be reversed, with the thiomethyl 

group as the more labile substituent.

Figure 31

Overall the dethiomethylation sequence, using TBTH followed by protonolysis, is 

relatively straightforward, although care must be taken in the purification of 269 as 

tin byproducts are not always easy to remove, especially when the reaction is 

carried out on a larger scale. However, the desired product 266 was obtained, 

which allowed further transformations to be attempted on the side chain at C-3
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[figure 32]. This allowed some progress to be made towards the goal of 

synthesising a potential agonist of serotonin.

Investigation into the optimum conditions for the conversion of benzylamine to 

benzaldehyde, by pyridine N-oxides, concluded that 4-nitropyridine N-oxide 50, 

[figure 19], refluxed in o-xylene for 24 hours, offered the best yield. Other N- 

oxides investigated gave lower yields and there did not appear to be any distinct 

trend in effects due to substituents on the ring.

266 269

Figure 32

NO

o -
50

Figure 19
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As 3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 is the thienopyridine 

required for the desired reaction sequence to a potential agonist of 5-HT, it may be 

of some value to explore other routes to ethyl 2-chloro-3-pyridylacetate 74 

involving methodology that reduces the number of byproducts. Perhaps 

chlorination of a suitable pyrid-2(1H)-one268 may prove productive [equation 129].

,CH2C02Et
POCI,

H

CH2C02Et

Cl

Equation 129

The nucleophilic substitution of the thiomethyl group of 108 and the 

methylsulphonyl group of 256, [figure 33], proved largely unsuccessful, so it would 

be worth attempting to expand upon this reaction by using other nitrogen 

nucleophiles, such as hydrazine, acetamidine or guanidine. This may allow entry 

into novel tricycles. The methodology for substitution with carbon nucleophiles 

requires further exploration in order to develop suitable reaction conditions. The 

scope could then be expanded to other reagents; for example, ethyl acetoacetate 

or malononitrile.

Figure 33

It is disappointing that a thieno[2,3-b]pyridine analogue of 5-HT could not be 

synthesised. Nevertheless a number of novel thieno[2,3-b]pyridines were 

prepared on route. Although the thiomethyl group has been successfully removed 

from 108, with TBTH, the toxicity of organostannanes necessitates special
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handling in their disposal, and problems with product purification were found. 

Other reagents, such as chlorodiphenylsilane,533 tris(trimethylsilyl)silane,534 and 

silylated cyclohexadienes535 are now becoming available as replacements for tin 

hydrides in many transformations and it would be useful to investigate the 

effectiveness of these reagents. Further reactions of the side chain at C-3 to 

convert it into the required aminoethyl moiety need to be explored. Direct 

halogenation prior to reaction with cyanide is a possibility, and the tosylation 

reactions require further study. Mesylation or triflation of the alcohol could also be 

investigated. There is also the matter of the introduction of a hydroxy group at C-5 

that should theoretically be possible as nitration446 at this position has been 

reported. Subsequent reduction of the nitro group and diazotisation followed by 

replacement with a hydroxy group should achieve this.

Alternatively, other routes are possible as there are many preparative routes to 

thieno[2,3-b]pyridine 89. One possible scheme, starting with thieno[2,3-b]pyridine 

89 would be, N-oxidation, followed by nitration in acetic acid leading to substitution 

at C-5. This could be readily converted to a hydroxy group, by reduction, 

diazotisation and hydrolysis. After protection of the OH, bromination at C-3 

followed by lithiation would allow substitution with suitably protected 2- 

bromoethylamine [scheme 92].
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BrCH2CH2NHBoc

Scheme 92

The conversion of benzylamine to benzaldehyde facilitated by a pyridine N-oxide 

is ripe for further exploration. The scope of this reaction could be expanded upon 

in terms of both the N-oxides and amines employed and may prove a useful new
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method of affecting this transformation. Not only substituted benzylamines but 

also some aliphatic amines should be considered, particularily in the presence of 

other reactive functional groups to gauge the selectivity of the reaction.
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Melting points were determined using an Electrothermal melting point apparatus 

and are uncorrected. Infrared spectra were recorded on either a Perkin-Elmer 

1600 FT-IR or a Perkin-Elmer Paragon spectrophotometer. Pmr spectra were 

recorded on a Jeol PMX 60i or a Bruker AMX 360 spectrometer. Column 

chromatography was performed using pressurised short path columns with 

Kieselgel 60, particle size < 0.063 mm (Merck No. 7729) and reactions were 

monitored with Merck DC-Alufoilien 60 F254 (Merck No. 5554) which were 

visualised by ultraviolet irradiation. Glaxo of Montrose and Warwick Analytical 

Services provided microanalysis. All chemicals, except where otherwise stated 

were purchased from Aldrich Chemical Company and were used without further 

purification.

5.1 N-oxidation of pyridines 207, 209-211 with peracetic acid; general procedure, 

ethyl 3-pyridylacetate 207 as an example

Ethyl 3-pyridylacetate 207 (1 g) was dissolved in glacial acetic acid (30 ml) and 

30% hydrogen peroxide (3 ml) added. The reaction was stirred at 70 °C for 7 

days. Activated charcoal (0.5 g) was added to destroy any excess peroxide 

(tested with starch/iodide paper) and the solution was filtered through Celite before 

removing the solvent in vacuo. The resulting oil was chromatographed on silica 

gel with ethyl acetate as eluant to afford ethyl 3-pyridylacetate N-oxide 70; (0.76 g, 

69%), mp 96-98 °C (literature11 97-98 °C). From 3-methylpyridine 209, 3- 

methylpyridine N-oxide 272; (1.10 g, 94%), bp 120 °C /4 mm Hg (literature536 146- 

149 °C / 15 mm Hg). From 3-ethylpyridine210, 3-ethylpyridine N-oxide; (0.74 g,
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64%), bp 100 °C / 4 mm Hg (literature190 125-126 °C / 15 mm Hg). From 

nicotinamide 211, nicotinamide N-oxide 78; (0.84 g, 74%), mp 291-292 °C 

(literature637 291-293 °C).

5.2 N-oxidation of pyridines 207, 209-211 with OXONE451; general procedure, 

ethyl 3-pyridylacetate 207 as an example

Ethyl 3-pyridylacetate 207 (1 g) was added to a vigorously stirred suspension of 

wet alumina (2 g), (prepared451 by adding 10 ml of water to 50 g of Brockman 

grade alumina [200 mesh] and shaking until a free flowing powder was obtained) 

and Oxone (1 eq.) in dichloromethane (20 ml). The reaction mixture was refluxed 

for 3 hours, cooled and the solids filtered and washed with dichloromethane. The 

filtrate was evaporated to afford an oil which was chromatographed on silica gel 

with ethyl acetate as eluant to afford ethyl 3-pyridylacetate N-oxide 70; (0.55 g, 

50%), mp 96-98 °C (literature11 97-98 °C). From 3-methylpyridine 209, 3- 

methylpyridine N-oxide 272; (0.58 g, 50%), bp 120 °C / 4 mm Hg (literature536 146- 

149 °C / 15 mm Hg). From 3-ethylpyridine 210, 3-ethylpyridine N-oxide; (0.60 g, 

52%), bp 100 °C / 4 mm Hg (literature190 125-126 °C / 15 mm Hg). From 

nicotinamide 211, nicotinamide N-oxide 78; (0.59 g, 52%), mp 290-292 °C 

(literature537 291-293 °C).
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5.3 N-oxidation of pyridines 207, 209-211 with sodium perborate monohydrate22; 

general procedure, ethyl 3-pyridylacetate 207 as an example

Ethyl 3-pyridylacetate 207 (1 g) was dissolved in glacial acetic acid (20 ml) and 

sodium perborate monohydrate (1.5 eq.) added. The reaction mixture was heated 

at 60 °C for 24 hours, filtered and the solvent removed in vacuo. The resulting oil 

was flooded with acetone and filtered once more. The solution was dried over 

magnesium sulphate, filtered and the solvent evaporated to give a crude product. 

Chromatography on silica gel eluting with ethyl acetate gave ethyl 3-pyridylacetate 

N-oxide 70; (0.80 g, 73%), mp 96-97 °C (literature11 97-98 °C). From 3- 

methylpyridine 209, 3-methylpyridine N-oxide 272; (0.90 g, 77%), bp 120 °C / 4 

mm Hg (literature536 146-149 °C / 15 mm Hg). From 3-ethylpyridine 210, 3- 

ethylpyridine N-oxide; (0.79 g, 69%), bp 100 °C / 4 mm Hg (literature190 125-126 

°C /15 mm Hg). From nicotinamide 211, nicotinamide N-oxide 78; (0.59 g, 52%), 

mp 291-293 °C (literature537 291-293 °C).

5.4 N-oxidation of pyridines 207, 209-211 with OXONE and acetone (dimethyl 

dioxirane 26)71; general procedure, ethyl 3-pyridylacetate 207 as an example

Oxone (30 mmol) in water (100 ml) was added dropwise, with constant stirring, to 

a mixture of ethyl 3-pyridylacetate 207 (12.6 mmol), acetone (5 ml) and phosphate 

buffer (50 ml). Potassium hydroxide solution (1 M) was added as required to 

maintain the pH at 7.5 -  8.0. The mixture was stirred for 2 hours, extracted with 

dichloromethane, dried over magnesium sulphate and the solvent removed in
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vacuo. Chromatography on silica gel, eluting with ethyl acetate afforded ethyl 3- 

pyridylacetate N-oxide 70; (7.12 mmol, 57%), mp 96-98 °C (literature11 97-98 °C). 

From 3-methylpyridine 209, 3-methylpyridine N-oxide 272; (2.93 mmol, 23%), bp 

120 °C / 4 mm Hg (literature536 146-149 °C /15 mm Hg). From 3-ethylpyridine 210

3-ethylpyridine N-oxide; (6.50 mmol, 52%), bp 100 °C /4 mm Hg (literature190 125- 

126 °C / 15 mm Hg). From nicotinamide 211, nicotinamide N-oxide 78; (0.07 

mmol, 1%), mp 291-292 °C (literature537 291-293 °C).

5.5 N-oxidation of ethyl 3-pyridylacetate 207 with m-CPBA; method A456

Ethyl 3-pyridylacetate 207 (0.50 g, 3 mmol) was stirred in dichloromethane at room 

temperature and m-CPBA (70%, 3.3 mmol) was added portionwise. The reaction 

mixture was stirred for 1 hour and extracted with aqueous sodium metabisulphite 

(10% w/v). The organic phase was then washed with saturated sodium 

bicarbonate followed by brine. The aqueous washings were combined and 

extracted with dichloromethane. All organic fractions were combined, dried with 

magnesium sulphate and concentrated. Chromatography on silica gel, eluting with 

ethyl acetate, afforded Ethyl 3-pyridylacetate N-oxide 70; (0.37 g, 68%), mp 96-98 

°C (literature11 97-98 °C).
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5.6 N-oxidation of pyridines 207, 209-211 with m-CPBA457; method B general 

procedure, ethyl 3-pyridylacetate 207 as an example

Ethyl 3-pyridylacetate 207 (1.0 g) was stirred in dichloromethane at room 

temperature and m-CPBA acid (70%; 1.1 eq.) was added portionwise. The 

reaction mixture was stirred for 1 hour and the excess oxidising agent was 

destroyed by the careful addition of solid sodium metabisulphite. The mixture was 

filtered and solid potassium carbonate was added to neutralise m-CBA, 

subsequently dried over magnesium sulphate and all solids removed by filtration. 

The solvent was removed in vacuo to give a solid that on recrystallisation from 

toluene gave ethyl 3-pyridylacetate N-oxide 70; (1.03 g, 93%), mp 96-98 °C 

(literature11 97-98 °C). From 3-methylpyridine 209, 3-methylpyridine N-oxide 272; 

(0.98 g, 84%), bp 120 °C / 4 mm Hg (literature536 146-149 °C /15 mm Hg). From 

3-ethylpyridine 210, 3-ethylpyridine N-oxide; (0.95 g, 83%), bp 100 °C / 4 mm Hg 

(literature190 125-126 °C / 15 mm Hg). From nicotinamide 211, nicotinamide N- 

oxide 78; (0.79 g,70%), mp 291-292 °C (literature537 291-293 °C).

5.7 Reaction of ethyl 3-pyridylacetate N-oxide 70 with phosphorus oxychloride260

Ethyl 3-pyridylacetate N-oxide 70 (20 g, 110 mmol) was added in portions with 

constant stirring to phosphorus oxychloride (100 ml) in a round bottom flask. The 

solution was refluxed for 3 hours and the phosphorus oxychloride removed in 

vacuo. The residue was poured onto ice (100 g) and cautiously made alkaline 

with ammonium hydroxide solution (2M) then extracted with ethyl acetate (3 x 50
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ml). The extracts were combined, dried over magnesium sulphate and the solvent 

evaporated to give a brown oil (11.7 g) that was chromatographed on silica gel 

using petroleum ether/ethyl acetate as eluant. The first compound obtained as a 

pale yellow oil was ethyl 2-chloro-5-pyridylacetate 72; ^ ^ . C H 2C02Et

(1.25 g, 5.7%), bp 135 °C / 4 mm Hg (literature260 75 I ^
cr N

°C / 0.2 mbar); vmax(filrn)/crrf1 2982, 1732; 5H(CDCI3) 72

1.24(3H, t, J=7.2 Hz, CH3), 3.58(2H, s, CH2C02), 4.14(2H, q, J=7.2 Hz, C02CH2), 

7.30(1 H, d, J=8.0 Hz, H-4), 7.58(1 H, dd, J=8.0 & 2.4 Hz, H-3), 8.26(1 H, d, J=2.4 

Hz, H-6).

Next eluted was the remaining ethyl 2-chloro-5-pyridylacetate 72 together with 

ethyl 2-chloro-3-pyridylacetate 74 as an inseparable mixture (6.06 g).

Third was the remaining ethyl 2-chloro-3- 

pyridylacetate 74 (1.81 g, 8.3%), bp. 135 °C / 4 mm 

Hg (literature260 85 °C / 0.5 mbar); vmax(film)/cm'1 

2983, 1735; 5H(CDCI3) 1.26(3H, t, J=7.2 Hz, CH3), 3.72(2H, s, CH2C02), 4.16(2H, 

q, J=7.2 Hz, C02CH2), 7.16(1H, dd, J=7.2 &4.8 Hz, H-5), 7.62(1H, dd, J=7.2 & 2.4 

Hz, H-4), 8.26(1 H, dd, J=4.8 &2.4 Hz, H-6).

Finally ethyl 4-chloro-3-pyridylacetate 76 (2.28 g, 

10.4%), No boiling point was obtained due to 

decomposition260; vmax(film)/crrf1 2982, 1737;

5h(CDCI3) 1.24(3H, t, J=7.2 Hz, CH3), 3.72(2H, s,

Cl

N
76

CH2C02Et
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CH2CO2), 4.14(21-1, q, J=7.2 Hz, C02CH2), 7.26(1 H, d, J=4.8 Hz, H-5), 8.38(1 H, d

J=4.8 Hz, H-6), 8.54(1 H, s, H-2).

5.8 N-oxidation of mixture of ethyl 2-chloro-5-pyridvlacetate 72 and ethyl 2-chloro- 

3-pyridylacetate 74457

m-CPBA (50%) (5.07g, 20 mmol) was added to a solution of ethyl 2-chloro-5- 

pyridylacetate 72 and ethyl 2-chloro-3-pyridylacetate 74 (2.93 g, 17 mmol) in 

chloroform (50 ml). The reaction mixture was stirred at room temperature for 18 

hours. Excess oxidising agent was destroyed by the addition of solid sodium 

metabisulphite (monitored by starch/iodide paper). Solid potassium carbonate 

was then added and insoluble materials removed at the pump. The filtrate was 

dried over magnesium sulphate and the solvent removed in vacuo to give a yellow 

oil which was chromatographed on silica gel. Elution with petroleum ether/ethyl 

acetate gave first unreacted starting materials ethyl 2-chloro-5-pyridylacetate 72 

and ethyl 2-chloro-3-pyridylacetate 74 (0.83 g, 28%).

Further elution gave ethyl 2-chloro-5-pyridylacetate N-oxide261 212 (0.84 g, 23%) 

as a white solid, mp 59-60 °C; vmax(KBr)/cm'1 3075, CH2C02Et

3010, 2950, 1735, 1250; 6H(CDCI3) 1.24(3H, t, J=6

Hz, CH3), 3.74(2H, s , CH2C02), 4.14(2H, q, J=6 Hz, ^ -

CO2CH2), 7.08(1H, s, H-4), 7.14(1H, s, H-3), 8.18 212

(1H, s, H-6); (Found458: C, 49.8;H, 4.8; N, 6.5. C9Hi0CINO3 requires C, 50.1; H

O “ 
212

4.7; N, 6.5%), MS m/z 216/218 (M+H).
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Finally eluted was 2-chloro-3-pyridylacetate N-oxide261 213 (0.90 g, 24%) as a 

white solid, mp 104-105 °C; vmax(KBr)/cm'1 3050, 2975, 1734, 1205; 5h(CDCI3) 

1.2(3H, t, J=6 Hz, CH3), 3.47(2H, s , CH2C02),

4.03(2H, q, J=6 Hz, C02CH2), 6.99(1 H, dd, J=8&2 

Hz, H-4), 7.25(1 H, d, J=8 Hz, H-5), 8.07(1 H, dd,

J=8&2 Hz, H-6); (Found458: C, 49.8; H, 4.5; N, 6.4.

C9H10CINO3 requires C, 50.1; H, 4.7; N, 6.5%), MS m/z 216/218 (M+H).

5.9 N-oxidation of mixture of ethyl 2-chloro-5-pvridylacetate 72 and ethyl 2-chloro- 

3-pyridylacetate 74 in the presence of sulphuric acid32

n?-CPBA (50%) (12.3 g, 50 mmol) was added to a solution of ethyl 2-chloro-5- 

pyridylacetate 72 and ethyl 2-chloro-3-pyridylacetate 74, (9.58g, 48 mmol) and 

concentrated sulphuric acid (1 ml) in chloroform (100 ml). The reaction mixture 

was stirred at room temperature for 18 hours. Excess oxidising agent was 

destroyed by the addition of solid sodium metabisulphite (monitored by 

starch/iodide paper). Solid potassium carbonate was then added and insoluble 

materials removed at the pump. The filtrate was dried over magnesium sulphate 

and the solvent removed in vacuo to give a yellow oil which was chromatographed 

on silica gel. Elution with petroleum ether/ethyl acetate gave first unreacted 

starting materials ethyl 2-chloro-5-pyridylacetate 72 and ethyl 2-chloro-3- 

pyridylacetate 74 (1.3 g, 12.5%).

Further elution gave ethyl 2-chloro-5-pyridylacetate N-oxide 212 (3.09 g, 30%) as 

a white solid, identical (ir, mp) to an authentic sample previously prepared.

CH2C02Et

N + Cl
I

O "
213
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Finally eluted was 2-chloro-3-pyridylacetate N-oxide 213 (3.20 g, 31%) as a white 

solid, again identical (ir, mp) to an authentic sample prepared previously.

5.10 Reaction of ethyl 2-chloro-5-pyridvlacetate N-oxide 212 with phosphorus 

tribromide105

Phosphorus tribromide (2 ml, 21 mmol) was added dropwise to a solution of ethyl

2-chloro-5-pyridylacetate N-oxide 212 (2.88 g, 13 mmol) in DMF (25 ml) at 0 °C. 

The reaction mixture was stirred for 1 hour then poured into ice cold saturated 

sodium bicarbinate solution (25 ml) and extracted with ethyl acetate (3 x 25 ml). 

The combined organic extracts were washed with brine then dried over 

magnesium sulphate. The solvent was removed in vacuo to give ethyl 2-chloro-5- 

pyridylacetate 72 as a colourless oil (2.78 g, 96%), which was identical (ir, tic) with 

a genuine sample prepared previously.

5.11 Reaction of ethyl 2-chloro-3-pyridvlacetate N-oxide 213 with phosporus 

tribromide105

Phosphorus tribromide (0.6 ml, 6.4 mmol) was added dropwise to a solution of 

ethyl 2-chloro-3-pyridylacetate N-oxide 213 (1.17 g, 5.4 mmol) in DMF (25 ml) at 

0 °C. The reaction mixture was stirred for 1 hour then poured into saturated 

sodium bicarbonate solution (25 ml) and extracted with ethyl acetate (3 x 25 ml). 

The combined organic extracts were washed with brine then dried over 

magnesium sulphate. The solvent was removed in vacuo to give ethyl 2-chloro-3-
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pyridylacetate 74 as a colourless oil (0.86 g, 74%) that was identical (ir, tic) to a 

genuine sample prepared previously.

5.12 N-oxidation of ethyl 4-chloro-3-pyridvlacetate 76457

m-CPBA (50%) (5.9 g, 34 mmol) was added to a solution of ethyl 4-chloro-3- 

pyridylacetate 76 (1.7 g, 8.5 mmol) in chloroform (50 ml). The solution was stirred 

at room temperature for 4 hours. Excess oxidising agent was destroyed by the 

addition of solid sodium metabisulphite (monitored by starch/iodide paper). Solid 

potassium carbonate was then added and insoluble materials removed at the 

pump. The filtrate was dried over magnesium sulphate and the solvent removed 

in vacuo to give ethyl 4-chloro-3-pyridylacetate261 214 (1.28 g, 70%) as a white 

solid after recrystallisation from ethyl acetate. Mp 110-112 °C; vmax(KBr)/cm'1

3040, 2955, 1734, 1245; SH(CDCI3) 1.25(3H, t, J=7 

Hz, CH3), 3.60(2H, s , CH2C02), 4.20(2H, q, J=7 Hz, 

C02CH2), 7.25(1 H, d, J=6 Hz, H-5), 8.03(1 H, dd, 

J=6&2 Hz, H-6), 8.15(1 H, d, J=2 Hz, H-2); (Found458: 

C, 50.0; H, 4.9; N, 6.5. C9Hi0CINO3 requires C, 50.1; 

H, 4.7; N, 6.5%), MS m/z 216/218 (M+H).

Cl

N +

CH2C02Et

O '  
214

5.13 Reaction of ethyl 2-chloro-5-pvridylacetate N-oxide 212 with phosphorus 

oxychloride

Ethyl 2-chloro-5-pyridylacetate N-oxide 72 (4.78 g, 22 mmol) was added in 

portions with constant stirring to phosphorus oxychloride (75 ml) in a round bottom
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flask. The solution was refluxed for 3 hours and the phosphorus oxychloride 

removed in vacuo. The residue was poured onto ice (100 g) and cautiously made 

alkaline with ammonium hydroxide solution (2M) and extracted with ethyl acetate 

(3 x 50 ml). The extracts were combined, dried over magnesium sulphate and the 

solvent evaporated to give ethyl 2,6-dichloro-3-pyridylacetate 215 (3.02 g, 58%) as 

a colourless oil after distillation at reduced ' C02Et

3.9; N, 6.0%), MS m/z 234/236 (M+H).

5.14 N-Oxidation of ethyl 2,6-dichloro-3-pyridvlacetate 215 with m-CPBA and 

sulphuric acid

m-CPBA (70%) (2.2 g, 9 mmol) was added to a solution of ethyl 2,6-dichloro-3- 

pyridylacetate 215 (2.0 g, 8.5 mmol) and concentrated sulphuric acid (1 ml) in 

chloroform (50 ml). The reaction mixture was stirred at room temperature for 18 

hours. Excess oxidising agent was destroyed by the addition of solid sodium 

metabisulphite (monitored by starch/iodide paper). Solid potassium carbonate 

was then added and insoluble materials removed at the pump. The filtrate was 

dried over magnesium sulphate and the solvent removed in vacuo to give a yellow 

oil (1.80 g, 90.1% recovered) which was identical, (tic ir), to the starting material 

ethyl 2,6-dichloro-3-pyridylacetate 215.

Bp 140 °C at 3 mbar; vmax(film)/cm'1 298

6h(CDCI3) 1.25 (3H, t, J=7.2 Hz, CH3), 3.69(2H, s 215

CH2C02), 4.15(2H, q, J=7.2 Hz, C02CH2), 7.18(1H, d, J=8 Hz, H-5), 7.58(1H, d 

J=8 Hz, H-4); (Found458: C, 46.1; H, 3.8; N, 6.2. C9H9CI2NO2 requires C, 46.2; H
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5.15 N-Oxidation of ethyl 2,6-dichloro-3-pyridvlacetate 215 with trifluoroperacetic 

acid

A mixture of ethyl 2,6-dichloro-3-pyridylacetate 215 (2.0 g, 8.5 mmol) and 

hydrogen peroxide (30%) (5 ml) in trifluoroacetic acid (25 ml) were heated at 90 °C 

for 16 hours with stirring. Carbon was added to destroy any excess oxidising 

agent (monitored with starch/iodide paper). The suspension was filtered and the 

solvent removed in vacuo to give 2,6-dichloro-3-pyridylacetic acid N-oxide 216 

(1.05 g, 56%) as a white solid after recrystallisation <" LJ C02H

37.9; H, 2.3; N, 6.3%).

5.16 Esterification of 2,6-dichloro-3-pvridylacetic acid N-oxide 216

2,6-Dichloro-3-pyridylacetic acid N-oxide 216 (0.56 g, 2.5 mmol) was dissolved in 

ethanol (10 ml) and one drop of concentrated sulphuric acid added. The mixture 

was refluxed for 7 hours, then the solvent removed in vacuo. The residue was 

dissolved in ethyl acetate and washed with saturated sodium bicarbonate solution, 

water then brine. The organic solution was dried over magnesium sulphate and 

the solvent removed to give ethyl 2,6-dichloro-3-pyridylacetate N-oxide 217 (0.40 

g, 64.5%) as white needles after recrystallisation from ethyl acetate. Mp 123-125

from methanol. Mp 140-142 °C; vmax (KBr) /cm'1

2926, 1710, 1262; 5H(CDCI3) 3.74(2H, s, CH2C02), CD-
216

7.28(1 H, d, J=8 Hz, H-5), 7.67(1 H, d, J=8 Hz, H-4),

10.91(1 H, s, C02H); (Found459: C, 40.1; H, 2.4; N, 6.5. C7H5CI2N03 requires C
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C, vmax(KBr)/cm'1 3087, 3048, 2985, 2932, 1721 CH2C02Et

1280; Sh(CDCI3) 1.30(3H, t, J=7.12 Hz, CH3)
Cl

3.81(2H, s, CH2C02), 4.24(2H, q, J=7.12 Hz O '
217

CO2CH2), 7.18(1H, d, J=8.3 Hz, H-4), 7.47(1 H, d

J=8.3 Hz, H-5); (Found459: C, 43.1; H, 3.6; N, 5.5. C9H9CI2N03 requires C, 43.2; H, 

3.6; N, 5.6%).

5.17 Reaction of ethyl 216-dichloro-3-pyridvlacetate N-oxide 217 with phosphorus 

oxychloride

Ethyl 2,6-dichloro-3-pyridylacetate N-oxide 217 (0.5 g, 2 mmol) was added in 

portions to phosphorus oxychloride (25 ml) in a 50 ml round bottom flask fitted with 

a condenser. The solution was refluxed for 3 hours and the excess phosphorus 

oxychloride removed in vacuo. The resulting oil was poured onto ice (100 g), 

neutralised with dilute ammonia solution and extracted with ethyl acetate (3 x 50 

ml). The extracts were combined, dried with magnesium sulphate and the solvent 

evaporated to give ethyl 2,4,6-trichloro-3-pyridylacetate 218 as a pale pink oil 

(0.44 g, 82%). No boiling point or microanalysis was

1 Clrecorded due to decomposition. YMAx(film)/cm

CH3), 3.93(2H, s , CH2C02), 4.20(2H, q, J=7.2 Hz

3057, 2968, 1732; 6H(CDCI3) 1.27(3H, t, J=7.2 Hz,

218

C02CH2), 7.38(1 H,s, H-5).
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5.18 Reaction of ethyl 4-chloro-3-pyridvlacetate N-oxide 76 with phosphorus 

oxychloride

Ethyl 4-chloro-3-pyridylacetate N-oxide 76 (2.7 g, 12.5 mmol) was added in 

portions with constant stirring to phosphorus oxychloride (75 ml) in a round bottom 

flask. The solution was refluxed for 3 hours and the phosphorus oxychloride 

removed in vacuo. The residue was poured onto ice (100 g) and cautiously made 

alkaline with ammonium hydroxide solution (2M) and extracted with ethyl acetate 

(3 x 50 ml). The extracts were combined, dried over magnesium sulphate and the 

solvent evaporated to give a colourless oil (1.8 g) after distillation at reduced 

pressure (112-115 °C at 2 mbar). vmax(film)/cm'1 2983, 1738; 8h(CDCI3) 1.19(6H, t, 

J=7.2 Hz, CH3), 3.68(2H, s , CH2C02), 3.93(2H, s , CH2C02), 4.11(2H, q, J=7.2 Hz, 

C02CH2), 4.13(2H, q, J=7.2 Hz, C02CH2), 7.25(1H, d, J=7.1 Hz, H-5#), 7.34(1H, s, 

H-3*), 8.15(1H, d, J=7.1 Hz, H-6#), 8.21(1H, s, H-6*).

(The symols * and # are used to indicate signals due to different isomers which 

were inseparable).

Therefore:

5.19 N-oxidation of inseparable mixture with m-CPBA and sulphuric acid

The oil (1.25 g) was dissolved in chloroform and m-CPBA (50%) (2.02 g, 5.9 

mmol) added in portions followed by concentrated sulphuric acid (1 ml). The 

reaction mixture was stirred at room temperature for 4 days. Excess oxidising 

agent was destroyed by the addition of solid sodium metabisulphite (monitored by 

starch/iodide paper). Solid potassium carbonate was then added and insoluble
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materials removed at the pump. The filtrate was dried over magnesium sulphate 

and the solvent removed in vacuo to give a yellow oil (1.14 g) that was 

chromatographed on silica gel. Elution with petroleum ether/ethyl acetate gave 

ethyl 2,4-dichloro-5-pyridylacetate N-oxide 221 (0.31 g, 23%) after recrystallisation 

from ethyl acetate. Mp 88-90 °C; vmax(KBr)/cm'1 

3094, 3033, 2992, 2933,1732, 1273; 5H(CDCI3)

1.28(3H, t, J=7.2 Hz, CH3), 3.65(2H, s, CH2C02),

4.18(2H, q, J=7.2 Hz, C02CH2), 7.52(1H, s, H-3),

8.28(1 H,s, H-6); (Found459: C, 43.1; H, 3.6; N, 5.5.

C9H9CI2N03 requires C, 43.2; H, 3.6; N, 5.6%).

Cl

CH2C02Et

Further elution afforded ethyl 2,4-dichloro-3-pyridylacetate N-oxide 222 (0.35 g, 

26%) as a white crystalline solid after recrystallisation with ethyl acetate. Mp 77- 

78 °C, vmax(KBr)/cm'1 3050, 2985, 1733, 1282; Cl

5h(CDCI3) 1.35(3H, t, J=7.1 Hz, CH3), 4.09(2H, s, 

CH2C02), 4.30(2H, q, J=7.1 Hz, C02CH2), 7.37(1 H, 

d, J=7.1 Hz, H-5), 8.35(1 H, d, J=7.1 Hz, H-6);

CH2C02Et

Cl
0 "

222

(Found459: C, 43.1; H, 3.5; N, 5.4. C9H9CI2N03 requires C, 43.2; H, 3.6; N, 5.6%).

5.20 Reaction of ethyl 2,4-dichloro-5-pyridvlacetate N-oxide 221 with phosphorus 

tribromide

Phosphorus tribromide (0.2 ml, 6.4 mmol) was added dropwise to a solution of 

ethyl 2,4-dichloro-5-pyridylacetate N-oxide 221 (0.16 g, 0.6 mmol) in DMF (25 ml)
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at 0 °C. The reaction mixture was stirred for 1 hour then poured into saturated 

sodium bicarbonate solution (25 ml) and extracted with ethyl acetate (3 x 25 ml). 

The combined organic extracts were washed with brine then dried over 

magnesium sulphate. The solvent was removed in vacuo to give ethyl 2,4- 

dichloro-5-pyridylacetate 219 (0.06g, 41%) as a colourless oil after distillation at 

reduced pressure. Bp 105 °C at 2 mbar, vmax(filnn)/cm'1 3087, 2982, 2932, 1737; 

6h(CDCI3) 1.24(3H, t, J=7.2 Hz, CH3), 3.84(2H, s, Cl

CH2C02), 4.10(2H, q, J=7.2 Hz, C02CH2), 7.56(1H, 

s, H-3), 8.36(1 H, s, H-6); (Found459: C, 46.1; H, 3.9; 

N, 5.8. C9H9CI2NO2 requires C, 46.2; H, 3.9; N, 219

CH2C02Et

6.0%).

5.21 Reaction of ethyl 2,4-dichloro-3-pyridvlacetate N-oxide 222 with phosphorus 

tribromide

Phosphorus tribromide (0.2 ml, 6.4 mmol) was added dropwise to a solution of 

ethyl 2,4-dichloro-3-pyridylacetate N-oxide 222 (0.20 g, 0.8 mmol) in DMF (25 ml) 

at 0 °C. The reaction mixture was stirred for 1 hour then poured into saturated 

sodium bicarbonate solution (25 ml) and extracted with ethyl acetate (3 x 25 ml). 

The combined organic extracts were washed with brine then dried over 

magnesium sulphate. The solvent was removed in vacuo to give ethyl 2,4- 

dichloro-3-pyridylacetate 220 (0.14g, 77%) as a colourless oil after distillation at 

reduced pressure. Bp 110 °C at 2 mbar, vmax(filni)/cm'1 3077, 2982, 2936, 1738;
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5h(CDCI3) 1.22(3H, t, J=7.2 Hz, CH3), 4.0(2H, s, CH- Cl
CH,CO,Et2C02), 4.2(2H, q, J=7.2 Hz, C02CH2), 7.46(1 H, d, . 44

J=4.8 Hz, H-5), 8.25(1 H, d, J=4.8 Hz, H-6); ^ N T ^ C I
220

(Found459: C, 46.3; H, 3.9; N, 5.8. C9H9CI2NO2 
requires C, 46.2; H, 3.9; N, 6.0%).

5.22 Preparation of 3-ethvloxvcarbonvi-2-methvlthiothienof213-b1pyridine 1Q8260

Sodium hydride (0.63 g, 26.4 mmol) was added in portions to a stirred solution of 

ethyl 2-chloro-3-pyridylacetate 74 (2.33 g, 12 mmol) and carbon disulphide (1.0 g,

13.2 mmol) in DMSO (50 ml) under dry nitrogen in a 3-necked round bottom flask. 

The reaction mixture was stirred at room temperature for 1 hour then heated on an 

oil bath at 70 °C for 1.5 hours. After cooling to room temperature, methyl iodide 

(3.75 g, 26.4 mmol) was added and stirring continued for a further hour. The 

reaction mixture was poured onto ice/water (200 ml) and extracted with ethyl 

acetate (3 x 50 ml). The combined extracts were dried over magnesium sulphate 

and the solvent removed in vacuo to give 3-ethyloxycarbonyl-2- 

methylthiothieno[2,3-b]pyridine 108 (1.21 g, 40%) as a pale yellow solid after 

recrystallisation from diethyl ether. Mp 109-110 °C (literature260,261 109-110 °C); 

vmax(KBr)/cm'1 1695; 5H(CDCI3) 1.46(3H, t, J=7.1 Hz, CO.Et

CH3), 2.66(3H, s , SCH3), 4.44(2H, q, J=7.1 Hz,

C02CH2), 7.29(1 H, dd, J=8.26 & 4.65 Hz, H-5), 8.41
108

(1H, dd, J=4.65 & 1.65 Hz, H-4), 8.51 (1H, dd, J=8.26 & 1.65 Hz, H-6).
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5.23 Preparation of 3-ethvloxvcarbonvl-2-methvlthiothienof2,3-blpyridine N-oxide 

223

Sodium hydride (0.24 g, 10 mmol) was added in portions to a stirred solution of 

ethyl 2-chloro-3-pyridylacetate N-oxide 213 (1.0 g, 4.6 mmol) and carbon 

disulphide (0.39 g, 5.1 mmol) in DMSO (25 ml) under dry nitrogen in a 3-necked 

round bottom flask. The reaction mixture was stirred at room temperature for 1 

hour then heated on an oil bath at 70 °C for 1.5 hours. After cooling to room 

temperature, methyl iodide (1.42 g, 10 mmol) was added and stirring continued for 

a further hour. The reaction mixture was poured onto ice/water (200 ml) and 

extracted with ethyl acetate (3 x 50 ml). The combined extracts were dried over 

magnesium sulphate and the solvent removed in vacuo to give 3- 

ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine N-oxide 223 (0.81 g, 65%) as a 

white solid after recrystallisation from ethyl acetate. Mp 158-159 °C; vmax(KBr)/crn'1

3030, 1675, 1240; 5H(CDCI3) 1.48(3H, t, J=7.2 Hz, 

CH3), 2.70(3H, s , SCH3), 4.46(2H, q, J=7.2 Hz, 

C02CH2), 7.36(1 H, dd, J=8.0&6.5 Hz, H-4), 8.22(2H, 

m, H-5 &H-6); (Found458: C, 48.8; H, 4.4; N, 5.2. 

ChHiiN03S2 requires C, 49.0; H, 4.1; N, 5.2%); MS

m/z 270 (M+H).
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5.24 Reaction of 3-ethvloxvcarbonvl-2-methvlthiothienot2,3-b1pvridine N-oxide 223 

with phosphorus tribromide

Phosphorus tribromide (0.2 ml, 6.4 mmol) was added dropwise to a solution of 3- 

ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine N-oxide 223 (0.10 g, 0.37 

mmol) in DMF (25 ml) at 0 °C. The reaction mixture was stirred for 1 hour then 

poured into saturated sodium bicarbonate solution (25 ml) and extracted with ethyl 

acetate (3 x 25 ml). The combined organic extracts were washed with brine then 

dried over magnesium sulphate. The solvent was removed in vacuo to give 3- 

ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 (0.09 g, 96%) after 

recrystallisation from diethyl ether, which was identical (tic, ir, pmr) to a previously 

prepared sample.

5.25 Preparation of 6-chloro-3-ethvloxvcarbonvl-2-methvlthiothienof2,3-b1pyridine 

224

Sodium hydride (0.11 g, 4.7 mmol) was added in portions to a stirred solution of 

ethyl 2,6-dichloro-3-pyridylacetate 215 (0.5 g, 2.1 mmol) and carbon disulphide 

(0.18 g, 2.4 mmol) in DMSO (30 ml) under dry nitrogen in a 3-necked round 

bottom flask. The reaction mixture was stirred at room temperature for 1 hour then 

heated on an oil bath at 70 °C for 1.5 hours. After cooling to room temperature, 

methyl iodide (0.67 g, 4.7 mmol) was added and stirring continued for a further
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hour. The reaction mixture was poured onto ice/water (150 ml) and extracted with 

ethyl acetate (3 x 50 ml). The combined extracts were dried over magnesium 

sulphate and the solvent removed in vacuo to give 6-chloro-3-ethyloxycarbonyl-2- 

methylthiothieno[2,3-b]pyridine 224 (0.08 g, 13%) after recrystallisation from ethyl 

acetate. Mp 103-104 °C; vmax(KBr)/cm'1 2940, 1670; 5H(CDCI3) 1.41(31-1, t, J=7.2

C11H10CINO2S2 requires C, 45.9; H, 3.5; N, 4.9%);

MS m/z 288/290 (M+H).

5.26 Reaction of ethyl 2,4,6-trichloro-3-pyridvlacetate 218 with carbon disulphide, 

sodium hydride and methyl iodide

Ethyl 2,4,6-trichloro-3-pyridylacetate 218 (0.25 g, 0.74 mmol) and carbon 

disulphide (0.06 g, 0.8 mmol) were stirred in DMSO (20 ml) in a round bottom flask 

fitted with a gas inlet tube under dry nitrogen. Sodium hydride (0.04 g, 1.6 mmol) 

was added in portions and the mixture stirred at room temperature for 1 hour, then 

at 70 °C for 1.5 hours. The solution was cooled and methyl iodide (0.23 g, 1.6 

mmol) added and stirring continued for a further 1 hour at room temperature. The 

mixture was poured onto ice (75 g) and extracted with ethyl acetate (3 x 25 ml). 

The extracts were combined, dried with magnesium sulphate, filtered and the 

solvent evaporated to give a brown solid (0.26 g) that was chromatographed on 

silica gel using petroleum ether / diethyl ether as eluant. Separated first was a

Hz, CH3), 2.63(3H, s , SCH3), 4.40(2H, q, J=7.2 Hz, 

C02CH2), 7.20(1 H, d, J=8.0 Hz, H-5), 8.38(1 H, d, 

J=8.0 Hz, H-4); (Found458: C, 45.6; H, 3.6; N, 4.8.

C02Et

224
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white crystalline solid (0.09 g, 37.8%); mp 75-78 °C; YMAx(KBr)/cm' 1 2990, 1694; 

5h(CDCI3) 1.43(3H, t, J=7.14 Hz, CH3), 2.65(3H, s, SCH3), 4.45(2H, q, J=7.14 Hz, 

C02CH2), 7.38(1 H, s, H-5).

Also isolated was a colourless crystalline solid (0.14 g, 58.1%); mp 85-87 °C; 

YMAx(KBr)/cm’1 2989, 1726; 8H(CDCI3) 1.45(3H, t, J=7.16 Hz, CH3), 2.62(3H, s, 

SCH3), 4.48(2H, q, J=7.16 Hz, C02CH2), 7.61(1H, s, H-5).

Spectroscopic analysis could not differentiate between 4,6-dichloro-3- 

ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 225 and 4,6-dichloro-3- 

ethyloxycarbonyl-2-methylthiothieno[3,2-c]pyridine 226. Microanalysis was not 

sought, as it would not clarify the situation.

5.27 Preparation S-ethyloxycarbonyl -̂methylthiothienofS -̂clpyridine 240

Sodium hydride (0.32 g, 13.2 mmol) was added in portions to a stirred solution of 

ethyl 4-chloro-3-pyridylacetate 76 (1.2 g, 6.6 mmol) and carbon disulphide (0.50 g,

6.6 mmol) in DMSO (30 ml) under dry nitrogen in a 3-necked round bottom flask. 

The reaction mixture was stirred at room temperature for 1 hour then heated on an 

oil bath at 70 °C for 1.5 hours. After cooling to room temperature, methyl iodide 

(1.87 g, 13.2 mmol) was added and stirring continued for a further hour. The
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reaction mixture was poured onto ice/water (150 ml) and extracted with ethyl 

acetate (3 x 50 ml). The combined extracts were dried over magnesium sulphate, 

filtered and the solvent removed in vacuo to give 3-ethyloxycarbonyl-2- 

methylthiothieno[3,2-c]pyridine 240 (0.49 g, 37%) after recrystallisation from ethyl 

acetate. Mp 119-120 °C (literature260’ 261 119-120 °C); 

vmax(KBr)/cm'1 1681, 1218; 6H(CDCI3) 1.40(3H, t,

J=7.2 Hz, CH3), 2.70 (3H, s, SCH3), 4.36(2H, q, J=7.2 

Hz, C02CH2), 7.90(1 H, d, J=4.8 Hz, H-7), 8.36(1 H, d,

J=4.8 Hz, H-6), 9.36(1 H, s, H-4).

5.28 Preparation S-ethyloxycarbonyl -̂methylthiothienofS -̂clpyridine N-oxide 241

Sodium hydride (0.48 g, 20 mmol) was added in portions to a stirred solution of 

ethyl 4-chloro-3-pyridylacetate N-oxide 214 (2.0 g, 9.3 mmol) and carbon 

disulphide (0.78 g, 10 mmol) in DMSO (30 ml) under dry nitrogen in a 3-necked 

round bottom flask. The reaction mixture was stirred at room temperature for 1 

hour then heated on an oil bath at 70 °C for 1.5 hours. After cooling to room 

temperature, methyl iodide (2.84 g, 20 mmol) was added and stirring continued for 

a further hour. The reaction mixture was poured onto ice/water (150 ml) and 

extracted with ethyl acetate (3 x 50 ml). The combined extracts were dried over 

magnesium sulphate, filtered and the solvent removed in vacuo to give 3- 

ethyloxycarbonyl-2-methylthiotieno[3,2-c]pyridine N-oxide 241 (1.98 g, 79%) after
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methanol. Mp 221-224 °C; vmax(KBr) 3067, 3033,

2969, 1681, 1221; 5H(CDCI3) 1.38(3H, t, J=7.1 Hz,

CH3), 2.71 (3H, s, SCH3), 4.38(2H, q, J=7.1 Hz,

C02CH2), 8.02(1 H, dd, J=6.9 & 0.66 Hz, H-7),

8.12(1H, dd, J=6.9 & 1.8 Hz, H-6), 8.88(1H, dd,

J=1.8 & 0.66 Hz, H-4); (Found459: C, 48.7; H, 4.2; N, 5.0. CnHnN03S2 requires C, 

49.0; H, 4.1; N, 5.2%).

5.29 Reaction of S-ethyloxycarbonyl -̂methylthiothienofS -̂clpyridine N-oxide 241 

with phosphorus tribromide

Phosphorus tribromide (0.2 ml, 2.1 mmol) was added dropwise to a solution of 3- 

ethyloxycarbonyl-2-methylthiothien[3,2-c]pyridine N-oxide 241 (0.2 g, 0.74 mmol) 

in DMF (25 ml) at 0 °C. The reaction mixture was stirred for 1 hour then poured 

into saturated sodium bicarbonate solution (25 ml) and extracted with ethyl acetate 

(3 x 25 ml). The combined organic extracts were washed with brine, dried over 

magnesium sulphate and filtered. The solvent was removed in vacuo to give 3- 

ethyloxycarbonyl-2-methylthiothieno[3,2-b]pyridine 240 ( 0.16 g, 83%) as a white 

solid after recrystallisation from ethyl acetate, which was identical (mp, ir, pmr) to a 

previously prepared sample.
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5.30 Preparation of 3-ethvloxvcarbonvl-2-benzvlthiothieno[3.2-c1pyridine N-oxide 

242

Sodium hydride (0.24 g, 10 mmol) was added in portions to a stirred solution of 

ethyl 4-chloro-3-pyridylacetate N-oxide 214 (1.0 g, 4.6 mmol) and carbon 

disulphide (0.38 g, 5 mmol) in DMSO (30 ml) under dry nitrogen in a 3-necked 

round bottom flask. The reaction mixture was stirred at room temperature for 1 

hour then heated on an oil bath at 70 °C for 1.5 hours. After cooling to room 

temperature, benzyl bromide (1.71 g, 10 mmol) was added and stirring continued 

for a further hour. The reaction mixture was poured onto ice/water (150 ml) and 

extracted with ethyl acetate (3 x 50 ml). The combined extracts were dried over 

magnesium sulphate, filtered and the solvent removed in vacuo to give 3- 

ethyloxycarbonyl-2-benzylthiothieno[3,2-c]pyridine N-oxide 242 (1.26 g, 79%) after 

recrystallisation from methanol. Mp 169-170 °C;
SCH2Ph

Vmax(KBr) 3131,2978,1690,1223; 6H(CDCI3) 1.40(3H

t, J=7.2 Hz, CH3), 4.34(2H, q, J=7.2 Hz, C02CH2)

4.36(2H, s, SCH2), 7.34(5H, s , C6H5), 7.74(1 H, d,

J=7.2 Hz, H-7), 8.02(1 H, dd, J=7.2 & 2.4 Hz, H-6), 

8.94(1 H, d, J=2.4 Hz, H-4); (Found459: C, 58.0; H,

O  "  

242

4.3; N, 3.9. Ci7Hi5N03S2 requires C, 59.1; H, 4.4; N,4.1%).
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5.31 Reaction of 3-ethvloxvcarbonvl-2-benzvlthiothienor3.2-c1pyridine N-oxide 242 

with phosphorus tribromide

Phosphorus tribromide (0.6 ml, 6.4 mmol) was added dropwise to a solution of 3- 

ethyloxycarbonyl-2-benzylylthiothien[3,2-c]pyridine N-oxide 242 (0.2 g, 0.58 

mmol) in DMF (25 ml) at 0 °C. The reaction mixture was stirred for 1 hour then 

poured into saturated sodium bicarbonate solution (25 ml) and extracted with ethyl 

acetate (3 x 25 ml). The combined organic extracts were washed with brine, dried 

over magnesium sulphate and filtered. The solvent was removed in vacuo to give

3-ethyloxycarbonyl-2-benzylthiothieno[3,2-c]pyridine 243 (0.08 g, 42%) as a white 

solid after recrystallisation from ethyl acetate. Mp 99-101 °C; vmax(KBr)/cm'1 3070, 

2972, 1683;8h(CDCI3) 1.44(3H, t, J=7.2 Hz, CH3),

4.24(2H, s, SCH3), 4.40(2H, q, J=7.2 Hz, C02CH2),

7.26(5H, m, C6H5), 7.46(1 H, d, J=6.0 Hz, H-7),

8.30(1 H, d, J=6.0 Hz, H-6), 9.44(1 H, s, H-4);

(Found459: C, 61.9; H, 4.6; N, 4.2. Ci7Hi5N02S2 
requires C, 62.0; H, 4.6; N, 4.2%).

5.32 Reaction of 2-chloro-5-cvanomethvlpyridine 73 with carbon disulphide and 

ethyl chloroacetate

2-Chloro-5-cyanomethylpyridine 73 (2.0 g, 13.1 mmol) and carbon disulphide (1.1 

g, 14.4 mmol) were dissolved in DMSO (40 ml) in a 2-neck round bottom flask 

fitted with a gas inlet tube under dry nitrogen and sodium hydride (0.66 g, 27.5
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mmol) added in portions with constant stirring. The mixture was stirred for 2 hours 

then ethyl chloroacetate (3.38 g, 27.5 mmol) added and stirring continued for 

another hour, then poured onto ice (100 g) and extracted with ethyl acetate (3 x 50 

ml). The extracts were combined, dried with magnesium sulphate, filtered and the 

solvent evaporated to give a pale yellow oil (4.46 g). The oil was 

chromatographed on silica gel using petroleum ether / ethyl acetate to give first 2- 

chloro-5-(3-amino-2-ethyloxycarbonyl-5-ethyloxycarbonylmethylthio-4-thienyl) 

pyridine 246 (0.26 g, 5%) as a pale yellow 

solid. Mp 101-102 °C; Ymax(KBr)/cirf1 3447,

3343, 2967, 1724, 1661; 5H(CDCI3) 1.17(3H, t,

J=7.2 Hz, CH3), 1.26(3H, t, J=7.2 Hz, CH3),

3.46(2H, s, SCH2), 4.02(2H, q, J=7.2 Hz,

C02CH2), 4.18(2H, q, J=7.2 Hz, C02CH2), 5.36(2H, s, NH2), 7.30(1H, d, J=8.4 Hz, 

H-5), 7.64(1 H, dd, J=8.4 & 2.4 Hz, H-4), 8.26(1 H, d, J=2.4 Hz, H-2); (Found458: C, 

48.1; H, 4.2; N, 6.9. C16H17CIN2O4S2 requires C, 47.9; H, 4,3; N, 7.0%); MS m/z 

401/403 (M+H).

Eluted second was 2-chloro-5-(1-cyano-2,2-di[ethyloxycarbonylmethylthio]-1- 

vinyl)pyridine 247 (3.07 g, 58.4%) as a colourless oil. Bp (decomp); Ymax(film)/cm'1 
2982, 2209, 1736; 8H(CDCI3) 1.28(3H, t, J=7.2 Hz, CH3), 1.32(3H, t, J=7.2 Hz, 

CH3), 3.72(2H, s , SCH2), 3.80(2H, s , SCH2), 4.16(2H, q, J=7.2 Hz, C02CH2),

222



Experimental

4.20(2H, q, J=7.2 Hz, C02CH2), 7.33(1 H, d CN

J=8.4 Hz, H-5), 7.85(1 H, dd, J=8.4 & 2.4 Hz, H-
SCH2C02Et

4), 8.52(1 H, d, J=2.4 Hz, H-2); (Found458: C, c ,
SCH2C02Et

247
48.0; H, 4.4; N, 7.1. Ci6Hi7CIN204S2 requires 

C, 47.9; H, 4.3; N, 7.0%); MS m/z 401/403 (M+H).

5.33 Reaction of ethyl 2-chloro-5-pyridvlacetate 72 with carbon disulphide and 

ethyl chloroacetate

Ethyl 2-chloro-5-pyridylacetate 72 (1.0 g, 5 mmol) and carbon disulphide (0.42 g,

5.5 mmol) were dissolved in DMSO (25 ml) in a 2-neck round bottom flask fitted 

with a gas inlet tube under dry nitrogen and sodium hydride (0.24 g, 10 mmol) 

added in portions with constant stirring. The mixture was stirred for 2 hours then 

ethyl chloroacetate (1.23 g, 10 mmol) added and stirring continued for another 

hour, then poured onto ice (100 g) and extracted with ethyl acetate (3 x 50 ml). 

The extracts were combined, dried with magnesium sulphate, filtered and the 

solvent evaporated to give a pale yellow oil (2.21 g). The oil was 

chromatographed on silica gel using petroleum ether / ethyl acetate to give 2- 

chloro-5-(1-ethyloxy carbonyl-2,2-[diethyloxycarbonylmethylthio]-1-vinyl)pyridine 

250 (0.97 g, 43%); bp 190 °C at 0.4 mm Hn-

5h(CDCI3)1.24(3H, t, J=7.2 Hz
250

1.28(6H, t, J=7.2 Hz, CH3), 3.56(2H, s
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SCH2), 3.68(21-1, s, SCH2), 4.08(4H, q, J=7.2 Hz, C02CH2), 4.14(2H, q, J=7.2 Hz, 

C02CH2), 7.28(1 H, d, J=8.4 Hz, H-3), 7.72(1H, dd, J=8.4 & 2.4 Hz, H-4), 8.34(!H, 

d, J=2.4 Hz, H-6); (Found458: C, 49.6; H, 4.8; N, 3.3. C18H22CIN06S2 requires C, 

48.3; H, 4.9; N, 3.1%); MS m/z 448/450 (M+H).

5.34 Reaction of 2-chloro-5-( 1 -ethvloxvcarbonvl-2,2-[diethvloxvcarbonvlmethylthiol 

-1-vinyl)pyridine 250 with sodium ethoxide

2-Chloro-5-(1-ethyloxycarbonyl-2,2-[diethyloxycarbonylmethylthio]-1-vinyl)pyridine 

250 (0.5 g, 1.1 mmol) was dissolved in ethanol (20 ml) in a 50 ml round bottom 

flask and sodium ethoxide (0.16 g, 2.4 mmol) added. The mixture was stirred at 

room temperature for 24 hours. The solvent was removed in vacuo, the residue 

flooded with water and extracted with ethyl acetate (3 x 25 ml). The combined 

extracts were dried with magnesium sulphate, filtered and the solvent removed to 

give 2-chloro-5-(2-ethyloxycarbonyl-5-ethyloxycarbonylmethylthio-3-hydroxy-4- 

thienyl) pyridine 251 (0.14 g, 33%) after recrystallisation from diethyl ether. Mp 

74-75 °C; ymax(KBr)/cm‘1 2978, 2914, 1748,

1666; 5h(CDCI3) 1.20(3H, t, J=7.2 Hz, CH3),

1.32(3H, t, J=7.2 Hz, CH3), 3.48(2H, s, SCH2),

4.02(2H, q, J=7.2 Hz, C02CH2), 4.24(2H, q,

J=7.2 Hz, C02CH2), 7.22(1 H, d, J=8.4 Hz, H- 

3), 7.66(1 H, dd, J=8.4 & 2.4 Hz, H-4), 8.34(1H, d, J=2.4 Hz, H-6), 9.70(1H, s, OH); 

(Found459: C, 47.8; H, 3.7; N, 3.3. Ci6Hi6CIN05S2 requires C; 47.8; H, 4.0; N, 

3.4%).
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5.35 Reaction of ethyl 2-chloro-5-pyridvlacetate 72 with carbon disulphide and 

chloroacetonitrile

To a stirred solution of ethyl 2-chloro-5-pyridylacetate 72 (2.11 g, 10.6 mmol) and 

DMSO (20 ml) under dry nitrogen in a 2-neck round bottom flask fitted with a gas 

inlet tube was added carbon disulphide (0.89 g, 11.6 mmol) followed by sodium 

hydride (0.51 g, 21.2 mmol) in portions. The reaction was stirred for 2 hours at 

room temperature then chloroacetonitrile (1.75 g, 23.2 mmol) added and stirring 

continued for 1 hour. The mixture was poured onto ice (100 g) and extracted with 

ethyl acetate (3 x 25 ml). The combined extracts were dried with magnesium 

sulphate, filtered and the solvent evaporated to give 2-chloro-5-(2,2- 

di[cyanomethylthio]-1-ethyloxycarbonyl-1-ethenyl)pyridine 252 (2.15 g, 57%) after 

recrystallisation from ethanol. Mp 98-99 °C; Ymax(KBr)/cm'1 2976, 2246, 1720;

5h(CDCI3) 1.25(3H, t, J=7.2 Hz, CH3), 3.56(2H

Hz, C02CH2), 7.24(1 H, d, J=8.4 Hz, H-3),
Cl N

7.58(1 H, dd, J=8.4 & 2.4 Hz, H-4), 8.24(1 H, d, 252

J=2.4 Hz, H-6); (Found459: C, 47.4; H, 3.0; N, 11.7. CuH^CINaC^ requires C 

47.5; H, 3.4; N, 11.9%).
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5.36 Reaction 2-chloro-5-(2,2-difcvanomethylthio1-1 -ethvloxycarbonyl-1 -vinyl) 

pyridine 252 with sodium ethoxide

2-Chloro-5-(2,2-di[cyanomethylthio]-1-ethyloxycarbonyl-1-vinyl)pyridine 252 (0.5 g,

1.4 mmol) was dissolved in ethanol (25 ml) in a 50 ml round bottom flask and 

sodium ethoxide (0.20 g, 3.0 mmol) added. The reaction was stirred at room 

temperature for 16 hours. The solvent was evaporated, replaced with water and 

extracted with ethyl acetate (3 x 25 ml). The combined extracts were dried with 

magnesium sulphate, filtered and the solvent removed in vacuo to give 2-chloro-5- 

(2-cyano-3-hydroxy-5-cyanomethylthio-4-thienyl)pyridine (AY) (0.20 g, 46%) as 

pale yellow prisms after recrystallisation from ethyl acetate. Mp 101-102 °C;

Y m a x (K B r) /c m ' 1 3452, 2975, 2926, 2211; 8H(CDCI3) 

4.04(2H, s, SCH2),7.58(1 H, d, J=8.4 Hz, H-3), 

7.86(1 H, dd, J=8.4 & 2.4 Hz, H-4), 8.42(1 H, d, 

J=2.4 Hz, H-6); (Found459: C, 46.9; H, 1.7; N, 13.5. 

Ci2H6CIN3OS2 requires C, 46.8; H, 46.8; H, 1.9; N,

CN

13.6%).

5.37 Reaction of 2-chloro-5-cvanomethvlpyridine 73 with carbon disulphide and 

benzyl bromide

2-Chloro-5-cyanomethylpyridine 73 (2.0 g, 13.1 mmol) and carbon disulphide (1.1 

g, 14.4 mmol) were dissolved in DMSO (50 ml) under dry nitrogen in a 2-neck 

round bottom flask fitted, with a gas inlet tube and sodium hydride (0.66 g, 27.5 

mmol) added in portions with constant stirring. The mixture was stirred for 2 hours
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then benzylbromide (4.7 g, 27.5 mmol) added and stirring continued for another 

hour, then poured onto ice (100 g) and extracted with ethyl acetate (3 x 100 ml). 

The extracts were combined, dried with magnesium sulphate, filtered and the 

solvent evaporated to give 2-chloro-5-(2,2-di[benzylthio]-1-cyano-1-vinyl)pyridine 

254 as pale yellow needles (2.87 g, 54%). Mp 83-84 °C; Ymax(KBr)/cm'1 3027,

2202, 696; 5H(CDCI3) 3.92(2H, s, SCH2),

4.20(2H, s, SCH2), 7.24(12H, m, Ph & H-3 & H- 

4), 7.96(1 H, d, J=2.4 Hz, H-6); (Found459: C,

64.6; H, 4.2; N, 6.7. C22Hi7CIN2S2 requires C,

64.6; H, 4.2; N, 6.9%).

5.38 Reaction of 2-chloro-5-(2.2-difbenzvlthio1-1-cvano-1-vinyl)pvridine 254 with 

sodium ethoxide

CN

To 2-chloro-5-(2,2-di[benzylthio]-1-cyano-1-vinyl)pyridine 254 (0.2 g, 0.5 mmol) 

and ethanol (25 ml) in a 50 ml round bottom flask was added sodium ethoxide 

(0.67 g, 1 mmol) and the mixture stirred at room temperature for 16 hours. The 

solution was poured onto ice (100 g) and extracted with ethyl acetate (3 x 25 ml). 

The extracts were combined, dried with magnesium sulphate, filtered and the 

solvent removed in vacuo to give unreacted starting material 2-chloro-5-(2,2- 

di[benzylthio]-1-cyano-1-vinyl)pyridine 254 (0.19 g, 95%). This was confirmed by 

comparison with a pure sample.
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5.39 Reaction of ethyl 2-chloro-5-pyridvlacetate 72 with carbon disulphide and 1,3- 

dibromopropane

To a stirred solution of ethyl 2-chloro-5-pyridylacetate 72 (1.0 g, 5.0 mmol) and 

DMSO (20 ml) under dry nitrogen in a 2-neck round bottom flask fitted with a gas 

inlet tube was added carbon disulphide (0.42 g, 5.5 mmol) followed by sodium 

hydride (0.26 g, 11 mmol) in portions. The reaction was stirred for 2 hours at room 

temperature then 1,3-dibromopropane (2.22 g, 11 mmol) added and stirring 

continued for 1 hour. The mixture was poured onto ice (100 g) and extracted with 

ethyl acetate (3 x 75 ml). The combined extracts were dried with magnesium 

sulphate, filtered and the solvent evaporated to give (2’-[3-(5-chloropyridyl)]-2’- 

ethyloxycarbonyl)-1’-vinyl-1,3-dithiane 255 (0.84 g, 53%) as pale yellow needles 

after recrystallisation from diethyl ether/petroleum ether. Mp 92-93 °C; 

ymax(KBr)/cm'1 2980, 2922, 1684; 5H(CDCI3) ™  ■=♦

CH2), 3.90(4H, t, J=6.0 Hz, SCH2), 4.08(2H, q, C \

1.14(3H, t, J=7.2 Hz, CH3), 2.16(2H, t, J=6.0 Hz,

255
J=7.2 Hz, C02CH2), 7.18(1 H, d, J=8.4 Hz, H-3),

7.40(1 H, dd, J=8.4 & 2.4 Hz, H-4),8.10(1H, d, J=2.4 Hz, H-6); (Found458: C, 49.2;

H, 4.4; N, 4.4. Ci3Hi4CIN02S2 requires C, 49.3; H, 4.8; N, 4.4%); MS m/z 316/318

(M+H).
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5.40 Reaction of 3-ethvloxvcarbonvl-2-methvlthiothienor2,3-blpyridine 108 with 

excess m-CPBA

3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 (5.0g, 0.02 moles) was 

dissolved in chloroform (100 ml) and in a round bottom flask. m-CPBA (50%, 

13.8g, 0.04 moles) was added in portions and the mixture stirred at room 

temperature for 2 hours. Excess oxidising agent was destroyed by the addition of 

solid sodium metabisulphite (monitored by starch/iodide paper). Solid potassium 

carbonate was then added and insoluble materials removed at the pump. The 

filtrate was dried over magnesium sulphate, filtered and the solvent removed in 

vacuo to give a yellow solid (5.9 g) that was chromatographed on silica gel using 

methanol/dichloromethane as eluant. The first compound obtained as a white solid 

was 3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 256; (0.86 g,

15 % ), mp 99-100 °C; Ymax(KBr)/crrf1 2982, 2930,

1724; 6h(CDCI3) 1.49(3H, t, J=7.2 Hz, CH3), 3.51(3H, 

s, S02CH3), 4.48(2H, q, J=7.2 Hz, CH2), 7.36(1 H, dd,

J=8.0 & 4.0 Hz, H-5), 8.40(1 H, dd, J=8.0 & 2.0 Hz,

H-4), 8.57(1 H, dd, J=4.0 & 2.0 Hz, H-6); (Found458: C, 46.0; H, 3.8; N, 4.9. 

ChHiiN04S2 requires C, 46.3; H, 3.9; N, 4.9%); MS m/z 286 (M+H).

Also eluted was 3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine N- 

oxide 257 as a pale yellow solid; (4.28 g, 71%), mp 174-176 °C; Ymax(KBr)/cm'1
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3050, 2950, 1718, 1256; 8H(CDCI3) 1.48(3H, t, J=7.2 

Hz, CH3), 3.52(3H, s, S02CH3), 4.48(2H, q, J=7.2 

Hz, C02CH2), 7.36(1 H, dd, J=8.4 & 6.0 Hz, H-5), 

8.04(1 H, d, J=8.4 Hz, H-4), 8.28(1 H, d, J=6.0 Hz, H-

6); (Found458: C, 44.4; H, 3.7; N, 4.8. C11H11NO5S2 requires C, 43.8; H, 3.7; N, 

4.7%); MS m/z 302 (M+H).

5.41 Reaction of 3-ethvloxvcarbonvl-2-methvlthiothieno[2,3-blpyridine 108 with 1 

equivalent of m-CPBA

3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 (0.5 g, 2 mmoles) was 

dissolved in chloroform (20 ml) in a round bottom flask. m -C P B A  (50%, 0.68g, 2 

mmoles) was added in portions and the mixture stirred at room temperature for 2 

hours. Excess oxidising agent was destroyed by the addition of solid sodium 

metabisulphite (monitored by starch/iodide paper). Solid potassium carbonate 

was then added and insoluble materials removed at the pump. The filtrate was 

dried over magnesium sulphate, filtered and the solvent removed in vacuo to give

3-ethyloxycarbonyl-2-methylsulphinylthieno[2,3-b]pyridine 258 (0.52 g, 96%) as a 

white solid after recrystallisation from ethyl acetate. Mp 132-133° C;

Ymax(KBr)/cm'1 2979, 2925, 1697; 5H(CDCI3) 2.48(3H, 

t, J=7.2 Hz, C H 3), 3.04(3H, s , S O C H 3), 4.24(2H, q,

J=7.2 Hz, CH2), 7.34(1 H, dd, J=8.0 & 4.0 Hz, H-5),

8.48(1 H, dd, J=8.0 & 2.0 Hz, H-4), 8.60(1 H, dd, J=4.0
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& 2.0 Hz, H-6); (Found459: C, 49.1; H, 4.1; N, 5.1. CnH^NC^ requires C, 49.1; 

H, 4.1; N, 5.2%).

5.42 Reaction of 3-ethvloxvcarbonvl-2-methvlsulphinvlthieno[2,3-b1pyridine 258 

with 1 equivalent m-CPBA

To a solution of 3-ethyloxycarbonyl-2-methylsulphinylthieno[2,3-b]pyridine 258 

(0.42 g, 1.6 mmol) in chloroform (20 ml), in a round bottom flask, was added m- 

CPBA (50%, 0.54 g, 1.6 mmol) in portions. The reaction mixture was stirred at 

room temperature for 2 hours then excess oxidising agent was destroyed by the 

addition of solid sodium metabisulphite (monitored by starch/iodide paper). Solid 

potassium carbonate was then added and insoluble materials removed at the 

pump. The filtrate was dried over magnesium sulphate, filtered and the solvent 

removed in vacuo to give a yellow solid (0.42 g) that was chromatographed on 

silica gel using methanol/dichloromethane as eluant. Obtained first was 3- 

ethyloxycarbonyl-2-methylsulphinylthieno[2,3-b]pyridine 258 (0.04 g, 10%),

identified by comparison (mp, ir, pmr) with an authentic sample.

Secondly 3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 256 (0.23 g, 

45%), which was identical (mp, ir, pmr) to a previously prepared sample.

The third compound eluted was 3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3- 

bjpyridine N-oxide 257 (0.05 g, 13%), again identified by comparison (mp, ir, pmr) 

with a previously prepared sample.
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Finally eluted was 3-ethyloxycarbonyl-2-methylsulphinylthieno[2,3-b]pyridine N- 

oxide 259 (0.09 g, 23%), mp 188-189 °C; Ymax(KBr)/cm'1 3059, 2983, 1694, 1261; 

5h(CDCI3) 1.49(3H, t, J=7.2 Hz, CH3), 3.06(3H, s,

SOCH3), 4.47(2H, q, J=7.2 Hz, CH2), 7.39(1 H, dd,

J=8.0 & 6.0 Hz, H-4), 8.17(1 H, d, J=8.0 Hz, H-5),

8.24(1 H, d, J=6.0 Hz, H-6); (Found459: C, 46.3; H, 3.9;

N, 4.8. Ci 1 Hi 1 N04S2requires C, 46.3; H, 3.9; N, 4.9%).

5.43 Reaction of 3-ethvloxvcarbonvl-2-methvlsulphonvlthienor2,3-blpvridine N- 

oxide 257 with benzylamine in chloroform

3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine N-oxide 257 (0.30 g,

0.99 mmol) and benzylamine (0.11 g, 0.99 mmol) were dissolved in chloroform (25 

ml) and refluxed together for 3 hours. The mixture was cooled to room 

temperature and washed with a dilute solution of hydrochloric acid ( 3x1 0 ml). 

The organic phase was dried over magnesium sulphate, filtered and the solvent 

removed in vacuo to give a pale yellow solid (0.28 g, 93%) which was identical 

(mp, ir) to the starting material 3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3- 

b]pyridine N-oxide 257.

5.44 Reaction of 3-ethvloxvcarbonvl-2-methvlsulphonvlthieno[2,3-b1pyridine N- 

oxide 257 with neat benzylamine

3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine N-oxide 257 (0.30 g,

0.99 mmol) and benzylamine (5 ml) were refluxed together in a round bottom flask
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for 3 hours. The mixture was cooled, poured onto ice/water (50 ml) neutralised 

with a dilute solution of hydrochloric acid and extracted with ethyl acetate (3 x 25 

ml). The organic solution was dried with magnesium sulphate, filtered and the 

solvent removed in vacuo to give a brown oil (0.96 g). The oil was 

chromatographed on silica gel with ethyl acetate/petrol to give firstly a colourless 

oil (unquantified due to aerial oxidation) which was determined to be substantially 

benzaldehyde when compared (ir) to a sample purchased from Aldrich Chemical 

Co.

Secondly 3-ethyloxycarbonyl-2-benzylaminothieno[2,3-b]pyridine 260 (0.21 g, 

68%), mp 114-115 °C; YMAx(KBr)/crrV1 3318, 2984,

1650; 8h(CDCI3) 1.40(3H, t, J=7.2 Hz, CH3),

4.32(2H, q, J=7.2 Hz, C02CH2), 4.48 (2H, d, J=6.0

Hz, NCH2), 7.12(6H, m, unresolved, H-5 & C6H5),

8.12(2H, m, unresolved, H-4 & H-6), 8.80(1 H, t, J=6.0 Hz, NH); (Found459: C, 65.4;

H, 5.2; N, 8.9. Ci7Hi6N202S requires C, 65.4; H, 5.2; N, 9.0%).

Eluted last was 3-ethyloxycarbonyl-2-benzylaminothieno[2,3-b]pyridine N-oxide 

261 (0.09 g, 28%). mp 202-203 °C; yMAx(KBr)/cm'1 3317, 3057, 1649, 1244; 

5h(CDCI3) 1.44(3H, t, J=8.0 Hz, CH3), 4.38(2H, q,

J=8.0 Hz, C02CH2), 4.57(2H, d, J=6.0 Hz, NCH2),

7.20(1 H, dd, J=8.0 & 6.0 Hz, H-4), 7.36(5H, m, 

unresolved, C6H5), 7.87(1 H, dd, J=8.0 & 7.0 Hz, H-5),
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8.00(1H, dd, J=7.0 & 6.0 Hz, H-6), 8.95(1H, t, J=6.0 Hz, NH); (Found459: C, 62.1; 

H, 4.9; N, 8.4. C17H16N2O3S requires C, 62.2; H, 4.9; N, 8.5%).

5.45 Reaction of 3-ethvloxvcarbonvl-2-methvlsulphonvlthienof213-b1pyridine 256 

with neat benzylamine

3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 256 (0.30 g, 1.05 

mmol) and benzylamine (5 ml) were refluxed together in a round bottom flask for 3 

hours. The mixture was cooled, poured onto ice/water (50 ml) neutralised with a 

dilute solution of hydrochloric acid and extracted with ethyl acetate (3 x 25 ml). 

The organic solution was dried with magnesium sulphate, filtered and the solvent 

removed in vacuo to give 3-ethyloxycarbonyl-2-benzylaminothieno[2,3-b]pyridine 

260 (0.20 g, 61%) after recrystallisation from ethyl acetate. The compound was 

identified by comparison (tic, ir, pmr) with a genuine sample.

5.46 Reaction of 3-ethvloxvcarbonvl-2-methvlthiothieno[2,3-b1pyridine N-oxide 223 

with neat benzylamine

3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine N-oxide 223 (0.30 g, 1.1 

mmol) and benzylamine (5 ml) were refluxed together in a round bottom flask for 3 

hours. The mixture was cooled, poured onto ice/water (50 ml) neutralised with a 

dilute solution of hydrochloric acid and extracted with ethyl acetate (3 x 25 ml). 

The organic solution was dried with magnesium sulphate, filtered and the solvent 

removed in vacuo to give a brown oil (0.29 g) which was chromatographed on
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silica gel with ethyl acetate/petrol as eluant to give, first, a yellow oil (0.03 g) which 

was identified as benzaldehyde by comparison (ir) with a genuine sample.

Second to be eluted was 3-ethyloxycarbonyl-2-benzylaminothieno[2,3-b]pyridine 

260 (0.12 g, 34%) which was identical, (tic, ir, pmr), to a previously prepared 

sample.

Finally, 3-ethyloxycarbonyl-2-benzylaminothieno[2,3-b]pyridine N-oxide 261 (0.10 

g, 28%) was obtained, which was also identical, (tic, ir, pmr), to a previously 

prepared sample.

5.47 Reaction of 3-ethvloxvcarbonvl-2-methvlsulphonvlthienor2,3-b1pyridine N- 

oxide 257 with phosphorus tribromide

Phosphorus tribromide (0.2 ml, 6.4 mmol) was added dropwise to an ice cold 

solution of 3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine N-oxide 257 

(1.0 g, 3.3 mmol) in DMF (20 ml). The reaction mixture was stirred for 1 hour then 

poured into saturated sodium bicarbonate solution (25 ml) and extracted with ethyl 

acetate (3 x 25 ml). The combined organic extracts were washed with brine then 

dried over magnesium sulphate. The solvent was removed in vacuo, to give after 

recrystallisation from ethyl acetate, 3-ethyloxycarbonyl-2-methylsulphonyl 

thieno[2,3-b]pyridine 256 ( 0.9 g, 95%), which was identical, (mp, ir, pmr), to a 

previously prepared sample.
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5.48 Reaction of 3-ethvloxvcarbonvl-2-methvlsulphonvlthienor2,3-b1pyridine 256 

with neat aniline

3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 256 (0.3 g, 1.05 mmol) 

and aniline (5 ml) were refluxed in a round bottom flask for 3 hours. The reaction 

mixture was cooled to room temperature, diluted with ethyl acetate and washed 

with a dilute solution of hydrochloric acid (3 x 25 ml). The organic phase was dried 

over magnesium sulphate, filtered and the solvent remove in vacuo to give a 

brown oil (0.25 g). The oil was chromatographed on silica gel with ethyl 

acetate/petrol as eluant to give 3-ethyloxycarbonyl-2-anilinothieno[2,3-b]pyridine 

111 (0.17 g, 54%). Mp 115-116 °C (literature260’400 115-116.5 °C; yMAx(KBr)/cm'1 
3437, 1653; 5H(CDCI3) 1.52(3H, t, J=7.12 Hz, CH3),

4.49(2H, q, J=7.12 Hz, CH2), 7.20(6H,

m(unresolyed), C6H5 & H-5), 8.03(1 H, s, H-4),

8.13(1H, s, H-6), 10.40(1H, s, NH); (Found459: C,

64.3; H, 4.7; N, 9.4. C16H14N2O2S requires C, 64.4; H, 4.7; N, 9.4%).

5.49 Reaction of 3-ethvloxvcarbonvl-2-methvlthiothieno[2,3-blpyridine 108 with 

neat aniline

3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 (0.34 g, 1.3 mmol) and 

aniline (5 ml) were refluxed in a round bottom flask for 3 hours. The reaction 

mixture was cooled to room temperature, diluted with ethyl acetate and washed 

with a dilute solution of hydrochloric acid (3 x 25 ml). The organic phase was dried 

over magnesium sulphate, filtered and the solvent remove in vacuo to give a
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brown oil (0.28 g). 3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 (0.14 

g, 36%) was the only compound isolated after column chromatography using 

petrol/ethyl acetate as eluant. It was identified by comparison, (tic, ir, pmr), with a 

pure sample.

5.50 Reaction of 3-ethvloxvcarbonvl-2-methvlsulphonvlthienor2,3-blpyridine 256 

with diethylmalonate

3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 256 (0.3 g, 1.05 mmol), 

sodium ethoxide (0.15 g, 2.2 mmol) and diethyl malonate (0.37 g, 2.3 mmol) were 

heated together on an oil bath at 100 °C in a round bottom flask for 3 hours. The 

reaction mixture was cooled, poured onto ice (20 g) and extracted with ethyl 

acetate (3 x 25 ml). The combined extracts were dried over magnesium sulphate, 

filtered and the solvent removed in vacuo to give a pale yellow oil (0.57 g). The oil 

was chromatographed on silica gel with petrol/ethyl acetate as eluant to give firstly 

3-ethyloxycarbonyl-2-diethyl malonylthieno[2,3- 

b]pyridine 264 (0.03 g, 8%); yMAx(neat)/cm'1 

1736, 1708; 5H(CDCI3) 1.28(6H, t, J=7.0 Hz, CH3 

(malonate)), 1.41(3H, t, J=7.2 Hz, CH3), 4.22(4H,

q, J=7.0 Hz, CH2 (malonate)), 4.36(2H, q, J=7.2 Hz, CH2), 6.07(1 H, s, CH 

(malonate)), 7.23(1 H, dd, J=8.0 & 4.0 Hz, H-5), 8.50(1 H, dd, J=8.0 & 2.0 Hz, H-4), 

8.63(1 H, dd, J=4.0 & 2.0 Hz, H-6). No boiling point could be measured due to 

decomposition and hence no elemental analysis was obtained.
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Also eluted was 3-ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 256 

(0.03 g, 10 %). The structure was confirmed by comparison (tic, ir, pmr) with an 

authentic sample.

5.51 Reaction of 3-ethvloxvcarbonvl-2-methvlsulphonvlthieno[2.3-blpyridine 256 

with sodium ethoxide

3-Ethyloxycarbonyl-2-methylsulphonylthieno[2,3-b]pyridine 256 (0.3 g, 1.05 mmol), 

sodium ethoxide (0.71 g, 10.5 mmol) and ethanol (25 ml) were refluxed together in 

a round bottom flask for 3 hours. The mixture was cooled and the solvent 

evaporated and replaced with water then extracted with ethyl acetate (3 x 25 ml). 

The solution was dried with magnesium sulphate, filtered and the solvent removed 

in vacuo to give after recrystallisation from ethyl acetate 3-ethyloxycarbonyl-2- 

methylsulphonylthieno[2,3-b]pyridine 256 (0.11 g, 37%). This was confirmed by 

comparison (tic, ir, pmr) with a genuine sample.

5.52 Reaction of 3-ethvloxycarbonvl-2-methvlthiothienor2,3-blpvridine 108 with 

sodium ethoxide

3-Ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 (0.2 g, 0.79 mmol), 

sodium ethoxide (0.53 g, 7.9 mmol) and ethanol (25 ml) were refluxed together in 

a round bottom flask for 3 hours. The mixture was cooled and the solvent 

evaporated and replaced with water then extracted with ethyl acetate (3 x 25 ml). 

The solvent was dried with magnesium sulphate, filtered and the solvent removed 

in vacuo to give after recrystallisation from ethyl acetate, starting material 3-
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ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 (0.14 g, 70 %). This was 

confirmed by comparison (tic, ir, pmr) with a genuine sample.

5.53 Reaction of 3-ethvloxvcarbonvl-2-methvlthiothieno[2,3-blpyridine N-oxide 223 

with phosphorus oxychloride

3-Ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine N-oxide 223 (0.32 g, 1.2 

mmol) was added in portions with constant stirring to phosphorus oxychloride (25 

ml) in a 50 ml round bottom flask fitted with a condenser. The solution was 

refluxed for 3 hours then the phosphorus oxychloride removed in vacuo. The 

residue was poured onto ice (100 g) and cautiously made alkaline with ammonium 

hydroxide solution (2M) and extracted with ethyl acetate (3 x 50 ml). The extracts 

were combined, dried over magnesium sulphate, filtered and the solvent 

evaporated to give a brown solid (0.31 g) that was chromatographed on silica gel 

using petroleum ether / diethyl ether as eluant. Obtained first was 6-chloro-3- 

ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 224 (0.16 g, 52%). Confirmed 

by comparison (ir, mp) with a genuine sample.

Eluted second was 4-chloro-3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 

265 as a pale pink oil (0.10 g, 34%). Bp 120 °C / 4mm Hg; YMAx(film)/cm'1 2940, 

2880, 1695; 5H(CDCI3) 1.40(3H, t, J=7.0 Hz, CH3),

2.60(3H, s, SCH3), 4.35(2H, q, J=7.0 Hz, C02CH2),

7.19(1H, d, J=5.0 Hz, H-5), 8.21(1H, d, J=5.0 Hz, H- 

6); (Found458: C, 46.0; H, 3.3; N, 4.9. ChHi0CINO2S2 

requires C, 45.9; H, 3.5; N, 4.9%); MS m/z 288/290 (M+H).
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5.54 Reaction of 3-ethvloxvcarbonvl-2-methvlthiothienof213-b1pyridine 108 with 

Raney Nickel in methanol

3-Ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 (0.1 g, 0.39 mmol) was 

added to a stirred suspension of raney-Ni (1 g) in dry methanol under a blanket of 

dry nitrogen in a 2-necked round bottom flask. The mixture was stirred at room 

temperature for 6 hours, then the solids were removed at the pump and washed 

with hot methanol. The solvent was removed in vacuo to give unreacted 3- 

ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 (0.09 g, 90%) (tlc,ir,pmr).

5.55 Reaction of 3-ethvloxvcarbonvl-2-methvlthiothienof213-blpyridine 108 with 

Lithium Aluminium Hydride

A solution of 3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 (0.5 g, 2 

mmol) in dry diethyl ether (20 ml) was added dropwise to a stirred suspension of 

LiAIH4 (0.1 g, 2.6 mmol) in dry diethyl ether (30 ml) under dry nitrogen in a 2- 

necked round bottom flask fitted with a constant pressure dropping funnel and a 

gas inlet tube. The dropping funnel was replaced with a water condenser and the 

mixture refluxed for 48 hours (with the occasional addition of more dry diethyl 

ether). Excess hydride was then destroyed by the careful addition of ethyl acetate 

(2 ml) followed by water (10 ml) and dilute sulphuric acid (2 ml, 1M) with constant 

stirring. The layers were separated and the aqueous phase extracted with diethyl 

ether (3 x 25 ml). The organic extracts were combined, dried with magnesium
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sulphate, filtered and the solvent removed in vacuo to give after recrystallisation 

from ethyl acetate / hexane, 3-hydroxymethyl-2-methylthiothieno[2,3-b]pyridine 

268 (0.25 g, 59%); mp 92-93 °C (literature399 92-93 °C);

YMAx(KBr)/cm -1 3204, 2911; 5H(CDCI3) 2.55(3H, s,

SCH3), 3.05(1 H, s , OH), 4.93(2H, s,CH2), 7.24(1 H, dd,

J=8.0 & 4.0 Hz, H-5), 8.08(1 H, dd, J=8.0 & 2.0 Hz, H- 

4), 8.40(1 H, dd, J=4.0 & 2.0 Hz, H-6).

5.56 Reaction of 3-hvdroxvmethvl-2-methvlthiothienof213-blpyridine 268 with 

Raney Nickel in methanol

3-Hydroxymethyl-2-methylthiothieno[2,3-b]pyridine 268 (0.1 g, 0.47 mmol), Raney- 

Ni (1.0 g) and dry methanol were stirred together in a 2-necked round bottom flask 

under dry nitrogen. After 24 hours examination by tic indicated that only starting 

material was present. The mixture was then refluxed for 2 hours. Re-examination 

by tic again showed only starting material present, so the solids were removed by 

filtration and washed with hot methanol (2 x 25 ml). The combined filtrates were 

evaporated to give a pale yellow solid (0.09 g, 90%) which was identical, (tic, ir, 

pmr), to a genuine sample of 3-hydroxymethyl-2-methyl thiothieno[2,3-b]pyridine

268.
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5.57 Reaction of 3-ethvloxvcarbonvl-2-methvlthiothieno[2,3-blpyridine 108 with 

sodium hypophosphite518

A solution of 3-ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 (0.1 g, 0.39 

mmol) and sodium hypophosphite (0.42 g, 0.39 mmol) in dry dioxane (3 ml) was 

refluxed under a blanket of dry nitrogen in a 2-necked round bottom flask fitted 

with a condenser and a constant pressure dropping funnel. To this was added a 

solution of ABCHC in dry dioxane (0.217 g in 3 ml) at a rate of 150 pi every 30 

minutes. After 4 hours the solvent was replaced with ethyl acetate (20 ml) and 

extracted with water ( 3x10 ml). The organic phase was dried with magnesium 

sulphate, filtered and the solvent removed in vacuo to give 3-ethyloxycarbonyl-2- 

methylthiothieno[2,3-b]pyridine 108 (0.09 g, 90%), identified by comparison, (tic, ir, 

pmr), with a pure sample.

5.58 Reaction of 3-ethvloxvcarbonvl-2-methvlthiothienof2,3-b1pyridine 108 with 

hypophosphorus acid and triethylamine517

3-Ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 (0.5 g, 1.97 mmol), 

hypophosphorus acid (50%, 1.3 g, 9.9 mmol), triethylamine (1.01 g, 10 mmol) and 

dry dioxane (5 ml) were refluxed under a blanket of dry nitrogen in a 2-necked 

round bottom flask fitted with a condenser and a constant pressure dropping 

funnel. To this was added a solution of ABCHC in dry dioxane, (0.5 g in 5 ml), at a 

rate of 500 pi every 30 minutes. After 5 hours the solvent was replaced with ethyl 

acetate and washed with water (3x10 ml). The ethyl acetate solution was dried 

with magnesium sulphate, filtered and the solvent removed in vacuo to give a pale
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yellow solid which was identical, (tic, ir, pmr), to a pure sample of 3- 

ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108.

5.59 Reaction of 2-ethvloxvcarbonvl-2-methvlthiothienot213-b1pyridine 108 with 

TBTH520

3-Ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 (0.5 g, 1.97 mmol), 

TBTH (0.57 g, 1.97 mmol) and ABCHC (0.01 g, 2 mol %) were dissolved in dry 

cyclohexane (20 ml) in a 50 ml round bottom flask fitted with a condenser. The 

mixture was refluxed for 24 hours and the solvent removed in vacuo. The 

resulting oil (1.3 g) was chromatographed on silica gel using petroleum ether / 

diethyl ether as eluant to give first tri-/?-butyltin by-products as a pale yellow oil; 

(0.34 g); 8H(CDCI3) 0.85 -  1.60(43H, m(unresolved), alkyl).

Eluted second was a colourless oil; (0.9 g); Sh(CDCI3) 0.83 -  1.66(35H, 

m(unresolved), alkyl), 4.38(2H, q, J=7.2 Hz, CO2CH2), 7.42(1 H, dd, J=8.2 & 4.5 

Hz, H-5), 8.49(1 H, dd, J=4.5 & 1.3 Hz, H-4), 8.70(1 H, dd, J=8.2 & 4.5 Hz, H-6). 

Spectral data indicated that this was 3-ethyloxycarbonyl-2-(tri-A7- 

butylstannyl)thieno[2,3-b]pyridine 269 contaminated with n-butyltin residues, 

therefore:
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5.60 Reaction of contaminated 3-ethvloxvcarbonvl-2-(tri-n-butvlstannyl)thienof2,3- 

blpyridine 269 with TBTH

The contaminated thienopyridine 269 (0.8 g, 1.6 mmol), TBTH (0.44 g, 1.6 mmol) 

and ABCHC (0.008 g, 2 mole %) were dissolved in dry cyclohexane (20 ml) in a 50 

ml round bottom flask fitted with a condenser. The mixture was refluxed for 24 

hours and the solvent removed in vacuo. The resulting oil was dissolved in 

acetonitrile and extracted with n-hexane (3 x 25 ml). The acetonitrile solution was 

dried with magnesium sulphate, filtered and removed in vacuo to give an oil from 

which colourless needles crystallised on standing. The crystals were collected by 

filtration and recrystallised from n-hexane to give 3-ethyloxycarbonylthieno[2,3- 

b]pyridine 266 (0.16 g, 50%); mp 72-73 °C;

Ymax(KBr)/crn’1 3087, 2983, 2900, 1703; 8H(CDCI3)

1.43(3H, t, J=7.2 Hz, CH3), 4.42(2H, q, J=7.2 Hz,

C02CH2), 7.38(1 H, dd, J=8.2 & 4.5 Hz, H-5),

8.46(1 H, s, H-2), 8.60(1 H, dd, J=4.5 & 1.3 Hz, H-4), 8.79(1 H, dd, J=8.2 & 1.3 Hz, 

H-6); (Found459: C, 57.9; H, 4.4; N, 6.7. Ci0H9NO2S requires C, 57.9; H, 4.4; N, 

6.7%).

5.61 Preparation of 3-ethyloxvcarbonyl-2-(tri-A7-butvlstannvl)thieno[2,3-b1pvridine 

269

3-Ethyloxycarbonyl-2-methylthiothieno[2,3-b]pyridine 108 (0.34 g, 1.3 mmol), 

TBTH (0.38 g, 1.3 mmol) and ABCHC (0.006 g, 2 mole %) were dissolved in dry 

cyclohexane (20 ml) in a 50 ml round bottom flask fitted with a condenser. The
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mixture was refluxed for 24 hours and the solvent removed in vacuo. The 

resulting oil (0.72 g) was chromatographed on silica gel using petroleum ether / 

diethyl ether as eluant to give 3-ethyloxycarbonyl-2-(tri-/7-butylstannyl)thieno[2,3- 

bjpyridine 269 after recrystallisation from ethyl acetate. (0.42 g, 64.6%); mp 112- 

113 °C, Ymax(KBr)/crrf1 2956, 2924, 1696; 6H(CDCI3) 0.88(9H, t, J=7.26 Hz, CH3(n- 

butyl)), 1.03-1.47(18H, m(unresolved), CH2 (n-butyl) & CH3 (ester)), 4.47(2H, q, 

J=7.1 Hz,C02CH2), 7.35(1H, dd, J=8.2 & 4.5 Hz, CO.Et

N, 2.4. C22H35N02SSn requires C, 53.2; H, 7.1; N,

2 .8% ).

5.62 Protodestannylation of 3-ethvloxvcarbonyl-2-(tri-n-butvltin)thienof213-bl 

pyridine 269 with 50% trifluoroacetic acid

3-Ethyloxycarbonyl-2-(tri-A7-butyltin)thieno[2,3-b]pyridine 269 (270 mg, 0.54 mmol) 

was dissolved in ethanol (20 ml) in a 50 ml round bottom flask fitted with a 

condenser. Trifluoroacetic acid (50%, 1 ml) was added and the mixture refluxed 

for 3 hours. The solvent was removed in vacuo and 3-ethyloxycarbonylthieno[2,3- 

b]pyridine 266 obtained by column chromatography on silica gel using petroleum 

ether / diethyl ether as eluant. (0.08 g, 73%). Identical, (ir, mp), to a genuine 

sample.

H-5), 8.55(1 H, dd, J=4.5 & 1.3 Hz, H-4), 8.73(1 H, 

dd, J=8.2 & 1.3 Hz, H-6); (Found459: C, 53.2; H, 7.0;
269
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5.63 Reaction of 3-ethvloxvcarbonvlthienot2.3-b1pyridine 266 with lithium 

aluminium hydride

A stirred suspension of lithium aluminium hydride (0.35 g, 9.2 mmol) in dry diethyl 

ether (20 ml) was prepared in a 2-neck 100 ml round bottom flask, fitted with a 

constant pressure dropping funnel and a gas inlet tube. To it was added a solution 

of 3-ethyloxycarbonylthieno[2,3-b]pyridine 266 (1.52 g, 7.3 mmol) in dry ether (30 

ml) over 30 minutes under dry nitrogen. The dropping funnel was replaced with a 

condenser and the reaction refluxed for 48 hours under dry nitrogen with the 

addition of portions of dry diethyl ether to maintain the solution volume. Excess 

hydride was then destroyed by the careful addition of ethyl acetate (2 ml) followed 

by dilute sulphuric acid (2 ml, 1M) with constant stirring. The layers separated and 

the aqueous phase extracted with diethyl ether (3 x 25 ml). The combined organic 

solutions were dried with magnesium sulphate and filtered. The solvent was 

removed in vacuo and after recrystallisation from diethyl ether 3- 

hydroxymethylthieno[2,3-b]pyridine 267 (0.60 g, 50%) was isolated. Mp 94-96 °C; 

Ymax(KBr)/cm'1 3216, 2842; 5H(CDCI3) 3.29(1 H, s,

OH), 4.91 2H, s, CH2), 7.30(1 H,dd, J=8.0 & 4.4 Hz,

H-5), 7.43(1H, s, H-2), 8.15(1H, d, J=8.0 Hz, H-4),

8.50(1 H, d, J=4.4 Hz, H-6); (Found459: C, 58.5; H,

4.3; N, 8.6. C8H7NOS requires C, 58.2; H, 4.3; N, 8.5%).

246



Experimental

5.64 Reaction of 3-hvdroxvmethvlthienof2,3-b]pyridine 267 with sodium cyanide in 

DMF

3-Hydroxymethylthieno[2,3-b]pyridine 267 (0.20 g, 1.2 mmol) and sodium cyanide 

(0.07 g, 1.46 mmol) were added to DMF (25 ml) in a 50 ml round bottom flask 

fitted with a condenser. The mixture was heated to reflux on an oil bath under dry 

nitrogen for 24 hours with constant stirring. The solution was cooled, diluted with 

water (5 ml), and made strongly basic with solid sodium hydroxide. The solvent 

was removed in vacuo, water added (20 ml) and the pH adjusted to 7 with glacial 

acetic acid then extracted with DCM (3 x 20 ml). The organic extracts were 

combined, washed with water, dried with magnesium sulphate, filtered and the 

solvent removed in vacuo to give a pale yellow solid (0.18 g, 90%) which was 

identified as unreacted 3-hydroxymethylthieno[2,3-b]pyridine 267 by comparison, 

(tic, ir), with a pure sample.

5.65 Reaction of 3-hydroxvmethvlthieno[2,3-blpyridine 267 with sodium cyanide 

and trimethylsilyliodide

3-Hydroxymethylthieno[2,3-b]pyridine 267 (0.18 g, 1.1 mmol) was dissolved in 

acetonitrile (10 ml) and added to a suspension of sodium cyanide (0.11 g, 2.2 

mmol) and sodium iodide (5 mg) in DMF (10 ml) in a 50 ml 3-neck round bottom 

flask fitted with a gas inlet tube. The mixture was de-aerated with dry nitrogen for 

30 minutes then trimethyl silylchloride (0.28 ml, 2.2 mmol) added quickly and the 

solution heated to 60 °C for 6 hours under dry nitrogen. After cooling the solution 

was poured into water and extracted with diethyl ether (3 x 25 ml). The combined
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extracts were washed with water then brine, dried with magnesium sulphate, 

filtered and the solvent removed in vacuo to give un reacted 3- 

hydroxymethylthieno[2,3-b]pyridine 267 (0.07 g, 39%). Confirmed by tic and 

infrared spectroscopy.

5.66 Reaction of 3-hydroxvmethvlthienof213-blpyridine 267 with sodium cyanide, 

tri-n-butylphosphine and 15-crown-5 ether

A mixture of 3-hydroxymethylthieno[2,3-b]pyridine 267 (0.12 g, 0.73 mmol), 

sodium cyanide (0.071 g, 1.45 mmol) and 15-crown-5 (16 mg, 0.073 mmol) in 

acetonitrile (10 ml) were stirred in a 2-neck round bottom flask fitted with a gas 

inlet tube and a constant pressure dropping funnel for 15 minutes under dry 

nitrogen. A solution of tri-n-butylphosphine (0.16 g, 0.79 mmol) in acetonitrile (5 

ml) was added followed by the dropwise addition of a solution of carbon 

tetrachloride (0.12 g, 0.79 mmol) in acetonitrile (5 ml) at 0 °C. The reaction 

mixture was stirred for 3 hours when tic indicated that the reaction had not 

proceeded, so the flask was equipped with a condenser and heated to reflux for 24 

hours. The solution was cooled, diluted with diethyl ether (100 ml) and washed 

with citric acid solution (50 ml, 10%). After the addition of carbon tetrachloride (5 

ml), the mixture was washed with water then brine, dried over magnesium 

sulphate and filtered. The solvent was evaporated to give 3-hydroxy 

methylthieno[2,3-b]pyridine 267 (0.10 g, 80%). Spectroscopic analysis confirmed 

this finding.
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5.67 Reaction of 3-hvdroxvmethvlthienof2,3-blpyridine 267 with p-toluene 

sulphonyl chloride

3-Hydroxymethylthieno[2,3-b]pyridine 267 (0.14 g, 0.85 mmol) pyridine (0.134 g,

1.7 mmol) and DCM (10 ml) were stirred in a 25 ml round bottom flask at 0 °C. 

p-Toluenesulphonylchloride (0.24 g, 1.27 mmol) was added in portions and the 

mixture stirred for 24 hours at room temperature. Tic indicated substantial 

amounts of starting material remained, so the flask was fitted with a condenser 

and the solution refluxed for 24 hours. The mixture was cooled, diluted with 

diethyl ether (30 ml) and water (7 ml) added. The organic layer was washed with 

dilute hydrochloric acid, saturated sodium bicarbonate and water, dried with 

magnesium sulphate, filtered and the solvent evaporated to give p- 

toluenesulphonyl chloride (0.20 g, 83%). The aqueous washes were combine, 

made strongly basic with solid potassium hydroxide and extracted with ethyl 

acetate (3 x 25 ml). The solution was dried with magnesium sulphate, filtered and 

the solvent removed in vacuo to give 3-hydroxymethylthieno[2,3-b]pyridine 267 

(0.08 g, 57%), confirmed by comparison with a genuine sample.

5.68 Reaction of Pyridine N-oxides 50, 78, 272, 273 and 274 with benzylamine; 

general procedure, 3-picoline N-oxide 272 as an example

3-Picoline N-oxide 272 (5g) and benzylamine (10ml) were refluxed together in a 

round bottom flask fitted with a water condenser for 4 hours. On cooling the 

mixture was acidified with 2M hydrochloric acid (50ml) and extracted with diethyl 

ether (3 x 50ml). The organic extracts were combined, dried over magnesium
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sulphate, filtered and the solvent removed in vacuo to afford benzaldehyde as a 

colourless oil (1.93g, 39%); bp 45 °C at 3mm Hg (literature538 62 °C at 10mm Hg). 

From 3-amidopyridine N-oxide 78; (0.23 g, 6%), 4-amidopyridine 273; (0.15g, 4%), 

isonicotinic acid N-oxide 274; (1.22g, 32%). For 4-nitropyridine N-oxide 50, the 

reaction was stopped when the temperature reached 118°C, rapidly cooled then 

worked up to give benzaldehyde (3.52 g, 93%).

5.69 Reaction of pyridine N-oxides 78, 272, 273 and 274 with benzylamine; 

benzaldehyde collected as the 2,4-dinitrophenylhydrazone, 3-picoline N-oxide 272 

as an example

3-Picoline N-oxide 272 (5g) and benzylamine (10 ml) were refluxed together in a 

round bottom flask fitted with a water condenser for 4 hours. On cooling the 

mixture was acidified with 2M hydrochloric acid (100 ml) and extracted with diethyl 

ether (3 x 50 ml). To the extracts was added a solution of 2,4- 

dinitrophenylhydrazine (1 mole equivalent per mole pyridine N-oxide employed) in 

methanol (50 ml) and concentrated sulphuric acid (2 ml). The diethyl ether was 

evaporated and the solution cooled at 4 °C for 2 hours. Benzaldehyde-2,4- 

dinitrophenylhydrazone was collected by filtration as an orange solid (5.25 g, 

40%), mp 234-236 °C (literature538 237 °C). From 3-amidopyridine N-oxide 78; 

(0.93 g, 9%), 4-amidopyridine N-oxide 273; (0.62 g, 6%), isonicotinic acid 274; 

(2.88 g, 28%).
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5.70 Reaction of pyridine N-oxides 50, 78. 272, 273 and 274 with benzylamine in 

o-xylene; typical procedure. 4-nitropyridine N-oxide 50 as an example

4-Nitropyridine N-oxide 50 (1 g, 7.14 mmol) and benzylamine (1.53 g, 14.3 mmol) 

were dissolved in o-xylene (15 ml) in a 25 ml round bottom flask fitted with a 

condenser. The mixture was refluxed for 24 hours, cooled, poured onto dilute 

hydrochloric acid (100 ml) and extracted with diethyl ether (3 x 50 ml). To the 

diethyl ether solution was added a solution of 2,4-dinitrophenylhydrazine (1 mole 

equivalent per mole pyridine N-oxide employed) in methanol (50 ml) and 

concentrated sulphuric acid (2 ml). The diethyl ether was evaporated and the 

solution cooled at 4 °C for 2 hours. Benzaldehyde-2,4-dinitrophenylhydrazone 

(1.59 g, 78%) was collected by filtration as an orange solid; mp 234-236 °C 

(literature538 237 °C). From 3-picoline N-oxide 272; (0.21 g, 8%), 3-amidopyridine 

N-oxide 78; (0.27 g, 13%), 4-amidopyridine N-oxide 273; (0.08 g, 4%), isonicotinic 

acid N-oxide 274; (1.11 g, 54%).
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7.1 Appendix 1

Reaction summaries by section

Preparation of pyridine N-oxides (section 2.2)

R

207; R=CH2C02Et, 209; R=Me, 210; R=Et, 211; R=CONH2
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Preparation of chloropyridines (section 2.3)

N +
O-

CH2C02Et
Cl N'

CH2C02Et

[H] [ O ]

,CH2C02Et
Cl' N +o -

CH2C02Et
+

Cl

[H] [O ]

CH2C02Et

Cl

N
CH2C02Et

Cl
CH2C02Et

CH2C02Et
Cl

Cl Cl
CH2C02Et

N C l c r  N
CH2C02Et

[H] [ O ] [H] [ O ]

Key: the arrows indicate interconversion between the compounds
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Preparation of thienopyridines (section 2.4) 

Thieno[2,3-b]pyridines (section 2.4.1)

[H] [O]

CH2C02Et

^N+ Cl
o -

Key: the arrows «« — indicate interconversion between the compounds
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Thieno[3,2-c]pyridines (section 2.4.2)

SMe
Cl
^ X H 2C02Et

N
76

♦
Cl
^ C H 2C02Et

O-

C02Et

214 241

Cl
^ . C H 2C02Et

O-
214

SCH2Ph

C02Et

242

SCH2Ph

C02Et
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Preparation of ketenedithioacetals and thiophenes (section 2.5)
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Reactions of thieno[2,3-b]pyridines (section 2.6)
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+
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Route to a potential agonist of serotonin (section 2.7)
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Benzylamine to benzaldehyde with pyridine N-oxides (section 2.8)

CI-LNI-L CHO

X ^ R l+

N+
I

0-

272; R=H and R^Me,
78; R=H and R.,=CONH2 
273; R=CONH2 and R^H, 
274; R=COOH and R^H 
50; R=N02 and R^H
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1997, 949-952.
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