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Abstract

This thesis explores various novel ways of treatment of wastewater contaminated 

by toxic organic pollutants using single and combined advanced oxidative 

wastewater treatment technologies in conjunction with a variety of acoustic and 

hydrodynamic cavitational reactors. There have been many reports in the literature 

on the use of hydroxyl radicals as the core part of AOPs and hence, as the first 

objective, the amount of hydroxyl radical generation from different acoustic and 

hydrodynamic cavitational reactors was studied using the potassium iodide 

dosimeter. The results reveal that optimum concentrations of less toxic 

chloroalkanes (chloroform and dichloromethane) could be efficient alternatives to 

carbon tetrachloride for enhancement of hydroxyl radical generation in cavitational 

reactors. Increasing ultrasonic amplitudes and operating hydrodynamic cavitational 

pressures lead to higher rates of hydroxyl radical production. Having explored the 

efficiency of generation of hydroxyl radicals the capacity of the reactors to degrade 

the model pollutant phenol, via a modified classic Fenton reaction which uses zero 

valent iron catalysts (instead of iron salts) and hydrogen peroxide under acidic 

conditions was studied. This process, named the advanced Fenton process (AFP), 

is the main foundation of the phenolic wastewater treatment reported in this thesis.

Phenol degradation was assessed using different frequencies of ultrasound where a 

comparison between 20, 300 and 520 kHz ultrasonic reactors showed that 300 kHz 

was by far the most efficient US reactor resulting in 100% phenol removal and 37% 

total organic carbon (TOC) mineralization in 25 min.

The concept of Latent Remediation (LR) was discovered during investigations into 

innovative approaches towards development of cost/energy-effective methods to 

treat phenolic wastewater. LR consists of inputting only 15 min of either 

ultrasound or stirring to the reaction medium, which contains optimised amounts of 

hydrogen peroxide and iron catalyst, and then the silent-dark AFP phenol 

degradation was studied over 24 h. The excellent results revealed that >80% TOC 

mineralization was achieved after this time. It was also found that zero valent 

copper catalysts were effective for phenol degradation and offered an excellent 

alternative to iron in the AFP, however toxicity analysis on the 24, 48 and 72 h
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samples showed that zero valent iron exhibited decreased toxicity when compared 

to zero valent copper.

Conventional granular/powdered activated carbons were replaced with activated 

carbon cloth and investigations on the potential use of this material for phenol 

removal/decomposition was studied in detail at different operating pHs (3, 5.5 and 

9), temperatures (20, 40 and 80 °C), oxidants (H2O2/O 3) in various reactors (pump, 

shaker and US bath).

Another aspect of the AOP application, disinfection of natural waters, was studied 

employing hydrodynamic cavitation and ozonation in a novel Liquid Whistle 

Reactor system. Model markers of faecal coliforms, Escherichia coli, were chosen 

for the study and the combined technologies of hydrodynamic cavitation and step­

wise ozonation proved be highly beneficial, resulting in ~ 6  log bacterial reduction 

revealing 99.9999% disinfection efficiency of the process.
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Chapter 1

General introduction



G enera l in tro d u c tio n

1.1 Introduction
Access to fresh, clean, uncontaminated water is recognised as a universal need for 

all societies. This, combined with the global requirement to protect our 

environment, continues to motivate a legislative drive toward more stringent limits 

on the amount of pollutants present in industrial wastewater discharge. This new 

legislation, is forcing de-pollution measures and in order to meet this challenge, 

industrial demand has grown for innovative and improved water treatment solutions 

for both, disinfection and pollutant removal. Advanced oxidative disinfection and 

wastewater treatment technologies contribute a great deal in environmental 

friendly-economic-efficient water treatment methodologies in order to achieve 

complete mineralisation or convert highly toxic organic pollutants into less harmful 

compounds.

In industrial effluents, phenol is one of the most common toxic pollutants in 

wastewaters generated from petroleum refining, petrochemicals, pharmaceuticals, 

pesticides, dyes/paints and organic chemical manufacturing industries (Benitez et 

al., 1999). To all living creatures, phenol is a prototype poison, which can 

coagulate protein and devitalise cells, especially the nervous system. It is believed 

that in high concentration, phenol can even lead to death, whereas lower 

concentrations could cause cumulative chronic intoxication. Therefore, this organic 

compound has been researched over several decades and the United States 

Environmental Protection Agency (US EPA) has listed it as one of the 129 priority 

pollutants (Chen et al., 2003). Conventional treatment of phenolic wastewaters 

include recycling, incineration, activated carbon (AC) adsorption (Dabrowski et al., 

2005), biological treatment (Calvosa et al., 1991) and chemical oxidation (Davis 

and Huang, 1990; Joglekar et al., 1991; Weavers et al., 1998), however with each 

methods are associated advantages and disadvantages. Therefore, the selection of 

an efficient technology depends on the: concentration of phenolic compounds in 

wastewaters, compositions of the wastewater and treatment cost.
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G en era l in tro d u c tio n

Recent advances in science and technology have introduced a range of new 

techniques, termed as Advanced Oxidation Processes (AOP). Thus, a number of 

AOPs have been considered as an attractive way of treating phenolic compounds 

from effluent streams. Since the 1970s, AOPs have shown considerable potential 

for treating a variety of pollutants, with low to high concentrations of harmful to 

toxic organic compounds and for drinking waters to industrial wastewaters. The 

concept of ‘AOPs’ was described by Glaze et al. (1987) as a process which 

“ involves the generation of HO* in sufficient quantity to effect water purification’’.

Table 1.1 lists AOPs and the area of opportunities for the variety of AOPs 

developed, or are under investigation, that could have possible applications in 

wastewater treatment technologies (Parsons, 2004).

Some of the widely used AOPs for phenol oxidation studies will be reviewed in 

detail with special emphasis on the use of single and combined processes of the 

Fenton reaction, cavitation (ultrasound and hydrodynamic), catalysis, peroxidation, 

ozonation and use of activated carbon cloth as emerging AOPs in phenolic 

wastewater and drinking water treatment.

AOPs

Catalysis Pulsed plasma 
Electrochemical Supercritical water oxidation 
Fenton’s reagent Cavitation 
Ferrate UV 
Ionising radiation UV/H2O2 

Microwave UV/H2O2/O3 

Photo-Fenton’s reagent Vacuum UV 
Photocatalysis Wet air oxidation

Opportunities 
for AOPs

Groundwater Industrial wastewater 
Odour and VOCs Industrial sludge’s 
Surface water Municipal wastewater 
Swimming pools Leachates 
Water recycling Municipal sludge’s 
Disinfection Ultra pure water

Table 1.1: List o f AOPs and its applications in w ater and w astew ater treatm ent (Parsons, 
2004).
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G enera l in tro d u c tio n

In AOPs, the main aim of oxidation of pollutants is to mineralise or convert the 

reactants of the organic pollutants into relatively simpler inorganic molecules, 

mainly CO2 , H2 O and mineral salts (Parsons, 2004). The conventional oxidants 

such as hydrogen peroxide (H2 O2 ) and ozone (O3 ) have been focussed in this thesis 

and the hydroxyl radicals (H O ) generated from these oxidants, through chain 

reactions, give many AOPs its power to oxidise pollutants and enhance degradation 

rates. The efficiency of oxidising species in a reaction depends on its oxidation 

power and shown in Table 1.2 (Vogelpohl and Kim, 2004). However, the rate of 

oxidation depends on various factors such as radical/oxygen/pollutant 

concentrations and presence of scavengers, like bicarbonate ions. Physical 

parameters like pH, temperature, pollutant type also tend to affect the oxidation 

process.

Oxidation species Relative oxidation power (Y)
Hydroxyl radicals 2.05
Atomic oxygen 1.78
Ozone 1.52
Hydrogen peroxide 1.31
Permanganate 1.24
Chlorine 1 . 0 0

Table 1.2: Relative oxidation pow er o f oxidising species (V ogelpohl and Kim , 2004).

Many strong oxidants mentioned above are ‘free radicals’ of which HO* radicals is 

the most powerful oxidising species after fluorine and is able to oxidise a wide 

range of pollutants (Parsons, 2004).

1.2 AOPs for wastewater treatment
Typical AOPs can be broadly categorised under photochemical and non- 

photochemical systems (Table 1.3) (Huang et al., 1993). However, a set of 

advantages and disadvantages are associated with every system; the major 

advantages of the AOPs mentioned below are: high rates of toxic pollutant 

degradation, reduced-dimension reactor set-ups and flexible systems; whereas, high 

cost of operation, high energy requirements (use of UV lamps/electron
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beam/radioactive sources) and enhanced safety requirements due to the use of 

highly reactive chemicals like O3 and H2O2 are some main disadvantages.

Photochemical oxidations Non-photochemical oxidations
UV/H2O2 O3/HO"
UV/O3 H2O2/O 3

UV/H2O2/O3 u s /o 3a
UV/H20 2/Fe2+ (Photo-Fenton) 0 3 /activated carbon
UV /Ti02/ H2 0 2 /Fe2+ (Fenton process)
UV/H20 2/T i0 2 Electro-Fenton
U V /0 3/T i0 2 Electron beam irradiation
u v /u s Cavitation oxidation (CAV-OX ® ) 3

Cavitation/H202
Radiolysis
US/Wet air oxidation (SONIWO)a

a(Gogate and Pandit, 2004b).

Table 1.3: Different photochem ical and non-photochem ical oxidations (H uang et a l. , 1993).

1.2.1 Photochemical oxidations
1 .2 . 1 . 1  UV/H2O2, UV/O3 and UV/H20 2/ 0 3 systems

UV photolysis of H2O2 generates HO» (Eq. 1.1). Photolysis of aqueous O3 

produces H2O2. The deprotonated form of H2O2 (HO2 ) reacts with O3 to produce

ozonide (O3 ) and then HO* (Eq. 1.2) (Huang et a l ,  1993).

H20 2 + hv ---------- ► 2HO* ( 1 . 1 )
O3 + hv ---------- ► H2O2 ------► HO2 + O3 ------► O3 ------ ► HO* (1.2)

The principle theory behind this combination of technologies exists in the enhanced 

free radical production from the dissociation of O3 or H2O2 . The technique is 

actually very similar to the system where US/H2O2/O 3 is used with the only 

difference being in supply of energy required for the dissociation of O3 and HO*. 

In the case of US, the energy is provided by cavitation bubbles whereas in UV 

systems, the dissociation is supported by UV light (Gogate and Pandit, 2004b).
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Gogate and Pandit (2004b) discussed some of the key optimal operating conditions 

in the UV/H2 O2  system and refer to developing realistic kinetic models and 

optimisation of H 2 O2  dose, concentration of radical scavengers and pH for different 

types of pollutants. However, pH is one of the important factors considered in this 

UV/H2 O2  system as the rate of reaction depends on the change of pH with time. 

Usually lower operating pH (2.5-3.5) is preferred as the effect of radical scavengers,

i.e., carbonate and bicarbonate ions, is negligible leading to high rates of 

degradation. On the contrary, neutral to alkaline pH (7-8) is preferred in the 

UV/O3  system. Also, reduced temperatures, lower initial concentration of pollutant 

and continuous ozonation are key parameters. Higher temperatures often reduce 

the O3 solubility and thus affect the degradation process hence appropriate cooling 

units should be installed.

According to Huang et cil (1993), the UV/H 2 O2 , UV/O 3  and UV/H 2 O2 /O 3  systems 

are best suited for ground water and soil remediation, the reason being the 

activation energy between HO» and organics is close to zero and therefore 

oxidation is rapid. However, there are certain disadvantages that exist in the UV- 

based oxidation system:

1. UV/O3 : mass transfer between gaseous O3  and aqueous medium is the 

limiting factor.

2 . UV/H2 O2 : decomposition of H 2 O2  by UV is inefficient because the 

extinction coefficient of H 2 O2  at 254 nm is only 19.6 M - 1  s- 1  compared to 

3000 M~‘ s“‘ for 0 3.

3. Reactor design: inappropriate match between reactor size and UV 

penetration depth could lead to inefficient degradation of pollutants.

4. Physical parameters: turbidity and colour could also significantly reduce the 

efficiency of UV-based oxidation systems.

1.2.1.2 Photocatalytic systems

There have been a number of reviews concerning photocatalytic systems in the last 

ten years (Chapter 6 ; (Parsons, 2004)). Titanium dioxide (T i02) has been 

considered as the semi-conducting material for research in the field of semi­

conductor photocatalysis for water purification, where, dissolved oxygen is the

6



G enera l in tro d u c tio n

electron acceptor (A) and pollutant is the electron donor (D), the overall process 

could be defined as semiconductor photocatalysed oxidative mineralisation of the 

pollutant by dissolved oxygen and is represented by Eq. (1.3). Ti0 2  has a large 

bandgap energy, £bg = 3.2 -3 .0  eV and hence it is only able to absorb UV light, 

typically <380 nm but does not absorb visible light. Moreover, Ti0 2  exists in three 

crystalline forms, namely anatase, rutile and brookite. However, the most 

photocatalytically active and easy to produce is anatase, therefore anatase-TiC> 2  is 

the semiconductor used in various commercial photocatalytic systems for water 

purification.

Pollutants + O2
semiconductor 

hv > Eft g minerals (1.3)

Mills and Lee (Chapter 6 ; (Parsons, 2004) highlighted notable compounds treated 

by semiconductor photolysis are haloalkanes (chloroforms and 

tetracholoromethane); surfactants, hormones; herbicides; pesticides and dyes. The 

technology, utilising semiconductor TiCL, is also very extensively used in 

bacterial/viral/mould destruction, where the mode of action is similar to the 

destruction of pollutants in which the photogenerated holes produce surface HO* 

species, which in turn destroy the cell wall of the biological material and they die 

quickly. This process is termed as photosterilisation or photodisinfection and can 

be represented as Eq. (1.4).

Biological systems + O 2  —hv ~ Ebg— ► dead systems + CO 2  + H 2 O (1.4)

Installation of the semiconductor photocatalytic oxidation systems in any 

wastewater treatment plant should consider the advantages and disadvantages 

associated with the reactor design and technology (Gogate and Pandit, 2004a). 

Some of the major advantages are: low cost of titania, total mineralisation for many 

toxic organic pollutants; system applicability for low concentrations; use of natural 

resources like sunlight and operation at room temperature and pressure. However, 

the main disadvantages that have been noticed with this technology on an industrial 

scale are mainly lack of engineering design and operation strategies for efficient use
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of reactors; relatively low reaction rates; time consuming and expensive processes; 

ineffective real industrial effluent treatment and finally, fouling of the 

photocatalysts with continuous use, retard the degradation rates.

Despite the above mentioned drawbacks the photocatalytic oxidation can be 

effectively and economically used in conjunction with other AOPs such as 

ultrasound, with H 2 O2 , O3 and Fenton like reactions (Andreozzi et a i, 2001a; 

Andreozzi et al., 2001b; Beltran et al., 1999; Beltran et al., 1996a, 1996b; Benitez 

etal., 1999).

1.2.1.3 Photosono-catalytic systems

The photocatalytic oxidation system in continuous operations, in either slurry or 

immobilised catalyst type reactors, results in adsorption of the contaminant on the 

catalyst which blocks the UV activation sites and results in reduced degradation 

efficiency. To overcome this limitation, ultrasonic irradiation is the only technique 

that can be used successfully and simultaneously with photocatalytic operations. 

The UV-US integrated systems have a great deal of synergism which leads to 

enhanced generation of free radical species and effective degradation rates with low 

maintenance cost and energy inputs. Cavitation contributes to cleaning of the 

catalysts throughout the process; increased mass transport of reactant and products 

to the catalyst by shockwave propagation; increased catalyst surface area; better 

formation of radical intermediates for pollutant degradation and enhanced reaction 

rates. However, while designing an efficient photosono-catalytic reactor, the 

following important factors should be taken into account (Gogate and Pandit, 

2004b):

1 . UV-US integrated systems should be installed to operate simultaneously 

rather than sequentially because such operation may help in continuous 

cleaning of the photocatalyst and also enhanced HO* generation, thereby 

increasing rates of degradation.

2. Catalyst shape, size and structure are crucial in the photocatalytic processes, 

therefore appropriate catalyst support that can withstand high acoustic 

turbulence should be constructed in the reactor.

8
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3. For wastewater treatment in photosono-catalytic reactors, it is suggested that 

continuous reactors are better than batch reactors or those operating in re­

circulating mode in order to treat huge quantities of effluents.

4. While combining, the photosono-catalytic reactors, uniformity in power 

distribution by ultrasonic irradiation and uniformity in receiving the 

irradiation by the photocatalysts, should always be taken in account to 

achieve maximum pollutant degradation.

1.2.1.4 Photo-Fenton systems

The process of photo-Fenton is the combination of FFCF and UV radiation with 

Fe2+ and Fe3+ ions, which tends to produce more HO« and promote pollutant 

degradation. The reaction mechanism of production of HO» and degradation of 

pollutants by simultaneous Fenton reactions and photo-Fenton reaction is shown in 

Fig. 1.1. In the photo-Fenton process, FFCF is utilised by three different 

mechanisms: direct Fenton reactions, photoreduction of Fe3+ to Fe2+ and FFCF 

photolysis. High rates of contaminant removal in photo-Fenton processes can be 

achieved by appropriate selection and loading of iron salt and H2O2, aeration, 

optimal dilutions and acidic pH (usually pH 2.8). The process could be more 

energy efficient on a large scale if sunlight is used for photoactivation (Gogate and 

Pandit, 2004b).

F ig u re  1.1: R e a c tio n  p a th w a y s  in  p h o to -F e n to n  p ro c e ss  (V o g e lp o h l a n d  K im , 2004).
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1.2.2 Non-photochemical oxidations
1.2.2.1 Fenton oxidation

According to Wadely and Waite (Chapter 5; (Parsons, 2004)), the Fenton reaction 

is used extensively in the treatment of contaminated water and soil and has been 

categorised into light- and dark-Fenton processes. The light-Fenton process is often 

termed as the photo-assisted Fenton process whereas, the dark-Fenton process 

involves one or more oxidising agents, usually H2 O2  and/or oxygen and a catalyst 

(usually iron metal salt or oxide). The contaminant degradation is normally 

catalysed by the reduction of Fe3+ to Fe2+ and leads to the formation of a range of 

free radical species, including highly reactive HO* which helps in efficient 

pollutant removal. The Fenton reaction involves three main radical species, two of 

which are HO* and the third is an aquo or organo complex of high valence iron, 

called the ferryl ion (Sauer and Ollis, 1996). These coexisting radical species 

predominate over each other depending on substrate nature, metal-peroxide ratio, 

scavenger addition, etc. The Fenton oxidation system is highly applicable in 

removing colour and odour from wastewater with good energy efficiency and can 

be effectively used in treating toxic and non-biodegradable wastewaters making it 

suitable for secondary biological treatment (Chen and Pignatello, 1997).

Optimum operating conditions in the Fenton oxidation system have been 

summarised in a review by (Gogate and Pandit, 2004a):

1. pH: the optimum pH recommended for Fenton reactions is 3, however at pH

<3, the formation of [Fe(II).(H2 0 )]2+ occurs, which reduces HO* production

thereby decreasing the degradation rates, similarly, at pH >4, the 

degradation rate often tends to fall mainly due to formation of Fe2+ 

complexes with the buffer which in turn inhibits the free radical formation 

and enhances ferric oxyhydroxide precipitation.

2. Ferrous ions: the rate of pollutant degradation increases with increasing 

ferrous ion concentration; however enormous quantities may remain 

unutilised and may eventually increase the total dissolved solids load in the 

effluent stream.

3. H2 O2 : the efficacy of Fenton oxidation greatly depends on the oxidant dose 

and generally the pollutant degradation increases with the increased H 2 O 2
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dosage. However, selecting an optimum oxidant concentration is important 

as the residual H 2 O2  concentration influences the chemical oxygen demand 

(COD) levels and therefore excess amount is not recommended.

4. Pollutant concentration: lower initial pollutant concentration is favoured.

5. Operating temperature: usually 1CM-0 °C have been reported to be the range 

of temperatures that does not affect the degradation efficiency. Above this 

range, cooling units should be installed in the reactor design.

Fenton oxidation systems can also be greatly enhanced by combination with other 

AOPs, like UV, cavitation, catalysis and ozonation.

1.2.2.2 Oxidation using oxidants

The two most extensively used oxidants in AOPs are O3 and H 2 O2 . The 

combination of the two oxidants (H2 O2 /O 3 ) leads to synergy in the treatment of 

chemicals such as organophosphoric acid triesters, clofibric acid, ibuprofen, 

tetrachloroethylene, which show less reactivity towards direct oxidation with O3 

alone (Echigo et al., 1996; Glaze and Kang, 1989a, 1989b; Zwiener and Frimmel,

2000).

1.2.2.2.1 Ozone

O3 is an unstable gas and a highly powerful oxidising agent (E° = +2.07 V). The 

main areas where O3 has been used extensively are:

i. Disinfection

ii. Oxidation of organic and inorganic compounds

iii. Particle and taste/colour/odour removal

O3  has a high potential to react with multiple bonds species, i.e., C=C, C=N, N=N, 

etc., however it has a reduced potential to react with single-bonded species, i.e., 

C -C , C - 0  and O -H . 3

O3 transfer in the aqueous medium is one of the key factors controlling disinfection 

and degradation rates. Literature supports the use of small size O3 diffusers such as 

porous disks, porous glass diffusers, bubble columns, packed and plate columns, 

static mixers, jet reactors and agitated vessels. These have all been shown to be
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effective in increasing the interfacial area of contact of O3 in aqueous medium 

(Glaze, 1987). Martin and Galey (1994) studied the use of static mixers in 

oxidation and disinfection and reported that the mass transfer coefficient of O3 

increases with a decreasing static mixer’s flowrate and increasing gas flowrate.

A list of operating conditions to achieve the maximum extent of degradation along 

with high energy efficiency has been recommended (Beltran et a l , 1997; Beltran et 

a l , 1994; Beltran et al, 1992; Glaze, 1987; Martin and Galey, 1994):

1. Higher pH values.

2. Increased O3 partial pressure.

3. Use of static mixers.

4. Temperatures 5-20 °C.

5. Presence of catalyst: TiCU, Fe (II), Mn (II), etc.

A major drawback of using ozonation technology on larger scale operations is the 

high cost of generation and gas-liquid mass transfer. However, such difficulties 

could be partially tackled with a combination of ozonation with other existing 

AOPs such as ultrasound; UV; H2 O 2  and efficient reactor design, with lower cost of 

treatment (Gogate and Pandit, 2004a).

1.2.2.2.2 Hydrogen peroxide

H2 O2  has been found to be effective in treating wastewater which require less 

stringent oxidation conditions (Ayling and Castrantas, 1981). There are three 

different concentrations normally recommended for the treatment of wastewater: 

35%, 50% and 70%, of which, 35% is the safest to use while 70% may produce 

detonable mixtures with many organic compounds. The reaction rate between 

H 2 O2  and the pollutant often decides where H 2 O2 should be added in the pollutant 

stream. According to Gogate and Pandit (2004a), the simplest, fastest and cheapest 

method for injection of H 2 O2 is a gravity feed system.

No reports so far state the usage of H 2 O2  alone for effective wastewater treatment. 

Moreover, stability of this oxidant is always a limitation in any reaction system. 

Interestingly, H2 O2  could act as an additional pollutant if added in excess to the
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reaction system or if formed by recombination of dissociated H O . Either of the 

above processes could result in decreased overall degradation rates.

However, the above limitations can be tackled by involving H 2 O2  in other hybrid 

AOP systems such as ultrasound, UV, the Fenton reaction, catalysis and ozonation. 

Such alternatives might also lead to enhanced oxidation rates at low cost and energy 

consumption.

1.2.2.2.3 Ozone/hvdrogen peroxide

The addition of H2 O2  at a O 3/H 2 O2  ratio of 2 : 1  to ozonation processes, increases the 

decomposition of O3 molecules thereby enhancing the formation of H O  in the 

reaction medium (Vogelpohl and Kim, 2004). The reaction mechanism has been 

studied and is shown in Eq. 1.5-1.12 (Buhler et a l, 1984; Forni et al., 1982; 

Sehested et al., 1982).

H 2 O2  can form the hydroperoxide ion HO 2  and an H+:

H 2 0 2 ---------- ► H 0 2- + H+ (1.5)

The hydroperoxide ion reacts with O3 to produce the ozonide ion (O3 ) and 

hydroperoxide radical (HCb*):

H 0 2  + 0 3 ----------► 0 3" + H 0 2* ( 1 .6 )

Chain reactions of these products (Cb- and HCb*) form HO*:

H 0 2' ----------► H+ + 0 2'  (1.7)
0 2 + O3 ---------- ► O3 + O2 (1.8)
o r  + H+ --------- ► HO3 (1.9)
HO3 --------- ►H0* + 0 2 (1.10)

Once HO* are formed, the following propagation steps generate HO* by an

autocatalytic mechanism:

0 3 + H0* ---------- ► 0 2  + H 0 2* (1.11)
0 3“ + H 0 2* ---------- ► 2 0 2  + HO* (1.12)

The chain mechanism generates HO* by consuming H 2 O2  and O 3 and the sequence 

is terminated by recombination of different radicals.

(Gogate and Pandit, 2004b) highlighted the following important considerations for 

the use of the hybrid H2 O2 /O 3 technology in wastewater treatment:
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1. The combined technology will be particularly helpful for pollutants showing 

less reactivity towards molecular O3  attack and where radical chain 

initiators are present in low concentrations.

2. The optimum operating conditions in order to achieve enhanced degradation 

from this combined technology can be given as: optimum O3 and H2 O 2  

dosage, neutral pH, low pollutant concentration and pre-treatment of 

wastewaters.

3. Increasing the O3 utilisation in the reactions is another important factor that 

should be taken into account in reactor design.

4. Instead of using reactors in series, multiple point injection of H 2 O 2  and 

addition of O3 in steps is a promising technique rather than single point 

injection/addition.

1.2.2.3 Radiation-based oxidation

Parsons (Chapter 9; 2004) suggests that ionising radiation is “an excellent source of 

both reducing and oxidising radicals for water treatment”. Thus, the simultaneous 

generation of both oxidising and reducing species allows a versatile approach 

towards treatment of a variety of pollutants. Irradiation of water with electron 

beams or y-rays results in formation of electronically-excited states, free radicals 

and ions, which attack and decompose pollutants. Table 1.4 provides an estimate of 

the concentrations of the reactive species in aqueous solution. The three most 

reactive products formed in radiolysis of water are: oxidising HO*; the reducing

aqueous electron (eaq~) and the hydrogen radical (H*). Oxidising and reducing

species are formed in approximately equal amounts and these are the products 

which are highly involved in any wastewater treatment.

Dose (kGy)
Concentration (mM)

eaq H* HO* H 2 0 2

1 0.27 0.06 0.28 0.07
5 1.4 0.3 1.4 0.4

1 0 2.7 0 . 6 2 . 8 0.7

Table 1.4: Estim ated concentrations o f reactive species in  pure w ater at several doses using  
high energy electron irradiation.
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Although aqueous electron (eaq~) and HO* have similar G values, the former is less 

available for reaction due to scavenging by hydronium ion (H3 0 +) in acidic water

and oxygen in aerated solutions. Likewise, though H* is less abundant than eaq~,

the former has a relatively small reaction rate with common radical scavengers 

found in natural water which makes it important for some pollutant removal. 

However, such limitations do not exist with the HO*, therefore it can participate in 

several types of reactions (Parsons, 2004).

The rate of reaction in radiation processes is controlled by several factors, namely 

ionising radiation (electron beam or y-radiation energy, absorbed dose and dose 

rate), nature and concentration of pollutants and presence of scavengers and 

additives. The effect on treatment efficiency is especially noticeable at low 

pollutant concentrations. Irradiations of some systems have a dual impact on the 

treatment system: on the one hand it degrades the pollutant whereas on the other it 

changes the physico-chemical properties of the system which again contributes to 

pollutant removal process. Highly concentrated pollutants require large absorbed 

doses for their purification. Therefore, a cost-effective approach in irradiation 

treatment would be to combine this technology with other conventional 

technologies, such as ozonation, floatation, adsorption, coagulation or biological 

treatment (Woods and Pikaev, 1994).

1.2.2.4 Wet air oxidation

The application of wet air oxidation (WAO) for the treatment of industrial 

wastewaters began to be commercialised in the 1970s (Mishra et al., 1995). Nearly 

100 WAO plants are operating commercially mostly to treat wastewaters generated 

from petrochemical, chemical and pharmaceutical industries as well as residual 

sludge from wastewater treatment plants. WAO is an aqueous phase process, 

where water is an integral part of the reaction. The process is defined as ‘the 

oxidation of organic and inorganic compounds in an aqueous media by means of 

oxygen/air at elevated temperatures’ (Chapter 9; (Parsons, 2004)). Typical 

operating temperature range for WAO varies from 100 °C to 372 °C (subdivided 

into: lower, 100-200 °C; medium, 200-260 °C; higher, 260-320 °C; highest, 320-
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372 °C) at elevated pressures to maintain water in the liquid phase and ensure 

oxidation reactions take place in the liquid phase. However, due to high capital 

cost, high temperature systems, i.e., 320-372 °C, are rarely used. Residence time 

may vary between 15 and 120 min, leading to 75-90% COD removal. Insoluble 

organic matter is converted to small organic compounds and eventually to carbon 

dioxide and water without emission of NOx, SOx, HC1, dioxins, furans, fly ash, etc. 

WAO plants either aim for complete oxidation or partial oxidation prior to 

treatment by conventional biological processes.

WAO can be divided into two types:

1. Non-catalytic WAO

2. Catalytic WAO (CWAO)

i. Heterogeneous CWAO

ii. Homogeneous CWAO

In case of non-catalytic WAO, the free radical chain mechanism involves the 

formation of hydroperoxides and oxyradicals. The two-step non-catalytic WAO 

degradation mechanism is as follows:

Step 1: hydrogen abstraction from the a-, p- and Y-CH2  groups of carboxylic 

acids by O2  results in the formation of free radicals which react immediately 

with O2  to form peroxy radicals.

Step 2: the peroxy radicals can lead to the decarboxylation and formation of 

CO2  by H abstraction from the —COOH group of another molecule of 

carboxylic acid.

A generalised kinetic model based on a simplified reaction scheme with acetic acid 

as the rate-limiting intermediate was proposed by (Li et a l, 1991). This kinetic 

model is usually used to represent the WAO reactions and shows a reasonably good 

fit with experimental data.

With the high thermal efficiency of WAO and utilisation of direct chemical 

oxidation processes, it offers an economical alternative to liquid waste incineration. 

Higher efficiencies have also been achieved by addition of a catalyst to WAO
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which in turn reduces the energy consumption in the process and proves out to be a 

cost-effective process for the treatment of organic sludge and refractory industrial 

wastewater.

Furthermore, hybrid technologies like SONIWO (sonication followed by WAO) 

have proved to be outstanding in achieving high degradation rates with enhanced 

efficiency at comparatively milder temperature and pressure conditions as 

compared to WAO alone (Dhale and Mahajani, 2001; Ingale and Mahajani, 1995). 

The WAO has certain limitations with respect to treating complex materials, e.g., 

polychlorinated biphenyls and polyaromatics along with requirements of severe 

conditions of temperature and pressure which may lead to high operating cost and 

therefore affect the overall economic values of the treatment system. In such 

situations SONIWO has a great advantage as the hybrid technology, involving 

sonication, may first used to pre-treat the wastes and convert the toxic complex 

mixtures to smaller fragmented molecules and further processing can easily be 

carried out by WAO, thereby achieving efficient degradation at comparatively less 

severe conditions of temperature and pressure.

Some laboratory scale studies suggest that hybrid technologies such as 

membrane/sonication/WAO, can lead to 80-90% dye degradation in a residence 

time of 120 min at neutral pH (Dhale and Mahajani, 1999). Also, catalysts like 

CUSO4  and NiSOzu small amounts of phenol; acidic pH; pre-treatment such as 

adsorption by activated carbon and membrane separation, could be other hybrid 

alternative ways in treating toxic wastes along with WAO (Gogate and Pandit, 

2004b).

1.2.2.5 Catalytic oxidation

Some of the catalytic oxidations such as photocatalytic oxidation and use of iron 

salts and iron oxides in Fenton reactions have been discussed earlier. Solid 

catalysts have also been reported to enhance the rate of degradation when combined 

with other AOPs like, ozonation and cavitation. This part of the Introduction will 

mainly concentrate on the use of catalysts in ozonation and cavitation processes and 

their effect on the oxidation rates.
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1.2.2.5.1 Catalysts in sonochemical reactions

The presence of solid catalysts in the form of the particles in sonochemical reactors 

increases the collapse events, thereby increasing the number of free radical 

formation. Also, by the action of ultrasound the solid catalysts are continuously 

polished and reduction in particle size due to mechanical action provides large 

surface areas for pollutants to react. Hung and co-workers discussed the enhanced 

reductive degradation of C C I 4 and nitrobenzene by elemental iron during sonication 

(Hung and Hoffmann, 1998; Hung et a l, 2000). The presence of solid catalysts in 

sonochemical reactors also alters the physical properties of the liquid medium, viz., 

vapour pressure and surface tension, which results in greater cavity collapse and 

intense radical species formation available for pollutants (Gogate and Pandit, 

2004b). The use of NaCl as an additive for the enhanced degradation of aqueous 

pollutants has been reported (Seymour and Gupta, 1997). The presence of NaCl 

and NaN 0 2  alters the distribution of the aqueous and organic phases by changing 

the partition coefficient due to which the concentration of organics increases at the 

gas-liquid interfaces, subsequently increasing the degradation rates. Moreover, 

salts are known to increase the surface tension of liquids and in doing so in the 

presence of cavitational activity, much violent cavity collapse occurs (Mahamuni 

and Pandit, 2006). However, the concentration of salts, the pollutant concentration, 

power density and operating frequency should always be considered before 

application (Gogate and Pandit, 2004a).

1.2.2.5.2 Catalysts in ozonation reactions

(Ma and Graham, 1997, 2000) discussed in detail the use of manganese ions in an 

ozonation process as a promising catalyst for enhanced degradation rates. They 

reported that in the presence of Mn ions, the O3 is utilised efficiently by the Mn(II) 

ions and assist subsequent degradation and the catalyst may promote the formation 

of free radicals from O3 since Mn(IV) acts as catalyst in O3 decomposition. A 

small dose of Mn(II) is often recommended, however as the free radical attack is 

the driving mechanism in catalytic ozonation, the naturally occurring material 

present in effluents is always a deciding factor. In a similar study Andreozzi and 

co-workers (Andreozzi et al., 2000a; Andreozzi et al., 1998; Andreozzi et a i, 

2001b; Andreozzi et al., 1992; Andreozzi et al., 2000b) studied catalytic ozonation 

in the presence of Mn catalyst for degradation of pyruvic and oxalic acid and
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reported that pH is the controlling factor in catalytic action. At pH 10, conversion 

of Mn(II) to Mn(III) via Mn(IV), initiates free radical formation, whereas at pH 4.7, 

the Mn(III)-oxalate complex is formed, which acts as a free radical chain initiator.

The above study could be adapted to provide guidelines in developing similar 

kinetic models for different reaction systems involving catalysts and O3 in order to 

achieve high degradation rates. Moreover, optimum conditions such as 0 3 /catalyst 

loading and lower pH/temperatures/naturally occurring materials/radical scavengers 

may also contribute towards efficient degradation. Also, the use of hybrid AOP 

technologies like ultrasound, in conjunction with catalytic ozonation, offers an 

attractive alternative in pollutant removal.

1.2.2.5.3 Catalytic oxidation by activated carbon

Granular activated carbon (GAC) has gained immense importance for removal of 

organic pollutants, however use of activated carbon cloth (ACC) in removal 

processes showed similar or higher adsorption capacities (Brasquet et a l , 1999). 

Catalytic oxidation for wastewater treatment has also been extensively studied in 

the integrated processes such as metal oxide catalyst/GAC/H 2 0 2  for dye wastewater 

(Lin and Lai, 1999); GAC/H2 O2  treatment of 4-chlorophenol (Huang et a l, 2003); 

AC/O3 treatment for gallic water (Beltran et a l, 2006) and bagasse ash and wood 

charcoal ACs have been effectively used to remove phenol (Mukherjee et al., 2007). 

Combined AOPs such as O3-BAC (biological AC), UV/O 3 -BAC, TiCb/UV/C^- 

BAC (Li et al, 2005) and CWAO-Fe/AC (Quintanilla et a l, 2007) for removal of 

organic pollutants from secondary effluents have also been reported in recent 

literature.

Pre-treatment of AC by oxidants like, H2O2/HNO3 on pentachlorobenzene (P5CBz) 

was studied and results suggest that certain functional groups such as carboxyl and 

hydroxyl were formed on the surface of the AC. It was inferred that the hydroxyl 

groups act on the dechlorination of P5CBz and the oxygen functional groups arising 

from the HNO3 treatment helps in the destruction of P5CBz (Takaoka et a l, 2007). 

Similarly, when AC is pre-treated with O3 the chemical and textural properties are 

altered. Also, as a rule the O3 treatment, at room (25 °C) or even higher (100 °C)
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temperatures give rise to the surface oxygen groups (SOG). However, at the same 

time it is worth noting that at 25 °C, only primary carboxylic acids are formed on 

the surface of AC but at higher temperatures (100 °C), a more homogeneous 

distribution of carboxylic, lactonic, hydroxyl and carbonyl group formation, which 

in turn increases the adsorptive capacity of AC at elevated temperatures, has been 

reported (Alvarez et a l, 2005).

The complete reaction mechanism of action of H O  formed on the surface of AC 

by AC/H2 O2  for organic contaminant removal has been proposed (Georgi and 

Kopinke, 2005). AC is known to decompose H 2 O2  and subsequent reactions lead to 

formation of H O  (Eq. 1.13 and 1.14).

AC-OH + H+OOH“ ---------- ► AC-OOH + H20  (1.13)
AC-OOH + H 2 O2  ---------- ► AC-OH + H20  + 0 2  (1.14)

Apart from the decomposition reaction, H 2 O2  can be activated on the AC surface 

involving the formation of free radicals (Eq. 1.15). Similar to the Haber-W eiss 

reaction in the Fenton reaction, AC is considered to function as an electron-transfer 

catalyst. In such a case, AC and AC+ act as the oxidised and reduced catalyst state 

and catalyse the decomposition of organics (Eq. 1.16).

AC + H 2 0 2  ---------- ► AC+ + OH- + OH* (1.15)
AC+ + H2 0 2  ---------- ► AC + H 0 2* + H+ (1.16)

1.2.2.6 Cavitation

Cavitation is the phenomenon of ‘formation-growth-implosive collapse of gas or 

vapour-filled liquids’ occurring in milliseconds and releasing energy in small 

pockets, called ‘hotspots’, at multiple locations within the liquid stream of 

cavitational reactors (Doktycz and Suslick, 1990; Mason and Lorimer, 1988; 

Suslick, 1988; Suslick, 1990; Suslick et a l, 1990). Although cavitation, has been 

classified as: acoustic, hydrodynamic, optic and particle; only acoustic and 

hydrodynamic cavitation have been reported for inducing effective chemical
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changes in any reaction. In cavitational processes, chemical degradation of 

pollutants occurs via two pathways:

1. Free radical attack

2. Pyrolysis

This thesis mainly concentrates on the utilisation of acoustic and hydrodynamic 

cavitation, as one of the major AOPs, for degradation and disinfection studies, 

respectively; therefore the two effective cavitation types only will be discussed in 

great detail in the following sections. However, the work on phenol degradation 

with different frequency acoustic cavitation reactors and the disinfection studies by 

hydrodynamic cavitation and ozonation will be dealt as separate chapters.

1.2.2.6.1 Acoustic cavitation

Acoustic cavitation is the phenomenon where cavitation is generated by the action 

of high frequency sound waves, usually ultrasound. The activity of compression 

and rarefaction cycles of the sound waves leads to formation-growth-collapse of 

cavitational bubbles, releasing large amounts of high temperature and high pressure 

zones, termed as ‘hotspots’. In the literature, the range of frequencies reported for 

ultrasound used in degradation studies is 16 kHz-100 MHz. Based on previous 

research, if certain operating conditions are considered while designing a treatment 

technology using ultrasound, the process can be highly effective and economical for 

contaminant removal from wastewaters. The optimum operating conditions 

suggested are:

1. High ultrasonic frequencies are best suited for effective pollutant destruction, 

however continuous operation at high frequencies may lead to erosion of the 

transducers and the power input may considerably increase which may act 

as a limitation in large scale operations and make the process uneconomical 

(Francony and Petrier, 1996; Hua and Hoffmann, 1997; Hung and 

Hoffmann, 1999; Petrier et al., 1996; Petrier and Francony, 1997a, 1997b). 

Multiple transducers attached on the opposite faces and irradiating with 

multiple frequencies produces results in higher yields of transformation. 

Also, dual or triple frequency US reactors minimise the problem of erosion 

as the cavitational collapse occurs away from the transducer surface, hence
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this way multiple transducers can be placed in large volume reactors which 

can treat larger volumes of effluents (Sivakumar et a l, 2002).

2. Greater cavitational events can be achieved using ultrasonic probes with 

higher irradiating surfaces (Gogate et a l, 2001).

3. The physico-chemical properties of the liquid medium should be adjusted in 

such a way that the reactors produce cavitation easily and also generate 

cavities with lower initial size (Gogate, 2002; Gogate and Pandit, 2000).

4. Large quantities of pollutants can easily be treated with high rates at lower 

initial pollutant concentration, hence dilution factors should be considered 

before subjecting the effluent to treatment (Sivakumar and Pandit, 2001).

5. The inclusion of catalysts: TiC>2 , NiSCL, C C I 4 , Fe2 +/Fe3+, CuSCL, NaCl and 

presence of gases: air, O3, oxygen and Ar/ 0 3  mixtures, enhances the 

cavitational events by providing additional nuclei and also blocks sound 

wave propagation, thereby, reducing the energy dissipation into the system 

(Hart and Henglein, 1985; Hung and Hoffmann, 1998; Ingale and Mahajani, 

1995; Seymour and Gupta, 1997; Sivakumar and Pandit, 2002).

6 . Lower temperatures are often effective for cavitational events, therefore a 

range of 10-15 °C is preferred (Suslick e ta l, 1997).

Although sonochemical reactors have been reported to be effective for degradation 

of pollutants in laboratory scale studies, degradation of real effluents on 

large/industrial scale by sonochemical reactors still needs a large amount of 

research in terms of design strategies for scale up.

1.2.2.6.2 Hydrodynamic cavitation

Hydrodynamic cavitation is the phenomenon where cavities are generated by the 

passage of liquid through a constriction/orifice, which creates large pressure 

differentials within the moving liquid and is accompanied by a number of physical 

effects (Gogate and Pandit, 2001; Suslick et a l, 1997).

Pandit, Gogate and co-workers (Gogate, 2001; Gogate, 2002; Gogate and Pandit, 

2001; Gogate et al., 2001) have carried out in-depth research on hydrodynamic 

cavitational reactors and reported that intensities generated by hydrodynamic
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cavitation are lower than for acoustic cavitational reactors but the design offers 

much more flexibility as compared to sonochemical reactors. A variety of orifice 

plate configurations, differing in number/size/type of holes can be used to suit a 

particular application of treatment. Recently, effective and economical degradation 

and disinfection systems have been reported where hydrodynamic cavitation is used 

in conjunction with other AOPs like Fenton reactions and ozonation (Chakinala et 

al., 2007a; Chakinala et al., 2008a; Chand et al., 2007).

Some important optimisation parameters related to hydrodynamic cavitation are as 

follows (Gogate, 2002; Gogate and Pandit, 2000, 2001; Vichare et al., 2000):

1. The inlet pressure into the system.

2. Geometry of the constriction/orifice.

3. Physico-chemical property of the aqueous medium.

There are not many reports regarding the use of hydrodynamic cavitation as a 

technology in wastewater treatment, however these equipment offer higher energy 

efficiencies; more flexibility in design and have higher potential for scale up 

compared to acoustic cavitational reactors. Despite its high industrial value, only 

one commercial plant, namely CAV-OX®, introducing hydrodynamic cavitation 

along with UV/H 2 O 2  has been established by Magnum Water Technology Inc., 

California (http://www.epa.gov/QRD/SlTE/reports/540ar93520/54Qar93520.pdf) 

(Gogate and Pandit, 2004a).

Researchers suggest that more theoretical and experimental work is needed in this 

field in order to make the use of hydrodynamic cavitation a commercially feasible 

technology (Gogate and Pandit, 2004a). The use of modem sophisticated 

Computational Fluid Dynamics (CFD) to study the mean/fluctuating velocity 

components, Reynolds stresses, turbulent pressure fluctuations, etc. need to be 

investigated further. Such CFD simulations could then be used to understand the 

role of the above mentioned parameters in altering the cavity dynamics in 

hydrodynamic cavitational processes.
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Overall, pilot scale case studies have shown that the process is effective enough in 

treating a wide range of effluents containing pentachlorophenol, benzene, toluene, 

ethyl benzene, xylenes, phenols and pesticides, like atrazine, but very few studies 

report the use of hydrodynamic cavitation in treating complex mixtures of effluents 

and/or real industrial wastewaters. Conclusively, it can be said that cavitation 

technology on its own has great potential in treating toxic pollutants where the 

majority of other conventional oxidation technologies fail to do so.

1.3 AOPs used in chemical oxidation of phenol
The major part of this thesis focuses on the phenol oxidation by single and 

combined oxidation technologies. Henceforth, a review on phenol degradation by 

varieties of AOP’s is presented in Table 1.5 to focus on the research carried out in 

the past two decades and to lay the background for this novel research. 

Furthermore, the detailed information on the innovative technologies for phenol 

removal used in this study will be later discussed in separate chapter introductions.

Apart from the individual work mentioned in Table 1.5, there are some overall 

conclusions derived from different studies related to phenol oxidation by single 

and/or integrated approaches of AOPs. Photochemistry of phenol is pH dependant, 

given the acid-base equilibria in which these compounds are involved. Among the 

primary phenol photoproducts are tri-, tetra-dihydroxyphenyls, quinines and 

diphenols. The literature suggests that phenol photolysis at pH 3-8  over a wide 

light frequencies (Xe flashlamp), does not depend on the irradiation wavelength but 

on pH (Ho et al, 1996). Recently, reported phenol degradation studies suggest that, 

among various AOPs, UV/H2 O2  processes have highest rates and also phenol 

removal depends on pH alone with low rates in alkaline media (Esplugas et a l, 

2002). Recently, laser-based photocatalytic oxidation using a P-type NiO 

semiconductor catalyst was reported for efficient fast phenol removal (0-60 min) 

(Gondal et al., 2008). Almost complete sono-electrochemical destruction of phenol 

can be achieved in an aqueous medium containing 0.5 g L-1 NaCl at pH 6 within 20 

min at 25 °C. The reaction was shown to proceed via intermediate chlorinated 

phenols (Parsons, 2004).
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There are various other AOPs, which contribute towards effective phenol removal 

from water. Some of the extensively used AOPs utilised in phenol oxidation in a 

variety of reactor set-ups have been outlined in Table 1.5. Moreover, there have 

been several other AOPs which have also been suggested in the literature for 

effective phenol degradation: photocatalytic oxidation using titania-clay

composites (Menesi et al., 2008); enzyme catalysed conversion by using 

immobilised horseradish in a membrane-less electrochemical reactor (Cho et al., 

2008); use of multiwalled carbon nanotubes in CWAO (Yang et al., 2007); 

photodegradation by phthalocyanines (Kluson et al., 2008); electrochemical 

degradation using Gd-doped Ti-based Sb-SnCL anodes (Feng et al., 2008); laser- 

enhanced photocatalytic process using semiconductor catalysts (Fe2C>3, NiO, WO3 , 

TiCF) (Gondal et al., 2007); by adsorption (Ahmaruzzaman and Sharma, 2005; 

Vazquez et al., 2007); wet H2O2 catalytic oxidation with Cu-zeolite and Cu-pillared 

clay catalyst (Giordano et al., 2007); simultaneous use of O3 with silica gel and 

zeolite (Sano et al., 2007); by electrocoagulation (Ugurlu et al., 2008); use of 

combined biological and photocatalytic treatment (Suryaman et al., 2006); 

microwave-enhanced catalytic degradation over nickel oxide (Lai et al., 2006); 

oxidative decomposition by microwave irradiation in UV/H2O2 process (Han et al., 

2004); photo-Fenton oxidation in solar reactors (Will et al., 2004); solar-activated 

ozonation (Sanchez et al., 2003); ultrasound-assisted CWPO (Nikolopoulos et al., 

2006); carbon-coated anatase adsorption and decomposition (Tryba et al., 2004); 

catalytic oxidation under low temperature iron-modified cobalt oxide system 

(Christoskova et al., 2001); by soybean peroxidase treatment (Wright and Nicell, 

1999); photo-oxidation in oxygen saturated aqueous solutions by different 

sensitisers (Gerdes et ah, 1997); by homogeneous photo-oxidation in the presence 

of metals (Sykora et al., 1997); by high energy electron-beam irradiation (Lin et al., 

1995); H2 0 2 -mediated photodegradation studied by flash photolysis/HPLC 

technique (Lipczynska-Kochany, 1993).
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S. no. Reference Oxidation Process Highlights of the work

1 . (Bremner et a l ,  
2006)

The Advanced 
Fenton Process 
(AFP) (zero valent 
iron (ZVI) 
bars/H2 0 2 )

High amounts of H2 0 2 /acid/ZVI leads to extremely rapid phenol removal. 25 
min was sufficient time observed in this study to remove total phenol. The AFP 
is a novel system of generating highly reactive HO*. During the reaction, an 
unknown product, tentatively named as iron-catechol salt was found to be quite 
resistant to further oxidation, needs further research.

2 . (Chakinala et 
a l , 2007a)

The AFP 
(hydrodynamic 
cavitation (HC)/L- 
shaped ZVI 
pieces/H2 0 2 )

50-60% TOC (total organic carbon) removal after 105 min treatment time was 
observed by the modified AFP with an optimal 2000 mg L- 1  H2O2 (oxidant) 
concentration and 50 pieces of L-shaped ZVI catalyst. The oxidant 
concentration plays a major role than the catalyst in the modified AFP. HCAFP 
offers a promising technology for industrial wastewater treatment on pilot scale.

3. (Kidak and 
Ince, 2007)

US/O3/UV Order of degradation of phenol by single and combined reactions at different 
pH:
pH 2: US/UV/O3 »  O3/UV > US/O3 > US/UV > O3 > US > UV 
pH 9: US/UV/O3 > O3/UV > 0 3> US/O3 >US/UV > UV > US

4. (Silva et a l ,  
2007)

Sono-photocatalytic
(US/UV)/H20 2

system

Combined process more effective than individual sonolysis and photocatalysis. 
Process efficiency enhanced in the presence of H2O2. Ultrasound induces de­
aggregation of the catalysts, thereby increasing BET surface area of the 
catalysts, and also accelerates mass transfer of reagents on Ti0 2  catalyst and 
polish the catalyst surface. Enhanced HO* production due to sonolysis and 
H2O2 cleavage supports degradation.

5 (Wu et a l ,  
2 0 0 1 )

Photosonochemical
(UV/US)/Fe2+

TOC removal results reveal the synergistic effect of UV light and US. Fei+ 
present in aq. phenol solution enhanced the TOC removal. The rate of phenol 
degradation increased with decreasing pH and increasing dissolved oxygen. 
Intermediate product formation, catechol/benzoquinone/resorcin, indicated 
involvement of HO* in degradation mechanism.

6 . (Entezari et a l , Sonochemical Fenton like reactions were found to be more pronounced in degradation as
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2003) oxidation in new 
cylindrical reactor

compared to when H2O2 added alone. The order of reactivity for phenol 
oxidation by the combined method was 35>500>20 kHz. Thus, it can be seen 
that degradation rate is more by cylindrical reactor at lower frequency. 
Therefore, it is recommended that geometrical parameters in overall efficiency 
should be taken into account in general assessment of process. 20/500 kHz take 
200-360 min and 35 kHz take 80-240 min time to completely degrade phenol 
and its by-products, respectively.

7. (Mahamuni and 
Pandit, 2006)

US/0 3 /additives 
(NaCl, CC14)

Additives like salts and CCI4 enhance rates of phenol degradation. Pollutants, 
phenol and CCI4, are degraded simultaneously with higher rate of overall COD 
reduction. Enhanced rates can be achieved when higher amounts of additives 
used. The additives break the phenol to easily degradable products. In US/O3 

process, the degradation rate is much faster with ozonation alone.
8 . (Beltran et al., 

2003)
Heterogeneous 
catalytic ozonation

Fe, Ti and Co metal catalyst on alumina prepared by impregnation/calcination 
leads to complete TOC mineralisation in 5 h during catalytic phenol ozonation. 
C0 /AI2O3 led to fastest mineralisation rate. However, leaching of the metal is 
the biggest limitation in their use. In the AC-O 3 process, the rate of TOC 
mineralisation was same as Fe and Ti catalysts in 5 h. However, increase in 
temperature, gas concentration and mass of carbon may lead to increased TOC 
mineralisation. The reaction mechanism proceeds by the formation of HO* in 
solution, generated from adsorbed entities on the AC.

9. (Polaert et a l , 
2 0 0 2 )

Adsorption- 
oxidation process 
on activated carbon

The activated carbon used in the study acts as adsorbants in the first step and as 
oxidants in the second step of the study at moderate temperatures for treating 
highly concentrated effluents. However, the integrated system offers great 
potentials in treating diluted phenolic wastewaters. Presented studies are 
relevant for moderate flowrates, therefore much optimisation is needed for the 
high flowrate when the adsorption is still in process. In order to make this 
process industrially feasible, economical aspects should be taken into account.

Table 1.5: Review o f current research on phenol oxidation studies with single and com bined AOPs.
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1.4 Aims and objectives of this thesis
The aim of most AOPs is to produce HO» in water and the amount and types of 

generation of these free radicals is mainly dependent on the single and combined 

AOPs, e.g., the oxidation of wide range of organic compounds by HO* is 109 faster 

than O3. Once the free radicals are introduced to the system by photolysis, O3, H2O2, 

heat ultrasound, etc., a series of chain reactions is initiated which makes the system 

more complex and prediction of all the products of oxidation becomes difficult. 

Therefore, in order to understand the radical formation and associated chemistry in 

sonochemical and hydrodynamic cavitational reactors, extensively studied in the work, 

the first objective was to estimate the HO* production in these cavitational reactors.

Secondly, the potential use of zero valent metal powdered/solid catalysts (instead of 

classical iron salts) in Fenton-type reactions, termed the Advanced Fenton Process 

(AFP) (Bremner and Burgess, 2004; Namkung et a l ,  2006), which has recently been 

patented and reported in the literature for phenol oxidation, has been explored in this 

work with the novel approach of usage of types of zero valent catalysts ZVC (i.e., iron 

(ZVI) and copper (ZVCu)). Also, the use AFP has been extensively studied in 

sonochemical and silent reactions and a number of novel reaction mechanisms and 

hypotheses have been proposed.

Thirdly, the use of activated carbon cloth (ACC) in phenol adsorption-oxidation is 

explored in conjunction with oxidants such as O3 and H2O2 and variety of reactor set­

ups.

Finally, the use of hydrodynamic cavitation and ozonation were employed to study 

natural water disinfection in a newly designed Liquid Whistle Reactor (LWR) set-up.

Thus, the presented thesis mainly focuses on three D ’s: Dosimetry (Chapter 3), 

Degradation (Chapter 4-6) and Disinfection (Chapter 7). The research described 

herein may be considered interdependent.
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Specific contents/objectives of each Chapter are:

Chapter 2: General experimental

■ synthetic wastewaters for degradation and disinfection

■ laboratory scale cavitational reactor set-ups

■ analytical methods: triiodide; phenol; TOC; pH; GC-MS; UV-vis; H2O2 ; O3 ; 

bacterial plate count

Chapter 3: Dosimetry: Investigation of oxidation intensities in cavitational 

reactors

■ to study the oxidation capacity of different chloroalkanes (CH2CI2 , CHCI3, 

CHCU; 5.25 g L_1), chloroalkane concentrations and different pressures (500, 

1000, 1200, 1500 psi) in the LWR

■ to study the effect on oxidation rates of different concentrations of CH2CI2 in 

US bath

■ to study the oxidation capacity of different chloroalkanes (CH2CI2 , CHCI3, 

CHCU; 7 g L-1; 50% amplitude) and oxidation capacity of CH2CI2 (5.25 g L_1) 

under different amplitudes (25%, 50%, 75%) in an US probe reactor

■ to carry out a comparative study between US and HC reactors for oxidation 

capacities

Chapter 4: Degradation I: Phenol removal using multiple frequency US reactors

■ assess the H2O2 production in the chosen low-and high-frequency US reactors

■ optimisation of parameters for enhanced phenol degradation in the presence 

and absence of air, H 2O2, US, ZVI

■ assess the efficacy of different ZVI and ZVCu catalysts in conjunction with 

H2O2 and ultrasound (20, 300 and 520 kHz) in the process of phenol 

degradation

■ compare the efficiency of oxidants, H2O2 and O3 with the AFP for phenol 

degradation in high frequency US (300 and 520 kHz) reactors
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Chapter 5: Degradation II: Latent Remediation using the Advanced Fenton 

Process

■ to study the effect of low and high frequencies (20, 300 and 520 kHz)

■ to assess the presence and absence of oxidant (H2O2) and catalysts (ZVI and 

ZVCu)

■ to compare the effects of ZVI and ZVCF, ZVCT, ZVCP catalysts

■ to study the effects of low (0.6 g L-1) and high (5 g L-1) catalysts amounts

■ to assess the US irradiation and stirring input time (15-30 min)

■ to assess the efficacy of filtered and unfiltered catalyst LR reactions

Chapter 6: Degradation III: Investigation of activated carbon cloth and oxidants 

for phenol removal via adsorption/oxidation

■ to study the effect of reactor performances (peristaltic pumps, shaker bath and 

US bath) for ACC/oxidant systems

■ to compare ACC types and amounts (ACC-Std, ACC-Cu, ACC-Ag, ACC- 

extra)

■ to study the effect of different concentrations of hydrogen peroxide (H2O2 : 

1.19,2.38 and 4.76 g L '1)

■ to explore the effect pH (3, 5.5 and 9) and temperature (20,40, 80 °C)

■ to investigate types and duration of ozone (O3) treatments (bulk and/or step­

wise ozonation)

■ to examine thermal regeneration and reuse

Chapter 7: Disinfection: Bacterial inactivation using cavitation and ozonation in 

a novel Liquid Whistle Reactor

■ to study the effect of the inlet pressure into the LWR (over a range 500-1500 

psi)

■ to assess the effect of O3  dosages (time of ozonation and flowrates)

■ to study the effect of individual technology: HC and ozonation

■ to study the effect of combined technology: HC + (single/double) ozonation

■ to assess O3 decomposition in the LWR
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Chapter 2

General experimental
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2.1 Dosimetry
Hydroxyl radical (HO*) generation in acoustic and hydrodynamic cavitational reactors 

was measured by iodide dosimeter (Chapter 3). In a typical run, 20 g L- 1  KI solution 

in distilled water (dH2 0 ) was prepared in different volumes for the various 

experimental studies. Measurement of HO* in reactors was carried out with and 

without addition of chloroalkanes, namely chloroform (CHCI3), dichloromethane 

(CH2CI2) and carbon tetrachloride (CCI4), in various concentrations. The 

effectiveness of different chloroalkanes in terms of degree of intensification achieved 

was quantified by means of I7 I3- dosimeter. The temperature was maintained constant 

at 35 ± 3 °C and 23 ± 2 °C in hydrodynamic and acoustic cavitational reactors, 

respectively. An external cooling bath with ice was used in order to maintain the 

temperatures.

2.2 Synthetic wastewaters
2.2.1 Degradation
The model pollutant phenol was chosen to create synthetic wastewater for laboratory 

scale degradation studies (Chapters 4-6). Throughout the study, concentration of the 

phenol solution was 2.5 mM prepared in dH2 0  with analytical grade phenol (Fluka). 

The degradation rates were measured by total organic carbon (TOC) analysis 

(Chapters 4-6), gas chromatography (Chapter 4) and GC-M S (Chapter 6 ). Materials 

and methods for different chapters have been discussed in detail in the experimental 

section of individual chapters.

2.2.2 Disinfection
A dominant marker of faecal coliforms, Escherichia coli was chosen as the model 

bacterium for the disinfection studies (Chapter 7). Stock cultures were maintained by 

repeated subculturing on nutrient agar (CM3; Oxoid Basingstoke, UK) at 37 °C and 

used for viable counts. It was observed that nutrient broth with a cell concentration 6  

x 107 CFU mL- 1  (on inoculation) reached the stationary phase in 9 h as shown in 

growth curve (Fig. 2.1). Therefore, standard experimental cultures were prepared by 

loop inoculation of a colony from a source plate of the E. coli on 400 mL of sterile 

nutrient broth (CM1; Oxoid Basingstoke, UK), in a 1 L conical flask and incubated

32



G enera l ex p e rim en ta l

overnight at 37 °C on an orbital shaker (GallenKamp) at a speed of 180 rpm. The 

overnight cloudy bacterial solution (400 mL) was then mixed with dlLO  (3600 mL) to 

create 4 L of synthetic wastewater for disinfection studies. The viability count for 

every treatment was carried out by preparing the plates in triplicates using the spread 

plate technique.

Figure 2.1: Standard grow th curves o f Escherichia coli.

2.3 Cavitational reactors
2.3.1 Liquid Whistle Reactor
The Liquid Whistle Reactor (LWR) used, for dosimetry (Chapter 3) and disinfection 

(Chapter 7) studies was a Benchtop Sonolator™ 2000 (Sonic Corp., CT, USA) 

comprising a Model A CIP Sonolator™; a plunger pump, a 2 HP motor, an Hitachi 

VFD inverter and a controller unit (www.sonicmixing.com). The LWR consists of a 

feed vessel tank with a 5 L capacity, a plunger pump (Giant Industries, Model P220A, 

USA) with a power consumption of 3.6 kW and having a speed of 1750 rpm and a
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mixing chamber comprising of an orifice (orifice area, 0 . 0 0 1 2  sq. in.) and a blade 

(length, 26.8 mm; width, 22.2 mm; thickness, 1.5 mm). The pump has a maximum 

discharge pressure of up to 2000 psi. An acoustic intensity meter is connected to the 

mixing chamber to give a measure of the level of cavitation inside the chamber. The 

distance between the orifice and blade is adjustable and the backpressure valve 

connected at the end of the mixing chamber influences the inlet pressure into the 

system (Fig. 2.2).

The LWR is an in-line homogenizing device that employs high pressures and 

ultrasonic cavitational energy generated within the liquid stream by a physical 

phenomenon known as “jet-edge tone” (www.sonicmixing.com). A stream of process 

liquid is subjected to extreme pressure and shear when forced to pass through a 

specially engineered lip-shaped orifice and blade and the jet of liquid sheds vortices 

perpendicular to the original flow vector which creates oscillations similar to that 

generated due to ultrasound within the liquid, causing the fluid to cavitate.

F ig u re  2 .2 : S ch em a tic  r e p re s e n ta t io n  o f  (a) th e  L W R  a n d  (b ) a n  e x p a n d e d  v iew  o f  th e  
a r r a n g e m e n t  o f  o r if ic e  a n d  b la d e  (w w w .so n ic m ix in g .co m ) : 1, P lu n g e r  p u m p ; 2 , P L C  b o a r d ;  3 , 
P re s s u re  g u ag e  (d ig ita l) ; 4 , P re s s u re  g u a g e  (a n a lo g ); 5, O rif ic e ;  5 a , O rif ic e  h ig h  p r e s s u r e  z o n e  
(e x p a n d e d  v iew ); 6 , B lad e ; 6 a , B lad e  (e x p a n d e d  v iew ); 7 , C a v ita t io n  zo n e ; 8, C o o lin g  b a th ;  9 , 
F e e d  ta n k  (5 L ).
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2.3.2 Ultrasonic reactors
2.3.2.1 Low frequency ultrasonic probe (20 kHz)

There were two different kinds of low frequency 20 kHz US reactors were used in 

various studies, Unit (i) was used at the Bogazici University, Turkey and (ii) was used 

at the University of Abertay Dundee:

i. Sono-Fenton studies were carried out in the presence of zero valent 

metal/powdered catalysts (Chapter 4) in a horn type sonicator (tip diameter 12 

mm) connected to a 20 kHz Bandelin Sonoplus HD2200 generator with a 

capacity of 180 W. The tip of the horn was submersed into the liquid from the 

top of an 80 mL cylindrical glass reactor. The cell was equipped with a water 

cooling jacket to maintain constant liquid temperature and the entire reactor 

set-up was enclosed in a sound proof box (Fig. 2.3).

ii. Dosimetry (Chapter 3) and Latent Remediation (Chapter 5) were performed in 

a commercial ultrasonic (US) processor (Cole Parmer, 400 W Model) 

equipped with a titanium probe (1 cm diameter) capable of operating either 

continuously or in a pulse mode at a fixed frequency of 20 kHz. Most of the 

experiments were carried out with the probe working in pulses, 4 s on and 2 s 

off, which allows the system to dissipate some of the heat generated by the US 

waves. The experiments were carried out at variable US power amplitudes 

(25%, 50% and 75%).

2.3.2.2 High frequency ultrasonic probes

The high frequency US reactors (300 and 520 kHz), used to study the phenol 

degradation in the presence of zero valent metals (Chapter 4) were used at the 

Bogazici University, Turkey.

2 3 2 .2 .1  300 kHz

A 300 kHz piezo-electric transducer located at the bottom of a 150 mL cell was 

connected to a generator with a maximum capacity of 25 W (UNDATIM 

ULTRASONICS). The cell was equipped with a water cooling jacket to maintain 

constant liquid temperature (Fig. 2.4).
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2.3.2.2.2 520 kHz

The 520 kHz US reactor consisted of a peizo-electric transducer mounted on a 

titanium plate at the bottom of a cylindrical Pyrex reactor (1200 mL) with a generator 

capacity of 100 W (UNDATIM ULTRASONICS). The cell was equipped with a 

water cooling jacket to maintain constant liquid temperature (Fig. 2.5).

F ig u re  2 .3 : L ow  fre q u e n c y  (20 k H z) U S  r e a c to r  (B ogaz ic i U n iv e rs ity ,  T u rk e y ) .

F ig u re  2 .4 : H ig h  f re q u e n c y  (300  k H z) U S  r e a c to r  (B ogaz ic i U n iv e rs ity ,  T u rk e y ) .
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F ig u re  2.5: H ig h  f re q u e n c y  (520 k H z) U S r e a c to r  w ith  a n  o v e r h e a d  s t i r r e r  (200 rp m )  (B o g az ic i 
U n iv e rs ity , T u rk e y ) .

2.4 Analytical methods

2.4.1 Triiodide (I3“)

The amount of triiodide (ID production in the acoustic and hydrodynamic cavitational 

reaction was determined by withdrawing 2 mL samples at set times during the reaction 

and analysed using UV-vis spectrophotometer (Jenway 6300). Samples were returned 

back to reaction vessel soon after measurement. The amount of reproduction was 

determined using the molar absorptivity at 355 nm. In the case of high absorbance, 

the samples were diluted 5 times and absorbance was measured quickly and these 

diluted samples were not returned back to the reaction vessel.

2.4.2 Phenol
2.4.2.1 Quantitative analysis

2.4.2.1.1 Total organic carbon (TOC)

The removal of organic carbon was measured using a TOC analysers: TOC-VCHS 

(Shimadzu) in Chapter 4, whereas for Chapters 5 and 6 , Model 1020A Combustion 

TOC (O.I. Analytical; furnace temperature, 680 °C; sample introduction loop volume, 

92 pL; washing reagents: 5% v/v 85% H3PO4 and reagent water (dUGO); IR signal 

> 1 0 0 0 0 ) were used.
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Prior to analysis, sample (5-10 mL) was withdrawn from the reaction vessel through a 

10 mL syringe and filtered using Whatman cellulose nitrate membrane filters 

(Schleicher and Schuell, CAT No. 7184-200; 25 mm diameter) fitted in filter holder 

(Fig. 2.6).

F ig u re  2 .6 : (a) S am p le  co llec tio n  u s in g  10 m L  sy r in g e ; s a m p le  (b ) f i l t r a t io n  u s in g  W h a tm a n  
ce llu lo se  m e m b ra n e  f i l te rs  a n d  (c) f i t te d  o n  sy r in g e  a n d  f i l te r  h o ld e r .

2.4.2.1.2 Gas Chromatography (GC)

Phenol degradation studies were also carried out using the GC analysis (Chapter 4) 

(Agilent Technologies, Model 6890N). Column specification: HP-5 5% Phenyl 

Methyl Siloxane (Aligent Cat No. 19091J-413); dimensions, 30 m (length) x 0.32 mm 

(inner diameter) x 0.25 pm (film thickness). Back detector, flame ionisation detector 

(FID); temperature, 300 °C; mode, splitless; hydrogen flow, 30 mL min-1; makeup gas 

type, Helium.

Prior to analysis a sample (1 mL) was withdrawn from the reaction and mixed with 

dichloromethane (50 pL) for 3 min in a 2 mL standard GC vial which was then placed 

on the autosampler of the GC Machine. The extracted liquid, which settled at the 

bottom of the vial, was subsequently taken up by 10 pL syringe for injection into the
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GC. A calibration curve (Fig. 2.7) was first constructed based on which actual phenol 

concentrations were estimated.

Figure 2.7: GC calibration curve for phenol analysis.

2.4.2.2 Qualitative analysis (GC-MS)

Qualitative analysis of phenol and its by-products were performed by gas 

chromatography-mass spectroscopy using a Shimadzu GC-2010 and GC-M S- 

QP2010 with autosampler (Chapter 6 ). The column was 35 m (length) x  2.5 mm 

(internal diameter) and had a 5% phenyl 95% dimethylsiloxane film coating. For 

aqueous phase analysis: column oven temperature, 40 °C; injection temperature, 240 

°C; injection mode, splitless; end time, 17 min. GC-MS was mainly used to estimate 

by-products formation on phenol oxidation (if any) using activated carbon cloth in 

aqueous medium. Therefore, for aqueous phase analysis filtered reaction sample (1 

mL) in a 2 mL standard vial, was used.
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2.4.3 Hydrogen peroxide

Hydrogen peroxide was spectrophotometrically determined by the I3 method at 351 

nm (Klassen et al., 1994). For the I3 method, solutions A and B were prepared.

■ Solution A: KI (33 g), NaOH (1 g) and ammonium molybdate tetrahydrate (0.1 

g) were diluted to 500 mL dH2 0 . The solution was stirred for 10 min to 

dissolve the molybdate and was stored in the dark to avoid oxidation.

■ Solution B: this is an aqueous buffer prepared by 10 g of K2 H P0 4  per 500 mL.

The I3 method consists of mixing equal volumes of A and B, followed by addition of

the H2 O2 experimental solution. The absorbance of the resulting solution was 

measured at 351 nm in a 1 cm cuvette. In this study, 2.5 mL of A and B each was 

mixed in a 10 mL volumetric flask and 1 mL of H 2 O2  experimental solution was added 

to the mixture and volume was made up to the mark with dH 2 0 . Hydrogen peroxide 

concentration in mg L_ 1  was measured using the equation obtained from the 

calibration curve (Fig. 2.8).

Figure 2.8: Calibration curve for hydrogen peroxide analysis.
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2.4.4 Ozone
Ozonator was used from Ozone Services (Yanco Industries Ltd.) at Bogazici 

University (Chapter 4) and ozonator Lab2B Laboratory Ozone Generator (Ozone 

Engineering CA, USA; http://www.ozone-engineering.com) at University of Abertay 

(Chapters 6  and 7). In both the ozonators, ozone was generated by the corona 

discharge method with pure oxygen as feed gas. Ozone concentrations were 

determined by the user manuals provided by companies, whereas in different reactions, 

ozone concentrations were determined by indigo method (details below).

The ozone concentration in the aqueous phase was measured using the indigo- 

trisulfonate method (Bader and Hoigne, 1981, 1982). The proportionality constant, 

which is the maximum absorbance of the indigo solution at 600 nm, is 0.42 ± 0.01 L 

cm - 1  mg- 1  giving a range of application of this method of 0.05 to 0.6 mg L-1. The 

indigo method is based on the principle that in acidic solution, potassium indigo- 

trisulfonate (C 1 6H 7 N2 O 1 1 S3 K3 ) (Riedel-de Haen) is discoloured by aqueous ozone and 

the degree of discoloration is compared to a blank solution of the dye. The decrease in 

absorbance is linear with increasing ozone concentration.

Indigo stock solution was prepared by adding dlUO (500 mL), cone, phosphoric acid 

(85%; 1 mL) and potassium indigo trisulfonate (0.770 g) to a volumetric flask and 

diluting to 1 L with dtLO. A 1:100 dilution exhibits an absorbance of 0.20 ± 0.010 

cm - 1  at 600 nm and this stock solution is stable for about 4 months when stored in the 

dark (Bader and Hoigne, 1981, 1982).

The working solution was made up immediately before use by dilution of 25 mL of 

the above indigo stock solution to 250 mL with dH2 0  containing 2.5 g of analytical 

grade sodium phosphate monobasic monohydrate (ACS Reagent 98-102% ; Sigma- 

Aldrich) and 1.75 mL of analytical grade 85% H 3PO4.

In the actual method of analysis, two volumetric flasks (50 mL) were taken and 5 mL 

of working solution was introduced into each. One flask was then filled with ozone- 

free water and the other with 3 mL of the ozone sample and then filled to the mark 

with dH2 0 . The ozone sample was introduced by immersing the pipette to the bottom
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of the flask and gently shaking so that no ozone degassing occurred. The difference in 

absorption of light at 600 nm between the blank and sample was measured, within 4 h, 

using a UV-vis spectrophotometer (Perkin-Elmer Lambda 2) and the ozone 

concentration was then determined using Eq. 2.1:

Co3 = (AA-VT)/(f-b-V) (2 . 1)

where Co3 is concentration of ozone in mg L l; AA, the difference in absorbance;/ =

0.42 (corresponding to the absorption coefficient for aqueous ozone); b, path length (4 

cm); Vt and V, the total volume (50 mL) and volume of sample added (3 mL), 

respectively.

2.4.5 Microorganism identification
Prior to the disinfection studies, the bacteria to be used for all the experiments was 

confirmed by carrying out the API 20 E test on the subcultures of E. coli NCIMB 

10000 obtained from National Collection of Industrial, Food and Marine Bacteria 

(Aberdeen, UK). Using the API 20 E Test, it was found the bacteria consisted E. coli.

2.4.6 Viable count
The bacterial numbers in this study were determined using the viable plate count 

method and spectrophotometric (420 nm) (turbidimetric) analysis methods were 

employed. Although the two methods are somewhat similar in the results they yield, 

there are distinct differences. For example, the standard plate count method is an 

indirect measurement of cell density and reveals information related only to live 

bacteria. The spectrophotometric analysis is based on turbidity and indirectly 

measures all bacteria (cell biomass), dead or alive. The standard plate count method 

used in the study to estimate bacterial killing due to hydrodynamic cavitation and/or 

ozonation (Chapter 7), employed diluting a sample with sterile saline diluent until the 

bacteria are dilute enough to count accurately. That is, the final plates in the series 

should have between 30 and 300 colonies. Fewer than 30 colonies are not acceptable 

for statistical reasons and more than 300 colonies on a plate are likely to produce
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colonies too close to each other to be distinguished as distinct colony-forming units 

(CFUs). The assumption is that each viable bacterial cell is separate from all others 

and will develop into a single discrete colony. Thus, the number of colonies should 

give the number of bacteria that can grow under the incubation conditions (37 °C) 

employed. A wide series of dilutions (e.g., 10- 2  to 10“10) were plated because the 

exact number of bacteria was usually unknown. Greater accuracy was achieved by 

plating duplicates or triplicates of each dilution. After 24 h incubation period, the 30- 

300 CFU plates were separated and surviving bacterial colonies were carefully 

counted by placing the plate on a colony counter. The percentage disinfection was 

calculated as described in Eq. 2.2.

percentage disinfection = log ((No~N)/N) x 100 (2.2)

where, No represent initial microbial count and N  represent microbial count at any 

given time.

2.4.7 Power measurement
Approximate power measurements in the US reactors were carried out without any 

cooling system and measuring the temperature rise on irradiation for a specific time 

period (AT/At). The slope of the graph (time vs temperature) was used in Eq. 2.3 to 

calculate power (Watts) dissipation in US reactors. The power (Q) was calculated 

using formula shown in Eq. 2.3:

Q = cm (AT/At) (2.3)

where, m is mass of water (g); c is specific heat of water (4.186 joule g- 1  °C_1); AT is 

change in temperature (°C) and At change in time (s). Unit is Watt (W). The values 

obtained in watts were divided by the volume of the reactant used, which finally gives 

the final power output (heat dissipation) in Watt per millilitre (W mL_1).
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2.4.8 Toxicity analysis
Toxicity evaluation was carried out on some samples (in Chapter 5) by Dr. Andreas 

Tiehm’s team at Karlsruhe University, Germany. They determined the toxicity 

through (i) the bioluminescence test and (ii) by monitoring biological oxygen 

consumption of sonicated samples, (i) The bioluminescence test was performed with 

Vibrio fisheri according to the European standard procedure EN ISO 11348. The 

marine bacterium V. fisheri emits light during physiological activity. A decreasing 

light intensity is correlated with an increasing toxicity of the sample tested, (ii) In 

order to study the biodegradability of the sonicated samples, mineral salts suitable for 

microbial growth were added and the pH was adjusted to 7.0. Inoculation was done 

with activated sludge obtained from a municipal waste water treatment plant, and 

biological degradation was monitored in a respirometer at 20 °C. Toxicity of the 

sonicated samples was measured by diluting the samples. The dilution factor resulting 

in a 20% and 50% reduction (EC20 and EC50) of bioluminescence was determined. 

A higher EC20 or EC50 corresponds to a lower toxicity (Tiehm and Neis, 2005).

2.4.9 Statistical analysis
All experiments were performed in duplicates and/or triplicates and the average results 

were recorded. Standard deviation of the data points from the mean was also 

calculated. Multiple analysis of variance (MANOVA) was performed for multiple 

comparisons. P-values <0.05 were considered significant. MANOVA was carried out 

using MINITAB 15 software.

2.4.10 Cost and energy consumption analysis
This study is presented as an Appendix A and attached at the back of the thesis. This 

includes the formula, calucations and estimated cost and energy used in the 

cavitational reactors while carrying out Dosimetry, Degradation and Disinfection 

studies. The cost is estimated in the form of cost per unit volume (£/L) and cost per 

unit generation/reduction/Logio reduction presented as £/HO» generation, £/g TOC 

reduction and £/Logio reduction, respectively.
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Chapter 3

Dosimetry: Investigation of oxidation 

intensities in cavitational reactors

Published paper (Appendix B)

C hak ina la , A .G ., G ogate , P .R ., C hand , R ., B rem ner, D .H ., M o lina , R. and  B u rg ess, A .E . 2008 . 

In tensifica tion  o f  ox idation  capacity  u sin g  ch lo ro a lk an es  as add itives  in  h y d ro d y n am ic  an d  acoustic  

cav ita tion  reactors. U ltrasonics Sonocliem is try . 15(3): p p .164-170.

Platform  presented paper: UK  N ational C onference

C hand , R . (1 8 -2 0 th  A pril 2007). E n h an ced  o x ida tion  using  h a lo a lk an es  a s  add itiv es in  h y d ro d y n am ic  

and acoustic  cav ita tiona l reactors. 8 th  IW A  U K  Young W ater P ro fe ss io n a l C on ference . U n iv ersity  o f  

Surrey , G uild fo rd , England.
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3.1 Introduction
Hydroxyl radicals (H O ) are the most potent oxidants that control virtually all AOPs 

currently applied in wastewater technologies. HO* are produced in-processes such as:

■ photolysis of hydrogen peroxide (H2 O2 ), aqueous chlorine, nitrate, nitrite or 

dissolved aqueous iron (III) ions

■ Fenton reactions or by ionising radiation

■ decomposition of aqueous ozone by radical type chain reactions

Aqueous HO* is non-selective and reacts with most organic and inorganic solutes with 

very high rate constants. In natural water and wastewater, they are consumed mostly 

through competitive reactions with a variety of natural organic matter, bicarbonate, 

carbonate, bromide and, even by, H2 O2  (Hoigne, 1997). Organic radicals formed by 

any of these reactions may add a dissolved oxygen molecule to form peroxy type 

intermediates. These react further to form hydroperoxyl radicals, H2 O 2  and a series of 

different peroxides, aldehydes, acids, etc., thereby enhancing the oxidation rates and 

degradation of organic molecules (Von Sonntag and Schuchmann, 1991). In natural 

waters and most drinking waters, HO* are consumed with a rate constant of about 105 

s '1, i.e., the mean lifetime is only about 10 gs. Hoigne (1997) also explained the 

reaction kinetics through which the HO* can oxidise inorganic or organic compounds 

(Scheme 3.1), however the formation of the final oxidation products will depend on 

many different parameters.

Schem e 3.1: H ydroxyl radical initiated chains of reactions (H oigne, 1997).
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Several methods such as iodimetry (Weissler et al., 1950); ESR spin trapping 

(Christman et al., 1987); Fricke dosimeter (Miller, 1950; Price and Lenz, 1993), 

terphthalic acid dosimeter (Anbar et al., 1966; Barreto et al., 1994; Brandenburg and 

Moll, 1984; Mason et al., 1994; Mclean and Mortimer, 1988; Mishin and Thomas, 

2004; Price et al., 1997), salicylic acid dosimeter (Blandini et al., 1999; Chakinala et 

al., 2007b; Floyd et al., 1986; Luo and Lehotay, 1997; Teismann and Ferger, 2000), 

electrochemical and fluorescence detection (Liu, 1993; Mccabe et al., 1997) have been 

proposed in order to monitor the production of HO» in aqueous media. The most 

generally used method for the estimation of H2 O2  is by iodimetry, whereas ESR Spin, 

Fricke and terephthalate ion dosimeter is normally used for the estimation of the 

radical species themselves (Mason et al., 1994). Moreover, in recent decades, a 

number of fluorescent probes such as p-chlorobenzoic aci (pCBA) (Sanchez-Polo et 

al., 2005b) and coumarin (Louit et al., 2005) have been used to monitor the HO* in 

various reactions involving ozone, activated carbon and radiolysis. Other recent 

techniques involves radical measurement by novel chemiluminescence method (Hu et 

al., 2008).

Research has been carried on the use of various dosimeters in the measurement of 

HO* generation in different sonochemical reactors and different reaction schemes had 

been proposed in the literature and presented in this study with the help of schemes 

taken from various research reports: terephthalic acid (Scheme 3.2) and Fricke

(Fe2 +/Fe3+) system (Scheme 3.3) (Mark et al., 1998; Mason et al., 1994; Price and 

Lenz, 1993) and salicylic acid dosimeter in acoustic (US) and hydrodynamic 

cavitational (HC) reactors (Arrojo et al., 2007; Chakinala et al., 2007b) (Scheme 3.4).

Schem e 3.2: M echanism  o f the form ation o f 2-hydroxyterephthalic acid (H TA) from  oxidation  o f  
terephthalic acid (Price and Lenz, 1993).
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OH* + Fe2+ + H+-------- H20  + Fe3+
H2 0 2  + Fe2+ + H+------ -► H20  + Fe3+ + H O
H* + 0 2 --------► H 0 2*
H 0 2» + Fe2+ + H+------—► H2 0 2  + Fe3+

Schem e 3.3: Reaction m echanism s in Fricke (Fe2+/F e3+) dosim eter (M ark e ta l ., 1998).

Schem e 3.4: M echanism  o f the form ation o f 2,3- and 2,5-dihydroxybenzoic acid  from  oxidation o f  
salicylic acid (Chakinala e ta l . ,  2007b).

Ultrasonic irradiation in water forms HO» and H* as a result of high energies 

generated due to cavitational collapse and the number of these radicals depends on the 

cavitational energy of the system (Eq. 3.1-3.4) (Weissler, 1948).

H ,0 -------- ►H* + HO* (3.1)
H* + 0 2--------►H02* (3.2)
h o 2* + h o 2*--------►h 2o 2 + 0 2 (3.3)
HO* + HO*--------►H20 2 (3.4)

Cavities formed upon sonication of the liquid, oscillate in the sonic field and can reach 

very high temperatures during the compression phase or cavitational collapse as a 

result of which the dissolved gases, volatile material and water vapour may suffer 

thermal decomposition, Eq. 3.1, 3.5 and 3.6.

H 2 0 -  
H* + H.O

-► O + H,
H2 + H O

(3.5)
(3.6)
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It has been observed that among the water radicals in the solution, i.e., H* and HO*, 

HO* dominate over the H atoms (Hart and Henglein, 1985). This is attributed to the 

reaction of the hot H atoms with water vapour in the gaseous phase, which is an 

endothermic reaction. Due to cavitational activity, the water molecules in the 

cavitating bubble reacts with the originally formed H atoms and assumed to be 

converted to HO* (Eq. 3.6) (Hart and Henglein, 1986b) which participate in the 

reacting medium.

Due to limitations on the use of ultrasound on an industrial scale, hydrodynamic 

cavitation (HC) has been investigated as an alternative for organic pollutant 

degradation in variety of wastewaters. In HC, a liquid (usually water) is forced to pass 

through a small constriction with high velocities leading to HO* formation (Suslick et 

al., 1997). Detailed information on the use of HC reactors and its ability to generate 

HO* and simultaneously degrade/disinfect wastewaters has been studied by Arrojo, 

Pandit, Bremner and co-workers (Arrojo et al., 2007a; Arrojo et al., 2007b; Bremner 

et al., 2008; Chakinala et al., 2007a; Chakinala et al., 2008a; Chakinala et al., 2008b; 

Gogate, 2001; Gogate, 2002; Gogate and Pandit, 2000; Gogate and Pandit, 2005; 

Gogate et al., 2001; Jyoti and Pandit, 2003; Pandit et al., 2005; Save et al., 1997; 

Senthil Kumar et al., 2000; Sivakumar and Pandit, 2002; Suslick et al., 1997; Vichare 

et al., 2 0 0 0 )

Chloroalkanes, mainly carbon tetrachloride, have been found to enhance the efficacy 

of both US and HC when the controlling mechanism is free radical attack (Chendke 

and Fogler, 1983; Mahamuni and Pandit, 2006; Parke and Taylor, 1956; Wang et al., 

2007; Weissler et al., 1950; Zheng et al., 2005). Chendke and Fogler (1983) 

discovered that the sonoluminescence intensity was found to increase linearly with 

increasing percentage saturation of C C I4  in water. Similarly Mahamuni and Pandit 

(2006) reported that the use of simple additives such as salt and C C I4  acted as process 

intensifying parameters, thereby reducing operational time and cost. Reports also 

addressed that oxidation due to ultrasonic waves increased linearly with time of 

irradiation in the solutions: O2 -H2 O, O2 -KI-H2 O, air-K I-CCU -^O, Ar-H 2 0 , N 2 -H2 O, 

while for the first three, the rate of oxidation increased linearly with both ultrasonic 

power and the intensity of sonoluminescence (Parke and Taylor, 1956). Presence of
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C C I4  and perflurohexane as additives have also been found to be useful in improving 

pollutant degradation efficiency or improving synthetic processes that rely on HO* as 

a key intermediate (Zheng et al., 2005). However, considering the toxicity and 

carcinogenicity of C C I4 , this study demonstrates the use of less toxic chloroalkanes 

and its comparison with C C I4  in cavitational reactors.

As described above, over the decades various methods have been adapted to monitor 

the HO* in aqueous media however iodimetry has gained the most interest in indirect

estimation of HO* by monitoring triiodide (I3 ) production from potassium iodide

oxidation. Likewise, in this study iodimetry and terephthalic acid dosimeter has been 

adopted as tools to determine the oxidation intensities in cavitational reactors. The 

effect of different chloroalkanes (chloroform (CHCI3), dichloromethane(CH2Cl2) and 

carbon tetrachloride (CCI4)) on KI oxidation in cavitational reactors has been 

investigated, and simultaneously a variety of reaction mechanisms have been proposed 

with respect to KI oxidation due to the presence of chloroalkanes in US (ultrasonic 

bath and probe) and HC (Liquid Whistle Reactor; LWR) reactors at different 

amplitudes (25%, 50% and 75%) and pressures (500, 1000, 1200 and 1500 psi), 

respectively. The scope of this study has been listed below.

Hence, the main objectives of the study were as follows:

■ to study the oxidation capacity of different chloroalkanes (CH2 CL, CHCI3 , 

CHCI4 ; 5.25 g L-1), chloroalkane concentrations and different pressures (500, 

1000, 1200, 1500 psi) in the LWR

■ to study the effect on oxidation rates of different concentrations of CH 2 CL in 

US bath

■ to study the oxidation capacity of different chloroalkanes (C H 2 C L , C H C I3 ,  

C H C L ;  7 g L_1; 50% amplitude) and oxidation capacity of C H 2 C L  (5.25 g L-1) 

under different amplitudes (25%, 50%, 75%) in an US probe reactor

■ to carry out a comparative study between US and HC reactors for oxidation 

capacities
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3.2 Experimental
3.2.1 Hydrodynamic cavitation (HC)
3.2.1.1 Liquid Whistle Reactor (LWR)

The LWR has a feed tank capacity of 5 L, therefore 4 L of KI solution (20 g L-1) was 

prepared in distilled water (dtLO) and pumped through the orifice at selected 

pressures. The pressures chosen for the study were 500, 1000, 1200 and 1500 psi. 

The additives, CILCL, CHCI3 and CCI4  were used for the study in concentrations of

5.25 g L-1. However, for the comparative study at 1500 psi, high and low 

concentrations of additives (CH2 CL, 7g L- 1  and CHCI3 , 1.75 g L_1) were selected. In 

each 90 min reaction time, aliquots (2 mL) were withdrawn every 10 min and the rate

of I3 production was determined using a UV-vis spectrophotometer at 355 nm.

Temperatures of 35 ± 3 °C were maintained using an external cooling water/ice bath. 

Reported results are average values of triplicates and the experimental error was in the 

range of ±5%.

3.2.2 Acoustic cavitation (US)
3.2.2.1 Ultrasonic bath

Experiments were carried out using a commercial US bath (Kerry Ultrasonics Ltd., 

England) capable of operating at a fixed frequency of 38 kHz. In the present work, 

experiments were carried out in 300 mL glass beaker, immersed partially in the US 

bath containing cold water and ice mixture as a cooling unit and maintaining a 

constant temperature of 23 ± 2 °C. The reaction solution in the glass beaker contained 

200 mL KI (20 g L-1) solution. Only dichloromethane (CH2 CI2 ) at different 

concentrations (1.4-7 g L-1) was used as an additive for the study and results were 

compared with reactions carried out without additives. In a reaction time of 70 min 

for each experiment, aliquots of 2 mL were withdrawn every 10 min and I3-  

concentrations were determined using UV-vis at 355 nm. Results produced are the 

average values of experiments carried out in triplicates and the errors were in the 

range of ±5%.
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3.2.2.2 Ultrasonic probe

Experiments were carried out using a commercial US probe (Cole Parmer) capable of 

operating at a fixed frequency of 20 kHz. In the present work, experiments were 

carried out in 300 mL glass beaker containing 200 mL KI (20 g L-1) solution. A 

temperature of 23 ± 2 °C was maintained throughout the reaction with the help of ice. 

Different chloroalkanes, i.e., dichloromethane (CH2 CI2 ); chloroform (CHCI3 ) and 

carbon tetrachloride (CCI4 ) were used as additives in different concentrations (1.4-7 g 

L-1) at three different amplitudes (25%, 50% and 75%) and results were compared 

with reactions containing no additives. In a reaction time of 70 min, aliquots of 2 mL 

were withdrawn every 10 min and 1 3 “ concentrations (jiM) were analysed using U V - 

vis at 355 nm. Results reported are average values of triplicate experiments and the 

errors were in the range of ±5%.

3.3 Results and discussion
In wastewater treatment the destruction of volatile organic compounds can be 

considered to occur inside the cavitating bubble which acts as a micro-reactor. The 

cavities may also be considered to be a source of H*, HO*, HOO* and H 2 O2  (Eq. 3 .1- 

3.4), which further reacts with toxic pollutants and enhances degradation rates in the 

bulk of the solution (Riesz et al., 1985; Riesz and Kondo, 1992; Sehgal and Wang, 

1981). The process of pollutant degradation and oxidant generation is further 

enhanced by the addition of chlorinated compounds, e.g., CCI4 and CHCI3 (Korn et al., 

2004); NaCl and CCI4 (Mahamuni and Pandit, 2006) and related reaction mechanisms

had been proposed showing pollutant (phenol) degradation (Eq. 3.1 and 3.7-3.13).

CC14 --------► Cl* + CC13* (3.7)
CC13* + C l*--------► **CC12 + Cl2  (3.8)
CC13* + CC13* --------► C2 C16  (3.9)
•*CC12  + **CC12 --------► C2 CI4  (3.1 0 )
Phenol + C l*--------► o-Chlorophenol and p-Chlorophenol (3.11)
o-Chlorophenol and p-Chlorophenol + H O *-------► Dihydroxybenzenes (3.12)
Dihydroxybenzenes + H O *--------► Small organic acids-------- ► CO2  + H20(3.13)

In a separate study the effect of CCI4 and other salts, like MgCL, have also been 

studied using I3 production from aqueous Nal solution, instead of KI solution, in the 

presence of high frequency ultrasonic reactors (1 MHz) (Gutierrez et al., 1995) and it
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was reported that in the absence of CCI4 , the yield was not affected upto 1 M, 

however, with higher MgCL concentrations, the 1 3“ yields rapidly decreased owing to 

the increased viscosity of the solution. The above studies reveal that much of the 

research involves CCI4  as an additive for enhancing radical generation and pollutant 

removal, however due to its toxicity, it is important to use an optimum concentration 

which is degraded on reaction completion. Consequently, the use of other additives 

such as CHCI3  and CH2 CI2  has been investigated in this study. Literature suggests 

that addition of chloroalkanes (Hua and Hoffmann, 1996; Rajan et al., 1998) enhances 

the radical generation through its own degradation under cavitating conditions to 

generate Cl* which then participates in the process of pollutant removal. The Cl* 

undergoes a series of recombination reactions as a result of which there are additional 

oxidising agents such as CL and HOC1 produced which take part in the process of 

oxidation (Rajan et al, 1998). These supplementary oxidising agents, are supposedly 

more stable than the free radicals hence their contribution to the process of oxidation 

is greater. Possible reaction mechanisms taking place due to the action of 

chloroalkanes under cavitating conditions and responsible for KI oxidation has been 

proposed as follows (Eq. 3.7, 3.14-3.21) (Chakinala et al., 2008b):

CC14 ------- >  Cl* + *CC13 (3.7)
CHC13 — —► Cl* + *CHC12 (3.14)
CH2CL — — ► Cl* + CH2C1 (3.15)
CC14 + Cl* --------► Cl2 + *CC13 (3.16)
CL + H2 0 -------- ► HOC1 + HC1 (3.17)
r  + ci* —— ► I* + Cl" (3.18)
c r+ c r - ----- ►CL (3.19)
i* + i* — —► L (3.20)
i2 + r  — ► L (3.21)

The reactions in Eq. 3.7 and 3.14-3.17 are initiation reactions which contribute 

additional oxidising agents to the system, however Rajan et al. (1998) discussed 

detailed reactions mechanisms involving KI oxidation in the presence of CCI4 and 

reported that the sonolysis of KI solution containing CCI4 acts as a separate phase 

resulting in the formation of L, revealing characteristics different from those observed 

when KI solution was sonicated alone. The reports also accounted that the addition of 

CCI4, enhanced the rate by two orders of magnitude and the rate became independent
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of KI concentration, the effect of gas atmosphere was reported to be less pronounced 

and the rate was time-dependent. Raj an also explained that the significant increase in 

the oxidation rate was found to be due to release of CL, Cl and HOC1 which acted as 

separate source of reactants to yield I2  and all these quantitatively reacted in the 

reactor with KI, turning the rate independent of KI concentration. From the above 

reactions, it was confirmed that ultrasonication of aqueous KI solution is known to 

yield L due to reaction of iodide ions with H O , which in turn are generated due to 

cavitation. Based on this conceptual framework, a model has also been developed to 

predict the rate of iodine formation for KI solutions of various concentrations under 

different gas atmospheres (Naidu et al., 1994). Naidu explained this with the help of 

the model following the growth and collapse of a gas-vapour cavity using the 

Rayleigh-Plesset bubble dynamics equation. His explanation suggests that the bubble 

is assumed to behave isothermally during its growth phase and a part of the collapse 

phase. Thereafter, it is assumed to collapse adiabatically, yielding high temperatures 

and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of 

collapse phase. The contents of the bubble are assumed to mix with the liquid, and the 

reactor contents are assumed to be well stirred. The model was verified by conducting 

experiments with KI solutions of different concentrations and using different gas 

atmospheres.

3.3.1 Liquid Whistle Reactor
The capacity of a LWR to generate oxidising radicals in the presence of CH 2 CI2  was 

studied at different pressures (500, 1000, 1200 and 1500 psi), however initial studies 

at the highest pressure of 1500 psi and no addition of chloroalkanes, showed no 

oxidation of I~ to 1 3 ". This can be attributed to the fact that 1500 psi in the LWR is an 

insufficient a pressure for generating enough HO* required for KI oxidation. Suslick 

et al. (1997) reported that no liberation of iodine was observed below -2200 psi even 

in CCI4  saturated bulk solution which means there has to be minimum intensity of 

cavitation for the onset of oxidation. However, Pandit and co-workers reported a high 

degree of cavitation at low pressures of 14.5-101.5 psi, using a multiple orifice plate 

with an advanced by-pass flow system in their HC reactor set-up. They postulated that 

the high flowrates induced increased cavitational activity leading to higher contact of 

the bulk liquid with the cavitating bubbles and contributing towards enhanced
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oxidation (Gogate et al., 2001; Senthil Kumar et al., 2000; Vichare et al., 2000). In 

the present LWR set-up, no by-pass flow line was constructed which could be a reason 

for reduced diffusion and mixing rates and hampered the rates of oxidation of KI in 

the absence of chloroalkanes. This study suggests that the design of HC reactors is 

crucial in achieving high rates of oxidation/degradation and also minimisation of 

energy consumption and cost of operation, e.g., by-pass flow and use of multiple 

orifice plates allowed low pressure inputs to achieve a high degree of oxidation.

The rates of KI oxidation in the presence of CH2 CI2  at different pressures showed a 

trend of increased oxidation capacity with increasing pressure (Fig. 3.1). Although the 

extent of oxidation seen at 500 psi was much lower than that of 1500 psi the study 

confirms that addition of CH2 CI2  in cavitating conditions has the capacity to enhance 

overall oxidation rates by generating HO» and other additional chlorinated oxidising 

species. Thus, the first objective, in this study, of introducing a less toxic 

chloroalkane (CH 2CI2), other than C C I4 , for enhancing oxidation rates proved to be 

successful as the amount of I f  production increased with increasing pressures.

Figure 3.1: Effect o f CH2C12 (5.25 g L x) on the oxidation o f  I~ to I3 in  the L W R  at d ifferent 
pressures (5 0 0 ,1 0 0 0 ,1 2 0 0  and 1500 psi). Experim ental conditions: reaction volum e, 4 L; K I, 20 g 
L-1; tem perature, 35 ± 3°C.
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High rates of oxidation at 1500 psi can directly be contributed to high rates of 

cavitational events that occur at this pressure and leads to formation of more H O , as 

well as formation of additional oxidants such as Cl*, CI2 , HOC1. Thus, all the 

oxidising species formed in the bulk solution through different sources intensifies the 

oxidation of T  to I3- . Moreover, higher rates of oxidation were observed during the 

first 1 0  min of the experiment because of the presence of gases which gradually 

degassed due to the cavitational activity. Also, at high pressures, large amounts of 

bubble formation and high temperatures and pressures dissociate the water and 

chloroalkanes in the bulk medium leading to the release of the radical species required 

for oxidation. The flowrate at different pressures affects the diffusion and mixing 

rates, thus high flowrates at 1500 psi (5.4 L min-1) increases the number of passes 

around the cavitation zone, whereas lower pressures 500, 1000 and 1200 psi and their 

respective flowrates, 3.5, 4.7 and 4.9 L min-1, have a milder effect on the mixing rates. 

Hence, contact of the radical species with the bulk solution is lowered thereby 

reducing oxidation rates; the rate of oxidation was 8  times higher in case of 1500 psi 

as compared to 500 psi

In a separate study, the effect of other chloroalkanes, i.e., C C I4  and C H C I3  were 

compared with CH 2CI2, under similar concentration (5.25 g L-1) and pressure (1500 

psi) conditions in the LWR (Fig. 3.2) The high rates of oxidation due to C C I4  under 

similar concentration and pressure conditions in the LWR can be attributed directly to 

the availability of Cl* rather than HO* because at this pressure KI oxidation is 

supported by the same amount of HO* generated due to H C , however the dissimilarity 

in the amount of chlorine molecules among the chlorinated compounds used is the 

only factor accounting for the higher amount of additional free radicals available for 

oxidation in case of C C I4  over C H C I3  and CH 2CI2. Therefore, the rate of I3-  

production in case of C C I4  is 2 and 6  times higher than the C H C I3  and or C H 2C I2,  

respectively.
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1.2

0.97

_  0.8C

CH2CI2 CHCI3 CCI4

F ig u re  3 .2: C o m p a ra tiv e  s tu d y  o f  d if fe re n t  c h lo ro a lk a n e s  (C H 2C12, C H C I 3, CC14; 5 .25  g  L  1) o n  
th e  o x id a tio n  o f I- to  F f  in  th e  L W R  a t  1500 psi. E x p e r im e n ta l  c o n d itio n s :  r e a c t io n  v o lu m e , 4 L ; 
K I , 20 g L _1; te m p e r a tu re ,  35 ±  3°C .

Use of the chosen chlorinated additives for this study is subject to environmental 

regulations in different countries. The study clearly shows that high rates of oxidation 

could be attained with CCI4 but in the UK, it is considered to be a priority toxic 

pollutant and its usage is not permitted, therefore for our purposes, the use of less toxic 

additives such as CfUCT could be a possible alternative for industrial purposes. 

However, as suggested earlier, advanced design of the HC reactors could also help in 

achieving higher oxidation rates (Senthil Kumar et  cil, 2000). This would also 

minimise toxic chemical usage, operation cost and energy consumption in large scale 

operations.

As the above results reveal that CCI4 at a concentration of 5.25 g L" 1 lead to high rates 

of oxidation as compared to the other two additives, higher concentrations of CH2CI2 

(7 g L_1) were investigated to determine if a similar degree of oxidation as CCI4 could 

be achieved. Also, low concentrations of CHCT (1.75 g L_1) were compared with

5.25 g L 1 CHCI3 to study the impact of the chosen amounts of additives on oxidation 

efficiencies (Fig. 3.3). Results showed that CH2CI2 used in concentrations 5.25 and 7 

g L 1 had no difference on the I3 production rates which directly refers to the amount 

of availability of Cl*. However, even lower concentrations of CHCI3 (1.75 g L 1) lead
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to increased r  oxidation but after 30 min of reaction time, the reaction stopped 

probably due to exhaustion of Cl* desired for oxidation, which also indicates that 

additives degrade during the process of oxidation. Thus, concentrations of additives 

should be adjusted in such a way that it operates the dual mechanism of optimum 

oxidation and self-degradation, so that the treated effluent contains no residual 

chloroalkanes. When the above results were compared with C H C I3  in 5.25 g L- 1  

concentration, the oxidation rates increased continuously probably due to availability 

of enough Cl* needed to maintain the continuity of r  oxidation to 1 3 “ in the specified 

reaction time.
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Figure 3.3: C om parative study of effect o f different am ounts o f  chloroalkanes (CHCI3, 1.75 and  
5.25 g Lf1; CH2C12, 5.25 and 7 g Lf1) on the oxidation o f  I-  to I3“ in  the LW R  at 1500 psi. 
Experim ental conditions: reaction volum e, 4 L; K I, 20 g LT1; tem perature, 35 ± 3°C.

3.3.2 The ultrasonic bath
A US bath operating at 38 kHz inputs much less power compared to the LWR and/or 

US probe. Since the ultrasonic irradiations are not in direct contact with the reaction 

liquid, there is a reduced potential for cavitation and hence oxidation. However, 

studies carried out with US bath with different amounts of CH 2 CI2  (1.4-7 g L-1) 

showed similar results to the LWR for similar reasons as discussed above in that 

higher loadings of the chlorinated compound does not increase the rate of I3-
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production (Fig. 3.4). Results also reveal that higher concentrations may lead to a 

decrease in I f  production; with increasing concentrations, the rate of FT production 

decreased from 0.35 pM min 1 to 0.22 pM min-1.
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F ig u re  3 .4 : C o m p a ra tiv e  s tu d y  o f  e ffec t o f  d if fe re n t  a m o u n ts  o f  C H 2C12 (1 .4 -7  g  L -1) o n  th e  
o x id a tio n  o f  I- to  I 3~ in  th e  U S b a th . E x p e r im e n ta l  co n d itio n s : r e a c t io n  v o lu m e , 200  m L ; K I, 20  g 
L -1; te m p e r a tu re ,  23 ± 2 °C.

Previous research in cavitational reactors reveals that other oxidants, e.g., FFCU, in 

optimum concentrations (not necessarily the highest concentrations) lead to enhanced 

degradation rates (Gogate and Pandit, 2004b). The reason proposed for the higher 

concentration of oxidants not increasing the oxidation rates was that the higher amount 

of unreacted FFCU itself acts as a free radical scavenger thereby reducing the reaction 

rates. The cavitational activity in the US bath is very low, which could also be one of 

the reasons of lower dissociation rates of CFFCT which contribute free radicals for F 

oxidation. Therefore, the study suggests that CFFCT could be used as a potential 

additive in oxidation reactions but its usage in optimum concentration could lead to 

enhanced degradation rates.
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3.3.3 The ultrasonic probe
3.3.3.1 Effect of US amplitudes

The US probe was operated at three different amplitudes (25%, 50% and 75%) and the 

results show that the rate of I f  production was directly proportional to the increasing 

amplitudes of the US probe. Initial studies were carried out with CH2 CI2  at the chosen 

concentrations and amplitudes and the results are shown in Fig. 3.5.

The results obtained with the US probe are very much in line with that of the LWR 

which showed that as the pressure increased in the LWR, the rate of I3- was increased 

simultaneously. Higher cavitational activities at higher frequencies and pressures 

contribute higher amounts of free radicals in cavitational reactors (Gogate and Pandit, 

2004a). Thus, higher rates of oxidation of r  could be attributed to the same fact. The 

greater rate of production of I3 - at higher amplitudes could also be the result of the 

large amount of HO* production occurring due to dissociation of water molecules. 

Simultaneously, higher temperatures and pressures occurring due to bubble collapse in 

such conditions could lead to enhanced dissociation of CH2 CI2  and generation of 

additional free radicals in the system which participates in the process of oxidation. 

However, the results seen with three different concentrations (1.4-7 g L_1) showed 

variable trends at different amplitudes, therefore all the results were compared at the 

highest chosen concentration (7 g L-1) in order to estimate the effect of the chosen 

amplitudes as shown in Fig. 3.6 which clearly shows the KI oxidation increased with 

increasing amplitudes.
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Figure 3.5: Com parative study o f effect o f  different am plitudes (25-75% ) and different 
concentration o f CH2CI2 (1 .4 -7  g LT1) on the oxidation o f  1“ to I3-  using an  U S probe. 
Experim ental conditions: reaction volum e, 200 mL; K I, 20 g L-1; tem perature, 23 ± 2 °C.
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Figure 3.6: KI dosim eter using CH2CI2 as additive to study the effect o f d ifferent am plitudes o f  
the US probe (25-75% ) on I3~ production. Experim ental conditions: reaction volum e, 200 mL; 
K I, 20 g L-1; tem perature, 23 ± 2 °C.

The phenomenon of HO* production at different amplitudes was also assessed using 

the terephthalic acid dosimeter (Scheme 3.2) and results obtained are in agreement 

with those found with the KI dosimeter, i.e., the production of free radicals increased 

with increasing amplitudes in the US probe. In this study, various other amplitudes 

such as 10%, 25%, 50%, 60% and 75% were also studied. The experimental approach 

was adapted from the publication by Mason et al. (1994) and a calibration curve was 

constructed from which the concentration of hydroxyterephthalate acid (HTA) was 

determined after measuring the fluorescence intensity. Reactions were carried out in a 

300 mL glass beaker using 200 mL of terephthalic acid (0.5 x 10- 3  mol dm-3) and 

results were obtained by measuring the fluorescence of HTA after every 10 min over 

the 60 min reaction time and, using the calibration curve (Fig. 3.7).
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Figure 3.7: Calibration line for HTA m easurem ent using the terephthalic acid  dosim eter.

F igure 3.8: The effect o f  different am plitudes o f US energy (10-75% ) on H TA  production  
corresponding to HO». Experim ental conditions: reaction volum e, 200 mL; terephthalic acid, 0.5  
x  10-3 mol dm '3; tem perature, 23 ±  2 °C.

The increase in US power that is involved in a reaction is associated with the increased 

cavitational effect in the system, which in turn produces more HO* and as a result 

greater fluorescence as more HTA is produced, i.e., the yield of HO* is directly 

proportional to the power input (Mason et al., 1994). Increasing amplitudes (10-75%) 

of the US radiation showed increase in the HTA production at different amplitudes can
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be attributed to the increasing power dissipation at higher amplitudes (Fig. 3.8). Thus, 

both the KI dosimeter and the terephthalic acid dosimeter, clearly demonstrate the 

efficiency of the US probe at different amplitudes; increasing cavitational activities at 

increasing amplitudes, with increasing power entering the reaction system, leads to 

higher oxidation intensities in sonochemical reactors. Statistical analysis (MANOVA) 

also revealed the significance of amplitudes on the intensity of oxidation in US probe 

(P = 0.00-0.01).

3.3.3.2 Effect of additive concentrations

Three different concentrations of CFFCF, CHCI3, CCI4 (1.4-7 g L-1) were chosen for 

the study and their effects on r  oxidation were examined (Fig. 3.9a). The initial rate 

of I3- production without any additive was 10 times less than the lowest concentration 

(1.4 g L-1) of CH2CI2 but higher concentrations (4.2 and 7g L-1) did not increase the 

rate of 13“ production. A similar explanation, as given in Section 3.3.2, can be 

presented here. Also, addition of additives alters the physico-chemical properties of 

the liquid thereby affecting the intensity of cavitation. In such cases, it could be a 

possibility that the concentration of CH2CI2 is higher than that of FFO in the cavitating 

bubble, which may alter the surface tension affecting the bubble cloud behaviour. 

Such activities in turn affect the key processes like collapse and coalescence, resulting 

in the overall oxidation efficiency. Because of the above reasons even higher 

concentrations of CFFCU could not replace the oxidation capacity of CCI4. However, 

previous reviews of research on similar oxidations (Gogate and Pandit, 2004a, 2004b) 

suggest that if oxidants are added stepwise, the process of oxidation continues for 

longer, since oxidants added at several stages of the reaction continuously generate 

free radicals in the reaction system and the oxidation continues. In another experiment 

in this study (not shown), addition of CH2CI2 was done in three steps without altering 

the concentration of the additive and results showed that 13“ production was higher 

(1.1 pM min-1) in the case of stepwise addition but lower (0.88 pM min-1) in case of 

addition at the start of the experiment. This clearly indicates that continuous renewal 

of Cl« required for oxidation takes place when the CH2CI2 is added in stepwise.

In the case of CHCI3, the three chosen concentrations ranging from 1.4 to 7 g L- 1  did 

not have any effect on the I3- production and the rates were noted to be 2.83, 2.95 and
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2.79 jiM min-1. A similar observation as CH 2CI2 was seen for C H C I3  in that lower 

concentrations had a significant effect on r  oxidation, however the rate of oxidation 

was elevated as compared to CH 2 CI2  due to the higher amount of chlorine atoms 

present in C H C I3 . Even if the cavitational activity at 25% amplitude was less, the 

availability of Cl* in case of C H C I3  maintains the oxidation process at all the three 

chosen concentrations.

However, with C C I4 , the observed results were completely different from the two 

additives studied earlier. In this case, the increase in concentration from 1.4 to 7 g L - 1  

lead to enhanced generation of I3 - which could be attributed to the increased amount 

of Cl* present in oxidation reactions with CC I4. Fig. 3.9b shows the rates of I3 - 

production three different concentrations (1.4-7 g L-1) of the different additives. It is 

evident from the figure, that with higher concentrations of C C I4  the rate of r  oxidation 

increases, whereas the oxidation rates remain constant in case of C H C I3  and C H 2C I2.
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Figure 3.9: (a) Com parative study o f the effect o f different concentrations (1.4, 4 .2  and 7  g L -1) o f  
additives (CH2CI2, CHCI3, CC14) on  the oxidation o f 1“ to I3-  using the US probe. E xperim ental 
conditions: reaction volum e, 200 mL; K I, 20 g L f1; tem perature, 23 ±  2 °C; US am plitude, 25% .
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Figure 3.9: (b) Com parison o f  rate o f KI oxidation (I3“ production) at d ifferent concentrations  
(1.4, 4.2 and 7 g L-1) o f additives (CH 2C12, CHC13, CC14). E xperim ental conditions: reaction  
volum e, 200 mL; KI, 20 g L-1; tem perature, 23 ± 2 °C; US am plitude, 25% .

3.3.3.3 Effect of additives

A comparative study between different chlorinated additives (CFFCF, C H C I3 , C C I4 )  

of concentration 7 g L_t on the oxidation capacity was carried out using the US probe 

at the lowest chosen amplitude 25% (US generator 400 W; the actual power 

dissipation into the solution estimated using calorimetric measurements was about 9 

W or 0.045 W mL_I) and results were compared with no additive under similar 

experimental conditions Fig. 3.10 shows that in the absence additives, oxidation of r  

was quite low and the order of effectiveness of additive used for oxidation was found 

to be CCl4 >CHCl3 >CH2 Cl2  and quantitatively, the order of increase in the oxidation 

was 45>28>10 times, respectively, as compared to conditions when no additives were 

used.

As stated above, C C I4  had highest oxidation capacity which can be attributed to the 

high amount of Cl* availability as discussed earlier and evident from previous 

research (Chendke and Fogler, 1983; Francony and Petrier, 1996; Petrier and 

Francony, 1997b). Also, amount of Cl* formed by the degradation of C C I4  is 

substantially higher as compared to the other two additives. Exact quantification of 

Cl* was not possible but based on the oxidation-reduction concept, C C I4  is considered
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to be non-reactive with the HO* in which case the reaction proceeds through a 

reductive process (Teel and Watts, 2002), thus the rate of I3 - formation with CCI4  is 

directly proportional to the rate of Cl* formation which is formed upon degradation of 

CC14.
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Figure 3.10: Com parative study o f the effect of: CH2CI2, CHCI3 and CCI4 (7 g L-1) on the 
oxidation o f 1“ to V  using an US probe (20 kHz). Experim ental conditions: reaction volum e, 200  
mL; KI, 20 g L-1; tem perature, 23 ±  2 °C; US probe am plitude, 25% .

The results of oxidation rates obtained with US probe with the three different 

chlorinated compounds are similar to that of HC (LWR) which clearly indicates that 

efficacy of chlorinated additives have no impact of cavitational activity in these 

cavitational reactors. However, the concentration of the additives added have a great 

role to play in the oxidation reactions, as discussed above and in studies carried out 

previously (Rajan et al., 1998). Concentration of the additives is an important factor 

as the activity of cavitation depends on this because the chloroalkanes do not dissolve 

in the aqueous iodine solution but are dispersed throughout the solution as 

microdroplets, which multiplies the number of nucleation sites available for cavitation. 

Therefore, any increase or decrease in the concentration of the chloroalkanes, relative 

to the bulk iodine solution, may interfere with the process of oxidation. Thus, an 

optimum concentration is recommended for intensification of the process of oxidation
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using chloroalkanes. Also, optimum concentrations would positively work to produce 

ideal outputs useful at laboratory or pilot scale processes:

Optimum chloroalkanes concentrations —> dissociate/degrade —> enhanced nucleation 

—> generate free radicals —> oxidation —> leave no residues at final discharge.

3.4 Hydrodynamic vs acoustic cavitation
Pandit and co-workers carried out much work on HC reactors and reported that their 

efficiency is more than that of US reactors (Save et al., 1994; Sivakumar and Pandit, 

2002). However, in the present study, the results contradict these research findings, 

maybe due to the use of a different type of HC reactor. Pandit used a by-pass flow 

system which utilises low pressures and operates at relatively higher flowrates, which 

increases the passes through the cavitational zone and hence the opportunity of the 

pollutant/oxidant to interact with the cavities and other free radicals is also improved 

which helps in the process of oxidation. Whereas in this study, the HC reactor utilised 

high pressures and reduced flowrates resulting in lower degree of oxidation as 

compared to the US probe, therefore the production was found to be 5 times more 

effective in case of US probe than the LWR. However, since the volume and energy 

utilised in the two reactors were different, a comparative study was carried out, 

involving the measurement of oxidation rates per unit power density which is defined 

as the electrical energy dissipated into the system per unit volume of the reactant and 

results showed that US reactors were still 2.5 times effective as compared to the HC 

(LWR) reactor (Pandit and Gogate, 2005).
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3.5 Summary
The chloroalkanes could be termed as potential additives for enhancing oxidation 

reactions. In general, the use of these chloroalkanes is beneficial for the oxidation of 

non-volatile toxic compounds which are less susceptible to free radical attack, 

however the concentration of the additives should be optimised in such a way that the 

additive supports the degradation process and is utilised completely by the end of the 

reaction, so that the effluent discharge does not transfer any toxic residues of the 

additives to the natural environment.

Thus, from the above laboratory scale experimental study, in order achieve higher 

oxidation intensities in cavitational reactors, the following conclusions can be drawn:

■ Advanced hydrodynamic cavitational reactor set-ups can be improved by 

introducing multiple orifices and by-pass flow for onset of cavitation even in 

the absence of chloralkanes.

■ Enhanced generation of radical species could be achieved with increasing 

pressures in the LWR.

■ The order of effectiveness of chloroalkanes for oxidation is 

CCl4 >CHCl3 >CH2 Cl2 .

■ Higher concentration of additives does not favour the oxidation reaction, thus 

an optimum concentration, relative to the bulk solution, could achieve high 

oxidation rates.

■ Stepwise addition of additive/oxidants could lead to higher oxidation 

intensities rather than addition of additives initially.

■ Oxidation capacity of US probe type reactors is more effective than US bath 

reactors.

■ Addition of C C I4  could achieve higher rates of oxidation intensities in 

sonochemical and hydrodynamic cavitational reactors.

■ Acoustic cavitation reactors are 2.5 times more effective, for enhanced 

oxidation, than the hydrodynamic cavitational reactors.
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4.1 Introduction
Phenol and its chlorinated derivatives are used in the formulation of insecticides, 

herbicides and fungicides and can be found as toxic pollutants in industrial wastes. 

Also, phenolic compounds are common contaminants in wastewaters, being generated 

from petroleum and petrochemical, coal conversion and phenol-producing industries. 

Phenols are widely used for the commercial production of a wide variety of resins 

including phenolic resins, which are used as construction materials for automobiles 

and appliances, epoxy resins, adhesives and polyamides for various applications (Fang 

and Chan, 1997). The use of these substances imposes severe risks to human health 

and is, therefore a matter of public concern. Several cases of phenol pollution have 

also been reported around the world since mid-1900s. In 1974, an accidental spillage 

of phenol (carbolic acid) in Southern Wisconsin (USA) caused chemical 

contamination of wells leading to severe human illness; although physical and 

laboratory examinations 6  months after the exposure revealed no residual abnormality 

in exposed persons, however water testing and geological evaluations indicated that 

contamination of the underground water system may persist for many years (Baker et 

al., 1978). Thus, phenols are considered as priority pollutants since they are harmful 

to organisms at low concentrations and many of them have been classified as 

hazardous pollutants because of their potential harm to human health. Stringent 

Environmental Protection Agency (EPA) regulations call for lowering phenol content 

in the wastewater to less than 1 mg L- 1  (Dutta et al., 1992). Similarly, the Doosan oil 

spill, where 320 tonnes of phenol waste from the Doosan Electro-Materials Inc. when 

illegally dumped in River Naktong, South Korea, affected more than 10 million homes 

(www.american.edu/ted/doosan). In the UK, few serious incidences of phenol 

contamination in major rivers, serving millions of peoples and aquatic flora and fauna, 

have lead to enormous concerns regarding its pollution and toxicity. For example, in 

1984 and 2000 the River Dee, one of the most closely monitored waterways in Europe, 

was heavily contaminated by phenol due to a million gallons of toxic effluent being 

discharged. This incident killed a number of fishes, affected more than 2 million 

people in North Wales and left the water supply contaminated for several weeks 

(www.bbc.co.uk/wales). Such atrocious events, on the one hand increase the risk of 

severe environmental pollution but on the other lead to public participation and
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awareness toward environmental issues and demands effective treatment systems for 

such toxic organic compounds.

The treatment processes for phenolic wastewater is classified into two principal 

categories (Dutta et al., 1998):

■ a destructive process such as oxidation with ozone (O3 ) (Hoigne, 1985) or 

hydrogen peroxide (H2 O 2 ) (Kochany and Bolton, 1992)

■ a recuperative processes such as adsorption onto porous solids (Danis et al., 

1998), membrane separation (Mccray and Ray, 1985), or solvent extraction 

(Earhart etal., 1977)

However, it is believed that aromatic compounds are generally, refractory to chemical 

and biological processes, which is why other alternative treatments have gained 

enormous interest from researchers worldwide (Esplugas et al., 2002; Gogate and 

Pandit, 2004b). Advanced Oxidation Processes (AOPs) are considered as alternative 

technologies in order to treat such toxic wastewaters, as these processes have the 

capacity to generate hydroxyl radicals (HO*) which are one of the most powerful 

oxidising agents and, as discussed in Chapter 1, they have the highest oxidation 

potential of any species used in wastewater treatment technologies.

Among the various AOPs discussed in detail in Chapter 1, sonochemistry has been 

demonstrated as a promising method for the destruction of aqueous pollutants (Cheung 

et al., 1991; De Visscher et al., 1997; Destaillats et al., 2000; Joseph et al., 2000; 

Laughrey et al., 2001; Mckee et al., 1977; Peller et al., 2001; Taylor Jr et al., 1999; 

Wheat and Tumeo, 1997). Ultrasonic irradiation generates cavitation bubbles which 

oscillate between growth and collapse through compression and rarefaction (Joseph et 

al., 2000; Peller et al., 2001). The temperatures and the pressures in these collapsing 

bubbles are estimated to be 3000-5000 K and 500-10,000 atm, respectively (Flint and 

Suslick, 1991; Suslick et al., 1993a; Suslick et al., 1993b). Under such extreme 

conditions of temperature and pressure, water molecules dissociate to form highly 

reactive HO* and hydrogen atoms (H*) as also discussed previously in Chapter 3 

(Chen and Smirniotis, 2002; Makino et al., 1982; Misik et al., 1995; Suslick, 1990; 

Suslick et al., 1986). Other oxidising radicals also tend to form depending upon the
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nature of gases and other solutes present in the medium (Kang et al., 1999a; 

Thompson and Doraiswamy, 1999). Several mechanisms have been proposed for 

sonochemical degradation of aqueous pollutants(Hoffmann et al., 1996; Laughrey et 

al, 2 0 0 1 ):

■ oxidation by hydroxyl radicals (H O )

■ pyrolytic decomposition

■ supercritical water oxidation

■ combustion

The above mechanisms are likely to happen in the gas phase inside the collapsing 

bubble, at the gas-liquid interface and in the reaction solution which surrounds the 

bubble (Laughrey et al., 2001; Taylor Jr et al., 1999). However, the efficacy of the 

sonochemical degradation process depends on many other factors such as irradiation 

frequency, input energy, dissolved gases and aqueous additives (Beckett and Hua, 

2001; Kang et al., 1999a; Laughrey et al., 2001; Peller et al., 2001; Taylor Jr et al., 

1999). Since the oxidation by HO* is an important reaction pathway in sonochemical 

reactions, the degradation efficiency is directly proportional to the amount of HO* 

generation. The following reaction pathways have been proposed, where HO* either 

recombines, reacts with other gaseous species or diffuses into bulk solution to react 

with solutes present in the reaction medium (Laughrey et al., 2001):

HO* + H * --------► H20  (4.1)
HO* + H O *--------► H2 0 2  (4.2)
HO* + other species--------► oxidised products (4.3)

Equations 4.1-4.3 are generally competitive in the sonochemical degradation process 

and the second order rate constants of Eq. 4.1 and 4.2 are 7 x  109  M - 1  s- 1  and 4.2 x  109  

M - 1  s- 1  and it is believed that under most circumstances Eq. 4.3 has a similar rate 

constant. However, the local concentration of all the above mentioned species can 

play a very important role in controlling the actual rate of each process. Moreover, as 

discussed earlier in Chapter 3, the role of chlorinated additives, Fe2+ and Fe° have 

been found to be very efficient in increasing the overall degradation rates in sonolytic 

system (Hung et al., 2000).
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In wastewater treatment, a bubble of cavitation acts a micro-reactor for degradation 

processes (Riesz et al., 1990). Literature also states that there is little effect of 

frequency on the rate of sonochemical reactions for oxidation and reduction in 

aqueous solution (Witekowa, 1972). Consequently, there have been a lot of 

controversial findings in earlier reports until dosimetry studies confirmed the effect 

that different frequencies had on the production of oxidising radical species. Table 4.1 

summarises previous reports on the effect of different frequencies on rates of 

oxidation and oxidising radical production. It is quite obvious that with increase in 

frequencies higher oxidation rates could be achieved, however determining the 

sononchemical efficiency is a combined output of sonochemistry and cavitation. 

Bubble formation and behaviour is linked with the sound pressure field which depends 

on reactor design and ultrasonic source (frequency, intensity and emitting surface 

area). Therefore, the yield of an ultrasonic reaction may be enhanced with a well- 

defined reactor configuration and modified US frequencies (Boucher, 1970; Leighton, 

1995).

US frequencies Research highlights References
20-60 kHz HO* production increases with 

increasing frequencies
(Mason et al., 1994)

20-100 kHz 60 kHz is the optimum frequency 
for iodide oxidation

(Cum et al., 1992)

192-960 kHz 300 kHz is the optimum frequency 
for iodide oxidation

(Busnel and Picard, 
1952)

20 and 500 kHz Iodide oxidation and H 2 O2 

production occurs faster at 500 
kHz than 20 kHz

(Petrier et al., 1992)

20 and 487 kHz Higher phenol degradation rates at 
487 kHz than 20 kHz

(Petrier et al., 1995)

20 and 900 kHz Higher iodide oxidation rates at 
900 kHz than 20 kHz

(Entezari and Kruus, 
1994)

22 kHz-1.1 MHz H2 O2  formation rates and 
sonoluminescence intensity 
increases with US frequencies

(Didenko et al., 
1994)

Table 4.1: Effect o f US frequencies on rates o f oxidation and oxidising radical species.
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However, total mineralisation of refractory organic pollutants by means of US alone 

still remains a difficult task which makes its use impractical on industrial scale 

processes. In order to overcome limitations of low degradation efficiency by 

ultrasound alone, the method has been combined with various other processes in order 

to achieve high total organic carbon (TOC) degradation and to reduce time of 

treatment (Adewuyi, 2001). These methods include US treatment coupled with 

oxidants (H2 O2  and O3 ) (Chemat et al., 2001; Lin et al., 1996; Weavers et al., 1998); 

electrochemical methods (Trabelsi et al., 1996); Fenton reagent (De Visscher and Van 

Langenhove, 1998; Guo et al., 2005; Lin and Ma, 2000; Manousaki et al., 2004; 

Neppolian et al., 2002) and photocatalysis (Ragaini et al., 2001; Theron et al., 1999).

Among all the applications mentioned above, Fenton-like processes in conjunction 

with ultrasound have been of most interest. The reaction between H 2 O2  and Fenton­

like catalysts (either homogeneous or heterogeneous), referred to as Fenton-like 

reactions, is known to produce additional HO* in the system, capable of oxidising 

organic compounds and accelerating the rates of ultrasonic degradation. Literature 

suggests that the degradation of chlorophenols (Nagata et al., 2000), 1,4-dioxane 

(Beckett and Hua, 2003) and 4-/z-nonylphenol (Yim et al., 2003) is enhanced with the 

combined reaction of US/Fe2+/H 2 0 2  compared to US alone. Also, it was reported (Lin 

and Ma, 2000; Neppolian et al., 2002) that substantial increase in degradation rates of 

MTBE and 2-chlorophenols were observed in the US/Fe2 +/H 2 0 2  system over the 

Fe2 +/H 2 0 2  system (silent Fenton system). On the contrary, lower degradation 

efficiencies of phenol and 2,4-dinitrophenols were reported with US/Fe2 +/H 2 0 2  and 

US/Cu2 +/H 2 0 2, respectively, when compared with silent Fenton systems (Guo et al., 

2005; Papadaki et al., 2004). The controversy still exists as to whether ultrasound has 

a beneficial role in the homogeneous system (Fe2 +/H 2 0 2 ) for treating organic 

compounds. (The part of the study with silent Fenton-like reactions in conjunction 

with various zero valent metal catalysts will be discussed in detail in Chapter 5).

This chapter mainly concentrates on a study of the efficacy of low- and high- 

frequency US reactors in conjunction with Fenton-like reactions where the source of 

Fe2+ and Cu2+ has been obtained from the use of zero valent iron (ZVI) and zero valent 

copper (ZVCu) catalysts. Such a process using zero valent metals along with H 2 O 2
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under acidic conditions (pH 2.5-3) has recently been termed the Advanced Fenton 

Process (AFP) (Bremner and Burgess, 2004; Namkung et al., 2006; Namkung et a l, 

2005).

Hence, objectives of the current study were to:

■ assess the H 2 O2  production in the chosen low-and high-frequency US reactors

■ optimisation of parameters for enhanced phenol degradation in the presence 

and absence of air, H 2 O2 , US, ZVI

■ assess the efficacy of different ZYI and ZVCu catalysts in conjunction with 

H2 O2  and ultrasound (20, 300 and 520 kHz) in the process of phenol 

degradation

■ compare the efficiency of oxidants, H 2 O2  and O3  with the AFP for phenol 

degradation in high frequency US (300 and 520 kHz) reactors

This part of the study was carried out on a one month Short Term Scientific Mission 

(STSM) at the Institute of Environmental Studies, Bogazici University, Istanbul, 

Turkey. Therefore, the chemicals, US reactors, equipment for analysis (GC, TOC and 

UV-vis) and also the experimental set-up for this part of the research may be different 

from the remainder of the work described in this thesis, however the objectives, 

experimental methodology, process optimisation, data interpretation and analysis is 

my individual contribution to the study.

4.2 Experimental
4.2.1 Chemicals
Aqueous phenol solutions (2.5 mM, Fluka) were used as model synthetic wastewater 

for all the US reactions in this study. Experimental results shown in this part of the 

thesis were carried out at Bogazici University, Turkey, therefore the US reactors used 

for the study (20, 300 and 520 kHz) are the same as described in Section 2.3.2. The 

volumes of liquid used in the three US reactors; 20, 300 and 520 KHz were 80, 100 

and 300 mL; respectively. The strength of the H2 O2  (35%) used for the study was 

2.38 g L_ 1 and the concentration of H 2 O2  in individual experiments was obtained using 

the calibration curve shown in Section 2.4.3. Three different kinds of zero valent 

catalysts (ZVC) used for the study were: zero valent iron powder (ZVI), zero valent
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copper flitters (ZVCF) and zero valent copper turnings (ZVCT). The amounts chosen 

for the two types of catalysts were: ZVI (0.120 g; 0.6 g L-1) and ZVCF and ZVCT (1 

g; 5 g L-1). It is worth noting that the amounts used for the two types of catalysts were 

different, since, ZVCu at 0.6 g L- 1  in Fenton-like conditions, did not initiate any 

reactions within 60 min, therefore the amounts used were increased to 5 g L-1. The 

pH for the US/ZVC/H2 O2  system was maintained at pH 3. However, O3 studies were 

carried out under two different conditions: (i) at pH 3 with O3 concentration of 6  g O3 

m - 3  flowrate 0.25 L min- 1  and (ii) at pH 9 with O3 concentrations of 2 g O3 m- 3  and 

flowrate 0.75 L min-1. Thus, based on these conditions, the O3 studies have been 

compared under two major systems: pH 3/6 g O3 m-3/0.25 L min- 1  and pH 9/2 g O3 m- 

3 /0.75 L min-1.

4.2.2 Hydrogen peroxide measurement
The efficiency of the US reactors to produce H2 O2  was determined using the method 

described in Section 2.4.3. In this study, H 2 O2 production in water and 2.5 mM 

phenol solution, over 60 min, was measured spectrophotome trie ally, in each US 

reactor (20, 300 and 520 kHz), at 355 nm. Specific volumes, as mentioned in Section 

4.2.1, of aqueous solution were placed in the respective reactors and samples (1 mL) 

were removed every 20 min during the 60 min reaction time. Phenol samples were 

filtered prior to analysis with the method described in Section 2.4.2.1.

4.2.3 Power measurement
Approximate power measurements in the US reactors were carried out by taking 80, 

100 and 300 mL of water in 20, 300 and 520 kHz US reactors, with no cooling and 

measuring the temperature rise on irradiation for a specific time period. The power 

( 0  was calculated using formula shown in Eq. 4.4:

Q = cm (AT/At) (4.4)

where, m is mass of water (g); c is specific heat of water (4.186 joule g- 1  °C-1); AT is 

change in temperature (°C) and At change in time. Unit is Watt (W). The values 

obtained in watts were divided by the volume of the reactant used, which finally gives 

the final power output (heat dissipation) in watts per millilitre (W mL-1).
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4.2.4 US/ZVC/H2 O2 system
In the US/ZVC/H2O2 system, the reactions were carried out using standard volumes of

2.5 mM phenol solution in the three chosen US reactors (20, 300 and 520 kHz). 

Thereafter, the pH of the solution was set to pH 3 with 0.1 M H2SO4. After attaining 

the desired pH for the reaction, zero minute reading was taken and followed by this 

known amounts of catalysts and oxidants were introduced into the reaction solution 

and the reactor was switched on immediately. Continuous air was purged into the 

reaction solution with a glass diffuser at a flowrate of 1.5 L min-1. The temperature 

was maintained (23 ± 2 °C) by a cooling jacket built around the glass reactor set-ups 

(shown in Section 2.3.2). The reaction time chosen for each batch study was 60 min.

Samples (3 mL) were withdrawn every 10 min for GC (1 mL) and TOC (2 mL) 

analysis in order to estimate phenol removal and TOC mineralisation, respectively. 

For GC analysis, the sample (1 mL) was mixed with 50 pL dichloromethane (internal 

standard) in a 2 mL amber vial (method described in detail in Section 2.4.2.1.2), 

whereas for the TOC analysis, original samples were diluted five times to get the 

desired volume required for the TOC analyser. In some reactions, the concentration of 

H2O2 was also monitored throughout the reaction every 15 or 20 min as discussed in 

Section 2.4.3.

4.2.5 US/ZVC/O3  system
Similar experimental conditions were set-up for studies with the US/ZVC/O3 system, 

with an only difference in the use of oxidant in this case, O3 was used as oxidant 

instead of H2O2. Ozone generator (Ozone Service, Yanco Industries Ltd.) was used to 

generate ozone-oxygen mixture using an oxygen cylinder. Ozone-oxygen mixture 

was purged into the reaction solution using a single point glass diffuser. The study 

was carried out at two different: pH 3 and 9 (using 0.1 M NaOH); concentrations, 2 

and 6  g O3 m-3; flowrates, 0.75 and 0.25 L min- 1  described in Section 4.2.1. Ozone 

concentrations were not monitored in any reactions with O3 as the scope of the study 

was only to estimate the efficacy of oxidants, H2O2 and O3, for phenol 

removal/mineralisation in Fenton-like reactions.
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4.3 Results and discussion
4.3.1 Hydrogen peroxide formation
HO* production in water at different frequencies (20, 300 and 520 kHz) was estimated, 

prior to degradation studies, through the H 2 O2  formation. H 2 O2  results from the 

reaction of HO* and HOO* in the aqueous phase under cavitating conditions in 

absence of organic substrates (Henglein, 1987, 1993) (Eq. 4.5 and 4.6):

2HO*--------► H2 0 2  (4.5)
2HOO*--------► H2 0 2  + 0 2  (4.6)

Measurement of H 2 O2  formation in water was carried out over 1 h irradiation time and 

it was found that H 2 O2  concentration increased linearly (Fig. 4.1), however the rates 

changed with frequency and, as shown from the graph, higher rates were observed at 

300 kHz (Fig. 4.1a).

Similarly, H 2 O2  formation was determined in the presence of an organic substrate, 

phenol (2.5 mM) and it was observed that the H 2 O2  formation was reduced 

considerably which is an indication of HO* reacting with phenol as well as dimerising 

to form H 2 O2  (Fig. 4.1b).
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Figure 4.1: H 20 2 form ation, in  (a) dH 20  w ater and (b) 2.5 m M  phenol solution, at d ifferent U S  
frequencies (20, 300 and 520 kHz). Experim ental conditions: volum e: 8 0 ,1 0 0  and 300 m L for 20, 
300 and 520 kHz US reactors, respectively; pH 3; air, 1.5 L m in-1; tem perature, 23 ± 2 °C; X = 355  
nm.

In a related study, Petrier and Francony (1997) compared four different US 

frequencies (20, 200, 500 and 800 kHz) and studied H 2 O 2  formation and phenol 

degradation. They reported that the highest amount H 2 O 2  formation and phenol 

degradation was at 200 kHz and proposed that formation of H 2 O 2  is the result of 

recombination of hydroxyl and hypoperoxyl radicals (Hart and Henglein, 1987; 

Henglein, 1993) and the degradation of phenol is an action of HO» on phenol leading 

to formation of hydroxylated aromatic compounds which further break down to
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biodegradable products, e.g., carboxylic acids. As seen from Fig. 4.1a, the increase in 

the H2 O2  production in water is linear at 300 kHz, whereas in the case of 2.5 mM 

phenol (Fig. 4.1b), the amount of H 2 O2  formation becomes stable after 40 min reaction 

time. It is worth noting that formation of H2 O2  was much higher in water than 

phenolic solution. More work in this area of research could be beneficial by carrying 

out experiments with different concentrations of phenolic solution and simultaneously 

estimating amount of H2 O2  production and phenol degradation.

Table 4.2 reveals the rate of H 2 O2  formation in the two chosen aqueous media under 

different cavitation frequencies and it can be seen that 300 kHz has highest rate of 

H 2 O2  formation, in water as well as 2.5 mM phenol solution. However, at 300 kHz 

the rate of H2 O2  formation is much higher in the case of water than phenol solution. It 

is reported that H2 O2  formation in water at an optimum frequency (200 kHz) is a two 

step phenomenon where, first, sonolysis occurs inside the cavitation bubble and then 

HO* and HOO* migrate to the interface of the bubble to form either H 2 O2  or react 

with the substrate (Petrier and Francony, 1997b). From the current study, it is shown 

that H 2 O2  formation at 300 kHz, in water, involves the two steps mentioned above, 

whereas in the presence of substrate, i.e., phenol, H2 O2  formation occurs only through 

sonolysis and when the radicals migrate to the bubble interface, they react actively 

with phenolic substrates, thereby reducing the rate of H 2 O2  formation.

Rate of H 2 O2  formation (mg L 1 min *)
US frequencies 20 kHz 300 kHz 520 kHz
dH20 0 . 1 5.7 0 . 8

2.5 mM Phenol 0 . 1 0.5 0 . 1

Table 4.2: Rate of production of H2C>2 for different frequencies in  dH 20  and 2.5 m M  phenol 
solution.
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4.3.2 Preliminary experiments
In order to decide the best experimental conditions for optimal phenol/TOC removal 

using US/ZVC/H2 O2  system, preliminary experiments were carried out with ZVI at 

300 kHz (Fig. 4.2) under acidic conditions (pH 3).

C IC 0

Figure 4.2: Effect o f operational param eters on  phenol degradation over 60 min. E xperim ental 
conditions: phenol, 2.5 mM ; US, 300 kHz; ZVI (0.6 g L f1); reaction tim e, 60 min; air, 1.5 L m in-1; 
H20 2, 2.38 g L-1, tem perature 23 ± 2 °C; analysis: phenol rem oval, GC and TOC m ineralisation , 
TOC analyser.

4.3.2.1 Effect of pH

Sono-Fenton degradation studies on different organic compounds such as 2- 

chlorophenol (Lin et al., 1996), aniline (Jiang et al., 2002) and 2,4 dinitrophenol (Guo 

et al., 2005) indicate that the degradation efficiency decreases with increase of 

solution pH, however higher phenol degradation at low pH, when large amount of 

pollutant can penetrate into cavitational bubble and stimulate the process of 

degradation. Also, Bremner and co-workers reported that the AFP proceeds faster at 

lower pH values (Bremner et al., 2006; Bremner et al., 2008; Namkung et ah, 2005). 

Therefore, for this study pH 3 was chosen as optimal pH.
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4.3.2.2 Effect of air

During the initial experiments, the effect of sparging was tested by continuously 

injecting air (1.5 L min-1) into 2.5 mM phenol solution and sonicating the test solution 

at 300 kHz. The literature suggest that monoatomic gases are more favourable than 

diatomic gases in a sonicated liquid, for the generation of high temperatures upon 

bubble collapse (Suslick, 1990). Also, its been reported that higher sonochemical 

yields have been observed in the presence of air than in argon (Kidak and Ince, 2006). 

In this study, air was used as a sparge gas and ~4-10% enhanced oxidation capacity 

was observed, as compared to US alone, probably due to the reactions of nitrogen with 

molecular oxygen to yield HNO3 and other radical species such as H O , •NC^, *N0 3  

that may help in accelerating the oxidation process. The following chemical reactions 

explain the mechanism that takes place during air injection into a sonoreactor 

(Ullerstam et al., 2000):

2 N2 + 02 - >  2N20 (4.7)

2N20  + H20 ---- > 2H N 02 + 2N2 (4.8)

H* + N20 ----- - >  N2 + HO* (4.9)

HO* + N20 — 2NO + H* (4.10)

HNO2 + H2O2 -— > h n o 3 + h 2o (4.11)

HNO3 + ))) — > h o  + »n o 2 (4.12)

HNO3 + ))) — >  H« + •NO, (4.13)

Formation of nitrous and nitric acids favours the process of decomposition of formic 

acid via pH reduction, generation of excess HO* (&ho*> 10 “ L mol s ) and •NO* 

(&no.v, 107 L mol- 1  s-1) radicals, which are strong oxidants and help in enhancing the 

oxidation rates (Gogate et a l ,  2003).

4.3.2.3 Effect of US/Air/ZVI system

The addition of ZVI relates to an enhanced solid-liquid interface in the bulk solution 

which may tend to promote cavitation. The US/Air/ZVI system in the absence of 

H2O2 leads to 10% higher phenol removal compared to the US/Air system, however it 

is worth noting that the TOC values in both the systems remains the same (Fig. 4.2). 

This shows that there is formation of more oxidised products in case of US/Air/ZVI
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system but the mineralisation efficiency was not enhanced by the ZVI catalyst. This 

phenomenon could be explained by another study on cresol degradation in the 

presence of either Fe2+ or H2 O2  alone (Kavitha and Palanivelu, 2005) where results 

reveal that cresols were not decomposed in conditions of Fe“ or FFCF alone because 

the oxidation potentials of Fe2+ (0.77 V) or H 2 O2  (1.77 V) is much less than the

oxidising potential of HO* (2.80 V). However, in acidic media at room temperature,
 ̂,

the presence of Fe" ions and H 2 O2  generate HO*, which have high enough oxidation 

potential to degrade organic pollutants.

During a number of experiments carried out in this study, it was observed that the 

colour of the solution, upon addition of H2 O 2  to an acidic medium containing phenol 

and ZVI, showed an immediate change from colourless to brown then to yellow after 

1 0  min of reaction time and remained light yellow to colourless at the end of reaction 

(60 min); this normally indicated completion of the reaction. So far, it has been 

observed that H 2 O2 , Fe2+ and pH have been crucial factors in generating HO*, which 

ultimately control the degradation efficiency of organic pollutants. Hence, 

experiments shown later in this section were carried out in batch reactors involving 

ZVI, H2 O2  and US and the effect of air was also assessed in combination with these 

systems.

4.3.2.4 Effect of ZVI/H 2 O2  and U S/Z W H 2 O2  systems

A reaction mixture in which iron powder (ZVI) and H 2 O2  exist together in an aqueous 

medium at acidic pH 3, is called a Fenton-like system (reactions) because its 

behaviour is similar to the typical Fenton’s reagent. During the process optimisation 

studies, the Fenton-like systems were studied for phenol degradation efficiencies in 

the presence and absence of ultrasound.

Sonochemical degradation of 4-chlorophenol using Fenton-like systems reveals that 

iron powder tends to dissolve smoothly under acidic conditions (pH 3), producing iron 

ions and production of these ions increases tremendously in the presence of ultrasound 

(Liang et al., 2007). Thus, a similar hypothesis was drawn for ZVI/H 2 O 2  system, 

when ZVI in the presence of H2 O2  lead to 82% phenol removal and significantly 

higher TOC mineralisation (35%). Therefore, not only production of biodegradable
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products increased but also the mineralisation was found to be enhanced in the 

presence of ZVI and H2 O2 . It is believed that at pH 3, ZVI releases Fe2+ ions into the 

bulk solution which then react with the H 2 O2  to generate HO* according to the 

following reactions (Eq. 4.14^1.18) (Yim et al., 2003).

Fe2+ + H2 0 2  — — > Fe3+ + HO* + HO" (4.14)

Fe2++ H O  — — >  Fe3+ + HO" (4.15)

Fe3+ + H2 0 2  — — >  Fe-OOH2+ + H+ (4.16)

Fe-OOH2+ — —>  Fe2+ + •OOH (4.17)

Fe3+ + «OOH ------- > Fe2+ + 0 2  + H+ (4.18)

Besides the above mechanism, it has also been reported in the literature that H 2 O 2  can 

be decomposed on metal surfaces (iron particles) and could possibly enhance 

degradation efficiency of the system (Weiss, 1952). A suggested mechanism is shown 

in reactions below (Eq. 4.19^1.24), where metal (M) can directly react with the H 2 O 2  

to generate HO* and H 0 2 */*0 2 ~ that can accelerate the degradation of the pollutant 

present in the bulk solution (Liang et al., 2007).

M + H 2 O2 ----- >  M + + HO» + HO” (4.19)

H2 O2  + HO'• ------- >  h 2o  + h o 2* (4.20)

h o 2* <— ■> H+ + * 0 2~ (4.21)

M + *02 ------> M + + 0 2" (4.22)

M + H 0 2* ■-------> M + + HO;f (4.23)

JVF + H 0 2" ------- > M  + H 0 2* (4.24)

Higher phenol removal (98%) was observed with US/ZVI/H 2 O2  system, whereas 

ZVI/H2 O2  system showed only 82% phenol removal, however there was a 

considerable difference in the TOC removal between the two systems. The scope of 

the experimental study did not include measurement and/or analysis of the by-products 

formed at the end of each reaction, therefore it is not possible to speculate further on 

the reason why US/ZVI/H2 O2  system lead to lower TOC mineralisation.
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4.3.2.5 Effect of US/Air/ZVI/EEC^ system

Increased phenol removal and TOC mineralisation were observed when the 

US/Air/ZVI/H2 0 2  system was employed. In this study, no phenol was detected (ND), 

during the GC analysis, after 25 min, thus it can be said that 100% phenol removal 

was obtained with the 300 kHz US reactor. Also, the highest TOC mineralisation 

(37%) in the 60 min reaction time was seen with this system and this can be attributed 

to the enhanced generation of HO* and other radical species by the combined system,

i.e., air, US and Fenton-like reactions, under acidic conditions.

Time (min) % Removal {ClCo)
Phenol TOC

0 0 . 0 0 . 0

5 91.2 -
1 0 97.8 -
15 98.7 26.5
2 0 98.9 -
25 99.0 -
30 ND 27.0
60 ND 37.0

Table 4.3: Phenol rem oval and TO C m ineralisation in the U S/A ir/Z V I/H 20 2 system . 
Experim ental conditions: phenol, 2.5 m M ; U S, 300 kHz; ZV I (0.6 g L-1); reaction tim e, 60 m in; 
Air, 1.5 L min-1; H 20 2, 2.38 g L-1, tem perature 23 ± 2 °C; analysis: phenol rem oval, GC and TOC  
m ineralisation, TOC analyser.

The results shown in Table 4.3 reveal that 90% of the phenol was removed from the 

bulk solution within the initial 5 min reaction time, by the US/Air/ZVI/^CU system, 

thereafter the reaction slowed down but after 25 min, no phenol remained in the 

reaction solution leading to 37% TOC mineralisation. This higher phenol 

decomposition during the start of the experiment is due to the supply of excess HO* 

from two sources: (i) decomposition of H 2 O2  according to Eq. 4.14—4.19 and (ii) 

ultrasonically generated HO*. Also, may be due to the increased radical species as 

discussed in Eq. 4.7-4.13. Therefore, for similar reasons, higher TOC mineralisation 

was observed during the initial 15 min of reaction but there was no significant change 

in TOC at 30 min reaction time. However, at the end of 60 min, a further 10% 

increase in TOC was seen leading to 37% overall mineralisation, which is due to the 

fact that all phenol was decomposed by this time, so the radicals produced, through
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various mechanisms, were solely utilised in the mineralisation of the by-products 

formed after phenol removal.

Since highest phenol decomposition and overall mineralisation were obtained with the 

US/Air/ZVI/H2 0 2  system under acidic conditions (pH 3) at 300 kHz US these 

conditions were considered to be optimal for carrying out batch experiments with 2 0  

and 520 kHz reported in this study. Thereafter, 20, 300 and 520 kHz US frequencies 

were compared for their degradation efficiencies under similar experimental 

conditions. Also, in another comparative study, ZVC (ZVI, ZVCF and ZVCT) were 

compared for their efficiencies for decomposition and mineralisation of phenol in the 

chosen US reactors.

4.3.3 Degradation of phenol in the US/Air/ZVC/H20 2 system
4.3.3.1 Effect of different US frequencies

Initial phenol removal studies were carried out using US/Air/ZVI/^CU system in 

conjunction with zero valent iron (0.6 g L-1; ZVI) catalyst at different chosen US 

frequencies (20, 300 and 520 kHz). The results shown in Fig. 4.3 reveal that high 

phenol removal efficiency was observed with the 20 and 300 kHz US reactors as 

phenol was undetectable after 45 and 25 min, respectively. However, in the 520 kHz 

US reactor, only 70% phenol removal was observed at the end of the 60 min reaction 

time. It was interesting to note that the TOC mineralisation at all the chosen 

frequencies in the US/Air/ZVC/H2 0 2  system was between 37 and 40%. The reaction 

was much faster during the initial 15 min reaction time leading to 60-90%  phenol 

removal and 25-30% TOC mineralisation at all the US frequencies. As evident from 

results discussed above, the HO«/Fe2+ ion production and increased availability of 

H 2 O2  in the bulk solution leads to high degradation during the start of the reaction. 

Upon cavitational activity in the bulk solution, dissociation of the H 2 O2  initiates and 

therefore, Fe2 +/Fe3+ and H2 O2  reaction decreases considerably (Eq. 4.14^1.16) thereby 

reducing the radical concentration (H O »/H O O ) required for the conversion of Fe3+ to 

Fe2+ in order to carry out effective Fenton-like reactions (Eq. 4.17-4.18).
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Figure 4.3: Effect o f US/A ir/ZV I/H 202 system  on phenol degradation over 60 m in using three  
different US frequencies: (a) 20 kHz (b) 300 kHz and (c) 520 kH z. Experim ental conditions: 
phenol, 2.5 mM ; ZVI (0.6 g L f1); air, 1.5 L min-1; H20 2, 2.38 g L-1, tem perature 23 ± 2 °C; 
overhead stirring, 200 rpm; analysis: phenol rem oval, GC and TO C m ineralisation, TO C  
analyser.
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High phenol removal after 25 min of reaction time at 300 kHz in the 

US/Air/ZVC/H 2 0 2  system is explained by the enhanced availability of radical species 

generated in situ due to the action of ultrasound, Fenton-like reactions and also various 

other combined reactions in the presence of ZVI catalysts. It is often thought that with 

increasing frequency, degradation will be much higher, however there exists an 

optimum frequency at which the rates of radical production and collapse is maximum 

and this state is considered the best frequency for pollutant destruction (Petrier and 

Francony, 1997b). Likewise, it has been discussed in a similar study, utilising 300 and 

520 kHz US reactors, where 300 kHz was much more efficient for phenol destruction 

than 520 kHz due to the fact that bubbles formed at 300 kHz are long lived and 

collapse with higher energy compared to those formed in 520 kHz. Thus, with 300 

kHz US more HO» are ejected into the bulk solution leading to more efficient 

pollutant destruction (Kidak and Ince, 2006). At 300 kHz, higher rates of HO» 

ejection into the solution (Fig. 4.1a) and higher phenol removal at this frequency (Fig. 

4.3a) are consistent and therefore accounts for the dominance of aqueous phase 

oxidation by HO» and enhanced efficiency of 300 kHz US reactor. At 20 kHz, the 

lower volume of reaction solution (80 mL) leads to enhanced mixing within the 

reactor and allows the pollutant, catalysts and the radicals to interact with each other 

and therefore phenol disappearance was noticed after 45 min of reaction time. Also, 

the reactor geometry and high vibrations at 20 kHz disperse the ZVI catalysts 

throughout the solution, polish the catalysts and recharge the active sites for reaction, 

however since the HO» production at this frequency (Fig. 4.1a) is the least, 100% 

phenol removal within first 45 min is mostly attributed to the Fenton-like reactions. 

Similar TOC mineralisation (37-40%) during the 60 min reaction time at the three 

frequencies can be attributed to the conversion of the phenol into intermediate 

compounds (Santos et al., 2002) which could not be further mineralised.

4.3.3.2 Effect of different ZVC

A comparative study between the zero valent iron (ZVI), copper flitters (ZVCF) and 

copper turnings (ZVCT) catalysts was carried out to assess their efficiencies for 

phenol removal and TOC mineralisation at three chosen US frequencies. Figs. 4.4a 

and 4.4b shows comparison of ZVI, ZVCF and ZVCT for both, phenol removal and 

TOC mineralisation, whereas Fig. 4.4c shows only TOC mineralisation at 520 kHz as
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the phenol removal trend with the ZVCu catalysts was found to be highly variable. 

From these results, it is obvious that, with 20 kHz, 1^1% and 10-30% of TOC 

mineralisation and phenol removal, respectively, were achieved with ZVCu catalysts. 

Whereas with the 300 kHz US reactor, the enhanced generation of HO* at this 

frequency gives 56-97% and 10-26% of phenol removal and TOC mineralisation, 

respectively, with ZVCu catalysts during 60 min reaction time. This phenomenal 

result is probably due to the HO* oxidation in the bulk solution as discussed above 

and also the Fenton-like reactions involving the copper ions in the presence of H2 O 2  at 

pH 3 (Eq. 4.25 and 4.26) (Entezari et al., 2003).

H2 0 2  + Cu2+------- >  Cu+ + H 0 2» + H+ (4.25)

H2 0 2  + Cu+------- > HO” + H O  + Cu2+ (4.26)

Reports of copper catalysts for pollutant destruction are rare in the literature but there 

are reports on generation of HO* from heterogeneous copper catalysts (Kim and 

Metcalfe, 2007). Also, in a comparative study between 20 and 520 kHz US reactors 

with the H2 O2 -CUSO4  system, the latter frequency was reported to eliminate phenol to 

below the detection limit (concentration < 1 0 -6) in 2 1 0  min reaction time and any 

remaining intermediates disappeared in 360 min. This was explained by the action of 

HO* produced by two pathways: (i) cavitation and (ii) H 2 O2  decomposition catalysed 

by CUSO4  (Entezari et al., 2003). Similarly, sonochemical destruction of o- 

chlorophenol using a H2 O2  and CUSO4  combination has been reported to be the result 

of both the ultrasound and chemical oxidation effect, whereas the trichloroethylene 

degradation rates were only just significant under similar conditions (De Visscher and 

Van Langenhove, 1998). Thus, it is seen that copper ions have a tendency to carry out 

Fenton-like reactions in the presence of H 2 O2  under acidic conditions, however the 

degradation of the organic pollutant may vary depending upon the US frequencies as 

cavitation is the principle pathway of HO* generation in the bulk solution resulting in 

oxidation.
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F ig u re  4 .4 : E ffec t o f  Z V I a n d  Z V C u  c a ta ly ts ts  in  th e  U S /A ir /Z V C /H 20 2 s y s te m , o n  p h e n o l 
d e g ra d a t io n  o v e r  60 m in  u n d e r  th r e e  d if fe r e n t  U S  fre q u e n c ie s : (a )  20  k H z  (b ) 300 k H z  a n d  (c) 520 
k H z. E x p e r im e n ta l  co n d itio n s : p h e n o l, 2 .5  m M ; Z V I (0 .6  g L 1) a n d  Z V C F /Z V C T  (5  g  L -1); 
r e a c tio n  tim e , 60  m in ; a i r ,  1.5 L  m in -1; H 20 2, 2 .38  g L -1, te m p e r a tu re ,  23 ± 2 °C ; o v e r h e a d  s t i r r in g ,  
200  rp m ; a n a ly s is : p h en o l re m o v a l, G C  a n d  T O C  m in e ra lis a tio n , T O C  a n a ly s e r .
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4.3.3.3 Effect of overhead stirring

In order to assess the influence of stirring on the phenol degradation, initial 

experiments were carried out in 520 kHz using the US/Air/ZVLEECU system under 

acidic conditions (pH 3) and results of stirring and no stirring conditions were 

compared. Cavitational reactions are highly supported by efficient reactor geometry 

(Gogate and Pandit, 2004a) which, in the case of the 520 kHz US reactor having 

capacity of 500 mL, containing 300 mL reaction solution, did not support effective 

phenol removal. Therefore, overhead stirring (200 rpm) was introduced to the reactor 

set-up. As evident from Fig. 4.5, stirring has a high impact on the overall TOC 

mineralisation. It is predicted that introducing overhead stirring to the reactor 

enhances the efficiency of reaction due to improved mass transfer and allows the 

catalysts and radical species to react with the pollutant in the bulk solution, thereby 

increasing the phenol degradation efficiency.

Enhanced degradation of 4-chlorophenol has also been reported in the presence of an 

impeller (305 rpm) as it allows substantial mass transfer of soluble compound in the 

liquid and also distributes the particles (i.e., catalysts) uniformly within reaction 

solution. Also, it was concluded from the study that the impeller rotation provided 

much more efficient agitation as compared to ultrasound (Liang et aL, 2007).

However, it is not necessarily the case that every US reactor set-up will benefit from 

efficient stirring and it is important to optimise the ultrasonic degradation of organic 

pollutants by varying a number of parameters such as volumes, diameters and 

conditions. (Gogate and Pandit, 2004a).
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F ig u re  4 .5 : E ffe c t o f  s t i r r in g  on  p h en o l d e g r a d a t io n  o v e r  60  m in  in  520 k H z  U S r e a c to r .  
E x p e r im e n ta l  c o n d itio n s : p h e n o l, 2.5 m M ; Z V I (0 .6  g  L -1); a i r ,  1.5 L  m in -1; H 2O 2, 2 .38  g  L -1, 
te m p e r a tu re ,  23 ± 2 °C ; o v e rh e a d  s t i r r in g ,  200 r p m ; a n a ly s is : p h e n o l re m o v a l, G C  a n d  T O C  
m in e ra lis a tio n , T O C  a n a ly s e r .

In Fig. 4.5, it is worth noting the substantial difference between the effect of stirring 

on the TOC and phenol removal. There is an increase of 20% of TOC removal in the 

presence of the overhead stirrer, whereas the phenol removal data shows that there is 

marginal increase with stirring as compared to no stirring. Earlier figures with FFO2 

production in the 520 kHz showed that the rate of HO* production at this frequency 

was very low as compared to the 300 kHz. Thus, phenol oxidation at this frequency is 

mainly the attributed to Fenton oxidation leading to 70% phenol removal and 38% 

TOC mineralisation in the presence of overhead stirring. Therefore, overhead stirring 

was used in all experiments with the 520 kHz US reactor and the results shown in Figs. 

4.3c and 4.4c are with stirring at 200 rpm.

4.3.3.4 Conclusion

The above study on the effect of the three chosen frequencies, i.e., 20, 300 and 520 

kHz and zero valent catalysts (iron, ZVI and copper, ZVCu), on phenol degradation 

shows that ZVI catalysts and 300 kHz US are by far the most effective for carrying out 

Fenton-like reactions or, as has been termed the Advanced Fenton Process, in this 

study. A summary graph prepared from the available data on TOC mineralisation is 

shown in Fig. 4.6 and gives the comparison of ZVI, ZVCF and ZVCT performance at
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20, 300 and 520 kHz US frequency. It can be seen that although the reaction 

mechanism of iron and copper (shown above) in the AFP is similar iron is still much 

more efficient in carrying out the Fenton reaction leading to 40% TOC mineralisation 

at all three US frequencies. However, when compared, the performance of ZVCF and 

ZVCT did not show substantial TOC mineralisation but ZVCF (flitters) still dominates 

over ZVCT (turnings) because of large surface area available to react with the 

pollutant leading to degradation and also proves to be a potential catalysts for phenol 

removal in the AFP.
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F ig u re  4 .6 : C o m p a r is o n  o f  d if fe re n t U S  f re q u e n c ie s  (20 , 300  a n d  520  k H z) a n d  z e ro  v a le n t 
c a ta ly s ts  (Z V I a n d  Z V C u ) o n  T O C  m in e ra l is a t io n  o v e r  60  m in  re a c t io n  tim e . E x p e r im e n ta l  
c o n d itio n s : p h e n o l, 2 .5  m M ; Z V I (0 .6  g IV1) a n d  Z V C F /Z V C T  (5 g L "1); a i r ,  1.5 L  m i n 1; H 20 2, 
2 .38 g L f1, te m p e r a tu re ,  23  ±  2 °C ; o v e rh e a d  s t i r r in g  in  520  k H z , 200 rp m ; a n a ly s is :  p h e n o l 
re m o v a l, G C  a n d  T O C  m in e ra lis a tio n , T O C  a n a ly se r .

Thus, it can be said that, 300 kHz US frequency and ZVI is the most efficient, reactor 

and catalyst, respectively, to carry out efficient phenol degradation using the AFP, in 

the presence of 1.5 L min~' continuous aeration with a catalyst loading of 0.6 g L 1 

and 2.38 g L_l of H2O2. Also, the best performance of the 520 kHz US reactor can be 

achieved with overhead stirring as mixing enhances the mass transfer rates, thereby 

increasing the degradation. High phenol degradation with ZVI at 20 kHz is accounted
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for by mixing, reactor geometry and regenerated/high surface area catalysts. Also, 

power estimation in the three chosen US reactors (0.92, 0.12 and 0.03 W  mL- 1  in 20, 

300 and 520 kHz, respectively) suggests 300 kHz is by far the most economically 

efficient US reactor for phenol degradation.

4.3.4 Degradation of phenol in the US/ZVC/O3 system (ZOO)
Ozone is a known oxidant in the AOP wastewater treatment and Hoigne and co­

workers have discussed the mechanism of attack of O3 on organic compounds and 

reported the pH dependence on the organic pollutant oxidation. In acidic to neutral pH, 

O3 acts as a direct oxidising agent, especially for aromatic compounds, whereas at 

alkaline pH, O3 reacts with the hydroxide ions, giving rise to HO* which are 

considered to be an AOP (Buhler et al., 1984; Hoigne, 1985; Hoigne and Bader, 1976, 

1983a, 1983b; Staehelin et al., 1984; Staehelin and Hoigne, 1985; Staehelln and 

Hoigne, 1982). Although the effect of pH is pronounced in deciding the reaction 

pathways other factors such as catalysts, US, UV, Xe lamp light sources, etc. have 

been shown to be beneficial in carrying out effective O3 oxidation of organic 

pollutants (Sanchez et al., 2003). In recent years, catalytic ozonation has turned out to 

be very helpful in the decomposition of organic pollutants. This is especially true with 

the use of transition metal ions, e.g., Fe2+, which possess the tendency to decompose 

O3 into HO* explained by the following mechanism proposed in the literature 

(Lpgager et al., 1992):

Fe2+ + O3 ------- >  F e02+ + 0 2 (4.27)

F e0 2+ + H20 ------- >  Fe(HO)2++ H O  (4.28)

Fe2+ also catalyses the reaction of O3 and H 0 2, which is one o f the products of O3 

decomposition, producing H2O2 and accelerating the process of pollutant degradation 

by the action of Fenton-like reactions under acidic conditions (Rush and Bielski, 1986). 

Among the transition metals used for catalytic ozonation, iron is recommended 

because of the abundance of this metal on earth and its relative lack of toxicity 

therefore Fe-Cb catalytic ozonation processes have been used to remove various 

different toxic organic compounds like, phenol, aniline, carboxylic acids 

chlorobenzene, chlorophenols, dyes and other natural organic matter (Beltran et al.,
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2005). Also, the use of ultrasound in conjunction with O 3 (sonozone) has become a 

useful technology in the pollutant decomposition studies (Olson and Barbier, 1994).

Following reaction mechanisms of sonochemical decomposition of O 3 has been 

explained by Hart and Henglein (1986):

0 3 ------- > 0 2  + 0*  (4.29)

O* + 0 3 ------- > 2 0 2  (4.30)

Ozone photolysis leads to the formation of O* and 0 2  which further may combine 

with water to form HO* and two molecules of HO* may recombine to form H 2 0 2:

0 * + H 20  ------- >  HO* (4.31)

2H O *------- > H2 0 2  (4.32)

Several other reactions have been proposed when ozonated water is irradiated with U S  

and overall an increase in HO* production is the most likely outcome (Kang and 

Hoffmann, 1998; Weavers et al., 1998). Enhanced mass transfer of O3 in the solution 

due to ultrasonic vibrations is an added advantage of this process (Weavers and 

Hoffmann, 1998). The reaction pathway for HO* generation during the U S /O 3  

treatment of water could be formulated as follows (Hart and Henglein, 1986a; Kang 

and Hoffmann, 1998; Serpone et al., 1994; Weavers et al., 1998):

0 3* + H20 ------- >2HOO* (4.33)

0 3 + HOO*------- >2HO* + 2 0 2  (4.34)

H20  + ) ) ) ------> H* + HO* (4.35)

0 3 + )))------- > 0 2 (g) + 0 ( 3 P)(g) (4.36)

0 ( 3 P)(g) + H2 Q(g)------- > 2HO» (4.37)

Destruction of organic pollutants by the combined US/O 3  system is possible in 

different ways: direct thermal decomposition, oxidation mediated by HO*, chemical 

oxidation, ozonation and by combinations of these processes (Weavers and Hoffmann, 

1998).
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'ZO O ’ or 'zero valent catalysts-assisted ozone oxidation’ is the name assigned to the 

US/ZVC/O3 system. The main aim of this study was to evaluate the effectiveness of 

US/ZVC/O3 system over US/ZVC/H2O2 system for carrying out the AFP in the 

presence of ZVI catalyst. Initial experiments utilised the 300 kHz US reactor and then 

optimised conditions were used to study phenol degradation in the 520 kHz US reactor 

using the US/ZVC/O3 system.

Phenol degradation using US/ZVC/O3 system was carried out in the presence of ZVC 

and US reactors under two different ozonating conditions: (i) at pH 3 with O3 

concentration of 6 g O3 m-3  flowrate 0.25 L min- 1  and (ii) at pH 9 with O3 

concentrations of 2 g O3 m-3  and flowrate 0.75 L min-1. These parameters are 

represented as pH 3/6 g O3 m-3/0.25 L min- 1  and pH 9/2 g O3 m-3/0.75 L min - 1  in the 

figures.

Phenol removal (%), shown in Fig. 4.7, reveals that a maximum of 45-67%  of phenol 

removal was achieved with pH 9/2 g O3 m-3/0.75 L min- 1  whereas, only 30% removal 

was seen with pH 3/6 g O3 m 3/0.25 L min l. Usually higher pH values are 

recommended for degradation of organic pollutants, however if the operating pH is 

above the pK  value of the pollutant, efficient degradation will not be achieved (Beltran 

et al., 1994; Beltran et al., 1992). It has also been reported that under higher pH 

values, O3 reacts with almost all the organic and inorganic compounds present in the 

bulk solution (Staehelln and Hoigne, 1982). Probably, that is one of the reasons why 

under pH 9/2 g O3 m-3/0.75 L min- 1  phenol removal was better than pH 3/6 g O3 m- 

3/0.25 L min-1. Also at alkaline pHs, O3 tends to stay stable for longer durations, 

hence available for the reactions for longer time period.
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Figure 4.7: Com parison o f (i) pH 3/6 g O3 m-3/0.25 L min-1 and (ii) pH 9/2 g O3 m-3/0 .75  L m in-1 
system s for phenol rem oval over 60 m in in a 300 kHz US reactor using the catalysts: ZV I and  
ZVCu. Experim ental conditions: phenol, 2.5 mM ; ZVI (0.6 g L-1) and ZV C F/Z V C T  (5 g LT1); 
tem perature, 23 ± 2 °C; overhead stirring, 200 rpm  (only in  520 kHz); analysis: phenol rem oval, 
GC.

It is worth noting that, even in US/ZVC/O 3 system, the ZVI catalyst is superior to the 

ZVCu catalysts probably because of the excess HO* and H 2 O2  produced due to the 

synergism of US/O 3 reactions, required to carry out Fenton-like reactions. In a 

separate pilot scale study, researchers have also reported phenol mineralisation by 

ozonation using iron and copper salts and simulated solar lights and their results 

showed that 0 3 /Cu(I)/light system at pH 11 and 7 leads to 62% and 90% TOC 

mineralisation, respectively, whereas in the presence of 0 3 /Fe(III)/light system at pH 3, 

97% mineralisation was achieved in 90 min (Canton et a i , 2003). High TOC 

mineralisation, in this case is attributed to combined UV/O 3 system. The reaction with 

pH 9/2 g O3 m_3 /0.75 L min- 1  system was repeated in 520 kHz US reactor and a very 

uneven trend of phenol removal was observed. Over a 60 min reaction time, the 

percentages of phenol removal were: ZVI (45%), ZVCF (38%) and ZVCT (32%).
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The results of TOC mineralisation, at this frequency, are shown and discussed in the 

section below.

The TOC mineralisation with US/ZVC/O3 system was very low as compared to 

phenol removal and Fig. 4.8 illustrates a comparison between the 300 and 520 kHz. 

Furthermore, the same figure shows comparison of US/ZVC/O3 system and 

US/ZVC/H2O2 system for TOC mineralisation in 300 and 520 kHz US reactors.

Although the TOC mineralisation in the US/ZVC/O3 system were three times less than 

that of US/ZVC/H2O2 system in 300 kHz US reactor in the presence of ZVI catalysts it 

is worth noting that in the absence of catalysts, the US/O3 reaction shows 5% TOC 

mineralisation which is greater than that shown with 520 kHz US reactor in the 

presence of ZVI and ZVC catalysts. This phenomenon could be explained by the 

strong action of US/O3 on phenol removal rather than presence of catalysts which may 

be interfering with the ozonation process whereas catalysts play a major role in 

carrying out Fenton-like reactions in the US/ZVC/H2O2 system. Within the 

US/ZVC/O3 system it can be seen that 300 kHz reactor performs 4 -6  times better than 

520 kHz, the reason being high rates of HO* production at this frequency. Also, the 

differences in geometry the two US reactors, 300 (smaller diameter reactor) and 520 

kHz (bigger diameter reactor) may also contribute to decreased amounts of TOC 

mineralisation in case of 520 kHz. Kidak and Ince (2006) very well explained in their 

report that higher phenol destruction was obtained at 300 kHz due to the longer lived 

bubble advantages at 300 kHz over shorted lasting but less energetic cavity collapse at 

520 kHz that allows larger spread of HO* into the solution. Also, it is well known that 

there exists an optimum frequency at which the rate of radical generation and the 

duration of cavity collapse provide the ‘best’ conditions for the destruction of 

pollutants (Kidak and Ince, 2006).
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F ig u re  4 .8 : A c o m p a r is o n  o f  T O C  m in e ra lis a tio n  in  300  a n d  520  k H z  U S r e a c to r s  u s in g  
U S /Z V C /O 3 a n d  U S /Z V C /H 2O 2 sy s tem s  in  th e  p re se n c e  a n d  a b s e n c e  o f  c a ta ly s ts  o v e r  60  m in  
r e a c tio n  tim e . E x p e r im e n ta l  c o n d itio n s : p h e n o l, 2.5 m M ; Z V I (0 .6  g L -1) a n d  Z Y C F /Z V C T  (5 g 
L -1); H 2O 2, 2 .38 g LT1; O 3, p H  9 /2  g O 3 m “V0.75 L  m in -1; te m p e r a tu r e ,  23  ± 2 °C ; o v e rh e a d  s t i r r in g ,  
200  r p m  (on ly  in  520  k H z); a n a ly s is : T O C  m in e ra lis a tio n , T O C  a n a ly s e r .

Therefore, it can be proposed that in the 300 kHz US reactor, US/O3 reactions mainly 

result in production of more HO* (Eq. 4.33-4.37) which transfer into the bulk solution. 

In general, the catalysts in the US/ZVC/O3 system seem to be interfering with the 

US/O3 reactions however, ZVI reactions have proved to be outstanding in carrying out 

66% phenol removal and 12% TOC mineralisation under the pH 9/2 g O3 m-?/0.75 L 

min- system. This can be explained readily by Eq. 4.27 and 4.28, where Fe(II) 

catalyses the O3 degradation giving the ferryl intermediate which has the possibility to 

oxidise the pollutant and/or generate HO* (Lpgager et al,  1992). No such evidence 

on copper ions has been proposed so far but it is assumed that, in the 300 kHz US 

reactor at least, a similar reaction scheme could describe the effect of the ZVCu in the 

US/O3 mechanism but, as is evident from the results, the degradation is slower than in 

the case of ZVI.
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4.3.5 Phenol removal with US/ZVI/H2O2 and US/ZVI/O3 system
Results obtained for phenol removal using the two systems, i.e., US/ZVI/H2O2 and 

US/ZVI/O3 are summarised in Fig. 4.9. It is evident that the AFP with the 

US/ZVI/H2O2 system under acidic pH 3 dominates over the US/ZVI/O3 system even 

under alkaline conditions (pH 9). Also, inter and intra-comparison of the two systems 

shows that 300 kHz is more suitable for carrying out the AFP.

Figure 4.9: Percentage phenol rem ovals w ith the U S/ZV I/H 20 2 and U S/Z V I/O 3 system s in 300 and  
520 kHz US reactors in 60 m in reaction tim e. Experim ental conditions: phenol, 2.5 m M ; ZV I (0.6  
g L-1); H 20 2, 2.38 g LT1 and pH 3; O 3, pH 9/2 g O3 m-3/0 .75 L m in-1; tem perature, 23 ± 2 °C; 
overhead stirring, 200 rpm (only in 520 kHz); analysis: phenol rem oval, GC analysis.

Thus, it is worth noting that the highest phenol removal, seen in US/ZVI/H2O2 in 300 

kHz compared to the 520 kHz US reactor, are partially accounted for by the higher 

rates of HO* production as shown in Fig. 4.1. In both high frequency US reactors, 

H2O2, in the presence of ultrasound forms HO* that participate in chain reactions to 

form hydroperoxyl and other radical species produced due to the presence of air as 

sparge gas and this probably accounts for enhanced degradation in the US/ZVI/H2O2
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system. It is also proposed that O3 decomposition due to ultrasonic irradiation 

influences the catalyst and oxidant concentration, which hinders direct pollutant 

destruction whereas in the case of H2O2 , simultaneous decomposition and synthesis of 

the oxidant occurs in the reaction system and/or additional free radicals/iron species 

also react with the pollutant. Thus, H2O2 proves to be the most effective oxidant in 

conjunction with ZVI in high frequency US reactors.

Gogate and Pandit (2004b) discussed a few crucial factors related to pollutant 

destruction using the US/H2O2 and US/O3 systems which may be worth restating here 

in support to this study. In ultrasonic reactions, HO» is the main driver and often it is 

believed that oxidants such as H2O2 and O3 should enhance the rates of oxidation by 

enhanced H O  generation. However, along with the oxidant selection, rates of 

oxidation also depend on the operating pH, ultrasonic intensity (turbulence), nature 

and concentration of pollutant and all these parameters should be taken into account 

before selecting an oxidant for the ultrasonic processes in order to achieve high rates 

of degradation. However, selection of the optimum concentration of the oxidants is a 

crucial factor as higher concentrations could lead to detrimental effects by acting as 

scavengers of the generated free radicals. Thus, use of optimum catalyst 

concentrations have been recommended to further enhance the degradation process 

otherwise they may interfere with the ultrasonic activity by scattering the sound waves 

leading to detrimental effects.

Based on the above discussion, it can said that high phenol removal obtained from the 

US/ZVI/H2O2 system (60-100%) is the results of the use of optimum catalyst and 

oxidant concentrations, whereas the US/ZVI/O3 system, resulting in only 40-60%  

phenol removal, needs further optimisation. Synergism of the US/H2O2 also works 

efficiently for phenol removal as free radical attack is the controlling mechanism.
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4.4 Summary
■ The Advanced Fenton Process supports the US/Air/ZVC/FFCU system as the 

optimum condition to carry out phenol degradation at pH 3.

■ Effective phenol removal and TOC mineralisation could be achieved in the 520 

kHz US reactor by the introduction of overhead stirring.

■ Efficient reactor geometry of the 20 kHz US reactor supports high phenol and 

TOC removal with ZVI catalyst.

■ Power input of 0.94, 0.13 and 0.03 W mL- 1  in 20, 300 and 520 kHz, 

respectively, indicates that the 300 kHz US reactor is by far the most energy 

efficient for phenol degradation.

■ The order of effectiveness of catalysts for phenol degradation: 

ZVI>ZVCF>ZVCT.

■ The ZOO process works more efficiently with pH 9/2 g O3 m-3/0.75 L min- 1  

than pH 3/6 g O3 m~3/0.25 L min- 1  system.

■ The ZOO process works best with 300 kHz US reactor using ZVI catalysts

■ A comparison between US/H2O2 and US/O3 synergism for phenol degradation 

suggests that optimum catalysts and oxidant concentrations in the 

US/Air/ZVC/H2 0 2  system proves it to be more effective for the AFP than the 

US/ZVC/O3 or ZOO system.
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Chapter 5

Degradation II: Latent Remediation using 

the Advanced Fenton Process
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5.1 Introduction
In the Fenton reaction, ferrous salts (usually FeSCU.lFO) are reacted with hydrogen 

peroxide (H2 O2 ) to generate hydroxyl radicals (HO») according to the following 

reaction first described by Henry John Hortsman Fenton in 1890s.

Fe2+ + H2 0 2 -------► Fe3+ + HO* + OH“ (5.1)
Fe3+ + H2 0 2 -------► Fe2+ + HOO* + H+ (5.2)

In the above reactions, Fe2+ is oxidised by H2 O2  to Fe3+ producing a HO* and a 

hydroxide anion. Thereafter, Fe3+ in the presence of H2 O2  reduces back to Fe2+ 

releasing the peroxide radical and a proton. These generated radicals participate in the 

secondary reactions.

The Fenton system (Fe2 +/Fe3 +/H 2 C>2 ) has been extensively used in the treatment of 

industrial wastewaters and/or landfill leachates, but the key parameters on which the 

rate of reaction depends are:

1. Wastewater conditions, i.e., pH, concentration, temperature and 

organic/inorganic constituents

2. Fenton reagent conditions, i.e., [Fe2+] [Fe3+] and [H2 O2 ]

These physical and chemical parameters determine the overall reaction pathways in 

terms of HO» production and consumption (Yoon et a l , 2001)

The mechanism for the Fenton and related reactions was first proposed by Haber and 

Weiss in 1934 and further extended by other researchers, who used low reagent 

concentrations, i.e., Fe3+, Fe2+ and H 2 O2  at less than 1 mM. W alling’s work in 1975 

used the addition of small known concentrations of H 2 O2  slowly to the solution, 

containing excess of Fe2+ and organic substrates in O2  free conditions. He described 

the reaction in terms of H O  and other radical intermediates interacting with the 

organic substrates. However, these conditions vary from those used frequently in real 

wastewater treatment, where Fe2+ and H 2 O 2  is more than 1 mM and total organic 

carbon (TOC) is several hundred ppm (Yoon et al., 1998). Later Yoon and co­

workers described the Fenton system with high reagent concentrations ([Fe2+] > 1 mM 

and [H2 O2 ] = 5 mM) and explained their results in terms of the known mechanisms of
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the Fenton reaction and presented implications of the results for use of the Fenton 

process in practical wastewater treatment (Yoon et al., 2001).

Degradation rates are often controlled by various physical and chemical parameters, 

among which, pH has a significant role to play in Fenton-like reactions (Benitez et al., 

2001; Kang and Hwang, 2000; Lin and Lo, 1997; Nesheiwat and Swanson, 2000). 

The optimum pH is 3 and therefore this pH is usually employed for Fenton-like 

reactions (Benitez et al., 2001; Kwon et al., 1999; Tang and Huang, 1996). At lower 

pH (<2.5), the formation of the complex [Fe(II).H2 0 ]2+ is favoured and this reacts 

slowly with the H 2 O2  thereby reducing HO» production and hence the degradation 

rates, also at very low pHs, hydrogen ions act as scavengers of H O  (Tang and Huang,

1996) and the reaction of Fe3+ and H 2 O2  is inhibited (Pignatello, 1992). Higher pH 

(>4) decreases the rate of degradation due to (i) precipitation of ferric hydroxides 

which inhibit the regeneration of ferrous ions and (ii) lack of free iron species in the 

solution since most of the Fe(II) forms complexes, inhibiting the production of free 

radicals (Bigda, 1995; Lin and Lo, 1997; Nesheiwat and Swanson, 2000). Most 

importantly, with increasing pH, the oxidation potential of HO» is known to decrease 

(Kwon et al., 1999). Therefore, pH 3 was chosen to conduct Latent Remediation (LR) 

studies.

Other operating parameters in the Fenton process are: the concentrations of the ferrous 

ions, pollutant and H 2 O2 . It has been reported that rates of degradation increase with 

higher ferrous ion concentrations (Benitez et al., 2001; Kwon et al., 1999; Lin and Lo,

1997) but stoichiometric amounts are recommended otherwise the levels of unused 

iron in the effluent stream may lead to non-permissible levels of total dissolved solids 

(TDS). Likewise, increasing H 2 O2  concentrations are beneficial in Fenton reactions 

but care should be taken as high concentrations could lead to enhancement in the 

chemical oxygen demand (COD) levels (Lin and Lo, 1997). Also, elevated H 2 O2  

concentrations act as scavengers of HO», therefore the chosen concentrations should 

just be high be enough to be used up entirely during the Fenton reaction. As far as 

pollutant concentrations in Fenton reactions are concerned, usually lower 

concentrations or diluted wastewaters are recommended (Benitez et al., 2001; Kwon et 

al., 1999).
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Fenton reactions have proved to be extremely useful in groundwater and/or 

contaminated soil remediation because of the availability of ferrous ions which are 

often found in groundwater (Miller and Valentine, 1995; Tyre et al., 1991). The 

Fenton reaction has also been applied to the oxidation of pentachlorophenol- 

contaminated soils using ferric ions as a catalysts instead of ferrous ions (Watts et al., 

1990) and also for diesel contaminated soils (Watts and Dilly, 1996). Over the last 

decade, Fenton reactions have otherwise being extensively used in the treatment of a 

wide range of organic compounds including herbicides (Miller et al., 1996), pesticides 

(Chan and Chu, 2003), dyes (Barros et a l, 2006; Kuo, 1992; Park et al., 1999), 2,4,6- 

dinitrotoluene (Li et al., 1997a; Li et al., 1997b; Li et al., 1997c), RDX (Hundal et al., 

1997), 2,4-dinitrophenol (Kang et al., 1999b; Wang et al., 1999), chlorobenzene 

(Watts et al., 1997), tetrachloroethylene (Yoshida et al., 2000), halomethanes (Tang 

and Tassos, 1997) and chlorophenols (Barbeni et al., 1987; Pera-Titus et al., 2004; 

Potter and Roth, 1993; Watts et al., 1990). However, there are many other organic 

compounds such as acetic acid, acetone, carbon tetrachloride, methylene chloride, 

trichloroethane, /2-paraffins and maleic/malonic/oxalic acids, which are refractory 

towards Fenton chemistry (Gogate and Pandit, 2004a).

Although the Fenton reagent has been applied in many successful oxidation reactions, 

as mentioned above, there are still some limitations such as restricted oxidant/catalyst 

dosage ratios and low pollutant concentrations. Therefore, successful application of 

the Fenton reaction in wastewater treatment systems demands a combination of Fenton 

oxidation with other AOP, like ozonation, cavitation, UV, chemical and catalytic 

oxidation. Since one of the aims of this project includes the use of cavitational 

reactors for phenol degradation, most of the discussion will be focussed on the 

individual and combined usage of ultrasound (US) and Fenton chemistry. Ultrasound 

has been efficiently used as hybrid method for treatments of various aliphatic, 

aromatic, polycyclic aromatic, halogenated hydrocarbons, azo dyes and some 

pesticides (loan et al., 2007). Also, as discussed in Chapter 4, various methods of 

phenol degradation using different frequency US reactors, oxidants i.e., H 2 O2  and/or 

ozone and zero valent catalysts (ZVC) (iron, ZVI and copper, ZVCu) have been 

reported.
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Zero valent iron (ZVI) was initially used by the researchers (Deng et al., 1999; Dries 

et al., 2001a; Dries et al., 2001b; Gillham et al., 1998; Grittini et al., 1995; Matheson 

and Tratnyek, 1994; Muftikian et al., 1995) to treat waters contaminated by 

chlorinated compounds. In recent years, the use of ZVI in various forms has been 

described for the treatment of TCE (Chen et al., 2001), phenol and aromatic 

compounds (Sanchez et al., 2007), pentachlorophenol (Dai et al., 2006), azo dye Acid 

Orange 7 (Liu et al., 2007), dinitrobenzene (Zhang et al., 2007), DDT, TNT and RDX 

(Boussahel et al., 2007; Oh et al., 2003). Similarly, a few recent studies have also 

reported the use of zero valent copper (ZVCu) catalysts in the degradation of carbon 

tetrachloride (Lin et al., 2005), phenol (Canton et al., 2003), 2,4-dinitrophenol (Guo et 

al., 2005) and;?-chlorophenol (Kim et al., 2007).

The Advanced Fenton Process (AFP), i.e., degradation of organic pollutants in the 

presence of ZVI, hydrogen peroxide (FLCL) at fairly acidic pH 2.5-3, has been 

patented and reported in many papers by Bremner and co-workers (Bremner and 

Burgess, 2004; Bremner et al., 2008; Chakinala et al., 2007a; Chakinala et al., 2008a; 

Molina et al., 2006; Namkung et al., 2006; Namkung et al., 2008). However, the 

novel part of the current study is in the use of ZVCu catalysts as potential catalysts for 

the AFP and duration of US energy input.

In the published papers reporting the AFP, usually, the cavitation treatment time is the 

controlling factor in deciding the overall treatment costs. With an aim of increasing 

the cost efficiency of the process so as to make the procedure more economically 

viable, an innovative approach with overall low energy input and low cost operation, 

named ‘Latent Remediation’ (LR) is now reported in this study. In this study, an 

initial input of ultrasound (US) is applied for a short time and then the degradation of 

the pollutant is allowed to continue silently afterwards. Different forms o f zero valent 

copper catalysts (ZVCu): flitters (ZVCF), turnings (ZVCT) and powder (ZVCP) have 

been used for the study and compared with zero valent iron powdered catalysts (ZVI) 

for their degradation efficiencies. Degradation was measured with the help of total 

organic carbon (TOC) analysis.
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Hence, the main aims of the study were to assess degradation of phenol using LR with 

the effect of the following operational parameters:

■ Low and high frequencies (20, 300 and 520 kHz)

■ Presence and absence of oxidant (H2 O 2 ) and catalysts (ZVI and ZVCu)

■ ZVI and ZVCF, ZVCT, ZVCP catalysts

■ Low (0.6 g L-1) and high (5 g L-1) catalysts amounts

■ US irradiation and stirring input time (15-30 min)

■ Filtered and unfiltered catalyst LR reactions

5.2 Experimental
5.2.1 Chemicals
Latent Remediation studies using multiple (low- and high)-frequency US reactors is a 

continuation of the work described in Chapter 4 but with the difference that US energy 

was inputted for only 15 min instead of continuous US irradiation (60 min). Hence, 

chemicals and their concentrations, i.e., phenol, H2 O2  and zero valent catalysts (ZVC) 

and US reactors (20, 300 and 520 kHz) are the same as described in Chapter 4. This 

study was partially carried out in the Institute of Environmental Studies, Bogazici 

University, Turkey but additional reactions were performed in the University of 

Abertay Dundee using the 20 kHz US reactor and a new batch of zero valent iron 

powder (ZVI; Sigma Aldrich 325 (44 p) mesh 97%) and zero valent copper powder 

(ZVCP; Sigma Aldrich 200 mesh (74 p), 99%) powdered catalysts. The LR 

experiments were performed in a commercial ultrasonic processor (Cole-Parmer) 

equipped with a titanium probe ( 1  cm diameter) capable of operating either 

continuously or in a pulse mode at a fixed frequency of 20 kHz. The intensity o f the 

irradiation was adjusted to 50% of ultrasonic power amplitude, which corresponds to a 

calorimetric measurement of 18 W (0.09 W mL-1). LR experiments were carried out 

with the probe working in pulses, 4.0 s on and 2 s off, which allows the system to 

dissipate some of the heat generated by the ultrasonic waves.

In a typical experimental set-up with 20 kHz (Cole Parmer), the US probe was 

immersed in a 300 mL cylindrical glass beaker containing aqueous phenol solution 

(2.5 mM; 200 mL) and the pH was adjusted to 3.0 with 0.1 M H2SO4. The temperature 

was kept constant at 23 ± 2 °C during all reactions by an external cooling bath. The
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appropriate concentrations of H 2 O2  (Fisher Chemicals, Analytical reagent, 30%) and 

catalysts were added to the reactor just before switching the probe on. Aliquots (5-7 

mL) were withdrawn at specific time intervals and filtered through 0.45 pm  nylon 

membranes before being analysed. The same experimental set-up equipped with an 

overhead stirrer (Jencons; 250 rpm) instead of the ultrasound (US) probe was used for 

the silent experiments.

All the experiments were carried out in either duplicates or triplicates to ensure 

reproducibility and results presented are average of 2-3 experimental data sets. 

Phenol degradation was determined by measuring the decrease in TOC over time. The 

TOC of the initial phenol aqueous solution and the samples taken from the reaction 

medium was measured by wet oxidation analysis (Model 1020 TOC Analyser from 

OI-Analytical).

5.2.2 Experimental design
1. Aqueous phenol (2.5 mM; 200 mL) was set at desired pH and zero min sample 

was taken for TOC measurement (Co). Immediately, known amounts of ZVC 

(0.6 and/or 5 g L-1) and H2 O2  (2.38 g L-1) were mixed with the aqueous phenol 

and reaction was subjected to either 15 min US or stir

2. Soon after US energy input or stirring, the reaction vessel (300 mL glass 

beaker) was covered by aluminium foil to avoid oxidation via natural light

3. Reaction vessel was stored in dark and samples (5-7 mL) were withdrawn at 

specific time intervals to study the phenol degradation over 24, 48 or 72 h

4. Samples were filtered with cellulose membrane filter paper (0.45 pm). 

Filtered and clear solutions were then injected in TOC Machine (1020 OI 

Analytical) for TOC analysis and % phenol degradation (mineralisation) 

(C/Co) has been reported in this study
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5.3 Results and discussion
5.3.1 Preliminary studies
5.3.1.1 LR using multi frequency US reactors

As part of the work done in Chapter 4, LR emerged as an innovative idea to study 

phenol degradation with low energy input. Hence, initial studies were carried out with 

the most optimised conditions, i.e., 300 kHz US reactor followed by comparison with 

two other frequencies (20 and 520 kHz). Results reveal that LR with an initial 15 min 

US irradiation in the 300 kHz US reactor in conjunction with ZVI leads to an overall 

TOC mineralisation of -45%  over 24 h.

Figure 5.1: Effect o f 300 kH z US on phenol degradation using the LR  technique. E xperim ental 
conditions: phenol, 2.5 m M ; US reactor, 300 kHz (15 min); catalysts, ZVI, ZVCF (flitters), ZVCT  
(turnings); H 20 2 (2.38 g L"1); pH 3; %  degradation, TOC analysis.

From the % degradation shown in Fig. 5.1, it can be seen that with ZVI, nearly 35% 

TOC mineralised within the 1 h of reaction time (with only 15 min of US irradiation), 

which is similar to the % degradation obtained by continuous 1 h sonication. 

Therefore, it is assumed that certainly high rates of hydroxyl radical (HO») production 

in the 300 kHz US reactor lead to efficient phenol degradation. However, a further
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10% increase in TOC mineralisation over 24 h. It is believed that the ultrasound 

enhances the dissolution of ZVI in the acid solution to form Fe (II) ions which then 

take part in Fenton chemistry (as described in Chapter 4) to generate HO* and Fe (III). 

It is the essence of the Advanced Fenton Process (AFP) that the ferric ion then 

interacts with ZVI to re-form Fe (II) which further continues to generate HO*. On the 

contrary, degradation profiles using ZVCu catalysts in the 300 kHz US reactors 

showed that only a maximum of 20-30% mineralisation was seen after 24 h, which is 

very similar to the degradation pattern obtained for 1 h continuous irradiation.

As discussed in Chapter 4 ZVI was found to be the most effective catalyst for phenol 

degradation and this is also the case for LR using 300 kHz reactor as shown in Fig. 5.1. 

Therefore, the ZVI catalyst was used to study LR under three different frequencies and 

it was found that 20 kHz US showed highest % mineralisation of 55% which is 10% 

higher than the 300 and 520 kHz US reactors (Fig. 5.2).

Figure 5.2: Com parison o f different frequency U S reactors (20, 300 and 520 kH z) w ith ZVI 
catalyst on % phenol degradation using the LR  technique. Experim ental conditions: phenol, 2.5  
m M , US reactors, 20, 300 and 520 kHz (15 min); catalysts, ZVI (0.6 g L_1); H 2O2 (2 .38 g L-1); pH  
3; %  degradation, TO C analysis.
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The above results showed that along with highest overall mineralisation achieved after 

24 h, the degradation was also quite high (after about 2 h) in case of the 20 kHz US. 

This is attributed to the fact that high mechanical action during cavitation in 20 kHz 

US leads to surface activation of the catalyst and therefore makes it more readily 

available for reaction. Therefore, even though the rates of HO» production at this 

frequency are low compared to the higher frequency US reactors (300 and 520 kHz), 

the rate of reaction and overall mineralisation over 24 h in the LR with 20 kHz US is 

quite high because of the high mechanical activity. It is interesting to note that 

initially, i.e., during the first 90 min after US irradiation is switched off, the 

degradation was faster with the 300 and 520 kHz US, possibly indicating that there has 

been greater production of HO» at these frequencies. It is assumed that due to high 

intensity of cavitation at 20 kHz, the iron particles are further broken down to finer 

particles increasing the number and quality of available reactive sites, thus the 

polished catalysts provide a larger surface area for catalyst/oxidant reactions in the 

bulk solution over longer durations leading to high % degradation.

Table 5.1 shows a comparative study of phenol degradation, using ZVI in the AFP 

with continuous sonication (data obtained from chapter 4) and the newly developed 

LR technique after 1 h and 24. From the data, it is clear that 15 min US energy input 

is sufficient to start the degradation which then continues over 24 h and this 

hypothesis is further supported by data presented later in this chapter with a different 

catalysts and 20 kHz US reactor set-up in a 200 mL reaction volume.

TOC mineralisation (%)
US Irradiation time Continuous US Latent Remediation (15 min US)

US frequencies (kHz) After 1 h After 1 h After 24 h
2 0 39.9 13.4 55.3

300 37.8 33.3 46.9
520 37.0 32.7 50.3

Table 5.1: Com parison o f % TOC m ineralisation achieved through continuous sonication  and LR  
using ZVI catalyst at three different frequencies. E xperim ental conditions: phenol 2.5 mM ; U S  
reactors, 20, 300 and 520 kHz; continuous sonication, 1 h; L R , in itial 15 m in sonication; catalyst, 
ZVI (0.6 g L-1); H 20 2 (2.38 g L-1); pH 3; % degradation, TO C  analysis.
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5.3.1.2 Effect of ZVI characteristics on LR rates

All the studies so far with ZVI were carried out with old ZVI powder ( size, 39 p) 

obtained from the University of Abertay, however for the LR studies in this chapter, 

new ZVI powder was obtained with a different size and purity (Sigma Aldrich; 325 

mesh (44 p), purity 97%, Cat No. 20930-9). However, before use, a comparative 

study was carried out between old (ZVI-O, 39 p) and new ZVI (ZVI-N, 44 p) powder 

by comparing the LR rates over 24 h in the absence of US by using overhead stirring 

for the initial 15 min at 250 rpm to ensure efficient mixing of catalyst, oxidant and 

model compound. This study was carried out in triplicate and Fig. 5.3 presents the 

average value from the three experiments.

Figure 5.3: Com parison o f ZVI-O and ZVI-N  catalysts phenol degradation using  the LR  
technique in the absence o f US. Experim ental conditions: phenol, 2.5 mM ; overhead stirring, 250  
rpm  (15 min); catalysts, ZVI-O and ZVI-N (0.6 g L-1); H20 2 (2.38 g L-1); pH  3; %  degradation, 
TOC analysis.

From Fig. 5.3, it can be seen that although there is not much of a difference between 

the effectiveness of the two ZVI powders ZVI-N is still 5-7% better than ZVI-O, 

hence ZVI-N was chosen for use in all subsequent experiments presented in this 

chapter. It is believed that probably the particle size and surface properties of the two
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powders contributes to the slight differences between the observed phenol 

degradations.

5.3.1.3 Effect of US irradiation time on LR rates

Although preliminary LR studies were carried out by irradiating the phenol solution 

for 15 min, the effect of increasing the initial irradiation time was investigated. 

Therefore, phenol degradation using LR was compared with initial input of 15 and 30 

min of US irradiation and the results are shown in Fig. 5.4 where it can be seen that 

there is no significant difference between overall phenol degradation at the two chosen 

US irradiation times. Hence, it was concluded that 15 min corresponds to a lower US 

energy input and is sufficient to carry out effective mineralisation.

Figure 5.4: Com parison o f 20 kHz US irradiation tim es (15 and 30 m in) along w ith Z V I catalyst 
phenol degradation using the LR technique. Experim ental conditions: phenol, 2 .5  m M ; U S, 20 
kHz (15 and 30 min); catalysts, ZVI (0.6 g L-1); H2O 2 (2.38 g L-1); pH 3; % degradation, TO C  
analysis.
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From Fig. 5.4, it is understood that the initial 10-15 min of US irradiation is sufficient 

enough to get the reaction started with respect to formation of radical species in the 

bulk solution and also conversion of Fe° to Fe2+ and/or Fe3+, which further participates 

in the reaction and carries out mineralisation, therefore more US input after 15 min is 

not necessary. Hence, all the LR experiments were carried out with inputting either 15 

min of US irradiation or 15 min of overhead stirring to facilitate efficient mixing and 

enhanced mass transfer rates between catalysts, oxidants and organic compound.

5.3.1.4 Effect of catalyst amounts on LR rates

So far, phenol degradation using ZVI and ZVCu catalysts in combination with US had 

been carried out with 0.6 g L- 1  and 5 g L_1, respectively, as discussed in Chapter 4 and 

Fig. 5.1. ZVI and H 2 O2  concentrations for phenol degradation were optimised earlier 

by Molina et al. (2006), hence the same was used for all the experiments reported in 

this thesis. However, ZVCu catalysts, i.e., flitters, turnings and powder, were novel 

catalysts especially chosen to assess their efficacies to carry out the AFP. Preliminary 

studies with copper flitters (ZVCF) and turnings (ZVCT) reported in Chapter 4 were 

carried out at 5 g L_1 catalyst amount, however for comparative work zero valent 

copper powder (ZVCP), zero valent copper flitters (ZVCF; Plate 5.1) and zero valent 

copper turnings (ZVCT; Plate 5.2) were compared at two different amounts, i.e., 0.6 g 

L- 1  and 5 g L- 1  in the different 20 kHz US reactor set-up with 200 mL reaction volume 

and results are presented in Fig. 5.5. However, to avoid the effect of US on this 

reaction, aqueous phenolic solutions were only stirred for 15 min at 250 rpm at the 

start of the experiment with ZVCP or ZVCF or ZVCT along with H 2 O2  and the 

degradation was measured over 24 h.
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F ig u re  5 .5: C o m p a r iso n  o f  d if fe re n t a m o u n ts  a n d  ty p e s  o f Z V C u  c a ta ly s ts  f o r  p h e n o l d e g r a d a t io n  
u s in g  th e  s ilen t L R  te c h n iq u e . E x p e r im e n ta l  co n d itio n s : p h e n o l, 2 .5  m M ; o v e rh e a d  s t i r r in g ,  250  
rp m  (15 m in ); Z V C u  c a ta ly s ts  (0.6 a n d  5 g L " ') :  Z V C P , Z V C F , Z V C T ; H 20 2 (2 .38  g L 1); p H  3 ; % 
d e g ra d a t io n ,  T O C  an a ly s is .

P la te  5 .1: Z V C F  (c o p p e r  f litte r s ) P la te  5 .2 : Z V C T  (c o p p e r  tu rn in g s )



D eg rad a tio n  II: L R

From Fig. 5.5, it is clear that ZVCP is the most efficient at degrading phenol. 

However, the experimental data reveals that a low amount of ZVCP (0.6 g L-1) is 

comparable to higher amounts of ZVCF/ZVCT (5 g L-1) for phenol degradation. The 

extent of phenol degradation with ZVCP (0.6 g L- 1  and 5 g L"1) was found to be the 

same (60%) until about 9 h of silent reaction, but TOC mineralisation with ZVCP (0.6 

g L-1) increased to 83% after 24 h, whereas ZVCP (5 g L-1) remained constant, at 60%. 

In contrast, ZVCT (0.6 g L-1) could only mineralise around 5% phenol over 9 h but 

after 24 h the ZVCT (0.6 g L-1) mineralisation remained at 5% but ZVCF (0.6 g L-1) 

had increased to 50%. Thus, the best mineralisation is achieved with ZVCP (0.6 g L~ 

*) and this is attributed to a suitable catalyst oxidant ratio required for efficient phenol 

degradation. Higher amounts of catalyst inhibit the rates of reaction due to 

decomposition of H2 O 2  required to carry out further mineralisation, hence any increase 

in catalyst quantity does not enhance the overall degradation. However, higher 

amounts of the catalysts like ZVCF and ZVCT (which have much larger particle size 

initially) increase the surface area required for the reaction and therefore they are 

better suited instead of lower amounts. It is noteworthy that silent reactions without 

any initial US irradiation could efficiently carry out Fenton like reactions in the AFP 

using ZVCu catalysts. Therefore, one of the main objectives of this study, i.e., to test 

different ZVCu catalysts for carrying out the AFP has been successfully achieved and 

reaction mechanisms will be discussed later in this chapter.
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5.3.2 Effect of ZVI and ZYCP on LR rates
After optimising the type and amounts of catalysts, the rates of LR were compared for 

0.6 g L' 1 ZVI and ZVCP catalysts with minimum energy input of 15 min either 

overhead stirring (250 rpm) or US irradiation (20 kHz). LR rates with ZVI and ZVCP 

in the AFP were also studied and compared in the presence and absence of catalyst 

and oxidant conditions.

Figure 5.6: Com parison o f  phenol degradation with the ZV I catalyst under different operating  
conditions using the LR technique. Experim ental conditions: phenol, 2.5 mM ; U S, 20 kH z (15  
min); stirring, 250 rpm  (15 min); catalysts, ZVI (0.6 g L-1); H 20 2 (2.38 g L_1); pH 3; % 
degradation, TOC analysis.
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Fig. 5.6 shows a comparison of the different operating conditions for ZVI as the 

catalyst. It can be easily seen from the figure that the presence of catalyst and H 2 O2  is 

essential for a decrease in TOC. Thus, use of US/stirring in the initial 15 min time 

acts as an initiator of series of reactions as indicated in Eq. 5.3-5.6. Use of US 

facilitates a larger production of radicals as compared to the use of stirring alone as 

indicated by higher TOC mineralisation for the case of ZVI as catalyst.

Fe° — — ► Fe2+ (5.3)
Fe2+ + H 2 0 2 ------- ► Fe3+ + HO» + OH” (5.4)
Fe° + 2Fe3+ ------- ► 3Fe2+ (5.5)
HO* + Pollutant--------► CO2  + H 2 O + small organic acids (5.6)

From the above equations, it can be seen that the ZVI catalyst is capable of conversion 

of Fe° to Fe2+ and also Fe3+ to Fe2+ which is essential for carrying out the classic 

Fenton reaction expressed in Eq. 5.1 and 5.2. Therefore, it can be suggested that ZVI, 

in the presence of H 2 O2  and at pH 3, provides an effective alternative to the 

conventional Fenton chemistry.

From the above comparison graph, it can be noted that phenol degradation with initial 

15 min US treatment has been quite effective right from the start o f the reaction and 

between 12 and 24 h, pronounced phenol degradation were achieved when compared 

with those of 15 min of stirring. With only 15 min of stirring, the % degradation did 

not change between 12 and 24 h indicating that less HO* were produced.

Therefore, the hypothesis drawn from this study is that an input of US irradiation 

could help in catalysing the reaction and a balanced stoichiometric ratio of catalyst and 

oxidant is essential to achieve high phenol mineralisation. This hypothesis is in 

agreement with various reports published in the literature where synergism of Fenton 

with US, termed ‘sono-Fenton’ proves to be beneficial for increasing % degradation 

(as discussed in Section 5.1). However, LR, with substantially lower energy inputs, 

has capability to carry out degradation under silent conditions is being reported in this 

research for the first time which makes this work novel and meets the scope of this 

study.
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In a related investigation, similar amounts of ZVCP catalyst were also tested under 

various operating conditions and the results are presented in Fig. 5.7. However, unlike, 

ZVI, where a benefit of using US/ZVI together was observed, ZVCP gives similar 

degradation results of 80% and 83% TOC mineralisation with US/ZVCP and 

Stir/ZVCP, respectively (Fig. 5.7).

The results shown below are in agreement with literature reports (Entezari et al., 2003) 

where after 180 min of either 20 kHz U S  or silent treatment, 80% phenol removal was 

obtained with both C U SO 4/H 2SO 4/U S and CuS0 4 /H 2 S0 4 /Stir and also represented the 

classical the Fenton type reactions with copper catalysts (Eq. 5 .7-5.8 ).

From Fig. 5.7, it is also obvious that absence of either catalyst and/or H 2 O 2  affects 

the % degradation to a great extent, as is also reported in the literature copper ions 

alone cannot enhance sonochemical degradation (De Visscher and Van Langenhove, 

1998), however this is contrary to results reported by Ingale and Mahajani (1995) who 

stated that nickel and copper ions alone enhanced the % degradation of unidentified 

refractive compounds into chemically degradable compounds. Another relevant 

observation (De Visscher and Van Langenhove, 1998) is that although CUSO4 /H 2 O2  

did not influence trichloroethylene (TCE) degradation, but efficiently degraded 1,3- 

dichloro-2-propanol (DCP), both the organic compounds degraded silently after 

sampling, which we have termed as LR, but this phenomenon was not reported in 

detail.

Thus, LR studies presented in this chapter with ZVCP and ZVI with only initial 15 

min of stirring or US treatment is assumed to be superior in terms of energy 

consumption and overall treatment cost (not estimated). Alternatively, ZVCP could 

also be used as a potential catalyst in AFP or classic Fenton like reactions to 

efficiently degrade toxic pollutants.

H2 0 2  + Cu2+-------- ► Cu2+ + »H 0 2  + H+
t r r\ , r-\,+_____ w 1 , urv. . r̂ ,,2+H2 0 2  + Cu+------- ► HO" + HO* + Cu2

(5.7)
(5.8)
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Figure 5.7: Com parison o f phenol degradation w ith ZVCP catalyst under different operating  
conditions using the LR technique. Experim ental conditions: phenol, 2.5 m M ; U S, 20 kHz (15  
m in); stirring, 250 rpm  (15 min); catalysts, ZVCP (0.6 g L-1); H 20 2 (2.38 g L-1); pH 3; % 
degradation, TOC analysis.

5.3.3 Effect of removing the ZVC after 15 min reaction
This investigation was carried out to assess the effect of having the catalysts, ZVI and 

ZVCP, absent during the LR stage and was carried out by inputting 15 min of either 

stirring or US to the reaction solution followed by filtering the catalysts and 

subsequently monitoring the degradation of phenol in the filtrate over 24 h time. It is 

seen that over a 24 h period the extent of mineralisation is reduced compared to the 

case where the catalyst remains in situ throughout the LR phase (compare with Fig. 

5.6) possibly giving credence to the idea that the ZVC are promoting the reduction of 

Fe3+ back to Fe2+ and thus continuing the Fenton process, as shown in Eq. 5.5 (Fig. 

5.8).
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Figure 5.8: Phenol degradation using LR technique after rem oval o f  the catalyst. E xperim ental 
conditions: phenol, 2.5 mM ; US, 20 kHz (15 min); stirring, 250 rpm  (15 m in); catalysts, Z V C P  
and ZVI (0.6 g L_1); H 2O2 (2.38 g L-1); pH 3; % degradation, TO C analysis.

Initial 12 h phenol filtrate catalysed by either ZVCP/ZVI or US/Stir shows minimum 

difference in the % degradation (3CM10%), as time proceeds, the 24 h results shows 

45-55% mineralisation under the above mentioned conditions but at the end of 72nd 

h, % degradation with ZVCP-filtered/US shows pronounced difference in the phenol 

removal (81%) as compared to the ZVI-filtered/US (57%) and/or ZVCP-ZVI- 

filtered/Stir (65-70%). The stirred reactions with ZVCP and ZVI showed absolutely 

no difference in their phenol degradation even after 72 h reaction time, but, in the 

sonicated reactions, of phenol degradation with ZVI stabilised after 24 h but continued 

to increase in case of ZVCP. This could be attributed to the additional free radicals in 

bulk solution catalysed copper mediated chain reactions whereas, in ZVI filtrates 

maybe the continuous presence of catalysts continuously supply ions required for iron 

mediated chain reactions. However, this hypothesis still can be argued for the fact that 

ZVCP-ZVI-filtered/Stir reactions could still carry out better mineralisation than that of
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ZVI-flltered/US but here for the filtered-non-filtered catalysts LR reactions, this 

argument to lead to erroneous conclusions.

Therefore, for a better understanding the reactions with ZVCP/ZVI and US/Stir which 

had been filtered are compared with those under non-filtered reactions, i.e., the usual 

LR for 24 h reaction period and this will give an insight into the role catalysts played 

in the process of phenol degradation (Fig. 5.9).
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Figure 5.9: Com parison of filtered and unfiltered L R  reactions on phenol degradation. 
E xperim ental conditions: phenol, 2.5 m M ; U S, 20 kHz (15 m in); stirring, 250 rpm  (15 min); 
catalysts, ZVCP and ZVI (0.6 g L-1); H 2C>2 (2.38 g L"1); pH 3; blocked sym bols, U S; hollow  
sym bols, stir; %  degradation, TOC analysis.

It can be seen from Fig. 5.9 that there is a remarkable difference between reactions 

where the catalysts have been filtered (45-55%) and the non-filtered reactions (55- 

80%). Certainly, the usual ZVCP LR reactions could still carry out maximum
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mineralisation irrespective of US or stir conditions however ZVI performs best in the 

US-initiated LR. Therefore, it is concluded from the study that in heterogeneous 

catalytic chemical oxidation, the surface of the catalysts enhances the formation of 

various radical species required during the process of degradation. ZVCP catalysts 

show better % degradation irrespective of presence/absence of US but sonication of 

ZVI recharges the catalyst surface which in turn enhances the properties of the 

reactive sites contributing to high mineralisation in US-LR compared to Stir-LR in 

the non-filtered reactions. Whereas, in the case of the filtered ZVCP/ZVI in the U S - 

LR reactions, initial % mineralisation were fairly high in the case of ZVI but showed 

similar degradation (45%) as ZVCP at the end of 24 h reaction time. The overall 

conclusion drawn from this part of the study stresses the fact that the availability of a 

heterogeneous catalyst surface is important in order to initiate and mediate various 

radical chain reactions and also to act as nucleation sites for formation of radical 

species.

5.4 Toxicity evaluation
From the above study, it is quite obvious that ZVCP catalysts, in conjunction with the 

AFP, have an ability to carry out high phenol degradation similar to Fenton-like 

reactions. However, the issue relating to toxicity of copper needs to be addressed. 

Consequently, toxicity evaluation (Courtesy: Dr. Andreas Tiehm team, Karlsruhe 

University, Germany) was carried out on several US-LR samples of ZVI and ZVCP 

collected at different stages of the reactions (24, 48, 72 h) and from various US 

irradiation times (15 and 30 min). Results shown in Table 5.2 indicate high toxicity 

by the all of the ZVCP samples, whereas there is a decreased toxicity shown by the 

ZVI samples. Interestingly, the sample of ZVI from the 30 min US-LR reaction after 

24 h showed a lower toxicity compared to a sample removed after 15 min of 

irradiation and kept for 48 and 72 h. This is probably due to the toxicity present due to 

the residual hydrogen peroxide in the 15 min sample. Thus, the conclusions drawn 

from the above study are that although ZVCP in the AFP is an efficient catalyst in 

degrading phenol, the ecotoxicity analyses indicate that ZVCP is too toxic to be used 

as a catalyst in conjunction with the AFP for wastewater treatment.
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Toxicity

US-LR samples TOC, 
(mg L-')

EC20
(%)

EC50
(%)

Max. inhibition15

(%)
24 h (ZVI, 30 min US) 90.2 15 50 51
48 h (ZVI, 15 min US) 47.8 17 59 42
72 h (ZVI, 15 min US) NDa 34 > 1 0 0 30
24 h (ZVCP, 30 min US) 46.5 8 1 2 >90
48 h (ZVCP, 15 min US) 40.9 1 0 14 >90
72 h (ZVCP, 15 min US) NDa 1 0 14 >90

aN D : N o t detec ted .
bF o r 50%  S am ple + 50%  m ineral m edium .

Table 5.2: Toxicity evaluations on various ZVI and ZVCP U S -L R  sam ples  
(Courtesy: Dr. A ndreas Tiehm  team , K arlsruhe U niversity, G erm any).

Toxicity of the sonicated samples was measured by diluting the samples. The dilution 

factor resulting in a 20% and 50% reduction (EC20 and EC50) of bioluminescence 

was determined. A higher EC20 or EC50 corresponds to a lower toxicity (Section 

2.4.8) (Tiehm and Neis, 2005).
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5.5 Summary
A comparison of the different operating variables used in the study of Latent 

Remediation is summarised below in Fig. 5.10.
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H 2 0 2 , 2.38 g L-1; ZVC, 0.6 g L-1; pH 3; reaction tim e, 24  h; US or stir input tim e, 15 m in; 
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The main aim of the study was focused on developing greener and cost-effective ways 

to degrade toxic pollutants, therefore only initial 15 min sonication or stirring was 

provided to the reaction medium in order to initiate HO» production from H 2 O2  and 

ZVI or ZVCP. From the above study, the following conclusions may be drawn:

■ Mechanical activity and high intensity 20 kHz US-LR along with a ZVI 

catalyst is more effective at mineralising phenol than 300 and 520 kHz.

■ Increased sonication time of 30 min, did not have any pronounced effect on the 

LR rates.

■ Higher amounts of ZVCP (5 g L-1) did not prove to be beneficial in increasing 

LR rates, whereas higher amounts of ZVCF and ZVCT showed a pronounced 

increase in LR rates when compared to 0.6 g L- 1  attributed to the presence of 

larger surface area.

■ The presence of oxidant and catalyst in the bulk solution was found to be 

essential to carry out efficient LR using the Advanced Fenton Process.

■ ZVI-mediated LR performed best in US initiated reactions, whereas ZVCP 

lead to equal % mineralisation with both US and/or stirred reactions.

■ The presence of a heterogeneous catalyst in bulk solution is beneficial and 

leads to >80% TOC mineralisation.

■ ZVCP could be used as an alternative catalyst in Fenton-like reactions and/or 

the AFP.

■ Toxicity evaluation prefers ZVI for integrated wastewater treatment systems.

■ Overall Latent Remediation provides an emerging technology to treat toxic 

wastewaters at comparatively low costs and decreased energy inputs.
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Chapter 6

Degradation III: Investigation of activated 

carbon cloth and oxidants for phenol 

removal via adsorption/oxidation

Platform  presented paper: International O zone Conference

C hand , R. (15 th- 1 6 th M ay  2008). R em ed ia tion  o f  pheno lic  w astew aters u sin g  ozone, h y d ro g en  p e ro x id e  

ca ta lysts and cav ita tion . In tern a tio n a l C on ference  on O zone a n d  R e la ted  O xidan ts  in A d v a n c e d  

T rea tm en t o f  W ater. B russe ls, B elgium . [Specia l p rize  aw arded  fo r bes t p resen ta tion ].
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6.1 Introduction
Until recently, industrial effluents were treated by traditional techniques like filtration, 

reverse osmosis, flocculation, coagulation, precipitation and finally incineration. In a 

traditional approach, the pollutants were transferred from the liquid phase to a solid 

phase and for years activated carbon (AC) has been known as the best for adsorption 

of various toxic pollutants. Activated carbon is commercially produced and widely 

used in various treatment methods to remove toxic pollutants from the environment, 

i.e., packed towers with AC have been extensively utilised as air pollution control 

devices. Likewise there are many reports on the adsorption of toxic pollutants on the 

surface of the AC (Takaoka et a l , 2007). However, adsorption of toxic pollutants 

from either gas or liquid phases onto a solid phase is not the final disposal method, 

therefore secondary treatment or combined technologies are required to effectively 

treat the adsorbed pollutant and also reuse the spent AC.

Individual and combined techniques utilising granular activated carbon (GAC) and 

other Advanced Oxidation Processes (AOPs) have been commonly used in water and 

wastewater treatment in order to remove toxic pollutants (Faria et a l, 2005; Lin and 

Lai, 2000; Lin and Wang, 2003; Lopez-Lopez et a l, 2007; Quinlivan et a l, 2005; 

Zhang et a l, 2006), however on the industrial scale, the use of fibrous activated 

carbon in the form of cloth (ACF/ACC) or felt has received enormous attention as an 

adsorbent for purifying water as well as air (Brasquet et a l, 1996; Delanghe et a l, 

1996; Economy et a l, 1996; Le Cloirec et a l, 1996, 1997). ACC/ACFs are produced 

from a natural or synthetic precursor by carbonisation and activation at 800/1000 °C in 

the presence of CCL or steam (Suzuki, 1991). The ACFs, so produced have high 

specific surface areas (800-2000 m 2  g-1) and micropores with diameters in the range 

from 5 to 2 1  A, are directly connected to the external surface of the fibres ensuring 

that the initial adsorption velocities are higher than that of granules (Ryu, 1990).

For over two decades, ACs have also been efficiently used as metal catalyst support 

material but there are very few reports of the effects of AC on the decomposition of 

toxic organic substances at low temperatures (Bozzi et a l, 2005; Carabineiro et a l, 

1999; Shimada et a l, 1998). Bozzi et a l (2005) reported the decomposition of 

industrial wastewaters on non-adsorbing Fe/C fabrics (combination of AC and Fenton-
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based systems) and addressed the pre-treatment of toxic and recalcitrant compounds 

such as chlorinated aromatics and non-aromatics, anilines, phenols and methyl-tert- 

butyl-ether (MTBE) found in industrial wastewaters. In that study, the main aim was 

to reduce the TOC (the hydraulic load) for further bacterial processing during the 

secondary effluent treatment and the degradation rates were studied as a function of 

the amount of oxidant (H2 O2 ) used, recirculation rates, solution pH and temperature. 

Results indicated the potential of Fe/C fabrics as Fenton immobilised catalysts in the 

treatment of real wastewaters containing important families of toxic industrial 

compounds. Fe/C fabrics have also successfully been reported for the degradation of 

azo-dye Orange II (Yuranova et al., 2004) and Fe/Silica fabrics for degradation of 

industrial wastewaters (Bozzi et al., 2003). Other researchers have attempted to 

decompose toxic organic compounds, like trichloroethylene and pentachlorophenol, 

by combined techniques of AC and microwave irradiation, however the relationship 

between the nature of the carbon and the organic compounds decomposition have not 

been discussed in detail (Jou, 1998; Liu et al., 2004).

Furthermore, it is believed that the characteristics of the surface of the AC such as the 

number of active sites (free radicals) and the functional groups present both influence 

the overall reaction and relationship between the organic compounds and the AC 

(Gomez-Serrano et al., 1994; Otake and Jenkins, 1993; Strelko et al., 2002; 

Szymanski et al., 2002). Carbon functionalisation with oxygen, nitrogen and sulphur 

has been widely investigated and oxygen surface groups have been reported to be, by 

far, the most important in influencing the properties of carbon (Boehm, 2002). 

Recently, in a separate study, it was reported that a reducing treatment with H 2  could 

also strongly modify the redox properties of an AC resulting in remarkable effects on 

the catalytic properties towards decomposition of H 2 O 2  and oxidation of aqueous 

organic pollutants (Oliveira et al., 2004).

Since the main objective of this current study was to assess the effect of different types 

of activated carbon cloths (ACC), pH, temperature and different oxidising agents, i.e., 

H2 O2  and O3 in conjunction with ACCs on phenol removal via adsorption/oxidation, 

previous findings and observations with H 2 O2 /O 3 /AC, in particular, have been taken 

into account and are presented here to present a background for this study.
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As discussed above, adsorption on AC is one of the most commonly used treatments, 

which are process based, for the concentration and immobilisation of pollutants on the 

surfaces of granular/powdered AC, termed as ‘interface phenomenon’. However, 

tertiary treatment by adsorption alone is not an environmentally complete system, 

unless the immobilised pollutants on the spent or used carbon surface are removed as 

well. Thus, adsorption alone cannot be compared as to the treatments via advanced 

oxidation systems, where there is neither any accumulation nor transport o f the 

pollutant from one medium to another (Ince and Apikyan, 2000). Thus, there have 

been proposed advanced methods, termed phase transfer oxidation, to cope with this 

problem involving two simultaneous operations: (i) fixed-bed adsorption of the 

pollutant from the effluent and (ii) advanced oxidation for destructive regeneration of 

the adsorbent (Liu et ah, 1996; Mourand et al., 1995; Notthakun et al., 1993). This 

strategy has been reported to provide significant benefits as ‘on-site regeneration’ and 

eliminate loading, transportation and repackaging of the adsorbent (Mourand et al., 

1995).

Hydrogen peroxide (H2 O2 ) in conjunction with AC tends to modify the catalytic 

properties of AC for adsorption and/or degradation, however yet again, in this context 

of granular activated carbons (GAC) have been discussed in detail with different view 

points but there are very few reports describing ACCs/ACFs in conjunction with 

O3 /H 2 O2  at room temperature (Lei et a l , 2007). The oxidation of organic compounds 

in the aqueous medium using H 2 O2  catalysed by AC has been investigated and 

reported an interesting feature emerges wherein the AC acts as adsorbent as well as 

catalyst/promoter for the oxidation of organic contaminants (Ince and Apikyan, 2000; 

Ince et al., 2002; Lucking et al., 1998). Catalytic decomposition of H2 O2  and 4- 

chlorophenol (4-CP) was studied in the presence of AC and results revealed that the 

combination of H2 O2  and GAC did not increase the total removal of 4-CP over single 

GAC adsorption (Huang et al., 2003). Although, the decomposition mechanism of 

H2 O2  is still not well understood several electron transfer processes have been 

suggested to take place during the reaction. According to these mechanisms, it is 

believed that reaction might be initiated by a reducing site transferring an electron to 

H2 O2  to produce a HO* radical or by reaction of peroxide transferring an electron to 

an oxidising site yielding a HOO* species (Biniak et al., 2002; Falcon et al., 2001;
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Grajek et aL, 2001; Heil and Sontheimer, 1972; Jans and Hoigne, 1998; Khalil et ah, 

2001; Radeke et al., 1989; Yang and Mccreery, 2000).

Oliveira et al. (2004) proposed a competitive mechanism (Scheme 6.1) for the H 2 O2  

reactions in the presence of AC and reported that both reactions, i.e., H 2 O2  

decomposition and oxidation of organics by H 2 O2  were taking place via radicals as 

suggested by the inhibition effect observed during the H 2 O2  decomposition by the 

presence of organics such as phenol, hydroquinone and the Drimaren Red textile dye. 

The author explained that the reactions were initiated by the activation of H 2 O 2  by a 

reducing site in a Fenton like reaction (Ince and Apikyan, 2000; Ince et al., 2002; 

Lucking et al., 1998) to produce an HO* radical intermediate, which could then react 

according to the two competitive pathways: (i) reacting with another H 2 O2  molecule 

leading to the decomposition to O2  and (ii) oxidation of organic molecules in aqueous 

medium. This explanation could be helpful later while discussing 

adsorption/oxidation interaction of different ACCs and H 2 O2  for phenol removal.

h + + o 2

h o 2* <

Activated carbon 
Reducing site (e~)

Activated
carbon h 2 o 2

Oxidation 
of organics

h o 2*

Schem e 6.1: Proposed com petitive m echanism  for the H 20 2 reactions in  conjunction w ith  AC  
(O liveira et a l., 2004).
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The above reactions could also be presented as follows Eq. 6.1 and 6.2 (Khalil et a l,

2001):

AC-OH + H+OOH------ ► AC-OOH + H20  (6.1)
AC-OOH + H2 0 2 ------- ► AC-OH + H20  + 0 2  (6.2)

As discussed above, AC is considered to function as an electron transfer catalyst 

similar to the Haber-Weiss mechanism known for the Fenton reaction with AC and 

AC+ as the oxidised and reduced catalyst states (Kimura et a l, 1996) (Eq. 6.3 and 

6.4):

AC + H2 0 2-------► AC+ + HO* + OH- (6.3)
AC+ + H 2 0 2 --------► AC + H 0 2* + H+ (6.4)

The above equations have supported various studies showing that contaminant 

removal in aqueous AC suspensions can be achieved (Huang et a l, 2003; Lucking et 

al, 1998). Huang et al. (2003) compared several AC samples after treatment with 

oxidising agents and studied their decomposition and catalytic activity and reported 

that the decomposition activity of the modified AC sample towards H2 0 2  was lower; 

on the contrary, the catalytic activity towards the decomposition of 4-chlorophenol 

was slightly higher as compared to the virgin AC.

Likewise, based on findings by Jans and Hoigne (1998), the activity of AC for the 

transformation of ozone (O3 ) into HO* radicals including various operational 

parameters, i.e., carbon/ 0 3  dose, carbon type and treatment time was also quantified 

(Sanchez-Polo et a l, 2005b). These authors presented a similar conclusion for O3  as 

H2 0 2  that in conjunction in AC/O 3 system, AC does not really act as catalyst but 

rather as a conventional initiator or promoter for the O3  transformation into HO* 

radicals. They also reported that O 3 decomposition constant (Ap) increases with the 

presence of AC in the system and also depending on the type of AC added, the ratio of 

HO* and O3 , i.e., Rct value ([HO*]/[0 3 ]), increases by a factor 3-5. Their results also 

revealed that the activity of the AC, as measured by the ability to transform O3 into 

HO* radicals, depended on the surface chemical and textural properties and the most 

efficient carbon materials were those with high basicity and large surface area. Their 

results showed that interaction between the O3 and pyrrole groups present on the
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surface of the AC increases the concentration of CL*- radicals in the system, which in 

turn enhances the transformation of O3 into HO* radicals. Additionally, it was 

reported that the activity of AC decreases with prolonged exposure to O3, which 

proves that AC really does not act as catalyst but as an initiator for the O3 

transformation to HO* radicals.

Thus, O3 has also been extensively studied in conjunction with AC as it is believed 

that the combined technology of ozonation with other catalysts i.e., catalytic ozonation 

minimises its practical limits, including selective oxidation and low O3 utilisation 

efficiency in wastewater treatment (Cannon et al, 1996; Croll, 1996; Fontanier et a l, 

2006; Kainulainen et a l , 1995). In the presence of AC, O3 offers enhanced process 

yields possibly due to catalytic effects provided by the active surface groups (Zaror, 

1997). The Boehm titration’s and FTIR studies also indicated that the ACF/O 3 

systems in water can significantly change the composition of the acidic surface 

oxygen-containing groups of the ACF, leading to an increase in the carboxylic, 

hydroxylic and carbonylic groups as well as a slight increase in the lactonic groups 

(Qu et al., 2007). Likewise, the effect of temperatures (25 °C and 100 °C) was studied 

with AC/O3  systems for their ability to adsorb, phenol, /?-nitrophenol and p- 

chlorophenol from aqueous solutions and it was reported that as a rule, O 3 treatment at 

either room temperature or 100 °C gave rise to acidic surface oxygen groups (SOG), 

however at 25 °C primarily carboxylic acids were formed while a more homogeneous 

distribution of carboxylic, lactonic, hydroxyl, carbonyl groups was formed at 100 °C 

(Alvarez et a l, 2005). The study also showed that exposure of GAC to O 3  at room 

temperature decreased the ability to adsorb phenols, whereas at 100 °C, the adsorption 

was not restricted but, in fact, enhanced.

In the GAC-O 3  integrated process, pollutant removal is improved while the time 

before the GAC is exhausted is prolonged and therefore this process has turned out to 

be an attractive alternative in dye, textile and other organic wastewater treatment 

(Faria et a l, 2005; Quinlivan et a l, 2005; Sanchez-Polo and Rivera-Utrilla, 2003). 

This integrated technology in wastewater treatment presents strong synergistic effects, 

especially in the mineralisation of organic compounds (Rivera-Utrilla and Sanchez- 

Polo, 2002; Sanchez-Polo et a l, 2005a; Sanchez-Polo and Rivera-Utrilla, 2003, 2006).

136



D eg rad a tio n  III: A C C

Adsorption-ozonation-regeneration (Faria et cil., 2005; Lin and Lai, 2000; Lin and 

Wang, 2003) suggests that GAC possesses excellent adsorption ability, where the 

pollutants get adsorbed onto the surface, gradually oxidise and in the meantime the 

GAC gets regenerated. Whereas, in catalytic ozonation (Sanchez-Polo and Rivera- 

Utrilla, 2003), GAC initiates the radical-type chain reactions in the aqueous media and 

the oxidation process is catalysed by the GAC.

Detailed reaction mechanisms and kinetics of the integrated AC/O 3 process for both 

single ozonation and AC-ozonation have been presented in a study for the ozonation 

of aqueous gallic acid using AC at pH 5 and their positive synergism has also been 

discussed (Beltran et al., 2006). Hydrogen peroxide, ketomalonic acid and oxalic 

acids were identified as by-products (Eq. 6.5 and 6 .6 ; G = gallic acid; Int = 

Intermediates; Ox = oxalic acid and Ket, = ketomalonic acid) and also possible 

mechanisms of AC-ozonation-assisted degradation have been proposed in Eq. 6 .7- 

6.12. The study revealed that this process involved two main periods of reactions: (i) 

complete disappearance of gallic acids, during which ozonation rates were found to be 

slightly improved due to the presence of AC and (ii) AC played an important role as a 

promoter due to which the total mineralisation of the organic components in the water 

was achieved. Thus, in this case, the organic matter removal was reported to be the 

sum of contributions of direct O3 reactions and adsorption during the first period and a 

free radical mechanism likely improving surface reactions of O3 and H 2 O2  on the 

carbon surface, during the second period. Also, a third transition period was reported, 

where by-products reached maximum values and ozonation was probably due to both 

direct and free-radical mechanisms involving O3  and adsorption.

G + CL kp  ̂
Int + l̂n
h 2 o 2 4 _____ ^
H 0 2  + 0 3  ——
A C  + H2O2 
A C + +  6 3  ◄—  
HO* + Ox —  
HO* + Ket —

Int + H2 O2

Ket + Ox + H 2 O2  

HOC + H+ many steps
-► h o 2* + 0 3 * ■
— ► AC-H 2 0 2  

—► A C -0  + Oo

many steps 
many steps

►HO*
-►HO*
-►H2 O2

►  CO2 + H2O
-► co2 + h 2o

or HO 2

(6.5)
(6.6)
(6.7)
(6 .8)

(6.9)
(6.10) 
(6.11) 
(6.12)
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From the presented literature, it can be seen that a lot of studies related to GACs in 

conjunction with strong oxidants reveal the catalytic efficiency and industrial potential 

of ACs to treat toxic wastewaters. Hence, the main idea of this research was to 

investigate the potential usage of activated carbon cloth (ACC) for toxic phenol 

removal from wastewaters via adsorption and chemical oxidation.

Following are main objectives of this research to assess the effect of the single and 

combined systems on phenol removal:

■ to study the effect of reactor performances (peristaltic pumps, shaker bath and 

US bath) for ACC/oxidant systems

■ to compare ACC types and amounts (ACC-Std, ACC-Cu, ACC-Ag, ACC- 

extra)

■ to study the effect of different concentrations of hydrogen peroxide (H2 O2 : 

1.19, 2.38 and 4.76 g L “‘)

■ to explore the effect pH (3, 5.5 and 9) and temperature (20,40, 80 °C)

■  to investigate types and duration of ozone (O3) treatments (bulk and/or step­

wise ozonation)

■ to examine thermal regeneration and reuse
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6.2 Experimental
6.2.1 Chemicals
For clarity, this section is presented in tabular form:

Chemicals Company Concentrations Types
Phenol Fluka 2.5 mM (made from 

50 mM stock solution; 
10 mL made up to 
200 mL in a vol. 
flask)

Same for all 
experiments

Hydrogen peroxide Fisher 1.19, 2.38 and 4.76 g Added at
(H2 0 2) (30%) Chemicals L- 1 once or step­

wise
Ozone (O3) Triogen Dial 5; 0 2 -C>3 

flowrate 5 L min-1; 
5.6-6.3 mg O3 L- 1

Added at 
once or step­
wise

Activated carbon cloth Carbon Filter (x2) discs, 25 mm dia. aCFT 551,
(ACC) Technology

(CFT)
each; weight, 0.085 g; 
0.85 g L- 1  w/v

552, 553, 
554, 555

Ultrasonic bath (US 
bath)

Kerry
Scientific

— —

Shaker bath Grant
Operations

— 20, 40, 80 °C

Peristaltic pump MasterFlex - —

pH (adjusted with 1 mM 
H2 S 0 4  and 1 M NaOH; 
Fisher Chemicals)

Metier Toledo 3, 5.5 and 9

aC F T  551, ac tiva ted  carbon  c lo th  (A C C ) w ith  s tandard  co n s tru c tio n  160x86  (A C C -S td ); C F T  552 , A C C  
w ith  ex tra  yarns 160x100  (A C C -E xtra); C F T  553 , copper im pregna ted  on A C C -S td  (5 .2%  copper; 
A C C -C u); C F T  554, copper im pregnated  on A C C -E x tra  (4 .2%  copper; A C C -E x tra -C u ); C F T  555 , 
silver im pregnated  on A C C -S td  (0 .04%  silver; A C C -A g ). A ll sam p les  o f  A C C  ob ta in ed  f ro m  C arb o n  
F ilte r T echno logy  (C F T ), U K  (h ttp ://w w w .ca rb filt.co .u k /) .

Table 6.1: List o f chem icals and their concentrations used in  the adsorption/oxidation  
experim ents with ACC for phenol rem oval.

139

http://www.carbfilt.co.uk/


Degradation III: ACC

6.2.2 Reactors
Three different types of reactors were mainly used in this study:

1. Peristaltic pump

2. Ultrasonic bath

3. Shaker bath

A schematic representation of the three listed reactors used in this study is shown 

below and the methods of experimentation in these reactors are discussed in the 

following section.

F ig u re  6 .1 : S ch em a tic  r e p re s e n ta t io n s  o f  A C C  e x p e r im e n ts  in  d if fe r e n t  r e a c to r s :
(A )  : P e r is ta lt ic  p u m p  (1, g e n e r a to r ;  2 , p u m p ; 3, A C C  d isc  h o ld e rs  ( ro u n d ,  25 m m  
d ia .) ; 4 , in le t p ip e ; 5, g la ss  r e a c to r  w ith  p h en o l s o lu t io n ; 6 , o u tle t  p ip e ).
(B )  : U S b a th  (1, U S b a th ;  2 , g la ss  r e a c to r ;  3, A C C  d isc s ; 4 , p h e n o l s o lu tio n )
(C )  : S h a k e r  b a th  (1, o x y g en  c y l in d e r ;  2, o zo n e  g e n e r a to r ;  3 , O 2+ O 3 g a s  b u b b le r ;  4, 
h o r iz o n ta l  s h a k e r ;  5, s h a k e r  b a th ;  6 , c losed  r o u n d  b o tto n  f la sk  w ith  p h e n o l so lu tio n  
a n d  A C C  discs).
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6.2.3 Methods and analyses
6.2.3.1 ACC pre-treatment

ACC obtained from Carbon Filter Technology (CFT) was pre-treated before use by: 

(i) boiling the ACC in dH 2 0  for 1 h (ii) draining the water thoroughly from the ACCs 

(iii) drying in an oven at 130 °C for 24 h and finally (iv) storing the samples in 

desiccators (silica gel) for use in all the experiments.

6 .2.3.2 Peristaltic pump

Aqueous phenol (2.5 mM; 200 mL) was made from the 50 mM phenol stock solution 

by pipetting 10 mL stock and making up to 200 mL in a standard volumetric flask. 

ACC (x2; each weighing 0.085 g; 0.85 g L- 1  w/v) were fitted into filter holders fixed 

to the inlet pipes into the beaker, containing 200 mL phenol solution and the solution 

was re-circulated back to the beaker through the outlet pipes (Fig. 6.1 A). Aliquots of 

5-7 mL were withdrawn after every 30 min for TOC analysis during the 180 min 

reaction time. The samples were filtered prior to analysis with the help of cellulose 

membrane filters as described in Chapters 4 and 5. In some cases samples (5 mL) were 

also stored at the end of the 180 min reaction time for GC-M S analysis for 

approximate phenolic product (if any) identification. All studies with the peristaltic 

pump were carried out at room temperature (20 ± 5 °C). Several comparative studies 

with and without aeration were also investigated with continuous aeration using a fish- 

tank pump. The effects of different pH: 3, 5.5 and 9 and H 2 O2  concentrations: 1.19, 

2.38 and 4.76 g L- 1  were also studied for phenol removal via adsorption/oxidation. 

Change in the pH of the reaction solution was measured at the end of the reaction.

6 .2.3.3 Ultrasonic bath

Aqueous phenol (2.5 mM; 200 mL) was placed in a 300 mL glass beaker and 

immersed in the US bath and the temperature (20 ±  5 °C) was maintained by using 

crushed ice (Fig. 6 . IB). Then, the phenolic solution together with 0.85 g L- 1  ACC 

was irradiated in the US bath and samples were withdrawn at regular intervals for 

TOC analysis. The effect of H2 O2  on phenol removal via adsorption/oxidation at 

different pHs, as mentioned above, was also investigated using the US bath.
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6.2.3.4 Shaker bath

The adsorption/oxidation of phenol (Fig. 6 .1C) was carried out in conical or round 

bottom flasks as required in a shaker bath operating at 200 strokes min- 1  (SPM). The 

effects of pH (3, 5.5 and 9), temperature (20, 40 and 80 °C) and bulk/step-wise 

addition of ACC and O3 were also investigated.

6 .2.3.5 Ozonation

ACC-ozonation was studied in the shaker bath involving various methodologies. 

Most of the ACC-ozonation experiments were designed on the basis of published 

reports (Sanchez-Polo et al., 2005a; Sanchez-Polo and Rivera-Utrilla, 2003, 2006) 

with the differences being the use of phenol and ACC instead of NTS acid and GAC:

1. Saturated O3 solution: the ozoniser was set to Dial 5, the O2-O 3 flowrate was 5 

L min- 1  (5.6-6.3 mg O3 L-1) and dH2 0  (190 mL) was ozonated for 45 min 

prior to any experiment. Then 50 mM phenol stock solution (10 mL) and x2 

ACC discs were introduced to the reaction solution

2. A C C  was saturated with O3 by subjecting A C C s  to dH2 0  (200 mL) and 

ozonating the solution for either 15 min or 150 min to get A C C  saturated, 

termed specifically as A C C 1 5  and A C C 15 0  in the study. The A C C 1 5 0  and 

A C C  15 were further immersed in the 45 min ozonated water solution (190 mL) 

with 10 mL phenol solution taken from 50 mM stock solution. Phenol removal 

were studied with the help of TOC analysis

3. Direct ozonation (Dial 5; O2-O 3 flowrate 5 L min-1; 5.6-6.3 mg O3 L-1)

■ 15 min initial ozonation of phenol solution (No ACC)

■ x3 5 min ozonation of phenol solution at time 0, 60 and 120 min (No 

ACC)

■ 15 min initial ozonation of ACC-Std + phenol solution

■ x2 15 min ozonation of ACC-Std + phenol solution after 240 min and 

360 min
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6 .2.3.6  Regeneration and reuse

Thermal regeneration of the catalyst (ACC-Std) was carried out by initially using the 

catalyst (x5 ACC-Std) for 240 min in the phenol solution and then heating the same 

catalyst in the oven at 130 °C for different periods: 1, 3, 5, 7 and 9 days (e.g., 1 day; 

Fig. 6.2) and reusing it again for 4 more times by subjecting it every time to 2.5 mM 

phenol solution in a 500 volumetric flask. Percentage adsorption/oxidation was 

measured every time at 0 and 240 min of reaction by measuring TOC.

1 d ay /1 3 0  °C 1 d ay /1 3 0  ° C

3_A (g)x5 / 4 \
1 d ay /1 3 0  °C 1 d ay /1 3 0  ° C

In it ia l  ru n
i _ A  ® x 5  C j _ A
• 1 < st1 st reu se 2 nd re u se 3rd re u se 4 lh re u se

F ig u re  6 .2 : S ch em a tic  r e p re s e n ta t io n  o f  c a ta ly s t  r e g e n e ra t io n  a n d  re u se  s e t-u p .
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6.3 Results and discussion
6.3.1 Preliminary studies
6.3.1.1 Effect of air

Removal of free cyanide from aqueous solutions by plain and metal-impregnated 

GACs while the solution was subjected to 0.27 L min- 1  aeration and a profound effect 

of air on the process leading to 5.5^19.1% enhancement in the performances of plain 

and metal (copper, Cu and silver, Ag)-impregnated ACs was reported (Deveci et a l , 

2006). The authors have attributed the phenomenon of aeration to the increase in the 

availability of active sites on AC for adsorption and the enhanced catalytic activity of 

AC in the presence of oxygen. Thus, in the present work, preliminary studies were 

carried out on the process of phenol removal in the presence of air and the influence of 

continuous aeration was examined (Fig. 6.3).

Figure 6.3: Effect o f continuous aeration on phenol rem oval in  the presence o f A CC-Std. 
Experim ental conditions: phenol, 2.5 m M ; pH , 5 .5 -5 .8  (pH o f  2.5 mM  phenol); A C C -Std, 0.85 g 
L-1; reactor, peristaltic pump; aeration, fish tank (continuous); results, m ean ±  SD o f replicates; 
analysis, TOC analyser.
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Unlike the results reported by Deveci et al (2006), it can be easily noted that there is 

no significant difference obtained with and without aeration in this study. It is 

probable that the ACC-Std (0.85 g L- 1  w/v) was efficient enough to remove -50%  

phenol and that is why aeration has no effect on the overall phenol removal. Also, no 

change in the pH was observed at the end of 180 min reaction time. A similar 

explanation was provided by Deveci et al. (2006) when low (0.2 g L-1) or high (4.5 g 

L_I) concentrations of Ag- and/or Cu-impregnated AC were compared for cyanide 

removal in the presence and absence of aeration. The authors noted that the 

contribution of aeration to the removal of cyanide by Ag/Cu-impregnated AC tended 

to decrease with increasing adsorbent dosage. Thus, it is presumed that the surface 

properties and the amount of the ACC-Std used in this study remains unaffected by the 

aeration. Hence, all the experiments in this study with ACC were carried out without 

aeration.

6.3.1.2 Effect of reactor type

During the preliminary studies, the following three different types of reactors were 

tested for adsorption/oxidation removal of phenol using ACC:

1. Re-circulatory type (peristaltic pump)

2. Horizontal shaker (shaker bath)

3. Cavitational reactor (US bath, 38 kHz)

All the comparisons were carried out without altering the pH, i.e., 2.5 mM phenol 

solution pH = 5.5 and phenol removal was monitored over 180 min (Fig. 6.4).
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Figure 6.4: Effect o f d ifferent reactor set-ups on phenol rem oval at pH 5.5. E xperim ental 
conditions: phenol, 2.5 mM ; pH  o f  2.5 mM  phenol (pH ~5.5); A C C -Std, 0.85 g LT1; reactors, 
peristaltic pum p, shaker bath and US bath; results, m ean ±  SD o f  triplicates; analysis, TO C  
analyser.

Phenol removal using the US bath was noted to be quite high at the start of the 

experiment when compared with the pump and shaker bath. This can be attributed to 

the additional cavitational activity in the US bath, which might contribute towards 

desorption/regeneration (Breitbach and Bathen, 2001; Hamdaoui et ciL, 2003; Lim and 

Okada, 2005) of the ACC catalyst. Breitbach and Bathen (2001) also reported that US 

not only promotes desorption but also enhances the mass transfer of sorption processes.

It is proposed that the shaker bath (horizontal shaking) induces efficient mixing and/or 

contact of the catalyst with the phenol solution, whereas the US bath provides 

simultaneous adsorption/oxidation and desorption/regeneration of the catalyst leading 

to high phenol removal. However, at the end of the 180 min reaction time, a 

difference of ~5% in phenol removal was seen between the shaker bath and the US 

bath, which is probably accounted for by the cavitational activity leading to oxidation 

and breakdown of phenol into different products. These could be easily adsorbed onto 

the surface of the ACC or could react with the oxidising radicals produced on the 

surface of ACC or in the bulk solution. Phenol removal in both reactors tend to stay 

stable after 120 min reaction time indicating saturation of the ACC with phenol and its
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products and lack of oxidising radical species in the bulk solution to carry out further 

oxidation. Thus, in the later sections of this chapter, the effect of temperature and 

different oxidants on phenol removal in the shaker and US bath, respectively, will be 

reported.

6.3.1.3 Effect of pH

Owing to the characteristics of the carbon surface, i.e., the acidic and/or basic 

functional groups, the surface properties may be influenced by the pH of the bulk 

solution. Thus, it is suggested that the surface charge of the carbon as well as the 

extent of ionisation of the solute should always be considered (Muller et al., 1980). 

Therefore, three different pH values were considered, i.e., pH 3, 5.5 and 9, for the 

preliminary studies. However, the results exhibited a challenging scenario by 

producing similar % phenol removal at each selected pH (Fig. 6.5).

Figure 6.5: Effect o f different pH (3, 5.5 and 9) on phenol rem oval in  the presence o f A C C -Std. 
Experim ental conditions: phenol, 2.5 m M ; A C C -Std, 0.85 g LT1; reactor, peristaltic pum p; results, 
m ean ±  SD o f triplicates; analysis, TO C analyser.
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However, phenol removal at pH 3 showed a slight increase in the pH at the end of 180 

min reaction time, i.e., from 3.0 to 3.4, no pH change was observed at pH 5.5, whereas 

at the end of reaction time at pH 9, the pH of the bulk solution decreased from pH 9 to 

8.5. Likewise there was slight increase in the total inorganic carbon (TIC) values 

when the experiment was carried out at pH 9; the TIC increased up to 2.8 mg L-1, 

whereas it remained unchanged (0.58 mg L-1) for pH 3 and 5.5. Rivera-Utrilla and 

Sanchez-Polo (2002) accounted for dissolved inorganic carbon (ADIC = 2.37 mg L_1or 

TIC in this case) at pH 7 as mineralisation of organic matter. Thus, the increase in the 

TIC values in this study is accounted for by some phenol oxidation at pH 9.

In a separate study of adsorption of pentachlorophenol with ACF, it has been reported 

that the solution pH always increased during the adsorption at pH < 7 but always 

diminished slightly at pH > 8  (Diaz-Flores et al, 2006). They suggested that H 3 0 + 

ions were adsorbed on the AC-felt at pH < 7, causing an increase in pH, whereas the 

H 3 0 + ions were released from the AC-felt at pH > 8  causing decrease in pH and this 

was due to the amphoteric character of the AC-felt, which had both acidic and basic 

sites. Thus, it can be suggested that probably ACC-Std has both acidic and basic sites 

which is why, similar % phenol removal was obtained at all the selected pHs. 

Furthermore, different concentrations of oxidants and temperatures were studied at all 

three selected pHs to see their combined effect on phenol removal and the results are 

presented with statistical analysis later in this chapter.
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6.3.1.4 Effect of temperature

Preliminary studies with three different temperatures (20, 40 and 80 °C) were used to 

investigate their effects on the phenol adsorption/oxidation in the shaker bath tested at 

pH 5.5 (Fig. 6 .6 ).

Figure 6.6: Effect o f different tem peratures (20, 40 and 80 °C) on  phenol rem oval in  the presence  
o f ACC-Std at pH 5.5. Experim ental conditions: phenol, 2.5 m M ; A C C -Std, 0.85 g LT1; reactor, 
shaker bath; results, m ean ±  SD of duplicates; analysis, TOC analyser.

The results reveal that highest percentage of phenol removal was obtained at elevated 

temperatures. Similar results have been presented in the literature for adsorption of 

phenolic compounds by ACs, where phenol was contacted for 10 days at temperatures: 

25, 53 and 80 °C and the highest rates of phenol adsorption were noticed at 80 °C 

(Grant and King, 1990). Therefore, similar experimental set-up was repeated by 

altering the pH of the phenol solution to pH 3 and 9 and phenol removal was 

monitored using TOC/TIC analysis. Phenol removal obtained in the shaker under 

different temperatures have been compared with pump results obtained at room 

temperature (20 ± 5 °C) (Fig. 6.7).
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F ig u re  6 .7 : C o m p a r is o n  o f th e  e ffec t o f  p u m p  a n d  s h a k e r  b a th  o n  p h e n o l r e m o v a l a t  d i f f e r e n t  p H  
(3, 5.5 a n d  9) a n d  te m p e r a tu re  (20 , 40 a n d  80  °C ). E x p e r im e n ta l  c o n d itio n s : p h e n o l ,  2 .5  m M ; 
A C C -S td , 0 .85  g L -1; re su lts , m e an  ±  SD  o f  d u p lic a te s ;  an a ly s is , T O C  a n a ly s e r .

From Fig. 6.7, certainly the efficiency of the shaker bath for effectively mixing the 

catalyst and the pollutant, whilst providing maximum surface area of contact was 

higher as compared to the pump at 20 °C, leading to enhanced phenol removal. 

Statistical analysis (MANOVA) showed high significance of pH ( P = 0.09-0.02) and 

temperatures ( P = 0.004-0.007) on the % phenol removal. Thus, it is proposed that 

increasing temperatures lead to enhancement in the macropore size of the cloth which 

enhances adsorption and at the same time, regenerates the ACC surface by volatilising 

low molecular weight organic compounds and acids, produced due to breakdown of 

phenol, eventually providing increased surface area for phenol reactions on the ACC 

surface.
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Lower temperatures suit the cavitational activity and that is why, pump, shaker bath 

and US bath operated under room temperature conditions (20 ± 5 °C) were compared 

for phenol removal at different pH 3, 5.5 and 9 (Fig. 6.8).

70% □ Pump

3 5.5 9
pH

F ig u re  6 .8 : C o m p a r is o n  o f  th e  effec t o f  th e  p u m p , s h a k e r  a n d  th e  U S  b a th  o n  p h e n o l re m o v a l a t  
d if fe re n t pH  (3, 5 .5  a n d  9). E x p e r im e n ta l  c o n d itio n s : p h e n o l, 2 .5  m M ; A C C -S td , 0 .85  g L _l; 
re su lts , m e an  ±  SD  o f  d u p lic a te s ;  an a ly s is , T O C  a n a ly se r .

The above figure clearly indicates that the effect of US is equivalent to the highest 

temperature (80 °C) for effective phenol removal (-60%). As discussed in the 

sections above, the effect of cavitation leads to enhancement of the active sites on the 

ACC and also regenerates the catalytic activity and enhances removal of phenol and 

degradation products (not known). Since, the GC-MS analysis on samples collected 

from these experiments did not show any known peaks of phenolic degradation it can 

be assumed that this phenomenon is mainly an activity of adsorption-desorption- 

regeneration and not oxidation. This can be further proved by increasing the catalyst 

amount as discussed in the following section.
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6.3.1.5 Effect of amount of catalyst

The effect of amount of catalyst on phenol removal was tested by introducing 

increased amounts of catalyst into the reaction medium. In all the experiments so far 2 

discs (0.085 g each; 0.85 g L- 1  w/v) of ACC-Std were used, whereas to study the 

effect of an increased amount of catalyst, 5 discs (x5) (2.125 g L-1) ACC-Std was used. 

The study was conducted using the shaker bath at room temperature, without altering 

the pH of the 2.5 mM phenol solution (pH 5.5). Fig. 6.9 clearly indicates that 

increasing amount of the catalyst leads to increased adsorption in the absence of any 

effect from pH/temperatures/reactors. The results obtained from the GC-M S for 

samples with 5 ACC discs, showed no peaks of any known degradation product of 

phenol revealing no contribution from oxidation on % phenol removal.
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Figure 6.9: Effect o f am ount o f catalyst (0.85 and 2.125 g L-1) on phenol rem oval in  the presence  
of x 2  and x5  A CC-Std discs at pH 5.5. Experim ental conditions: phenol, 2.5 mM ; tem perature 20  
±  5 °C (room); reactor, shaker bath; results, m ean ±  SD of duplicates; analysis, TO C analyser.

Furthermore, as discussed in previous chapters, step-wise addition of catalyst leads to 

enhancement in the rates of pollutant removal. Therefore, in this study, instead of one 

bulk addition at the start of the experiment, ACC-Std disc(s) (0.085 g weight) were
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added step-wise (x5) at different time intervals and phenol removal were continuously 

monitored through TOC and GC-MS (Fig. 6.10).

Figure 6.10: Effect o f step-w ise addition (grey arrows) o f A C C -Std  catalyst(s) (0.085 g  x5 ) on  
phenol rem oval at pH  5.5. E xperim ental conditions: phenol, 2.5 m M ; tem perature 20 ±  5 °C  
(room); reactor, shaker bath; results, m ean ±  SD o f duplicates; analysis, TOC analyser.

Step-wise addition of ACC catalysts lead to 90% phenol removal after 9 h of contact 

time in the shaker bath. After each addition of the ACC disc, -15-20%  phenol 

removal was noticed, however the final ACC disc was added after 5 h and phenol 

removal was monitored for further 4 h without any change. Thus, it can be concluded 

that every 0.085 g of ACC-Std catalyst has a capacity to remove 15-20% of aqueous 

phenol, leading to overall 94% phenol removal with an addition of overall 2.125 g L- 1  

w/v ACC-Std catalyst.

GC-MS analysis of the aqueous solution collected after 9 h showed the no phenol 

peaks, instead additional peaks of allophonic acid (C3 H6 N 2 O3 ), acetic acid 

(CH3 COOH) and 2-nonynoic acid (C9 H 1 4O2 ) were identified. Although the literature 

does not describe allophanic and 2 -nonynoic acids as oxidation products of phenol, the 

formation of acetic acid in the 9 h ACC reaction with phenol clearly indicates some
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oxidation of phenol in this study but higher phenol removal is mainly due to the 

process of adsorption. Formation of higher molecular weight compounds, like 2- 

nonynoic acids, are the oligomerisation oxidation products of phenol (Santos et al.,

2002).

Thus, from the above study, it can be concluded that higher amounts of ACC catalysts 

over longer contact periods could lead to effective phenol removal as well as initiation 

of phenol oxidation. Since the literature does not account for any specific routes of 

phenol oxidation products in the presence of AC (granules/felt/fibre/cloth) prediction 

of oxidation using ACC in this study is highly complex. Also, the formation of a 

variety of acids (allophonic and 2 -nonynoic acids) does not give any clear indication if 

they are formed as a result of phenol oxidation or complexes on surface of ACC. 

Therefore, thus far only formation of acetic acid as a result of step-wise addition of the 

catalyst into phenol solution over prolonged contact period (Fig. 6.10) definitely 

indicates oxidation of phenol. Hence, further experiments on the effects of oxidants 

such as H 2 O2  and O3 , were separately studied in conjunction with ACC to investigate 

adsorption/oxidation or their combined effects on phenol removal.

6.3.1.6 Statistical analysis

Multivariate analysis (MANOVA) was carried out on the data obtained from the use 

of the different variables: pH, reactors and temperatures. Significant effects are 

reported with P-values. Also, the interaction of two variables has been shown in 

Table 6.2. Results revealed independent significant effect of pH, temperatures and 

reactors on phenol removal. The P-values which are less that 0.05 shows statistical 

significance of the parameters. For better understanding the values have been 

highlighted in bold. It can be clearly seen from the table that pH, temperatures and the 

interaction of both the parameters showed high significance on the % phenol removal. 

However, in case of pH and reactors, the reactors alone showed high significance 

on % phenol removal but the interactions of the pH and reactors did not showed any 

significance.
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Effects MANOVA Test (P-values)
W ilks’ Lawley-

Hotelling
Pillai’s

pH and temperatures
PH 0.021 0.055 0.009
Temperatures 0.004 0.005 0.007
pH*temperatures 0.066 2.61 0.020
pH and reactors
pH 0.546 0.648 0.474
Reactors 0 . 0 0 0 0 . 0 0 1 0 . 0 0 0

pH*reactors 0.539 0.664 0.576

Table 6.2: Data representation after statistical analysis on the effect o f different variables, i.e ., 
tem peratures, pH s and reactors on phenol rem oval. V alues P  < 0.05 (bold), indicates sign ificance  
o f the variables used in this study.

6.3.2 Phenol removal with the ACC/H2 0 2 system
The oxidation of organic compounds in aqueous medium in the presence of H 2 O 2  and 

AC has recently been studied as discussed earlier in Section 6 .1 (Ince and Apikyan, 

2000; Ince et a l, 2002; Lucking et a l, 1998). Although no study on H 2 O 2  

decomposition in the presence of ACC was performed in this study. Literature 

provides sufficient information on H 2 O2  decomposition in the presence of AC and 

reports that the rates of H 2 O 2  decomposition depend on the nature of AC used and the 

same study also reports that addition of 4-chlorophenol (4-CP) to the aqueous phase 

significantly reduces the decomposition of H 2 O2  as a consequence of the 4-CP 

adsorption on the AC surface which in turn reduces the surface area of the AC for the 

decomposition of the H 2 O2  (Lucking et a l, 1998). According to Liiking, pH 3 was 

best suited for oxidation of organic compounds by surface catalysed-GACs and that 

during oxidation of 4-CP in the presence of different ACs as catalysts, the pH 

decreased from 3 to 2 . The decrease in pH during ACC/H 2 O2  systems was also noted 

in this study and results have been presented. Also, it has been reported that a slight 

influence of organic adsorption on H 2 O2  decomposition was observed while using iron 

oxide as catalyst due to the low affinity of organics with the metal oxide surfaces 

(Huang et al., 2001; Valentine and Ann Wang, 1998). The majority of previous 

studies showed that decomposition of H 2 O2  with AC depends mainly on the carbon 

porosity, pH and chemical properties of the surface (Khalil et a l, 2001).

155



D eg rad a tio n  III: A C C

Thus, the present study reports the effect of the ACC/H2 O2  system on phenol removal 

under different pHs, ACC types and H 2 O2  concentrations. To study the effect of 

cavitation, the ACC/H2 O2  system was tested in the US bath (ACC/H 2 O2 /US) along 

with different concentrations of H 2 O2 . An approximate estimation of oxidation 

products (if any) were also made with the help of GC-MS analysis but phenol removal 

was mainly monitored with using TOC analysis. Liiking et al. (1998) described that 

because of the adsorption properties of GAC, it was difficult to estimate the amount of 

4-CP removed by oxidation in batch experiments, thus the DOC (dissolved organic 

carbon) drop in the aqueous phase was reported as the result of adsorptive and 

oxidative removal. It was also reported that during the oxidative degradation of 

phenols, intermediate products with stronger adsorption properties can be formed 

(Nakhla et al., 1994) but also produced are products such as organic acids which 

adsorb less strongly. Therefore, the interpretation of the obtained DOC or TOC (in 

this study) data is complex.
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6.3.2.1 Effect of H2O2 concentrations

The effect of three different concentrations of EhCD: 1.19, 2.38 and 4.76 g L_l was 

studied under the ACC/H2O2 system (Fig. 6.11).
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F ig u re  6 .11 : E ffec t o f d if fe re n t  c o n c e n tra t io n s  o f  H 20 2 (1 .19 , 2 .38  a n d  4 .76  g L ”1) a n d  p H  (3 , 5 .5  
a n d  9) on  th e  A C C -S td /H ? 0 2 sy s tem  o n  p h e n o l re m o v a l. E x p e r im e n ta l  c o n d itio n s :  p h e n o l ,  2 .5  
m M ; te m p e r a tu re  20 ±  5 °C  ( ro o m ); r e a c to r ,  p e r is ta l t ic  p u m p ; r e s u lts ,  m e a n  ±  SD  o f  d u p lic a te s ;  
an a ly s is , T O C  a n a ly se r .

The phenol removal trend shown in Fig. 6 .11 reveals that a lower concentration of 

FFCH at pH 3 and 5.5 lead to enhanced phenol removal. Whereas, an alkaline pH of 9 

at higher H2O2 concentrations (2.38 and 4.76 g L”1) leads to only 40% phenol removal 

but in this case an increase in TIC values (3.2-4.5 mg L ’) was noted with increasing 

concentrations of H2O2, attributing to the formation of CCF. For confirmation of 

oxidation under different H2O2 concentrations and pH, GC-MS data was taken into 

account and results showed formation of a variety of acids as phenol oxidation 

products. A decrease in pH was also noted at different H2O2 concentrations under the 

ACC/H2O2 system, indicating formation of acids and these results are summarised in
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Table 6.3 with the GC-MS product details and also initial (r*) and final (tf) values of 

the TOC and pH (t stands for time).

However, statistical analysis on the study with different combination of H 2 O2  and pH 

combination showed no significant effect of the different pHs (P = 0.4) and H2 O2  (P = 

0.06-0.18) concentrations on phenol removal.

H 2 0 2 pH TOC (mg L-1) GC-MS (% Peak Area)
feL "1) h k h k Phenol Acids

1.19 3.0 3.2 240.7 129.2 ND
2.38 3.1 243.9 132.3 4.3%
4.76 3.1 236.7 140.0 2 .0 %
1.19
2.38

5.5 5.2
4.8

237.8
236.2

130.3
130.7

14%
2 0 %

/vuopnamc acid, 
phenoxypropionic 

acid, octanoic
4.76 4.6 240.1 139.6 9%
1.19 9.0 8.4 227.7 129.5 2 0 %

CIUIU., CIL.

2.38 8 . 1 235.2 150.4 11.4%
4.76 7.7 238.7 143.5 5.1%

Table 6.3: Sum m ary chart: pH , TO C and GC analysis under the A C C /H 20 2 system .

Decrease in TOC values indicates phenol removal and oxidation could be possible due 

to decrease in pH values, resulting from the formation of acids. The obtained acid 

peaks from the GC-MS analysis is not a clear indication of phenol oxidation. 

Therefore, in-depth investigation in this area shall be proposed for future work, 

employing advanced techniques/methods including modified GC-MS settings, to 

study formation of phenol oxidation products in the ACC/H 2 O2  system. However, an 

approximate conclusion from the decreasing pH (pH 5 and 9) and TOC values and 

increasing TIC values (pH 9), phenol removal in the ACC/H 2 O2  system could be the 

combined effect of adsorption/oxidation process. At his stage, it is very difficult to 

address the contribution of each separately.
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6.3.2.2 Effect of the ACC/H2 O2 /US system

Ultrasound has been used in conjunction with AC for adsorption-desorption studies 

(Breitbach and Bathen, 2001; Hamoudi et al,  1998; Lim and Okada, 2005). The 

current ACC/H2 O2 /US system study was conducted in a 38 kHz US bath (continuous 

sonication) at pH 5.5 and the temperature was controlled (20 ±  5 °C) by using ice. 

The effect of different concentrations of H 2 O2 , i.e., 1.19, 2.38 and 4.76 g L - 1  was also 

studied to investigate if increasing concentrations of H 2 O2  in conjunction with US bath 

have any enhanced effect on phenol removal (Fig. 6.12). To avoid the effect of pH in 

these reactions, all experiments were carried out at pH 5.5.

Figure 6.12: Effect o f ACC-Std/H 20 2/U S system  on phenol rem oval. E xperim ental conditions: 
phenol, 2.5 mM ; tem perature 20 ±  5 °C; pH 5.5; reactor, U S bath (continuous sonication); H 20 2: 
1 .19 ,2 .38  and 4.76 g L f1; Results, m ean ±  SD o f duplicates; analysis, TO C analyser.

Fig. 6.12 reveals that initially phenol removal is high with lower concentrations of 

H 2 O2  (1.19 g L-1), however at the end of 180 min, all the peroxide concentrations gave 

similar results (1.19, 2.38 and 4.76 g L- 1  showed 54, 52 and 50% TOC removal, 

respectively). Thus, it is proved that increasing concentrations of H 2 O 2  have no 

significant effect on phenol removal and this is attributed to the radical scavenging 

activity of higher concentrations of H 2 O2 . MANOVA analysis showed only slight
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significance of using US bath in the ACC/H2O2 system as the obtained P-value was 

0.08. GC-MS analysis on the 180 min sample showed formation of traces of formic 

acid and /7-benzoquinone with 1.19 and 2.38 g L-1, respectively, revealing oxidation of 

phenol in the ACC/H2O2/US system.

6 .3.2.3 Effect of ACC types/tEC^

Different types of ACCs were employed in the ACC/H2O2 system to investigate their 

enhanced (if any) efficiencies to remove phenol from aqueous medium. Lucking et al. 

(1998) found an optimum pH ~ 3 for the oxidation several organic compounds with 

AC/H2O2, therefore ACC types/^C b were studied at this pH along with lower 

concentrations of H2O2 (1.19 g L_1). Thus, comparative studies were carried out on 

the shaker bath at room temperature, by addition of H 2O2 (1.19 g L”1) to the aqueous 

medium after phenol and the ACCs had already been shaken together without H2O2 for 

4 h. After H2O2 addition, phenol removal was monitored for the following 4 h (Fig. 

6.13).

Figure 6.13: Effect o f different ACC types (ACC-Std, A C C -Std-C u (5.2% Cu), A C C -Std-A g  
(0.04%  Ag), ACC-Extra-Cu (4.2% Cu)) on ACC types/H 20 2 system  on phenol rem oval. ACC  
construction: ACC-Std (160 x  86) and A C C -Extra (160 x  100). E xperim ental conditions: phenol, 
2.5 mM ; tem perature 20 +  5 °C (room ); pH 3; reactor, shaker bath; results, m ean ±  SD o f  
triplicates; analysis, TOC analyser.
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With all the ACC types, 4 h of shaking lead to 42-52% phenol removal. The initial 

phenol removal with ACC-Std and ACC-Std-Ag followed similar pattern, whereas the 

phenol removal was relatively slow with ACC-Extra-Cu probably due to cloth 

construction or unavailability of macropores. Thus, it can be addressed that cloth 

construction has a significant role to play in the removal of organics and also that 

presence of different amount of metals on the surface of ACC vary in the particle size 

and therefore the adsorption tendencies differ for different ACC types. However, 

H2O2 addition to the reaction solution resulted in nearly similar phenol removal (52- 

55%) with all the chosen ACC types, indicating that 10-13% oxidation of phenol 

present in the aqueous medium had occurred. Since, phenol adsorption on the cloth 

reduces the surface area of the AC available for the H 2O2 decomposition (Lucking et 

al., 1998) to radical species required to react with the phenolic compounds it is 

proposed that the presence of H2O2 catalysed the oxidation of phenol in the presence 

of ACC via an hydroxyl radical mechanism. Consequently, this enhancement could 

be attributed to the adsorption and then catalytic oxidising activity in the presence of 

H 2O2 and standard ACC or metal-impregnated ACC.

Statistics (MANOVA) on the effect of different types of ACCs showed slight 

significance on phenol removal as the obtained P-values were in the range 0.03-0.17. 

GC-MS analysis showed no peaks of phenol on the chromatogram which indicates 

that even though only 52-55% TOC removal was obtained, the ACC/H2O2 system 

showed complete removal of phenol after 8 h.

6.3.3 Phenol removal with ACC/O3 system
All studies with ACC/O3 system were carried out on the shaker bath at room 

temperature. The effects of phenol removal in ozonated water and direct ozonation 

were studied at the natural pH of 2.5 mM aqueous phenol and at modified pHs, 

respectively. Oxidation was evaluated based on the decreasing TOC/TIC and pH 

values. Ozone was produced by using oxygen gas feed and all experiments were 

conducted at Dial 5 settings, O2-O 3 flowrate of 5 L min- 1  (5.6 - 6 .3 mg O3 L-1). For 

direct ozonation studies, both bulk and step-wise ozonation were investigated to 

determine if enhanced phenol removal was seen.
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6.3.3.1 Effect of ACC types/ 0 3  system

The experiments in this study were based on the work described by Sanchez-Polo and 

co-workers for the treatment of 1,3,6-naphthalenetrisulphonic acid catalysed by AC 

and the experimental set-up used has been discussed in Section 6 .2.3.5 (Sanchez-Polo 

et a l ,  2005a; Sanchez-Polo and Rivera-Utrilla, 2003, 2006). The effects of ACC-Std, 

ACC-Std-Cu and ACC-Std-Ag and No ACC on ozonated water containing phenol 

were compared and are presented in Fig. 6.14. The change in TOC and pH values 

indicated the effect of adsorption/oxidation catalysed by the O3 decomposition on the 

surface of AC (Sanchez-Polo et al., 2005b).
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F ig u re  6 .14 : E ffe c t o f  d if fe re n t A C C  ty p e s  (A C C -S td , A C C -S td -C u  (5 .2 %  C u ) , A C C -S td -A g  
(0 .0 4 %  A g)) o n  A C C  ty p e s / 0 3  sy s tem  on  p h e n o l re m o v a l. E x p e r im e n ta l  c o n d itio n s :  p h e n o l, 2.5 
m M ; A C C , 0 .85 g L - l  (x2  A C C  d iscs); t e m p e r a tu r e  20 ±  5 °C  ( ro o m ); p H , 45 m in  o z o n a te d  w a te r  
(6 .8 —7.1); ozone , D ia l 5, 5 L  m in -1, 45 m in  in it ia l  o z o n a tio n ; r e a c to r ,  s h a k e r  b a th ;  r e s u l ts ,  m e a n  ±  
SD  o f  d u p lic a te s ; an a ly s is , T O C  a n a ly se r .

The results obtained with the ACC types/ 0 3  system are very much in line with those 

obtained from the ACC types/H^CE system as it was seen that ACC-Std-Ag was more 

efficient that ACC-Std-Cu for phenol removal, which was also reported by Deveci et 

al. (2006) for removal of cyanide by metal-impregnated GAC in the absence of O3.
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Even though the copper content on the cloth was higher (5.2%) than the silver content 

(0.04%), to achieve 0.85 g LT1 amount, the ACC-Std-Ag disc used for the experiment 

was slightly bigger in diameter (3 cm) than that of ACC-Std-Cu (2.5 cm). Probably 

the increased surface area in the ACC-Std-Ag could be the reason for the higher 

phenol removal which allowed more O3 reactions on the surface of the ACC for 

oxidation and adsorption. However, naked ACC-Std was found to be the best for 

phenol removal using ACC types/ 0 3  system.

Statistically, A C C  types showed very slight significance (P = 0.03-0.1) on phenol 

removal using A C C  types/ 0 3  system. Furthermore, no change in TIC values were 

seen for any of the A C C  types used, however a notable decrease in the pH (Table 6.4) 

was observed suggesting formation of acids as a result of oxidation during the 

A C C / O 3  phenol treatment.

No ACC ACC-Std ACC-Std-Cu ACC-Std-Ag
pHi 7.1 6 . 8 7.1 6 . 8

pHf 3.7 4.1 4.2 3.9

Table 6.4: Sum m ary chart o f pH  values before and after ACC/O3 treatm ent.

6 .3.3.2 Effect of ACCOZonised/ 0 3  system

It has been proposed in the literature that oxygenated surface groups of the basic 

nature (chromene and pyrone) in ACs are mainly responsible for the O3 decomposition 

in the aqueous phase (Sanchez-Polo and Rivera-Utrilla, 2003). Also, it has been well 

documented that O3 reduction on the surface of AC generates radical species which 

are responsible for initiating the decomposition of O3 in the aqueous phase into highly 

oxidative species (Fomi et al., 1982; Gurol, 1982; Sotelo et cil, 1987). Thus, the aim 

of the present work was to study the effect of O3-A CC reaction on the catalytic 

activity of ACC during ozonation of phenol in the aqueous phase. Therefore, ACC- 

Std samples were modified by exposing the catalyst to O3 for 15 min (ACC 15) and 150 

min (ACC 150) and the effect on phenol removal was monitored and compared with 

conditions of absence of ACC catalysts and no pre-ozone treated-ACC catalyst 

referred to as ACCo (equivalent to ACC-Std) (Fig. 6.15).
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Long exposure to O3 treatment considerably modifies the textural properties and 

surface chemistry of the carbon (Sanchez-Polo and Rivera-Utrilla, 2003). Although 

surface properties of the ACC were not studied, decrease in pH values was noticed in 

this work possibly indicating the increased number of acidic groups on the ACC 

surface (Table 6.5).

No ACC ACC0 a c c 15 ACC 150

pH, 7.1 6 .8 6 .6 6 .6

pHf 3.7 4.1 3.9 3.7

T a b le  6 .5: S u m m a ry  c h a r t  p H  v a lu e s  b e fo re  a n d  a f te r  A C C ozonise(1/C b t r e a tm e n t .
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F ig u re  6 .15 : E ffe c t o f  d if fe re n t A C C 0Zonised/O 3 sy s tem  on  p h e n o l re m o v a l. E x p e r im e n ta l  
co n d itio n s : p h en o l, 2.5 m M ; p re -o z o n ise d  c a ta ly s ts :  A C C 0, A C C 15, A C C 150; t e m p e r a tu r e  20  +  5 °C  
( ro o m ); p H , 45 m in  o z o n a te d  w a te r  (6 .8 —7.1 ); o zo n e , D ia l 5 , 5 L  m in  \  45 m in  in i t ia l  o z o n a tio n ; 
r e a c to r ,  s h a k e r  b a th ;  R esu lts , m e a n  ±  SD  o f  d u p lic a te s ;  an a ly s is , T O C  a n a ly s e r .
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From Fig. 6.15, it is seen that the catalytic activity of carbon diminishes in the order 

ACCo>ACCi5>ACCi5o. The order is similar to the one proposed in the literature and 

the authors proposed that the decrease in TOC with reaction time was due to the two 

parallel phenomenon: (i) adsorption of the pollutant oxidation products on the AC and 

(ii) mineralisation of the organic matter to CO2 due to O3 decomposition into highly 

oxidising species (catalytic effect) (Sanchez-Polo and Rivera-Utrilla, 2003). A similar 

hypothesis can be proposed for ACC in this study and it can be seen that ACC equally 

offers a great opportunity to remove phenol in the presence of O3 via these optimised 

treatment systems.

6.3.3.3 Effect of ACC/Direct ozonation systems

In Sections 6.3.3.1 and 6.3.3.2, initial experiments were designed based on published 

reports by Sanchez-Polo and co-workers, where reactions were carried out in saturated 

ozonated water conditions, however as a matter of interest direct ozonation was 

studied for phenol removal in the presence of ACC. Bulk and step-wise direct 

ozonation effects were also investigated in this study for their enhanced effect (if any). 

From Table 6 .6 , it can be clearly seen that ozonation of phenol under alkaline pH 

conditions leads to high phenol removal in the presence and absence of the ACC-Std 

catalyst. More importantly, step-wise ozonation was found to be more beneficial than 

bulk ozonation as it continuously provides oxidising radical species to the reaction 

medium, which in-turn enhances the oxidation and this theory agrees with the 

literature (Gogate and Pandit, 2004a, 2004b). The combined effect of ACC-ozonation 

was observed in the ACC-Std/ 0 3  operating conditions proposing adsorption/oxidation 

contribution on the high % phenol removal agreeing with discussions presented earlier 

(Sanchez-Polo and Rivera-Utrilla, 2003). Also, increasing TIC values present 

additional evidence of mineralisation in the ACC-Std/ 0 3  systems.

Furthermore, step-wise ozonation and a longer period of contact between the phenol, 

ACC and O3 were studied for enhanced phenol removal and results are presented in 

Fig. 6.16.
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Treatments Time (h) pH TOC(mg LT1)
t[ tf

ATIC (mg IT1)

Step-wise: 5 min ozonation (at 0 min and x2 after every 1 h) (No ACC)
3 3 248.6 217.8

5.5 248.6 210.0 3.04
9 248.6 189.7

Bulk ozonation: 15 min at the start of the reaction (No ACC)
3 3 239.6 224.1

5.5 239.6 198.8 3.79
9 239.6 192.4

Bulk ozonation: 15 min at the start of the reaction+( ACC-Std, 0.85 g L ')
3 3 239.6 159.6

5.5 239.6 155.1 4.45
9 239.6 149.4

T a b le  6 .6 : S u m m a ry  c h a r t  o f  p h en o l r e m o v a l v ia  d ire c t  (b u lk  o r  s te p -w ise )  o z o n a tio n  in  th e  
p re se n c e  a n d  a b se n c e  o f  A C C -S td  c a ta ly s t.
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F ig u re  6 .16 : E ffe c t o f  s te p -w ise  d ire c t  o z o n a tio n  in  th e  p re se n c e  o f  A C C -S td  c a ta ly s t  a t  d i f f e r e n t  
p H  (3, 5.5 a n d  9) on  p h en o l rem o v a l. E x p e r im e n ta l  c o n d itio n s : p h e n o l, 2 .5  m M ; A C C -S td ,  0 .85  g 
L - l  (x2  A C C  d isc s); te m p e r a tu re  20 ±  5 °C  ( ro o m ); o zo n e , D ia l 5 , 5 L  m in _1(x 2 , 15 m in ; g re y  
a r ro w s ) ;  r e a c to r ,  s h a k e r  b a th ;  R e su lts , m e a n  ±  SD  o f  re p lic a te s ;  a n a ly s is , T O C  a n a ly s e r .
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Of all the systems studied so far utilising ACC catalysts, step-wise addition of O3  at 

suitable time intervals over a longer contact period lead to the highest (-70% ) phenol 

removal as a result of combined effect of adsorption/oxidation. Notable changes in 

pH were observed (pH 3 decreased to 2.80; 5.5 to 3.04 and 9 to 3.20) indicating 

formation of acids via oxidation of phenol by radicals produced due to O3 

decomposition on the ACC surface. Considerable change in TIC values (2.27-6.33 

mg L-1) were noticed indicating CO 2  formation due to mineralisation of the organic 

compounds.

Therefore, from the ACC/O 3 system, it can be concluded that optimised conditions of 

ozonation over a suitable period time with the ACC catalysts could lead to efficient 

phenol removal. Moreover, the decrease of TOC during ozonation of phenol in the 

presence of ACC is a result of the combined effect of two parallel systems: catalytic- 

chemical oxidation and adsorption. Thus, the positive combined effects of treatments 

for enhanced pollutant removal proposed through this study with ACC/H 2 O2  and 

ACC/O 3 systems is in line with those suggested through combinations of various 

AOPs in Chapters 4 and 5. Hence, it is seen that ACC is an emerging technology that 

can be effectively used in conjunction with other AOPs to remove toxic pollutants via 

adsorption/oxidation from the wastewater.
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6.4 Regeneration and reuse of ACC
Through a very simplified approach, effort was made to study if the used ACC catalyst 

could effectively be reused after thermal regeneration. This was suggested as one of 

the scopes of this study but also to prove cost-efficiency of the catalyst for removal of 

pollutants over several usages. Fig. 6.17 shows the effect of thermal regeneration of 

the catalyst by heating in the oven over different time periods and also their repeated 

usage.
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F ig u re  6 .17 : P h en o l re m o v a ls  w ith  re p e a te d ly  u se d  p h e n o l- lo a d e d  A C C -S td  a f t e r  th e rm a l  
r e g e n e ra tio n  by  o v en  h e a tin g  a t  130 °C  o v e r  d if fe re n t p e r io d s  (1, 3 , 5, 7 , 9 d ay s ).
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The novel part of this part of this study is the low temperatures (130 °C) used to 

regenerate the catalyst and over 5 repeated reuses the ACC-Std catalysts (0.085 g x5) 

could still remove 20-35% of TOC from the aqueous phenol solutions. Longer 

heating time (9 days) after every reuse showed higher phenol removal, however even 

consecutive 1 day heating periods for 5 times also resulted in 20% phenol removal, 

which could be recommended for industrial scale applications as a cost- and energy- 

efficient technology for catalyst regeneration and reuse.

6.5 Summary
The investigation of activated carbon cloth as a benign catalyst for phenol removal 

suggests that ACC can be viewed as an emerging catalyst in conjunction with other 

AOPs producing combined effect of adsorption-oxidation-regeneration and 

effectively decontaminating wastewaters containing phenolic compounds. From the 

study the following key conclusions are drawn and suggestions have been made for 

future work:

• Different reactors (US bath>Shaker bath>Peristaltic pump) and temperatures 

(80>40>20 °C) and pH (5.5>9>3.3) showed significant effects on phenol 

removal (P = 0.000-0.055).

• In the ACC/H2 O2  system:

1. The order of efficiencies of ACC catalysts was ACC-Std>ACC-Std- 

Ag>ACC-Std-Cu>ACC-Extra-Cu.

2. The order of pH for % efficient phenol removal was 5.5>3>9.

3. The order of H 2 O2  concentrations beneficial for adsorption/oxidation 

reactions was 1.19>2.38>4.76 g L-1. However, higher concentrations 

showed radical scavenging activity leading to lower % phenol removal.

• In the ACC/O3  system:

1. The order of efficiency was ACC-Std>ACC-Std-Ag>ACC-Std-Cu.

2. The order of efficiency of ozonised ACC-Std was 

ACCo> ACC 15 > ACC 1 5 0

3. The order of pH for efficient % phenol removal was 9>5.5>3.
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4. Step-wise ozonation was the most efficient for phenol adsorption- 

oxidation-regeneration in the presence of ACC-Std leading to -70%  

TOC removal.

• ACC catalysts can be thermally regenerated by oven heating at 130 °C and 

reused over 5 consecutive times resulting in decreasing but effective phenol 

removal after each usage.

In depth knowledge of the chemical/textural properties and behaviour of ACC in 

oxidant-assisted phenol removal could lead to a better understanding and support of 

the proposed hypothesis of adsorption/chemical oxidation via ACC/O 3/H 2 O2  systems. 

Also, ultrasound could also be used for the purpose of regeneration and reuse ACC 

catalyst. Hence, these objectives are recommended for future studies.
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Chapter 7

Disinfection: Bacterial inactivation using 

cavitation and ozonation in a novel Liquid 

Whistle Reactor

Published paper (Appendix C)

C hand , R., B rem ner, D .H ., N am kung , K .C ., C o llier, P .J. and G ogate , P .R . 2007. W a te r  d is in fec tio n  
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35(3): pp .357-364 .
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So far in the thesis, much has been discussed on pollutant degradation using single and 

combined Advanced Oxidation Processes (AOPs) such as the Advanced Fenton 

Process (AFP), cavitation, catalytic and chemical oxidation and also use of different 

oxidants such as ozone and hydrogen peroxide. In this part of the work, another 

application using the novel approach of hydrodynamic cavitation and/or ozonation as 

individual and combined technology for disinfection is described.

7.1 Introduction
Since the early 1970s, the developed countries in the world have used ozone (O3) as a 

disinfectant for treated wastewater effluent and the past literature suggested that 1 0  mg 

O3 L - 1  dose is required to achieve an efficient level of disinfection. However, 

increasing environmental regulations and lowered nutrient levels in the effluents have 

lead to O3 dosages as low as 5 mg O3 L- 1  to meet high levels of disinfection (Burns et 

al., 2007). Thus, the effective low dosages combined with other dissolution 

technology have made O3 a disinfectant for wastewater cost-competitive with UV 

treatment. The US EPA Wastewater Disinfection Manual summarises O3 dosages 

required to disinfect a variety of effluents (Table 7.1). However, economic analysis of 

disinfection systems indicated a 17% higher cost of O3 operation than UV,

Effluent quality Absorbed O3 dosages (mg O3 L *) for
2.2 CFU 100 70 CFU 100 mL" 1 200 CFU 100

3 r-
t- 0 p total coliform mL- 1  faecal

coliform coliform
Filtered secondary 35-40 15-20 12-15
Filtered and nitrified 15-20 5-10 3-5

Table 7.1: Sum m ary o f O3 dose required to treat various disinfection targets (Burns et a l 2007).

Recent published research indicates that water treated by biological nutrient removal 

(BNR) in the presence of 3 mg O3  L- 1  gives greater than 90% removal of most 

common pharmaceutical care products as well as reduction of total faecal coliforms to 

below detection (Snyder et al., 2005). Combined AOPs have become very famous in 

recent years mainly due to decreased cost of operations. Industries are focussing on 

technologies which are effective enough for achieving multiple goals, i.e., disinfection
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as well as micropollutant removal. Certainly O3  has gained popularity over the years 

and is becoming more cost-competitive with UV, however considering its capability to 

remove micropollutants, O3  is clearly a technology that will be considered 

increasingly in the future (Burns et a l, 2007).

As discussed above, the cost of operations of technologies using O3 has always been a 

barrier to widespread adoption by industry, therefore recent literature also reported a 

combination of AOPs to disinfect and degrade wastewaters (Jyoti and Pandit, 2004; 

Kim et a l , 1999; Mason et a l, 1996; Save et a l, 1997), which prove to be efficient 

and cost effective. Enhanced disinfection has also been achieved by exposure of 

bacteria to magnetic fields and ultrasonic irradiation (Kohno et a l, 2000; San Martin 

et a l, 2001). Chemical oxidation using chlorine dioxide, thyme essential oil (Singh et 

al, 2003); hypochlorite (Duckhouse et a l, 2004); chorine and monochloramine 

(Baker et al, 2002) and titanium dioxide (Ireland et a l, 1993), have also been 

successfully used as combined or individual systems in hybrid AOPs for effective 

disinfection.

Ozone has been used extensively in food industries all over the world, especially with 

increasing demand for packed/canned food products. For example, recently a 

Japanese company invented a laboratory scale machine that can sterilise food 

packaging films and preformed cups using ozonated water and O3 gas (Naitou and 

Takahara, 2008). Although UV-rays can be used to support the disinfection process, it 

is suggested by these authors that the process could be utilised to reduce the degree of 

microbial contamination caused by inadequate disinfection against new resistant 

strains, i.e., lactic acid bacteria, Gram-negative bacteria, mould, yeast. Other 

advantages of using O3  in the food industry is that it increases the shelf life of the food 

products, it decomposes rapidly and leaves behind no residues (Guzel-Seydim et a l, 

2004; Khadre et a l, 2001). In particular, it has been found that cell lysis is dependent 

on the extent of reaction of the O3 gas with the double bonds of lipids of the cell 

membrane of Escherichia coli (Scott and Lesher, 1963).

Emerging technologies such as membrane filtration, ozone-membrane filtration and 

catalytic (iron oxide)-ozonation-membrane filtration have recently been compared 

and reported to be effective for Escherichia coli removal (Karnik et a l, 2007). Their
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report suggested that highest log removal (7.45) was obtained from catalytic- 

ozonation-membrane filtration due to the catalytic decomposition of O3  at the iron 

oxide surface results in the formation of HO* and other radical species that inactivate 

bacteria near the surface. Likewise, recent reports on hydrodynamic cavitation and 

acoustic cavitation have also proved to be outstanding advanced disinfection 

technologies in drinking water treatment and are deemed to be environmentally sound 

systems without generating any toxic residual by-products (Jyoti and Pandit, 2003; 

Piyasena et al, 2003). Burleson et a l (1975) reported individual treatment with O3  

and ultrasound did not inactivate microorganisms, but simultaneous treatments with 

both resulted in a synergistic effect.

In the previous chapters, the application of acoustic cavitation has been discussed in 

detail in conjunction with the Advanced Fenton Process, ozonation and activated 

carbon cloth for the removal of toxic phenols from wastewaters. However, the present 

study focuses on the disinfection of water containing E. coli, as model markers o f the 

faecal coliforms, using single and hybrid technologies of hydrodynamic cavitation 

(HC) and ozonation in a novel Liquid Whistle Reactor (LWR).

As suggested by Burleson et al (1975), it is also expected that HC and ozonation 

should give synergistic effects due to additional free radical production (Eq. 7.1 and 

7.2) (Hart and Henglein, 1985), taking place in the cavitating bubble due to very high 

temperatures and pressures, leading to enhanced disinfection.

The reaction products of Eq. 7.1 and 7.2 migrate to the interfacial sheath of the bubble 

where they subsequently react in the bulk solution. Mass transfer limitations are often 

believed to be associated with ozonation processes, but they are eliminated by the 

turbulence created by the liquid circulation currents, induced by the cavitation. Thus, 

due to the two positive facts, i.e., elimination of mass transfer limitations and 

production of two free radicals per molecule of O3  consumed, even for compounds 

that react fairly quickly with O 3 , the rate of degradation/disinfection will be enhanced 

by the combined operation of cavitation and ozonation. The extent of these combined

O3 ------- ►CL + 0(3P) (7.1)
(7.2)0 (3P) + H20 ------- ► 2HO*
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effects, in case of HC, is also expected to be influenced by the intensity of cavitation 

in the reactor which, in turn, depends on the inlet pressure as demonstrated by 

theoretical bubble dynamic modelling (Gogate and Pandit, 2000). Therefore, it is 

recommended that to attain maximum benefits of the combined systems, optimum 

operating pressure should be selected and this will be discussed later in this chapter.

Hence, the main objectives of this study were to assess the following on the 

effectiveness of disinfection:

■ Inlet pressure into the LWR (over a range 500-1500 psi)

■ O 3 dosages (time of ozonation and flowrates)

■ Individual technology: HC and ozonation

■ Combined technology: HC + (single/double) ozonation

■  O3 decomposition in the LWR

7.2 Experimental
7.2.1 Microorganism
Escherichia coli (NCIMB 10000 obtained from the National Collection of Industrial 

Food and Marine Bacteria, Aberdeen, UK), a Gram-negative model bacterium, was 

chosen for all the experimental studies. Cells, medium and viable count methodology 

are as described in Section 2.4.6.

7.2.2 Reaction suspension
Since the aim of this study was to develop a robust disinfection technology utilising 

the combined approach of hydrodynamic cavitation (HC) and ozonation, for potential 

utilisation in different industries, a contaminated suspension was created by 

inoculating 400 mL of the overnight culture of E. coli ( 6  x 107  CFU mL-1) into 3600 

mL distilled water (dH2 0). The suspension pH (7-8) and temperature (20 ± 5 °C) was 

noted at the start of every experiment.
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7.2.3 Liquid Whistle Reactor
The Liquid Whistle Reactor (LWR) used is same as described in Section 2.3.1. The 

reactor set-up was modified to carry out disinfection studies under sterilised conditions 

and also at different temperatures. A schematic diagram of the modified LWR for this 

study is presented in Fig. 7.1.

F ig u re  7 .1 : S ch em a tic  r e p re s e n ta t io n  o f  th e  e x p e r im e n ta l  s e t-u p  w ith  th e  o z o n ise r  a n d  th e  L W R  
(1, o x y g en  c y l in d e r ; 2, ozone g e n e r a to r ;  3 , p lu n g e r  p u m p ; 4, P L C  b o a r d ;  5, d ig ita l  p r e s s u r e  
m e te r ;  6 , o rifice  a n d  b la d e  u n it ;  7 , co o lin g  co il; 8 , r e tu r n  p ip e  to  fe e d  ta n k ;  9 , o zo n e  g a s  b u b b le r ;  
10, coo ling  b a th ;  11, s a m p lin g  p o r t ;  12, K I  t r a p ) .

In the modified LWR set-up, the open steel feed tank (4 L) was replaced by an airtight 

chamber and an additional cooling unit was designed, where the LWR was connected 

to a 10 L autoclavable NALEGE® polycarbonate reaction vessel fitted with a 

polypropylene closure, which includes a gasket to assure leak-proof services (Nalge 

Co., NY, USA). For cooling, the reaction vessel was immersed in an ice bath. This 

airtight unit was operated in recycling mode and fitted with an ozone bubbler, a vent 

into 2% KI (ozone scrubber) and a sampling port.
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7.2.4 Ozone
7.2.4.1 Ozone generator

The ozone generator is the same as described in Section 2.4.4 with oxygen as a feed 

gas.

7.2.4.2 Ozone measurements

Ozone was measured using the colorimetric Indigo method as described in detail in 

Section 2.4.4 (Bader and Hoigne, 1981, 1982; Greenberg et cil., 1992)

7.2.5 Operational details: single and combined technologies
7.2.5.1 Hydrodynamic cavitation alone

To estimate the % disinfection using HC alone, experiments were carried out with 4 L 

of bacterial suspension having a concentration of approximately 108-1 0 9  CFU mL-1. 

The % disinfection was compared at three different pressures: 500, 1000 and 1500 psi 

with samples being withdrawn every 30 min. Experiments were carried out in 

triplicates and average data is presented with reproducibility within ±5%.

12.5.2 Ozonation alone

To study the % disinfection with O3 alone, the LWR was operated without orifice and 

blade, which consequently reduces the inlet pressure considerably and the reaction 

suspension was circulated through the pipe to the feed tank and back to the LWR. 

However, since there was no pressure in the LWR there was no resultant increase in 

temperature as HC normally generates heat due to cavity collapse. Therefore, with 

ozonation alone experiments, the temperature was maintained at 35 ± 5 °C by 

immersing the feed tank in a water bath. In the absence of orifice and blade, the LWR 

inlet pressure and flowrates were observed as 30 psi and 5.4 L min-1, respectively. 

The O3 concentrations were monitored and samples were withdrawn every 30 min, 

exactly as described above for analysis of the extent of disinfection. The effect of O3 

concentration on the extent of disinfection was optimised by changing the dial settings 

on the control dial on a scale of 1-10 as described by the equipment supplier. This 

step is considered to be important in the optimisation process for maximising 

combined/synergistic effects (if any).
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7.2.5.3 Hydrodynamic cavitation and single ozonation

Single ozonation is defined as a single dose of O3 at a flowrate of 5 L min- 1  of O3-O 2 

mixture being applied for 15 min before the start of the experiment (3-3.5 mg O3 L-1). 

Once ozonation was finished, the bacterial solution was mixed in the LWR at a very 

low pressure (300 psi, 5 min) and then the first sample was withdrawn for serial 

dilution in order to determine the base line bacterial count. Following the 5 min 

mixing at 300 psi, the pressure in the LWR was then increase to the desired value and 

the solution was circulated. During this process, the temperature was not controlled 

and hence it increased from 20 ± 5 °C to 35 ± 5 °C as a result of cavitation. The 

extent of bacterial killing at each pressure was determined using the heterotrophic 

plate count technique after incubation overnight at 37 °C (Greenberg et a l ,  1992).

7.2.5.4 Hydrodynamic cavitation and double ozonation

To determine the enhanced effect (if any) of adding the O3-O 2 mixture in two separate 

doses, the experiments at different pressures were repeated with purging the gaseous 

mixture at a flowrate of 5 L min- 1  for 15 min at the start of the experiment (3-3.5 mg 

O3 L-1) and then again for 15 min after 90 min reaction time. Studies with HC and 

double ozonation were carried out at controlled temperatures of, 15 ±  5 °C, 25 ±  5 °C, 

35 ± 5 °C, for pressures, 500, 1000 and 1500 psi, respectively, to determine any 

enhancement in process operation for disinfection.

7.2.5.5 Ozone decomposition in the LWR

Ozone was bubbled through sterile dH2 0  (4 L) and O3 decomposition over 180 min 

reaction time was monitored in the LWR in the presence/absence of the orifice and 

blade and also with single/double ozonation at different operating pressures (Section 

7.4). Experimental conditions and set-up were the same for all the bacterial 

disinfection measurements. For colorimetric measurements, the ozonised samples (3 

mL) were withdrawn at specific time intervals and mixed gently with 5 mL Indigo 

reagent and filled to mark in a 50 mL volumetric flask. To mix the solution, the 

volumetric flask was turned upside down without formation of any air bubbles and the 

colour change was read on the UV-vis spectrophotometer at 600 nm and 

concentrations were measured in mg O3 L- 1  as described in Section 2.4.4.

178



D isin fec tion : L W R

7.3 Results and discussion
The % disinfection under different operational conditions have been represented in the 

form of percentage disinfection (microbial inactivation %) and calculated using the 

formula below:

percentage disinfection = log {(No~N)/N} x 100 (7.3)

where, No represents the initial microbial count and N  represents the microbial count at 

any give time.

7.3.1 Effect of hydrodynamic cavitation
Microbial inactivation at lower pressures, i.e., 500 and 1000 psi was almost negligible 

(1-7%). However, 22% microbial inactivation was obtained by increasing the 

pressure to 1500 psi, which could be explained by higher cavity formation at this 

pressure, as discussed in Chapter 3. At 1500 psi, higher intensity cavitation leads to 

the formation of higher number of free radicals and at this pressure, the elevated 

intensity of turbulence causes cell disruption at the high pressure zone, i.e., orifice and 

blade and also allows the free radicals to homogeneously react with the microbial cell 

contents (Fig. 7.2).
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Figure 7.2: Effect o f HC alone on m icrobial inactivation (% ) at d ifferent pressures in  the L W R . 
Experim ental conditions: bacteria, E. coli; reaction suspension (4 L); reaction tim e, 180 m in, 
tem perature 20 ±  5 °C to 35 ±  5 °C; operating pressure, 5 0 0 ,1 0 0 0  and 1500 psi; results show n are  
an average o f triplicates.

During cavitational processes, extreme temperatures and pressure gradients occur 

within the bubble during cavitational collapse and release oxidants, like HO* and 

H 2 O2  into the solution (Suslick et a l, 1997), which participate in bacterial inactivation. 

Different theories have been proposed where high pressures and cavitation leads to 

cavity collapse which in turn leads to cell disruption (Shirgaonkar et al., 1998). Cell 

disruption at high pressures has also been attributed to impingement and impact 

(Moore et al., 1990). In this study, at 1500 psi, the highest reduction in bacterial 

numbers is attributed to the significant cavitational effects beyond certain cavitation 

inception conditions (e.g., 500 psi), resulting in generation of various free radicals and 

also mechanical effects, i.e., turbulence and shear, which facilitates the de­

agglomeration of microbial clusters, allowing effective interaction of the bulk liquid 

oxidants with the microorganisms and its contents leading to enhanced disinfection at 

this pressure.
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7.3.2 Effect of ozonation
The effect of ozonation only was studied by removing the orifice and blade from the 

LWR. In the absence of the orifice and blade, the O3  molecules and any intermediate 

radicals, generated due to in situ O3 decomposition, react with the bacteria present in 

the suspension, leading to disinfection. In case of O3 alone, it is also believed that 

fairly high temperatures (35 ± 5 °C) lead to cell breakage. Thus, the two factors, i.e., 

free radicals and higher temperatures lead to significant bacterial killing during single 

(Fig. 7.3) and double ozonation (Fig. 7.4).

Figure 7.3: O ptim isation o f O3 dosages: (i) dial 2, 5 m in (ii) dial 2 ,1 5  m in and (iii) d ial 4, 15 m in, 
for disinfection studies. Experim ental conditions: bacteria, E. coli; reaction suspension  (4 L); 0 2-  
O3 gas flow rate, 5 L min-1 (3 -3 .5  mg O3 L-1); tem perature, 35 ±  5 °C; pressure, 30  psi (5.4 L m in- 
*); reaction tim e, 180 min. Double-ended arrow  denotes period o f  single ozonation.

An appropriate O3 dose is an important factor in ozonation systems. Thus, some 

optimisation studies were carried out by changing dial settings ( 1 - 1 0 ) on the ozonator, 

which reflects the concentration of O3 in the mixture 

(http://www.ozoneengineering.com). However, for all the studies, the flowrate of the 

O2-O3 mixture was kept constant, i.e., 5 L min- 1  and bacterial disinfection was studied
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at the following settings on the ozonator: (i) dial 2, 5 min (ii) dial 2, 15 min and (iii) 

dial 4, 15 min. The % disinfection at the three settings were studied over 180 min and 

the following conclusions could be drawn from the data: from setting (i) and (ii), 2 0 % 

and 25% disinfection was observed, respectively, whereas from setting (iii) 

approximately 50% disinfection was achieved. Therefore, all the experiments at 

different pressures and double ozonation were carried out at this optimised O3 dose, 

i.e., dial 4, 15 min. Likewise, a similar pattern of disinfection was achieved up to 90 

min in case of double ozonation but soon after the second ozonation (dial 4, 15 min) a 

further significant 23% increase in bacterial killing was observed (Fig. 7.4). This 

enhanced % inactivation with double ozonation could be attributed to the increased 

concentration of O3 and its intermediate radical species interacting with the remaining 

surviving bacteria leading to further disinfection. Literature also suggests that step 

wise addition of oxidants to the reacting medium helps in the process of 

degradation/disinfection (Gogate and Pandit, 2004b).
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Figure 7.4: Com parison o f single and double ozonation on the % disinfection. E xperim ental 
conditions: bacteria, E. co li; reaction suspension (4 L); O2- O 3 gas flow rate, 5 L m in-1 (3 -3 .5  mg  
O3 L-1); ozonator setting, dial 4, 15 min; tem perature, 35 ±  5 °C; pressure, 30 psi (5.4 L m in-1); 
reaction tim e, 180 min. Double-sided arrow  denotes period o f ozonation  for single and double  
ozonation.
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Bacterial disinfection with O3 occurs due to interaction between the oxidising radical 

species and the bacterial cell, where the cell membrane is the first site of attack 

through glycoproteins, glycolipids and amino acids and O3 tends to act upon the 

sulfhydryl groups of certain enzyme (Rojas-Valencia et a l ,  2004). The mass transfer 

limitations of O3 sparging in the stirred or bubble column type reactors is overcome by 

the re-circulatory flows in the LWR which, in turn, enhances mixing rates in the 

system. The continuous re-circulation not only affects the mixing rates but also helps 

in de-agglomeration of the microbial clusters and with the effect of high temperatures, 

favours cell breakage and O3 dissociation into intermediate radicals, which have 

higher potentials to break through individual microbial cells and enhance bacterial 

inactivation. It should also be noted that O3 could have been used for a longer time 

duration but the scope of the present study was to develop an optimum treatment 

protocol based on the LWR with minimum usage of O3 to reduce the cost of treatment.

7.3.3 Effect of hydrodynamic cavitation and single ozonation
A combination of HC (1500 psi) and single ozonation (15 min at the start of the 

experiment, corresponding to 3-3.5 mg O3 L-1), lead to 48% microbial inactivation, 

i.e., the bacterial numbers reduced from ~109 to 105 CFU mL_1. In Fig. 7.5a, a 

comparison of the combined system of HC and single ozonation is shown and a 

further magnified comparison graph is presented at 1500 psi, with and without 

ozonation (Fig. 7.5b). However, the results shown here are in correlation with the O3 

decomposition, discussed in Section 7.4, in the presence (1500 psi) and absence of 

orifice (30 psi) which follows a similar pattern under both the conditions and this 

could be the possible reason for similar % disinfection under the two conditions.

From Fig. 7.5a, it can be noticed that at lower pressures (500 and 1000 psi) with the 

single ozonation, instant killing was observed within 15 min due to the direct reaction 

of O3 and its intermediate radicals species with the bacteria in the bulk solution. 

However, there was no further significant microbial reduction observed over the next 

165 min and since the pressures were not high enough, no more disinfection occurred 

via cavitation.
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Figure 7.5: (a) Effect o f HC and single ozonation on m icrobial inactivation (% ) at d ifferent 
pressures in the LW R and (b) Com parison o f  m icrobial inactivation  (% )  at 1500 psi (HC) and  
1500 psi (HC) + single ozonation. E xperim ental conditions: bacteria, E. coli; reaction suspension  
(4 L); O2-O 3 gas flowrate, 5 L m in-1 (3 -3 .5  mg O3 L”1); ozonator setting, dial 4, 15 m in at the 
start; tem perature, 35 ±  5 °C; reaction tim e, 180 min. D ouble-sided arrow  denotes period o f  
single ozonation.
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In Fig. 7.5b, the comparative study at 1500 psi with and without ozonation indicates 

effect of the combination of the two AOPs, i.e., cavitation and ozonation. With an 

initial 15 min ozonation under similar conditions and reactor set-up, a significant 28% 

bacterial inactivation was observed and after a further 165 min of reaction at 1500 psi, 

a further 20% increase in disinfection is achieved, giving a total of 48% killing. 

However, in case of cavitation alone at 1500 psi, only 22% disinfection over 180 min 

was achieved.

7.3.4 Effect of hydrodynamic cavitation and double ozonation
The effect of low pressure was insignificant in the case of HC coupled with single 

ozonation, therefore to maximise disinfection, double ozonation (Section 7.4) was 

investigated at all of the three chosen pressures. The results shown in Fig. 7.6 reveal 

that the extent of disinfection obtained from this combined system of HC and double 

ozonation was in the range 58 to 73%.
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Figure 7.6: Effect o f HC and double ozonation on m icrobial inactivation (% ) at d ifferent 
pressures in the LW R. Experim ental conditions: bacteria, E. co li; reaction suspension  (4 L); O2-  
O3 gas flow rate, 5 L min-1; ozonator setting, dial 4, 15 m in at the start (3 -3 .5  m g O3 L-1); 
tem perature, 500 psi, 15 ±  5 °C, 1000 psi, 25 ±  5 °C , 1500 psi, 35 +  5 °C; reaction tim e, 180 m in. 
Double-sided arrow denotes period o f single and double ozonation.
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As discussed above, the extent of disinfection was similar in case of 500 and 1500 psi, 

whereas comparatively low with 1000 psi. The difference in the % disinfection can be 

explained on the basis of two parallel mechanisms: (i) pressures and related 

cavitational activity and (ii) operating temperature. In the literature, the concept of 

variable temperature and activation energies with respect to microbial disinfection for 

bacteria has been discussed in detail by Von Gunten (Von Gunten, 2003) who reported 

that activation energies for bacteria are in a similar range to chemical reactions with 

O3 (35-50 kJ mol-1). Thus, to assess disinfection for variable temperatures, these 

activation energies have to be compared with the activation energies for the O3 decay, 

which is 65-70 kJ mol- 1  (as determined in various water matrices). The above 

explanation proves that for the same O3 dosage, the degree of microbial inactivation 

would be higher at lower temperatures (Hunt and Marinas, 1997). Therefore, a 

different set of temperatures were selected to operate with different pressures: 500 psi, 

15 ± 5 °C; 1000 psi, 25 ± 5 °C and 1500 psi, 35 ± 5 °C, to achieve effective % 

disinfection in the LWR.

At 500 psi operating pressure, the temperature was maintained at 15 ± 5 °C with the 

help of the cooling bath and a high degree of disinfection was achieved with double 

ozonation even though the contribution due to cavitation was negligible. The high % 

disinfection at this pressure could be attributed to the higher activity of the O3 because 

the single and double O3 decomposition profiles in the LWR (Section 7.4) reveals that 

during single ozonation, O3 concentrations decreased from 3-3.5 mg O3 L - 1  to 0.9 mg 

O3 L- 1  at the end of 90 min, but in case of double ozonation, O3 concentrations 

increased to 3.4 mg O3 L- 1  after the second ozonation and remained 1.5 mg O3 L- 1  

until the end of reaction time due to stability of O3 at lower temperatures. Thus, the 

presence of O3 and its intermediate radical species until the end of the reaction time at 

500 psi and 15 ±  5 °C temperature influences the % inactivation. However, at 1000 

psi, with similar cooling but relatively high cavitational activity, the operating 

temperature could only be maintained around 25 ± 5 °C. Thus, here both the 

ineffective factors: low cavitational activity and low activity of ozone lead to only 

58% microbial inactivation at this pressure. On the contrary, higher pressures of 1500 

psi and 35 ± 5 °C shows lower O3 activity but substantially higher cavitational activity
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as seen from all the results so far, which overall results in the similar degree of 

disinfection as seen in case of 500 psi, i.e., 73%.

This part of the study at different pressure and temperature combinations meets the 

objectives of this research because literature suggests that natural water 

microorganisms can be rapidly killed by the direct ozonation, whereas those in 

secondary effluents from wastewater treatment plants require longer contact time for 

inactivation which might increase the operational cost (Burleson et al., 1975). Hence, 

simultaneous treatments by ozonation in the LWR at optimised temperature and 

pressure conditions could prove to be beneficial for inactivating bacteria at 

substantially reduced contact time of O3 , which may in turn, reduce the total cost of 

operations.

Therefore, the overall conclusion is that the use of the hybrid technology of HC and 

ozonation in the LWR offers great promise in treating wastewater with recalcitrant 

bacteria, at unusually low cost and lower energy input.

7.4 Ozone decomposition in the LWR
The ozone decomposition studies were carried out in the presence (1500 psi) and 

absence (30 psi) of the orifice and blade at 35 ±  5 °C and also at the different 

temperature and pressure combinations during HC and double ozonation: 500 psi, 15 ±  

5 °C; 1000 psi, 25 ± 5 °C and 1500 psi, 35 ± 5 °C over 180 min treatment time.
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Figure 7.7: O zone decom position studies in  the LW R. (a) S ingle ozonation: w ith H C (1500 psi) 
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reaction tim e, 180 min. Double-ended arrow  denotes a period o f  ozonation.
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Initial ozonation for 15 min (O2-O 3 mixture) resulted in concentrations of 3-3.5 mg 

O3  L- 1  in the reaction medium but this had completely disappeared with or without 

high levels of cavitation at the end of 180 min due to the high temperature (35 ±  5 °C) 

(Fig. 7.7a). Not surprisingly, the rate of decomposition at this temperature was greater 

at the higher pressure. Similarly, O3 decomposition studies in the case of combined 

HC and double ozonation were compared for different experimental conditions and 

set-ups (Fig. 7.7b). In this case, the initial O3 concentration was 3-3.5 mg O3 L- 1  

which reduced to 0.2-1.00 mg O3  L- 1  depending on operating pressure and 

temperature. After the second O3 purge (between 90 and 105 min), the concentration 

increased to between 1.8 and 3.5 mg O3 L_ 1 depending on the residual O3 

concentration at different pressures and temperature of the reaction solution. At 500 

psi in the case of double ozonation, the residual concentration of O3  at 90 min was the 

highest and therefore greater % disinfection was achieved at this pressure as discussed 

previously. Due to continuous HC, the temperature of the reaction solution increases 

and allows mixing of O3 and its dissociated radical species into the bulk solution. 

Thus, the residual concentration of O3  is found to be highest at 500 psi, corresponding 

to the minimum intensity of cavitation and is lowest in case of 1500 psi which 

correlates to the maximum intensity of cavitation at this operating pressure. Likewise 

the two pressures (500 and 1500 psi) and the related intensities of ozonation and 

cavitation lead to highest degree of disinfection (73%).
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7.5 Summary
The results from the above study are summarised in Table 7.2 where the percentage 

disinfection is represented by (R) and log reduction is (/?Log).

Heterotrophic plate count
Feed Product water Removal Log
concentration concentration removal

To (Cf)a ^180 (Cp) 3 R=  1- ^Log — —
CFU mL_1 CFU mL-1 (Cp/Cf) log(l-R )

Hydrodynamic cavitation (HC) system
500 psi 2.36E + 08 2.06E + 08 0.125884 0.058431
1 0 0 0  psi 2.76E + 08 6.10E + 07 0.779252 0.656103
1500 psi 2.45E + 08 8.20E + 06 0.966576 1.475943
Single (O3 ) and combined (O3 + HC) system
O3 (Dial 2, 5 min) 2.34E + 08 6.73E + 06 0.971184 1.540367
O3 (Dial 2, 15 min) 2.59E + 08 2.05E + 06 0.992082 2.101399

O3 (Dial 4, 15 min)

Single 0 3 2.67E + 08 1.95E + 04 0.999927 4.136477
Double O3 2.48E + 08 2.50E + 02 0.999999 5.996512
Single O3 + 500 psi 2.89E + 08 9.10E + 05 0.996846 2.501104
Single O3 + 1000 psi 1.94E + 08 3.85E + 05 0.99801 2.70122
Single O3 + 1500 psi 3.82E + 09 1.01E + 05 0.999974 4.577742
Double O3 + 500 psi 2.7 IE + 08 2.00E + 02 0.999999 6.131939
Double O3 + 1000 psi 2.67E + 08 3.65E + 03 0.999986 4.864218
Double O3 + 1500 psi 2.98E + 08 3.55E + 02 0.999999 5.923259

aThe relative standard deviation for all measurements is within ±5%.

Table 7.2: Sum m ary chart o f different single and com bined system s and their corresponding  
bacterial rem oval (R ) and log reductions (/?Log)»

From Table 7.2, it can be clearly seen that HC (at the chosen temperature and pressure 

set-ups) coupled with double ozonation lead to 99.999% bacterial removal 

corresponding to 5-6  log reduction which is considered to be acceptable and effective 

technology in any industrial scale process. However, operating at lower working 

temperatures could be challenging on an industrial scale, in which case effective 

disinfection could be achieved at higher temperatures and pressures in the LWR. 

These conditions are therefore recommended for disinfecting wastewaters with low 

organic loads and other organic contaminants. Optimisation of a feasible O3  dose is a 

key in developing a low cost and energy-efficient technology. Therefore, the present 

work is a useful guideline for design and operation of large scale cavitation-based 

wastewater treatment units coupled with different AOPs.
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Key Conclusions and 
Suggestions for Future Work
This thesis describes the effective use of combined techniques of various advanced 

oxidation processes with cavitational reactors for phenolic wastewater treatment and 

water disinfection. The following are the key conclusions drawn from the above 

study:

■ Dosimetry: Less toxic chloroalkanes are effective alternatives for enhanced 

generation of hydroxyl radicals in cavitational reactors. Enhanced production 

of hydroxyl radicals was seen at higher operational pressures in the Liquid 

Whistle Reactor and at higher operating amplitudes in the ultrasonic reactor.

■ Degradation I: The 300 kHz ultrasonic transducer-type reactor and zero valent 

iron catalysts showed 100% phenol removal and 37% TOC mineralisation in 

just 25 min. Whereas 37-40% TOC mineralisation was observed with both the 

20 (probe type) and 520 kHz (transducer type) but only in the presence of zero 

valent iron catalysts and overhead stirring. The modified Advanced Fenton 

Process, studied with ozonation did not seem to effectively enhance phenol 

removal rates when compared to hydrogen peroxide.

■ Degradation II: The Latent Remediation approach significantly enhanced 

phenol degradation rates in the presence of zero valent iron and a variety of 

types of zero valent copper catalysts. Optimum concentrations of zero valent 

copper catalysts lead to -80% TOC mineralisation. Toxicity analysis on 24, 

48 and 72 h samples with zero valent iron and copper reactions revealed that 

the latter is more toxic and iron is favoured as the catalysts of choice.

■ Degradation III: Activated carbon cloth (ACC) showed the best results for 

high phenol removal; at high temperatures via the reactivation of adsorption 

active sites on the cloth surface, in an ultrasonic bath via adsorption- 

oxidation-regeneration and step-wise ozonation via adsorption-oxidation.

■ Disinfection: Higher operating pressures in conjunction with step-wise 

ozonation resulted in 99.9999% disinfection efficiency of the LWR.
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Hence, based on the overall findings of the work presented in this thesis, the following 

suggestions for future works are proposed:

1. Investigations of oxidation products of phenol from the activated carbon cloth 

are essential to confirm removal of organics via adsorption or oxidation or both 

phenomena.

2. Iron impregnated activated carbon cloths are proposed for a study of Fenton­

like reactions.

3. Installation of the optimised activated carbon cloth catalyst bed in conjunction 

with advanced oxidation processes should be carried out on a pilot scale.

4. Latent Remediation process should be investigated with optimised ozonation 

strategies in conjunction with the Advanced Fenton Process.

5. Use of zero valent copper catalysts should be further optimised for industrial 

scale operations with toxicity considerations being taken into account.

6 . The combination of hydrogen peroxide + ozonation in conjunction with the 

Advanced Fenton Process for industrial wastewater should be studied.

7. The AFP and related reactions should be investigated on a larger scale with 

real industrial wastewater.

8 . The combination of acoustic and hydrodynamic cavitation should be assessed 

for enhanced generation of hydroxyl radicals and simultaneous wastewater 

treatment for industrial scale operations.
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Appendix A

Cost and energy estim ation o f  the D osim etry, Degradation and D isinfection processes in the  

cavitational reactors.

A



Actual 
power (W)

Supplied 
power (W)

Time of
treatment
(h)

Operational
power
(kWh)

Operational 
cost (GBP) 
(1 kWh = 
GBP 0.10)

Volume of £/L
reactants
(L)

Experiment 
al results

Estimated 
cost (cost per 
unit product 
yield) £/pM 
HO»
generation or 
£/g TOC 
reduction

Actual x 
(amplitude)

(Supplied 
power/1000 
) x Time of 
treatment

kWh x 0.10 
= GBP

£/L

Ultrasonic reactors (acoustic cavitation)
Dosimetry pM HO« £/pM HO»

generation generation
20 kHz US reactor (amplitudes) [Dichloromethane, 7 g L *]
25% 400 100 1.17 0.117 0.012 0.200 0.058 54.43 0.001
50% 400 200 1.17 0.233 0.023 0.200 0.117 111.5 0.001

75% 400 300 1.17 0.350 0.035 0.200 0.175 171.01 0.001

Degradation g L”1 TOC £/g TOC
removed removed

US reactors (kHz)
20 (50% amplitude) 180 90 1 0.09 0.009 0.080 0.113 0.0719 1.565
300 25 25 1 0.03 0.003 0.100 0.025 0.0709 0.353
520 kHz 100 100 1 0.10 0.010 0.300 0.033 0.0658 0.507
Latent Remediation 
(24 h)____________
US (20 kHz; 50%) 400 200 0.25 0.050 0.005 0.200 0.025 0.175 0.143
Stir 100 100 0.25 0.025 0.003 0.200 0.013 0.138 0.091
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Time of
treatment
(h)

Operational 
power 
(kW h)a

Operation 
al cost 
(GBP) (1 
kWh = 
GBP 0.10)

Volume of 
reactants (L)

Cost per Experiment 
unit volume al results 
(GBP/L)

Estimated cost (cost per unit product 
yield)

(Combined kWh x GBP/L
operational 0.10 =
power) x GBP
Time of
treatment

Liquid Whistle Reactor (Hydrodynamic cavitation)
Disinfection Logio

Reduction
£/Logio Reduction

Hydrodynamic 3 10.80 1.08 4 0.270 1.475 0.183
cavitation only 
Hydrodynamic 
cavitation + [Single 
ozonationb (15

3 10.82 1.08 4 0.271 4.577 0.059

min)]
Hydrodynamic 
cavitation + 
[Double ozonation 
(15+15=30 min)]

3 10.84 1.08 4 0.271 5.923 0.046

aCombined operational power (kWh): LWR = 3.6 kW or 10.8 kWh (1500 psi) + ozonator.
bOzonator gererator power = 85 W (.021 kWh for single ozonation (15 min) and .043 kWh for double oxonation (15 + 15 min)).
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