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Abstract

The structure of the thesis is as follows:

Chapter I addresses the question of how the disorder of non-crystalline semiconductors 
influences their electronic properties. The concept of the mobility edge and mobility gap is 
introduced and a definition of the density of electronic states (DOS) is given. The DOS will be 
referred to frequently in this work. Also charge transport and photoconductivity in amorphous 
semiconductors are briefly described.

In chapter I the Multiple Trapping model (MT), widely used to describe charge transport 
in amorphous semiconductors, is formulated in the context of the transient photoconductivity 
(TPC) experiment. A brief review of the existing mathematically approximate methods (Naito 
H. et al, 1996; Nagase T. et al, 1999; Ogawa N. et al, 2000) based on the Laplace 

transformation for solving the MT system of equations is given. One of the main objectives of 
this work was to develop an exact procedure for solving the F r e d h o l m  integral equation of the 
1st kind arising from the MT system of equations in the context of TPC experiment. The newly 
developed method is termed Exact Laplace Transform (ELT) method. The method could 
formally be divided in two parts. The first part is concerned with finding an exact solution of the 
F r edholm  integral equation of the 1st kind. The second part of the method is a semi-analytic 
procedure based on a polynomial approach for simulation of I-t data from a model DOS 
distribution. The method has been thoroughly studied by application to computer simulated I-t 
data. The E L T  method is found to have the finest resolution of ~ k T  / 6 (when applied to 
simulated I-t data) which is clearly an improvement over the approximate methods which have 

resolution of ~ 2-3 k T . Furthermore, it has been shown that the polynomial approach could be 

used to obtain information on the free carrier recombination lifetime, T f and the procedure has 

been discussed.
The Tikhonov regularization method (Tikhonov A. N., 1963; Weese J., FTIKREG program,
1992), regarded as one of the most reliable methods for extracting information from noisy 
experimental data, has been applied to computer simulated data. It has been shown that the 
newly developed exact method and the Tikhonov  regularization method perform equally well in 
terms of accuracy and resolution when applied to computer simulated, noise free I-t transients.
In the same chapter the approximate and exact methods have been applied to simulated I-t data 
with and with no noise introduced. The reliability of all methods has been discussed.
At the end, the approximate and exact methods have been used to extract information on DOS 
in light-soaked plasma enhanced chemical vapour deposition (PECYD) a  —  Si : H , and on
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discrete levels in single crystal 7nz-doped C d T e  . The results have been compared with other 
publications.

In chapter II the time-of-flight (TOF) experiment and the mathematics describing it are 
briefly reviewed. The E L T  and the Tikhonov regularization methods have been adapted for the 
case of the post-transit TOF experiment and applied to computer simulated TOF I-t data. The 

performance of the exact methods and the widely used approximate txl(t) approach 

(Seynhaeve et al, 1989) has been studied. In order to simulate post-transit I-t data the 
polynomial approach has been used with model DOS distributions and under the assumption of 
near equivalence of post-transit regime in TOF experiment and post-recombination conditions 
in the context of the TPC experiment. The E L T  and the Tikhonov  regularization proved superior 

to the existing txl(t) approach (Seynhaeve et al, 1989). All three methods (the ELT,  the 

Tikhonov  and the txl(t) method) have been applied to experimentally obtained TOF data on 

a  —  S i : H  and the results have been discussed.

A summary of the principle results from this work is given in the final chapter (Conclusions).
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Objectives

1. To provide an exact semi-analytic solution of the Fre d h o l m  integral of the 1st kind arising 
from the multiple trapping (MT) model, widely used to describe charge transport in 
amorphous semiconductors.

2. To illustrate the characteristics of the exact solution via numerical simulations, and 
comparison with existing mathematically approximate methods, and the Tikhonov 

regularization method.

3. To apply the exact methods to experimental transient photoconductivity (TPC) data, 
obtained on amorphous hydrogenated silicon (a-Si:H), and single crystals. 4

4. To analyse critically the available methods (based on Laplace  transformation) to extract 
information about Density of States (DOS) distributions from transient photoconductivity 
data.
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Introduction

The periodicity of the atomic structure is central to the theory of crystalline 
semiconductors. A crystalline structure is ordered in the sense that knowledge of the unit cell of 
the lattice allows the prediction of the positions of all atoms in the material over many bond 
lengths. Thus the environment in which the electrons move in a crystalline material is known a- 

p rio r i. A consequence of the order is the existence of bands - in a particular sample of a solid 
there are some ranges of total electron energy where electrons can be found (allowed bands), 
and other ranges where there are no electrons (forbidden bands). Bands are described by energy- 
momentum dispersion relations, which in turn, determine the effective mass, electronic 
excitations etc.

In contrast, amorphous semiconductors are ‘disordered’, and this is the main feature 
which distinguishes them from crystalline materials. The lack of long range order introduces a 
range of localized states at the extremities of the valence and conduction bands of an amorphous 
semiconductor. These localized states are also a characteristic feature of disordered solids and 
have a determining influence on electron transport and related properties. It is their presence 
which leads to new forms and mechanisms of transport not generally found in the crystalline 
case. Research over the last 30 years shows that despite the apparent disorder, the band structure 
remains a valid concept for the a-periodic state too, though the bands are no longer described in 

terms of the energy-momentum (the E n (k) functions in the reciprocal lattice space are no

longer periodic), but in terms of the density of states (DOS - the number of states per unit 
energy range per unit volume). DOS will be referred to very often in this work.

Anderson’s work of 1958, ‘The absence of diffusion in certain random lattices’, has had a 
profound effect on the understanding of the behaviour of electrons in non-crystalline media 
(Mott N. F., 1987). The concept of ‘localisation’ has been introduced, and a transition in the 
nature of electronic states between delocalized and localized has been considered as an order 
parameter is varied (Mott N. F. and Davis E. A., 1979). Now it is generally accepted that 
valence and conduction bands and a band gap exist. Figure 1 (a) is a schematic representation of 
the density of states distribution near a band edge of an amorphous semiconductor. In the 
valence and conduction bands the disorder (different bond lengths and bond angles) produces 
‘tails’ of (localized) states, and somewhere within this tail there is a mobility edge (Mott N. F., 
1966), a critical energy separating localized from extended states.
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(a) (b)

Figure 1
(a) The density of states distribution near the b a n d  edge of an  a m o r p h o u s  semiconductor, 

showing the localized a n d  extended states separated by the mobility edge (Street R. A., 1991).

(b) Schematic D O S  distribution in a m o r p h o u s  silicon or g e r m a n i u m  showing the bands, the 

b a n d  tails, a n d  the defect states in the b a n d  g a p  (Mott N. F., Conduction in non-crystalline 

materials, 1987).

A further contribution to the density of states in mid-gap comes from the co-ordination defects 
such as dangling bonds. The current model for amorphous silicon and germanium, figure 1 (b), 
is that most of the deep states are caused by dangling bonds. A dangling bond occurs when a 
silicon atom is so placed that it can form only three bonds with neighbours. Dangling bond can 

be positive ( D + ), neutral ( D ° )  or negative ( D ~ )  depending on the number of electrons at a 
given state. These defects are known as amphoteric defects, as they can act as donors, and also 

as acceptors. For amorphous silicon it is expected that the energy of the D ~  state is further 

from the valence band edge than D °  and D + , i.e. that the energy required to remove an 

electron from a D ~  state is smaller, because of the electrostatic repulsion between the two 

electrons on the site. The difference of the D °  state and the D ~  state is called a correlation (or 

Hubbard) energy, U . The correlation energy in the case of amorphous silicon is positive. In 

a -  A s 2S e 3 and other chalcogenide glasses it is suggested that U  is negative, i.e. D ~  is closer

to the valence band edge because of fast local changes in the lattice configuration when D ~  is 
created (Mott N. F. and E., A. Davis, 1979).

The density of dangling bond states depends on the conditions under which the material has 
been fabricated and they play an important role in amorphous semiconductors as they mediate 
the recombination processes. Shockley -  Read statistics (Shockley W. and Read W.T, 1952)
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take into account all possible transitions between the bands and defect states in amorphous 
semiconductors.

A distinction should be made between the deep states, mediating recombination, and 
states close to the band edges which act as temporary traps of charge. Carriers captured by these 
states are more likely to be thermally re-emitted than to capture a free carrier of the opposite 
sign. The presence of traps affects time resolved conductivity measurements, e.g. transient 
photoconductivity measurement which is described in chapter I.
The probability of thermal re-emission of a trapped carrier can be obtained by consideration of 
the detailed balance, the principle that in thermodynamic equilibrium the forward and reverse 
rates of all processes are equal. Thus taking into account that in thermodynamic equilibrium the 
rate of capture is equal to the rate of re-emission, and using the F e r m i  occupation function,

gives the emission probability for electrons en =  vexp(—( E c — E ) / k T )  in s -1. A similar

expression holds for the hole emission probability ep . This expression along with the capture

probability defined by capture coefficient and the density of states are used in the analysis of the 
photoconductivity in chapter I.

Deep defects determine the electrical and optical properties of amorphous semiconductors 
by controlling trapping and recombination processes. It is generally accepted that at 
intermediate and high temperature (i.e. above 150 A for electrons in a  —  S i : H ) ,  the excess 
carriers interact with the localized tail states by a continuous process of trapping and thermal 
release. In this multiple trapping (MT) mode the observed transport takes place in the extended 
states, but the carriers-tail states interactions critically determine the propagation of the carriers 
and the drift mobilities (cases (i) and (ii) below). Below about 80 K  there occurs a fundamental 
change in the predominant transport path and mechanism. In this low-temperature regime 
excess carriers now move through the localized tail states by phonon assisted hopping (case 
(iii)). (Mott N. F. and Davis E. A., 1979)

i. Thermal release to E c .

The probability per second, P r, which is equal to the inverse of the release time, Tr, is

approximately given by:

This is dependent on the electron wavefunction overlap of neighbouring sites in the tail 

states. The probability, P th, is proportional to exp(—2a R )  , where a ~ x is the extension 

of the carrier wavefunction and R  is the average distance between sites below energy

ii. Further thermalization (downward hopping)
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E . R  is determined by the density of states distribution, g ( E ) , in the tail states. Near 

the bottom of the tail states the decreasing g ( E )  increases the distance R  and thus 

would be expected to lead to an appreciable slowing down in the rate of thermalization.

iii. Phonon assisted hopping around energy E F.

P h oc exip(-2aR)  x exp(-IF / k T )

in addition to the wavefunction overlap, the hopping transport depends also on the 
hopping activation energy, W . This is the dominant transport mechanism at low 
temperatures, where probabilities for thermal release to the conduction band, and 
further downward thermalization are negligible. As the temperature is lowered the 
number and energy of phonons available for absorption decrease so that the tunnelling 
is restricted to seek centres which are not nearest neighbours but which instead lie 

energetically closer and within the range k T  (so called Variable Range Hopping, 
VRH).

In this work a multiple trapping conduction mechanism has been assumed.

Illuminating a semiconductor with a constant intensity of light of an appropriate 
wavelength changes the conductivity by altering the carrier densities. This simple fact is used in 
photoconductivity experiments to study defect distributions in disordered semiconductors. 
Photoconductivity (Mott N. F. and Davis E. A., 1979) is a complex process of generation, 
transport and recombination of excess (above the thermal equilibrium) photogenerated carriers. 
In a semiconductor, generation of carriers is connected to the optical absorption coefficient and 
the quantum efficiency of generation of free electron and/or holes. Transport is characterised by 

the free carrier mobility p Q and the free carrier lifetime zy .

The conductivity cr of a sample may be defined as the current that flows across unit cube 
when the voltage between opposite faces is unity. Thus for a semiconductor where both holes 

and electrons are present the conductivity is given by cr = n e p e + p e p h, where

e = 1.6 x 10-19 C , and p  is the mobility. A very useful first approximation is to say that p  is a 

constant for a given carrier and material. In general p  depends on the temperature, and on the 

doping density when this is high, because of the effect on the collision time. It is assumed for a 
particular set of experimental conditions that conduction is dominated by a particular 
conduction path for which the mobility-charge density product is greatest. At high temperatures 
the dominant path is at the mobility edge, and is moving into localized states at lower 
temperatures. The transport analysis used in this work assumes unipolar conduction (the carriers 
are electrons) through extended states only.
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The main objective of this work has been to develop an exact method for extracting information 

on the density of states distribution from photoconductivity data.

In this work it has been assumed that the photocurrent (defined as the excess current per unit 

volume produced by the radiation) is mainly carried by electrons. The photocurrent for a field 

F  is given by I  —  eFjuD G z  = eFjuD A n , where juD  is the drift mobility for electrons, r  is the 

lifetime, A n  is the excess density of the carriers due to the radiation, and G  is the number of 

carrier pairs generated per unit time and per unit volume. After the radiation is cut off, A n  

decays and from the transient photoconductivity measurements detailed information on the 

nature and energy distribution of localized states within the material under examination can be 

obtained. Such trapping centres critically determine the quality and commercial usefulness of 

disordered thin films.

Transient and modulated photocurrent measurements, TPC and MPC (Bruggemann et al, 1990; 

Main C. et a l, 1992; Reynolds S. et al, 2000), have been used for many years to obtain transport 

information from disordered thin-film semiconductors. One of the main objectives of such 

analysis is spectroscopic -  to determine the energy distribution of various species of gap states 

which influence carrier mobilities and lifetimes. The major problem with spectroscopic 

interpretation of the time-domain photoresponse I ( t ) following a short laser pulse is that the 

instantaneous response is a result of simultaneous interaction of free photocarriers with the 

w hole ensemble of gap states via multi-trapping process. Early analytical methods involved 

mathematical/physical approximations and even assumptions on the form on the density of 

states. The F ourier and L aplace  (Naito H. et al, 1995; Main C., 1997; Nagase T. et al, 1999) 

methods avoid many of the pitfalls incurred by earlier transient analyses. Both methods use 

information from the w hole transient response (rather than instantaneous values) in computing 

the density of each selected section of the gap state distribution, but still mathematical 

approximations have been used in the analysis.

The motivation for this work was the need for a reliable and exact method of computation of the 

density of states of amorphous semiconductors, which would represent a valuable diagnostic 

tool for material quality.
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I. Transient Photoconductivity (TPC) Experiment

The idea behind the TPC experiment is schematically represented in figure 1.1. In the 

TPC experiment coplanar electrodes are deposited on the top surface of the sample and the 

photocurrent response I-t of the semiconductor as a function of time is measured following a 

short pulse of light. Under certain conditions (Ohmic contacts) the transient photodecay 

reflects solely the equilibration process of the excess carrier density mediated by the localized 

states. The photocurrent varies over many orders of time and magnitude and contains 

information on the localized states densities and the associated trapping and recombination 

parameters. The TPC experiment therefore could be used to probe the DOS distribution in 

amorphous semiconductors if a suitable mathematical analysis could be devised.

The TPC system used in our laboratories is described in detail elsewhere (Reynolds S. et al,

2000).

Pulse photoexcitation

(a) (b)

Figure 1.1 The idea behind the T P C  experiment (a), a n d  the mea s u r e d  photocurrent as a 

function of time (b).

1.1 M ultiple Trapping (MT) m odel -  form ulation o f the problem

The MT model is frequently used for the description of phenomena near and above room 

temperature. The model assumes, that carriers are trapped in localized states where they are 

immobile until thermally re-emitted to extended states (Schmidlin F. W., 1977)). The model is 

relatively simple, and it can be used to analyze photocurrent transient data in terms of a small 

number of transport parameters, and to obtain significant trends in these parameters with
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temperature, electric field, and sample properties. Figure 1.2 is an illustration of the M T model.

The progress of a typical carrier (an electron) in extended states (conduction band) is frequently

interrupted by capture and release events from a set of states in the gap.

e

Localized energy 
levels (traps)

Extended states

E c

E v

Figure 1.2 M ultip le trapping  conduction m echanism

Following Schmidlin the term ‘trap’ is used for any localized state which basically immobilizes 

a carrier for an observable length of time. In contrast with this, the term ‘transport state’ is used 

for any state which determines the microscopic mobility (//) of a charge carrier. In other words 

traps are states which are sufficiently isolated from each other spatially so that direct transitions 

between them are negligible. Transport states, on the other hand, are sufficiently interconnected 

spatially to sustain what appears to be a continuous drift speed (jjE, where E  is the local electric 

field). Thus the microscopic mobility is entirely determined by transitions between transport 

states alone, whereas capture and release rates are determined by transitions between transport 

states and traps. (A given release rate, however, can be produced by different combinations

of attempt-to-escape frequency, v i , and activation energies E {.)

The MT model assumes that the excess carriers are residing initially in extended states. 

Subsequently, they become trapped in localized states at various depths. The time before re

emission varies with trap depth, with the shallower states releasing trapped carriers first. Further 

trapping and release occur, and the energy distribution of excess carriers evolves towards 

greater depths with time. This process is known as therm alization. Direct transitions between 

traps are neglected. The main problem which makes the extraction of information about DOS 

complicated is the fact that a continuous distribution of localized states in the material’s gap 

results in sim ultaneous interactions of excess free carriers with a range of localized states, with 

rather complicated trapping/recombination dynamics. Consequently, the observed features in a 

transient decay are related to both the capture and release times from traps but they do not 

coincide with either the capture or release times.
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To describe the TPC experiment in terms of the MT model the following assumptions are made:

i. The current is carried solely by carriers in free states which interact through 

trapping and release with a trap distribution,

ii. The photoconduction is unipolar, meaning that the mobile carriers are either holes 

or electrons,

iii. The capture cross section of all states are equal,

iv. The localized states are not saturated. This is achieved if the photocurrent is 

measured under small-signal condition. In this case the recombination kinetics of 

photocarriers is expected to be m o n o m o le c u la r1.

The transient photoconductivity experiment is described with a set of coupled first order 

differential rate equations (1.1) and (1.2) with initial conditions (1.3), in which each type of trap 

is simply characterized by a capture probability coi and a release probability y . (Schmidlin F. 

W. (1977), Lakin W. D. e t  a l  (1977), Noolandi J.(1977)).

Initial conditions:

n ( t  =  0) =  n o , n i ( t  = 0) = 0 (1.3)

n ( t )  is the free carrier density at time t, n i ( t )  is the trapped carrier density at the i ,h localized 

state at time t, n 0 is the injected free carrier density, Tf  is the free carrier recombination 

lifetime, g iE ; )  is the density of states at the the ith localized level below the mobility edge, 

coi = < J V g (E i ) is the capture rate constant and y t =  V Q x p (-E i / k T )  is the release rate

1 The condition, in which the recombination rate depends on the excess density of only one of the recombining 
species is called monomolecular recombination. The condition, in which the recombination rate depends on the 
densities of the both recombining species is called bimolecular recombination.
In the case of monomolecular recombination the excess electron density is proportional to the excess generation. In 
the case of bimolecular recombination the excess electron density varies as the square root of the excess generation.
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constant at the ith localized level, cris the capture cross section, u is the thermal velocity, vis an 

attempt-to-escape frequency, k  is the Boltzm ann  constant and T  is the absolute temperature.

The de/ta-function defines the initial condition for the transient photocurrent experiment. It 

should be noted that in general both the pre-factor v  and the activation energy E { may vary 

and contribute to a distribution of release rates.

1.2 Early w ork on TPC analysis, therm alization energy concept

Historically, the first precise and analytic solution of the multiple trapping equations, in 

the context of the time-of-flight experiment, is due to Schmidlin F. W. (1977) and Noolandi J. 

(1977). A mathematical analysis of considerable complexity leads to a solution in the form of 

convolution of modified B essel functions of first order and must, in general, be evaluated 

numerically. Although Schmidlin’s result is analytic it is difficult to interpret. To overcome this 

difficulty, during the past 20 years, a variety of approximate techniques assuming a MT 

mechanism of charge transport, and based on F ourier (Main e t al, 1992; Main C., 1997) and 

L aplace  transformations (Naito H. et al, 1994; Ogawa N. et al, 2000) have been developed. The 

fact that they are mathematically simple and straightforward makes them attractive, but 

unfortunately, they have inferior resolution in comparison with the existing exact methods (cf. 

Exact methods of solving the Fredholm  integral equation of the 1st kind).

The early approximate methods made use of the therm alization  energy2 concept, 

introduced by Arkhipov and Rudenko (1978), and independently Tiedje and Rose (1980), 

Orenstein and Kastner (1981) (the so-called TROK model), and Orenstein J. et a l (1982). The 

^osMxansit analysis of the time-of-flight experiment still uses this approach (TOF experiment; 

Seynhaeve’s PhD thesis, 1989; Seynhaeve et al. (1989)) and yields the DOS proportional to 

t x l ( t ) . Seynhaeve G., et a l (1985) have shown that that there are important limitations to the 

range of validity of the therm alization energy analysis. It has been shown that the 

therm alization approxim ation  does not work for structured distributions of localized tail states 

and for exponential tails whose width is smaller than k T , where k T  is the thermal energy 

(Marshall J. M. and Main C., (1983)), but the thermalization energy model is useful historically 

for the insight it gives.

2 The thermalization energy concept is based on the following consideration. If E is the depth of an electron trap 
below the conduction band mobility edge then the immobilization time of a trapped electron is equal to the thermal 
release time t , which is defined by t = v_I exp(E/kT), where V is the attempt-to-escape frequency which is of

order 1012 S~l. Then the energy E th = k T \n v t separates those states above E h(t) for which the most probable
number of release events in the time t is greater than unity, from the deeper states where an electron is unlikely to be 
thermally released in the time t.
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The physical approximation used is that above the E th (t) electrons are thermalised and 

have a Boltzmann  distribution. This assumption is increasingly valid as one departs from E th (t) 

since the electrons in the shallower states have had ample opportunity to ‘thermalise’ as a result 

of many thermal excitations. BelowE th(t), by definition, the electron distribution remains

‘frozen’ into the initial form that parallels the density of traps. As the time progresses the 

thermalization energy moves further into the gap, releasing charge which is subsequently re

trapped into the deep traps thus increasing their occupation.

A review of the methods which make use of the thermalization energy concept is out of 

the scope of this work. Only one of them, the post-transit TOF experiment, is briefly discussed. 

In the post -  transit TOF experiment the current is due solely to the emission of carriers from 

localized states, i.e. where no re-trapping occurs. It is shown that this case could be easily 

treated with the existing exact methods and an exact solution could be obtained (cf. chapter II). 

In Chapter II a comparison is made between Seynhaeve’s post-transit approach and the exact 

methods developed as a part of this project. Other methods known as ‘multi-point’ methods, 

which make use of current-time data over a range of times (e.g. Volt era integral equation 

(Michiel H., J. et al (1983), and methods based on the Fourier  transformation of the 

photocurrent data (Main C. et al, 1992; Main C., 1997; Webb D.P., PhD thesis (1994)) are out 

of the scope of this work.

The following section is a summary of the work of the Osaka group (Naito H. et al, 1996, 

Nagase T. and H. Naito, 1998), which was used as a starting point for the development of the 

Exact Laplace  transform (E L T )  method. The MT equations are solved using the Laplace 

transform, which is a widely used method of solving systems of differential equations. It is

assumed that the Laplace  transform X{n(t)} =  n(s) and X { n i(t)} =  n ^ s ) , denoted by ( )

over the corresponding variable, exists and is defined, in the cases of free and trapped carriers 

respectively, by:

A  °°  A  °°

n(s) =  Jn(t) exp(-st)dt, m  (5 ) = Jwt. (t) exp(-st)dt

The application of the theorem for Laplace  transform of derivatives X  f  (t) = s f(s) —  / ( 0) 

leads to a linear system of algebraic equations (LAE).

s n(s) -  «(0) = - s  V  n. (5 ) -  + n 0
M ?7

s n i ( s )  =  G)i n ( s ) - y i n i ( s )

(1.4)

(1 .5)
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A CO- A
n f s )  = ----— n(s),

s +  ri

n(s) =
n 0 + n(t = 0)

1 ^  SCO:— +  s +  > -----—
f/ M -5 + /̂

After replacing the summation by integration the last line reads:

n(s) = 2
A

a(s)

2«0

+ S + S]  <rag(-E)
• 5 + v exp(-2s / AT)

d E

2»o
A

h(j)
= a(s) (1.6)

The free carrier density «(7) and the photocurrent I{t) are related by I(t) = qju0F n ( t ) , where 

q  is the electronic charge, //0 is the microscopic mobility and F  is the applied electric field. 

Then the last expression can be written in terms of the initial value of the photocurrent 7(0) 

and the Laplace  transform of it I( s ) . After differentiating with respect to the Laplace  variable 

s, an integral equation for the density of states, termed a Fre d h o l m  integral equation o f  the 1st 

kind, is obtained (Naito H. et al, 1996; Nagase T. et al, 1998, 1999).

d  f 2/(0)A
fife l I(s)

-1 =  j a o g ( E ) r ^ t * i m _

o [s +  v  exp(-7T / kT)\
-dE (1.7)

It relates the Laplace  transformation of (noisy) transient photoconductivity data with the density 

of localized states. The numerical inversion to obtain the function of interest, g ( E ) ,  is known 

as an "ill-posed’ problem (cf. General definition of ill-posed problems).

It has been assumed that this F r e dholm  integral equation cannot be solved for the DOS 

using methods from linear algebra, the reason being its ill-posed nature. In this work it will be 

shown that despite its ill-posed nature, it is possible to obtain an exact solution for the DOS 

without using any mathematical/physical approximations. In order to be able to make a 

comparison and to analyse the results, a brief review of the approximate methods for solving the 

Fredholm  integral equation of the first kind will be given.
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1.3 A pproxim ate Laplace transform  m ethods o f  solving the Fredholm  

Integral Equation o f the 1st kind

The approximate methods developed by the Osaka group (Naito H. et al, 1996, Ogawa N. 
et al, 2000), Laplace Transform (LT) and High Resolution Laplace Transform  (H L T ), are based 
on a simple mathematical approximation, namely the kernel of the integral in the F r e dholm 
integral equation of the 1st kind (or a variant of it) is replaced by a suitably weighted delta 

function peaked at energy E 0 to yield g { E 0) . The approximate methods based on Laplace

(alternatively on Fourier) transformations are straightforward but unfortunately they do not 
have a good resolution. Discrete levels (and features in the DOS) are returned ‘broadened’ by 

several k T  and in the case of a steep exponential tail the recovered slope is wrong.

1.3.1 L a p l a c e  transformation (L T )  method

In the L T  method, developed by Naito et al (1996), the problematic part of the Fr e d h o l m  
integral equation of the 1st kind, namely the kernel function, is replaced by a delta function

v
positioned at a given energy, E 0 = k T  ln(—), where the kernel has a maximum

5

h{s,E)
v  exp(-is / k T )

[5 + v  exp(-is / AT)]2
S ( E - E 0 )
s

This mathematical simplification leads to a simple expression relating the localized states 
distribution with the Laplace  transformation of the photocurrent transients

g ( E  0) =
1

_̂__ m  „1
a u k T d 111(5) s >

j.
(1.8)

Another more precise but still approximate method developed later by the Osaka group is 
termed High Resolution Laplace  Transform (H L T )  method (Ogawa N. et al, 2000).
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1.3.2 High resolution L a p l a c e  transformation ( H L T )  method

In the H L T  method the approach is similar. After taking a derivative with respect to the 
Laplace  variable s on the Fredholm  integral equation of the 1st kind, the following equation 
relating the DOS and the Laplace  transform of the measured photocurrent is obtained:

d 2
( \ 1(0)

d s 2

Ep
• jcrvg(E)h ( s , E ) d E ,
0 ’ [s +  v e x p { - E ! k T ) f

The sharper kernel function h  (s,E)  is replaced again by a delta function with appropriate

kT* 2 vweighting coefficient - r - 5 ( E  —  E 0) , and positioned at another energy E 0 =  k T ln(— ). A

more precise but still approximate expression for the DOS is obtained:

g { K ) =
7(0) I(s) I'\s) -  2[7'(s)]2
crvkT

[ m f

(1.9)

In the calculation proposed by the Osaka group the integration, in order to find the Laplace 
transform of the photocurrent data, and differentiation have been done by simple numerical 
procedure over n  sampling points.

In our computation procedure the Laplace  transformation of the photocurrent data I-t has been 
calculated semi analytically by a simple procedure of connecting neighbouring I-t points by 
exponents and representing the integration over the accessible time domain as a summation of 
integrals between the neighbouring points (Appendix A2). The first and second derivatives of
A

I(s) have been found using the theorem for multiplication by tn (Spiegel M.R, 1965):

A <«)
/

oo

(5 ) = (-1)" jtn f(t)e~std t . This approach leads to a negligible round-off error.
0

It is obvious that the H L T  method has a better resolution in comparison with the simpler L T  

method due to the sharper kernel function.
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1.3.3 Energy resolution o f the approxim ate m ethods

The well-known effect of broadening caused by the delta-function approximation can 
easily be estimated (figure 1.3) by applying both approximate methods to computer-generated /- 
t data from one discrete level. The Full Width of the Half Maximum (FWHM) is 93 m e V  (3.5 

k T )  for the LT, and 78 m e V  (3 k T ) for H L T method respectively.
The mathematical approximation of replacing the problematic part of the F r e d h o l m  integral 
equation (the kernel function) with a de/ta-function leads to diminished resolution of the 
approximate methods.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

E(eV)

Figure 1.3 Recovery of one discrete level of density 1017 cm'3 positioned at 0.4 e V  using the L T  

a n d  H L T  methods.

The example in figure 1.4 is self-explanatory. Our simulations showed that the approximate 
methods are incapable of reproducing the DOS in a case, for example, of two discrete levels 

positioned less than 80 m e V  apart (as it should be if a method has FWHM 93 m e V ).

In the case of two discrete levels positioned at around 70 m e V  the L T  method resolves only 
one broad level with a maximum around the middle of the distance between the actual positions 
of the original two levels.
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1.4x1018

1.2x1018

1.0x1018

**& 8.0x1017 o
g  6.0x1017 
Q

4.0x1017 

2.0x1017

0

Figure 1.4 Recovery of two discrete levels of equal density 1 0 17 c m 3 placed at 0.4 a n d  0.48 e V  

using the L T  a n d  H L T  methods.

The L T  and H L T  methods have been applied to exponential and structured distributions. 
Figure 1.5 shows the TPC I(t) computed for exponential localized states distributions with

different values of the characteristic temperature, T 0 . In the calculation an ambient temperature 

T  =  3 0 0 K  and free carrier recombination lifetime Tj- =10_6s have been assumed. The 

inflection points in the transients are due to the recombination of the photogenerated free 

carriers. The recombination lifetime determined from the graph is longer than Tf . This is a 

result from frequent trapping and detrapping of free carriers into the exponential state 

distributions. The value of t  increases with T 0 because the trapping and detrapping of free 

carriers become much more frequent.

Figures 1.6 (a) and (b) show the exponential localized state distributions recovered from the 
TPC data in figure 1.5 which were obtained using the polynomial approach as described in
1.4.1.2. From figure 1.6 (a) it is seen that the L T  method fails when steep distributions

(T0 <  T ambient) have to be recovered. The H L T  method (figure 1.6 (b)) performs better but still 

the recovery of steep distributions is problematic (ro=200K). This is in agreement with the 

results obtained from the Osaka group (Nagase T, et al, 1999).
The back-simulated TPC data using the L T  DOS is wrong, as was expected, for steep 

distributions with T 0 <  T ambient (200 K and even 300 K). This is clearly caused by the 5 -  

function approximation.

.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
E(eV)
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In contrast, the H L T  method, although approximate, reproduces quite well the starting 

distributions even when T 0 <  T ambient. The reason is that now the 5-function replaces a sharper 

Kernel function in comparison with the simple L T  method. The back-simulated TPC data fit 

well the original I(i) data (symbols in figure 1.5).

Figure 1.5 T P C  I(t) transients computed for exponential localized state distributions with 

T0 = 2 0 0  K, 3 0 0  K, 4 0 0  K, 5 0 0  K, a n d  free carrier recombination lifetime Tj- = 1 O'6 s at T  = 

3 00 K. Symbols correspond to simulated I(t) using the recovered L T  a n d  H L T  D O S .

LT

(a)
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IILT

(b)

Figure 1.6 (a), (b). Recovery of exponential distributions of states simulated with tail slope 

parameters T 0 =  200K, 3 0 0  K, 400 K, 5 0 0 K  f r o m  the current transients in figure 1.5. Lines 

indicate the m o del D O S  distributions.

time (s)

Figure 1.7 T P C  I(t) computed for the structured distribution in figure 1.8. In the computation 

the free carrier recombination lifetime Tj- =  1 O'6 s at T  =  3 0 0  K.
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Figure 1.7 shows the TPC I(t) data computed for an exponential localized states distribution 

with T0 =  3 0 0  K  on which Gaussian distributions with different widths have been 
superimposed. The initial decay of the photocurrent transients, between 10'11 — 10'6 s is caused 
by trapping into the Gaussian  distributed states.

Figure 1.8 Recovery of exponential plus Gaussian distributions: T 0 =  3 0 0  K, g Go = 1 0 16 c m 3 

e V 1, E 0 =  0.6 e V , E w  = 0.06 e V  u s i n g L T a n d H L T m e t h o d s .

From figure 1.8 is seen that although the energy position and the density of the Gaussian 
distribution are well reconstructed by both methods, the calculated distribution significantly 
deviates from the original distribution especially in the deep energy region, and the deviations 
are bigger for the L T  method. Even though the examined Gaussian  distribution in figure 1.8 has 

a width E w  = 0.06 e V  both methods still cannot reproduce it. The deviations from the true 

shape of the model distribution are clearly due to the 8  - function approximation.
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1.4 Exact m ethods o f solving the Fredholm  Integral Equation o f the 1st 

kind

1.4.1 Exact Laplace Transform  (E L T )  m ethod

1.4.1.1 Exact solution of the MT system of equations for the Density of States
One of the main objectives of this thesis was an exact solution involving no mathematical 

approximations of the Fredholm  integral equation of the 1st kind arising from the MT system of 
equations to be found. The developed method is termed the Exact Laplace Transformation 
(ELT)  method (Gueorguieva M. et al, 2000a) because it contains no mathematical or physical 
approximations (apart from the assumption that the transport is governed by the MT 
mechanism).

The starting point of the method is the F r e dholm  integral equation of the first kind (cf. MT -  
formulation of the problem):

p o s e d  problem, meaning that relatively small variations (errors) in the experimental data lead to 

relatively large changes in the solution, g ( E ) . The problem is ill-posed by its nature (described 

by the Kernel function) and so-called regularization methods are needed to obtain a reliable 
solution (cf. Tikhonov regularization method).

As it is described later in this work (the Tikhonov regularization method), a criterion of 
whether a problem is ill- or well- posed is the so-called condition number.  In our calculation the 
product Mathematica  has been used to calculate the singular values decomposition3 of the 
matrix of the system corresponding to equation (1.10) and to obtain a value for the condition 
number. The calculated condition number is of order 1013 suggesting that the problem is 
extremely ill-conditioned.
It should be noted that the developed E L T  method does not transform the ill-posed problem of 
solving the F r e dholm  integral equation of the 1st kind to a well-defined one. Starting from the 
Fredholm  integral equation the method transforms it to a linear system of algebraic equations in

Any matrix m can be written in the form u mDv, where mD is a diagonal matrix with elements known as singular 
values, and u and v are row orthonormal matrices. The ratio of the largest singular value of a matrix to the smallest 
one gives the condition number of the matrix. A system is said to be singular if the condition number is infinite, and 
ill-conditioned if it is too large. Wolfram S, 1991.

(1.10)

Solving this integral equation for the function under the integral ( g ( E ) ) is known as an ill-
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the Laplace  domain. Then, it obtains a unique solution of the system for a given set of 

experimental/ simulated I-t data. The key moment for obtaining a unique solution is to find a 

range for the Laplace  variable s for which the matrix of the system of equations (1.4) & (1.5) 

becomes strictly diagonally dominant ensuring uniqueness of the obtained solution g { { E i).

In our approach we begin by integrating a discrete form of the F r e d h o l m  integral 

equation with respect to the Laplace  variable s to obtain an exact system of linear algebraic 

equations (LAEs) for n  closely - spaced levels g . :

It is known from linear algebra theory that the solution of these LAEs is unique provided the 

matrix of the system (1.12) is non-singular, i.e. the determinant is non-zero (Atkinson L.V. et al, 

1989).

Our solution algorithm comprises two steps.

i An appropriate domain for the Laplace  variable s is chosen which makes the
n

system strictly diagonally dominant4, i.e. \au \ > J . This is achieved by
j=Uj*i

taking s t =  —y.  +  £ i , where s  is a small quantity defined

by Si = m m - ( y t - / j ) .
Jr!’" n

ii Solving the system by the standard method of Gaussian  elimination (Atkinson

L.V. etal, 1989).

4 Theorem; A strictly diagonally dominant matrix A  is non-singular, i.e. the determinant of A  is non-zero. 
Moreover, Gaussian elimination can be performed without row interchanges on A x  =  b  to obtain unique solution 
and computation is stable with regards to growth of round-off errors. (Atkinson L.V et al, 1989)
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In order to solve the system for DOS, Laplace  transform of the TPC I-t data has to be done. An
A

analytic procedure of calculating I(s) was developed. It comprises two steps:

i

ii

First, TPC current-time data are presented as a set of weighted exponents, 

m = X  A . exp(ccf) (Appendix Al),

Second, the tabulated expression is used to calculate the Laplace  transform of
A

summation of exponents, I(s) =  ---- !— (Appendix A2).
/ s - a t

Two methods of fitting exponents to TPC L-t data were used and assessed:

The first method uses a proprietary subroutine (Garbow B. S. et al (1980)) employing the 
Levenberg-Marquardt  algorithm, to calculate the weights of typically 100 exponential functions 
spaced at equal logarithmic intervals over the time range of interest.

The second method is based on analytic fitting of successive exponential functions to the 
residuals, which allows both weights and time-constants to be optimised (Appendix Al). It 

makes use of the Least squares me t h o d  to find A. and a t for a minimum number of exponents

which would fit the experimental current-time data. The requirement for a minimum number of 
exponents is consistent with the principle of parsimony, or principle of simplicity5, which is 
widely used in regularization techniques. It is used as a further criterion to select one solution if 
many vectors (solutions) are compatible with the input data. A similar to the principle of 
parsimony approach has been adopted and rigorously proven from the physics point of view by 
Schmidlin (1977). He reached to the following conclusion: ‘ The experimental current transients 
can be extremely well approximated by very f e w  traps having release times bracketing the 

experimental transit time.’ This confirms one of our results obtained when simulating current
time data using our polynomial approach. We found that essentially the same current-time data 
could be simulated from a range of different DOS profiles, although the solution for DOS is 
unique.

5 Adoption of this principle, though seemingly obvious, leads to problems about the role of simplicity in physics, 
especially when we are choosing between hypotheses that are not (or are not known to be) equivalent. Probably, there 
are different criteria for what is the simplest hypothesis, and it is not clear whether a simpler hypothesis is more likely 
to be true or not (Kirsch A.).
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Having found the L a p la c e  transformation of the TP C  I - t  data for the required s  domain defined

by s i = —y i +  £■•, the problem is to determine a vector with components (is ,) ; i  =

from the transformed experimental data, p.(jrf); i = The solution algorithm, as

described above, allows determination of both g t and E { vectors simultaneously, and is truly 

‘spectroscopic’ meaning that no assumptions as to the form of the DOS have to be made. In

addition, the solution is unique i.e. there is only one vector |gt. (£■); i = l,...,w j compatible 

with given experimental data W ) ;  i =

The accuracy and resolution of the E L T  method were tested and compared with the existing and 
recently developed approximate and exact methods, employing Laplace  transformation of TPC 
data for determination of the density of electronic states in disordered semiconductors. Details 
are presented in the rest of the section and in the following publications: Gueorguieva M. J. et 
al, 2001; 2000a. The method was applied to study light-soaked materials (Gueorguieva et al, 
2001) and crystalline semiconductors (Gueorguieva M. J. et al, 2002). The results are presented 

in sections Light-induced meta-stable states in PECVD a  —  S i : H , and ‘Discrete’ levels in 

single crystal Tm-doped C d T e  .
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1.4.1.2 Exact semi-analytic simulation of the current transients based 

on a polynomial approach

To investigate the potential accuracy and resolution of a DOS extraction procedure, it is 

necessary to simulate accurately the transient photocurrent response from a prescribed DOS 

distribution. A possible approach is to solve numerically the initial system of MT equations, 

using given (already calculated) discrete values g { E i ) ,  for n i ( t )  and n ( t)  (Main C. et a l 

1992, Main C., 1997). The latter is proportional to the photocurrent transient.

In our approach the H eaviside's expansion theorem (Spiegel M.R., 1965) is used to analytically 

perform Inverse L aplace  transformation in order to find current data in the time domain.

The L aplace  transform of the TPC I ( t )  data could be written as:

} (s) = ________________ 2 m ________________ 2 / ( 0 ) I I  P(s)

± +s+avs{^ +^ +.„+^ . ) n ( _ L +a)+OU5£ f t j j  m
rf  s + r , s + r 2 s + r „  1 1  t f  £ t

i m k *+*>. n = n o + r , ) ,
j=i 
j * i

yt = v exp (-E t / kT) .

In the above expression P (s) and Q(s) are polynomials, with the degree of P ( s )  less than that of 

Q(s). According to the H eaviside's expansion theorem the Inverse L ap la ce  transform X '1 j/(s)] 

exists:

m  =£■' {?(*)}=
t lQ X a ,) = L ,A>e

The alphas, a {, are the n + 1 zeros of the denominator Q(s) , and Q {ai) is the first derivative 

of Q(s) calculated at the zeros a t .

The fact that the denominator <2(s) has exactly n + 1 zeros is easily seen if we order the 

emission rates, y ., so that y l > y2 > ... > yn for energies Ex <E 2 <...<En. Then the equation
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2C0 = (— + s )(4 + ri)(s + r2)•••(■*+ r„) + < *«(g in . +s 2r \ 2 + -  + g '„n „  > = 0
Tf

is satisfied by a sequence of negative alphas, a i , which fall between the successive negatives  

of the y . .

• Polynomial Q ( s ) is always positive for positive s.

• Let us consider the sign of the denominator Q (s )  at points s  =  0 , - y n, - y n_l ,.. .,—y l 

(negative s):

Q(s = o )= — r , r 2- r „  >o 
Tr

Q(s = -/„) = -<n>rn n  = -<™r,gn in - r, )(r2 - r, )-(r»-i - r n)<0

Q(.s = Yn-l) = -a»rn-lg.-l  I L l  = GUyn_i^n-i O', “ T V , ~  Y ) - 0 V 2 “  ?VlXT, “  TVl) >

GO = - a ) = —ov^iS 'iIIt = - n X r 3 - r i ) - ( r „ - r , )
>0,
<0,

n — 2 k  

n =  2 k  +  \

Q {s  = -oo)
< 0, n =  2 k  

> 0, n =  2 k  +  l

The polynomial Q (s )  alternates its sign at the points s  = 0 ,—y n i—y n_x, . . . i—y l , and between y x and 

infinity there is another root. As far as Q (s )  is of order n+1 (for n discrete levels) and the above 

procedure finds n+1 real and distinct roots, this ensures that between two successive points ( y i i y i_ j) 

there is only one zero. All roots a .  are negative. In the case with no recombination (1/ t f  = 0 )  one of

the roots is zero. Essentially the same result was also obtained by Schmidlin (1977) and Noolandi (1977) 

in the case of discrete distribution of traps. Another interesting fact in our computation, in 

Schmidlin’s, and in Noolandi’s work, is that all coefficients A t are found to be positive, and

y^iA i = 1. Also, our results are consistent with Schmidlin’s finding that the current transients
/

in any real situation can be analysed in terms of relatively few discrete traps, meaning that only 

a few of given set of A { and alphas, a : , i = l , . . . ,n  +1 contribute to the TPC I-t curve.
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1.4.1.3 Energy resolution of the ELT method

In order to test the resolution of the E L T  method first a hypothetical sample with two 

discrete levels placed only 4 m e V  apart (slightly less than k T /6  at 300 K )  was considered. 

The photocurrent/-/ data (solid line in fig. 1.10) were simulated using the polynomial approach, 

assuming an ‘experimental’ temperature T  = 3 0 0 if , free carrier recombination lifetime 

Tj = \ 0 ~ 6s , attempt-to-escape frequency v = 1012s -1, and capture coefficient

<7U  =  \ 0 ~ * c m ~ 3s ~l .

E  (eV)

Figure 1.9 Two d iscrete  levels 4 m e V  apart. The D O S  is reco vered  fro m  the com puter

gen era ted  I ( t ) data  (so lid  line) in figu re  1.10.

Figure 1.9 shows that in the ideal case of noise-free current-time data the E L T  method can 

recover two discrete levels positioned less than k T  /  6  apart. The ‘background noise’, which is 

three or more orders of magnitude lower than the amplitudes of the discrete levels, is due to the 

computation (non zero solutions of the MT system of equations in the chosen energy interval). 

The resolution of 4 m e V  is the finest resolution available. All other (known to us) methods 

would ‘see’ these two discrete levels as one level from which the dashed line in figure 1.10 is 

obtained.

Although not visible on this scale, the energy positions are recovered to an accuracy of typically 

0.001 e V , and the broadening of typically 2-3 k T  that accompanies the approximate methods 

(cf. Approximate methods, and Main C. et al, 1992; N. Ogawa et al, 2000) is absent.
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Figure 1.10 I(t) data simulated from two discrete levels of equal density (1x1017 cm'3), 4 

meV apart (solid line), and I(t) data simulated from one discrete level of double density 

(2x1017 cm'3) positioned at 0.4 eV below the band edge (dashed line). In the simulation 

T=300K and =10'6s were used.

In figure 1.11 I-t data simulated from two discrete levels of equal density (lxlO17 cm'3) 

positioned 10 meV apart (solid line) is shown. The method is capable of resolving both levels 
at their right positions and with right amplitudes. The sensitivity of the method is further 
demonstrated by simulation of two sets of I-t data from one level of double density placed at 0.4 

and 0.41 eV respectively. The difference in the amplitudes of the two plateaus in I-t data is less 
that an order of magnitude but the method resolves the originating DOS (figures 1.12 a, 1.12b 
and 1.12 c) accurately.
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Figure 1.11 1(f) data simulated from two discrete levels of equal density (lxlO17 cm'3) 10 

meV apart (solid line). The dashed and dotted lines represent I(t) data simulated from one 

discrete level of double density (2x1017 cm3) positioned at 0.4 and 0.41 eV respectively. (In the 

simulation T—300K and zj- =10'6s were used)

E (eV)

Figure 1.12 (a) DOS recovered from the solid curve in figure 1.11. In the calculation T=300K 

andTj =10'6s were used.
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Figures 1.12 (b) and 1.12 (c). DOS recovered from the dashed and dotted curves in figure 1.11. 

In the calculation T=300K and Tf  =10~6s were used.

Second, the recovery of a range of exponential DOS distributions

g(E) = g 0 exp(-2s / kT0), where E is the energy relative to the band edge and T0 is the

characteristic tail slope, from simulated I(t) data is illustrated in figure 1.13 (Gueorguieva M.

J. et al, 2000a). It can be seen that the recovered DOS (symbols) is an accurate representation of 
the original DOS for T0 both above and below the ‘experimental’ temperature T. This represents 
a significant improvement in resolution over approximate LT methods which can introduce 
serious errors as T0 approaches T, and offers a performance as good as that obtained using 
Tikhonov regularization (Nagase T., et al 1999), when operating on simulated data.

£(eV)

2.017x10 
at 0.399 eV
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T ? T
O 0
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Figure 1.13 Recovery of exponential distributions of states simulated with tail slope parameters 
T0 = 200, 300, 400, 500 K. Solid lines indicate the model DOS distribution.

E (eV)

Figure 1.14 Recovery of exponential plus Gaussian distributions using ELT method: T0 = 500 

K, g G0 =1021 cm~3eV~l , E0 = O A eV , Ew = 0.04, 0.05, 0.06 e V . Solid lines indicate model 

DOS distributions.

In figure 1.14, a Gaussian distribution g G (E) = g G0 exp{-[(£ -  EG) / E w ] } , where g G0,

Eg and Ew are the peak density, peak position relative to the mobility edge and width

respectively, has been added to an exponential tail. The method is seen to recover the 
originating distributions accurately.
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1.4.1.4 Determination of free carrier recombination lifetime in 

amorphous and crystalline materials assuming the MT mechanism as a 

physical model for transport

Since the determination of the free carrier recombination lifetime r f  is of fundamental 

importance to the understanding of the nature of recombination centers in amorphous 

semiconductors, it is desirable to have a reliable way of estimating r f  .

In the course of this work the ELT method along with the developed polynomial approach 
of simulation of current transients were used to obtain an estimate for the free carrier 
recombination lifetime in amorphous and crystalline materials. The approach is not new and in 
general is a fitting procedure. It has been used by the Osaka group (Nagase T., H. Naito, (1998)) 

to determine Tj in arsenic triselenide (a — As2Se3). They make use of the approximate LT

method to obtain density of localized states distribution from a given set of experimental 

photocurrent data. After that the obtained DOS is used to back-simulate I(t) data solving the

original system of MT equations with a chosen value for Tj-. The free carrier recombination 

lifetime is varied until a good fit is obtained.

In our approach:
i First, using the ELT method with a given current-time data set a unique solution 

for the localized state distribution is obtained.
ii Second, using the polynomial approach, computer-generated current-time 

transients related to the already found DOS are fitted to the experimentally 

obtained photocurrent traces. By varying r ̂  the best fit is obtained, and the

corresponding value for t f  is considered to be the most plausible.

This procedure has been applied for investigation of the properties of crystalline materials 

(single crystal 7m-doped CdTe) (Gueorguieva M. J. et al, 2002), and also light-soaked PECVD 
amorphous hydrogenated silicon (Gueorguieva M. J. et al, 2001). The results from the light- 
soaked material are consistent with the understanding that the free carrier recombination 
lifetime is inversely proportional to the density of recombination centers.
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Sensitivity of the Polynomial approach in determination of free carrier 

recombination lifetime.

time (s)

Figure 1.15 Computer-generated I(t) data produced with different values for the free carrier 

recombination lifetime Tj-.

Figure 1.15 is an illustration of the fact that even a very small change in (0.5xl0'6) reflects

in quite a big difference in the simulated current-time data. The values of tf  in figure 1.15

have been chosen only for illustration and they are not the limit of the sensitivity of the 
polynomial approach.
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1.4.2 Regularization methods

1.4.2.1 General definition of Direct and Inverse problems

Two problems are inverse to each other if the formulation of each of them requires full or 
partial knowledge of the other (Kirsch A., 1996). From this definition follows that it is quite 
arbitrary which of the two problems is called a direct and which is called an inverse problem. 
Often one of the problems has been studied earlier and, perhaps, in more detail. This one is 
usually called the direct problem, whereas the other is the inverse problem.

The solution of a direct problem involves finding effects based on a complete description 
of their causes. In contrast, finding a solution of an inverse problem entails determining 
unknown causes based on observation of their effects. In other words the direct problem can be 

formulated as the evaluation of an operator K  acting on a known ‘model’ x in a model space 

X . The inverse problem then is the solution of the equation K(x) = y .

Direct problem: given x and K , evaluate K(x) .

Inverse problem: given y  and K , solve for x .

In order to formulate an inverse problem, the definition of the operator K , including its domain 
and range, has to be given. An Introduction to the Mathematical Theory of Inverse Problems by 
Kirsch contains many references concerning the philosophy and the theory of ill-posed 
problems.
From the above general definition is obvious that there is a fundamental difference between a 
direct and an inverse problem. In most of the cases with practical importance the inverse 
problem is All-posed.’ or improperly posed (in the sense of Hadamard) while the direct problem 
is ‘well-posed’.

1.4.2.2 General definition of ill-posed problem

Hadamard (Hadamard J., 1923; Kirsch A., 1996), introduced the concept of a well-posed 
problem, originating from the philosophy that any mathematical model of a physical problem 
has to have the following three properties:

1. There exists a solution of the problem (Existence).
2. There is at most one solution of the problem (Uniqueness).
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3. The solution depends continuously6 on the data (Stability).

If at least one of these three properties fails to hold the problem is called ‘ ill-posed' in the sense 

of Hadamard. Conditions 1 and 2 are equivalent to saying that the operator K  has a well- 

defined inverse K~l and that the domain of K~l is all of data space. In many cases the problem 
is not whether a solution exists, but that there is more than one solution. If there is more than 
one solution, then information about the problem described by a particular model is missing. In 
this case additional, in most cases a priori, information has to be introduced in the model. (“A 
lack of information cannot be remedied by any mathematical trickery”, Kirsch A., 1996).

The requirement for stability is the most important one. If the solution of a problem does not 
depend continuously on the data, then in general the computed solution has nothing to do with 
the ‘true’ solution. The continuous dependence of the solution image on the data is a necessary 
but not sufficient condition for the stability of the solution. There are mainly two reasons. 
Firstly, in practice, only a finite number of data values can be measured, hence a continuum 
problem is always an idealization of an actual problem. Secondly, it is impossible to make 
‘exact’ measurement and the data are always ‘corrupted’. The difference between the ‘ideal’, 
error-free data and the measured data is called noise.

The stability with respect to perturbations in the right-hand side y  of the solution x of the 

problem K(x) = y  can be quantified in terms of the condition number7 of the model matrix K  

(Groetsch C. W., 1984; Ozttirk F. and F. Akdeniz, 2000).

M M " 1 -  cow^ ) |4 ) 4 I M r

Ay is a variation of y  and Ax is the corresponding variation of x . The condition number

cond(K) for linear forward problem is defined as: cond(K) = ||A|

norm of a linear operator (or transformation). The condition number therefore gives an upper 
bound for the relative error in the solution caused by a given relative error in the right-hand side 
(Kirsch A., 1996). It gives an idea to what extent relatively small errors in v can lead to

6 A  function  f  ( z )  is  said to be continuous at z 0 if, g iven  any £ >  0 , there ex ists a S > 0 such  that 

|/ ( z )  -  / ( z 0 )| <  £ w h en ever |z  -  z 0 1 <  8 . (S p ieg e l M . R ., 1965)

7 A n y  m atrix m  can b e  written in the form  u^m^v, w here m 0  is a diagonal m atrix w ith  e lem en ts kn ow n  as singular 
values, and u  and v  are row  orthonormal m atrices. The ratio o f  the largest singular va lu e o f  a m atrix to  the sm allest 

one g iv es  the condition number o f  the matrix. A  system  is said  to be singular i f  the con d ition  num ber is  in fin ite , and 

ill-conditioned i f  it is too  large. (W olfram  S., 1991)

K -i where || || is the



34

relatively large changes in the solution x . From the above relation is obvious that small values 

of cond(K) are desirable. If cond(K) is not too large, the problem is said to be well- 

conditioned and the solution is stable with respect to small variations of the data. Otherwise the 
problem is said to be ill-conditioned.

So-called regularization techniques are needed to obtain meaningful solution estimates 
for such ill-posed problems. Regularizing an inverse problem means restoring stability and 
constructing efficient numerical algorithms allowing a physically meaningful stable solution to 
be obtained.

The importance of solving inverse problems can be seen from the following incomplete 
list of applications: numerical differentiation of noisy data (perhaps the simplest known ill- 
posed problem), inverse Laplace transforms, image reconstruction, computer-based diagnostic 
imaging (e.g. computer assisted tomography (CAT)), indirect measurements and nondestructive 
testing, seismic analysis, calculation of relaxation spectra.

Regularization = Stabilization
In general, regularization or stabilization of solution to inverse problems involves a 

‘trade-off between the ‘size’ of the regularized solution and the quality of the fit that it provides 
to a given data set. The ‘size’ of the regularized solution could be measured by the norm of the 
regularized solution, while the quality of the fit is measured by the norm of the residual vector 
(discrepancy term). What distinguishes the various regularization methods is how they measure 
these quantities, and how they decide on the optimal trade-off between the two quantities.
The regularization parameter a  could be chosen using a priori or a posteriori (during the 
process of computing the regularized solution) information.

1.4.2.3 Tikhonov Regularization method

Many inverse problems can be formulated as operator equations of the form K f -  g  , 

where f  and g are functions and K  is an integral operator.

Tikhonov (Tikhonov A. N., 1963) arrived to the following solution for the unknown function 

f , where X is a regularization parameter and R ( f )  is a particular functional8:

A  = m in ||A :/-4  +A2||tf(/)||2} (1.13)

8 T h eorem : Let K : X  —> Y b e a linear and bounded operator and a >  0- T hen the Tikhonov functional:

Ja(x) :=  | | £ x - y | | 2 +  a \\x\\2 has a unique m inim um  xa e  X . (K irsch A ., 1996)
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The sign ||jc|| stands for the 2- norm9 of a vector ^ .

Often the functional R ( f )  is written as: R ( f )  = | L / | 2  where L could be (i) an identity 

operator, (ii) first or (iii) second derivative of the regularized solution f . The first case, L = I  

( / -  identity operator). The case, L = /  (first derivative of the regularized solution), 

corresponds to an imposed requirement for maximum flatness of the solution, and the third case, 

L = /  (second derivative of the regularized solution), means that a requirement for minimum 

roughness has been imposed.

i. The first term in the Tikhonov’s original formulation is a ‘discrepancy’ term, the 2- 
norm of the vector, which measures the agreement of a model to the data. Minimizing 

only this term is equivalent to the classical problem. The agreement can be very 

good but the solution becomes unstable, widely oscillating, or in other ways unrealistic, 
reflecting the fact that the first term alone typically defines an ill-posed problem (Press 
W. H. etal, 1992).

ii. The second, regularization term measures the ‘smoothness’ of the desired solution. This 
term gives the ‘size’ of the regularized solution. Minimizing this term itself is supposed 
to give a solution that is ‘smooth’ or ‘stable’ or ‘likely’ but it has nothing at all to do 
with the measured data. The presence of this term could lead to a stable solution 

provided that the regularization parameter X is properly chosen.

iii. The size of the regularization parameter X is related to the degree of regularization 

imposed on the solution. A very small lambda (X —> 0) would lead to the classical 
least-squares method. The fit will be good but the obtained solution will be dominated 
by contributions from the data errors, and consequently it will be highly unlikely that it 
will be close to the ‘true’ solution. On the other hand, too big value of the lambda 
would mean that too much regularization/stabilization has been imposed on the 
solution, and as a result it will not fit the given data properly leading to a too big 
discrepancy term. (Increasing X makes the reconstruction smoother and the inversion 
more approximate.)

The regularization term has something to do with a priori expectation, or knowledge, of a 
solution, while the first (discrepancy) term has something to do with a posteriori knowledge. 

The regularization parameter X gives the delicate compromise between the two.

9 Euclidean 2-norm  o f  a vector x = (£, ,...,£„) is  defined  as = I S £
1/2
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In this work the proprietary subroutine FTIKREG (Weese J., 1992), based on the 
Tikhonov regularization method has been applied to computer-generated (with and without 
noise), and noisy experimental data in order to find the density of localized states distribution in 
amorphous and crystalline materials. The FTIKREG program and its non-linear version 
(NLREG, Weese J., 1993) as well as a user manual are available from the CPC Program 
Library, Queen’s University of Belfast, N. Ireland.

The FTIKREG program
The following paragraph is a resume of the FTIKREG user manual (Weese J. 1992,

1993) intending to give only an idea about problems to which the FTIKREG program could be 
applied, and about the way it has been used in this work.
First, the continuous problem (Fredholm integral equation of the first kind) is replaced by a 
linear algebra problem by discretization of the integral equation, this is known as Discrete 
Tikhonov regularization method. The FTIKREG program minimizes the following quantity:

r ,( / )= lA
i=1 G i

V
z °  -  *(/)(',■)+E  aJbJ (*,) + w )

M J
(1.14)

In the Linear Tikhonov method (FTIKREG program), K{f)( t i) is a linear integral operator of 

type:
m̂ax

K (f ) (  0 =  \K{t,s)f(s)ds  (1.15)

In the non-linear version of the method (NLREG program) (Weese J., 1993), the kernel 
function is a non-linear integral operator, two examples of which are:

* ( / ) « ) =
*̂max
jK(f,s)/(.s)rfc

v. y
(1.16)

*̂max
K ( jy t ) =  \K ( t,s )e ^ d s

•̂min
(1.17)

The kernel function K ( f ){ t .) depends on the experiment. The data g  are usually taken at 

distinct values t = tit i = . This leads to a data set \g^ ; i = where the superscript
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( ) indicates that the data are affected by (relative/ absolute) errors of size cr.. The problem of

finding the function f  is actually a problem of determining a vector f  from the data 

f a  j / = 1 , . In addition, provided that the functions {/?y.(/.); j  = are given, the

programs give an estimate for the coefficients \ai; i = l,...,mj. The regularization term R (f)  

depends on the function f  only, but not on the coefficients \ai; i = 1,..., m].

According to the theory, the required ‘unique’ solution highly depends on the choice of 

the regularization parameter X . This parameter has essentially the same meaning as the 
bandwidth of a filter for smoothing noisy data. If this parameter is too small, the result will 
show artefacts caused by the data errors. If this parameter is too large, the result will be over
smoothed. In order to obtain a reliable estimate for the regularization parameter X , the 
FTIKREG and NLREG programs use a self-consistent method, developed by Honerkamp J., 
and J. Weese (1990), for calculation of the regularization parameter. This method, according to 

the authors, is a robust and reliable way of calculation of X and accordingly, the regularization 
solutions do not (should not) differ too much with different sets of data when noise is present.

1.4.2.4 Tikhonov regularization in the context of TPC experiment

The starting point for the analysis of TPC current-time data by the Tikhonov 
regularization method is the Fredholm integral equation of the first kind arising from the MT 
system of differential equations (cf. MT model -  formulation of the problem):

d ( 2/(0)' 1 - 1 'aix(E) vexP(~E /k T) dE
ds l i(s) J J [i + vexp { -E lk T ) f

(1.18)

The Tikhonov method minimizes the quantity:

f  E  \ 2

V W  = S - T  <  -  \K{s,E)g(E)dE
*=i l ov

+ 4 s ( E )  ||2 (1.19)
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c, =
f  \

2/(0)
ds I{s)

1 is found from the measured photocurrent, K(s,E) is the kernel function

in the Fredholm integral equation (1.18), ||g(2?)|| is the norm of the vector g , and A is the

regularization parameter. The coefficients \at; i = l,...,m} have been set to be zeros.

According to the theory, with an appropriate value for the regularization parameter A , the first 
(discrepancy) term on the right-hand side of (1.19) forces the result to be compatible with the 
experimental/simulated photocurrent data. The second (regularization) term imposes a

requirement for smoothness on the obtained estimate for the vector g . Furthermore, as far as 

the DOS distribution is known to be a positive quantity, a requirement for a positive regularized 
solution has been imposed.

Mathematically, the TPC Tikhonov method is clearly more complicated in comparison 
with the post-transit TOF Tikhonov case (cf. Chapter II).

i. The kernel function is more complicated, due to the more complicated physical model 
allowing trapping and release of carriers, while the post-transit case deals with 
extraction of trapped carriers only.

ii. The input data for the FTIKREG program are in the Laplace domain. This inevitably 
introduces an error caused by the finite set of data used in the Laplace transformation. 
This could give rise to correlated errors in the input data.

In the case of correlated errors in the ‘final’ (input) data c° , the equation (1.19) is not correct

any more and a variant of it should be minimized by the Tikhonov method (T. Roths, private 
correspondence; Press W. H., et al, Numerical Recipes in FORTRAN, 1992), namely:

v w = Y L
i=i J=i

c? -  ]K(sitE)g(E)dE C~'^U CJ -  ]K(Sj,E)g(E)dE + % (£ ) ||2 (1.20)

Ci j is the inverse of the covariance matrix Ci j given by:

( ( \ >1 ( ( \
d 2/(0)

-1 d 2/(0) -1
ds

V U w J )
ds

\ l> ;)J y
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delta which is 1 for i = j  and 0 for i & j  - accordingly CA is a \2 for i = j  and 0 for i ^ j . 

Hence, only then this equation reduces to equation (1.19).

A reliable computation in the case of correlated errors in the input data would require a change 
in the algorithm of the FTIKREG program. As far as this was physically impossible the 
following procedure for reconstructing ‘ideal’ from noisy photocurrent data has been adopted.

i. First, the Imdifl subroutine (Garbow B. S. et al, 1980) has been used to fit set of 

exponents exp(or;£) to a given I-t data set.

ii. Second, the obtained coefficients (At-, a i), i = have been used to reconstruct

‘ideal’ I-t data coinciding with the original photocurrent data, but with no noise 
included, and starting from times much shorter than the experimentally available (10'16 
s).

iii. Third, Laplace transformation of these data is calculated according to the procedure 
explained in Appendix (A2).

In all our calculations an independent statistical errors model has been assumed.

The covariance matrix takes into account the correlations of the data errors. Only in case of not

correlated errors the covariance matrix reduces to C(. . = cr2d)/y. , with S itj being the Kronecker

1.4.2.5 Energy resolution of the Tikhonov method

As with the ELT method the Tikhonov regularization method is in theory capable of 
arbitrarily high resolution as no inherent mathematical approximations have been made. As a 

check on the operation of the Tikhonov method we have simulated the current decay, I(t) in

fig. 1.16, from two discrete levels (fig. 1.17) of equal density positioned at 0.60 and 0.61 e V . 
Then following appropriate Laplace transformation of the data the Tikhonov method was 
applied. The result from this calculation is shown in fig. 1.17. The Tikhonov method returns 
only two values that are significantly greater than zero, which correspond very closely in energy 
to the originating levels. Closer investigation reveals a small difference in energy, and a small 

inequality in the density, affecting the re-calculated TPC I(t)mh (symbols in figure 1.16).
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Figure 1.16 TPC I(t) corresponding to two discrete levels of density 1017 cm'3 positioned at 

0.6 and 0.61 eV below the band edge. Symbols: re-simulated data from the recovered DOS in 

fig. U7.

Q

Tikhonov

E (eV)

Figure 1.17 Recovery of two discrete levels of density 1017 cm'3, at 0.60 and 0.61 e V , using 
Tikhonov regularization method.
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The performance of the Tikhonov method has been further checked on a model DOS comprising 
an extensive exponential tail (fig. 1.18 and 1.19); and also an exponential tail plus Gaussian 
distributions with different widths (fig. 1.20 and fig. 1.21). The latter is a more realistic model 
for a disordered semiconductor.

Figure 1.18 TPC I(t) transients computed for exponential localized state distributions with 

Tq =200 K, 300 K, 400 K, 500 K, and free carrier recombination lifetime Tj- = 10'6 s at T = 

300 K. Symbols correspond to lit) simulated from the recovered DOS in figure 1.19.

Tikhonov

Figure 1.19 Recovery of exponential distributions of states simulated with tail slope parameters 

T0= 200K, 300 K, 400 K, 500Kfrom the current transients in figure 1.18. Lines indicate the 

model DOS distributions.
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Figure 1.20 TPC fit) data simulated from exponential plus Gaussian distributions: T0 = 300 K, 

g Go = 1016 cm'3 eV'1, E0 = 0.6 e V , Ew = 0.03, 0.04, 0.05 and 0.06 e V . Symbols correspond to 

I(t) simulated from the recovered DOS in figure 1.21.

Tikhonov

Figure 1.21 Recovery of exponential plus Gaussian distributions from TPC data in figure 1.20 
using the Tikhonov method.
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The above simulations show that the Tikhonov method is capable of resolving features in the 
DOS to an arbitrary narrow width, since no mathematical approximations are required. 
Simulation of the current-time curves from the recovered DOS yields excellent agreement in all 
considered cases with the originating (simulated) data.

1.4.3 Energy resolution of the approximate and exact methods - 

comparison

Amorphous semiconductors are expected to exhibit extensive, frequently exponential, 
DOS distributions (the ‘band tails’) associated with structural disorder, and broad local maxima 
associated with ‘dangling bond’ defects. Here, we have investigated the recovery of such 
features, and additionally discrete levels, by simulations of I-t data followed by use of all four 
methods, LT, HLT, ELT and Tikhonov regularization method.

Figure 1.22 illustrates the application of the above methods to recover the DOS from 

simulated I-t data for two closely spaced discrete levels, placed at 0.60 and 0.61 eV below the 
band edge. Although features as sharp as this are not anticipated to occur in disordered 
materials, the results show that the exact methods could be successfully applied to the study of 
crystalline semiconductors with specific defect levels (Gueorguieva M. J. et al, 2002).

E (eV)

Figure 1.22 Recovery of two discrete levels of density 1017 cm'3, at 0.60 and 0.61 e V , using LT, 
HLT, ELT and Tikhonov methods.
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As it has already been shown (cf. ELT method) the ELT method has the finest known to us 

resolution of 4 meV . The Tikhonov method has a resolution approximately kT /3 = 12 meV , 
and it recovers the two levels in Figure 1.22 but at slightly wrong positions (0.592 and 0.612 

eV). The LT and HLT methods fail to recover two levels as has been expected, as they have 

resolution 93 meV (3.5 kT)  and 78 meV (3 kT)  respectively (cf. Approximate methods for 
solving the Fredholm integral equation of the 1st kind).
Figure 1.23 compares the methods in recovering the DOS from simulated I-t when the original 

distribution consists of an exponential band-tail, of characteristic energy 26 m eV , and a 

Gaussian feature centered at 0.6 e V , with peak density 1016 cm~2eV ~', and characteristic 

width 60 m eV .

Figure 1.23 Recovery o f  exponential plus Gaussian distributions: T0 — 300 K , g Go = 1016 cm'3 e V 1, E0 = 

0.6 eV , Ew = 0 .06  eV using LT , H LT, E L T  and Tikhonov methods.

The approximate nature of the LT and HLT methods is the reason for the broadening effect 
observed in the recovered DOS profiles in figure 1.23. Although the position of the Gaussian 
feature is resolved properly by both approximate methods they fail to resolve the steeper parts 

correctly especially for energies deeper than 0.7 e V . In contrast, the Tikhonov and ELT methods 
provide excellent recovery, particularly in regions where the distribution is steep.

As a further check on the accuracy of the approximate and exact methods the current transients 
corresponding to the recovered DOS in fig. 1.23 are simulated and shown in figure 1.24. The 
result is a good illustration of the fact that the approximate methods (LT and HLT) are incapable
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of recovering the ‘true’ DOS distribution even when applied to ‘ideal’ computer-generated data. 
On the other hand the Tikhonov and ELT methods, being exact, produce the closest fit to the 
original I-t data, suggesting that they could be used to obtain information on the recombination 
lifetime (cf. Determination of the free carrier recombination lifetime in amorphous and 
crystalline semiconductors).

Figure 1.24 I(t) data simulated from the DOS in figure 1.23. In the simulation T — 300K and 

Tf = lO-6  ̂were used.

While the recovered DOS (fig. 1.23) and the re-calculated current transients (fig. 1.24) are just 
what should be expected for the performance of the approximate and mathematically exact 
methods, a note should be made that a close fit to the original I-t data is a necessary but not 
sufficient requirement for uniqueness of the solution for DOS. Our calculations, Schmidlin’s 
work (1977), and also Lakin et al, (1977) have shown that any real situation can be adequately 
analysed in terms of relatively few discrete traps characterized with their emission and capture 
properties. On the other hand, as we realise that we do not have any other objective way of 
determining the most plausible DOS rather than closeness of the original and the simulated I-t 
curve, the above criterion has been used throughout this work for choosing the most reliable 
solution for DOS.
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1.4.4 Effect of experimental noise and missing short-time data on 

recovery of the electronic density of states from TPC data

Effect of experimental noise on the TPC DOS

The performance of all four methods in the presence of noise has been studied by 

application to a computer generated current transients. Typically 200 I(t) points were 

generated, and noise was introduced by multiplying each point by a random number from a 
Gaussian distribution. The standard deviation was varied between 1% and 20 %, spanning the 
range of noise amplitudes commonly observed.

Figure 1.25 is an illustration of the ‘noisy’ current transients used in the calculation below.

Figure 1.25 TPC I(t) computed for an exponential band tail and a Gaussian feature 

superimposed (parameters in the simulation: T0 = 300if, g Go ~ 1016 cm3 eV1, E0 = 0.6 eV , 

Ew =0.06 eV). Gaussian noise up to 20 % has been introduced and its effect on the I(t) 

data is shown in linear-log scale. The inset is a log-log graph of I(t) over the whole time 

interval.

Measurements on a range of disordered semiconductors indicate that noise (the random 
fluctuations, expressed as a fraction) in the experimental data is Gaussian with a standard
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deviation of 5 %, across the entire time-span (Reynolds S. et al, 2001a). This confirms that 
practical DOS extraction methods are required to operate at noise levels of this order.

Exact methods

Tikhonov regularization method
As it has been already discussed, the Tikhonov regularization method is regarded as the 

best known to extract information from noisy experimental data. The method is well-suited to 
yielding an optimal DOS in the presence of noise as the solution obtained is a compromise 
between two important requirements; to match the ‘true’ and ‘estimated’ solutions and to 
achieve a smooth solution.

The effectiveness of the method is illustrated in figure 1.26. In the absence of noise, the 
recovered DOS corresponds very closely to the model DOS over the entire energy range. When 
Gaussian noise is introduced the features of the DOS remain, although artefacts appear as the 
solution is influenced somewhat by fluctuations in the data. This method gives a satisfactory 
reconstruction of the DOS at noise level even 20 %.

In all simulations in this section an exponential tail of 25 meV with a Gaussian feature

(EG =0.6 e V ; Ew=0.06 eV; g G =1016 cm~3eV~l) superimposed has been used. All 

curves are offset for clarity.

Tikhonov

Figure 1.26 Tikhonov regularization method used to recover DOS from simulated noisy data. 
Solid lines indicate the model DOS. The curves are offset for clarity.
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Exact Laplace Transform (ELT) method
Since no mathematical approximations are employed, the ELT method is capable of 

extremely high theoretical resolution (~ kT / 6) . As shown in figure 1.27, with zero noise the

model DOS used here is accurately reproduced as far as 0.8 eV and the method functions 
reasonably well with 5 % noise added. However, the ELT method, as a mathematically exact 
procedure of obtaining an unique solution, is not as tolerant as the Tikhonov method to the 
presence of noise in the experimental data. The method gives no useful output at noise levels 
greater than 5 % unless the data are smoothed beforehand. We believe the smoothing procedure 
does not lead to loss of any physical information. In the calculation shown in figure 1.27, the 
Imdifl (Garbov B. S, 1980) subroutine was used to fit set of exponents to simulated noisy 
current-time data. Although the recovered DOS gets ‘noisy’ when increasing the random noise 
in the current-time data the tail and the Gaussian feature are recovered correctly.

ELT

Figure 1.27 ELT method used to recover DOS from simulated noisy data. Solid lines indicate 
the model DOS.
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Approximate methods

High resolution Laplace Transform (HLT) method
It is apparent from figures 1.28 and 1.29 that both approximate methods {HLT and LT) 

return DOS profiles that are relatively unaffected by a noise level of even 20 %.

HLT

Figure 1.28 HLT method used to recover DOS from simulated noisy data. Solid lines indicate 
the model DOS.

Laplace transform (LT) method

LT

E (eV)

Figure 1.29 LT method used to recover DOS from simulated noisy data. Solid lines indicate the 
model DOS.
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The finer resolution of the HLT method (in comparison with the LT) and the fact that the 
resolved DOS is virtually unaffected by the presence of noise in the experimental data makes it 
attractive when studying amorphous materials known to exhibit very broad and featureless 
distributions of states.

As was already mentioned, it is known and widely accepted that the random noise 
amplitude on a recorded photocurrent transient is typically 5% of the mean current at a given 
instant, and is approximately constant over the entire experimental time range. From the above 
calculations it is seen that this level of noise has a relatively small effect on the effectiveness of 
approximate DOS spectroscopies based on Laplace transform method, which can operate 
satisfactory with 20% noise. Mathematically the exact ELT method is more strongly affected by 
noise, and because of this the apparent benefits in resolution may not be achievable in practice. 
Solution techniques as Tikhonov regularization offer optimal resolution in a given noise context, 
and can recover a DOS with good resolution from a 20% noise background.

Effect of missing short-time data on recovery of the electronic density 

of states from TPC data

In figure 1.30 the simulated TPC I(t) data from an exponential tail of T0 =300K  plus a 

Gaussian distribution with g Go = 1016 cm'3 eV1, E0-  0.6 eV , Ew = 0.06 eV is shown.

Figure 1.30 TPC I(t) computed for an exponential band tail and Gaussian feature 

superimposed. In the simulation T0 = 300^, g Go = 1016 cm'3 eV1, E0 = 0.6 eV , Elv = 0.06

eV.
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The TPC data were analysed after successive removal of data points corresponding to short 

times (from 10~16to 10~8 s). As far as our procedure of calculating the DOS from I(t) involves 

Laplace transformation of the data, it is expected that the missing short-time data would result 
in considerable distortions in the recovered DOS. The reason being that the Laplace 
transformation has to be inferred from the whole time series of I-t. In figure 1.30 the effect of

A

missing short-time data on I(s) is shown. It is obvious that any truncation of the transient I-t

data gives rise to systematic errors of the calculated Laplace transform I(s ) (figure 1.31) and 

accordingly, to systematic errors in the final (the transformed input data for FTIKREG

program) data c° d
ds

f  \
2/(0)

/(*,)
-1 .

s

A

Figure 1.31 Effect of missing short-time I-t data on the Laplace transformation I(s ).

This systematic error increases with increasing the argument s{ (si —1/1(). Furthermore, these 

systematic errors in the Laplace transform may give rise to correlations in the data after

performing the numerical derivative, i.e. to correlations in c f  = —
ds

I \
2/(0)

i M
1. If this occurs,

the consequences will be artificial oscillations of the calculated DOS distribution (Roths T.,
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private correspondence). This could be a possible explanation of the slightly ‘noisy’ DOS in 
figure 1.32.

Tikhonov

Figure 1.32 Tikhonov regularization method used to recover DOS from truncated at different 
times I-t data. Solid lines indicate the model DOS.

Another expected consequence of the truncation of the I-t data is the reduction of the accessible 

energy range, according to the relation E  = kT\n{vt) , as seen in figures 1.32, 1.33 and 1.34.

HLT

Figure 1.33 HLT method used to recover DOS from truncated at different times I-t data. Solid 
lines indicate the model DOS.



53

Figure 1.34 ELT method used to recover DOS from truncated at different times I-t data. Solid 
lines indicate the model DOS. Curves are offset for clarity.

Our simulations (fig. 1.32 -  1.34) show that the model DOS is recovered intact from the

simulated data truncated up to 10_8s. In the extreme case of truncation at 1CT8 s the 
exponential tail, although consisting of only three points, is recovered with the right slope and 

the Gaussian feature is fully resolved. The missing points around 0.4 e V , in the ELT 
calculation, are due to a deficiency in our procedure of fitting exponents to I-t data, and are not a 

consequence of the truncation. If (for this particular model DOS) the I-t data up to 10~7 s are 
removed, the recovered DOS is a featureless exponent (**’ in figure 1.35).

Another effect of the truncation of the I-t data is the slight change in the amplitudes and 
positions of the recovered discrete values for DOS (figure 1.36) simply due to a ‘wrong’ 
Laplace transformation of the I-t data. The difference in the amplitudes for data truncated at

10~12 s and 10-8 s is less that one order of magnitude.
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Figure 1.35 DOS distributions recovered by ELT method from the TPC data in figure 1.30 after 
successive truncations of the short-time data. Curves are not offset. The inaccuracy in the 
recovered amplitudes is due to a ‘wrong’ Laplace transformation (figure 1.36).

... • ....IQ'12,  ...a....10"11 s .....+....10'10s

Figure 1.36 The effect of truncation of the I-t data on the amplitudes and positions of the 
recovered discrete values for the DOS obtained using the ELT method. The curves are not 
offset. The slight difference in the overall shape is due to a ‘wrong’ Laplace transformation 
caused by missing short-time data.
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In general it could be concluded that missing short-time data would lead at least to 
‘truncation’ and/or fluctuations in the recovered DOS. If in the TPC I-t data simulated from an 
exponential plus Gaussian distribution there is a steep descending section, then the recovered 
DOS profiles could be reduced to featureless exponential distributions, if the data from before 
the fall are removed, as figure 1.35 shows.

1.5 Application of the approximate and exact methods to experimental 

data obtained on amorphous and crystalline materials.

In this chapter we further assess the prospects for practical application of the existing 
approximate and exact methods for calculation of density of electronic states by analysing 
photocurrent transients obtained from a PECVD-prepared hydrogenated amorphous silicon film 

(Gueorguieva M. J. et al, 2001a) and from a single crystal tin-doped CdTe sample 

(Gueorguieva M. J. et al, 2002). As an amorphous material the a —Si: H  sample contains a 

broad distribution of tail and defect states, whereas the CdTe : Sn sample would be expected to 
display sharper features associated with discrete defect levels. The choice of these two 
contrasting systems therefore allows a rigorous experimental comparison of these methods to be 
made.

1.5.1Exact methods - ELT and Tikhonov regularization methods

Light-induced meta-stable states in PECVD a — S i:H

PECVD a — Si: H  films typically 0.7 pm thick were prepared in a commercial reactor, 

and equipped with coplanar Al contacts to form a gap cell 5 mm in length with a separation of 
0.4 mm. Light soaking was carried out by exposure to a simulated AMI source.

The set of current-time decays obtained following progressive light soaking of a - S i  :H  thin 
films is presented in figure 1.37, and the corresponding DOS distributions calculated using ELT 
and Tikhonov regularization methods are shown in figure 1.38. The DOS scaling is arbitrary, 
because parameters such as pre-trapping current, attempt-to-escape frequency and free carrier 
mobility are not known explicitly. Here, we have collectively scaled the family of plots to agree 
broadly with literature values for defect density of order 1016 cm'3 in annealed PECVD 

a -S i:H  (Carlson D. E., 1998). However, the scaling of the plots relative to one another is 
correct if it is assumed that the DOS alone is modified by light soaking.
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Figure 1.37 Current-time decays at 300 K in PECVD a —Si: H  following progressive light- 
soaking (lines), and simulated TPC I(t) data using DOS obtained with ELT method (open 

symbols). Best fits to the experimental decays were obtained using T j-  = (10, 4, 3.5, 1.8) x 1 O'6 s 

for the annealed and progressively light soaked samples, respectively.

In order to obtain a reasonably smooth DOS using the ELT method, the current decays required 
pre-filtering to reduce the effect of random noise (The I-t data were reconstructed using a set of 
exponents. The new I-t curve is noise free.). We believe this procedure does not significantly 

affect the physically important features of the decay, which in the case of a - S i : H  vary quite 

gradually with time.

As a check on the operation of the methods, we have simulated the current decay, using the 
polynomial approach, from each obtained DOS. The results are plotted in figure 1.37 using open 

symbols, alongside the experimental data. The free carrier recombination lifetime Tf  was

varied to achieve an optimal fit to each current-time decay. This process thus yields additional 
information and, as expected, the values are found to decrease with increasing light soaking 
(Nagase T., 1998).
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Figure 1.38 DOS plots obtained using ELT and Tikhonov regularization methods for 

a — Si'.H . Dashed lines are smooth curves illustrating the trend of the points. The ELT and 
Tikhonov DOS are offset for clarity.

It is clear from figure 1.37 that a change in the shape of the current decay accompanies light 
soaking. Most prominent is the progressively more pronounced fall in current, commencing at 
times of the order of 10'7 s, due to electron trapping into metastable defects. The effect on the 
DOS revealed in figure 1.38 is an increase in the defect ‘plateau’ density by a factor of 5-10, 
with no clear systematic change in the distribution of shallower (tail) states. We do not detect an 
increase in a specific defect band with either method. However, since the decays simulated from 
the DOS curves are a good fit to the experimental data we would argue this interpretation is 
self-consistent.
Figure 1.38 also demonstrates that the ELT and Tikhonov regularization methods give 

essentially equivalent performance when applied to TPC data obtained from a — S i:H . This 
may be anticipated since we expect a fairly broad and extensive distribution of states in 
amorphous materials, and thus the potential benefits of the methods, particularly the resolution 
of sharp features of which such methods are capable, are not being exploited.
The Tikhonov method occasionally returns a rather sparse DOS. For example in the plot 
obtained following 1000 min light-soaking the DOS is essentially zero between 0.32 and 0.40 
e V . However, a simulation based on this DOS is found to give as good a fit to the experimental 
current decay as the other (less sparse) data sets. Thus the dashed line connecting the points is 
added simply to indicate the assumed DOS profile based on physical plausibility rather than on 
mathematical accuracy. When applying the Tikhonov method it was not found necessary to
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smooth the current-time data beforehand. This might prove advantageous in cases where signal 
to noise ratio is poorer, e.g. where low optical excitation is necessary to avoid saturation of the 

low density of deep states in high quality a —Si: H  (Reynolds S .,et al, 2000).

‘Discrete’ levels in single crystal Tin-doped CdTe .

The CdTe: Sn single crystal of [100] orientation was grown by the Bridgman method. A 
sample of size of 1 cm x 1 cm x 1.55 mm thickness was used for electrical measurements. 
Conductive paint contacts were applied to produce a gap cell approximately 5 mm in length 
with a 1 mm gap.

TPC decays obtained for the tin-doped CdTe sample at three different temperatures are 
shown in figure 1.39, and the corresponding DOS versus energy plots are given in figures 1.40 
and 1.41. The simulated current decays are shown as open symbols on figure 1.39. Temperature 
dependencies of capture properties and carrier mobility have not been taken into account.

Figure 1.39 Current-time decays in CdTe: Sn for ISO K, 200 K and 300 K (lines), and 
simulated TPC I(t) data using DOS obtained with ELT method (symbols). (In the simulation: 

ISO K Tf  = 10'5 s; 200 Kand 300 K tf = 4xl0'7 s.)
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E L T

Figure 1.40 DOS plots obtained using ELT method forCdTe : Sn. The lines are smooth curves 
illustrating the trend of the points.

0.2 0.4 0.6 0.8
E (eV)

Figure 1.41 DOS plots obtained using the Tikhonov regularization method for CdTe : Sn. The 
lines are smooth curves illustrating the trend of the points.

Previous studies (Panchuk O. et al, 1999; Mathew X. 2003) have reported a wide range of 

localized discrete levels in the energy gap of CdTe: Sn . The TPC DOS plots obtained from the
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CdTe: Sn sample as shown in Figs. 1.40 and 1.41 indicate the presence of three main features, 

at approximately 0.15 e V , 0.19 eV and 0.36 eV below the conduction band edge with an 

estimated error of ±0.03. The temperature-independence of the energetic position of these 
features suggests the assumed attempt-to-escape frequency of 1012 sA is appropriate in all three 

cases. However, the amplitude of the 0.36 eV peak appears to be strongly temperature- 
dependent. The reason for this is presently unclear.

Both ELT and Tikhonov methods are capable in principle of resolving features in the DOS to an 
arbitrary narrow width, since no mathematical approximations are required. Therefore, it is 
possible in principle that each of the data points shown in figs. 1.40 and 1.41 corresponds to a 
distinct discrete level rather than deriving from an ‘envelope’ of three physically broadened 
levels. However, because of the dependence on both amplitude and energy position on 
temperature via the multiple-trapping kinetics, it is unlikely that a collection of distinct discrete 
levels would behave in the ‘connected’ way we observe. As shown in Fig. 1.39 the simulated 
TPC decays agree well with the experimental data, provided the free carrier lifetime is used as a 

fitting parameter, indicating the self-consistency of the analysis, although the variation in Tf  

with temperature does not follow any obvious physical relationship.

1.5.2 Approximate methods (LT and HLT methods)

Light-induced meta-stable states in PECVD a -  S i : H
We applied both approximate methods {LT and HLT) to the two sets of I-t data which 

have been studied by the exact methods. The results are shown in figure 1.42.
A comparison between Fig. 1.38 and Fig. 1.42 shows that the approximate LT and HLT 
methods, as it was expected, are good enough to study broad and featureless distributions of 
states as the existing in amorphous materials. As the exact methods, both approximate methods 
detect increase by approximately factor of 10 in the DOS distributions due to prolonged light 
soaking. Provided that the distribution is broad and featureless, the back-simulated I-t data will 
coincide very well with the original photocurrent data (symbols in figure 1.43). In figure 1.43 the 
simulated I-t data using the worst performing, the approximate LT method, are shown.
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Figure 1.42 DOS plots obtained using LT and HUT methods fora — Si: H . Lines are smooth 
curves illustrating the trend of the points. The LT and HLT plots are offset for clarity.
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Figure 1.43 Current-time decays at 300 K in PECVD a - S i : H  following progressive light- 
soaking (lines), and simulated TPC I ff  data using DOS obtained with LT method (open 

symbols). Best fits to the experimental decays were obtained using T f  -  (10, 4, 3.5, 1.8) x 10~6 s 

for the annealed and progressively light soaked samples, respectively.
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The simulated I-t data coincide very well with the original data. The fitting procedure in order to 

obtain information on the free carrier recombination lifetime, tj- , gives the same values as those

obtained with the exact methods (with a small difference for the annealed sample). Although it 
is not shown in the graph, essentially the same result is obtained using the HLT method. This 
supports the view that the approximate methods are good enough when applied to materials 

known to exhibit very broad and featureless distributions of states, as the a — S i:H .

Discrete levels in single crystal Twi-doped CdTe.

Applied to the Tm-doped CdTe the worst performing LT method resolves two features at 

around 0.16 eV and 0.37 e V .

L T

Figure 1.44 DOS plots obtained using the LT method for CdTe : Sn .

Although the positions of the recovered two peaks coincide very well with those obtained with 

the exact methods, both peaks are broadened (e. g. at 300 K, FWHMir —0.16 eV while 

FWHMra/l = 0.09 e V ). The overall ‘wrong’ shape of the DOS (broadened features and high 
DOS at shallow energies) drastically affects the simulated I-t data up to times 10'5 s. For times 
longer than 10‘5 s the simulated I-t traces coincide with the originating data. The reason is that at 

long times the current is dominated by release from the deep state (at -0 .37 e V ), which 
although broadened, is recovered by the method. The simulation in fig. 1.45 was done with the 

same values for which have been obtained by a fitting procedure using the exact and the 

HLT methods. The lack of agreement between experimental and simulated I-t data shows that
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the approximate LTmethod does not function correctly, and its application to systems known to 
contain sharp features is not appropriate. This view is supported as well by the fact that the re

calculated I-t traces do not fit the originating data for the same values of Tf  with which all 

other methods reproduce correctly the experimental data, hence the method should not be used 

to obtain information on Tf  .

L T

Figure 1.45 Current-time decays in CdTe: Sn for 130 K, 200 K and 300 K (lines), and 
simulated TPC I-t data using DOS obtained with LT method (symbols). (In the simulation: 130 

K, Tf = 10 s s; 200 K and 300 K Tj- -  5x1 O'7 s.)

Due to its better resolution, the HLT method (fig. 1.46) recovers all three levels which have 
been detected with the exact methods. The I-t data simulated using the HLT DOS profiles are 
shown in figure 1.47.
Although the DOS distributions obtained with the HLT method are slightly broader in 
comparison with the distributions recovered with the exact methods (at 300 K, FWHM^r = 

0.13 eV and FWHMmh -  0.09 eV , FWHM£i7’= 0.10 e V ) the simulated I-t curves coincide 
very well with the originating I-t data for all three temperatures. This fact could be explained by 
the already mentioned result of our simulations and Schmidlin’s work (1977) that any real 
situation could be adequately analysed in terms of relatively few discrete traps. Only a few 
points in the DOS profile (the main features of the DOS distribution) affect the shape of the 
simulated I-t curve. A plausible explanation could be the fact that I-t data are simulated as a
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summation of exponents with coefficients and a n ( /  = exp(ait) ) and the alphas are
i

proportional to the amplitudes of the recovered DOS (cf. ELT method).

H L T
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Figure 1.46 DOS plots obtained using the HLT method for CdTe : Sn.

H L T

Figure 1.47 Current-time decays in CdTe: Sn for 130 K, 200 K and 300 K (lines), and 
simulated TPC I(t) data using DOS obtained with HLT method (symbols). (In the simulation: 

130 K, Tj- = 10'5 s; 200 K and 300 K Tf  = 5x1 O'7 s.)
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TPC DOS analysed by a mathematically exact method (ELT) and a method based on the 
Tikhonov regularization are found to perform equally well when applied to data obtained from 
amorphous and crystalline semiconductors. Simulation of the current-time curves from the 
recovered DOS yields very good agreement in all cases with the originating experimental data 
over the range 10 ns -  1 s. All methods reveal a featureless increase by a factor of 5-10 in the 

deep defect density on light soaking of PECVD a — S i:H . It appears that although the exact 
methods do function correctly in the study of amorphous semiconductor systems, the capability 
to resolve discrete levels will seldom be required, and mathematically approximate methods 
(Naito H. at al, 1996; Nagase T. and H. Naito, 1998; Ogava N. et al, 2000; Main C. et al, 1992; 
Main C. 1997) will suffice in most cases.

In contrast, using the approximate HLT method and the exact techniques, three gap states, at 

0.15 e V , 0.19 eV and 0.36 eV have been identified in CdTe'.Sn, suggesting that TPC 
experiments combined with these methods of analysis may provide useful supplementary 
information to the more common defect spectroscopies used on crystalline materials such as 
thermostimulated current (TSC), deep level transient spectroscopy (DLTS) and photo induced 
current transient spectroscopy (PICTS). Further work to assess the prospects for such 
applications is in progress.

The approximate LT method has been found inappropriate to apply in the case of crystalline 
material because of its poor resolution.
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II. Time of Flight Experiment

The time-of-flight (TOF) experiment has been used for quite a long time to investigate 
localized states distribution in amorphous materials. A comprehensive review of the experiment 
and its application could be found in Seynhaeve G., PhD thesis, 1989; and Marshal J.M., 1983. 
In the TOF experiment the sample is deposited in a sandwich structure consisting of a bottom 
electrode, a thin film of the material under study and a semitransparent top electrode. The 
electrodes must be ‘blocking’ to the injection of the charge type under study, so that ideally, no 
other excess charge is introduced. A sheet of charge (excess electrons and holes) is created close 
to the top contact by a short pulse of a strongly absorbed light. Then, the electrons or holes can 
be caused to drift across the sample by applying a field of the appropriate polarity. The 
movement of the charge is observed by monitoring the induced current.

For the TOF experiment some prerequisites have to be met (Seynhaeve, PhD thesis).

i. First, the field F(x) should be uniform to ensure a constant drift velocity,

Ud = judF(x) , through the sample. In a semiconductor, free charge carriers in thermal

equilibrium are always present. When a voltage is applied these carriers will screen the 
field, resulting in a non-uniform internal field of which the shape is not readily known. 
The time constant of the relaxation, known as the dielectric relaxation time is equal to 
the product of the resistivity p  and the permittivity s  of the material. So, when the 

excess carriers can complete a transit between the moment at which the voltage is 
switched on and the dielectric relaxation time, the field in which they drift will be 
uniform.

ii. Second, a strongly absorbed light should be used to ensure generating carriers in very 
thin layer close to the top electrode. Deeply penetrating light creates electrons and 
holes in much broader layer resulting in a different shape of the pre-transit current. 
Also the duration of the lightflash must be much smaller that the transit time.

iii. Third, the deep-trapping time must be larger than the free carrier transit time. The 
Deep-trapping time is defined as the average time it takes for an electron to get trapped 
in a deeper state. There it can either recombine with a hole or escape to the conduction 
band. If it escapes it should happen after a time larger than the macroscopic transit time 
because otherwise the electron can still contribute to the pre-transit current. So, 
whether trapping is in a ‘deep’ or ‘shallow’ state is dependent on both the release time 
of the trap and the transit time of the carriers.
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2.1 Early work on TOF experiment

The TOF experiment may be explained in terms of the MT model. Schmidlin (1977) has 
shown that the MT system of equations for the case of the TOF experiment could be solved 
analytically. The result obtained for a discrete set of traps, simply characterized by their capture 
and release times, appears in the form of convolutions of modified Bessel functions. Although 
the analysis is highly complex and not physically transparent a simple solution exists in two 
extreme cases corresponding to pre and post-transit regime.

The thermalization energy approach used by Orenstein and Kastner (1981), and Tiedje 
and Rose (1980), leads to an approximate solution with a limited range of applicability.

Seynhaeve (PhD thesis, 1989; Seynhaeve et al, 1989) has shown that pre and post-transit 
current in the TOF experiment could be used to extract information on density of localized 

states in a — S i:H .  Post-transit spectroscopy has been used by numerous groups to determine 
the distribution of localised trapping states in amorphous semiconductors, such as amorphous 
silicon (Seynhaeve G. F. et al, (1989); Usala S., et al, (1991); Yan B J. et al, (1996); Eliat A., et 
al, (1996); Fejfar A. et al, (1996)). In order to deduce the DOS the authors made use of a 
physical, and/or mathematical approximation. The assumed physical approximation is that 
instead of having an average release time, all trapped carriers at an energy E become free at

y~x (E) , known as thermalization energy concept. Mathematically, a ^-function approximation

makes the inversion analytic, and energy and time are related by the thermalization energy 

expression E = kT ln(vf). In both cases the approximations lead to diminished accuracy and 

resolution, discrete levels are broadened and sharp features cannot be resolved.

In this section focusing only on the post-transit regime:

i. A brief review of the mathematics behind the TOF experiment will be given,
ii. It will be shown that an exact solution for the DOS exists. This exact solution will be 

found by means of the Tikhonov Regularization method with an appropriately chosen 
kernel function reflecting the post-transit conditions of the experiment, and using the 
newly developed ELT method in a post-transit (post-recombination) regime. Both 
methods are termed ‘exact’ meaning that no mathematical approximations have been 
used in order to find DOS. No assumptions as to the form of the DOS have to be made, 
so both methods are truly ‘spectroscopic’.
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2.2 Multiple Trapping model in terms of TOF experiment

Brief mathematical outline
In terms of the MT model the created excess charge (free and trapped) is described by a 

system of coupled partial differential equations (Schmidlin, 1977) very similar to the system of 
MT equations in the context of the TPC experiment.

dn(x,t) + ̂  8 n ^ t )  = d n ^ t )  + ̂
dt

dni(x,t) 
dt

dx i dt

= 0)in (x ,t)~ rini(x,t)

(2.1)

(2.2)

«(x,£)is the density of the created free charge at the moment of the flash, ni(x,t) is the 

density of the trapped charge at energy level i , F  is the externally applied field, g(x, t) is the 

probability of generation per unit volume per unit time, //0 is the microscopic mobility, and the 

density of localized states enters these equations via the capture and release rates:

a>i = avgt(E ), y ,.(£) = Fexp(~Et I kT)

The initial/boundary conditions are:

i. Initial charge distribution at moment t = 0 is:

n(x,t = =
eAg

£ being the penetration depth of the light, Q0 - the created free charge, e - the 

elementary charge, A - the area of the sample and x - the distance from the interface. 

If x / ^ »  \ then n (x, t = 0 ) —> 0

ii. No trapped charge at the moment of the flash, ni (x, t = 0) = 0

Under the assumption of a ^-function exposure and strongly absorbed light the term g (x ,t) , 

describing the probability of generation per unit volume per unit time reads (Schmidlin, 1977):

g(x,0 = g ( x W - 0 )
a

>N07](Q)S(x -0 )
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N0 is the total number of nonreflected photons in a flash exposure, a  is the absorption coefficient 

and ij is the effective conversion efficiency of an absorbed photon into a mobile carrier.

Applying Laplace transformation with respect to t to the system of partial differential equations 
(2.1) and (2.2), and taking into account the initial conditions (i) and (ii) leads to a system of 
ordinary differential equations.

s n  (x , s ) - n ( x , t  = 0) + Ju0F ( s  ^ n X̂iS  ̂ - n ( x , t  = 0)) = - J ' ( s n i ( x , s )  — ni ( x , t  =  0)) + C ons t  <5(x)
dx j

A A A A  A

sni(x ,s ) -n i(x,t = 0) = coi n (x ,s ) - / i ni(xis) => ni(x,s) =---1— n (x,s)
s + r t

dn  (x,s) a(s) A A <z> .------------ h ^  n(x,s) = ConstS(x) , where a(s) = 5(1 + V --- 1—) (2.3)
dx jUqF  i s + yi

Again, applying Laplace transformation but this time with respect to x one obtains:

A

u n ( u , s ) + aQ)
MoF

A

n(u,s) = Const A 1 n(u,s) = Const—-----------------
a(s)(Fju0)~l +u

A

The inversion is analytic and gives: n(x,s) = Const exp( x)

A - A

I{s) = Const I n(x, s)dx = Const l-exp(-fl(5 )^0)
A

a(s)t0
(2.4)

where tn =-----  is the free carrier transit time and L is the thickness of the sample.
ft, F

The last expression is the result obtained by Schmidlin (1977) and evaluated by Seynhaeve et 
al (1989) in the case of pre and post-transit current spectroscopy. These two extreme cases

A A

correspond to a(s)t0 large and a(s)t0 small respectively.
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In the post-transit regime, when the quantity a(s)t0 is small the exponent in equation (2.4) can

be expanded into Taylor series and it leads to the following expression for the current in time- 
domain:

I(t) oc ConstJ'j a)iy ie (2.5)

For the case of continuous distribution replacing the summation by integration the 
equation (2.5) reads:

Yi

I(t) = Const jg (y) exp(-yt)dy
Y\

(2.6)

The limit yx corresponds to release from the deepest states, and y2 is equal to v. If these limits

are approximated by zero and infinity respectively, it is immediately seen that the DOS is an 
inverse Laplace transform of I-t data. Taking into account the complexity of the equation the 
inversion in order to find the DOS should be done numerically. Seynhaeve et al (1989) 
proposed a solution of the problem employing a delta function approximation. The exponential

waiting-time distribution for release out of a trap at an energy E , y(E)e~r{E)t, is replaced by a 

^-function. The thermalization energy approach was used (cf. Early work on TPC analysis). The 

energy scale E = kT\n(vt) is defined by associating the average release time from traps at 

energy depth E below the mobility edge with the elapsed time t. The attempt-to-escape 
frequency v is assumed to be energy independent. Under these assumptions the authors obtain 
the following approximate expression for the DOS:

t x l ( t )  oc g(E) (2.7)

In the last line the proportionality constant following directly from the multiple-trapping rate 
equations has been omitted. This simple relation is straightforward to apply, and has been quite 
widely used in the analysis of post-transit currents (Fejfar A. et al, 1996; Korevaar B. A. et al, 
2000).

Unfortunately, because of the underlying assumption for thermalization, the method does not 
work for structured distributions of localized tail states (Seynhaeve et al, 1985) and for 

exponential states whose width is smaller than k T .
Main et al (2000) have shown that equation 2.6 may be solved numerically for the DOS 

avoiding the delta-function approximation, simply by least-squares fitting a sum of exponential
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functions to I-t data. This approach offers improved accuracy and resolution, albeit at the 
expense of more intensive computation and somewhat greater susceptibility to experimental 

noise. By means of simulated decays, a resolution of typically 0.5 kT FWHM for discrete 

levels has been demonstrated, compared with more than 2 kT when equation 2.7 is used.

Here we present a further alternative method for inverting I-t, based on the use of 
Tikhonov regularization to solve equation 2.6, which is a Fredholm integral of the first kind. It 
has previously been shown (Nagase et al, 1999, Gueorguieva et al, 2001) that this approach is 
capable of high resolution and improved noise immunity over other methods when used to solve 
the general system of multiple-trapping rate equations in the ^-domain.

2.3 Tikhonov Regularization and Exact Laplace Transform methods in 

the context of TOF experiment

Tikhonov Regularization method
Yi

The equation I(t) oc Const ^g{y)c~n dy (Seynhaeve et al, 1989) is a Fredholm integral

equation of the first kind. The numerical inversion in order to find the DOS, g(y) , as a function 

of the release rates, y , was done by means of the proprietary subroutine FTDCREG (Weese, 

1992) based on the Tikhonov regularization technique.
As far as the release rates vary over many decades the integral equation which the FTIKREG 
program minimizes was chosen to be:

r w  = Z <J. m -
/max)
jK(y,t)g(lnr)d(lny)

n̂(/min) /

ln(/max)
+ A \g{\n(r)fd(\n(r))

n̂(/min)
(2.8)

In the discrepancy term the vector f ( t )  contains either noisy experimental data points or 

simulated post-transit 7-t data. The kernel function K(y,t)  in this case is just an exponent, 

exp(—yt), and is simpler in comparison with the kernel function in the case of the TPC 

experiment. In order to find the DOS as a function of energy the definition for release rates, 

yt =ve~E‘ / k T , was used with a value for the attempt-to-escape frequency v = 1012 s -1 

Although this leads to the familiar expression relating time and energy, E. = kT ln(v //,•), it

does not imply underlying thermalization energy approach. In the computation constant capture 
properties have been assumed, cru = const.
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The regularization term is motivated by the theory of Tikhonov regularization (Tikhonov A., 
1963; Groetsch C. W., 1984) and prevents the experimental errors from having too large 
influence on the result. Furthermore, FTIKREG has been used with a requirement for positive 
values for the regularized solution.

Plus points of the Post - Transit fPT) Tikhonov regularization approach
i. No mathematical/physical approximations have been employed, so in principle 

information on the DOS distribution could be obtained to a high degree of accuracy.
ii. The input data for the PT Tikhonov method are in the time-domain. Consequently, the 

noise in the data is not correlated.
iii. The method is fast and straightforward.

E L T in a post-transit (post-recombination) regime
An alternative approach is to use the ELT method in a ‘post-recombination’ regime 

characterized with recombination time shorter than the trapping time into a group of traps. The 
post-recombination regime in coplanar geometry is nearly equivalent to the post-transit regime 
in sandwich configuration if one carrier type predominates and recombination is 
monomolecular.

Plus points of the ELT method:
i. The ELT method is exact and is characterized with very high resolution (4 

meV = kT / 6), higher than the resolution of the Tikhonov method (12 meV = kT 12).
ii. It gives a unique solution for a given set of current-time data. We could argue that this 

is an advantage over the Tikhonov method, which gives more than one solution.

According to the theory, this is the nature of ill-posed inverse problems, that many even very 
different solutions may explain equally well the input data. Regularization methods impose, 
through the regularization term, some prior information on the solution (e.g. the assumption that 
the solution is to some extent smooth) in order to choose among the possible solution (possible 
solutions due to a good data fitting) the ‘unique’ one.

Minus points of the ELT method:
i. As far as the ELT method is exact, it requires ‘ideal’ current-time data for input data. 

Any degree of noise introduced in photocurrent data results in a ‘noisy’ DOS. In order 
to use the method ‘an ideal’ I-t curve (‘identical’ to the experimental one) has to be

reconstructed as a summation of exponents with given coefficients {A;, a t, i = !,...«}
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(cf. Exact Laplace transform method and Appendix 1) and after that the method can be 
applied.

A point should be made that the ‘noisiness’ of the solution should not be considered as a 
deficiency of the mathematical model because the method is designed to give an exact solution 
using an array of data. But clearly from physical and/or practical point of view it could be 
considered as a deficiency.

ii. A further drawback for the PT ELT method is that the input data,

&,(*/)=
1 1 2 / ( 0)  1 ' - 1

GO
are in the Laplace domain. By definition, the

Laplace transformation is an integral transformation with limits of the integration 0
A

and oo respectively. This means that in principle /(s,.) has to be inferred from the

whole time series of l-t data. Obviously, this is impossible when working with 
experimental data and this inevitably leads to further error in the solution. Though, an 
improvement could be achieved if the current-time data could be appropriately 
extrapolated to very short times.

2.4 Application to simulated and experimental data

In the rest of this section the theoretical resolution of the approximate and the exact 
methods will be evaluated by means of computer simulations and application to noisy 
experimental data.
The procedure is as follows. First, the I-t response under post-transit conditions for several 
representative distributions of traps is generated by means of the polynomial approach. Then 

the DOS is calculated from the I-t data using t x I ( t ) , the Tikhonov, and the ELT methods. At 

the end the I-t data from the already calculated DOS distributions is simulated. After evaluating 

the theoretical resolution of the methods they are applied to real data taken on a - S i : H  for 
which noise is inherent.
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Simulated data

Two discrete levels
First, we start with a simple but rather extreme case of two discrete levels of equal density 

positioned at 0.3 and 0.5 eV below the conduction band edge. The line in fig. 2.1 represents the 
simulated I-t under post-transit conditions. The simulation was done by means of the 
polynomial approach with a very short recombination lifetime (10'12 s). It is seen, in figure 2.2, 
that the approximate method accurately recovers the energetic location of the states, but 

introduces significant broadening (with a FWHM as high as 70 m eV , or 3kT) of these 
features.
Contrastingly, the Tikhonov and ELT methods return only two values that are significantly 
greater than zero, which correspond very closely in energy to the originating levels. Closer 

investigation reveals a small difference in energy, of less than 0.01 eV , and a small inequality 

in the density.
As a further check, we have taken the DOS returned by each method as shown in figure 2.2 and 
used these to re-calculate the I-t decays. The results are shown in figure 2.1. It is seen that the 
data calculated from the ELT and Tikhonov DOS fit the original I-t decay obtained from the 
model DOS very closely. The shape of the I-t curve calculated from the approximate DOS is 
clearly quite different, which confirms that the improved resolution is not simply an artefact.

Figure 2.1 Simulated post-transit data (line), and back-simulated data (symbols) using the DOS 
in figure 2.2.
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Figure 2.2 Recovered DOS calculated using the approximate t x I(t) and the Tikhonov and 

ELT methods. The originated levels are positioned at 0.3 and 0.5 e V .

Exponential distribution with a Gaussian feature superimposed
Figure 2.3 shows the result of applying the approximate, Tikhonov, and ELT methods to a 

distribution of states, comprising an extensive exponential band-tail of characteristic energy 50 

meV plus a Gaussian distribution. This kind of DOS is a more realistic model for a disordered 
semiconductor. It can be seen that while all three methods return the correct tail slope, the 
approximate method tends to broaden the Gaussian feature, especially on the shallower energy 
side. The Tikhonov and ELT methods reproduce all aspects of the originating DOS to a high 
degree of accuracy. The I-t re-calculation (figure 2.4) again confirms the improved fidelity of 
the exact methods.
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Figure 2.3 DOS obtained using the approximate, txl(t), and the exact Tikhonov and ELT 

methods.

Figure 2.4 The original I(t) post-transit data (line) and simulated I{t) data (symbols) using 

the recovered DOS in figure 2.3.
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Experimental data

The work reported above demonstrates that the ELT and Tikhonov methods are capable of 
yielding good results when applied to simulated, noise-free, data. However, under experimental 
conditions, fluctuations in the current will occur, and may have some bearing on the practical 
success of the technique (Reynolds et al, 2001).

Figure 2.5 shows the result of applying the approximate and the ELT and Tikhonov methods to a 

typical electron post-transit decay for an a — S i :H  pin diode. This device was light-soaked 

prior to measurement, and the ‘bump’ in the DOS centred at 0.57 eV is associated, at least 
partially, with the creation of metastable defects. There is an additional peak centred at 0.33 

e V , apparent in the DOS obtained using the approximate method but not reproduced by our 
exact techniques. Whether this feature is real or an artifact is unclear, as the range of validity for 
post-transit analysis, normally taken to extend from twice the carrier transit time, was 

approximately 60 ns, or an energy depth of some 0.28 e V . It is proposed to pursue this 
question by extending measurements to shallower energies, reducing the temperature and 
increasing the applied field.

Figure 2.5 Comparison o f the DOS recovered from the experimental data in fig. 2.6 using the 

approximate t x 1(f), and the exact ELT and Tikhonov methods.
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Figure 2.6 Experimental post-transit data (line) and back-simulated I-t data (symbols) from 
DOS in figure 2.5.

In conclusion, it has been shown by computer simulations that the density of localized 
states could be extracted from post-transit photocurrent data to a very high degree of accuracy 
retaining the exponential distribution function for the release time in the integral equation (2.6). 
As far as neither the Post-Transit Tikhonov regularization method nor the Post-Transit ELT 
method employ any kind of mathematical approximations the solution is ‘exact’. It has been 
shown that the exact methods are capable of improved performance as a DOS spectroscopy over 

the frequently used approximate expression t x l ( t ) .  Obviously, the ‘broadening’ associated 

with the approximate t x I(t) method arises as a result of replacing the problematic part (the 

kernel function) of the Fredholm integral equation of the first kind with a ^function positioned 

at a given energy where the kernel function has a maximum.

The potential benefits are most apparent when discrete levels or sharp distributions of states are 
investigated. The exact methods have also been applied to experimental post-transit data 
obtained from an amorphous silicon pin sample, and although the benefits of improved 
resolution were found to be unnecessary an acceptable tolerance to experimental noise present 
on the current decay was demonstrated.



79

Conclusions

The major contribution to the field arising from this work is that a new technique for 
DOS recovery via the Laplace transform of the transient photocurrent has been developed. The 
newly developed ELT method has been tested by applying it to simulated and experimental I-t 
data. The method yields very good agreement with the originating DOS when operating on I-t 
data simulated for model exponential and Gaussian continuous distributions, and can also 
resolve two discrete levels placed kT / 6 apart in energy.

The performance of the ELT method when operating on experimental data has been 
compared with the results obtained from the Tikhonov regularization method, regarded as the 
best one for extracting information from noisy experimental data. Unfortunately, the ‘exact’ 
nature of the ELT method makes it susceptible to the presence of noise which may give rise to 
artifacts in the recovered DOS. This gives impetus to further work to determine the best way of 
coping with noise, maintaining acceptable energy resolution.

The ELT and the Tikhonov regularization methods have been applied to experimental data 

obtained on light-soaked PECVD a — Si :H  , and single crystal CdTe: Sn . Both methods are 

found to perform equally well when applied to I-t data obtained on PECVD a — Si :H . 
Simulation of the current-time curves from the recovered DOS yields very good agreement in 
all cases with the originating experimental data over the range 10 ns — 1 s. It appears that 
although these methods do function correctly in the study of amorphous semiconductor systems, 
the capability to resolve discrete levels will seldom be required, and mathematically 
approximate methods (Naito H. et al, 1996; Nagase T. et al, 1998; Ogawa N. et al, 2000; Main
C. et al, 1992; Main C. 1997) will suffice in most cases. In contrast, three gap states, have been 

identified in CdTe; Sn using these techniques, suggesting that TPC experiments combined 
with these methods of analysis may provide useful supplementary information to the more 
common defect spectroscopies used on crystalline materials such as thermostimulated current 
(TSC), deep level transient spectroscopy (DLTS) and photo induced current transient 
spectroscopy (PICTS).

In chapter II we have shown by computer simulation that the use of the novel method 
based on the Tikhonov regularization for inverting the post-transit system of rate equations is 
capable of improved performance as a DOS spectroscopy over the frequently used approximate 

expression g(E) = t x I ( t ) . The potential benefits are most apparent when discrete levels or 

sharp distributions of states are investigated. The method has also been applied to experimental 
post-transit data obtained from an amorphous silicon pin sample, and although the benefits of 
improved resolution were found to be unnecessary, an acceptable tolerance to experimental 
noise present on the current decay was demonstrated.
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Appendices

Appendix A1

Fitting exponents to TPC I-t data.

Least Squares method of finding As and alphas:

Let A = £ ( l n / ; - ln (/fe" '))2
/=1

Then:

dA ^  -21n 
dA~  S

21nS+ -------
A

+ => a 'y j j  + n In A -  ̂  In/,- = 0
j=i /=i

5A
Set

Z <  -2*,. In/,. + 2 (̂. In A + 2 a tf) = 0 =>
i=\

Y i{-ti \nIi) + \nAYj ti + a ]T/2 = 0
/=1 /=1 /=1

if 5, = ; s e = j > / , ; ■s’* = 2 > , i n / , ; s .  = £ > ? then:
i=l /=l /=l (=1

a  =
»5„-5 ,2

In A = S. -aS .

Procedure of fitting a minimum number of exponents to a given I-t data set:

We have a set of data: {/,. }'.'=1 at points {f. }'.'=1.

First step: Applying equation (1) to the last tree points and finding exact values for alpha and 
the coefficients.

ln /exp (t.)
Second step: Checking if the error (1--------------) is less than a given value (e.g. 0.01)

In/«*(*,)
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Fourth step: Adding another point and going through step one to three again. If the above three 
requirements are still fulfilled then another point is added and so on. The procedure of adding 
points to the first set of three starting points (which will be fitted with the first exponent) stops 
when one of the above requirements is no longer fulfilled.

Fifth step: The points found by the above procedure are ‘ignored’ and the value of the exponent 

is subtracted from all data }”=1 (at all points {tt }"=1) and the same procedure starts with the

‘new’ set of {/• data. (Note that n = n - k  where k is the number of points fitted with one 

exponent).

This procedure gives the minimum number of exponents required to fit a given I-t data set.

Third step: checking if  I { — A e ati > 0 (they w ill be the ‘new’ data set {/. }”=̂ " which w ill be

used for the calculation of next A  and alpha)
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Appendix A2

Semi - analytical Laplace Transformation of TPC I-t data

For every two neighbouring I-t points, the following relations are fulfilled:

. a ,t+bj — T oaiti+i+bi — T
~  1 i  ’ e  ~  1 i + 1 ’

In(JM //,)
tv • « C/

t - t  eahli+1 e

Then the Laplace transformation of/-/ data can be found analytically:

m = L } e°'Hb‘e' s'd t = L
eb‘

1 t,

The first and second derivative of I(s) is found using the theorem for multiplication by t n 

(Spiegel M.R, 1965):

/ ’(*) = - \tl( t)e -s,dt = - Y  e\ 2 [(fe -*)<
i («(- s ) ‘

A * )  = = I  g 3 [((«,• - s f t 2 - 2(a, -*)< + 2)e<“'-l)'
T '(a I--5 )
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