
Q u a lity A sp e c ts o f th e P r o g r a m D e v e lo p m e n t P r o c e s s u s e d b y

L e a r n e r P r o g r a m m e r s .

A thesis submitted in partial fulfilment
o f the requirements o f the

University o f Abertay Dundee

For the degree o f Doctor o f Philosophy

Geoffrey Robert Lund

University o f Abertay Dundee

31st January 2002

I certify that this thesis is a true and accurate version o f the thesis approved by the
examiners.

(Director <
Signed ...

Quality and Novice Programmers.

A b s t r a c t .

Much research in the area o f computer programming education has examined the

product (program) produced by the novice, measured it and sought ways to improve

it. Little regard has been given to the process by which the novice has produced the

product. This is in sharp contract to the main teaching in software engineering that
stresses the importance o f process rather than the product. This thesis initially

developed and validated a set o f metrics that allowed the measurement o f the

personal software development process (PSDP). These metrics allow comparison

between different personal software development processes. In this thesis an

experiment is reported where a group o f novices were given feedback during the

development o f the program that sought to improve the PSDP. The results showed a

significant improvement in the PSDP is achieved against a control group.
Investigation into the relationship between the process and the product indicates that
there is no correlation between the process metrics and the product metrics save for

the measurement o f correctness; a program developed well tends to be more correct
than one that is not. Other product quality measures are unaffected by the quality o f

the process. This replicates results recorded in the literature. The thesis concludes by

proposing a unified framework o f programming knowledge that includes 4 levels o f

knowledge (syntactic, semantic, schematic and strategic) each with two levels

(declarative and procedural). The work in this thesis is used to justify the inclusion o f

strategic knowledge in the framework. This work has implications for deliverers o f

computer programming education be they lecturers or providers o f computer aided

learning packages in providing a framework for the learning o f novice programmers

and especially emphasising the importance o f the personal software development
process.

i

Quality and Novice Programmers.

A c k n o w l e d g e m e n t s .

I would like to thank all the people who have helped me in their many and various

ways throughout the time it has taken me to complete this project and especially my

supervisors who spent a lot o f time in meetings and outside discussing various

issues with me, Dr. Leona Elder, Dr. Louis Natanson, and my Director o f Studies

Dr. Colin Miller.

Thanks are also due to many colleagues, past and present, at the University of

Abertay Dundee who have helped in various ways during the course o f this research.
I would like to thank my long-suffering room mate who, I hope, I did not drive to

early retirement; Dr. Andy Wakelin. Special thanks to Mr Sewart Gardener who

helped with the technicalities o f VMS and did not switch o ff the machine before I
backed up my files!

Finally thanks to all my family who I ignored on many an occasion when I was

working on this thesis.

Geoffrey Lund

January 2002

11

Quality and Novice Programmers.

C o n t e n t s .

Chapter 1 Introduction. 1
1.1 Introduction 1
1.2 Project Aims. 6
1.3 Structure o f the Thesis 7

Chapter 2 Review of Related Work. 10
2.1 Software Metrics 10
2.2 Measuring the Novice Software Product 13

2.2.1 Measurement Criteria 13
2.2.2 Measuring the Programming Style o f Computer Programs 15
2.2.3 Measuring the Programming Design o f Computer Programs 19
2.2.4 Program Complexity 20
2.2.5 Measurement o f Correctness o f Computer Programs 21
2.2.6 Efficiency Measurement o f Novice Programs 22
2.2.7 Automated Marking Schemes 22
2.2.8 Summary 24

2.3 Measuring Novice Processes 25
2.3.1 Personal Software Process 25
2.3.2 Novices Process Metrics 27

2.4 Learning to Program 29
2.4.1 Programming Expertise 29
2.4.2 Syntactic Programming Knowledge 31
2.4.3 Semantic Programming Knowledge 32
2.4.4 Schematic Programming Knowledge 32
2.4.5 Strategic Knowledge - Problem Solving 34
2.4.6 Summary 35

2.5 General Summary 35

Chapter 3 Data Collection Techniques 38
3.1 Introduction 38
3.2 Collecting the Raw Data 39

3.2.1 Source Code Capture 40
3.2.2 Capturing Program Output 41
3.2.3 Summary 43

3.3 Automating Correctness Checking 43
3.4 Analysing the Data 45
3.5 Summary 48

iii

Quality and Novice Programmers.

Chapter 4 Measuring the Novice Program Software Process. 50
4.1 Introduction 50
4.2 Data Collection 51
4.3 Visualisation o f the Personal Software Development Process 52
4.4 Model o f the Personal Software Development Process (PSDP) 63
4.5 Establishing a Set o f Core Metrics 65

4.5.1 Investigation Process 65
4.5.2 Measuring Process Quality 67

4.6 Results 69
4.6.1 Length o f Development Results 69
4.6.2 Compiling Success Results 71
4.6.3 Running Success Results 74
4.6.4 Stages in Development Results 77
4.6.5 Overall Success Rate Results 80

4.7 Process Marking 83
4.8 Summary 85

Chapter 5 Feedback as a Method of Process Improvement. 86
5.1 Introduction 86
5.2 Experimental Design 88

5.2.1 Introduction 88
5.2.2. Experimental Design 88
5.2.3 The Participants 89
5.2.4 The Problems Used in the Experiment 90
5.2.5 The Treatment 91
5.2.6 The Computer Environment 92

5.3 Results 92
5.3.1 c p i Improvement 93
5.3.2 Relative Run Performance Index (r r p i) 95
5.3.3 Stages in Lines of C od e(sl) and Stages in Correctness (s t) 97
5.3.4 Relative Total Progress Index (r t p i) 102

5.4 Conclusion 104
5.5 Future Feedback Work 106

5.5.1 Introduction 106
5.5.2 Experimental Overview 107
5.5.3 Experimental Environment 109
5.5.4 Potential Feedback 112
5.5.5 Potential Experiments 116
5.5.6 Summary of Potential Experiments 121

5.6 Summary 122

Chapter 6 The Process - Product Relationship 123
6.1 Introduction 123
6.2 Product Metrics 124

6.2.1 Program Layout 125

iv

Quality and Novice Programmers.

6.2.2 Program Design 126
6.2.3 Complexity 127
6.2.4 Specification Proportion 128
6.2.5 Efficiency 129

6.3 Process - Product Correlation 129
6.4 Intra Process Correlation 134
6.5 Conclusions 136

Chapter 7 Learning to Program 138
7.1 Introduction 138
7.2 A Unified Framework of Programming Expertise 139
7.3 Unified Framework of Programming Expertise - Justification 142

7.3.1 Syntactic knowledge 142
7.3.2 Semantic Knowledge 142
7.3.3 Schematic knowledge 143
7.3.4 Strategic knowledge 145
7.3.5 Summary 147

7.4 Strategic Knowledge - Process Plans 148
7.5 Applying the Unified Framework - Lessons for Learning 151
7.6 Summary 154

Chapter 8 Final Conclusions and Future Work. 155
8.1 Introduction 155
8.2 Review of Research Objectives 156
8.3 Application to the Learning o f Computer Programming 162

8.3.1 Automatic Assessment 162
8.3.2 Include the Process into the Learning 162
8.3.3 Automating Feedback 163

8.4 Future Work. 164
8.3.2 Online Learning 164
8.3.3 How do Students Learn? 165
8.3.4 Professional Programmers 165

8.5 Conclusion 166

References 167

Appendix A Problems Solved by Novices.
Problem 1 - Weather Station Problem
Problem 2 - River Problem
Problem 3 - Traffic Problem
Problem 4 - Tennis Balls Problem
Problem 5 - Type Wear Problem

V

Quality and Novice Programmers.

Appendix B The Data
Subject Cohort A - Weather Problem Results
Subject Cohort B - River Problem Results
Subject Cohort B - Tennis Balls Problem Results
Subject Cohort C - Traffic Problem Results
Subject Cohort C - Type Wear Problem Results

Appendix C Papers by the Author
Lund, G.R. 1995. The Program Development Process. In In n o va tio n s in
C o m p u tin g Teaching. SEDA Paper 88.
Lund, G.R. 1995 Controlling Plagarism in Student programs IN: P ro c e e d in g s
o f 3 rd. A n n u a l C on feren ce on the T each in g o f C om puting . 29th August - 1st
September, Dublin, Ireland.
Lund, G.R., Elder, L., Natanson,L.D., and Miller, C.J., 1997 The Importance
of Process In: P ro c e e d in g s o f 5 th. A n n u a l C on feren ce on the T ea ch in g o f
C om puting. 26th “ 29th August Dublin, Ireland.

Appendix D Programs and Scripts.
PC VMS script to capture the program versions.
C ntLn2 . cp p C++ program to analyse a single program.
PRIV VMS script to control the analysis o f a whole PSDP

VI

Quality and Novice Programmers.

L is t o f F i g u r e s a n d T a b l e s . _______________________________________

F ig u r e s :

Figure 2.1 Trapezium function for converting counts to marks as used by 18
R ees(1982)

Figure 2.2 PSP Process Flow Taken From Humphrey (1997). 26
Figure 3.1 Outline o f p c command. 41

Figure 3.2 Specification o f D is p la y _ D a t a (. .) Procedure 42
Figure 4.1 Graph o f lines o f code against version number for expert 53

programmers.
Figure 4.2 Graph o f cumulative correctness against version number for 54

expert programmers.
Figure 4.3 Graph o f compilation errors against version number for expert 54

programmers.
Figure 4.4 Graph o f lines o f code against version number for novice 57

group B programmers.
Figure 4.5 Graph o f cumulative correctness against version number for 57

novice group B programmers.
Figure 4.6 Graph o f compilation errors against version number for 58

novice group B programmers.
Figure 4.7 Graph o f lines o f code against version number for novice 59

group C programmers.
Figure 4.8 Graph o f cumulative correctness against version number for 59

novice group C programmers.
Figure 4.9 Graph o f compilation errors against version number for 60

novice group C programmers.
Figure 4.10 Graph o f lines o f code against version number for novice 61

group D programmers.
Figure 4.11 Graph o f cumulative correctness against version number for 61

novice group D programmers.
Figure 4.12 Graph o f compilation errors against version number for 62

novice group D programmers.

vii

Quality and Novice Programmers.

Figure 4.13 Description o f the proposed PSDP model 63
Figure 5.1 Sample output o f treatment 91
Figure 5.2 Sample output for novice with less than complete 91

specification.
Figure 5.3 cp i Comparison o f the control and treatment groups 94
Figure 5.4 rrp i Comparison of the control and treatment groups. 96
Figure 5.5 s i Comparison o f the control and treatment groups. 98
Figure 5.6 s t Comparison o f the control and treatment groups. 100
Figure 5.7 r tp i Comparison of the control and treatment groups. 102
Figure 5.8 Diagramatic output given to novice group B 116
Figure 6.1 Scatter plots o f process and product metrics. 131
Figure 7.1 Iterative Process Plan 149
Figure 7.2 All-or-nothing Process Plan 150

T a b le s :

Table 2.1 Criteria for measuring the quality o f a novice program 15

Table 2.2 Mayer (1997) framework for programming expertise. 30

Table 2.3 A framework o f programming expertise, McGill & Volet 31
(1997)

Table 3.1 Tests for weather problem 44
Table 3.2 Counts used in the processing o f novice programs 46
Table 4.1 Classification o f expert and novice programmers. 56

Table 4.2 Details o f the subjects in the experiment to establish a set o f 66
novice process metrics

viii

Quality and Novice Programmers.

Table 4.3 Definition o f the Specification Proportion 68

Table 4.4 Definition o f potential length o f development metrics 69

Table 4.5 Classification o f groups o f subject on the basis o f number o f 70
versions metric

Table 4.6 Classification o f groups o f subject on the basis o f number o f 70
versions to completion metric.

Table 4.7 Definition o f potential compiling expertise metrics 72

Table 4.8 Classification o f groups o f subject on the basis o f compilation 72
ratio

Table 4.9 Classification o f groups o f subject on the basis o f compiling 73
performance index.

Table 4.10 Classification o f groups o f subject on the basis o f average 73
steps to compile a program

Table 4.11 Definition o f potential run stage success metrics 75

Table 4.12 Classification o f groups o f subject on the basis o f run 75
performance indicator.

Table 4.13 Classification o f groups o f subject on the basis o f their 76
relative run performance indicator.

Table 4.14 Definition o f potential stages in development metrics 78

Table 4.15 Classification o f groups o f subject on the basis o f the stages in 78
lines o f code.

Table 4.15a Classification o f groups o f subject on the basis o f the stages in 79
lines o f code, with experts removed from the data.

Table 4.16 Classification o f groups o f subjects on the basis o f the stages 79
in correctness

Table 4.17 Classification o f groups o f subjects on the basis o f the stages 80
in functions added.

Table 4.18 Definition o f potential overall success rate metrics. 80

Table 4.19 Classification o f groups o f subject on the basis o f the stages in 82
correctness.

IX

Quality and Novice Programmers.

Table 4.20 Classification o f groups o f subject on the basis o f stages in 82
correctness

Table 4.21 Classification o f groups o f subject on the overall process mark 84

Table 4.22 Validated set o f PSDP metrics. 85

Table 5.1 Statistical analysis o f the cp i metric 94

Table 5.2 Statistical analysis o f the rrp i metric 96
Table 5.3 Statistical analysis o f the s i metric 99
Table 5.4 Statistical analysis o f the s t metric 101
Table 5.5 Statistical analysis o f the r tp i metric 103
Table 5.6 Possibilities from an experiment analysed by statistics 111
Table 5.7 Calculation o f minimum sample size 112
Table 5.8 Example feedback given to group D novice 113
Table 5.9a Example feedback given to novice group C - 1 114
Table 5.9b Example feedback given to novice group C - 1 115
Table 5.10 Example feedback given to novice group B 116
Table 5.11 Showing the expected effect o f feedback on groupings o f 118

novice
Table 6.1 Criteria used to measure novice programs. 125
Table 6.2 Factors making up the program layout component o f a novice 125

program metric.
Table 6.3 Factors making up the program design component on novice 127

program quality
Table 6.4 Summary o f product metrics used on novice programs. 129
Table 6.5 Combined process and product correlation 13 1
Table 6.6 Process - product correlation 132
Table 6.7 Process metric correlation. 134

x

Quality and Novice Programmers.

Table 7.1 Mayer (1997) Programming Knowledge Framework
Summary.

139

Table 7.2 McGill & Volet (1997) Programming knowledge framework
Summary

140

Table 7.3 Unified Framework o f Programming Expertise. 141
Table 8.1 Classification o f Experts and Novices. 157

Table 8.2 Validated Metrics 158

Table 8.3 Unified Framework o f Programming Expertise 161

xi

Quality and Novice Programmers.

1 . I n t r o d u c t io n .__

1.1 Introduction.

"It m a y seem o d d in an a g e o f hom e com pu ters, w hen so m a n y a c a d e m ic s h a ve th e ir

o w n w o rksta tion , w hen m o st com pu ter u sers d o a b it o f p ro g ra m m in g w ith o u t an y

tra in in g , th a t w e f in d it d ifficu lt to tea ch p ro g ra m m in g to co m p u ter sc ien tis ts"

(Bomat 1990.)

Although the quotation above is over 10 years old the sentiments still hold true.
There has been much research work being carried out over the past twenty or so

years, (for example McAlpin 1992) with the aim o f improving computer

programming education. Much o f this work is targeted towards different approaches

to programming, the creation of automatic marking schemes or using IT during the

delivery o f a course. The work reported here takes a novel approach. This approach

borrows from software engineering the idea o f looking at the development process as

a way to improve the product.

Software engineering was seen as the solution to the software crisis o f the late

1970’s. One o f the main lessons learnt from the software engineering discipline is

that the process by which the software is developed must be managed in order to

create a quality product. In order to be able to manage a process efficiently the

process must be capable o f being measured. Possible measurements o f the software

development process include the time taken for the development, the cost o f

development or the number o f lines o f code produced per week during the

Chapter 1. 1.

Quality and Novice Programmers.

development.

This research sought to measure and manage the way novice computer programmers

produce computer programs. The aim o f such measurement was to seek

improvements in the quality o f the programs novices produce. The work started by

validating metrics for the novice software development process. It explored the

relationship between the novice software development process and the final software

product and then moved on to consider if the novice software development process

may be improved during the development process. The work carried out led to a

greater understanding o f what knowledge novices need to become expert
programmers. This experimental work gave the author a deeper understanding o f the

novice programmer. This led to a discussion o f the framework o f knowledge needed

to be acquired by a novice to become an expert programmer.

This work is important as it adds to the understanding of the knowledge needed for

novice programmers to become experts. It provides an educational framework upon

which traditional lecture courses may be built. However there are an increasing

number o f on-line learning / training packages available that purport to teach

computer programming. There is less flexibility in an on-line computer based

learning package for the delivery of the material to adapt to the needs o f the students.
Therefore it is more important in these on-line computer based learning packages

that there is a sound educational foundation to the package writer's understanding of

expertise needed to program a computer. A thorough understanding o f the

knowledge needed for a novice programmer to become an expert is fundamental to

computer programming educators when building their courses.

Chapter 1. 2.

Quality and Novice Programmers.

This research looked at a number o f aspects o f the way the novice programmers

develop their programs. In particular it focussed on:
• illustrating the personal software development process employed by novices,
• measuring this personal software development process,

• comparing the quality o f the personal software development process with the

quality o f the final computer program developed,

• investigating how to improve the personal software development process o f these

novice programmers,

• relating work on the personal software development process to current
understanding o f what constitutes expertise in computer programming.

There are other significant research projects working in this area. Ceilidh (now

Coursemaster) Benfield et.al. (1993b) is a major development project that started out
attempting to automatically mark student programs. This has now developed into a

major software system that can manage student coursework submission,
automatically marking and checking for plagiarism in a number o f computer

languages. Coursemaster concentrates on analysing and managing the final product
and does not consider the way in which the novice got to this program. Indeed

anecdotal evidence suggests that some students focus on maximising their mark

rather than developing a “good” programming method. The automatic marking

system provided is widely used and based on very early work by Rees (1982).
More sophisticated automatic marking schemes based on program structure rather

than counts have recently been developed, for example Thorbum & Rowe (1999).

Chapter 1. 3.

Quality and Novice Programmers.

"The Programmer's Apprentice" Rich & Walters (1988) is another major research

project that looked at capturing the expertise o f a programmer. This project focused

on trying to use artificial intelligence methods to capture programming expertise.
Here again the focus was on the expertise encompassed in the product (the program)
rather than on any expertise in producing this product. This project has not been

reported in the literature in recent years.

Current understanding o f the framework o f programming expertise is based on the

work o f Solway and Ehrlick (1984) and further developed by Davies (1989, 1990a,
1990b, 1991a, 1991b, 1994). Current understanding o f what constitutes programming

expertise is encompassed in the framework models o f McGill & Volet (1997) and

Mayer (1997). These recent works make some reference to the strategic knowledge

shown by expert programmers. The strategic knowledge o f an expert programmer is

his/her expertise in the personal software development process. This aspect o f

expertise has not been studied by others and does not feature strongly in either o f the

two frameworks for programming expertise.

A number o f small studies have been reported that have looked at the software

development process. These include Bishop-Clarke (1992), Grove (1999) and Parrish

et.al. (1997). Bishop-Clarke used protocol analysis looking at the process eight
subjects used to develop a small program. This method is very time consuming for

the researcher and the method o f protocol analysis cannot be scaled up to tens o f

subjects writing larger programs. However, Bishop-Clarke identified common

features o f the software development employed by these subjects and some

limitations in the subject’s understanding o f how to develop a program. Grove

Chapter 1. 4.

Quality and Novice Programmers.

attempted to improve computer programming in students by basing the software

development on the personal software process o f Humphrey (1995). He claimed that
focussing on the personal software process improved the programming expertise o f

his subjects. Grove was unable to measure objectively adherence to the personal
software process model and thus could not state whether or not his methods produced

real improvements in the subject's programming ability. Parrish et.al. looked at the

development o f a program over time. They used the compiler to capture a copy o f

every program submitted for compilation. They attempted to measure the quality o f

the software development by measuring the elapsed time from start to finish o f the

development, the number o f compiling attempts and the total amount o f time spent
on the computer during development. They could not correlate these usage patterns

with the final product grade. However they report a first attempt to measure the

software development process, a foundation upon which this research is based.

In recent years there has been a growth in online training o f computer and IT skills

including computer programming skills. To be most effective these packages must
address all aspects o f programming skills. The underlying framework o f

programming expertise must be understood to enable computer packages and other

forms o f training to be designed correctly. A number o f the current packages are very

sophisticated in their operation but they tend to ignore the major aspect o f computer

programming, the software development process.

Chapter 1. 5.

Quality and Novice Programmers.

1.2 Project Aims.

Overall Aim: To explore the personal development process employed by novice

programmers in order to seek to improve the quality o f computer programs.

The aim o f this thesis is to investigate how novices develop computer programs. The

sequence o f tasks a programmer tackles in the development o f a computer program is

called the personal software development process (PSDP). The main hypothesis o f

this thesis is that the quality o f the PSDP is reflected in the quality o f the final
product and that learning to follow a quality PSDP (learning how to program) is an

important aspect o f learning to program. In pursuit o f this aim a number o f research

objectives have been established.

Research Objectives:
1. To visualise the personal software development process employed by novice and

expert programmers
2. To establish a set o f metrics that measure the quality o f the personal software

development process employed by novice programmers.
3. To analyse the correlation between the personal software development process

and the program product.
4. To evaluate improvements in the personal software development process and

software product gained from using simple feedback mechanisms.
5. To synthesise current frameworks o f programming expertise into a unified

framework that includes a strategic knowledge factor, that is expertise in the

personal software development process.

Chapter 1. 6.

Quality and Novice Programmers.

In pursuit o f the aim o f this thesis the first step was to investigate the personal
software development process employed by novice programmers. Various methods

were used to help visualise this process. However visualisation only provides an

subjective view o f the process. To allow further scientific study there is a need to be

able to measure the process. Thus the next step was to validate a set o f metrics that
allow the personal software development process to be measured.

The relationship between the personal software development process and the

software product was explored. It seemed reasonable that a good quality personal
software development process and a high quality product would correlate and this

was investigated. There is potential for any correlation found to be exploited by

seeking to improve the personal software development process and consequently

improving the final software product.

The work carried out in pursuit o f these objectives has provided information on the

personal software development process and the programs written by novice

programmers. The final objective o f this research was to relate this information to

current understanding o f how novices learn to program.

1.3 Structure of the Thesis.

The thesis continues in chapter 2 with a review o f related areas o f research. The area

o f research covered crosses the boundary between software engineering and

psychology o f programming and of necessity therefore the literature review covers a

Chapter 1. 7.

Quality and Novice Programmers.

wide spectrum. The first sections deal with software engineering issues o f quality

and metrics. This leads onto the specific topic o f how metrics have been used to

measure novice computer programs. The final sections deal with the literature

concerning the acquisition o f programming skills.

Chapter 3 discusses the technicalities o f the methods o f data collection. A large

amount o f data was collected from each subject during the experimental phase o f this

research. The methods o f collecting this data and the first stage o f the analysis,
reducing the data to a summary file, are described in this chapter.

The purpose o f chapter 4 is to illustrate and measure the personal software process

employed by novice programmers and to compare this to the process used by

experts. The personal software development process is illustrated for a number o f

subjects. This leads to a model o f an expert personal software process. Various

process metrics that measure adherence to the model are presented and validated.

Chapter 4 uses the metrics established in the previous chapter to examine whether the

personal software development process may be improved using simple feedback. An

experiment is described that sought to deliver some simple feedback to a group o f

novice programmers. The experiment used to test this hypothesis is fully described

and the results discussed. A discussion o f further feedback mechanisms is included

here.

Chapter 6 examines the relationship between the program and the personal software

process. The criteria and metrics used to measure quality in novice programs are

Chapter 1. 8.

Quality and Novice Programmers.

discussed and established. The correlation between the program quality and personal
software process quality is calculated and discussed and the findings are related to

other work reported in the literature.

Finally chapter 7 discusses a framework for expertise in computer programming.
This chapter brings together the work from the literature and the experimental results

to put forward a new general framework o f expertise in computer programming. The

chapter argues for the validity o f this general model using both work reported in the

literature and the experimental results.

A summary o f the thesis is given in chapter 8. Each research objective as stated

above is evaluated against the research results and a discussion o f future work to be

carried out in this area is given.

Chapter 1. 9.

Quality and Novice Programmers.

2 . R e v i e w o f R e l a t e d W o r k .___

2.1 Software Metrics

Software metrics came to prominence in the software crisis o f the 1970’s. The

perceived problem at that time was that software was not built either as specified or

reliably as required by clients (Brooks 1987). Software engineering planned to

introduce an engineering ethos into software development with the aim o f improving

the quality o f software by controlling the development process.

The underlying principle o f quality control in any production engineering

environment, o f which software production is one, is that a high quality product will
result from a high quality production process. The focus is directed towards the

process o f production rather than the product itself. This approach is embodied in

standards such as IS09000 and IS09000-3. This quality methodology, where the

process is as important as the product was applied to computer programming

education in Lund (1994) and was fundamental to this research.

The basis o f quality is to seek to control the process and therefore the product.
However “you can’t control what you can’t measure ” (De Marco, 1982 re-statement
o f an earlier quotation from Lord Kelvin). The measurement o f software is an

important issue. The research reported here is founded on the ability to measure the

software produced by novice programmers.

Software metrics are generally split into two categories, those that measure some

Chapter 2. 10.

Quality and Novice Programmers.

aspect o f the product and those that measure some aspect o f the process. Early

metric work focussed on the product. Halstead (1972) proposed a number o f

measurements that he collectively called Software Science based on counts o f

various factors within the program text. This metric is relatively easy to calculate and

hence gained popularity despite no evidence that the measurements did measure

program complexity. McCabe (1976) put forward a measure o f complexity,
cyclomatic complexity, based on the loops and branches in a program. The aim o f

both these authors was to find some measurement o f the maintainability and

reliability o f software. Since these two attributes do not lend themselves to

measurement directly, complexity was seen as a convenient proxy for them.
McCabe’s and Halstead’s metrics both gained popularity. However little or no

validation o f the work had beencarried out up to the late 1980’s according to

Shepperd (1988). Later attempts to validate the metric and relate it to actual program

maintainability have not been successful, (Shepperd and Ince 1994).

According to Fenton (1992) there has been a “sh ift a w a y fr o m tra d itio n a l w o r k on

so f tw a re m easu rem en t w h ich co n cen tra tes on p ro p o s in g sp e c if ic m e tr ic s w ith o u t a n y

r e a l th ou gh t f o r w h a t th ese w e re su p p o se d to be m e a su r in g ”. There is a need for a

proper system o f metric validation but validation cannot be carried out without a

clear understanding of what the metric is to be used for. The goal-question-metric

approach o f Rambach and Basili (1987), attempts to tackle this problem o f metric

validation. Their method initially focuses on the purpose o f the measurement. For

example, in this work, the purpose o f the process metrics is to improve the software

process employed by novice programmers. The overall goal is refined by a series o f

stages until a set o f metrics emerges that support the goal. The metrics are then

Chapter 2. 11.

Quality and Novice Programmers.

verified using experimental results. These experimental results are used to back up

the theoretical work rather than taken as validation in themselves. Shepperd (1992)

claims that this more scientific approach to metric development is "beginning to pay
dividends".

The approach due to Rambach and Basili (1987) is goal driven. Shepperd argues that
in addition some model upon which to base the metrics is needed. Ejiogu (1993)
takes up this approach. He proposed five principles that are fundamental to the

formal validation o f metrics. These rely on a model being available. This model
must accurately show the specific attributes o f software that are o f interest and, be

useful as the basis o f metrics. Ejiogu argues, as does Shepperd, that validation must
be done from first principles, relating metrics to a model and hence the software, as

opposed to validating one metric against another thus perpetuating validation errors

o f the past.

The five principles given by Ejiogu (1993) are:

• The target attribute o f software behaviour must be clearly defined. This

essentially sets the “goal” for the metrics, (as Rambach and Basili 1987)

• The measure under consideration must have the properties o f a “mathematical
metric”. A “mathematical metric” is an abstraction o f a ruler i.e. the metric can

be related to some scale which allows comparison.

• There must be practical evidence that the metrics when applied to software

measure the intended features o f the model.

• The results from any measurements must be able to be related to the target
attribute o f software behaviour.

Chapter 2. 12.

Quality and Novice Programmers.

• The factors making up the metric are clearly defined.

The ideas o f goal based software metric formulation tied to a model give a scientific

basis on which to establish software metrics. In chapter 4 work to establish metrics

that measure the personal software process employed by novice programmers is

discussed. This work is goal based, to improve the personal software process

employed by novice programmers, and also dependent on an incremental model o f

software development also described in chapter 3.

2.2 Measuring the Novice Software Product

Ever since computer programming has been taught as an academic subject computer

programs have been measured or marked. Often marks are based on the correctness

o f the program supplemented by a subjective grade for program style or layout.
These marks take a long time to generate manually. There has therefore been much

work reported on automatic marking schemes (for example Rees 1982, McAlpin

1992, Benford et.al. 1993, Hung et.al. 1993,) with a view to creating an objective

marking scheme. However prior to discussing which objective measures are used to

mark programs the criteria by which marking is carried out need to be examined.

2.2.1 Measurement Criteria.
What are the criteria used to evaluate computer programs? Ho watt (1994) and

Benford et.al. (1993) have both put forward reasonable criteria by which a novice

program could be measured. The criteria presented may be split into dynamic

Chapter 2. 13.

Quality and Novice Programmers.

criteria, those issues that affect a program during execution, and static criteria that
relate to the quality o f the code itself.

The static criteria put forward are concerned with the quality o f the code itself. The
criteria put forward by both authors are:
1. The layout or style o f the program. This is an important criterion that relates to

the readability o f the program code. This is a very subjective criterion and a great
deal o f work (see section 2.2.2) has gone into creating an objective measurement
for this criterion.

2. The design or structural quality o f the program. This criterion is arguably even

more subjective than program style. Again much work is reported on attempting

to measure this objectively.
3. Complexity o f program code. This can be measured using one o f the complexity

metrics discussed in section 2.1, not withstanding the criticism o f these metrics

reported earlier. There is a belief that complexity is inversely associated with

maintainability.

The dynamic criteria cover aspects o f correctness and efficiency.
1. The correctness o f a program. This can be evaluated by running the program

against a test plan.
2. Efficiency is concerned with execution time and the memory requirements o f the

code. This criterion has diminished in importance with the increase in processing

power and the low cost o f computer memory.

Table 2.1 below describes in brief the criteria used by Ceilidh to assess the quality o f

Chapter 2. 14.

Quality and Novice Programmers.

a novice programmer's program. It is similar to that put forward by Howatt (1994)

and will be used as the basis for the later discussion o f quality factors. It was also

used as the basis for the measurement o f novice programs described later in this

research.

Area Criteria Description
Static Program style Measures how well the program is structured. It

includes the use o f comments
Program Design Measures how well the programming language has

been used in the program
Complexity Measures the complexity o f the code

Dynamic Correctness Measures how much o f the requirements
specification has been achieved correctly.

Efficiency Measures the program speed and space requirement.
Table 2.1 Criteria for measuring the quality of a novice program.

2.2.2 Measuring the Programming Style of Computer Programs.
Programming style is taken to include features such as layout, use o f comments,
suitability o f variable names and general programming readability. These factors are

difficult to measure. Early attempts by Rees (1982), Meekings (1983), Rosenthal
(1983), and Lovegrove and Rees (1984) base their systems on a sequence o f counts.
A number o f features o f the program text are counted including number o f lines o f

code in the program text, number o f reserved words used, number o f lines o f

comment in the program, number o f blank lines, number and types o f loop, number

of selection statements. The work was not based on the criteria outlined in table 2.1

but rather the idea that a novice program must match some ideal or expert solution.
The reason for picking one count over another was its accessibility rather than being

derived from any background model. Indeed this is one criticism Hannemyr (1983)
made o f this early work.

Chapter 2. 15.

Quality and Novice Programmers.

In later work Redish and Smyth (1986, 1987) put forward their own automatic

marking scheme based again on counts. However more importantly they attempted to

evaluate their and other automatic marking schemes by proposing 8 criteria which

the quality measurements could be judged. These criteria are:
• Programs must be evaluated against a specification.
• A model program must be available against which a student program is

evaluated.
• The factors chosen should represent a wide range o f program properties.

• Factors o f correctness and efficiency must be included.

• The measure o f program quality must be a metric in the formal sense i.e. satisfy

the formal mathematical definition o f a distance function
• The measure used has a certain sensitivity.
• Programs that are “similar ” generate the same mark.
• For a given problem there is a fixed range o f marks given for a “correct”

solution.
This was the first attempt to provide a theoretical background to the work o f

establishing a valid automatic marking scheme.

The most widespread automatic assessment scheme used within the UK today is

Ceilidh (now CourseMaster), Benford et.al. (1993a, 1993b, 1994). The metrics used

in that software are derived from the early work o f Rees(1982), but there is some

underlying model upon which to base the counts. The program style measures used

in Ceilidh have been validated as much by the extensive use o f the software as by the

original experimental data. The criteria used to measure program style in Ceilidh and

used in this research are:

Chapter 2. 16.

Quality and Novice Programmers.

• % indented lines
• % blank lines
• average number o f characters per line
• average number o f spaces per line

• average identifier length
• % identifier with good length

• % comment lines

Other attempts to use counts to evaluate the program style have been reported. These

include SPROUT, (Rimmer, Pardoe and Vickers 1995), and ICCASAS, (McAlpin

et.al. 1995).

Oman and Cooke (1989), Lake and Cooke (1990) use a more sophisticated method

o f analysing program style. Their style analyser is built into a compiler. Style errors
are noted as well as compiling errors. However they have not made any attempt to

use this information to measure the style o f a novice program. Schorch (1995) also

reports a similar style analysis method. It is interesting to note that these two authors

do not attempt to measure the quality o f the program style but provide feedback to

the programmer when poor style is noted.

Whilst there may be arguments about which counts to use to measure the

programming style, and the original counts put forward by Rees(1982) have been

modified since his early work, the way these counts are used has not altered. The

overall aim o f all the authors who proposed counts was to produce a single mark that
measures the program style. This mark is obtained by transforming each count to an

Chapter 2. 17.

Quality and Novice Programmers.

individual mark and then combining the individual marks into a single mark using
some weighting. Hence:

p s = Z f (c i) * wi
where

p s = mark for Program Style
Ci = count for factor i
f = function that transforms counts to a mark
wi = relative weighting o f the counts i (Sw* = 1)

The function that transforms the raw count to mark is a trapezium function. Figure
2.1 below shows a typical trapezium function used to convert the counts to marks.

Figure 2.1 Trapezium function for converting counts to marks as used by Rees (1982).

The four parameters, L, S, F and H dictate the marks given for a particular count.
The parameters S and F give the range that would earn the maximum marks. These

values are obtained from the model answer that is assumed to exist in all cases. A

count o f less than L and more than H would obtain zero marks. A count value

between L and S or between F and H would gain a mark between 0 and Max based

on the linear interpolation between these two values. The choice o f the parameters L,
S, F, and H are problem dependent and can be used to tune the marking scheme. This

method was used in this research to convert program style counts to marks and

ultimately, an individual value for the program style o f a novice program.

Chapter 2. 18.

Quality and Novice Programmers.

2.2 .3 M easuring the P rogram m ing D esign o f C om puter P rogram s.

The second criterion used to measure the static quality of computer programs is that
of program design. This measures how well the program language has been used in
the program. A better way to look at this is to see how well the program code meets
established programming practice. The basis o f good programming is given in
various programming books most notably Kemighan and Plauger (1974). There are a
number of language dependent utilities that provide the programmer with feedback
concerning the correct or incorrect use of the language. One such facility is the lint
utility in Unix. A possible measure of the quality in program design can be related to
the number of “error” messages generated by lint . This is indeed the method used
in Ceilidh by Benford et.al. (1993a). However this limits the metric to C programs
and a different “lint” tool would have to be written for different programming
languages. The style analysers developed by Oman and Cook (1989) and CAP
developed by (Schorch 1995) give comments on the program design as well as the
style. By filtering the design comments from the style comments these utilities could
also be used to count the design errors in a program and hence provide a program
design mark for that program.

Another way to look at program design is again to compare the code with a model
solution. Again counts of various factors can be taken, compared with the expert
solution and converted via the trapezium function to an objective mark. Possible
factors include:
• Sub program (function or procedure) length.
• Number and type of sub program constructs.
• Number and type of loop constructs.

Chapter 2. 19.

Quality and Novice Programmers.

• Number and type of selection statements.
• Number of identifiers
These are identified from the work of Lovegrove and Rees (1985) and Redish and
Smyth (1986) as measuring the program design. These features are used in more
recent automatic assessment schemes such as ICCASAS, McAlpin et.al. (1995). The
criteria listed above were used as the basis for the program design metric in the work
described in chapter 5.

Thorburn and Rowe (1997) have developed a more sophisticated method. They again
compare the novice programmer's work to an expert solution. This comparison is not
based on a simple series of counts but on the solution plan used to solve the program.
This has the advantage that it attempts to capture the whole structure of the program
rather than picking a few features to concentrate upon. It is o f necessity more
complex than methods based on counts.

2.2 .4 P rogram C om plexity.

The third criterion, complexity, is often given less importance in marking programs.
It can easily be calculated through Halstead’s (1977) software science, McCabe’s
(1976) complexity metric or Henry and Kafura’s (1984) information flow complexity
metrics. There is concern whether any of these complexity measurements actually
captures the complexity of a computer program, (Shepperd and Ince 1994). However
McCabe’s widely used complexity measure is often used as the measurement for
complexity in marking schemes, eg Ceilidh.

Chapter 2. 20.

Quality and Novice Programmers.

2.2 .5 M easurem ent o f C orrectness o f C om puter P rogram s.

Correctness can be measured by running the program through a set of test data and
comparing the results to the expected results. The proportion of correct results will
give a sensible measure of program correctness. This is done in Jackson(1991) and
Ceilidh (Benford et. al. 1993). The problem with this method is that it is difficult to
detect automatically whether the output of a program is correct unless a full and
complete specification of the output required is given. Any deviation for this output
will result in the test failing when in actual fact the answer was correct and only the
formatting was wrong. It seems harsh to base such weight on data formatting. To get
over such problems various authors have reported methods to parse the output from
novice programs, for example Jackson (1991), Ceilidh (Benford et.al 1993), and
CAPE (Edmunds 1990). This parsing o f output is carried out in an attempt to
neutralise the effect of different formats of essentially correct solutions.

Another way to neutralise the effect of formatting is to use a pre-written output sub
program that the novice programmers use for the output the data. Its advantage over
parsing the output is that the pre-written routine has direct access to the calculated
variables whereas parsing can be confused by some output formats and certain test
cases. This method is only appropriate in certain situations but using pre-written
output sub-programs were used in this research and are described more fully in
chapter 3.

Whilst the counting of tests passed is a widespread way to measure the correctness of
a program a different system is proposed by Conway (1978). He proposes an eight-
point scale starting at point 1 "a syn ta c tic a lly c o rre c t p ro g ra m " running to point 8

Chapter 2. 21.

Quality and Novice Programmers.

where a program gives the "c o rre c t a n sw er f o r a ll p o s s ib le input". This gives a
measure of correctness between 0 and 8. Within each level some test data is still
needed and some parsing of output or use of an output sub-program is needed to
establish the correctness at each level.

The correctness metric used in this study is fully described in chapter 4. It combines
the idea of counting correct cases with the idea of levels of correctness from
Conway.

2.2.6 E ffic ien cy M easurem ent o f N ovice Program s.

Efficiency is not regularly used as an issue in program measurement. Current
computers are much faster than the early machines. Hence efficiency is less of an
issue in the quality of a program than maintainability, for example. However really
inefficient programs should be penalised. Time and memory usage can be used as
measurements of efficiency which values are then compared to the expert solution
and converted into marks. Efficiency has not been used as a factor in the quality
measurements of programs in this study.

2.2 .7 A utom ated M arking Schem es.

A number of automatic marking schemes have been reported in the literature.

The early work of Rees (1982), Meekings (1983) and Lovegrove and Rees (1984)
presents a number of factors that are used to measure the quality of student programs.
These early attempts tended to pick aspects of the program that were amenable to
measurement rather than being derived from any underlying model. There was little

Chapter 2. 22.

Quality and Novice Programmers.

in the way of validation reported and even Rees in his paper shows that some of the
factors used were of questionable merit. The advantages o f such schemes are that
they are easy to apply; the disadvantage being there is little evidence to show that
they actually measure what is intended.

Whereas the early work concentrated on static aspects of programs the work of
Jackson (1991) looked at the correctness issues and provided the ground work for the
parsing of output to check its correctness.

McAlpin et.al. (1995) report a system of automatically assessing the style o f Modula-
2 programs. The theoretical basis of their automatic marking is derived from the
early work. They claim that the automatically generated marking scheme is "useful in

the teach in g, lea rn in g a n d a ssessm en t o f program m in g" . There is some evidence
given that the marking scheme correlates with manually derived marking.

The Ceilidh system is the most widely used automatic marking system in UK
universities with over 40 universities using the system, (Benford et.al., 1993a, 1993b,
1994, Foxley et.al., 1996). It has a clear model by which it assesses a program. The
five components of the assessment are style, design, complexity, correctness and
efficiency as discussed earlier in this section. The Ceilidh system has been in use
over a number of years that coupled with the large number of universities in which
the software is used, gives Ceilidh a level of validation not available to any other
system. The methods employed in Ceilidh were used in this research. In particular
the assessment of a novice program was based on both the Ceilidh criteria and
assessment methods.

Chapter 2. 23.

Quality and Novice Programmers.

Pardoe & Vickers (1994) report on a scheme, SPROUT, where novice programs are
compared to an expert solution. The system is not as extensive as Ceilidh in that the
underlying model of assessment is less complex. Even so, later work reported by
Rimmer et al. (1995) claims that a comparison between their automatic marking
system and manual marking is "favourable ". The most important aspect of this work
is that they have made extensive efforts to validate the automatic marking scheme.
This signals a start to the more sophisticated approaches to automatic marking.

The schemes reported so far have used simple methods of assessing program code
using counts of various factors but it can be argued that this does not capture the
assessment criteria well. In an attempt to address this problem, Thorburn & Rowe
(1997) focus on the program design. They examine the structure of the code to derive
a solution plan and use this plan to create an assessment of the program design. They
report an "a c c e p ta b le " accuracy when compared to manual marking. This system
gives a radically different view of the program that is nearer to the way human
markers would assess the code. The system provides a start to the next generation of
automatic marking systems, moving away from counts and moving onto viewing the
program in terms of programming plan and deriving the assessment from these.

2.2 .8 Sum m ary.

The majority of automatic marking schemes are based on software metric work. It
was not the role of this research to establish novel automatic marking schemes.
Rather it investigated methods of measuring the software process as opposed to the
software product. Therefore where the need arises for program quality measurement

Chapter 2. 24.

Quality and Novice Programmers.

the established methods will be used. A fuller description of the exact methods used
in this research is to be found in chapter 5.

2.3 Measuring Novice Processes.

In the previous section the various ways to measure the quality of a program written
by a novice program were discussed In this section the focus is changed to measuring
the software process employed by novice programmers. Prior to looking at how the
software process is measured it is useful to look at the process itself.

2.3.1 P erson al Softw are Process.

To make any sensible measurements of the programming process some
understanding of how novices undertake a programming task is needed.

The Capability Maturity Model (CMM) developed by the Software Engineering
Institute at Camegie-Mellon University has been successfully used to improve the
software development processes in a number of organisations (Herbsleb et. al.,
1997). A cut down version of this model applicable to people rather than
organisations forms the basis of two books by Humphrey (Humphrey, 1995 and
Humphrey, 1997). This version of the model, when applied to people, Humphrey
named the personal software process (PSP). There are two aspects to this process.
Firstly there is a detailed personal software development process (PSDP) which
models the way a programmer develops the finished program from the requirements
specification. The second aspect is the supporting documentation that allows the

Chapter 2. 25.

Quality and Novice Programmers.

programmer to manage software development. Figure 2.2 taken from Humphrey

(1997) clearly shows the PSP process he uses in his work.

project and process
data

Figure 2.2 PSP Process Flow Taken From Humphrey (1997).

The objective o f the research reported in this thesis was to establish metrics for the

software process that are em ployed by novice programmers. To achieve this som e

underlying m odel o f how a novice develops a program was needed. Figure 2.2

above illustrates the PSP proposed by Humphrey and clearly show s the central role

o f the software developm ent process model. The PSDP model used by Humphrey is

a sim ple waterfall m odel, (see Som m erville 1996). This m odel lacks detail that was

needed for this study. In chapter 3 an incremental model o f the PSDP used by

novices is discussed. This m odel is used as the underlying m odel from w hich the

novice software process metrics are developed. The work o f Humphrey highlights

the need for a model when indulging in this type o f research. Another interesting

aspect o f Humphrey's work is that the metrics that he uses are simple: the lines o f

code (LOC) and time taken. More com plex metrics were used to describe the more

Chapter 2. 26.

Quality and Novice Programmers.

com plex PSDP m odel within this research.

Two authors Grove (1999) and Hou and Tomayko (1999) report on using the work o f

Humphrey with the aim o f improving the programming skills o f novices. Whereas

the research reported in this thesis focused on the underlying m odel and m etrics to

provide feedback and thus improve the process, the above authors concentrate on

documenting the PSDP as a way to improve the programming process em ployed by

novice programmers. N ovices were asked to supply documentation to support their

PSDP. Grove (1999) reports that using documentation helps the students to see the

importance o f the design and review stages, and to gain a better v iew o f the overall

PSDP. Hou and Tomayko (1999) also report that the documentation helps novices in

the design stage o f development. Hilburn and Towhidnejad (1998) also report using

PSP in teaching programming to novices. Their aim is to em phasise quality. They

report, as do Grove (1999) and Hou and Tomayko (1999), on the d ifficulties in

keeping correct and tim ely data. The method relies on novices recording accurately

their actions and tim e spent on these actions. Such a manual system is alw ays going

to be open to problems o f data collection. In the research reported here data w as

collected through automatic methods which alleviates the problems these researchers

have encountered.

2.3 .2 N ovices P rocess M etrics

W hilst much work has been reported on measuring novice programs little is reported

on measuring how novices develop their programs.

M cG ill and V olet (1996) have looked at the developm ent o f programs using tw elve

Chapter 2. 27.

Quality and Novice Programmers.

subjects. The subjects were observed during the developm ent o f computer programs.

The observers gave a subjective mark for the w ay in which the program developm ent

was carried out and the authors report a positive correlation between this mark and

the final product mark.

Both Grove (1999) and Hou and Tamayko (1999) use lines o f code as their process

metrics. This metric is objective and can be automatically calculated. A lthough the

authors claim an improvement in the developm ent process caused by the use o f the

PSP, their metric does not capture this improvement. This indicates either that

improvement did not occur or that the metric is not sophisticated enough.

Bishop-Clark (1992), use protocol analysis to determine the strategies used by a

novice in developing programs. Although lim ited in scope (to eight subjects) it does

reinforce ideas gleaned from other work. In particular the idea that novices devote

little time to planning, (A llw ood, 1996), and that they fo llow an opportunistic

strategy, (W ebb, Ender and Lewis, 1986).

Parrish et al. (1997) attempt to measure the computer usage patterns and correlate

their metric with the quality o f program. They use three metrics to measure the

PSDP: the time spent on the project, the number o f com piles used and the date

programming was started. These metrics gave them a better understanding o f how

students develop their programs and objective measurements o f this process. Parrish

et al. (1997) calculated the correlation between these process metrics with the final

grade marks. This showed no significant correlation. The authors conclude that this

is due to the sim plicity o f their choice in metric and are investigating using different

Chapter 2. 28.

Quality and Novice Programmers.

metrics that capture the process in a better way. The choice o f metric is surprising

and perhaps reflects the ease o f metric calculation rather than any relationship to a

m odel o f programming. Thus it is not surprising that there w as no correlation. This

work does how ever show that other research teams consider this to be an important

issue in novice programming.

2.4 Learning to Program

Expertise in programming like any other skill has to be built up over tim e. This

section addresses tw o questions relating to programming know ledge namely:

• What constitutes expertise in computer programming?

• H ow do novices acquire this programming expertise?

2.4.1 P rogram m ing E xpertise

Programming expertise is not simply a matter o f learning the syntax o f a

programming language. The ability to take a problem, produce a solution m ethod,

translate this into a computer program, and to implement the program are all features

o f the expert programmer's skill. Indeed the skills needed by an expert programmer

have been much studied, for example Hoc et al (1990).

Bayman and M ayer (1988) put forward a m odel o f expertise in programming that

includes three related types o f programming knowledge: syntactic, conceptual and

strategic. This m odel encapsulates earlier work o f Shneiderman (1976),

Shneiderman and M ayer (1979) and Linn (1985). Shneiderman and M ayer (1979)

Chapter 2. 29.

Quality and Novice Programmers.

proposed a m odel o f programming knowledge that separated syntactic and semantic

knowledge. The former being the knowledge set related to the rules o f the language;

the latter is the knowledge o f how to apply these rules. The later work o f Linn

(1985) added the concepts o f design skills and problem solving skills.

Mayer (1997) in his review o f programming knowledge brought together the earlier

m odels to produce a four-stage framework for the organisation o f programming

knowledge. This framework separates syntactic, semantic, schem atic and strategic

knowledge. Table 2.4 below summarises his framework.

K n ow led ge D efin ition C om m on T ests
Syntactic Language units and rules for

combining language units
R ecognise whether a line o f code
is correct

Sem antic Mental m odel o f the major
locations, objects, and actions in
the system

Rating pairs o f terms for
relatedness; providing thinking
aloud protocol

Schem atic Categories o f routines based on
function

Recalling program code or
keywords; Sorting routines or
problems; recognising or naming
routines

Strategic Techniques for devising and
monitoring plans

Providing thinking aloud
protocols; answering
comprehension questions

Table 2.2 Mayer (1997) framework for programming expertise.

A similar but more com plex framework is presented in M cG ill & V iolet (1997).

They use the 3 categories o f knowledge, syntactic, conceptual and strategic, but split

the first two categories into declarative knowledge and procedural knowledge.

Declarative knowledge is defined as knowledge about something, whereas

procedural knowledge refers to the use o f this knowledge. This is based on

Anderson's (1983) ACT (architecture o f cognitive tasks) m odel o f skill acquisition.

The first stage is the declarative stage in w hich factual know ledge is learnt. The

second stage is knowledge compilation where domain specific know ledge is

Chapter 2. 30.

Quality and Novice Programmers.

grouped. This leads to procedural learning where these groupings are fine tuned

leading to the ability to apply the declarative knowledge. M cG ill and V olet (1997)

use the first tw o layers o f Anderson's m odel to define syntactic and sem antic

know ledge, as does Mayer. The third layer o f M cGill and Volet's m odel is an

amalgamation o f the top two layers in Mayer's model. Table 2.5 show s M cG ill and

Volet's m odel.

D eclarative K n ow led ge P roced u ral K n ow led ge
S yn tactic K now ledge K nowledge o f syntactic

facts relating to a
particular language.

A bility to apply rules
when programming.

C on cep tual K now ledge Understanding o f and the
ability to explain the
semantics o f the actions
that take place as a
program executes.

Ability to design solutions
to programming problem s

S trategic / C onditional
K n ow led ge

Ability to design code, and test a program to so lve novel
problems.

Table 2.3 A framework o f programming expertise, McGill & Volet 1997.

These two m odels o f the programming knowledge framework are similar and are

used as the basis for discussion o f programming knowledge in chapter 6.

The next sections deal with the individual categories o f programming know ledge

fo llow ing the Mayer (1997) model.

2 .4 .2 Syntactic program m ing know ledge.

This category represents the knowledge o f the syntax o f a particular language and the

ability to apply these rules. W iedenbeck (1985) describes a study w hich compared

the syntactic knowledge o f experts and novices reporting that experts were 25%

faster and made 40% less syntax errors than novices. She concludes that experts

have automated their syntactic skill to concentrate on higher level skills. Schm idt

(1986) who studied time taken to read programs by novices and experts, corroborated

Chapter 2. 31.

Quality and Novice Programmers.

the findings o f W eidenbeck.

2.4 .3 S em antic program m ing know ledge.

Semantic programming knowledge relates to the understanding a person has o f what

goes on inside the computer as a result o f a line o f code. Procedural semantic

know ledge allow s a novice to apply their understanding to the solution o f sim ple

problems. This knowledge is often referred to as the students having a "mental
model of the workings ofprograms" (Gentner and Stevens 1983). Research looking

at this aspect o f programming focuses on the “mental m odel” o f the working o f

programs. G oodwin and Samuti (1986) conclude that training in these mental

m odels improves novice performance.

2.4 .4 Schem atic P rogram m ing K now ledge.

This third kind o f knowledge is the ability to recognise and use functional units o f

code frequently called “chunks” (Mayer 1979) or “plans” (Gilmore and Green, 1988,

Rist 1989, Solway and Erhlict, 1984). A programming plan is a pattern o f code used

to solve typical problems that can be used in larger programs.

It w as A delson (1984) who noted that experts could recall groups o f lines o f code as

against novices who could recall individual lines. The experts organised the lines into

chunks whereas the novices focused on syntactic aspects o f the code. This theory is

based on experimental evidence and provides some initial evidence concerning

programming plans.

Solw ay and Ehrlich (1984) present a straightforward v iew o f the relationship

Chapter 2. 32.

Quality and Novice Programmers.

betw een expertise and programming plans. They argue that expertise in

programming consists o f building up a number o f programming plans. This idea is

not unique to computer programming and is also used to explain natural language

understanding (Carberry and Pope 1993). The programming plans have been used as

the theoretical background to a number o f automated programming tutors.

Predominant amongst these is the Bridge system (Bonar and Cunningham, 1988),

w hich aims to improve the learning process. A number o f other automated system s

for learning to program based on programming plans have been reported e.g.

Johnson (1988), H uff and Lesser (1998), R ow e and Thorbum (2000).

Rist (1991) reports on experiments that exam ined the strategies that expert and

novices use to generate programs. In his conclusion, he supports the v iew that w hilst

novices are still creating plans experts are merely recalling these plans.

The evidence recorded here assumes that expertise is proportional to the number o f

plans a programmer has available to them. D avies (1989, 1990a, 1990b, 1991a,

1991b, 1994) has reported a sequence o f work which looks at the programming plans

o f experts and novices. He gives experimental evidence that intermediate

programmers have just as many plans available as experts. He also points out that

the experts have learnt not only the plans them selves but also a means to apply these

plans in a more organised way. Davis (1994) concludes that this plan know ledge is

organised in a hierarchical manner in experts that allow them to make better plan

choices than intermediates. This suggests that there is a distinction betw een

declarative knowledge and procedural knowledge as reported by M cG ill and V olet

(1997). This point is discussed in chapter 6 in which further m odels o f programming

Chapter 2. 33.

Quality and Novice Programmers.

know ledge are discussed.

2 .4 .5 Strategic K now ledge - P roblem solving.

The strategic knowledge available to experts is their problem solving ability.

Problem solving in general has been w idely studied in psychology. Polya (1957)

puts forward a number o f stages involved in problem solving, these being:

understand the problem; devise a plan; carry out the plan; and check the results. The

expertise needed to solve programming problems is similar in nature to general

problem solving. Chi et al (1988) study problem solving in a w ide range o f subject

areas and show that experts use a detailed problem solving strategy as opposed to the

shallower approach taken by novices.

This final aspect o f programming knowledge has not been studied in as m uch depth

as the other aspects. A lot o f work concerning syntactic, semantic and schem atic

know ledge have been carried out by looking at the understanding o f program code,

or debugging code or testing knowledge. These features o f programs are easily

accessible. To exam ine strategic know ledge the researcher must observe the

programmer during program development. This activity is harder to carry out than an

exam ination o f the finished program. D avis and Castell (1992) studied design o f

novice programs. They highlight problems o f analysing the design process due to the

difficulty in separating the design activity from its context.

A number o f authors suggest that the program development process is different in

novices and experts. In a study looking at debugging programs, Spoher and Solw ay

(1986) make the point that there is little in text books about “how to put the pieces

Chapter 2. 34.

Quality and Novice Programmers.

t o g e t h e r ” . They conclude that novices “s h o u ld b e g iv e n a w h o le n e w e x p l ic i t

v o c a b u la r y f o r le a r n in g h o w to c o n s tr u c t p r o g r a m s ” . A delson et al. (1984) report a

study in which expert and novice software designers were studied w hilst designing a

non-trivial program. They concluded that the novices had less w ell-developed

strategies for using whatever knowledge they had.

2 .4 .6 Sum m ary

Programming expertise can be classified as being syntactic, semantic, schem atic and

strategic. M uch work has been carried out on the first three classes and has been

briefly reported here. To study strategic knowledge researchers need to exam ine the

programmer during developm ent o f the program. The data to carry out this research

is less accessible then for the first 3 categories. This work reports an investigation

into various aspects o f the strategic know ledge o f expert and novice programmers. It

looks at how experts and novices develop programs and how that informs on the

strategic aspects o f the model o f programming expertise.

2.5 G eneral Sum m ary.

This chapter has reviewed the relevant literature that informs on the subject area o f

this thesis, namely computer programming education. W ithin each section o f the

review a number o f important conclusions have been made. These w ill be used later

in this report and are summarised below:

• Software metrics are used to measure som e aspect o f the quality o f computer

programs. These metrics are split into product metrics and process metrics.

Chapter 2. 35.

Quality and Novice Programmers.

• Software metrics must be based on som e underlying m odel. M etrics are

developed from this model with a particular goal in mind. A ny metric used must

be validated experimentally to ensure that it measures the correct features o f the

m odel. This method o f metric developm ent is used in chapter 3 o f this thesis to

develop metrics that measure the process em ployed by novice programmers.

• There is an established set o f criteria against which a program can be measured.

These criteria are program style, program design, com plexity, correctness and

efficiency. These were used as the basis o f the product measuring within this

research.

• There is reasonable agreement on how to measure the quality o f novice computer

programs. The methods are largely based on counts. W hilst there is som e

criticism o f these methods they are currently in use and must be considered the

best methods available. These established methods were used in this research to

measure the quality o f the computer program. Details o f the actual factors

included in the program measurements used here are given in chapter 4.

• M easuring the software development process employed by novice programmers

must be carried out against a m odel o f that process. Work in this area is based on

a sim ple waterfall model o f the PSDP. A more sophisticated m odel is em ployed

in chapter 3 o f this research.

• Various authors have attempted to carry out experiments to find out more about

the PSDP em ployed by novice programmers. These have been hampered by the

difficulty in collecting data and the subjective nature o f that data. Attem pts at

measuring the PSDP have not been reported.

• Programming knowledge can be categorised as syntactic, semantic, schem atic,

strategic. Various authors have attempted to explain the expertise in computer

Chapter 2. 36.

Quality and Novice Programmers.

programming based largely on the first three o f these categories. Strategic

programming knowledge is concerned w ith expertise in the PSDP. The

experimental evidence presented in chapters 4 and 5 o f this thesis is used to add

to the current understanding o f programming expertise especially in the area o f

strategic knowledge.

Chapter 2. 37.

Quality and Novice Programmers.

3 . D a t a C o l l e c t i o n T e c h n i q u e s . _

3.1 Introduction.

This research examined the personal software developm ent process (PSDP)

em ployed by novice programmers. It was, therefore, essential to have som e w ay to

make visib le the PSDP without altering the process. There are potentially three

methods to collect data about the process em ployed by a programmer.

The first w ay to capture data about the PSDP em ployed by a programmer is to

request that the programmer record what they have done. This w as the approach

taken by Grove (1990) who required novices to keep a logbook o f their activities.

This has tw o disadvantages. There is potential for novices to m ask the truth by

entering what they think is expected and perhaps ignoring problems. This problem

increases in importance if the novices think they are being assessed on the log as w ell

as on the final program. A second problem is that the actual act o f keeping a record

o f their activities may provide the novice with a stimulus to consider and hence

improve the process rather than merely reporting on the process.

A second method to capture data about the PSDP o f the novice is to observe the

process and then carry out a protocol analysis o f the novice programmer. This was

the method used by Bishop-Clark (1992) and M cG ill & V olet (1996). In both o f

these studies the novices were observed during their developm ent o f a program and

questioned afterwards. This method can only be used on a small number o f subjects

due to the time involved in data capture. A lso it is only applicable to an

Chapter 3. 38.

Quality and Novice Programmers.

experimental environment where the subjects are restricted for a period o f tim e rather

than allow ing subjects to develop programs in the manner they w ish to.

Both o f the data capture methods described above can be used to collect data but

cannot be extended to automatic calculation o f process metrics. It is essential that

the process metrics can be calculated automatically from the data collected. Future

developm ents o f this work m ay involve metrics being calculated part w ay through a

developm ent in order to provide related feedback to be given to the novice. The

process metrics may also be used to generate a “process” mark for the developm ent

and this is added to an automated marking scheme. In either case it is important that

the method o f data capture and metric calculation does not rely on either a student or

an instructor entering data but on the automatic methods.

This chapter describes the automatic data capture method used in this research and

how the many versions o f the program were reduced to a single file o f data that can

subsequently be used in the calculation o f process metrics.

3.2 C ollecting the Raw Data.

A s noted above there were two major factors affecting the method o f data collection,

nam ely the method used must be automatic and non-invasive. Secondly the method

m ust not affect the PSDP employed by the novices. The method used w as to

intercept and record the source code at every compilation step. Thus the record o f

the program development is the incremental sequence o f source code versions

Chapter 3. 39.

Quality and Novice Programmers.

submitted to the compiler. This method mirrored that used by Parrish et.al. (1997) in

their research concerning computer usage patterns in an educational environment.

There is an ethical issue to be addressed with this form o f data collection. The

novices were all informed that data w as being collected during their developm ent o f

programs. They were assured that the data collected as part o f the research w ould

not be used either in their assessment nor w ould their name be associated w ith the

data in any research reports, papers, etc.

3.2.1 Source C ode C apture.

The novices in this study were using a V M S computer and learning to program using

the Pascal language. VM S is a command driven operating system and to com pile

and run a Pascal program a user must enter the follow ing three commands:

p a s c a l p r o g
l i n k p r o g
r u n p r o g

A special VM S command was written that com bined these three com m ands into one:

p c p r o g

The novices were introduced to this command at the start o f their course so it w as not

som ething special that they had to do for the purpose o f the experiments. W hen the

time came for collecting data the p c command was amended to copy the source code

to a secure location. This change was invisible to the novices. The pc com m and

follow ed the algorithm given in figure 3.1

Chapter 3. 40.

Quality and Novice Programmers.

p c p r o g

i f p a r a m e t e r m i s s i n g t h e n e x i t
i f p r o g . p a s d o e s n o t e x i s t t h e n e x i t

c o p y p r o g . p a s t o s e c u r e l o c a t i o n

c o m p i l e p r o g . p a s
i f e r r o r s t h e n

d i s p l a y e r r o r f i l e p a g e b y p a g e
e x i t

e l s e
l i n k p r o g . o b j a n d l i b r a r i e s
r u n p r o g . e x e
d e l e t e * . o b j f i l e s
p u r g e * . e x e f i l e s
p u r g e * . l i s f i l e s

____________e x i t _______________________________________
Figure 3.1 Outline o f p c command

A full listing o f the p c command is given in appendix D.

This command gives the novice programmer extra value over and above that

provided by V M S, namely a single command rather than three, page display o f errors

rather than the default scrolling, and tidying up o f file space. This encourages

students to use this command rather than looking for the V M S commands.

3 .2 .2 C ap turing Program O utput.

N ot only was the source capture method described above used to copy the source

files to a secure location but also to provided a means o f capturing the output from a

program. This output was used to deliver feedback to students. A s part o f the

specification o f the Weather Station problem, River problem and Traffic problem

(problems 1, 2, 3 in Appendix A) the novices were given the interface to a procedure

that displayed the data and results. They were requested to use this procedure in

Chapter 3. 41.

Quality and Novice Programmers.

their programs. The procedure details are given in Figure 3.2 below:

PROCEDURE D i s p l a y - D a t a (
N:INTEG ER ; { w e e k n u m b e r }
d a t a : a t a b l e ; {r a w d a t a t a b l e }
m i n : a l i s t ; {m in v a l u e s o f t e m p e r a t u r e a n d

w in d s p e e d e a c h d a y }
m a x :a l i s t ; {m ax v a l u e s o f t e m p e r a t u r e a n d

w in d s p e e d e a c h d a y }
a v : a d a y ; { a v e r a g e v a l u e s o f t e m p e r a t u r e a n d

w in d s p e e d e a c h t i m e }
o v m in : a r e c ; { o v e r a l l m in im u m

w in d s p e e d }
t e m p e r a t u r e a n d

o v m a x : a r e c ; { o v e r a l l m axim um
w in d s p e e d }

t e m p e r a t u r e a n d
o v a v : a r e c ;

)

{ o v e r a l l a v e r a g e
w in d s p e e d }

t e m p e r a t u r e a n d

where
a r e c = RECORD

tem p REAL ;
w in d REAL

END ;
a l i s t = ARRAY[1 . . 7] o f a r e c ;
a d a y = ARRAY[1 . 6] o f a r e c ;
a _ t a b l e = ARRAY[1 . . 7 , 1 . . 6] o f a a r e c ;

Figure 3.2 Specification o f D i s p l a y _ D a ta (. .) Procedure

The p c command linked this supplied procedure into the novice's program. One

problem is that standard Pascal does not allow this facility o f linking to external

procedures, however, VM S Pascal has been extended to allow this facility. I f the

language used were C then the ability to use external functions is standardised in the

language. The major reasons for supplying this procedure w as not to make the task

o f the novice simple but to allow automatic correctness measurements to be made

and to facilitate the feedback mechanism. Details o f both o f these are given in the

follow ing sections.

Chapter 3. 42.

Quality and Novice Programmers.

3.2.3 Sum m ary.

The p c command outlined here allowed a full history o f the developm ent to be

stored. In som e cases this was more than 100 versions o f the program. W hilst this

sequence gives a full account o f the PSDP it is raw data and not useful for analytical

purposes. The next section describes how these sequences o f program versions are

reduced to numbers suitable for analysis.

3.3 A utom ating C orrectness Checking.

To analyse a program it is essential to have som e measure o f the correctness o f the

program. This correctness measure needs to be objective and is here created

automatically. Many authors have attempted to assess the correctness o f a program

by attempting to parse the output o f a program in order to isolate the answer and then

check it, for example Jackson (1991), Edmunds (1990) and Benford et.al. (1993).

This method is difficult to implement in a problem with com plex m ulti-valued output

as in this experiment. In the work described here a different approach was taken.

For the purposes o f the experiments reported in this thesis correctness is measured as

the proportion o f the maximum number o f tests passed. For the Weather Station

problem (problem 1, Appendix A) sixteen stages were recognised. These tests are

given in table 3.1.

Chapter 3. 43.

Quality and Novice Programmers.

T est D escription
1 Program Com piles
2 Opens File
3 Reads File OK
4 D isplay data correctly
5 Calculate average temperature (column)
6 Calculate average wind speed (column)
7 Calculate m inimum temperature (row)
8 Calculate m inimum wind speed (row)
9 Calculate m axim um temperature (row)
10 Calculate m axim um wind speed (row)
11 Calculate overall average temperature
12 Calculate overall average wind speed
13 Calculate overall minimum temperature
14 Calculate overall minimum wind speed
15 Calculate overall maximum temperature
16 Calculate overall maximum w ind speed
Table 3.1 Tests for weather problem

To generate automatically the test count a program that com piled was not linked with

the standard d i s p l a y _ d a t a (. .) procedure but with a special

d i s p l a y _ d a t a (. .) procedure. This procedure displayed the data as used by the

novice and in addition evaluates the correctness o f the program by exam ining the

parameters passed to the procedure and checking these against the correct values.

The advantage o f this method o f correctness checking is that the correctness

checking software has direct access to the variables calculated in the program and is

not affected by data formatting problems. There is no problem o f parsing and

potentially misunderstanding the output o f a program. The main disadvantage is that

the novice must use the d i s p l a y _ d a t a (. .) procedure in their program. This

was not a problem in the experiments recorded here. The novices found using the

procedure an advantage to their program development.

In the experiments described in Chapter 5 feedback in the form o f number o f tests

Chapter 3. 44.

Quality and Novice Programmers.

passed was given to a group o f novices to see i f this affected their PSDP. The

method o f supplying feedback to these students was similar to the method described

above. The d i s p l a y _ d a t a (. .) procedure was amended to give correctness

feedback to the novices as w ell as displaying the results.

3.4 A nalysing the Data.

For each subject, the PSDP used is available for future analysis. There m ay be a

hundred or more versions o f a program captured during the developm ent. W hilst this

sequence o f program versions gives a full account o f the PSDP it is raw data and not

useful for analytical purposes. The raw data is analysed by reducing each source file

version to a set o f numbers and thus the developm ent represented by the sequence o f

these sets o f numbers.

Each program is processed and reduced to a sequence o f counts. The counts used are

detailed in Table 3.2.

Chapter 3. 45.

Quality and Novice Programmers.

V ersion Numbers • Sequence number starting at 1 for
first program and incrementing by 1
for each subsequent program

• Generation number as taken from the
filename

Run Characteristics • Number o f com pilation errors
• Number o f tests passed

Lines o f Code • Total number o f lines o f code
• Lines o f comments
• Blank lines
• Lines containing code

Code Characteristics • Number o f procedures
• Number o f functions
• Number o f w hile statements
• Number o f repeat statements
• Number o f until statements
• Number o f for statements
• Number o f i f statements
• Number o f case statements

Table 3.2 Counts used in the processing o f novice programs

The w hole sequence o f novice programs is processed, once the developm ent is

com plete, under the control o f a VM S macro PRIV, see Appendix D. Each version o f

the program is processed by the program C n t l n 2 , again given in Appendix D. This

program produces, for each program, a line o f numbers in a . n ew file. The counts

are grouped and described in Table 3.2.

• The version numbers are obtained from calling PR I V macro and passed to

Cn 1 1 n 2 program through the parameters.

• The number o f compilation errors is found by recording the output from the

compiler. There is a compilation error lim it o f 30 set by the com piler so that no

program may have more than 30 compilation errors, subsequent errors are

Chapter 3. 46.

Quality and Novice Programmers.

unlikely to be o f any significance. Currently, this number is typed into C n t l n 2

program by the user, but it would be possible to capture the output from the

com piler and pass this to C n t l n 2 via another parameter.

• The correctness o f the program is gained by linking the com piled code w ith the

version o f d i s p l a y _ d a t a (. .) that checks the correctness o f the program

(see section 3.3). The number o f tests passed (maximum 16) is output. This

value is also typed into C n t ln 2 by the user, but again it w ould be possib le to

capture the output from the program, v ia a file, and submit it directly to C n t l n 2 .

• The program C n t ln 2 scans the program text to evaluate the line counts. A

com m ent line is defined as a line that only contains a comment. A line o f code is

any line that contains code. Note that a line containing both code and a com m ent

is counted as a code line. Thus each line contributes to the total number o f lines

plus one o f the other categories, comment line, code line, and blank line.

• The program C n t l n 2 also counts the specific Pascal reserved words. This is

done sim ply by comparing each word to the target list. A match results in an

increment to the count.

Once the w hole sequence o f programs has been analysed under the control o f the

PRIV macro a . new file is available. It is from this file that the various m etrics used

later in this thesis are calculated.

Chapter 3. 47.

Quality and Novice Programmers.

In the fo llow ing chapter a number o f metrics are identified as potential m etrics for

measuring the novice program development process. For each novice these metrics

are calculated by the program m e t r i c . c p p given in Appendix D . This program

reads in the . n ew file for a given developm ent process and calculates all the

candidate metrics outputting the values. These values, together with the novice code

letters, are entered into a spreadsheet. The spreadsheets are given in A ppendix B.

These spreadsheets have one row for each novice and one colum n for each potential

metric. It is from this data that the later analysis is taken.

3.5 Sum m ary.

This chapter has outlined the technical methods used to capture and analyse data

collected in pursuit o f the study o f the PSDP used by novice programmers. The key

issues are:

• Data is captured by copying the program to a secure location prior to every

attempt at com piling the code.

• The sequence o f programs is reduced to a file o f counts to be used in later

analysis.

• Each program is reduced to a line o f numbers representing lines o f code, com pile

and run characteristics, reserved word counts and sequence numbers so the PSDP

history for a program is reduced to a file o f counts.

• Correctness o f a program if found by linking a special procedure to the program

Chapter 3. 48.

Quality and Novice Programmers.

which evaluates the correctness o f the program via the program variables.

• The metrics are calculated from the file representing the PSD P and entered into a

spreadsheet that is used in further analysis o f the data.

The data captured in this w ay is used to calculate process metrics as described in the

next chapter.

Chapter 3. 49.

Quality and Novice Programmers.

4 . M e a s u r i n g t h e N o v i c e P r o g r a m S o f t w a r e P r o c e s s _ _ _ _ _

4.1 Introduction.

The personal software development process (PSDP) is the sequence o f tasks

em ployed by a programmer w hilst writing their program. The main hypothesis in this

thesis is that the quality o f this PSDP is reflected in the quality o f the final product

and, that learning to fo llow a quality PSDP is an important aspect o f learning to

program. In order to pursue this hypothesis a study o f the PSDP w as required. This

involved visualising the individual PSDPs em ployed by a number o f programmers in

order to build up a model o f the PSDP. This m odel once established w as used as the

basis for measuring the quality o f a given PSDP.

This chapter uses experimental data to visualise the PSD Ps from a number o f

programmers with varying levels o f expertise. Taken together with reported work

this information is used to propose a m odel o f the PSDPs em ployed by programmers

in a learning environment.

To measure the quality o f a PSDP a set o f metrics needs to be developed. The

creation o f these metrics is reported in section 4.5. The goal - question - metric

approach due to Rambach and Basili (1987) is used in the proposal and validation o f

a set o f metrics used to measure the PSDP o f learner programmers. These metrics are

based on the model o f the PSDP previously established.

Chapter 4. 50.

Quality and Novice Programmers.

4.2 D ata Collection.

The PSDP used by novice programmers w as captured by taking a copy o f the

program prior to its compilation. The full developm ent was therefore represented by

a sequence o f programs. These were reduced to a file (the . n ew file) o f counts

representing the version numbers, compilation errors, correctness, lines o f code, and

reserved word counts for each program in the sequence. Full details o f the data

collection and its subsequent analysis is given in chapter 3.

There were three phases in the data collection used in this study. The first set o f data

was collected according to the methods described above in order to visualise the

personal software development. From this initial stage a number o f graphs were

drawn that show the development o f the programs over time (or rather over the

version number). From this data set a number o f possible process metrics were

considered. Full details o f this activity are described in the next section. In

accordance w ith good practise these metrics were validated using a second set o f

data. This second set o f data was collected using a different set o f students and a

different but isomorphic problem. From the analysis o f the data som e m etrics were

validated as being useful in the measurement o f the personal software developm ent

process and som e not. Details o f the validation o f process metrics are given in

section 4.5. The third data set was collected from a third set o f students again

developing a solution to a problem isomorphic to but different from the first and

second problems. The students in this group were treated differently to the first two

sets; they were given feedback during the tim e o f the program developm ent. The

metrics developed for the first set o f students and validated with the second set o f

Chapter 4. 51.

Quality and Novice Programmers.

students are used for this third set o f students to see i f there has been an im provem ent

in the individual's personal software process. Full details o f the feedback experiment

are given in chapter 4.

4.3 V isualisation o f the Personal Softw are D evelopm ent Process.

The aim o f this part o f the research w as to gain som e insight into the w ay

programmers both novice and expert developed computer programs. To achieve this

a group o f students and experts were asked to write a program to solve a problem.

Full details o f the problems are given in Appendix A. During the developm ent o f the

problem each version o f the program submitted to the compiler w as archived using

the method described in the previous section. Each version o f the program is

analysed and the w hole development reduced to a file o f data as described in the

previous section. This is referred to as the . n ew file.

The data in this . new file was used to illustrate the PSDP em ployed by a subject.

For each subject three graphs were drawn. The first was a graph o f the number o f

lines o f code against version number show ing the developm ent o f the program

through time. A second graph showing the cumulative correctness against version

number was also drawn. Cumulative correctness was defined as the m axim um

number o f tests passed by this or previous versions o f the program. This w ill be a

m onotonic non-decreasing function. The cumulative correctness w as chosen rather

than the correctness o f the current version, as that graph w ould be a series o f peaks.

This is because with m ost subjects a large proportion o f versions did not com pile and

Chapter 4. 52.

Quality and Novice Programmers.

hence no tests were passed. A third graph o f number o f com piler errors against

version number was also plotted.

The graphs were compared and similarities between different groups o f subjects

noted.

The data collection used in this study uses three groups o f subjects. The data

collected from the first group o f subjects is used to illustrate the personal software

developm ent process and to suggest various process metrics. In this study there were

18 students (novices) and 6 programming lecturers (experts) used in the study.

E xp ert G roup A:

There were 6 expert programmers in the experiment. The graphs below are those

taken for a single programmer.

LOC vs Version Number

Figure 4.1 Graph o f Lines o f code against version number for expert programmers.

Chapter 4. 53.

Quality and Novice Programmers.

Compiler Errors vs Version Number

Figure 4.3 Graph o f compilation errors against version number for expert programmers

These figures above illustrate the PSDP for an expert programmer and reveal a

number o f points:

• The lines o f code graph (Figure 4 .1) increases in a number o f stages. W ithin each

stage there is a relatively fixed number o f lines o f code; between each stage a

substantial number o f lines o f code are added.

Chapter 4. 54.

Quality and Novice Programmers.

• The correctness graph (Figure 4.2) also increases in stages. These stages mirror

the lines o f code stages with the appropriate lag. This indicates that the subject

used each stage to add part o f the specification that they got working before

proceeding to the next stage.

• The com pilation error graph shows two important features. The number o f

com pilation errors was small especially after the initial stage. A lso the number o f

com pilation errors from one version to the next tended to reduce unless a new

stage w as initiated.

These points suggest that these experts operate a strategy o f partitioning the problem

into a number o f smaller tasks. Each additional task involves adding further lines o f

code and eradicating the errors in this code until it matches the objective o f the task.

Thus these experts em ploy a clear methodical w ay o f working through the problem

specification.

N ovices.

The novices within this study showed a wide diversity o f behaviour w hen developing

their program. In order to capture som e o f the different behaviours o f the novices

they were categorised into three groups. The first split is between those novices who

worked towards a (near) successful solution to the problem and those that did not.

The former group are further split into those who follow ed a developm ent pattern

similar in nature to that employed by the experts and those that used a different

developm ent method, see Table 4.1 below:

Chapter 4. 55.

Quality and Novice Programmers.

G roup D escription N um ber o f
subjects in
in itia l study

N u m b er in
V alid ation
stud y

Experts
Group A

Expert programmers - computer
programming lecturers.

6 -

N ovice
Group B

N ovices who developed their program to
(near) full specification and used a
developm ent method similar to that used
by experts

4 6

N ovice
Group C

N ovices that developed their program to
(near) full specification but did not use
similar developm ent methods to those
used by experts

8 6

N ovice
Group D

N ovices w hose program failed to meet
the specification

6 17
Table 4.1 Classification o f expert and novice programmers.

N ovice G roup B.

The first group o f novices are those who successfully completed the program

specification and show ed characteristics in their PSDP similar to the experts. These

novices showed evidence o f an incremental solution to the programming problem.

There were 4 from a total o f 18 novices in the initial set o f novices and 6 out o f a

total o f 29 in the second set o f novices who fell into this category.

The figures below show the PSDP for a particular novice in this category.

Chapter 4, 56.

Quality and Novice Programmers.

LOC vs Version Number

Version Number

Figure 4.4 Graph o f Lines o f code against version number for a novice group B programmer.

Chapter 4. 57.

Quality and Novice Programmers.

Compiler Errors v s version Num ber

Version Num ber

Figure 4.6 Graph o f Compiler Errors against version number for a novice group B programmer.

The figures above illustrate the PSDP for a Group 1 novice and reveal a number of
points:
• The lines of code graph (figure 4.4) increases in stages. In this example 8 or 9

stages can be identified. There are more stages than the 7 stages in the expert
solution. Other novices in this category show fewer stages than do the experts.

• The correctness graph (figure 4.5) also builds in stages which mirror the stages in
the lines of code graph. In this way this student is emulating the expert
development. This particular student has a close link between correctness stages
and lines of code stages, in other novices this link is not as strong.

• The compilation error graph (figure 4.6) does not show the same reduction in
compilation errors that the expert does. This could be explained by the lack of
familiarity with the language.

• The actual number of versions in this example is much greater than that of the
expert shown earlier, (in this example it is approximately a ten fold increase).

Chapter 4. 58.

Quality and Novice Programmers.

Novice Group C.
This second group of novices is characterised by a fairly flat" lines of code" graph
but they have stages in the correctness graph. This indicates a behaviour whereby the
code is all added at the start and then "debugging" is undertaken to gain a correct
program. There are 8 out of the 18 subjects in the initial study group in this category.
The graphs below show the PSDP for a particular novice in this category.

LOC v s Version Number

Version Num ber

Figure 4.7 Graph o f Lines o f Code against version number for a novice group C programmer.

Figure 4.8 Graph o f Correctness against Version Number for a novice group C programmer.

Chapter 4. 59.

Quality and Novice Programmers.

Compiler errors v s V ersion Number

Version Num ber

Figure 4.9 Graph o f Compiler Errors against Version Number for a novice group C programmer

These graphs above illustrate the PSDP for a group 2 novice. They illustrate a
number of points:
• The lines of code graph (figure 4.7) is flat indicating code is added before any

compilation is attempted. Only small variations of lines of code (+ / - 10 lines)
occur throughout the development.

• The correctness graph (figure 4.8) shows the program becoming more correct
over time in stages. This particular subject had some difficulty between version
and version 36 in making any progress. After that progress was swift.

• The compilation error graph shows a larger number of compilation errors than
the example in novice group 1. There could be two reasons for this, either their
knowledge of the language syntax was inferior or, the larger number of lines of
code produced more errors.

• A similar number of versions to the previous novice group is used to gain a
solution.

Chapter 4. 60.

Quality and Novice Programmers.

Novice Group D.
This final set of subjects were those who did not complete the task. The example
gives a subject who made no progress towards a correct program. Other examples
this category make slight progress towards a correct program. The graphs below
show the PSDP for a particular novice in this category.

LOC v s Version Number

Version Num ber

Figure 4.10 Graph o f Lines o f Code against version number for a novice group D programmer.

C orrectness v s V ersion Number

Version Number
Figure 4.11 Graph o f correctness against version number for a novice group D programmer

Chapter 4. 61.

Quality and Novice Programmers.

Compiler Errors v s Version Number

Figure 4.12 Graph o f compiler errors against version number for a novice group D programmer.

• The lines of code graph (figure 4.10) shows an increase in code from one version
to another despite not getting the previous version to meet its aim. A larger
amount of code is written than in any of the previous categories.

• The correctness graph (figure 4.11) indicates that this subject did not gain any
correctness for the program. Other subjects show slight increases in correctness
(up to 0.125 perhaps).

• The number of compilation errors (figure 4.12) is much larger than any of the
previous examples. This indicates a lack of syntactical knowledge of the
programming language.

• A lot of effort has been put in by the student as measured by the number of
versions submitted to the compiler. This subject is not lacking in commitment
rather lacking in knowledge.

Four groups of subjects were identified at the start of this section namely experts and
three groups of novice. The visualisation has identified a number of characteristics of
each of these groups. The points that have been drawn out for the selected novices
are indicative of the group that they represent. The general points were used to
develop a model of the PSDP.

Chapter 4. 62.

Quality and Novice Programmers.

4.4 Model of Personal Software Development Process (PSDP).

Authors who have reported on how novices develop programs have put forward
iteration enhancement as the basis of software development. Incremental
development or iterative enhancement is based on work of Basili & Turner (1975)
and Brooks (1987), and described in Hutchens and Katz (1996). In this
methodology the programmer splits the overall program into a number of stages.
Each stage adds functionality to the program until the full requirements are fulfilled.
Brooks talks about growing rather than building a program.

Evidence for this behaviour is seen in the graphs presented in the previous section.
This model of incremental program development may be expressed in pseudo-code
as shown in figure 4.13 below.

Split the problem into stages
Repeat

Add code for next stage in development
Loop

Loop
Compile
Exit if no compile errors
Correct compiler errors

End Loop
Run program
Exit if code satisfies stage of development
Update code to correct errors

End Loop
Until full specification complete___________________________
Figure 4.13 Description o f the proposed PDSP model

This model can be used to describe the behaviour of the subjects in the previous
sections. Four subjects were presented, each a representative of a group of subjects.

Chapter 4. 63.

Quality and Novice Programmers.

The expert subject followed the model exactly. The problem was split into stages.
The code for the next stage was added to the program. Any compilation errors were
corrected quickly. The program was tested and potentially altered until that particular
stage was correctly implemented. The next stage was then added. This process was
repeated until the program was complete.

Novice group B students follow a similar PSDP to the experts. In the example given
in section 4.3 the number of stages used in the development was greater than in the
expert solution but the subject still followed the model.

The novice group C subject entered all the code prior to attempting to get any part of
the program working. This behaviour again fits the model with a single rather than
multiple stage development.

The novice group D subject did not complete the task. The behaviour of the subject
did not fit the model for two reasons:
1. The subject added code even though they did not complete a stage
2. The subject added code even though they did not reduce the compiler errors to 0.
In short they did not follow the well-defined process embodied in the model and
failed to complete the task in any meaningful manner.

The evidence presented in section 4.3 visualises the development of 24 subjects. The
model presented here clearly explains the behaviour of the subjects who successfully
complete the program. It is hence reasonable to use this model as the basis for the

Chapter 4. 64.

Quality and Novice Programmers.

measurement of the PSDP.

4.5 Establishing a Set of Core Process Metrics.

The question to be answered in this section is “How can the PSDP be measured?”.
This section describes the study that sought to establish a set of core metrics to
measure the PSDP. The methods used to establish the metrics follow the five
principles of Eijogu(1993) and discussed in section 2.1. Moreover the validation
follows the methods proposed by Shepperd (1992). The metric was derived from the
model described in the previous section, and was then validated against experimental
data.

4.5.1 Investigation Process.
Five features of the PSDP model were identified as being suitable for measurement.
For each of these features candidate metrics were put forward. These candidate
metrics were derived from the model. Only metrics that satisfy Eijogu’s(1993)
mathematical metric properties were considered.

The validation process to establish a metric used in this research was based on the
ability of the candidate metric to discriminate between groups of novice. Moreover
the analysis to establish a metric was repeated over two sets of novice (two separate
cohorts of students) to ensure the results were repeatable.

To validate a particular candidate metric the following method was used. An initial

Chapter 4. 65.

Quality and Novice Programmers.

set of data was collected from 24 experts and novices using the methods discussed in
chapter 3. Each subject was classified as either expert, or novice group B, C or D
according to the criteria discussed in section 4.2 and summarised in table 4.2 below.

Group Description Initial Set of
subjects

Validation Set of
subjects

A Experts 6 -
B Incremental Solution Novices 4 6
C Debug Novices 8 6
D No Solution 6 17
Table 4.2 Details o f the subjects in the experiment to establish a set o f novice process metrics.

The candidate metric was calculated for each subject. The subjects were then ranked
in order of the candidate metric values. This list was used to allocate a predicted
group for each subject according to a particular metric. The number of subjects in
each predicted group was kept the same as the numbers in the actual group. The
numbers in each group are given in table 4.2. Using these values the top 6 would be
predicted to be group A, the next 4 group B, the next 8 group C and the final 6 group
D. The tables used in section 4.6 (table 4.5, 4.6 and onwards) were generated from
this data. Each novice has an actual group and a predicted group and makes a
contribution to one cell in each table. A metric that predicts the groups perfectly
would have values down the leading diagonal of the table and zero elsewhere. Any
variation from this pattern indicates a wrong predicated classification for a subject.

This process is repeated for a second set of subjects to validate the candidate metric.
The second data set consists of novice programmers who were again classified as
group B, C, or D novices according to the criteria discussed in section 4.2. This
second set of students was similar in nature to the first. The students came from
similar backgrounds and the experiment was carried out at a similar time in their

Chapter 4. 66.

Quality and Novice Programmers.

educational experience. The problem given to the second set of students was
different from that given to the first set for educational reasons. However the
problem is in fact isomorphic to the original problem (details of the problems are
given in appendix A). The data from this second set of subjects was processed in the
same way as the first; the versions of the program were collected, analysed and the
data reduced to a file of counts representing the process (a .new file). The metrics
calculated and the subjects ranked to product their group from the metric values.

Some candidate metrics that discriminated between groups within the first data set
also discriminated between groups within the second data set and were viewed as
suitable metrics to measure the particular aspect of the PSDP. Some candidate
metrics that could discriminate between the groups within the first data set could not
discriminate between groups within the second data set and were discarded.

4.5.2 Measuring Process Quality.
There are five aspects of the PSP model that it would be useful to measure. For each
of these categories a number of potential metrics are discussed, analysed and
validated.
The five aspects are:
• how long the development took to complete
• how successful the subject was at compiling their code
• how successful the subject was at getting their code to run
• how well the problem was split into stages
• how much progress was made at each step in the development

Chapter 4. 67.

Quality and Novice Programmers.

For each of these categories a number of potential metrics were considered. Many
were discarded as they failed to discriminate between the different groups in the first
data set. The results presented below discuss only those candidate metrics that had
potential and could discriminate between groups within the first data set.

Fundamental to developing these metrics is the ability to measure the correctness of a
program. This would be used not only in measuring the correctness of the final
program but also the correctness of each version of the program submitted to the
compiler. Section 2.2.5 contains a discussion concerning how other authors measure
the correctness of a program. The method used here is that used in Ceilidh (Benford
et.al., 1993) and Jackson (1991). A set of tests was established. A fully correct
program will pass all the tests. The tests vary in complexity from "program compiles
successfully" to the most difficult test where each of the problem requirements is
satisfied. The scale is based on the 8 point correctness scale of Conway (1978), again
described in section 2.2.5.

The metric sp is used to measure the p ro p o r tio n o f sp ec ifica tio n completed and used
to measure the program correctness.
Area Symbol Name Description
Correctness sp Proportion of

specification
complete

sp = t / T
where
t = number of tests passed
T = total number of tests.

Table 4.3 Definition o f Specification Proportion.

Chapter 4. 68.

Quality and Novice Programmers.

4.6 Results.

4.6.1 Length of Development Results.
The project elapsed time or time taken on a project could measure the length of
development. Due to the nature of student work all subjects will start the project and
end it at approximately the same time although subjects may have spent differing
amounts of time on the project. Both Parrish et. al. (1997) and Grove (1998) tried to
capture the amount of time spent on the project by getting students to record their
time. The authors report that time is not a significant metric in measuring quality of
novice programmer process. As argued earlier, recording the time would interfere
with the PSDP and therefore invalidates the results.

There are two potential metrics investigated here. One is the count of the number of
versions submitted for compiling during the development. The second is derived
from the first and is a measure of the estimated number of versions for successful
completion. In cases where the subject completed the project the two metrics are
identical. If, for example, a subject completed 0.5 of the project in 50 versions then
the estimated versions to completion is 100 (=50 / 0.5). These metrics are described
in table 4.4 below:

Area Symbol Name Description
Length of
Development

N Number of versions Number of versions of
the program submitted
to the compiler

Nc Versions to completion Extrapolation of N to
estimate how many
versions would be
needed to complete the
project.
Nc = N / sp

Table 4.4 Definition o f potential length o f development metrics.

Chapter 4. 69.

Quality and Novice Programmers.

For each novice in this investigation the metrics (N and Nc) were calculated. The
novices are ranked according to the particular metric value and the predicted group
for each novice is found. Tables 4.5 and 4.6 below show the numbers of novices in
each predicted group for each actual novice group.

Number of Versions (N)
First Set of Subjects

Precictec Group
A B C D

A 4 0 1 1
B 2 1 1 0,
C 0 1 4 3
D 0 2 2 2

Validation Set
Predictec Group
A B C D

A - - - -
B - 0 2 4
C - 0 2 4
D - 6 2 9

Table 4.5 Classification o f groups o f subject on the basis o f number o f versions metric

Number of Versions to Completion (Nc)
First Set of Subjects

Prec ictec Group
A B C D

A 6 0 0 0
B 0 1 3 0
C 0 3 4 1
D 0 0 1 5

Validation Set
Predictec Group
A B C D

A - - - -
B - 3 3 0
C - 3 1 2
D - 0 2 15

Table 4.6 Classification o f groups o f subject on the basis o f number o f versions to completion metric

The results given in Table 4.5 and 4.6 show that the experts can be distinguished
from the novices using the Nc metric. The experts take fewer versions to complete
their development than do the novices. This is as would be expected.

However the data does not clearly distinguish between the groups of novice. The
number of versions a novice takes to complete the program development cannot help
predict how well the development was carried out.

Chapter 4. 70.

Quality and Novice Programmers.

It is disappointing that the length (or expected length) of development does not
separate out the groups of novices. This is very much in line with the result of
Parrish et.al. (1997) who found no correlation between number of compiles and
project success. Some students who expend much effort on the project succeed
while others fail. Some students gain success after a smaller number of compiling
attempts while others give up.

No metric measuring the length of development was used in future work due to the
unreliability of such metrics.

4.6.2 Compiling Success Results.
One aspect of programming knowledge captured in the model of a programmer’s
personal software development process is the ability to add syntactically correct code
and the ability to correct any compiler errors. This is represented by the innermost
loop of the model. It seems reasonable that better programmers make fewer mistakes
and take less time (fewer versions) to correct any mistakes that they make.

Three potential metrics are proposed to measure the compiling expertise o f the
programmer. The first measures the proportion of versions that compile correctly.
The second measures the proportion of versions that have fewer compilation errors
than the previous version. The final proposed metric is the average number o f
versions it takes to achieve a clean compilation.

Chapter 4. 71.

Quality and Novice Programmers.

Area Symbol Name Description
Compiling Expertise c r Compiling ratio Proportion of versions

that compiled with 0
errors

c p i Compiling
performance index

Proportion of versions
which had fewer
compiler errors than
the previous step

a s c Average steps to
compile

Average number of
versions taken to
achieve a clean
compilation

Table 4.7 Definition o f potential compiling expertise metrics.

For each novice in this investigation the c r metric is calculated. The novices are
then ranked according to the metric value and the predicted group for each novice is
found. Table 4.7 below shows the numbers of novices in each predicted group for
each actual novice group.

Compiling Ratio (cr)
First Set of Subjects

Prec ictec Group
A B C D

A 0 2 4 0
B 1 2 1 0
C 4 0 3 1
D 1 0 0 5

Validation Set
Predictec Group
A B C D

A - - - -
B - 3 3 0
C - 1 3 2
D - 2 0 15

Table 4.8 Classification o f groups o f subject on the basis o f compiling ratio.

This metric (cr) can distinguish group D novices from the others in both sets of data.
However groups A, B, and C are confounded. The metric cannot distinguish
between these groups of programmers. There may be many reasons for these results.
Group 4 subjects, those novices who did not develop a correct solution, had difficulty
with the language syntax and can thus be separated from the rest. For the other
groups the ratio comes out at a similar figure as better programmers take fewer steps

Chapter 4. 72.

Quality and Novice Programmers.

thus tending to increase the c r figure.

For the metric c p i a similar table was generated using the same methods as for the

c r metric
Compiling Performance Index (c p i)

First Set of Subjects

13rj PIS g< O

Prec ictec Group
Group A B C D

A 3 0 3 0
B 1 1 2 0
C 1 3 2 2
D 1 0 1 4

Validation Set
Group A B C D

A - - - -
B - 2 3 1
C - 2 1 3
D - 2 2 13

Table 4.9 Classification o f groups o f subject on the basis o f compiling performance index.

This metric (c p i) does not clearly distinguish between the groups. In the first
experiment some experts are confused with novices, but half are not. Similarly some
group D subjects are confused with group C subjects but the majority are not. The
group B and C subjects are confused. Perhaps this last finding is not surprising and
the grouping has been carried out on the basis of their ability to solve the problem
rather than on their syntactic knowledge.

The third potential metric a s c is investigated in the same way as the previous two

metrics.
Compiling Performance Index (a sc)

First Set of Subjects
Prec ictec Group
A B C D

A 2 1 2 1
B 1 1 2 0
C 3 2 2 1
D 0 0 2 4

Validation Set
A B C D

A - - - -
B - 3 1 2
C - 3 3 0
D - 0 2 15

Table 4.10 Classification o f groups o f subject on the basis o f average steps to compile a program.

Chapter 4. 73.

Quality and Novice Programmers.

The performance of the a s c metric to discriminate between groups is not good.
There is a lack of discrimination between groups A, B, and C. Group D does seem to
be discriminated from the others.

The three metrics discussed are not good at discriminating between the groups of
subject. However, there was a need in the work following to have some metric that
could measure the compiling expertise, c p i was used as this metric because o f it's
ability to distinguish group D from the others and it can distinguish experts (group

A) better than cr .

4.6.3 Running Success Results.
The aspect of programming investigated here was to find a metric that measures how
successful a programmer was at getting the program to run. This aspect of program
development is represented by the middle loop in the model of the PSDP in figure
4.14. This aspect of the PSDP is concerned with ensuring the logic at each stage of
development is correct. The metrics put forward here are chosen to be independent
of the compiling aspects of the PSDP. Two metrics are considered here. The first is
the run performance indicator that considers only those steps that have clean
compiles (no compiler errors) and calculates the percentage that made some progress
towards full correctness. The second attempts to penalise those subjects who had
few versions that compiled and thus made significant progress in each stage. The
metric chosen is the run performance index (r p i) multiplied by the proportion of the

full specification achieved (sp).

Chapter 4. 74.

Quality and Novice Programmers.

Area Symbol Name Description
Run Stage Success r p i Run Performance

Indicator
From all those steps
that compiled what
proportion had a
greater % correctness
than any previous step.

r r p i Relative Run
Performance Indicator

r r p i = r p i * sp
Table 4.11 Definition o f potential run stage success metrics.

To validate a metric in the area of running success similar methods are used as were
used to validate the compiling metric. For each novice the r p i and r r p i metrics
were calculated. The novices are then ranked according to the metric value and the
predicted group for each novice is found. Table 4.12 below (and 4.13 later) shows
the numbers of novices in each predicted group for each actual novice group.
Run Performance Index (r p i)

First Set of Subjects Validation Set

oJ & rs & -P O O< o

Prec ictec Group
A B C D

A 4 2 0 0
B 0 2 0 2
C 0 0 6 2
D 2 0 2 2

Predictec Group
A B C D

A - - - -
B - 1 3 2
C - 4 1 1
D - 1 2 14

Table 4.12 Classification o f groups o f subject on the basis o f run performance indicator.

As can be seen from the results the discrimination between the groups is not clear.
One reason for this is that some group D subjects have a good r p i figure,
comparable with the experts, because they only succeeded in compiling a program
two or three times thus artificially inflating the figure due to the low numbers. If the
group D students are removed from the data then this metric perfectly discriminates
the experts from the novices and there is only 1 misclassification between the novice
groups.

Chapter 4. 75.

Quality and Novice Programmers.

In order to militate against novices who only succeeded in compiling a program two
or three times and hence gained a high r p i figure, the r r p i metric is investigated.
This metric multiplies the r p i figure by the proportion of the specification complete
(sp). This penalises those subjects who only managed to get a low proportion of the
specification completed.

The investigation into the use of the r r p i metric follows the same method as that
used above.
R elative R un P erform ance In dex (r r p i)

First Set o f Subjects
Precictec Group
A B C D

A 6 0 0 0
B 0 2 2 0
C 0 2 5 1
D 0 0 1 5

V alid ation Set
Predictec Group
A B C D

A - - - -
B - 4 2 0
C - 2 3 1
D - 0 1 16

Table 4.13 Classification o f groups o f subject on the basis o f their relative run performance indicator.

The r r p i figure clearly distinguishes between the experts and the novices. There is
also a high level of discrimination between the group D novices and the other groups
(B and C). Though there is still some confusion between groups B and C. There is
good reason for this. The graph of “version number” against “best correctness value
so far” are similar for these groups of novice.

The metric r r p i will be used to measure the ability of a programmer to achieve
their goal within a stage of a program. The metric can distinguish between experts,
group 4 novices and the rest. To distinguish between groups B and C some
measurement of the stages in development needs to be obtained.

Chapter 4. 76.

Quality and Novice Programmers.

4.6.4 Stages in D evelopm en t R esults.

The stages used in the development of a program with respect to lines of code added
and correctness were clearly seen in the graphs produced earlier in this chapter. A
third area where stages in development can potentially be seen is in the increase in
number of procedures and functions used in a program. This section describes the
investigation of potential metrics that can discriminate between groups using stages
in the PSDP. Four terms are now defined:
• Lines of code are defined as a count of the number of lines in the program source

file.
• A stage in the lines of code graph is defined as ten or more additional lines of

code added to the program.
• A stage in the tests graph is defined as one or more additional tests passed.
• A stage in the (potential) number of procedures and functions graph is defined as

the addition of an extra procedure or function within the program code.
Three metrics were initially considered:
• s l o e - number of stages in the lines of code graph during development.
• s rn - number of stages in the correctness graph during the development
• s p f - number of times procedures or functions were added to the program code.
None of these metrics discriminated between the groups of subjects, other than a
tendency of group C and D subjects to have a lower value for these metrics than
group A and B subjects did. Part of the problem is that many of the group C and D
subjects submitted their program to the compiler, got compilation errors that they did

not fix but added further code. Thus the value of the s l o e metric was artificially
inflated as it measures the stages in the lines of code graph and does not take account

Chapter 4. 77.

Quality and Novice Programmers.

of whether these stages achieve anything. To counter the effect of adding code when
the previous code did not work amended metrics were considered.

A rea Sym bol N am e D escription

Stages in
Development

s i stages in lines of
code graph

Number of stages
(additional 10 loc
between one step and the
next) during development
after % tests >15%

s t stages in % running
graph

Number of stages
(additional 1 test passed)
after % tests >15%

s f stages in function
graph

Number of times
procedures or functions
added to the code after %
tests >15%

Table 4.14 Definition o f potential stages in development metrics.

To validate a stages in development metric similar methods are used as were used
above. For each novice the s 1 , s t and s f metrics were calculated. The novices
are then ranked according to each metric value and the predicted group for each
novice is found. Table 4.15 below (and 4.16, 4.17 later) show the numbers o f novices
in each predicted group for each actual novice group
Stages in L O C (si)

F irst Set o f Subjects V alid ation Set

c3 9« -P oO Jh< o

Prec ictec Group
A B C D

A 3 1 2 0
B 3 1 0 0
C 0 2 5 1
D 0 0 1 5

Predictec Group
A B C D

A - - - -
B - 5 1 0
C - 1 4 1
D - 0 1 16

Table 4.15 Classification o f groups o f subject on the basis o f the stages in lines o f code.

The results for the first set of subjects do not look very promising. However if all the
experts are removed from the data the first s 1 discriminates well between the

Chapter 4. 78.

Quality and Novice Programmers.

novices. This is shown clearly in table 4.15a. which is a repeat of table 4.15 but with
the expert (group A) subject data removed. There is only one novice wrongly
classified by this metric.
Stages in L O C (si)

F irst Set o f Subjects
Prec ictec Group
A B C D

A - - - -
B - 4 0 0
C - 0 5 1
D - 0 1 5

V alidation Set
Predictec Group
A B C D

A - - - -
B - 5 1 0
C - 1 4 1
D - 0 1 16

Table 4.15a Classification o f groups o f subject on the basis o f the stages in lines o f code, with experts
removed from the data.

In the validation data set there are only 2 subjects wrongly classified. The overall
goal of this research is to examine the behaviour of novices and not experts, so the
problem of the experts being confused with novices is not considered being very
important. One reason why the experts were confused with novices is that as the
experts have more experience their stages in the development of their programs
becomes larger and hence the number of stages fewer.
The investigation produced the following results for the s t metric:
Stages in % program correct (st)

F irst Set o f Subjects

'c3 £*
& oO Vj< o

Prec ictec Group
A B C D

A 2 2 2 0
B 4 0 0 0
C 0 2 5 1
D 0 0 1 5

V alidation Set

A B c D
A - - - -
B - 5 1 0
C - 1 4 1
D - 0 1 16

Table 4.16 Classification o f groups o f subject on the basis o f the stages in correctness.

Again the results for the first set of subjects do not appear to discriminate between
subjects. However if the expert data is removed, as was done for the previous metric,
then this metric, s t , discriminated between the novices with the same power as does

s 1 . The data for the validation set is the same as the previous metric in that two

Chapter 4. 79.

Quality and Novice Programmers.

subjects are wrongly classified.
The experiment produced the following results for the s f metric:
Stages in functions added (sf)

First Set of Subjects
Prec ictec Group
A B C D

A 3 1 2 0
B 2 1 1 0
C 1 2 4 1
D 0 0 1 5

Validation Set
Predictec Group
A B C D

A - - - -
B - 4 2 0
C - 2 2 2
D - 0 2 14

Table 4.17 Classification o f groups o f subject on the basis o f the stages in functions added.

These results do not show a metric that can clearly discriminate between the
categories of subject and even when the experts are removed the discrimination with
respect to the first set of data is worse than that exhibited by metrics s i and s t . This

metric will not be used further within this research. The s i and s t metrics will both
be used later in this work.

4.6.5 Overall Success Rate Results.
The final measure looked for is some way to characterise the whole development.
The question is whether some progress has been made at each step in the
development. It seems reasonable that better programmers will make more progress
at each step of the development than do novice programmers. Two overall success
rate metrics were considered.

Chapter 4. 80.

Quality and Novice Programmers.

Area Symbol Name Description

Overall success
rate

t p i total performance
indicator

Proportion of versions
that made progress over
the previous steps during
the development

r t p i relative total
performance
indicator

r t p i = t p i * sp

Table 4.18 Definition o f potential overall success rate metrics.

Both these metrics are based on a notion of measuring the progress towards the
overall goal that each version of the program made. In this instance progress is
defined as either the version having fewer compilation errors than the previous
version or the version passing more tests than all previous versions. The first metric

in table 4.17 above, t p i , measures the proportion of versions that make progress, as
defined previously, over the previous versions. It was found that this metric was
artificially high for those novice programmers who failed to get a working program
(group D novices). For example if a novice has 20 compilation errors in the first
version and reduced this figure by 2 in each of the next 10 versions and the final
version is incorrect then the t p i figure is 100%, even though the program may not
do anything of value.

Validation of overall success rate metrics used the same methods as have been used
previously. The candidate metrics were calculated for each novice. The novices were
ranked and the predicted group found. The predicted and actual group pairs were
tabulated and the following results found:

Chapter 4. 81.

Quality and Novice Programmers.

Total Performance Indicator (tpi)
First Set of Subjects

Predicted Group

§ 3
1 g< O

A B C D
A 6 0 0 0
B 0 0 4 0
C 0 1 3 4
D 0 3 1 2

Validation Set
Predictec Group
A B C D

A - - - -
B - 2 1 3
C - 2 2 2
D - 2 2 12

Table 4.19 Classification o f groups o f subject on the basis o f the stages in correctness.

The tpi metric confuses group D subjects with other groups. The definition of
progress gives them credit for progress when in reality the progress towards the
overall goal is poor. That aside the metric discriminates between the other groups (1
misclassification between groups B and C). The experts have the best tpi figure.

To solve the problem of group D indicating progress when there was no real progress

the rtpi metric was used in the method rather than the tpi metric above.

Relative Total performance Indicator (rtpi)
First Set of Subjects

Prec ictec Group
A B C D

A 6 0 0 0
B 0 3 1 0
C 0 1 7 0
D 0 0 0 6

Validation Set
Predictec Group
A B C D

A - - - -
B - 4 2 0
C - 2 3 1
D - 0 1 16

Table 4.20 Classification o f groups o f subject on the basis o f the stages in correctness.

The rtpi metric discriminates between the groups save for 1 subject in the first set
of data and three subjects in the validation set of data. This metric will be used as a
metric for overall progress during the rest of the work reported in the next chapters.

Chapter 4. 82.

Quality and Novice Programmers.

4.7 Process Marking.

There are numerous automated marking schemes, see section 2.2, that are used to
mark a program developed by a novice programmer. These marking schemes use a
linear combination of metrics to establish a “mark” for the quality of the student’s
program. With the establishment of metrics that measure aspects of the PSDP in
section 4.6 above, it is possible to combine these metrics to produce a “process
mark” for each subject. In this section a combined process mark was calculated for
each subject and the discriminatory power of this metric shown using the
classification systems used with the individual metrics.

The “process mark” is calculated as a linear combination of the four elements
considered in section 4.6 above. A weighting of 0.25 is given to each of compiling

success (c p i) , running success (r r p i) and total success (r t p i) . The final 0.25 is

split evenly between the two metrics that measure the stages in development s 1 and

s t . The c p i , r r p i and r t p i metrics give a percentage value and are simply

weighted together in the calculation. The s i and s t values are absolute values that
depend on the problem under consideration. These values are converted to a
percentage by comparing the values to a “model” solution using a trapezium
function. This is the technique that is used to calculate the program mark by Rees
(1982) and Benford et.al. (1993). The overall process mark is calculated as:

Chapter 4. 83.

Quality and Novice Programmers.

p = 0 .2 5 * c p i .+ 0 .2 5 * r r p i + 0 .1 2 5 * s l ' +
0 .1 2 5 * s t ' + 0 .2 5 * r t p i

where
p = Overall process mark
c p i = Compiling progress indicator
r r p i = Relative run progress indicator
S I ' = Transformed value of stages in LOC
s t ' = Transformed value of stages in testing
r t p i = Relative total progress indicator.

The values for each subject were calculated and used to predict which category the
subject should be in. These results are presented in table 4.20 below.
Overall Process Mark (p)

First Set of Subjects
Prec ictec Group
A B C D

A 5 1 0 0
B 1 3 0 0
C 0 0 7 1
D 0 0 1 5

Validation Set
Predictec Group
A B C D

A - - - -
B - 4 2 0
C - 2 3 1
D - 0 1 16

Table 4.21 Classification o f groups o f subject on the overall process mark.

The interesting point that can be taken from this table is that it is identical to the table
for r t p i indicating that the linear combination of metrics gives the same

discrimination, as does the r t p i metric. This gives further evidence to the argument
that r t p i is in some way an overall process metric.

In a marking scheme that sought to include some element of process then the r t p i
metric can be included as a measurement of the quality of the overall novice’s PSDP.

Chapter 4. 84.

Quality and Novice Programmers.

4.8 Summary.

The purpose of this chapter was to establish a set of metrics that can be used to
measure the personal software development process (PSDP) used by novice
programmers. The first step was to visualise the PSDP used by novices and experts.
Studies were carried out to capture data during the development of software by
novice programmers. The data once collected was reduced to counts and graphs of
version number against lines of code, correctness and compilation errors drawn.
These graphs showed similarities between groups of novices allowing 3 groups of
novices and one expert group to be defined.

A model of the PSDP was proposed and validated by comparing the expected
behaviour of the novice against the actual behaviour. The proposed model did in
some way describe how novice programmers developed programs.

From the model a number of characteristics were established from which a set of
metrics were chosen to be validated. For each characteristic a number of potential
metrics were proposed and using experimental data these metrics were validated (or
not). The following set of metrics were established and were used during the rest of
this work:

Area Metric Name
Length of Development None
Computing Success c p i Compiling progress indicator
Running Success r r p i Relative run progress indicator
Stages in Development s i Stages in LOC.

s t Stages in testing
Overall Success r t p i Relative total progress indicator
Table 4.22 Validated set o f PSDP metrics.

Chapter 4. 85.

Quality and Novice Programmers.

5 . F e e d b a c k a s a M e t h o d o f P r o c e s s I m p r o v e m e n t .

5.1 Introduction.

The overall theme of this research was to examine the hypothesis that the expertise
of a novice programmer may be improved by focussing the learning onto the
program development process. The work discussed in the previous chapter allowed
the personal software development process (PSDP) to be measured. Discussions
from the literature and reported in chapter 2 indicate methods of how a program may
be measured. It is now feasible to measure both the process and the product for an
individual software development. The experiment described here was designed to
investigate whether simple feedback, in the form of a correctness score for each
version of a program, can improve the PSDP of a novice programmer. A successful
outcome of this experiment would show that there is potential in the argument that
the software development process is an important aspect of expertise in computer
programming.

The experiment was designed as a pre-test-post-test control group design that is
widely used in educational research. Two groups of novices are considered. Both
groups are tested before the treatment. They are then asked to develop a second
program. The treatment group is given feedback during this second development. An
analysis of variance was used to analyse the results. These results are analysed in
terms of the improvement to the process metrics identified in chapter 3 namely the

compiling performance index (cp i), relative run performance index (r r p i) , stages

in lines of code (s i) and stages in testing (s t) and relative total performance index

Chapter 5. 86.

Quality and Novice Programmers.

(r t p i) .

The feedback under consideration in this chapter relates to program completeness as
indicated by the number of test cases successfully completed. When a novice runs a
program not only are the results printed on the screen but the number of tests passed
is also reported to the novice. The simple feedback does no more than emphasise to
the novice the correctness of the program and informs them whether they have
completed the given stage in the program development. This feedback, if successful,
would be expected to have an effect on the process metrics.
• c p i - compiling performance index - no change in this metric was expected.

This aspect of the PSDP model was not addressed by the particular feedback.
Indeed if there were significant changes to this figure then this would indicate a
major flaw in the experimental design.

• r r p i - relative run performance indicator - should be improved if the feedback
was achieving the expected effect. The feedback influences the novice's
awareness of the correctness of their program and was designed to improve the
novice’s awareness of this aspect of the development. This should show itself by
improving this metric during the development process.

• s i - stages in the lines of code and s t - stages in the testing - these metrics
measure the planning ability of the novice. They should not be directly affected
by the feedback given. This is because the feedback is designed to improve
within each stage rather than between stages.

• r t p i - relative total performance index - this metric is defined in terms of
progress which in turn is defined as compiling or correctness improvement from
one version to another. The latter aspect of this metric should be affected by a

Chapter 5. 87.

Quality and Novice Programmers.

process improvement and hence it is expected that this metric will be increase
given the feedback.

5.2 Experimental Method.

5.2.1 Introduction.
This experiment was carried out to test the hypothesis that process intervention can
improve the PSDP of a novice programmer. This experiment was based on observing
two groups of students during their development of two programs. The two groups of
students are a treatment group who are given feedback to help in their program
development and a control group who have not been treated. Each group was asked
to develop two programs. By analysing the change in performance of the control and
treatment groups between the first and second developments the effectiveness o f the
treatment can be determined.

5.2.2 Experimental Design.
In a pre-test-post-test-control group experimental design subjects are tested before
treatment to provide a base line for the analysis. Each subject in this experiment was
requested to develop a program (pre-test program). This first program was
considered appropriate to the current state of the novice learning as dictated by the
lecture course. No feedback was given with this program to either groups of novice.
At a time later (6 weeks), the novices were requested to develop a second program
(post-test program). This program was again considered appropriate to the current
state of the novices' learning. As the course had developed further this problem was

Chapter 5. 88.

Quality and Novice Programmers.

more complex than the first problem. During the development of this second
program, novices in the treatment group received feedback.

5.2.3 The Participants.
Two separate groups of novices are needed for this experiment. For educational
reasons it was decided to use two different cohorts of students in the experiments.
The main advantage of using two separate cohorts of students is that there was little
chance of information crossing over between the two groups of students. A single
cohort of students split into two groups would have a greater danger of interaction
between the groups. Indeed it would be possible for some students in the control
group to see the feedback given to the treatment group of students and use their
command to receive the feedback. This cross over between the two groups would
have invalidated the experiment. Within each cohort all the students are subject to
the same educational experience. From an ethical point of view there is no danger of
some students claiming they had an inferior educational experience.

The disadvantage of using two cohorts of students is that they may have different
qualifications and educational experience. Greater control of groups, both in terms of
numbers and background, can be gained if a single cohort is split rather than relying
on two cohorts. In this experiment there was no reason to suspect any differences
between the cohorts. The admission policy to the course and hence the module was
not altered between the two intake years in question. Furthermore the lecturer
delivering the module and the module content did not alter between the cohorts. The
programs given to the two groups of novices, pre and post-test programs, were
different to ensure no cross fertilisation (plagiarism) between the groups. Although

Chapter 5. 89.

Quality and Novice Programmers.

two different problems were used in the pre-test and in the post-test, the pairs of
problems were isomorphic. The program context was different but the essential
problems the same.

The control group of students is 23 in number. They tackled two problems 6 weeks
apart and the changes to process metrics calculated. There are 20 students in the
treatment group of students. They tackled a different but similar pair of problems,
again 6 weeks apart, but one year later. Again the changes in the process metrics are
calculated for each student. For each process metric an analysis of the changes in the
process metric measurements is carried out. The analysis uses the analysis of
variance technique.

5.2.4 The Problems Used in the Experiment.
Two problems were given to each subject within the experiment.

Problem One: A set of data was read into a one-dimensional array. The maximum
value, minimum value, average value and standard deviation are calculated and
output

Problem two: A set of data was read into a table from a file. Each data item
consisted of a row number, column number, variable 1 value, and variable 2 value.
For each of the variables the row and column minimum and maximum are calculated
together with the corresponding overall values.

As the experiment took place over two academic years there were different problems

Chapter 5. 90.

Quality and Novice Programmers.

for each group. The difference between the problems was the context in which the
problem was set. In all other aspects the problems were the same. Details o f the two
problems are given in appendix A.

5.2.5 The Treatment.
The treatment group was given feedback during the development of their second
program. This treatment was automatic testing of the program. For a program that
completely satisfies the test criteria the treatment out put is shown in figure 5.1.
P a s s e d t e s t 1 P r o g r a m c o m p i l e s
P a s s e d t e s t 2 F i l e a c c e s s e d
P a s s e d t e s t 3 D a t a r e a d c o r r e c t l y
P a s s e d t e s t 4 D a t a d i s p l a y e d
P a s s e d t e s t 5 C a l c u l a t e mi n imum e a s t f l o w s
P a s s e d t e s t 6 C a l c u l a t e mi n imum w e s t f l o w s
P a s s e d t e s t 7 C a l c u l a t e maximum e a s t f l o w s
P a s s e d t e s t 8 C a l c u l a t e maximum w e s t f l o w s
P a s s e d t e s t 9 C a l c u l a t e a v e r a g e e a s t f l o w s
P a s s e d t e s t 10 C a l c u l a t e a v e r a g e w e s t f l o w s
P a s s e d t e s t 11 C a l c u l a t e o v e r a l l min imum e a s t
P a s s e d t e s t 12 C a l c u l a t e o v e r a l l min imum w e s t
P a s s e d t e s t 13 C a l c u l a t e o v e r a l l maximum e a s t
P a s s e d t e s t 14 C a l c u l a t e o v e r a l l maximum w e s t
P a s s e d t e s t 15 C a l c u l a t e o v e r a l l a v e r a g e e a s t
P a s s e d t e s t 16 C a l c u l a t e o v e r a l l a v e r a g e w e s t
P a s s e d 16 o u t o f 16 t e s t s
Figure 5.1 Sample output o f treatment.

For students with less than perfect solutions the feedback only outputs the tests
passed. This can be seen in table 5.2 below.
P a s s e d t e s t 1 P r o g r a m c o m p i l e s
P a s s e d t e s t 2 F i l e a c c e s s e d
P a s s e d t e s t 3 D a t a r e a d c o r r e c t l y
P a s s e d t e s t 4 D a t a d i s p l a y e d
P a s s e d t e s t 5 C a l c u l a t e min imum e a s t f l o w s
P a s s e d t e s t 9 C a l c u l a t e a v e r a g e e a s t f l o w s
P a s s e d t e s t 10 C a l c u l a t e a v e r a g e w e s t f l o w s
P a s s e d t e s t 15 C a l c u l a t e o v e r a l l a v e r a g e e a s t
P a s s e d t e s t 16 C a l c u l a t e o v e r a l l a v e r a g e w e s t
P a s s e d 9 o u t o f 16 t e s t s
Figure 5.2 Sample output for a novice with less than complete specification

Chapter 5. 91.

Quality and Novice Programmers.

5.2.6 The Computer Environment.
All students developed their programs in the same computer environment. Once the
students edited the source file of their program they executed a command that:
• copied the program to an archive for future analysis
• compiled the program reporting any errors
• linked the program to produce a .exe program for those program that compiled
• executed the program and generated the results
• tidied up the student directory of intermediate files.

To allow feedback to be given both groups of students were provided with a
procedure (o u tp u t_ d a ta (p a r a m e t e r s)) that was used to output the data and
results. Students were required to use this library procedure in their program. There
were two versions of this procedure available in the library. The control group of
students used the normal version that output the results to the screen. The second
version was used by the treatment group and again output the results to the screen.
This second version also generated the tests passed output.

5.3 Results.

The results for the process metrics are collated and discussed individually. In all
cases the null hypothesis is that the treatment has no effect on the PSDP employed by
the novice. The alternative hypothesis is that the process was improved by the
treatment. A significant result in the analysis indicates that the alternative hypothesis
is true and the treatment improved the PSDP for that group of students.

Chapter 5. 92.

Quality and Novice Programmers.

The results for the five process metrics are considered in order. For each subject, the
difference in the process metrics between the pre-test and the post-test was
calculated. There are two opposing factors affecting this difference. It is affected by
the expertise in PSDP gained by the student over the time between the two tests; this
would lead to a positive difference between the pre and post metrics. The problem
tackled in the post-test is more difficult than that in the pre test which would lead to a
negative difference being recorded. If the null hypothesis is true and the feedback has
had no effect then there will not be any difference between the two samples. If
however the null hypothesis is false and the treatment has had an effect then the
treatment group will have, on average, higher difference values than the control
group. The improvement (or otherwise) of each metric was calculated for each
subject and the values between the groups compared using an analysis of variance.

5.3.1 c p i Improvement.
The raw data of the difference in c p i scores for each subject is illustrated in the
chart below, figure 5.3. The individual data items for the treatment group are shown
at the top and for the control group at the bottom.

Chapter 5. 93.

Quality and Novice Programmers.

C o m p a r is o n o f c p i B e tw e e n G ro u p s

.
-1 -0.5 0 0.5 1

♦ Control
ra Treatment

Figure 5.3 cpi Comparison o f the control and treatment groups.

There is a clear overlap between the data items from the two groups. The clustering
for the control group is at a higher value than that or the treatment group. A statistical
analysis of the data shows whether the differences seen are significant.

Compiling Performance Index (cpi)
SUMMARY

G r o u p s C o u n t S u m A v e r a g e V a r i a n c e
Control 23 -1.08633 -0.04723 0.071419
Treatment 20 -1.654 -0.0827 0.090513

ANOVA
S o u r c e o f
V a r i a t i o n

S S d f M S F P - v a l u e F c r i t

Between Groups 0.013458 1 0.013458 0.167661 0.684331 4.078544
Within Groups 3.290962 41 0.080267
Total 3.304419 42
Table 5.1 Statistical analysis o f the cpi metric

The results above show an F statistic value of 0.16766 that is well below the critical
value of 4.078544 indicating that there is no significant difference between the two
groups. The treatment has had no significant effect on the c p i metric.

Chapter 5. 94.

Quality and Novice Programmers.

The feedback to the subjects in this experiment provides information regarding the
correctness of their program once it has compiled. It did not provide any extra
feedback that can help the subject solve compilation errors. Thus it would be
surprising if this metric showed any significant improvement between the groups.
Indeed if there was a significant improvement in the treatment groups then the cause
of this difference would not be the feedback and must have been some other external
factor thus invalidating the experiment. As the result is not significant it provides
reassurance that the experiment is well designed.

The average c p i difference for both groups is negative showing that on average the
compiling performance was slightly worse between the pre test problem and the post
test problem. It is likely that the reason for this apparent diminution in compiling
performance by the subjects was that the post-test problem was more difficult than
the pre-test problem. The statistical analysis above indicates that the diminution of
the cpi figure is similar in both groups of subject.

5.3.2 Relative Run Performance Index (r r p i)

The relative run performance index (rrpi) measures the progress made towards the
goal of a correct program at each version of development. This metric is affected by
how long (how many steps) the subject takes to make progress in their program. This
is the area targeted by the feedback given. The individual data items are shown in
figure 5.4 below.

Chapter 5. 95.

Quality and Novice Programmers.

C o m p a r is o n o f r r p i b e tw e e n g ro u p s

♦ Control
□ Treatment

-1 -0.5 0 0.5 1

Figure 5.4 r r p i Comparison o f the control and treatment groups.

There is a clear clustering of data in each group and moreover the clustering in the
treatment group has shifted higher than in the control group. This would suggest, by
inspection, that the treatment had a positive effect on this metric. Table 5.2 below
gives a statistical analysis of the data.
Relative Run Performance Index (rrpi)
SUMMARY

G ro u p s C ou n t Sum A v e ra g e V ariance
Control
Treatment

23 -3.95311 -0.17187
20 2.263975 0.113199

0.092239
0.07073

ANOVA
S ou rce o f
V aria tion

SS d f M S F P -va lu e F c r it

Between
Groups
Within
Groups

0.869365
3.373118

1 0.869365
41 0.082271

10.56707 0.002304 4.078544

Total 4.242483 42
Table 5.2 Statistical analysis o f rrpi metric.

The results above show an F statistic value of 10.56707 that is well above the critical
value of 4.078544 indicating that there was a significant difference between the two

Chapter 5. 96.

Quality and Novice Programmers.

groups. The treatment has had a significant effect on the r r p i metric.

The average r r p i difference for the control group was negative, which indicates
that for this group of subjects, their r r p i metric value lowered over the time of the
experiment. One explanation of this point is that the second problem was harder than
the first and the students found it more difficult to make progress with their second
problem. It does not indicate that the programming ability of the control group
students reduced over the period of the experiment just that they were unable to cope
as well with the second more complex problem. The treatment group showed a
positive increase in their r r p i figure over the time of the experiment. These
students coped better with the second program than the first. The only difference
between these groups was the feedback given to the treatment group thus it can be
concluded that the treatment had a highly significant positive effect on the students.

The treatment given provides feedback on program correctness but this does not tell
the student how to develop their program. Nevertheless there was a measurable
improvement in the process. One explanation of this is that the students did have the
knowledge of how to develop programs but were less skilled in applying that
knowledge. The feedback on the correctness helped them focus and apply their
knowledge. A second, related explanation is that the students lacked the knowledge
to test the program and the feedback that automatically tested the program provided
this knowledge thus improving the PSDP.

5.3.3 Stages in Lines of Code (s i) and Stages in Correctness (s t)
In chapter 3 stages in lines of code (s i) and stages in correctness (s t) were

Chapter 5. 97.

Quality and Novice Programmers.

established as part of the metric set that measure the development of a program. One
feature of these metrics is that the value (number of stages in lines o f code or number
of stages in correctness) is related to the program under development.

In this experiment the "expert" value of s 1 for the first program is 4 and for the

second program is 7. Thus the expected change in s i is 3. Figure 5.3 below
illustrates the spread of the values for the control and treatment group.

C o m p a r is o n o f s i B e tw e e n g r o u p s

-1

♦ Control
□ Treatment

5 -10 5 0 5 10

Figure 5.5 s 1 comparison o f the control and treatment groups.

Chapter 5. 98.

Quality and Novice Programmers.

Stages in lines of code (si)
SUMMARY

G ro u p s C ou n t Sum A vera g e V ariance
Control 23 -25 -1.08696 15.53755
Treatment 20 -17 -0.85 4.976316

ANOVA
S ou rce o f
V aria tion

s s d f M S F P -va lu e F c r it

Between 0.600657 1 0.600657 0.056435 0.813405 4.078544
Groups
Within 436.3761 41 10.64332
Groups
Total 436.9767 42
Table 5.3 Statistical analysis for the si metric

The results above show an F statistic value of 0.056435 with an associated
probability of 0.813405 (81.34%) This indicates that there is no significant difference
between the groups in the s 1 metric.

As noted previously the expected change for s i from an expert programmer is 3. In

this experiment the mean change in s i is -1.087 for the control group and -0.85 for
the treatment group. The statistical analysis summarised in table 5.3 reveals that the
difference between the groups is not significant; the treatment had no effect on the
s 1 mean value. It must be noted here that these average values show a reduction in

the stages rather than an increase. An expert would have a s i figure of +3. One
explanation for this is that the second more difficult problem has overwhelmed the
students who have been unable to split the problem into stages properly. These
students still lack the sophisticated problem solving skills available to expert
programmers. The most notable feature of the illustration of the raw data is the

Chapter 5. 99.

Quality and Novice Programmers.

change in variation between the 2 groups. However this variation is not statistically
significant.

The same analysis was carried out for the s t metric. In this experiment the "expert"
value of s t for the first program is 4 and for the second program is 7. Thus the
expected change in s t is 3. Figure 5.4 below illustrates the spread of the values for
the control and treatment group.

C o m p a r is o n o f s t b e tw e e n G r o u p s

-1

♦ Control
n Treatment

05 -10 5) 5 1

Figure 5.6 st comparison o f the control and treatment groups

The diagram above has the similar characteristics as that for s i given in figure 5.3,
namely that there does not look to be any change in the mean value between the two
groups but the variation within the group is less for the treatment group. An analysis
of variance was carried out on the data. The results are shown in table 5.5.

Chapter 5. 100.

Quality and Novice Programmers.

Stages in testing (st)
SUMMARY

Groups Count Sum Average Variance
Control 23 -42 -1.82609 15.05929

20 -29 -1.45 4.681579
treatment

ANOVA
Source o f
Variation

SS df MS F P-value F c rit

Between 1.513094 1 1.513094 0.147617 0.702808 4.078544
Groups
Within 420.2543 41 10.25011
Groups

Total 421.7674 42
Table 5.4 Statistical analysis for the st metric

The results above show an F statistic value of 0.147617 with an associated
probability of 0.702808 (70.28%). This indicates that there is no significant
difference between the groups in the s t metric.

These figures show that the average improvement in s t for the control group is
-1.826 and for the treatment group is -1.45. The statistical analysis above indicates
that there is no significant difference between these mean values. As is the case with
the s i metric, the figure for an expert programmer would be expected to be +3.
However both these groups do not achieve this figure indicating that the subject
group are not yet experts. The difference between the variances of the two groups is
also not significant.

The results for the metrics s i and s t are as expected. The treatment gave simple
feedback indicating the correctness of the program. These metrics measure how the
novice split the program into development stages. This was not expected to be
altered by the feedback and indeed it was not.

Chapter 5. 101.

Quality and Novice Programmers.

5.3.4 Relative Total Performance Index (r t p i)
The final metric in the set that measures the PSDP is the relative total process index
(r t p i) . Figure 5.5 shows the raw data from the experiment.

C o m p a r is o n o f r tp i B e tw e e n G ro u p s

♦ Control
□ Treatment

Figure 5.7 rtpi comparison o f the control and treatment groups.

The data shown above shows that the clustering of the treatment values was "higher"
than that for the control group. There is also some visual evidence that there was a
greater spread in the treatment group rather than the control group. A statistical
analysis o f the data is shown in table 5.6 below.

Chapter 5. 102.

Quality and Novice Programmers.

Relative Total Performance Index (rtpi)
SUMMARY

G ro u p s C o u n t Sum A v e ra g e V ariance
Control
Treatment

22
21

-4.68181 -0.21281
0.70545 0.033593

0.042423
0.07734

ANOVA
S o u rce o f
V aria tion

SS d f M S F P -va lu e F c r it

Between
Groups

0.652324 1 0.652324 10.97157 0.001939 4.078544
Within
Groups

2.437688 41 0.059456

Total 3.090011 42
Table 5.5 rtpi comparison o f the control and treatment groups

The results above show an F statistic value of 10.97157 which when compared to the
F value of 4.078544 indicates that this is a significant result. There is a significant
difference between the treatment group and the control group in the improvement in

the r t p i metric.

The table above shows that there is a significant difference in mean between the two
groups of subjects showing that the treatment made a significant improvement to the
process metrics for the treatment group of students. This result mirrors the result for
the r r p i metric confirming that the treatment has improved the PSDP employed by
the subjects.

Chapter 5. 103.

Quality and Novice Programmers.

5.4 Conclusion.

The experiment reported above has tested the hypothesis that providing feedback
during the PSDP can have a positive impact on the students’ learning. The five
metrics developed in chapter 3 were used to measure the differences in the PSDP of
the students taking part in the experiment. The students were split into a control
group and a treatment group. The experiment was designed so that the only
difference between the two groups was the feedback given to the treatment group.
The feedback given to the treatment group of students involved automatically testing
the program and reporting the program correctness. Data was collected for the two
groups of students and analysed. The results from the experiment are summarised
below:
• The treatment gave the students feedback on the correctness of their program and

as such it was not expected to influence the compiling performance metric (c p i) .
This indeed was the case; there was no significant change in the c p i figure
between the two groups of students.

• The treatment focussing on the correctness was intended to provide information
that the student could use to improve their program development. The relative

run performance index (r r p i) measures how many steps have made progress
and hence should have been affected by the treatment. This indeed was the case
with a highly significant change in the mean r r p i figure for the treatment group
over the control group. This indicates that the treatment had a beneficial effect on
the subjects.

• The metrics s i , steps in lines of code, or s t , steps in testing, were designed to
measure how many stages the student used to develop their program. This is not a

Chapter 5. 104.

Quality and Novice Programmers.

factor that should be affected by the treatment. The results show that there was no
significant change in either of these metrics between the control and treatment
groups.

• The final metric developed in chapter 3 measures the progress of each step over
the previous steps. This is the relative total progress index, r t p i . The results
show a highly significant improvement in this metric for the treatment group over
the control group.

The results show a consistency in that significant improvements were made to the
run performance metrics (r r p i and r t p i) but no significant change was made to

the compiling performance (c p i) or the stages in development metrics (s i or s t) .

The treatment does no more than report on the correctness of the program. Thus it is
reasonable to argue that the treatment merely provided the subjects with some insight
into the correctness of the program. However the results show that this treatment has
a significant effect on the PSDP used by the subjects. It has been argued that the
treatment did not give the subjects knowledge of how to develop their program, for
by the very nature of the feedback this is unrealistic. However it is concluded that the
treatment allowed the subjects to apply what knowledge they had concerning how to
develop programs. A fuller discussion of the implications of these results to the
understanding of the knowledge acquisition of novice programmers is given in
chapter 6.

Chapter 5. 105.

Quality and Novice Programmers.

5.5 Future Feedback Work.
5.5.1 Introduction.
The experiment reported in the previous sections has established that improvements
can be made to a novice's PSDP by giving automatic feedback during the
development of the program. The feedback given in these experiments was based on
the progress of the program towards correctness. This was chosen because it was
seen as relevant, accessible and simple to deliver. There is no claim that this
feedback is optimal in any sense. The next stage in the development of this research
is to investigate the potential for feedback in improving the PSDP for novices.

The feedback given in the previous section proved to be beneficial to novices. A
number of questions follow from this experiment:
• Is the improvement found due to the feedback related to the semantic content or

would any supportive feedback have a positive effect? This question addresses
the issue of whether there is a placebo effect in the feedback. This is a possibility
as the feedback given in section 5.4 was only be relevant to a subset o f the
subjects within the experiment. Novices who did not obtaine an error free
compilation were not helped from the feedback.

• Assuming that the semantic content of the feedback.is significant then the next
question to be addressed is : what is the optimal feedback for a given individual?
This question is difficult to answer and the investigation will look for feedback
giving a "better" rather than an "optimal" result.

• The feedback given in section 5.4 was given to all novices independent of their
classification and was not specifically targeted. The third question to be
addressed here is whether feedback targeted at an individual is necessary or are

Chapter 5. 106.

Quality and Novice Programmers.

the individuals able to select their feedback from a range given.
This selection proposes experiments that will explore these issues.

The experiment reported in section 5.4 found a significant improvement in the
process metrics when novices were given feedback relating to the completeness of
their program. This feedback produced a distinct improvement in the process metrics.
Different feedback scenarios are considered in this section. The experiments
proposed here are designed to look for an improvement in the process metrics as
least as large as the effect found in section 5.4.

The completeness feedback of section 5.4 could only help novices who achieved a
clean compilation of the program. It allowed these novices to measure where they
were on the development path by displaying the correctness of a program in terms of
a percentage finished figure. The feedback did not help those novices who had
difficulty in compiling a program nor helped a novice improve their PSDP by
suggesting a next stage in the development. The proposed experiments discussed
here will examine the issue of targeted feedback to investigate whether specific
feedback can achieve a better improvement in a novice's PSDP that the simpler
correctness feedback employed in the previously reported experiments.

5.5.2 Experimental Overview.
The first effect to investigate is to what extent it is the feedback content rather than
it's existence that has a positive effect on the novice's PSDP. Computer systems can
be characterised as giving no response if an action was successful and a usually long

Chapter 5. 107.

Quality and Novice Programmers.

and complex error message if the computer encountered a problem. The action of
providing some positive feedback may have a positive effect on the novice thus
improving the PSDP i.e. is there a placebo effect generated by the feedback
mechanism itself rather than the feedback content? It is this effect that will be
investigated first. Whilst it is expected that the "null" feedback will have some effect
on the novice programmer it is not expected that this feedback has such a positive
effect at the "correctness" feedback reported earlier. If this is so then there is a need
to consider targeted feedback in order to seek to maximise thePSDP improvement.

There are three categories of novice identified earlier in this thesis, labelled B, C, and
D, classified by their behaviour during the development o f a program from their
PSDP. The important features that determine this classification is their skill in using
the programming language and skill in problem solving. It seems reasonable that the
feedback requirement for a novice in one category of novice are different to that
required in another category. Novices in category D have difficulty in compiling
programs and feedback tuned to this requirement may have a greater effect than the
"correctness" feedback. Novices in category C are able to compile code but have
difficulty in devising a solution strategy for the given problem so guidance in the
next step in the program development is indicated. Category B novices require fine-
tuning to their problem solving skills to bring them up to expert levels. An extensive
set of experiments is required to test the effectiveness of each*feedback mechanism
on each novice category and to show the effectiveness or otherwise o f the feedback
across the range of novices. The issues involved in such experiments are discussed in
section 5.5.5.

Chapter 5. 108.

Quality and Novice Programmers.

Providing feedback in the form discussed above, feedback tailored to an individual
novice’s need is difficult to deliver since it is necessary to identify the category to
which the novice belongs prior to the delivery of feedback. A simpler would be to
offer all three forms of feedback to all novices and let the individual choose which
feedback they use. Moreover the improvement looked for in these novices is an
improvement greater than that found with the “correctness” feedback for any lesser
effect would mean this treatment being superseded by the “correctness" treatment.

5.5.3. Experimental Environment.
The experiments outlined above are designed to investigate the effect of a treatment.
To do so it is necessary to analyse the differences between treatment groups and a
control group, as was carried out in section 5.4. For this comparison to be valid it
must be reasonable to argue that there is no in built bias in the experiment and that
the control and treatment groups are comparable. Additionally it is important to
address ethical issues of experiments involving people.

The experimental method of section 5.4 used one cohort of students as a control
group and a second cohort of students as the treatment group. The disadvantage of
such a method is that it will take two years to carry out any experiment and if three
alternative treatments were being investigated then this would take four years to
complete. Although it can reasonably be argued that two consecutive cohorts of
students are comparable, there may be many changes (change in entrance
qualifications, course structure, lecturer etc.) outwith the control of the experimenter
that can occur over four years. Hence the methods used in section 5.4 cannot
practically be used to discriminate amongst several treatments.

Chapter 5. 109.

Quality and Novice Programmers.

The advantages of using multiple cohorts are that the educational experience for each
student in the cohort would be the same. The aim of education is to do the best for
each student. Using student experience for experimental purposes could compromise
this. However if each cohort were given an identical treatment and the
experimentation was designed to improve their experience then experimentation with
student subjects would not compromise their education. This was the argument used
in the earlier experiments reported in this chapter. It is possible to compare two
treatments using these methods but a quicker result could be obtained using a single
cohort split between control and treatment groups. However there are potential
dangers in this approach in that the control group could be given a lesser educational
experience than the treatment group, or if the treatment proved disastrous, the
treatment group could argue that they were disadvantaged. Hence any testing of
novices from a single cohort cannot be carried out as part of their normal educational
experience though could be carried out in addition to the normal classroom activity.

The feedback experiments, section 5.4, permitted the students to develop programs in
their own time. This can only be allowed if a single cohort is given a single treatment
since there is a possibility o f interaction between the groups. If a single group of
novices were to be used for an experiment that is in addition to their classroom
activity then, to control interaction between the novices, the experiments must be
undertaken in a controlled environment. The controlled environment gives an
unnatural environment in which to develop a computer program and this strangeness
may itself affect the PSDP. It is concluded that this is the only way to carry out these
experiments in a valid way and so to cater for this problem of unfamiliarity with the
artificial controlled environment some prior experience. It is argued that the

Chapter 5. 110.

Quality and Novice Programmers.

unfamiliar surroundings are the same for the control and treatment groups and will
not affect the analysis of the experimental data.

Finally there is the issue of number of novices required for the experimentation.

Results
indicate

Treatment actual effect
No Effect Effective

No Effect OK Type 1 error
Effective Type 2 error OK

Table 5.6 Possibilities from an experiment analysed by statistics.

Table 5.6 summarises the possible outcomes of any experiment that investigates the
effect of a treatment and analysed by statistics. There are two types of error that must
be considered in the design of such experiments. Type one errors are when there is
actually an effect but the experiment was not powerful enough to measure this effect.
Type two errors are when an effect was concluded but there was not an actual effect.
In the experimental design there must be a balance between these two error types as
they are related; reducing the probability of concluding that there was an effect when
there was no effect makes the experiment less powerful and increases the probability
of detecting a real effect. In the proposed experiments the type two error will be
taken to be 5%, the normal figure used in educational research. The power o f an
experiment is defined as the minimum treatment effect that can be detected by the
experiment. This is affected by the mean and standard deviation of the data and the
size of the sample. The experiment reported in section 5.4 showed an improvement
in the c p i metric of 0.04 and, by assuming similar mean and standard deviation
values, the calculated minimum number of subjects in each group is twelve. (A
similar figure is achieved by analysing the effect on the other metrics).

Chapter 5. 111.

Quality and Novice Programmers.

c * m = sqrt(var / n)
where

c is the critical significance value at 5 %
m is the smallest treatment effect that can be detected,
v variance of the sample

_____n number of subjects in the sample______________________________________
Table 5.7 Calculation o f minimum sample size

Taking all these issues into account the following points will need to be incorporated
in the design of the experiments:
• Each experiment will be undertaken within a single cohort, of students to ensure

homogeneous control and treatment groups.
• Novices will be allocated to treatment and control groups randomly.
• Experiments will take place in a controlled environment
• Experiments will be extra to normal course of study for these students.
• At least 12 students will be allocated to each group to ensure that the statistical

tests used are as powerful as that used in the previous work.

5.5.4 Potential Feedback.
This section will discuss the nature of the feedback to be tested in these proposed
experiments. The aim is for the feedback to be targeted at the particular needs of the
class of novice. There are three categories of novice identified in earlier work in this
thesis (labelled novice category B, C, and D) and it seems sensible to target feedback
at each.
• Novice group D students are defined as those who have difficulty in getting a

working program and need help with the syntax and use of programming
languages.

• Novice group C students are defined as those that develop their programs using a
single stage. That is, they attempt to get the whole program working in one

Chapter 5. 112.

Quality and Novice Programmers.

increment. They are confident with compiling programs but lack expertise in
defining the stages in an incremental PSDP. These students need help in problem
solving.

• Novice group B students are defined as those that exhibit some skills in using an
incremental PSDP. They are able to develop programs incrementally but need
help to improve their problem solving skills.

Group D Feedback: Group D novices are characterised as these who have difficulty
in getting a working program. The feedback that these novices require is to help them
to compile their programs; considerations of strategic development are not to the
forefront in their minds. In an ideal situation the feedback given to these novices
would capture the intention of the novice. This is the idea behind the PROST project,
Johnson (1988). To achieve this intention and to provide tailored feedback is a major
research development. The feedback considered here, labelled feedback X, is much
less ambitious but more practical. The aim of this feedback is to focus the novice on
the immediate problem, provide better information regarding the error and remove
extraneous (subsequent errors) information. Only the first compilation error will be
presented to the novice to help them focus on the main issue. Additionally some
extra explanation and potential causes for the error will be given to the novice. Table
5.8 gives an example of the output when the first error is a missing semi-colon.
P r o g . p a s u n e x p e c t e d ; a t l i n e 85
E r r o r i n d i c a t e s t h a t t h e r e was a m i s s i n g s e m i - c o l o n .
I n P a s c a l t h e r e m u s t b e a s e m i - c o l o n b e t w e e n s t a t e m e n t s .
T h i s e r r o r o f t e n i n d i c a t e s t h a t t h e r e i s a s e m i - c o l o n m i s s i n g a t t h e
e n d o f l i n e 8 4 .
C h e c k c a r e f u l l y i n t h e l i n e s b e f o r e l i n e 85 f o r ; m i s s i n g f r o m t h e
e n d o f t h e l i n e . __
Table 5.8 Example feedback given to group D novice.

Chapter 5. 113.

Quality and Novice Programmers.

The feedback will be accomplished by enhancing the command used by the novice to
compile and run their program, the pc command. In addition to the source code
being the output will also be intercepted and processed to give more "friendly"
feedback.

Group C Feedback: Group C novices are able to get a program working but they
do not follow the incremental development model. Typically they attempt to build
the whole program in one stage. These novices need help in problem solving and in
particular in defining the incremental nature of the development. To help these
students acquire this technique a preferred incremental development is defined and
imposed on the novice. The program development is defined by a series of stages for
the PSDP with.each stage consisting of one or more tests to be passed. Novices are
required to develop their program in the prescribed order of the stages. The aim of
the feedback is to help the novice keep to the sequential order of the stages. The
proposed feedback to be tested on these novices, labelled feedback Y, delivers to the
novice a table indicating which tests they have passed and some hint as to which area
they should concentrate on next. An example of the feedback given to these novices
is outlined in table 5.9a. and 5.9b.
S t a g e s C o m p l e t e
S t a g e 1 T e s t 1 : P r o g r a m c o m p i l e s
S t a g e 2 T e s t 1 : Ope ns d a t a b a s e f o r r e a d i n g OK
S t a g e 2 T e s t 2 : I n p u t o f s a l e s d a t a c o m p l e t e

I n c o m p l e t e S t a g e s
S t a g e 3 : P r o c e s s i n g o f t r a n s a c t i o n s
S t a g e 3 T e s t 1 OK : r e a d t r a n s a c t i o n
S t a g e 3 T e s t 2 E r r o r : p r o c e s s f i r s t t r a n s a c t i o n

You n e e d t o c o n c e n t r a t e o n :
S t a g e 3 t e s t 2 : p r o c e s s f i r s t t r a n s a c t i o n
B e f o r e g o i n g o n t o t h e n e x t s t a g e o f d e v e l o p m e n t .
Table 5.9a Example feedback to novice group C -l

Chapter 5. 114.

Quality and Novice Programmers.

S t a g e s C o m p l e t e
S t a g e 1 T e s t 1 P r o g r a m c o m p i l e s
S t a g e 2 T e s t 1 Op en s d a t a b a s e f o r r e a d i n g OK
S t a g e 2 T e s t 2 I n p u t o f s a l e s d a t a c o m p l e t e
S t a g e 3 T e s t 1 Read t r a n s a c t i o n
S t a g e 3 T e s t 2 P r o c e s s f i r s t t r a n s a c t i o n
C o n g r a t u l a t i o n s y o u h a v e c o m p l e t e d a s t a g e i n t h e d e v e l o p m e n t .
You s h o u l d a d d t h e c o d e f o r t h e n e x t s t a g e i n t h e d e v e l o p m e n t .
The a i m o f t h e n e x t s t a g e i s :
S t a g e 4 : C a l c u l a t e a v e r a g e v a l u e s
S t a g e 4 T e s t 1 C a l c u l a t e a v e r a g e o r d e r v a l u e .
S t a g e 4 T e s t 2 C a l c u l a t e a v e r a g e o r d e r s p e r d a y .
Table 5.9b Example feedback to novice group C - 2

This feedback can be delivered to a novice by automatically testing the program, in
the same way as carried out in previous experiments, and building into the “system”
knowledge o f the expected order of steps and stages in the incremental model. The
feedback can be generated from the current state of the program and does not depend
on any previous state within the development.

Group B Feedback: Group B novices are able to get programs to compile and
undertake some form of incremental development. The feedback targeted at these
students, labelled feedback Z, is aimed at improving their insight into the incremental
development technique. Instead of forcing a specific incremental value the novices
are given support in their choice of incremental development. The textual feedback
given to these novices will be similar to that given to group C novices in that it
informs the novice of the tests passed within each stage. Additionally a diagram is
presented which tracks the progress through the stages in the development of the
program. It indicates the stages completed, stages attempted and stages not yet
started. The feedback for these novices will be based partially on historical data.
Stages or tests that have previously been passed and are currently not passed are
noted as incomplete stages. This information helps the novice visualise the

Chapter 5. 115.

Quality and Novice Programmers.

sequencing of the PSDP and assist in cultivating their judgement.

8

Figure 5.8 Diagrammatic output given to novice group B.

S t a g e s C o m p l e t e :
S t a g e 1 T e s t 1 : P r o g r a m c o m p i l e s
S t a g e 2 T e s t 1 : O p en s d a t a b a s e f o r r e a d i n g OK
S t a g e 2 T e s t 2 : I n p u t o f s a l e s d a t a c o m p l e t e
S t a g e 3 T e s t 1 : Re a d t r a n s a c t i o n
S t a g e 3 T e s t 2 : P r o c e s s f i r s t t r a n s a c t i o n
I n c o m p l e t e S t a g e s
S t a g e 5 : C a l c u l a t i o n o f T o t a l s
S t a g e 5 T e s t 1 OK : O r d e r t o t a l
S t a g e 5 T e s t 2 E r r o r : VAT t o t a l
S t a g e 5 T e s t 3 E r r o r : C a r r i a g e T o t a l
You n e e d t o c o n c e n t r a t e on:
S t a g e 5 T e s t 2 E r r o r : VAT t o t a l
S t a g e 5 T e s t 3 E r r o r : C a r r i a g e T o t a l
B e f o r e g o i n g o n t o t h e n e x t s t a g e o f d e v e l o p m e n t .
Table 5.10 Example feedback to novice group B

This feedback needs historical data in order to detect where the novice previously
passed a test and currently has not passed a test. This can be achieved by storing the
tests passed in a log file that is appended to after each attempt at running the
program. Access to this file can be obtained using the same mechanism as used in the
previous experiments namely through a pre-written procedure.

5.5.5. Potential Experiments.
Three experiments are described here. The first attempts to see if there is a placebo
effect due to feedback. The second looks at the effect of feedback tailored to the

Chapter 5. 116.

Quality and Novice Programmers.

individual student, and the third looks at the effect of applying all the feedback to all
students.

Is there a placebo effect? The hypothesis to be tested here is whether the presence
of any feedback in itself has a positive effect on the students unconnected to any
significant semantic content. To investigate this a group of 24 students is needed split
randomly between a control and a treatment group. Under controlled conditions each
novice is asked to develop a program and at each stage the program is captured in the
same way as reported earlier in this thesis. The treatment group is given feedback but
this is not related to the state of their development. This feedback will be chosen
from a bank of possibilities designed to offer a positive, encouraging and supportive
atmosphere though unconnected with performance.
1. Informing the student that they are being paid for the experiment
2. Wishing the student good luck
3. Inform the student the time
4. Inform the student the time left during the experiment

After the experiment the process metrics are calculated from the data captured during
the development. A comparison of metrics between the treatment and control groups
can be carried out using two way analysis of variance according to Coolican (1999).

It is expected that there will be no significant effect on any of the metrics. Although
it is possible that there is a small placebo effect it is expected to be less than the
effect of the correctness feedback of section 5.4 and the experiment is not sensitive
enough to pick up such small effects.

Chapter 5. 117.

Quality and Novice Programmers.

Tailored feedback. There are three types of feedback under investigation. For a full
analysis giving the clearest possible view of the effects of the feedback, each type of
feedback should to be tested on each category of novice and not just on the target
category. The expected effects of the different feedback types are tabulated in table
5.11. By carrying out this experiment a great deal will be found out about the effect
of feedback that may enhance our understanding of expertise in computer
programming, see chapter 6. There are however a number of problems with this
experimental design, from a practical point of view.

Control Group B Novices C Novices D Novices
Feedback X required none none improvement
Feedback Y required possible

improvement
improvement none

Feedback Z required improvement possible
improvement

none
Table 5.11 Showing the expected effect o f the feedback on the groupings on novice.

As indicated in section 5.5.3, twelve novices are needed in a group to gain
sufficiently sensitive data to detect a change due to the feedback of the same order to
that detected in previous experiments. Hence for a full analysis of the effects of the
three types of feedback there must be forty eight novices of each category and so one
hundred and forty four novices in total.

The experiment as described above requires that the experimenter will know the
category o f novice prior to starting the experiment. This implies that some form of
pre-test is required that will determine the category of a novice. This pre-test has
advantages as it can be used to train the novices in the particular development
environment to be used in the experiment bearing in mind that the experiment will

Chapter 5. 118.

Quality and Novice Programmers.

take place in a controlled environment. The output from the pre-test is that the
experimenter must be able to identify forty eight novices within each category. From
previous experience there are fewer students in category C, around 20% of all
students. In order to ensure that there are forty eight students in category C then two
hundred and forty students need to be invited for the pre-test. Even if the pre-test
were not used the same number of students would be needed for the full experiment.

Two hundred and forty novices invited to a pre-test and one hundred and forty four
asked to participate in the full experiment is a large investment in time and resources,
a much larger scale experiment than used in the previous work. To justify such an
experiment it is necessary to ensure that the results expected to come from the
experiment are sufficiently worthwhile. In this case a large number of treatments are
given to inappropriate novices, see table 5.11, for completeness, in the expectation
that the feedback will have no effect. The information collected would be useful in
building our knowledge concerning expertise in computer programming but add
nothing to the practical task of improving the PSDP of novice programmers. A
smaller and more manageable experiment is to test each treatment on it's target
group. This would be more limited in the information the experiment would provide.
It would not be possible to conclude anything about the effect of a feedback
treatment on it's non target group. However an analysis of the main effects of the
treatment would be measurable and more importantly the number of novices required
is reduced to seventy two, from a pre-test population of one hundred and twenty
subjects.

To embark on either of these experiments involves a large investment in resources.

Chapter 5. 119.

Quality and Novice Programmers.

On balance, the benefits of measuring the improvement due to the specific feedback
on its target category of novice, do not seem likely to be sufficient to outweigh the
costs of the experiments. Thus no experiments are recommended that will look at the
effect of each of these feedback methods on every category of novice. Rather this
should remain as potential experiments until such a time as the need or value of
conducting such a thorough test is established.

Non Specific Feedback: The experiment described above was looking at the effect
of specific feedback on it's target novice category in the expectation that targeted
feedback would be better in some way than non targeted feedback. However it is
easier to provide the same feedback to all novices irrespective of their classification
of novice. The experiment described here is of a smaller scale than above. The
experiment investigates the effectiveness of providing all types of feedback, X, Y
and Z to all novices. It is expected that the results from this experiment will have an
effect at least as big as the effect found in section 5.4 as this was the approach used
there and the feedback is similar but more extensive nature.

The hypothesis to be tested here is whether novices can improve by picking the
appropriate feedback from amongst that given to them. This is investigated using a
similar experimental design to that used to investigate the placebo effect. The
experiment requires a minimum of twenty four novices, although using more novices
would make the experiment more powerful. The single group of students will be split
equally between control and treatment groups. Under controlled conditions each
group will be asked to develop a computer program. During the development of the
program the novices in the treatment group will be offered feedback. All three types

Chapter 5. 120.

Quality and Novice Programmers.

of feedback will be available to each novice in the treatment group. On completion of
the experiment process metrics will be calculated and the effectiveness of the
treatment measures.

After the experiment it is intended to request that the novices fill out a questionnaire.
The purpose of the questionnaire is to determine the novices views as to the
usefulness of the feedback. Taking the post experiment questionnaire with the
experimental results some pointers as to how the feedback can be tuned will be
gained. It is at this stage when it may be necessary to revisit the previously described
experiment to determine the effect of different feedback features on different
categories of novice.

5.5.6 Summary of proposed experiments
• Each of the proposed experiments is to be undertaken within a single cohort of

students, in a controlled environment.
• At least twelve students are needed within each treatment or control group to

detect an effect that is a least as marked as that found in the experimental work of
this chapter.

• The first experiment will investigate the placebo effect of giving feedback and
will be used as a prototype for the experiment proposed later.

• An experiment to investigate the effect of targeted feedback on the target novice
category is of a larger scale than has been used so far in this research.

• A second experiment will examine the effect of offering all three types o f
feedback to the novices as a whole. Whilst it is expected that providing non
specific feedback is not as good as providing specific feedback it is practically

Chapter 5. 121.

Quality and Novice Programmers.

easier to deliver and more feasible to test and, the difference in effect may be
slight.

5.6 Summary.
This chapter has discussed an experiment that has show the positive effect feedback
has had on a group of students. The chapter has then discussed potential experiments
that are able to examine the effect of different feedback mechanisms. The main
points of this chapter are:
• An experiment was completed that gave feedback in the form of correctness to

novice programmers.
• Analysis of the results showed that the PSDP improved in terms of the r r p i and

r t p i metrics.
• The feedback did not improve the c p i metric as expected.
• A future experiment is described that is designed to show the effect of three

further types of feedback aimed at improving the PSDP employed by novices.

Chapter 5. 122.

Quality and Novice Programmers.

6 . T h e P r o c e s s - P r o d u c t R e la t io n s h ip .

6.1 Introduction.

The basis of all work on quality is the principle that improvements to the process
lead to a better product. The goal for any engineering discipline is to build a product
that meets various quality thresholds. In many engineering disciplines this is
achieved by carefully controlling the processes and procedures used in the
development of the product. This is indeed the basic premise behind the software
engineering movement. In order to improve the quality of computer software,
procedures were put into place that sought to improve the software development
process and thus the quality of the final product. However this premise that a quality
process inevitably leads to a quality product is often stated but not widely tested. The
main reason that the premise has not been tested is that there has been a lack of
reliable metrics that measure the quality of the software development process. This
research has investigated the way novice programmers develop programs and has
established a set of PSDP metrics for novices. Hence in this restricted area, that of
novice programmers, there is the opportunity to test the hypothesis that a quality
process leads to a quality product.

In the course of this research, the three elements are available to allow the correlation
between the product and process to be investigated. Data has been collected from
novice programmers during their development of the code. A set of metrics has been
established that measures the quality of this development process. In reported work

Chapter 6. 123.

Quality and Novice Programmers.

such as Ceilidh (Benford et.al. 1993a) an established method of objectively
measuring the quality of a novice computer program is available.. Hence the
relationship between the process and product metrics for novice programmers can be
investigated. This investigation has two phases. The initial phase is to draw scatter
plots to visualise the relationship between the process and product metrics. A more
objective view of the relationship between the process and product metrics is gained
by calculating the correlation coefficients between them. The hypothesis being tested
in this chapter is that a quality process leads to a quality product for the development
of computer programs by novice programmers. This hypothesis is the application of
the quality principle to novice computer programmers.

6.2 Product Metrics.

Much work has been carried out in producing workable criteria and metrics that are
used in the automatic calculation of quality of a novice program, see section 2.2. The
method and criteria used in this research is based on that used in the Ceilidh system
(Benford et.al. 1993). This popular system is used in a number of Universities in the
UK for the automatic the marking of student programs. Human marking of computer
programs is subjective in nature and Ceilidh has introduced objective metrics as a
proxy for these subjective features.

Table 6.1 below gives the five criteria, taken from the Ceilidh project, used as the
basis of the measurement of a novice program.

Chapter 6. 124.

Quality and Novice Programmers.

Area Symbol Name Description
Static Quality p l Program Layout Measure of how well a

program is presented on
the page

pd Program Design Measure of how well the
code is written

c Complexity Measure of the program
complexity

Dynamic Quality sp Specification Proportion Proportion of the
specification that has been
satisfied

e Efficiency Efficiency of the program
Table 6.1 Criteria used to measure novice programs.

6.2.1 Program Layout.
The factors used to measure the style or layout of a program were taken from
previous work of Rees (1982), and Meekings (1983) and incorporated into Ceilidh.
The factors used in this research are given in table 6.2 below.

Program Layout
Symbol Name Notes
1 in d e n t Proportion of indented

lines
A An indented line is one

which is indented from the
previous code line

1 b la n k Proportion of blank lines A A blank line is one with no
code nor comments

1 comm Proportion of comment
lines

A A comment line is one where
is no code.

1 ch r Average number of
characters per line

A Only counted within code
lines.

1 sp c Average number of spaces
per line

A Only counts spaces within
code lines.

1 id le n Average length of
identifiers

A Reserved words and special
symbols are ignored in this
calculation

1 p id Proportion of identifiers
with good length

A Good length is defined as
between 6 and 8 characters.

Table 6.2 Factors making up the program layout component of a novice program metric.

Note that in table 6.2 above and 6.3 later the third column indicates whether the

Chapter 6. 125.

Quality and Novice Programmers.

factor is absolute (A) and can be compared to some global value or, relative (R)
where the value depends on the problem in question. The style factors shown above
are all absolute values and do not depend on the problem under construction.

These factors above are converted into marks using a trapezium function according
to the methods of Rees 1982 and described in figure 2.1 in section 2.2. The various
marks are then averaged to generate an overall mark for the program layout.

6.2.2 Program Design.
The program design criteria attempt to measure how the program was constructed,
whether the programmer used established rules of good programming practice. These
factors must not be confused with program layout or style that is independently
assessed. The program design is perhaps the most subjective area to measure. The
objective factors used in Ceilidh are based on a series of counts put forward by Rees
1982. The design quality is measured by comparing the novice program with an
"expert" or "model" program. The factors used are counts of various features o f the
program. For example, a count is made of the number of procedures in the program.
The argument being that if this number matches the "expert" solution then this factor
in the novice program is well designed, if it veers away from the expert solution then
this factor of the design is of a lesser quality. Whilst many may question whether the
amalgamation of these factors measures the design quality in the way they expect,
the measurements are accessible and easy to calculate.

Chapter 6. 126.

Quality and Novice Programmers.

Program Design
Symbol Name Notes
d mod le n Average module length A Measure in terms of code

lines. A code line is any
line with executable
code on it.

d p mod Proportion of modules
with good length

A
d n f o r Number of fixed loops R Number of for loops
d n lo o p Number of variable

loops
R Includes while and

repeat loops
d n i f Number of if statements R
d n c a s e Number of case

statements
R

d n p r o c Number of procedures R
d n fu n c Number of functions R
d n id Number of identifiers R
Table 6.3 Factors making up the program design component of novice program quality.

The overall measure of program design quality is obtained using the trapezium
function to compare each factor to a "model" value. These individual values are then
averaged to obtain the overall metric.

6.2.3 Complexity.
The methods to measure program complexity have been discussed in section 2.2. The
measurement of complexity used here is McCabe's 1976 cyclomatic complexity. It is
clear from the literature that the validity of this and other complexity metrics is open
to question. It is not the purpose of this research to generate a new complexity
metric but to use established work. Ceilidh uses the same complexity measure.

The complexity metric for any program is related to the problem. In the experiments
undertaken here the problems do not involve difficult algorithm designs and hence
differences in complexity is not an important issue in defining the quality o f the final
program.

Chapter 6. 127.

Quality and Novice Programmers.

6.2.4 Specification Proportion.
The specification proportion measures the proportion of the specification that has
correctly been completed. It is a measure of the correctness of a program. The
specification proportion is based on a set of test data. A program is deemed to be
100% correct if it passes all the tests in the test data bank. The specification
proportion (sp) is calculated from those tests that are correctly executed out of the
complete set
sp = np / n t where

np = Number of tests completed satisfactorily
n t = Total number of tests in test data bank

6.2.5 Efficiency.
The efficiency of a program involves quality factors such as speed and space
required for a program. The programs considered during this research are very fast
to run and differences in speed are slight. Space requirements for all programs are
similar. In the modern climate with fast processors and cheap memory this factor is
less important decades ago when Rees carried out his original work. Ceilidh does
include this factor but it is given small weighting when the single mark is calculated.
For these reasons this criteria is not used in calculating the product metrics in this
research.

The table below gives a summary of the product metrics used in the research
reported here:

Chapter 6. 128.

Quality and Novice Programmers.

Name Symbol Definition
Program Layout P i Average of 7 factors
Program Design pd Average of 9 factors
Complexity c McCabe cyclomatic complexity
Specification Proportion sp sp = np / n t

where np = Number of tests completed
satisfactorily
n t = Total number of tests

Efficiency e Not Used Here
Table 6.4 summary of product metrics used on novice programs.

6.3 Process-Product Correlation.

The initial step in investigating the process - product correlation is to visualise the
data. To do this a single measurement of the program quality and a single
measurement of the PSDP are used. The single measurement of the program quality
is gained from the weighted average of the criteria discussed above.
p r o g r a m _ q u a lity = 0 .2 5 * p l + 0 .2 5 * p d + 0 .2 * c + 0 .3 * s p

where
p i - program layout
pd - program design
c - complexity
sp - specification proportion

This method of weighting the various aspects of the program quality mark is widely
used in automatic marking schemes, for example Ceilidh (Benford et. al. 1993). The
relative values of the weights can be used to bias the marking to a specific aspect of
quality that the assessment is addressing. In this experiment an overall program
quality mark is required and hence the near equal weighting to each attribute is
given. Complexity is not an issue with the programs under investigation here and is

Chapter 6. 129.

Quality and Novice Programmers.

weighted less than the average, correctness is an issue and is weighted more than the
average. A sensitivity analysis of the weights showed that the program quality mark
is not sensitive to small (less than 0.2) changes in the weights.

The single measure of the process metric is that discussed in section 4.7 being
derived from the weighted average of the individual process metrics.
process_quality =

0.25*cpi + 0.25*rrpi + 0.125*sl' + 0.125*st' + 0.25*rtpi
where
c p i - compile progress index
r r p i - relative run performance index
s i ' - amended stages in lines of code
s t ' - amended stages in testing
r t p i - relative total progress index

The values s i ' and s t ' are calculated from s i and s t respectively. The value of
s t for a novice is compared to that of an expert and the amended s t ' value
generated using a trapezium function as described in section 4.7.

These values are calculated for all the subjects used in this research and a scatter plot
drawn of process quality measurement against product quality measurement, shown
in figure 6.1.

Chapter 6. 130.

Quality and Novice Programmers.

Comparision of Process Metrics Against Product
Metrics

1

^ 0.8
L.
032 0.6 </>(A
8 0.4 o
£ 0.2

0
0 0.2 0.4 0.6 0.8 1 1.2

Product Mark

♦ ♦ ♦ ♦
♦ ♦

♦ %—♦ + ♦
♦ A ♦ ♦ ♦ n ♦ 4\ 1

♦ ♦ ♦ ♦ . * . v ► i|-------------1

Figure 6.1 Scatter plot o f process and product metrics.

The data in the scatter plot above is spread over a wide area of the plot indicating that
the correlation between process and product is not very strong. However the points
do appear to follow a (weak) trend from bottom left to top right. This indicates that
there is some correlation between the values.

Correlation Combined Process Metric
Combined Product Metric 0.623
Combined Product Metric
without correctness

0.044
Table 6.5 Combined process and product correlation.

The process / product corelations are calculated and shown in table 6.5 above. It
shows a correlation coefficient of 0.623 between the process mark and the product
mark. As there are forty subjects a correlation figure above 0.267 would indicate a
significant relationship between the factors. The correlation figure between product
and process mark is well above this figure indicating a strong relationship between
the two factors.

Chapter 6. 131.

Quality and Novice Programmers.

However this analysis is naive. The correctness (sp) is a component in the product
mark and also used in the definition of three of the five process factors. Thus a
correlation would be expected. If the correctness is taken out as a component of the
product mark then the correlation values is re-calculated as 0.044 which is a low
correlation indicating no correlation between the process and product metrics.

The next stage in the analysis is to look at the individual factors. There is a problem
with the independence of some of the factors. In particular the definition of relative
run performance index (rrpi) includes the specification proportion (sp) (rrpi

= rpi * sp). Similarly the relative total progress index (rtpi) also includes the
specification proportion in its definition (rtpi = tpi * sp). Hence in the search

for correlation both rrpi and rpi, rtpi and tpi have been included. The
correlation is calculated between each of the product and process factors. Table 6.6
below gives the correlation. Note again that with 40 subjects any correlation above
0.267 is significant at the 5% significance level.

P i pd c sp
Compiling process indicator c p i 0.092 -0.076 0.039 0.471
Relative run progress
indicator

r r p i -0.093 -0.060 -0.020 0.608
Run progress indicator r p i 0.270 -0.166 0.165 0.284
Stages in l.o.c s i -0.094 0.134 0.013 0.530
Stages in testing s t -0.067 0.117 0.028 0.629
Relative total progress
indicator

r t p i -0.073 0.018 0.082 0.886
Total progress indicator t p i -0.129 0.005 0.043 0.195
T ab le 6 .6 Process - product correlation, (bold figures indicate significant results)

Chapter 6. 132.

Quality and Novice Programmers.

These results show:
• the expected high correlation between the specification proportion (sp) and the

two process metrics, relative run progress index (r r p i) , and the relative total
progress index (r tp i) . This is because of the involvement of sp in the definition
of the metrics.

• a significant correlation between sp and the compiling performance index (c p i)
metric. This is interesting because these metrics are totally independent. The
novices that show greater knowledge of how to achieve a correctly compiled
program tend to achieve a more complete program. This is perhaps obvious when
stated in the opposite way; novices that have low skill in compiling programs
tend not to get correct programs at the end

• a significant correlation between sp and the stage metrics (s i and s t) . This
shows that novices that show evidence of a staged development tend to get a
more correct program than those who do not. This is an important result as it
shows, perhaps for the first time, that novice programmers who have some
strategy for solving the problem tend to get a better final result. This is intuitive
but the evidence has now been given to support this view.

• a significant correlation between the run progress indicator and the specification
proportion. This shows a link between this aspect of the process and the
correctness of the final product. Those subjects that develop the program well
tend to get a more complete program. However this relationship is not strong
only just significant 0.286 as against a critical value of 0.267.

• There is no significant correlation between the total progress indicator and the
specification proportion. This is a contrary result than that found above.

• there is only one correlation between any of the process metrics and the product

Chapter 6. 133.

Quality and Novice Programmers.

style (r p i and p i). This single correlation is marginal and may well be down
to chance. The lack of correlation between the process and product metrics
confirms the results of Parrish et.al. (1997). They used numbers of compiles and
time taken as their process metrics and assessor based mark as their product
metric. They also failed to find any correlation between their process and product
metrics.

6.4 Intra Process Correlation.

The previous section examined the correlation between the process metrics and the
product metrics. The experimental data also gives the opportunity to look at the
relationship between the process metrics. Table 6.7 below gives the correlation
between the individual process metrics. Again as there are 40 subjects under
investigation any correlation above 0.267 is regarded as significant at the 5% level.

c p i r r p i s i s t r t p i
Compiling process indicator c p i 1.0 0.278 0.280 0.376 0.468
Relative run progress indicator r r p i 1.0 0.161 0.233 0.861
Stages in l.o.c s i 1.0 0.972 0.468
Stages in testing s t 1.0 0.555
Relative total progress
indicator

r t p i 1.0
Table 6.7 Process metric correlation.

The process metrics measure three different aspects of the PSDP.
• c p i measures the compiling aspect
• r r p i measures the "getting a program to run" aspect

Chapter 6. 134.

Quality and Novice Programmers.

• s i and s t measure the planning aspect.
The metric r t p i combines the first and second aspect in some "combined" metric.
The table of results show:
• a significant correlation between c p i and the other metrics. One possible

explanation of this is that those novices who have a good command of the
compiling aspect of the programming development process tend to have a greater
understanding of the other aspects of program development. Another way to look
at this is that novices who have difficulty with the compiler need to concentrate
on the compiler and language aspects of program development to the detriment
of the other aspects of program development.

• a non significant relationship between the relative run performance indicator,
r r p i , and the stages metrics (s i and s t) . An interpretation of this is these
metrics measure different skills which are independent.

• a positive and significant correlation between s i and s t against r t p i . This
shows that those students who strategically manage their program development
are also those who make the most progress at each step in the development.
Those novices who do not plan the development well also find the intra-stage
development difficult.

There are also a number of false correlations caused by the mutually dependent
definitions of the metrics. (s t and s i ; r r p i and r t p i ; c p i and r t p i)

These results show that mastery of the programming language, as measured by c p i ,
is a key skill needed prior to learning any sophisticated problem solving skills. If
novice is not familiar with the programming language then they are not able to

Chapter 6. 135.

Quality and Novice Programmers.

develop programs in that language. However for those novices who have skill in the
syntax of the programming language there are two independent problem solving
skills to be learnt. The first is the ability to split the problem into easily manageable
stages. The second is to be able to develop efficiently each of these stages. The
acquisition of knowledge of these two aspects of programming appears to be
independent.

These results provide some data that can be interpreted in terms of the knowledge
needed to become an expert programmer. This will be further discussed in chapter 6.

6.5 Conclusions.
Three important results have been established in this chapter:
• A positive correlation has been shown between process metrics and the final

product correctness.
• No correlation has been shown between the program style, design and

complexity and the process metrics.
• The ability to manage the program language (as measured by c p i) appears to be

key to the development of a program.

The positive correlation between the set of process metrics and the final product
correctness confirms the hypothesis that a quality process leads to correct product.
Previously the relationship between process and correctness has been assumed and
yet this is the principle upon which software engineering is based. The results given
here give one of the few confirmations of this relationship, albeit in relation to novice

Chapter 6. 136.

Quality and Novice Programmers.

programmers.

No relationship between other aspects of program quality and the quality of the
process has been established. This result mirrors other results in this area. There is
now a body of evidence building up to suggest that no relationship exists. This leads
to the conclusion that novices must acquire skills in PSDP management as well
writing program design. These two aspects of programmer knowledge are built up
independently and must be addressed separately within programming courses.

The correlations between the different aspects of the programming process as
measured by the metrics used in this research again show that there are a number of
skills that are called upon when developing a computer program.

These conclusions, and especially the last two conclusions, provide information that
can be interpreted in terms the knowledge needed to become an expert programmer.
This will be further considered in the next chapter.

Chapter 6. 137.

Quality and Novice Programmers.

7 . L e a r n in g t o P r o g r a m .

7.1 Introduction.

The overall purpose of this research was to investigate the role of the programming
process within the context of novice programmers. This, it was hoped, would provide
an insight that could be used to improve the quality of the work produced by novice
programmers and hence improve the learning of novice programmers

The previous two chapters have produced three key results namely:
• Simple feedback can have a significant effect on the quality of the PSDP

employed by novice programmers.
• A positive correlation has been shown between process metrics and the final

product correctness indicating for the first time the often stated belief that how
well a novice develops a program affects the final correctness.

• No correlation has been shown between the program style, design and
complexity and the process metrics indicating the independence of these skills.

In this chapter a unified framework of programming expertise is proposed. This
proposal is based on previous reported work in the literature and justified in the
context of the findings above. It is proposed that this framework is used within the
context of building a computer aided learning package; the characteristics of the
novice can be assessed related to the model and then used to plan the next stage in
the learning for that particular novice.

Chapter 7. 138.

Quality and Novice Programmers.

7.2 A Unified Framework of Programming Expertise.

A model of programming expertise has been developed over the past 25 years
starting with the work of Schneiderman (1976) and Schneiderman & Mayer (1979).
They proposed a two level model separating syntactic and semantic knowledge.
Syntactic knowledge is the knowledge about the language statements and how to
combine these. Semantic knowledge relates to the understanding of how the program
statements are executed within the computer. Later work by Solway & Erlict (1984),
Gilmore & Green (1988) and Rist (1989) developed the idea that there was a third
dimension to expertise in programming, the ability to recognise and use blocks of
code to solve a “sub problem”. These were called programming plans and used as the
basis of CAL packages such as bridge (Bonar & Cunningham 1988) and Proust
(Johnston 1988).

Mayer (1997),added a fourth layer to the view of expertise, by proposing a strategic
element to programming. He realising that programming is problem solving and
encapsulated the ideas of general problem solving into a new framework of
programming expertise. This is shown in table 7.1.

Mayer 1997
syntactic Language units and rules for combining language units
semantic Mental models of the major locations, objects, and actions in the

systems
schematic Categories of routines based on function
strategic Techniques for devising and monitoring plans
T a b le 7.1 M ayer (199 7) Program m ing K now ledge Framework Summary

Anderson (1983) put forward a view, widely accepted in psychology, that knowledge
can be categorised into declarative knowledge (knowledge about something) and

Chapter 7. 139.

Quality and Novice Programmers.

procedural knowledge (ability to use this knowledge). Davis (1991) who related this
to schematic knowledge (programming plans) took up these two stages o f knowledge
acquisition. Davis showed that novices moved to some intermediate level by
acquiring more programming plans and then onto becoming experts by learning how
to use the programming plans. He established a two layer model with reference to
schematic knowledge acquisition.

McGill & Volet (1997) built the idea of two levels of understanding into their
framework of programming knowledge seen in table 7.2. Surprisingly they did not
split their final category (strategic / conceptual) when Davis (1991) had earlier
established the two levels in this category.

McGill & Volet 1997 Declarative Procedural
Syntactic Knowledge of syntactic facts

related to a particular
language

Ability to apply rules of
syntax when programming

Conceptual Understanding of, and ability
to explain semantics of the
actions that take place as a
program executes

Ability to design solutions to
programming problems

Strategic/Conceptual The ability to design, code and test a program to solve a
novel problem.

T a b le 7 .2 M cG ill & V olet 1997 Program m ing K n ow ledge Fram ework Sum m ary

The experimental results collected as part of this research work has given an insight
into the behaviour of novice programmers. In particular it has shown the importance
of the programming process to the skill set of an expert programmer. This aspect of
programming knowledge is not fully explained by either of these two frameworks.
The Mayer (1997) framework addresses the idea that problem solving or
programming process skills are separate skills and are included in the fourth level in
his model. However he does not include the important distinction between

Chapter 7. 140.

Quality and Novice Programmers.

declarative and procedural knowledge in the model. McGill & Volet (1997) on the
other hand do include the declarative / procedural distinction but have given scant
regard to strategic knowledge. Indeed they do not consider a declarative / procedural
split for their third level, the strategic / conceptual level.

A unified framework is proposed based on the four level model of Mayer (1997).
This unified framework includes the declarative / procedural split at all levels as
would be consistent with the work of Anderson (1983). This leads to four categories
of programming knowledge each split into two, declarative and procedural. This
unified framework is the obvious application of Anderson's work to Mayer's
framework and was part used in the McGill & Volet model. The unified framework
is shown in table 7.3.

Knowledge Declarative
1

Procedural
2

Syntactic Knowledge of language rules Ability to apply language rules
A A1 A 2

Semantic Mental model of the actions that Ability to design solutions to
take place as a program executes programming problems

B B1 B 2
Schematic Recognise chunks of code or Ability to apply programming

programming plans used in plans to program solutions
program solutions

C C l C2
Strategic Knowledge of the personal Ability to use a personal software

software processes that are used to process that is used to solve
solve programming problems programming problems

D D1 D 2
T a b le 7.3 U nified Fram ework o f Programming Expertise

Whilst this framework has a theoretical simplicity it is necessary to justify the model
from experimental evidence. The discussion in the next section seeks to justify the
unified framework by taking evidence from the literature and from key experimental

Chapter 7. 141.

Quality and Novice Programmers.

results found in the course of this research.

7.3 Unified Framework of Programming Knowledge - Justification.

7.3.1 Syntactic Knowledge.
This category represents the knowledge of programming language syntax
(declarative syntactic knowledge) and the ability to apply this knowledge (procedural
syntactic knowledge). This is the knowledge introduced at the beginning of
introductory text books. These books tend to introduce a number of new syntactic
constructs to allow the novice to build up their declarative syntactic knowledge and
then ask questions that require the novice to apply this knowledge to build up their
procedural syntactic knowledge. Thus there is acknowledgement, albeit implicit by
authors, that the syntactic knowledge consists of these two components, declarative
and procedural syntactic knowledge.

7.3.2 Semantic Knowledge.
The semantic level is defined as the "m en ta l m o d e l o f the a c tio n s th a t take p la c e a s a

p ro g ra m executes" and the application of this mental model. Novices with a
superficial declarative level of knowledge may be able to read and understand
programs but a greater level of expertise is required in order to apply this knowledge.

Weidenbeck, Fix and Scholtz (1993) claimed that expert semantic knowledge was
“w e ll fo u n d e d in the reco g n itio n o f b a s ic p a tte r n s” and “w e ll co n n e c te d in te rn a lly”.

Chapter 7. 142.

Quality and Novice Programmers.

Through experimental work they showed that novices lacked the ability to recognise
basic patterns or could not connect the pattern to program text. These novices lacked
some element of semantic knowledge.

Other authors have sought to examine differences in understanding of programs
(semantic knowledge) by looking at the “debugging” skills of novices and experts,
(eg. Weindenbeck 1985, Schmidt 1986, Gugenty & Olsen 1986 and Jeffries 1987).
They explain the differences between novices and experts by the lack of a
sophisticated mental model of the program. Additionally the novices can not apply
the knowledge they have as well as experts. Weidenbeck (1985) conclude that
experts have automated their semantic debugging skills whereas novices find
difficulty in recognising the problem.

To conclude, the experimental evidence would suggest that the McGill & Volet
(1997) model of semantic (conceptual) in their work) knowledge that contains both
declarative and procedural elements is a valid interpretation of this aspect of
programming knowledge. This aspect has been directly included in the unified
framework of programming knowledge.

7.3.3 Schematic Knowledge.
The third layer in this framework is schematic knowledge. Schematic knowledge is
the ability to recognise "chunks" or patterns of code that carry out various sub tasks
within a program. The procedural aspect of this knowledge is the ability to apply or
use these chunks to build up a program. These chunks are more correctly called

Chapter 7. 143.

Quality and Novice Programmers.

programming plans that have been studied extensively. Solway and Ehricht (1984)
put forward a simple model that expertise in programming was based on having
available these plans. Thus the Solway & Ehrlicht (1984) model of programming
expertise considered the level of expertise to be based on the number of
programming plans available, i.e. the level of declarative schematic knowledge. This
model was used as the basis for the Bridge intelligent tutor scheme (Bonar &
Cunningham 1988). This CAL system was designed to increase the number of
programming plans known to the novice programmers.

It was Davis (1991) who showed that one of the main differences between novices
and experts was not just the number of programming plans but the way these plans
are organised internally. Davis introduced to the discussion a third level of
programmer, the intermediate programmer. The model proposed by Davies and
supported by his experimental work was that the transition from novice to
intermediate consisted of building a library of programming plans, the Solway &
Ehricht (1984) model. This is the acquisition of schematic declarative programming
expertise. Davies showed that intermediate and expert programmers had a similar
range of programming plans available to them but the experts were able to utilise
these plans better. These experts had acquired procedural schematic programming
knowledge. This model of Davies fits well into the general framework of
programming expertise as it mirrors the skill acquisition model of Anderson(1981)

The third level in the unified framework splits the schematic layer of Mayer (1997)
into declarative and procedural knowledge. The main argument for this split is the
work published by Davis that is built on the general knowledge acquisition model of

Chapter 7. 144.

Quality and Novice Programmers.

Anderson (1983).

7.3.4 Strategic Knowledge.
Mayer (1997) defined strategic knowledge as the techniques for devising and
monitoring plans. This is the ability to devise and keep to a satisfactory Personal
Software development Process (PSDP).

The experimental evidence discussed in chapter 3 showed that the experts and some
of the novices were following a plan when developing their program. This was a
staged or incremental plan that would lead the programmer to be able to solve the
given problem. These experts and novices have some extra ability in “how to
program” above that shown by other novices. The experts were showing a greater
strategic knowledge than the novices. The emergence of strategic knowledge
collaborates the work of Mayer (1997).

The strategic knowledge is the fourth and final level o f the unified framework of
programming knowledge. The issue to be addressed next is whether there is any
evidence that this knowledge can be split into declarative and procedural knowledge
as are the other levels in the unified framework of programming knowledge.

The work of Anderson (1983) proposed this declarative / procedural split for the
acquisition of all knowledge so it seems reasonable to see if there is evidence that
these two stages of knowledge apply to strategic programming knowledge. This
explanation is again based on the concept of three major groups of programmers.
Novices who are building up their declarative strategic knowledge, intermediates

Chapter 7. 145.

Quality and Novice Programmers.

who have declarative strategic knowledge and are building up their procedural
strategic knowledge, and experts who have both declarative and procedural strategic
knowledge.

In the work reported in chapter 3 three categories of novice are identified.
• One group of novices (group D in chapter 3) did not get their program to work.

The graphs of lines of code, specification proportion, and compilation errors
against version do not show any pattern or evidence o f planned build up of code.
Thus it can be argued that these students did not have the relevant strategic
knowledge to be able to solve the given problem.

• A second group of novices (group C in chapter 3) did manage to successfully
produce a working program but their methods lacked sophistication. The PSDP
employed by these novices was to write the whole program and then "debug" the
program through a number of stages to produce a working solution. This shows
evidence that these novices do not have the ability to apply any strategic
knowledge they have. However it can be argued that they do have some strategic
knowledge, as they were able to produce a solution. These students have
developed from novices and are moving towards becoming intermediate
programmers.

• The third group (group B in chapter 3) exhibited behaviour that mirrored in some
ways the behaviour of the experts. The novices developed their program in
stages, as did the experts. The number of stages was not the same as the experts,
some used fewer stages others more stages. These novices showed evidence that
they had reached intermediate status and were building to expert status. They
knew how to develop a program (had gained declarative strategic knowledge) but

Chapter 7. 146.

Quality and Novice Programmers.

were not able to execute this plan in the same way as an expert (had not fully
developed procedural strategic knowledge).

The feedback experiment reported in chapter 4 gives further evidence for this view of
strategic knowledge. The feedback had the effect of improving the way in which the
treatment group of novices developed their programs. Given that the feedback was
solely in regard to the correctness it could not have added any declarative strategic
knowledge to the novices. One explanation of how this improvement came about is
that the feedback in some way helped the novice in their ability to apply the
knowledge they already had.

The experiential work carried out in this thesis can be explained in terms of the
strategic knowledge of the novice programmer and there is evidence that this
strategic knowledge has two dimensions, declarative and procedural knowledge.

7.3.5 Summary
This section has sought to justify the unified framework of programming knowledge.
This justification has been based on both previously reported work and experimental
work carried out during this research. The novel aspect of this model is the
explanation of strategic programming knowledge in terms of declarative and
procedural knowledge. The next section will attempt to further explain this level of
expertise in terms of process plans.

Chapter 7. 147.

Quality and Novice Programmers.

7.4 Strategic Knowledge - Process Plans.

The unified model of programming expertise discussed above provides for
declarative and procedural strategic knowledge. Novices build up a skill set of
strategic knowledge and also learn how to apply this knowledge. This section will
explore the idea of process plans as the mechanism for acquisition of expertise in
strategic programming knowledge.

Davies (1991), and others, have used programming plans to model the acquisition of
schematic knowledge by an expert programmer. The idea of plans or patterns of
statements is more widely used than just computer programming. They are widely
used in psychology to explain knowledge acquisition. For example, plans have also
been used to explain expertise in natural language as well, Carberry & Pope (1993).
This section attempts to explain strategic programming knowledge using a concept of
process plans.

Strategic programming knowledge is the “tech n iqu es f o r d e v is in g a n d m o n ito r in g

p la n s ” (Mayer 1997). It encompasses the problem solving aspect of programming
answering the q u estio n “H o w d o I g o a b o u t d e v e lo p in g a p r o g r a m to so lv e th is

p r o b le m ?” In his seminal work Polya (1957) gives four stages to problem solving
namely:
• understand the problem
• devise a plan
• carry out the plan
• check the results

Chapter 7. 148.

Quality and Novice Programmers.

This general problem solving strategy is based around a plan. This plan, if followed,
leads to a solution to the problem. The general problem solving stages of Polya can
be re-phrased in the context of computer programs:
• understand the problem and classify it according to previous experience
• choose an appropriate plan as the program development strategy
• carry out the plan
• check the results

The plan or strategy for developing a program is a process plan. These process plans
identify the sequence of events to be carried out to solve a given problem. Process
plans are generic in that a particular process plan is adaptable to a number of
problems. The problems studied in the course of this research are essentially data
processing problems that easily fit the traditional input-process-output mode of
solution. The incremental personal software development process (PSDP) was
identified as the strategy or plan used to develop a solution to this type of problem.
This process is illustrated in figure 3.2. Parts of the strategy involves how compiler
errors are fixed (relating to syntactic or semantic knowledge) and how an individual
program stage (or “chunk”) can be corrected (relating to schematic knowledge). If
these items are left out of the PSDP then a process plan for incremental development
is left. This is shown in figure 7.1.

Understand the problem and identify a development plan
Repeat

Add code for next stage in development
Get this code to work

Until full spec complete____________________________________
Figure 7.1 Iterative Process Plan.

Chapter 7. 149.

Quality and Novice Programmers.

For a smaller problem (for example a program to add up a list of numbers) that
involves one programming plan then a simpler process plan can be identified, the all-
or-nothing process plan, and is illustrated in figure 7.2.

Understand the problem
Write the code
Get this code to work___
Figure 7.2 All-or-nothing Process Plan.

Figures 7.1 and 7.2 show two possible process plans. The experimental evidence of
how novices and experts have developed their programs may be interpreted in terms
of these process plans.
• Expert programmers have available a number of solution methods, process plans,

from which they can choose an appropriate one to develop the particular
program. As they have available a suitable process plan and the necessary
procedural strategic knowledge to execute the plan they develop the program
well.

• Advanced novices (group B novices of chapter 3) exhibit behaviour similar to the
experts but may use a different number of stages in the development. This can be
interpreted as these novices having available to them a sufficient range o f process
plans to enable them to choose a correct plan but they lack the procedural
knowledge to execute the plan in the same way as do experts.

• Novices (group C in chapter 3) attempted to solve the problem in one attempt,
using the simple process plan of figure 7.2. Thus they lacked the variety of
process plan to enable them to choose and use a "good" plan.

• Poor novices (group D in chapter 3) did not produce a solution and showed no
evidence on implementing any solution. One possible interpretation was that they
lacked the variety of plans and could not implement their chosen plan with the

Chapter 7. 150.

Quality and Novice Programmers.

difficult problem facing them.

Process plans have been put forward as a way to explain strategic knowledge of
programming. Novices need to build up a number of process plans and then learn
how to apply these process plans in order for them to become expert programmers.
The idea of process plans has been used to explain the strategic knowledge exhibited
by novice programmers in the course of this research.

7.5 Applying the Unified Framework - Lessons for Learning .

This chapter has suggested a framework of programming knowledge by
consolidating aspects from the literature. The idea of process plans has been put
forward to explain strategic programming knowledge. This final section describes
the application of these theoretical findings to the teaching of computer programming
either by traditional lecture based courses or more particularly on-line courses.

Not only must the teaching of programming deal with language syntax, semantics
and programming plans it must also deal with the programming process - how to
create a program. Many on-line packages will take the program created by the
student and give feedback by automated marking or style analysis. Some systems
may allow the student to increase the marks by repeated submissions of a program to
the automated analysis tool. Such feedback can at best inform the students' syntactic,
semantic or schematic knowledge.

Chapter 7. 151.

Quality and Novice Programmers.

To give feedback on the strategic ability of the student an on-line package will need
some extra features not currently available. To be able to comment or mark the
strategic knowledge of a novice a history of the program development is needed. The
experiments carried out during the course of this research show that it is feasible to
collect versions of a program during development, convert each version to a series of
counts that are used to calculate a number of process metrics. These metrics can be
converted to a single process mark that is fed back to the novice in the same way as
product marks are.

In order to build up the strategic knowledge of the novice programmer a wide range
of problems with different "process plans" needs to be offered to the novice. In many
currently available computing courses the author will give a wide variety of
problems that show varied syntactic, semantic and schematic aspects of
programming. The work carried out here implies that a wide variety of strategic
problems needs to be offered.

In many CAL packages, after the novice has answered an assessment, it is marked
and the next lesson given to the novice is dependent on that mark. This is often
carried out simply by asking novices who have "failed" an assessment to repeat the
lesson. More sophisticated packages will have a number of "next" lessons dependent
on the mark awarded. One drawback of this method is that at best the final program
is assessed and the decision as to which "next" lesson given on the basis of the final
product. As a result of this research there is the potential to measure the process and
assess how well the development was carried out. For the first time a judgement can
be made regarding how well this solution was gained. The "next" lesson can be based

Chapter 7. 152.

Quality and Novice Programmers.

not only on the quality of the program written but also on the way it was written. If
the novice struggled to write the solution then a simpler "next" lesson can be given
but if the development process was good a harder or different "next" lesson can be
given. The students' progress through the programming course can be altered not
only on the quality of the programs produced but also on the quality of the program
development process, thus assessing and building up their strategic knowledge.

The discussion above shows how the process can be evaluated at the end of the
development and used to influence the "next" lesson. It would also be possible to use
the data collected during the development to calculate the process metrics during the
development of the program. Potentially this could be used to identify the
characteristics of the novice and feedback given to the novice based on their ability.
Further research is needed to evaluate the usefulness of such an approach to
programming education.

The main finding of this research is the confirmation of the importance of the
program development process in the acquisition of programming expertise. The
development process and how a novice is to develop a program is the key to the
education process and must be made explicit rather than left for the novices to learn
implicitly.

Chapter 7. 153.

Quality and Novice Programmers.

7.5 Summary.

This chapter has derived and examined a unified framework o f programming

expertise incorporating previously reported results and theoretical m odels.

The main conclusions are

• a unified framework o f programming expertise has been proposed w ith four

categories, (syntactic, semantic, schematic and strategic) each split into

declarative knowledge (knowledge about som ething) and procedural know ledge

(ability to use the knowledge).

• the idea o f process plans was proposed to explain strategic programming

expertise. The experimental evidence can support this idea

• there are practical lessons to be learnt from this work with regard to the w ay

computer programming is leamt.

Chapter 7. 154.

Quality and Novice Programmers.

8 . F i n a l C o n c l u s i o n s a n d F u t u r e W o r k .

8.1 Introduction.

If software engineering has taught the computing industry anything it is the

importance o f quality and the focus on the software developm ent process rather than

just the product. The control o f quality m ay only be undertaken i f there are som e

measurements and metrics available whereby different software developm ents m ay

be compared. D espite the general acceptance o f this in the software engineering

industry little has permeated through to software engineering education and the need

to address the issue o f “quality o f process” for novice programmers. This thesis has

looked at the personal software development em ployed by novice programmers and

identified issues, created suitable metrics, related this to final products and evaluated

the importance o f process for the novice programmer.

This chapter concludes the work by reviewing the objectives o f the research set out

in chapter one and summarises the findings o f this research. The chapter goes on to

discuss briefly how the findings o f this work can be applied in a practical w ay i.e. the

application o f the results to teaching and learning o f novice programmers. Finally

this chapter and the thesis conclude with a discussion o f future work in this area.

Chapter 8. 155.

Quality and Novice Programmers.

8.2 R eview o f Research O bjectives.

The aim o f this research was given in chapter one and is restated here as:

O verall A im : To explore the personal software developm ent process em ployed by

novice programmers in order seek to improve the quality o f computer programs.

This aim leads to a number o f research objectives. A summary o f the work carried

out in pursuit o f each research objectives is given.

O bjective 1: To analyse the personal software development process employed by
novice and expert programmers

Software was written that captures the novice's computer program after each

com piling attempt thus a full program developm ent history was saved. Graphs o f

lines o f code, specification proportion (correctness) and com pilation errors against

version number (used as a proxy for tim e) were drawn and used to “visualise” the

software developm ent process. A similar activity was undertaken for a group o f

expert programmers.

An incremental model o f software developm ent drawn from the literature w as used

as the basis for the analysis o f the personal software developm ent process used by

novices and experts. An analysis o f the graphs showed that the expert programmers

did indeed fo llow the incremental m odel justifying the m odel as a basis o f the

analysis.

Chapter 8. 156.

Quality and Novice Programmers.

The novices were categorised into three groups each showing a different approach to

the personal software development process.

• One group o f novices exhibited behaviour that follow ed the incremental m odel o f

program development. These novices showed that they had som e strategic

programming expertise. Their behaviour did not mirror exactly that o f the experts

thus hinting at metrics which could be used to measure the level o f strategic

knowledge o f an individual.

• A second group developed the program in one increment (all at one go). These

novices exhibit behaviour suggesting that they have syntactic, sem antic and

schematic knowledge but lack the strategic knowledge.

• A final group o f novices showed chaotic behaviour, for exam ple, adding large

numbers o f lines o f code when the previous versions did not com pile . N ot only

did this group lack strategic knowledge but they lacked other elem ents o f

programming knowledge, (syntactic, semantic or schematic).

A brief summary o f the analysis o f the personal software developm ent process

em ployed by novice and expert programmers is shown in table 8.1.

C lassification D escription
E xperts group A Followed the PSDP m odel
N ovices group B Follow ed in outline the incremental PSP m odel but

strategic knowledge is less advanced than w ith
experts.

N ovices group C Only one increment in their PSDP indicating a lack
o f strategic knowledge

N ovices group D Could not develop a solution due to lack o f
sufficient strategic, schematic, semantic or syntactic
knowledge.

Table 8.1 Classifications o f experts and Novices.

Chapter 8. 157.

Quality and Novice Programmers.

O bjective 2: To establish a set of metrics that measure the quality of the personal
software development process employed by novice programmers.

In line w ith good practise the metrics developed within this research were based on

an underlying m odel o f software development. The m odel used here is the

incremental model o f the personal software developm ent process from w hich a

number o f metrics were developed. The metrics were developed with reference to

one set o f data from a group o f subjects and subsequently validated against a second

set o f data gained from a second group o f subjects. Thus the metrics have some

validity outside the dataset from which they were developed. Table 8.2 summarises

the metrics developed in this research.

Com piling Progress Indicator c p i
Relative Run Progress Indication r r p i
Stages in l.o.c s i
Stages in testing s t
Relative Total Progress Indication r t p i
Table 8.2 Validated Metrics.

These metrics measure adherence to the incremental m odel o f software developm ent

and it is argued, as this is a reasonable m odel, measure the quality o f the personal

software developm ent process em ployed by novice programmers.

O bjective 3: To analyse the correlation between the personal software development
process and the program product.

It is an often stated, but not often proved, conjecture o f software engineering that by

improving the process, the product itse lf improves. This thesis analysed this

Chapter 8. 158.

Quality and Novice Programmers.

relationship with reference to novice programmers. The metrics outlined in table 8.2

were used to measure the personal software developm ent process and the final

software product measured by w ell established metrics. Previous work has failed to

show any correlation. H owever this work was based on poor process metrics. The

work here showed a strong correlation between the process metrics and correctness

but not with any other product metrics. This indicates that those novices w ho use the

incremental m odel o f program development tend to get more correct programs than

those who do not. This result indicates that efforts to improve the personal software

developm ent process o f novices can have a positive effect on the correctness o f the

final product. In line with previous work, no correlation w as found betw een the

process metrics and the final product metrics. A picture is emerging that there is little

or no relationship between the two. The implications o f this are that the novice needs

to explicitly learn these different skills and neither should be ignored in the education

process.

O bjective 4 : To evaluate improvements in the personal software development
process and software product using simple feedback mechanisms.

The education o f computer programmers focuses on the product being developed and

not on the w ay this product was developed. This is contrary to the main prem ise in

software engineering and quality in general, the process quality dictates the product

quality. The experiment undertaken during this research showed that software

process metrics were improved by providing simple feedback to the novices during

their development o f the program. Focussing som e educational effort onto the

process may make improvements in the personal software developm ent process. This

Chapter 8. 159.

Quality and Novice Programmers.

result has implications for the education process nam ely that education and training

courses must invest some effort in the developm ent o f the personal software

developm ent process in addition to the product as skills in the personal software

developm ent process are necessary in the education o f novice programmers. There is

potential for greater improvement i f the feedback given to the novices reflects the

current needs o f the novice rather than the sim ple feedback given here.

O bjective 5: To synthesise current frameworks ofprogramming expertise into a
unified framework that includes a strategic knowledge facto, that is expertise in the
personal software development process.

A general framework o f programming know ledge was proposed that included four

layers o f knowledge: syntactic, semantic, schem atic and strategic. Each o f these

layers exhibits declarative knowledge, know ledge about a skill, and procedural

knowledge, ability to use the skill. The framework was produced by expanding

previous reported work and is supported by the evidence produced as a result o f this

research. The general unified framework o f expertise in programming is show n in

table 8.3

Chapter 8. 160.

Quality and Novice Programmers.

K n ow led ge D eclarative Procedural

Syntactic K now ledge o f language rules Ability to apply language rules
S em antic Mental m odel o f the actions that

take place as a program executes
Ability to design solutions to
programming problems

Schem atic R ecognise chunks o f code or
programming plans used in
program solutions

Ability to apply programming
plans to program solutions

Strategic K now ledge o f the personal
software processes that are used to
solve programming problems

Ability to use a personal software
process that is used to solve
programming problems

Table 8.3 Unified Framework o f Programming Expertise

The aspect o f programming expertise related to the personal software developm ent

process, strategic knowledge, was not adequately covered in the literature and it was

this aspect that has been expanded due to this research work.

In an attempt to explain strategic expertise it is useful to consider three classes o f

programmer; novice, intermediate and expert. The transition from novice to

intermediate is the building up o f the declarative strategic knowledge; the transition

from intermediate to expert is the build up o f procedural strategic know ledge. The

model used for the acquisition o f strategic knowledge is analogous to the acquisition

o f schematic knowledge again based on novice, intermediate and expert

programmers and their declarative and procedural knowledge o f programming plans

(D avis 1995). The concept o f process plans was put forward as the w ay to think

about strategic programming knowledge. These plans are developm ent strategies

programmers em ploy to write programs. The developm ent from novice to

intermediate involves building up these process plans and the further developm ent to

expert involves being able to choose and use an appropriate process plan. The

framework put forward can be used to explain the differences in program

Chapter 8. 161.

Quality and Novice Programmers.

developm ent as visualised with reference to objective 1 in this research.

8.3 A pp lication to the T eachin g and L earn in g o f C om puter P rogram m ing.

The work described in this research may at tim es seem theoretical. It is not meant to

be. The purpose o f this research is to generate som e results and to apply these results

to the practical task o f the teaching and learning o f computer programming.

8.3.1 A utom atic A ssessm ent

Many system s are available, most notably Ceilidh (Benford et.al. 1997), that allow a

computer program to be automatically assessed. This assessm ent deals exclusively

with assessing the final product. This research has described m ethods that can be

used to collect data showing the developm ent o f the process. This data can be used to

measure and therefore assess the personal software developm ent process. A n

immediate area for the practical application o f this work is to include into the

integrated developm ent environment (IDE) a facility that stores the program version

as part o f the compilation process. Thus when the program is assessed not only can

the final product be assessed but also the process metrics calculated from the

developm ent history. The latter can be used to produce a process assessm ent mark.

N ovices are therefore assessed in terms o f their product and the process that

generated the product.

8 .3 .2 Include the Process into the L earning.

This research has shown the importance o f the personal developm ent process to the

Chapter 8. 162.

Quality and Novice Programmers.

novice programmer. The strategic knowledge needed for a programmer is a different

skill to any syntactic, semantic or schematic knowledge they have. A ny learning

method (be that lecture or CAL package) must include in it som e developm ent o f the

strategic skills in it. In many CAL packages at the end o f a “lesson” som e test is

given and i f “passed” the student progresses to the next stage. I f the student “fails”

the test they are required to repeat the “lesson”. N o account is taken about whether

the student developed the solution w ell or struggled to get the answer. H ence a

practical application o f this work is to measure both the product and the process at

the end o f the “lesson”. I f the student passes both the product and the process

assessm ent then they can go on to the next stage. A student w ho passes the product

assessm ent but fails the process assessment needs to be directed to som e re

m ediation work regarding the process o f software developm ent rather than

continuing on with the next stage. This idea o f including process can be used with

any teaching environment.

8 .3.3 A utom ating F eedback.

During the course o f the experimentation discussed in chapter four a system was

developed whereby feedback was given to the students during the developm ent o f

their programs. The feedback given in this case w as simple: a statement o f the

correctness o f the program. However simple the feedback, the analysis o f the data

has shown the effectiveness o f the feedback. The idea o f giving feedback during the

developm ent o f a program can easily be built into the IDE or as part o f a CAL

package.

Chapter 8. 163.

Quality and Novice Programmers.

8.4 Future W ork.

The work described in this thesis looked at an often neglected area o f computer

programming education, nam ely the personal software developm ent process. The

thesis has reported on som e initial work in this area. There are a number o f areas in

w hich to apply and extend the findings for future work on this topic.

8.4.1 O nline L earning.

Section 8.3 discussed three areas where the work reported here could be included

into the teaching o f novice programmers. H owever there is further potential in this

method which has not been addressed during this research.

1. Metrics are calculated at the end o f the process and used in the assessm ent o f the

process. H owever as the whole developm ent history is available during the

personal developm ent process it is possible to calculate the process metrics (and

product metrics) during the development o f the program. Experimentation is

needed to see whether feeding back the metrics during the developm ent can

enhance the developm ent itself. The experiments in chapter 4 give one metric

(correctness) as feedback. Is it true that the other metrics can also be used to

improve the process?

2. During this research the metrics were calculated at the end o f the developm ent. A

major area for further work is to investigate i f information can be gained by

calculating the metrics during the developm ent and using these metrics to find

the intention o f the student and attempt to alter any incorrect behaviour. This is

an extension o f the ideas o f Johnson (1990) who sought to identify the

programmer's "intention" from their error and then to suggest corrections to the

Chapter 8. 164.

Quality and Novice Programmers.

error. Johnson restricted his ideas to the program itself. Further research is

needed to extend these ideas to the personal software process.

3. What is "appropriate" feedback? The work reported in the experiment o f chapter

4 uses som e simple feedback to produce the significant improvement in the

process metrics o f the treatment group o f novices. There is no claim that the

feedback given is optimal in any sense. The treatment was chosen because it was

sim ple to achieve. The suggestion above is to use other metrics in feedback. It is

necessary to identify what is appropriate feedback. Is detailed feedback w hich is

likely to be difficult to automatically generate useful or is a sim ple "pat on the

back" just as effective?

8.4.2 H ow do S tudents Learn?

The m odel o f programming knowledge presented in chapter 5 describes the

knowledge that an expert programmer w ill have. Within that model is the idea o f

programming plans which describe how schematic knowledge is achieved and the

new idea o f process plans to describe how strategic knowledge is built up. These

theories do not address the problem o f how novices learn to program. What is the

"learning curve" for a novice programmer? Another fruitful area o f research is to

investigate the developm ent o f novices over time to see how they build up the

necessary knowledge to becom e expert programmers.

8.4.3 P rofessional Program m ers.

The work carried out in this research has exam ined novice programmers. It w ould be

interesting to carry out a similar investigation o f professional programmers. It is

Chapter 8. 165.

Quality and Novice Programmers.

recorded that som e professional programmers are orders o f magnitude more

productive than others. An investigation into the work patterns o f professional

programmers w ould seek to show the validity o f this statement. The m etrics used in

this research are focussed on novices.These metrics would need to be validated with

professional programmers. Experimentation along the lines carried out in this

research can then be used to see if the differences in programmer output is because o f

the different personal software processes used by these people. If this is the case,

training schem es along the lines o f the online package described above could be

im plemented with the aim o f improving the personal software developm ent process

o f the weaker programmers.

8.5 C onclusion.

This work has examined in detail how novice programmers develop their programs.

This process has been m odelled and measured allowing a comparison to be made

between personal software developm ent processes. This aspect, the software

developm ent process, is often ignored by educators and this research has highlighted

its importance. The strategic knowledge needed by a novice programmer has been

added to current frameworks o f programming expertise thus highlighting this aspect

o f programming.

A s a result o f the work carried out during this research the “importance o f process”

(Lund et al 1998) has been established.

Chapter 8. 166.

Quality and Novice Programmers.

R e f e r e n c e s .

A delson.B . 1981 Problem Solving and the Developm ent o f Abstract Categories in
Programming Language. Memory and Cognition. V ol.9. pp422-433.

A delson B 1984 W hen N ovices surpass experts: The difficulty o f a task m ay increase
w ith expertise. Journal of Experimental Psychology: Learning, Memory and
Cognition. V ol.9 pp.422-433

A llw ood C.M. 1986 N ovices on the C om puters review o f the literature.
International Journal of Man-Machine Studies. V ol.25 pp.633-658.

Anderson, J.R. 1983. The Architecture of Cognition. Harvard University
Press.Cambridge MA.

Basili V .R. and Turner A.J. Interactive Enhancement: A Practical Technique for
Software Developm ent. I.E.E.E. Tran. On Software Engineering. V ol. !, N o. $.
Pp.390-396.

Bayman, P. and Mayer, R.E. 1988. U sing Conceptual M odels to Teach BA SIC
Computer Programming. Journal of Educational Psychology. V o l.80. p p 2 9 1-298.

Benford S., Burke E. and Foxley E. 1993a Learning to Construct Quality Software
with the Ceilidh System. Software Quality Journal. Vol. 2. pp. 177-197.

Benford E., Burke E.K, Foxley E., Gutteridge N . and Zin A.M . 1993b Experiences
using the Ceilidh System. Proceedings of the First All-Ireland Conference on
Teaching Computing Dublin.

Benford S.D, Burke E.K., Foxley E., Gutteridge N.H . and Gibbon C.A. 1994
Observations on the Impact o f the Ceilidh System on the Teaching o f Computer
Programming. Proceedings of the Second All-Ireland Conference on Teaching
Computing Dublin.

Bishop-Clark, C. 1992 Protocol Analysis o f a N ovice Programmer. ACMSIGCSE
Bulletin. V ol 24. N o .3. p p l4-18 .

Bonar, J. and Cunningham, R. 1988. Bridge: an Intelligent Tutor for Thinking about
Programming. In. Self. J. Ed. Artificial Intelligence and Human Learning.
Chapman-Hall.

Bornat R. 1990 A Core Craft Beyond the Statis. Tim es Educational Supplement. 2nd.
Novem ber 1990.

Brooks F.P. N o Silver Bullet: Essence and Accidents o f Software Engineering.
I.E.E.E. Computer V ol.20. N o.4. pp.10-19.

References. 167. 20/02/02

Quality and Novice Programmers.

Carberry.S. and Pope.W .A. 1993. Plan R egognition Strategies for Language
Understanding. International Journal of Man-Machine Studies. V ol.39. pp.529-577.

Chi, M .T.H., Glaser R. and Farr, M.J. 1988 The Nature of Expertise. Lawrence
Erlbaum A ssociates. N ew Jersey.

Coolican, H. 1999. Research methods & Statistics in Psychology. London: Hodder
& Stoughton.

Conway R. 1978 A Primer on Discipline Programming. Winthrop Publishers.
Cambridge M ass.

D avies, S.P. 1989 Skill Levels and Strategic Differences in Plan Comprehension and
Implementation in Programming. In Sutcliffe A. and Macaulay L. Ed. People and
Computers V. Cambridge University Press.

D avies, S.P. 1990a Plans, goals and selection rules in the comprehension o f
computer programs. Behaviour and Information Technology. V ol.9 N o .3. pp201-214.

D avies, S.P. 1990b The nature and developm ent os programming plans.
International Journal of Man-Machine Studies. V ol.32 pp461-481

D avies, S.P. 1991a Characterising the program design activity: neither strictly top-
down nor globally opportunistic. Behaviour and Information Technology. V ol.10
N o .3. p p l73 -1 90

D avies, S.P. 1991b The role o f notion and knowledge representation in the
determination o f programming strategy: a framework for integrating m odels o f
programming behaviour. Cognitive Science. V ol.15 pp547-572

D avies, S.P. 1994 Knowledge restructuring and the acquisition o f programming
expertise. International Journal of Human-Computer Studies. V ol.40 pp703-726.

D avies, S.P. and Castell, A. 1992 Contextualizing design: narratives and
rationalization in empirical studies o f software design. Design Studies. V ol.13 . N o.4 .
pp.379-392.

de Marco, T. 1982. Controlling Software projects: management, measurement and
estimation. Yourdon press.

Dugard, P. and Todman J. 1995. Analysis o f Pre-test-Post-test Control Group
D esigns in Educational Research. Educational Psychology. V ol.15. N o.2 . pp.181-
198.

Edmunds G., 1990 Experiences using CAAPE: Computer Assisted A ssessm ent o f
Programming Exercises. Computers & Education. Vol. 15. N o. 1-3 pp.45-48.

Ejiogu. L.D. 1993 Five Principles for the Formal Validation o f M odels o f Software
Metrics. ACM SIGPLAN Notices. V ol.28 N o .8 pp.67-76.

References. 168.

Quality and Novice Programmers.

Fenton, N . 1992. W hen a software measure is not a measure. Software Engineering
Journal. V ol. 7. N o .9. pp.357-362.

Foxley E., H iggins C. and Gibbon C. 2000 The Ceilidh Courseware System [Online]
Nottingham University. A vailable from http://www.cs.nott.ac.uk/~ceilidh/papers/overview.cal
[A ccessed 01/05/2000]

Genter, D . and Stevens, A.L. Eds. 1983. Mental Models. H illsdale NJ.

Gilmore, D.J. and Green, T.R.G. 1988 Programming Plans and Programming
Expertise. Quarterly Journal of Experimental Psychology. V ol.40a. pp423-442.

Goodwin, L. and Sanati, M. 1986. Learning Computer Programming through
D ynam ic Representation od Computer Functioning: Evaluation o f a new Learning
Package for Pascal. Internaltional Journal of Man Machine Studies. V ol.25 . pp327-
341.

Grove, R.F. 1999. U sing the Personal Software Process to M otivate Programming
Practices. ACMSIGCSEBulletin. V ol 31. N o .l . pp98-101.

Gugerty L. and Olsen G.M. 1986 Comprehension differences in debugging by skilled
and novice programmers. In Solow ay E. and Iyengar S. Eds. Empirical Studies of
Programmers. Northwood N ew Jersey.

Halstead, M.H. 1977. Elements of Software Science. E lsevier North-Holland. N Y .

Hannemyr. G. 1983 Automatic Assessment Aids for Pascal Programs -Rats!
SIGPLAN N otices V ol.18. N o.4. p p l6-18 .

Henry, S. and Kafura, D. 1984 The Evaluation o f Software System s’ Staructure
using Ouantative Software Metrics Software Practice and Experience. V ol. 14. N o .6.
pp.561-573.

Herbsleb, J. Zubrow, D. Goldenson, D. Hayes, W. and Paulli M. 1997. Software
Quality and the Capability Maturity M odel. Communications of ACM. V ol 40. N o.6 .
pp.30-40.

Hilburn, T.B. and Towhidnejad, M .1998 D oing Quality Work: The R ole o f Software
Process Definition in Computer Science Curriculum. ACM SIGCSE Bulletin. V ol 30.
N o .l . pp277-281.

H oc, J-M. Green, T.R.G. Samurcay, R. and Gilmore, D.J. 1990 Psychology of
Programming. Academ ic Press.

Hou, L. and Tomayko, J. 1999 Applying the Personal SoftwRe Process in CS!: An
Experiment. ACM SIGCSE Bulletin V ol.31. N o .l . pp.322-325.

Howatt. J.W. 1994. On Criteria for Grading Student Programs. A CM SIGCSE
Bulletin V ol.26. N o .3. pp3-7.

References. 169. 20/02/02

http://www.cs.nott.ac.uk/~ceilidh/papers/overview.cal

Quality and Novice Programmers.

Huff, K.E. and Lesser, V.R. 1989 A Plan-Based Intelligent Assistant that Supports
the Software Developm ent Process. Proceedings ACMSIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments.
SIGPLANNotices V ol.24. N o.2. pp97-106.

Humphrey, W .S. 1995. A Discipline for Software Engineering. A ddison-W esley
Reading M A.

Humphrey, W .S. 1997. An Introduction to the Personal Software Process. A ddison-
W esley Reading MA.

Hung, S-L., Kwok. L-F, and Chan R. 1993 Automatic Programming A ssessm ent.
Computers Education. V ol.20. N o.2. pp.183-190.

Hutchens D.H. and Kutz E.E. 1996 U sing Iterative Enhancement in Undergraduate
Software Engineering Courses. A .C.M . SIGCSE N o.2 pp266-270.

IS 09 0 00 , Quality Systems - Model for Quality Assurance in design, Development,
production, Installation and Servicing. International Standards Organisation.

IS 0 9 0 00 -3 , Guidelines for the Application ofIS09000 to the Development, Supply
and Maintenance of Software. International Standards Organisation.

Jackson. D. 1991 U sing Software Tools to Automate the A ssessm ent o f Student
Programs. Computers & Education. V ol.17. N o.2. p p .133-143.

Jeffries R. 1982 A Comparison o f D ebugging Behaviour o f N ov ice and Expert
Programmers. American Educational research Association Annual Meeting. N ew
York.

Johnson, L. 1988. M odelling Programmers Intentions. In Self. Ed. AI and Human
Learning Chapman-Hall.

Kem ighan B.W . and Plauger P.J. 1974 The Elements of Program Style. M cG raw-H ill
N ew York.

Lake. A. and Cook. C. 1990 STYLE: A n Automatic Program Style A nalyser for
Pascal. SIGCSE Bulliten. V ol.22. N o .3. pp.29-33

Linn, M .C.1985 The Cognitive Consequences o f Programming Instruction in
Classrooms. Educational Researcher. V ol.14. N o .5. pp.14-16,25-29.

Lovegrove. G.L. and Rees. M.J. 1984 Som e Steps towards Autom atic Teaching and
Marking. University Computing. V ol.6. pp.6-23.

Lund, G.R. 1994. The Program Developm ent Process. In Innovations in Computing
Teaching. SEDA Paper 88.

References. 170. 20/02/02

Quality and Novice Programmers.

Mayer, R.E. 1979. A Psychology o f Learning BASIC Computer Programming:
Transactions, prestatements and chunks. Communications of ACM. V ol.22 . pp.589-
593.

Mayer, R.E. 1997. From N ovice to Expert. Handbook of Human Computer
Interaction 2nd.Edition. Helander, M. Landauer, T.K. and Prabhu, P. Eds. Elsevier-
Science B.V.

M cA lpin D .A ., 1992 Software for Teaching Computing. Computers Education.
V ol.19. N o .1/2. pp27-36.

M cA lpin D .A ., O'Docherty. B .A ., O'Donoghue. P.G. and Teague. K .G .1995.
Flexible Automatic Assessm ent o f Clarity, Com plexity and Style o f Student's
M odula2 Programs. Proceedings of the Second All-Ireland Conference on Teaching
Computing Dublin.

M cCabe, T.J. 1976. A Complexity Measure IEEE Transactions Software
Engineering. V ol. 2. N o. 4. pp. 308-320.

M cG ill, T.J. and V olet, S.E. 1996 An Investigation o f the Relationship B etw een
Student Algorithm Quality and Program Quality ACMSIGCSE Bulletin. V ol 27.
N o .2. pp44-48.

M cG ill, T.J. and V olet, S.E. 1997. A Conceptual Framework for A nalysisng
Students' K now ledge o f Programming. Journal of Research on Computers in
Education. Vol.29. No.3. pp.276-297.
M eekings. B.A.E. 1983. Style Analysis o f Pascal Programs. SIGPLAN Notices.
V o l.18. N o .9. pp.45-54.

Oman. P.W. and Cook. C.R. 1989. A Paradigm for Programming Style Research.
SIGPLAN Notices. V ol.23. N o.12. pp.69-78.

Pardoe. J. and Vickers P. 1994 U sing a Prototype Program A ssessm ent Tool.. .
Proceedings of the Second All-Ireland Conference on Teaching Computing Dublin.

Parrish, A. Lester, C. Cordes, D. and M oore, D. 1997. A ssessing Computer U sage
Patterns in a Software Developm ent Course. ACM SIGCSE Bulletin. V ol 29. N o .2.
pp58-61.

Polya.G. 1957 How to Solve It. Pincetown University Press. N ew York.

Rambach, H. D. & Basili, V.R. 1987 A Quantitative A ssessm ent o f Software
Maintenance. Proceedings of the Conference on Software Maintenance. A ustin
Texas. September 1987. pp. 134-144.

Reddish. K.A. and Smyth. W.F. 1986 Program Style Analysis: A Natural By-
Product o f Program Compilation. Communications ACM V ol .29. N o .l . pp.126-133.

References. 171. 20/02/02

Quality and Novice Programmers.

Reddish. K.A. and Smyth. W.F. 1987 Evaluating Measures o f Program Quality. The
Computer Journal V ol.30. N o .3. pp.228-232.

Rees. M.J. 1982. Automatic A ssessm ent Aids for Pascal Programs. SIGPLAN
Notices V ol.17. N o. 10. pp.33-42.

Rich C. and Walters . R,C,. 1988 A Research Overview. Computer V ol. 21., N o .l 1,
pp11-24.

Rimmer A ., Pardoe. J. and Vickers P. 1995 Interactive Program A ssessm ent U sing
SPROUT. Proceedings of the Third All-Ireland Conference on Teaching Computing
Rist, R.S. 1989. Schema Creation in Programming. Cognitive Science. V ol. 13.
pp.389-414.

Rist, R.S. 1991. Knowledge Creation and Retrieval in Program Design: A
Comparison o f N ovice and Intermediate Student Programs. Human Computer
Interaction. V ol.6. pp.1-46.

Rosenthal. D. 1983. Correspondence from the members. SIGPLAN N otices V o l.18.
N o .3. pp.4-5.

R ow e. G. and Gregor. P. 1999 A Computer Based Learning System for Teaching
Computing : Implementation and Evaluation. Computers and Education. V o l.33.
N o .l . pp65-76.

Rowe.G. and Thorbum. G., 2000 VINCE - an Online Tutorial Tool for Teaching
Introductory Programming. British Journal of Ecuational technology. V o l.31. N o.4 .
pp.359-369.

Schmidt, A.L. 1986. Effects o f Experience and Comprehension on Reading Tim e and
M emory for Computer Programs. International Journal of man Machine Studies
V ol.25. pp.399-409.

Schorch T. 1995 CAP: An Automated Self-A ssessm ent Tool to Check Pascal
Programs for Syntax Logic and Style Errors. SIGCSEBulletin. V ol 27. N o .l . pp.168-
172.

Shepperd, M. 1988 An Evaluation o f product metrics. Information and Software
Technology. V ol.30. N o .3. pp.177-188.

Shepperd M. 1992. Products, Processes and Metrics. Information and Software
Technology. V o l.34. N o .10. pp.674-680.

Shepperd, M. & Inc, D.C. 1994. A critique o f Three Metrics. Journal Systems
Software. Vol. 26. pp. 197-210.

Shneiderman, B. 1976. Exploratory Experiments in Programmer Behaviour.
International Journal of Computer and Information Sciences. V o l.5. p p .123-143.

References. 172. 20/02/02

Quality and Novice Programmers.

Shneiderman, B. and Mayer R.E. 1979. Syntactic / Semantic Interactions in
Programmer Behaviour: A M odel and Experimental Results. International Journal of
Computer and Information Sciences. V ol.8. pp.219-238.

Solway,E. and Ehrlich, K. 1984. Empirical Studies o f Programming K now ledge.
I.E.E.E. transactions on Software Engineering. V ol.10. pp595-609.

Som m erville, I. 1996. Software Engineering. 5 . Ed. Addison W esley.

Sopher J.C. and Solway, E. 1986. N ovice Mistakes: Are the Folk W isdom s Correct?
Communications of A.C.M. V ol.29. N o .7. pp624-632.

Thorburn. G. and Rowe. G. 1999 PASS: A n Automated System for Program
Assessm ent. Computers & Education. V ol.29. N o.4. pp. 195-206.

Thorburn. G. and Rowe. G. 1996 PASS - A n Automated System for Program
Assessm ent. 4th All Ireland Conference on the Teachning of Computing. 27th-30th
August Dublin..

Webb, N .M . Ender P. and Lewis, S. 1986 Problem Solving Strategies and Group
Learning Computer Programming. American Educational Research Journal. V ol.23 .
pp.243-261.

W iedenbeck, S. 1985 N ovice / Expert D ifferences in Programming Skills.
International Journal of Man Machine Studies. V ol.23. pp.3883-390.

References, 173. 20/02/02

Quality and Novice Programmers.

A p p e n d i x A . _ _ _ _ _ _ _ _ _ _ _

Problems solved by the N ovices

Problem 1 - Weather Station Problem

Problem 2 - River problem

Problem 3 - Traffic Problem

Problem 4 - Tennis Balls Problem

Problem 5 - Tyre Wear Problem.

Problem 1 W eather Station Problem
A new weather station is to be placed on the top of Cairn Aosta above the
Glenshee skiing Developments. Readings are taken every 4 hours from 4.00 a.m.
on Monday until midnight on Sunday. These weekly readings are collected and the
data automatically transferred to the main computer at UAD. Software needs to be
written to analyse the weekly data.

As will all good projects a pilot study is to be undertaken for the week commencing
Monday 24th June. In the pilot study only 2 readings are taken by the weather
station, the current temperature and the current wind speed. The number os
readings will be extended in the full implementation. The analysis needed to be
carried out is to calculate the minimum and maximum temperature and wind
speeds for each day. The experiment is also looking at the variations during the
day hence the average values are to be calculated for each 4 hour time. Finally
the overall minimum, maximum, and average of both wind speed and temperature
is required.

The test file as collected on the University computer is a series of lines
representing a sat of data. Each line contains the time (24 hour clock) date (day
number only) temperature (degrees C) and wind speed (m.p.h.). For example the
following data is possible:

4 24 2.6 20.
8 24 4.8 21.
12 24 10.2 29.
16 24 16.4 35.
24 24 2.2 15.
4 25 7.3 15.
8 25 9.6 14 .

24 30 2.5 5.0

The data will reside in a file called weekn.dat, where n is the week number. Your
program should prompt the user for the week number and from that input the
correct file. An example file weekOl. da t is included in the class library. The data
capture equipment is reliable and the data file will always contain the correct
amount of data.

Problem 2 River Problem
As part of an investigation into providing flood defences for Perth, Tayside Region
Water Services are monitoring water levels along a section of the Tay. Daily readings
are taken every 100m. along a 1Km. section of river. The readings are taken of water
velocity and the depth. The data is stored in the monitoring station for subsequent
transmission to the main computer at UAD. Software needs to be written to analyse
the weekly data.

As will all good projects a pilot study is to be undertaken for the week commencing
Monday 24th June. In the pilot study the water velocity and depth is recorded at the
10 sites along the river. The number of readings may be extended in the full
implementation. The analysis needed to be carried out is to calculate the minimum
and maximum velocity and depth on each day. The experiment is also looking for the
average velocity and depth taken at each monitoring station. Finally the overall
minimum, maximum, and average of both velocity and depth is required.

The test file as collected on the University computer is a series of lines representing
a sat of data. Each line contains the station number, date (day number only) velocity
(m/s) and depth (m.). For example the following data is possible:

1 24 2.6 20.9
2 24 4.8 21.5

10 24 2.9 14.6
1 25 2.2 15.4
2 25 3.3 15.3

9 30 3.4 7.0
10 30 2.5 5.0

The data will reside in a file called tayn.dat, where n is the week number. Your
program should prompt the user for the week number and from that input the correct
file. An example file t a y 0 1 . d a t is included in the class library. The data capture
equipment is reliable and the data file will always contain the correct amount of data.

Problem 3 Traffic Problem

The traffic flows along the A90 Perth to Dundee Road are to be investigated by the
Scottish Office. Automatic traffic counters count the traffic flowing both east and west
along the road. The data is then onto a computer file on the main computer at UAD.
Software needs to be written to analyse the data collected during the week.

As with all good projects a pilot study is to be undertaken for the week commencing
Monday 23rd. June. In the pilot the traffic flows east and west are collected for
throughout the week. For the purposes of this pilot study the day is split into 8
periods of interest. For each period on each day readings of easterly and westerly
traffic flow are available. The number of readings, and periods, may be extended in
the full implementation. The analysis to be carried out is to calculate the minimum
and maximum traffic flows in each direction on each day. The experiment is also
looking at daily traffic patterns. They require the average flow rates, both east and
west, for each time period, averaging over the different days of the week. Finally the
overall minimum, maximum and average of the east and west traffic flows is required.

The test file as collected on the VAX computer is a series of lines representing a set
of data. Each line contains the period, date (day number only) easterly and westerly
flow (veh/min). For example the following data is possible:

1 23 2 .6 20.9
2 23 4.8 21.5

8 23 2.9 14.6

7 29 9.4 7.0
8 29 2.5 5.0

The data will reside in a file called a90Rn. dat, where n is the week number. Your
program should prompt the user for the week number and from that input the correct
file. An example file A90R01. da t is included in the class library. You may assume
that the data is always correct and there are no missing data values.

Problem 4 Tennis Balls Problem
A Tennis ball manufacturer must test 15 balls from each batch. These balls are
tested until they are “unusable” with the elapsed time recorded. The manufacturer
needs to know the average time until “unusable”.

Write a program that allows the user to input the data for 15 tennis balls, calculate
the average and standard deviation for the batch. From this you can calculate the
threshold which is the average elapsed time minus twice the standard deviation.
Finally the number of balls above the threshold is calculated.

A Tyre manufacturer must test 20 tyres from each batch. These tyres are tested until
they are have “illegal” depth tread, with the number of miles recorded. The
manufacturer needs to know the average time until “illegal”.

Write a program that allows the user to input the data for 20 tyres, calculate the
average and standard deviation for the batch. From this you can calculate the
threshold which is the average mileage minus twice the standard deviation. Finally
the number of tyres above the threshold is calculated.

Problem 5 Tyre W ear Problem

Quality and Novice Programmers.

A p p e n d i x B . _ _ _ _ _ _ _ _ _ _ _ _ _

The Data generated during this research:

Subject Cohort A - Weather Problem Results

Subject Cohort B - River Problem Results

Subject Cohort B - Tennis Problem Results

Subject Cohort C - Traffic Problem Results

Subject Cohort C - Tyre Problem Results

Subject Cohort A - Weather Problem Results
sp cat N Nc cr cpi asc sloe srn si St rpi tpi rtpi rrpi si' St' Mark sp * mark

AAR 0.063 D 53 841.3 0.019 0.471 ##### 1 1 1 0 1.000 0.472 0.030 0.063 0 0 0.141 0.009
ACX 0.125 D 44 352 0.341 0.607 4.625 2 2 1 0 0.133 0.432 0.054 0.017 0 0 0.169 0.021
AH2 0.750 C 149 198.7 0.342 0.480 8.000 4 7 2 1 0.137 0.369 0.277 0.103 0 0 0.215 0.161
AKR 0.500 C 19 38 0.526 0.889 5.500 1 2 1 1 0.200 0.526 0.263 0.100 0 0 0.313 0.157
AM1 1.000 C 37 37 0.757 0.778 3.250 2 3 1 1 0.071 0.243 0.243 0.071 0 0 0.273 0.273
AM2 1.000 C 34 34 0.265 0.440 9.333 6 1 1 1 0.111 0.353 0.353 0.111 0 0 0.226 0.226
AW W 1.000 A 23 23 0.609 0.889 3.250 5 9 5 5 0.643 0.739 0.739 0.643 0.75 0.75 0.755 0.755
CCX 0.750 C 38 50.67 0.868 0.600 2.667 1 5 1 1 0.152 0.211 0.158 0.114 0 0 0.218 0.164
DEX 1.000 A 11 11 0.364 0.714 3.333 2 4 1 1 1.000 0.818 0.818 1.000 0 0 0.633 0.633
DHM 1.000 A 7 7 0.429 0.500 5.000 2 2 1 1 0.667 0.571 0.571 0.667 0 0 0.435 0.435
GCS 1.000 B 151 151 0.563 0.742 3.640 9 9 9 9 0.106 0.384 0.384 0.106 0.75 0.75 0.496 0.496
GDX 1.000 C 52 52 0.577 0.500 3.200 1 5 1 1 0.167 0.308 0.308 0.167 0 0 0.244 0.244
GRL 1.000 A 23 23 0.609 0.889 2.500 7 7 7 6 0.500 0.652 0.652 0.500 1 1 0.76 0.76
HMX 0.000 D 145 ##### 0.000 0.368 ##### 22 0 1 0 0.000 0.510 0.000 0.000 0 0 0.092 0
LDN 1.000 A 13 13 0.538 0.833 3.000 4 4 2 2 0.571 0.692 0.692 0.571 0 0 0.524 0.524
LKN 0.125 D 44 352 0.068 0.073 ##### 2 2 1 0 0.667 0.273 0.034 0.083 0 0 0.048 0.006
MBX 1.000 B 81 81 0.680 0.852 2.625 7 5 5 3 0.091 0.333 0.333 0.091 0.75 0.25 0.444 0.444
MRT 0.000 D 24 ##### 0.000 0.478 ##### 6 0 1 0 0.000 0.458 0.000 0.000 0 0 0.12 0
MSG 0.188 D 16 85.33 0.875 1.000 2.000 1 2 1 1 0.143 0.250 0.047 0.027 0 0 0.268 0.05
NDG 0.875 C 21 24 0.762 0.800 2.667 1 3 1 1 0.188 0.333 0.291 0.165 0 0 0.314 0.275
NSG 1.000 B 49 49 0.694 0.800 2.875 6 7 6 6 0.206 0.388 0.388 0.206 1 1 0.599 0.599
RAH 1.000 B 23 23 0.609 0.667 4.000 3 2 3 3 0.214 0.391 0.391 0.214 0.25 0.25 0.381 0.381
SKX 1.000 C 27 27 0.704 0.750 3.667 2 3 2 1 0.158 0.333 0.333 0.158 0 0 0.31 0.31
SRJ 1.000 A 11 11 0.545 0.600 2.667 3 6 3 2 1.000 0.818 0.818 1.000 0.25 0 0.636 0.636

Page 1

Subject Cohort B - River Problem Results
sp N steps No cr cpi asc sloe srn si St rpi tpi rtpi rrpi si' St' Mark sp*mark

AGX 1 C 24 24 0.458 0.692 3.6 4 3 1 1 0.273 0.5 0.5 0.273 0 0 0.366 0.366
AH2 0 D 20 ##### 0 0.632 21 3 0 1 0 0 0.6 0 0 0 0 0.158 0
AL1 0.188 D 29 154.7 0.069 0.462 28 3 1 4 3 0.5 0.483 0.091 0.094 0.25 0 0.193 0.036
APX 0 D 11 ##### 0 0.2 12 1 0 1 0 0 0.273 0 0 0 0 0.05 0
AS2 0.125 D 35 280 0.143 0.552 8.5 4 1 1 0 0.2 0.486 0.061 0.025 0 0 0.159 0.02
AWM 0.5 C 85 170 0.424 0.469 6.4 5 5 5 4 0.139 0.376 0.188 0.069 0.5 0.25 0.275 0.138
BBX 0 D 41 ##### 0 0.6 42 2 0 1 0 0 0.585 0 0 0 0 0.15 0
CCX 0 D 66 ##### 0 0.169 67 2 0 1 0 0 0.303 0 0 0 0 0.042 0
CMX 0.688 B 66 96 0.47 0.771 4.182 2 4 2 2 0.129 0.47 0.323 0.089 0 0 0.296 0.203
CPX 0 D 78 lill ii il II 0 0.403 79 5 0 1 0 0 0.397 0 0 0 0 0.101 0
CTX 0.063 D 63 1008 0.127 0.333 14.75 9 1 1 0 0.125 0.302 0.019 0.008 0 0 0.09 0.006
DC1 0 D 34 l lll IIIIII 0 0.212 35 1 0 1 0 0 0.294 0 0 0 0 0.053 0
DTX 0 D 26 ##### 0 0.44 27 2 0 1 0 0 0.423 0 0 0 0 0.11 0
JAC 0 D 46 ##### 0 0.422 47 4 0 1 0 0 0.413 0 0 0 0 0.106 0
JAM 0 D 17 m m ii 0 0.5 18 1 0 1 0 0 0.471 0 0 0 0 0.125 0
JF2 1 B 116 116 0.569 0.64 4.125 6 9 5 5 0.136 0.353 0.353 0.136 0.5 0.5 0.407 0.407
JHX 1 B 50 50 0.26 0.622 8.4 6 3 6 5 0.23 0.52 0.52 0.23 0.75 0.5 0.499 0.499
JPK 0 D 19 IIII It II It 0 0.444 20 1 0 1 0 0 0.421 0 0 0 0 0.111 0
KDX 0.5 C 37 74 0.514 0.5 7 6 3 1 1 0.158 0.378 0.189 0.079 0 0 0.192 0.096
KLX 0.438 C 32 73.14 0.469 0.706 4.4 4 4 1 2 0.267 0.5 0.219 0.117 0 0 0.26 0.114
MH1 0.063 D 31 496 0.484 0.813 3.67 2 1 1 0 0.067 0.452 0.028 0.004 0 0 0.211 0.013
MNX 0.188 D 32 170.7 0.781 1 2.167 2 3 2 2 0.12 0.313 0.059 0.023 0 0 0.27 0.051
MP2 0.75 C 24 32 0.042 0.522 24 1 1 1 1 1 0.541 0.406 0.75 0 0 0.419 0.315
MWX 0.063 C 19 304 0.053 0.667 19 1 1 1 0 1 0.684 0.043 0.063 0 0 0.193 0.012
PDX 0.938 B 139 148.3 0.489 0.69 3.95 9 11 10 8 0.162 0.432 0.405 0.152 0.25 0.75 0.437 0.409
PLX 1 B 66 66 0.343 0.628 4.909 10 7 6 5 0.304 0.515 0.515 0.304 0.75 0.5 0.518 0.518
RHX 0 D 31 ##### 0 0.4 32 2 0 1 0 0 0.387 0 0 0 0 0.1 0
SB1 0.125 D 130 1040 0.038 0.25 26 5 1 1 0 0.2 0.282 0.035 0.025 0 0 0.078 0.01
SH1 1 B 155 155 0.27 0.531 7.64 11 6 11 10 0.143 0.426 0.426 0.143 0 0.25 0.306 0.306

Page 1

Subject Cohort B - Tennis Problem Results
sp N steps Nc cr cpi asc sloe srn si St rpi tpi upi rrpi

AGX 1 21 0.524 0.5 3.5 7 5 5 2 0.455 0.476 0.476 0.455
AH2 0 0
AL1 1 31 0.065 0.379 15.5 4 2 1 1 1 0.419 0.419 1
AW M 1 81 0.358 0.558 6.78 4 5 3 2 0.172 0.42 0.42 0.172
BBX 0.667 59 0.017 0.526 30 3 1 2 2 1 0.525 0.35 0.667
bmx 1 9 0.444 0.8 2.67 3 2 2 2 0.5 0.667 0.667 0.5
CMX 1 29 0.31 0.65 5 2 3 2 1 0.333 0.552 0.552 0.333
CPX 1 44 0.114 0.436 14 1 3 1 2 0.6 0.477 0.477 0.6
CTX 0.833 97 0.237 0.575 6.692 9 3 5 6 0.13 0.463 0.386 0.108
DC1 1 22 0.727 0.833 4 2 5 2 3 0.313 0.455 0.455 0.313
DTX 0.833 44 0.432 0.625 3.27 4 4 4 5 0.21 0.432 0.36 0.175
gfx 0 31 0 0.366 32 2 0 1 0 0 0.355 0 0
JAC 0 12 0 0.545 13 1 0 1 0 0 0.5 0 0
JAM 1 59 0.22 0.644 7.57 6 6 5 5 0.461 0.593 0.593 0.461
jf1 1 27 0.185 0.571 8.33 2 3 1 1 0.6 0.556 0.556 0.6
JHX 1 98 0.326 0.606 4.67 10 6 9 9 0.188 0.47 0.47 0.188
JPK 0.833 38 0.342 0.64 4.125 4 4 3 4 0.308 0.526 0.438 0.257
jsx 0.5 29 0.483 0.643 3.5 4 3 2 2 0.214 0.414 0.207 0.107
KDX 1 117 0.598 0.702 3.611 13 5 14 14 0.071 0.325 0.325 0.071
KLX 1 42 0.357 0.519 5.5 3 4 2 3 0.267 0.429 0.429 0.267
MNX 0 56 0 0.255 57 1 0 1 0 0 0.25 0 0
MP2 1 27 0.592 0.727 2.833 21 2 2 2 0.125 0.37 0.37 0.125
MW X 1 60 0.233 0.521 12.5 2 2 2 3 0.143 0.433 0.433 0.143
PDX 1 34 0.411 0.75 4.333 3 6 3 3 0.428 0.618 0.618 0.428
PLX 1 105 0.362 0.597 6.153 7 3 5 6 0.131 0.429 0.429 0.131
RHX 1 85 0.541 0.59 4.9 4 5 7 6 0.109 0.329 0.329 0.109
SB1 0.5 28 0.571 0.75 3 3 3 1 1 0.188 0.429 0.215 0.094
SH1 1 114 0.096 0.422 15.7 6 3 6 6 0.273 0.404 0.404 0.273
tbx 1 11 0.455 0.5 4 2 3 2 2 0.6 0.545 0.545 0.6

Page 1

Subject Cohort C - Traffic Problem Results
sp N steps Nc cr cpi asc sloe sm si St rpi tpi rtpi rrpi

BHX 1 3 8 8 0.875 1 2 2 4 1 1 0.571 0.625 0.625 0.571
CHW 1 3 71 71 0.042 0.456 35 8 2 1 1 0.667 0.464 0.464 0.667
DAS 1 3 6 6 0.667 1 2 1 1 1 1 0.25 0.5 0.5 0.25
dhx
DJN 0.063 4 52 832 0.173 0.429 9.6 3 1 1 0 0.111 0.365 0.023 0.007
DSX 1 2 128 128 0.625 0.583 4 6 8 7 6 0.1 0.281 0.281 0.1
fsx
GTW 1 1 46 46 0.326 0.613 5.429 4 2 1 1 0.133 0.457 0.457 0.133
IRC 0 4 11 ##### 0 0.4 12 1 0 1 0 0 0.364 0 0
JDG 1 3 42 42 0.405 0.56 13.5 1 5 1 1 0.294 0.5 0.5 0.294
JLM 1 3 71 71 0.056 0.462 68 6 3 1 1 0.75 0.479 0.479 0.75
JMM 1 3 40 40 0.175 0.485 34 7 4 1 1 0.571 0.5 0.5 0.571
MBX 1 2 66 66 0.212 0.481 18.33 9 3 2 1 0.214 0.439 0.439 0.214
MDX 0.063 4 12 192 0.167 0.222 11 1 1 1 0 0.5 0.25 0.016 0.031
MEM 1 2 34 34 0.059 0.5 33 7 1 2 1 0.5 0.5 0.5 0.5
MGP 1 3 37 37 0.541 0.824 5.25 3 4 1 1 0.2 0.486 0.486 0.2
NGS 0 4 21 ##### 0 0.15 22 5 0 1 0 0 0.286 0 0
PGX 0 4 14 ##### 0 0.385 15 3 0 1 0 0 0.429 0 0
RD4 1 2 43 43 0.186 0.257 36 4 3 2 1 0.375 0.349 0.349 0.375
RED 1 2 45 45 0.289 0.594 17 8 5 3 1 0.385 0.533 0.533 0.385
RTX 0.063 4 59 944 0.051 0.393 29 4 1 1 0 0.333 0.39 0.024 0.021
SHX 1 2 61 61 0.689 0.737 4.167 6 7 3 4 0.167 0.344 0.344 0.167
TDD 0 4 11 ##### 0 0 12 2 0 1 0 0 0 0 0
TMA 1 3 52 52 0.712 0.8 2.5 1 3 1 1 0.081 0.288 0.288 0.081

Page 1

Subject Cohort C - Tyre Problem Results
sp N steps Nc cr cpi asc sloe srn si st rpi tpi rtpi rrpi

BHX 1 28 0.607 0.636 4.667 3 4 4 4 0.294 0.428 0.428 0.294
CHW 0.875 42 0.429 0.583 5.8 3 3 4 4 0.167 0.404 0.354 0.146
DAS 0 29 0 0.321 30 1 0 1 0 0 0.31 0 0
dhx 0.25 20 0.45 0.4 6.5 1 2 1 0 0.222 0.3 0.075 0.056
DJN 0.25 37 0.054 0.542 18.5 3 1 1 0 0.5 0.541 0.135 0.125
DSX 1 20 0.45 0.727 6.5 3 3 3 1 0.333 0.55 0.556 0.333
fsx 1 10 0.6 0.75 3 2 2 2 2 0.5 0.6 0.556 0.5
GTW 0 0
IRC 0.875 32 0.313 0.727 12 1 4 1 1 0.4 0.625 0.547 0.35
JDG 0.875 70 0.371 0.704 5 4 3 5 4 0.115 0.486 0.425 0.101
JLM 1 65 0.507 0.688 5.571 5 6 5 5 0.182 0.431 0.431 0.182
JMM 1 49 0.429 0.714 3.8 5 6 5 6 0.286 0.531 0.531 0.286
MBX 0 46 0 0.266 47 2 0 1 0 0 0.261 0 0
MDX 1 28 0.321 0.631 4.8 5 3 4 3 0.333 0.536 0.536 0.333
MEM 0 12 0 0.364 13 1 0 1 0 0 0.333 0 0
MGP 1 21 0.762 1 2.25 2 2 2 2 0.125 0.333 0.333 0.125
NGS 0.25 87 0.287 0.387 6.636 4 1 1 0 0.04 0.287 0.072 0.01
PGX 0.125 36 0.111 0.548 11.67 2 1 1 0 0.25 0.5 0.063 0.031
RD4 0.75 154 0.37 0.525 5.042 8 5 5 5 0.088 0.363 0.272 0.066
RED 1 53 0.604 0.809 5.2 2 5 4 2 0.156 0.415 0.415 0.156
RTX 0 0
SHX 1 27 0.629 0.8 3 2 3 1 1 0.176 0.407 0.407 0.176
TDD 0.25 23 0.087 0.6 8 2 1 1 0 0.5 0.565 0.141 0.125
TMA 0 0

Page 1

Quality and Novice Programmers.

Appendix C.

Lund, G.R. 1995. The Program Development Process. In Innovations in Computing
Teaching. SEDA Paper 88.
Lund, G.R. 1995 Controlling Plagarism in Student programs ESI: Proceedings o f 3rd.
Annual Conference on the Teaching o f Computing. 29th August - 1st September,
Dublin, Ireland.
Lund, G.R., Elder, L., Natanson,L.D., and Miller, C.J., 1997 The Importance of
Process In: Proceedings o f 5th. Annual Conference on the Teaching o f Computing.
6th “29th August Dublin, Ireland.

Title: L h e p r o g r a m d e v e lo p m e n t p r o c e s s

Authors: Q eoff L u n d

Institution: U niversity o f ABertay Dundee

General
Computer Science & Programming
Information Systems
Computer Literacy

Characteristics of the
Teaching & Learning
Strategy
Project
Laboratory
Work experience/
field work
Feedback to student v /
Student-centred learning
Ownership of learning
CAL
Peer assessment
Self assessment
Group teamwork
Written presentation
Oral presentation
Video presentation
External links/industry
Credit acc. & transfer
Profiling/Dortfolios

The Problems Tackled

Increasing group size
Different Student
ability levels
Non-specialist subject
Motivation/variety
Relev ance/reali sm
Other learning issues
Teaching issues v '
Peer assessment
Self-assessment S
Curriculum issues
Other assessment issues > /
Financial resources
Human resources
Physical resources
Quality of contact time
Staff development

Transferable Skills and
Competences Developed

Self-responsibility
Independent learning
Groupwork/teamwork
Personal development
Time Management
Written communication
Oral presentation
Using information sources
Managing tasks and
solving problems
Numeracy
Information Technology

Innovations in computing teaching 87 SEDA Paper 88

1 1 T h e p r o g r a m d e v e l o p m e n t
p r o c e s s
Geoff Lund
U n i v e r s i t y o f A b e r t a y D u n d e e

Background

At universities throughout the country there is a large number of introductory programming courses
aimed at students studying BSc Computing or for a similar qualification. The aims of these courses
are written in course documents and many are similar to those at the author’s university. These are:

‘To provide students with an understanding and p ra c tica l experience o f the produ ction and
maintenance o f software im plem ented in a h igh-level language to m eet the user requirem ents'.

To achieve these aims we present programming courses in a variety of ways. However, many of these
courses aresimilarin the mannerin which they are presented, with alecture coursepluspracticaltime
allocated to enable the student to write programs. A number of programs will be submitted for
assessment throughout the course. We expect these programs produced by our students will:

meet user requirements
be developed using good programming practice
exemplify good programming style.

Traditionally, lecturers assess course work by assessing the quality of the final code and how well
it meets the specification given. Students hand in their code with some output and this is used as the
basis of our assessment. We do not usually assess the method of achieving the final product. Perhaps
there is an assumption that a good program has evolved from a good programming method. Today
there is evermore emphasis on quality in all organisations. One aspect of quality is based on the
premise that to produce a quality product one needs to set up a quality process. We, as university
teachers, assess the quality of the product and assume that the quality of the process to achieve the
product was as good. This is not an acceptable solution. Thus there is a need to teach and assess the
programming process.
In this paper the author will describe attempts to examine and assess the programming process.

Innovations in computing teaching 89 SEDA Paper 88

The program d ev elop m en t p r o c e ss

The program m ing process

Faced with a problem, how do we go about writing a program to solve it? As an illustration consider
the following example taken from a first year programming course.
Problem:
W rite a program that p rocesses rainfall records throughout Scotland. There are 30 sites used to
m easure the rainfall every day fo r a fo u r w eek perio d . The program should calcu late the average
rainfall a t each s ite , average rainfall each day and the overa ll average. The data is to be read fro m
a f ile . Each input line consists of:

day number site number rainfall amount
There are a number of sub problems contained in the main problem. The student has to:

Read the file
Calculate the average of each site
Calculate the average for each day
Calculate the overall average
Output the results

One way to write the program is to use pseudocode to express the solution to the problem in a top-
down manner. The student will work at getting a fully worked design before attempting any coding.
The design will then be coded and tested. Any test failures will result in the student altering the code
until success is achieved. This is a traditional design first method of working which is suggested by
many text books. A second way to solve this problem is to think about the sub problems and, design
and code them in turn. Hence the student may initially concentrate on reading the file successfully,
then design and write code to allow the average for each site to be calculated. On success, attention
will be focused on averaging the daily rainfall. The subprograms are tackled one by one until the
whole problem is solved. This incremental development method has a number of advantages over
the first method namely:

1. Students often cannot be bothered with designing programs using pencil and paper and
equate programming with typing into the computer. With incremental development
they can legitimately type in earlier in the development.

2. By adding to a solution, the position in the code where an error occurs is narrowed down
to the new code added rather than anywhere in the program.

3. The student can focus on smaller sub problems which are intellectually easier to
manage.

Software engineering is different to most other engineering disciplines, civil or mechanical, in that
you do not need a fully working design prior to starting to build the product. It is very useful to be
able to part build a program prior to designing the rest of the program - something not available to

Innovations in computing teaching 90 SEDA Paper 88

The program d evelop m en t p r o c e ss

the rest of the engineering community. It is this second method of incremental development that is
used as the model for program development in this paper.
As an aside, focusing on incremental development in this way may produce a different program than
if a fully worked design is carried out prior to any coding. In the sample problem above, using
incremental development would inevitably lead to storing the data in a two dimensional array,
whereas the traditional design first method could lead to a program where the raw data is not stored.
Measuring the programming process

Students are not going to log how they went about tackling the program accurately unless there is
something in it for them. Moreover if they know they are being assessed on how they achieve the
final result they will tend to record their progress selectively. The lecturer could record how well the
student is progressing but lecturer time is only finite and developments outside class time will go
unrecorded. Hence we are left with trying to record the progress of the student automatically. To do
this we need to interact with the programming process. At the author’s university and a number of
others, programming is taught using TURBO PASCAL, which provides an integrated editing,
compiling and run system which is much better than the separate editor and compiler available on
many mainframe computers. It is not realistic to add items to the TURBO PASCAL system itself and
it would be stupid to try to write our own integrated environment To monitor the programming
process we must build some software that the students will use regularly throughout the development
of the program. The software must give the students something extra that TURBO PASCAL does
not A test monitor has been built that allows student to run their programs through a set of test data.
The students now have an easy way of testing their programs. This monitor provides the student with
a report indicating which tests have passed and which have failed. At the same time as testing the
program for the students, the program copies the student’s program for later analysis by the lecturer.
The lecturer now has available a number of versions of the students program. If the student uses a
good programming method then the program will grow in size and function as the student puts in
more detail until the final program passes all the tests. The size of the program can easily be measured
by counting the number of lines of code (ignoring blank lines and comments). The function of the
program can be measured by counting the number of tests passed. A weak student, one that does not
develop the program systematically, would have a more erratic development method. The code may
not increase with time but may reduce in size at certain time indicating an attempt at a solution that
did not work and was discarded. Weaker students may also fail tests which were previously passed
indicating problems with the program development.
Once the programs have been submitted for assessment an analysis is made from the different
versions of the programs. The analysis shows a series of number pairs indicating the number of lines
of code and number of tests passed. From this the marker can give mark the process carried out by
the student The programs submitted for assessment have three components to their marks, one
assesses the correctness, the second assesses the quality of the final product and the new component
assesses the development method.

Innovations in computing teaching 91 SEDA Paper 88

The program d evelop m en t p r o c e ss

The author has used this method in a number of experiments with one group of first year students.
The results are useful in showing which students develop their program well and which do not
However there are a number of problems which are discussed below.
Discussion of problem s with exam ining program m ing
process

There are a number of problems highlighted by this method:
Picking suitable examples. When a program is tested there must be an easy way to find out if the
test has been successful or not. The best examples for this type of analysis are those that calculate
a distinctive number or numbers. To find if the program is correct is simply a matter of searching
through the output for the distinctive string. The example given above falls into this category; for
example, data can be chosen to give different averages for each calculation. Programs where layout
(reports) or order (sorting programs) are important are not so amenable to analysis.
Measuring the process. At present the measures of the process are crude, especially counting the
number of tests passed. Even good students make mistakes and sometimes fail tests that have
previously been passed thus causing their progress to look erratic. Focusing on the number of tests
passed can mask some bad practice. A student may pass the test they are trying to achieve but in the
process fail a previously passed test This is masked when the number of tests is taken as the measure.
An alternative could be to use the easiest test failed but this causes problems of how to order the tests.
Choosing the tests. The lecturer must be very precise in the description of the problem to ensure no
misunderstanding in the students’ mind. If there is doubt about the structure of the test data then
students will be penalised for bad production process when in fact they misunderstood the problem:
The lecturer must also provide a set of test data to test the programs to be written by students. The
provision of such a set of data is not easy. The lecturer has to pick the tests from their knowledge of
the problem rather than knowledge of the program under test. It is relatively easy to pick tests that
would test the full working system but the lecturer also has to provide tests to test part of the program
without making assumptions concerning the order of program development for the student. The
authortried to order the tests from easy to hard and found that the students ’ ordering of the tests would
not have been the same. Different solution methods will find different parts of the problem easier to
pass. A full test suite testing every statement in the solution cannot be provided, but indicative tests
are chosen that ensure a reasonable coverage of the problem space. Students can ‘fix’ the results if
they know what data is being input hence some variation in the actual numbers in the test data through
the development process is needed.
Looking at the whole process. The method described in this paper allows the lecturer to find
information about how the student produced the program. The student will however have made many
attempts at compiling the program and perhaps run the program a few times on their own data prior
to trying to pass the lecturer’s tests. Hence the data collected only looks at the final stages in the
development of the program. Investigations are being made into how data can be collected
. throughout the whole development process.

Innovations in computing teaching 92 SEDA Paper 88

The program d ev elop m en t p r o c e ss

Objective marking needed. The results from the analysis of the different versions of. a student’s
program are examined subjectively by the lecturer and translated into a marie. It would be much better
if an objective marie, an ‘extent of development’, could be gained from the data. This could then easily
be translated into a grade.
Correctness measure achieved for free. Using this method of working has a couple of advantages
not related to the measurement of process. Firstly the lecturer has the test results of all programs in
a standard way thus allowing him to mark how correct the program is. Secondly as there is a full
history of the program as developed, there is less opportunity for a student to copy another’s work.
The lecturer can be sure that the work done is the students’ own.
Conclusions

Traditionally, when marking studentprograms the assessment is based on the quality of the final code
and the correctness of the product This ignores an important aspect of programming, namely the
programming process. How did the student achieve the final result? This paper discussed a way in
which the development process can be examined. When students submits their final program for
marking, three components of the mark are given: one marking the programs correctness, one
marking the quality of the final product and one marking the development process.The development
process for a program must be examined to allow a lecturer to assess how a student achieves the final
program. To do this in a cost-effective way means that the data collection must be done automatically.
This paper describes an experiment in which the students have access to a test monitor that tests their
programs, reporting on the results. As part of its task the test monitor takes a copy of the program
under test for later analysis. Thus on submission the lecturer has a full version history of the program.
Each version of the student program is measured for size, lines of code, and correctness, and how
many tests were passed. These measures are transformed into a mark indicating how well the
program was developed. There are a number of limitations in the method described in this paper.
However, the overall aim of assessing the program development method used by a student is an
attractive idea.

Innovations in computing teaching 93 SEDA Paper 88

Controlling Plagiarism in Student Programs

G.R.Lund.
Department of Mathematical and Computer Sciences.

University of Abertay Dundee
Bell S t
Dundee

DD11HG

Correspondence should be addresses to:
Mr. Geoffrey Lund

Plagiarism/1

Abstract

In recent years there has been a move away from conventional exams as a means of assessing
programming courses towards coursework assessment The rational being that we need to
assess the students “doing” the programming rather than just talking about it. The exam
system has one large advantage over coursework, in that the lecturer can be assured of the
authorship of the work. Unfortunately we find that some of our students are not the sole
author of the work they submit to be assessed. A small amount of help from a fellow student
may be a good thing. However submitting another student’s work as their own is not
permitted. Dealing with students who have copied work is not a pleasant task for the lecturer
so we tend to avoid dealing with this important subject. This paper will discuss ways of
controlling plagiarism in student programs.
Plagiarism can be controlled in two ways. Assessments can be designed in such a way that the
lecturer can ensure the student did the work. Alternatively the lecturer can put in place a
mechanism to detect plagiarism.

Lecturers pride themselves in being able to detect pieces of copied work. Programs have a
fingerprint that a lecturer can detect by eye. There is usually some style anomaly or peculiar
method used that gives it away. When confronted with the lecturer’s suspicions of plagiarism
many students confess to copying. However some do not and it is incumbent on the lecturer
to prove their case. Proving plagiarism needs hard evidence, especially if it is to be brought
before an appeals board. Work in the late 1980s showed how software could be used to detect
plagiarism in programs. The software is not sensitive enough. It can detect plagiarism in more
obvious cases but can easily be confused by extra pieces of code.

. A better method is perhaps to develop courseworks that avoid the problem totally. One way
is to have some aspect of the coursework carried out under exam conditions. This is easier to
do for small programs and not suitable for large programs. An alternative method is to chart
the development of the program. By examining the coursework over a number of versions
some of which occur during class time the lecturer can be more convinced that the work is the
students own. These and other methods will be discussed in the paper.
Plagiarism is not a topic that lecturers wish to dwell on. By taking steps to combat plagiarism
we are in some way thinking ill of the students. However we all know that plagiarism exists
and any professional lecturer must consider the issue and put in place steps to control it.

Plagiarism/2

1. Introduction

A decade or so ago students were primarily assessed for their degree by examination. More
recently there has been a move towards coursework playing a more important part in student
assessment. The rational being that we need to see the students “doing” rather than just
talking about it The importance placed on coursework differs between universities with the
“new” universities usually placing more importance on coursework than the “traditional”
universities. Also the proportion of coursework used in the final examination tends to
decrease throughout the course. However the recent quality assessment of computing
departments in UK universities showed at least one university where coursework formed
60% of the honours degree mark, (Clare 1995).

One advantage of an examination over coursework is that the lecturer can guarantee that the
work done by the student is their own. Unfortunately we find that some of our students are
not the sole author of the work they submit to be assessed. A professional lecturer must
ensure that the coursework mark given to a student reflects their effort and ability and not the
effort and ability of a “friend”. This is often hard for the lecturer. Most good lecturers try to
build up a relationship between themselves and their students. The act of questioning the
authorship of a piece of work can be an unpleasant business and can destroy the trust
between lecturer and student. For this reason we should perhaps look for ways of avoiding
plagiarism rather than detecting it

Most plagiarism is easy to detect. Students hand in direct copies of their friend’s work. These
students do not understand the work and have no idea how to hide their naivety. More
sophisticated students may alter or add to another's work which makes the detection task
harder. When the work looks like a copy the lecturer must prove the copying. In the absence

. of an admission from the students this evidence must be able to stand up in an appeal
procedure. Hence we must have sound plagiarism detection systems if we are to ever combat
the plagiarism problem.
A second method is to devise student assessments that avoid plagiarism. These may be
individual tasks or controlled tasks where the lecturer can be sure of the authorship of the
piece of work.
This paper starts by discussing different levels of copying from direct copies of a friend’s
work to asking for help on a piece of work. A categorisation of copying is needed so that we
as lecturers can clearly state what is and what is not allowed. Once we understand what
plagiarism is a lecturer needs a clear policy regarding what happens if plagiarism occurs. This
is discussed next in the paper. The paper then deals with the different methods of plagiarism
detection and finally goes onto discuss assignment methods that avoid plagiarism.

The paper concentrates on plagiarism in programming course works although some of the
Plagiarism/3

ideas may be useful in other areas.

2. Levels of copying.
Not all copying is bad. Two or more students may work together on a problem and produce
similar work to which they have all cooperated. Most lecturers would agree that this is an
acceptable way of working for students who cannot solve the problem themselves. At the
other end of the scale, a student getting someone else to do the work would not be acceptable
to most lecturers. Below is presented a scale of copying:

1. Identical copy: This can be the work of another student that has been stolen and
retyped with only a change of name, or another student may do the work for some
reward (financial or otherwise). Solutions may also be bought from more
experienced programmers.

2. Duplicate work: The work is altered using the editor, perhaps the layout is
altered, or some variable names, but essentially the structure of the program is
unaltered.

3. Additions: A program is taken, perhaps not fully working, and altered by adding
to the program. This could be extra procedures, different report layouts but in
some way adding to the program but keeping to the overall structure.'

4. Rebuilding. This is where a student takes another’s program and alters it
significantly so that the structure of the program is altered.

5. Collaboration. This is where a group of students .work together on a program
producing similar programs with each student participating.

6. Help. This is where a student may ask another student for some help on a small
part of the program but has devised the overall structure themselves.

7. Solo: The student has done all the work themselves.

What is fair and what is not? The author suggests that level 1 and 2 are not acceptable as the
student is trying to get credit for someone else’s work. Level 3, 4 and 5 would be acceptable
is the student acknowledged the help from their colleagues. Level 6 and 7 is acceptable.
Another way to look at the classification is to note the difference between level 3 and level 4.
Level 3 and lower levels of copying indicate that the student did not produce the overall
design of the program themselves. They have copied the structure from another program. If

Plagiarism/4

we were to draw structure charts of the two programs they would be similar in nature. In
level 4 and above the structure charts of the two programs would be different. This indicates
that the student has given some thought to the overall structure and has obtained help in the
detail which is arguably better.

3. Plagiarism Policies.

The classification above allows a lecturer to present to a student a policy regarding the
authorship of work. The need for such a policy was identified by Shaw(1980). This policy
should cover:

1. What is acceptable working together
2. What is unacceptable
3. How plagiarism is to be detected
4. What action is to be taken following detection of unacceptable plagiarism.

The author uses the following rules which are similar to those distributed with Ceilidh
(Benford et. al. 1993):

1. Handing in a piece of work with your name on is an indication that the work is
solely the work of the author. If this proves to be incorrect disciplinary action will
take place.

2. Plagiarism includes copying a program or part of a program from a book, or
another student with or without their knowledge. If work has been copied the
original author must be acknowledged and the mark will be adjusted accordingly.
No further action is taken if you acknowledge where the original came from.

3. Working in groups to create a single program that is submitted as your own is
unacceptable.

4. Students can discuss the problems with their peers. Discussions about the
algorithm used or data structure used are acceptable and indeed encouraged.
However you must not copy the structure of your program from another. Asking
for help on some small detail of the program is again acceptable.

5. If a lecturer suspects group working he will mark the work once and divide this by
the number of students in the group. These students will be asked to meet the
lecturer to discuss the work where a fairer distribution of marks may take place.

6. Outright copying will result in a mark of 0% being entered and disciplinary
Plagiarism/5

measures taken in accordance with the examination regulations.
Crucial to the effective working of a plagiarism policy is a mechanism for the lecturer to
detect plagiarism when it occurs. The majority of students will work fairly within these rules.
There will however be some students who try to “cheat” and gain credit for work that is not
their own. To be fair to the majority as well as keep up the university’s standards we must be
able to detect or control plagiarism. This is discussed below.

4. Controlling Plagiarism.

Most lecturers would wish to initiate methods that limit plagiarism. There are two
possibilities, plagiarism can be detected when it occurs or avoided by using assessment
techniques that rule out plagiarism. The latter, avoidance, keeps in tact the relationship
between the lecturer and the student. The marking is simpler in that the lecturer is confident
they are marking the students own work, however setting of assessment is harder and more
limited in nature.

If no avoidance methods are used the marking must check the similarity between programs,
various detection methods have been discussed in the literature, (Donaldson et. al. 1981, Grier
1991, Jankowitz 1988, Whale 1990, Wise 1992) and are discussed below. However these
methods are not fool proof and errors occur. If a lecturer accuses a student of copying and
they have not the student loses faith with the lecturer, course and university and in extreme
circumstances may resort to law. If plagiarism is not detected then students will have marks
awarded to which they are not entitled.

Plagiarism exists and must be tackled. However lecturers are often busy hence methods of
detecting or avoiding plagiarism cannot be too time consuming in staff time. The next sections
discuss various practical methods of plagiarism detection and avoidance.

5. Detection of plagiarism.

Methods for detection of plagiarism are based on software metric work. Simple systems are
based on counting significant features of the program and the use of Halstead's metrics
(Halstead 1977). These techniques do not pick up and more than level 1 and 2 plagiarism,
hence if a student adds bits to a program they will not be found out. Recent work by
Leach(1995) highlights a method of using Halstead’s metrics, complexity measures and counts
of coupling types which he claims to work well. Work by Jankowitz(1988) aimed to find
plagiarism at higher levels by building a static execution tree for programs and comparing
these. Earlier in this paper the author suggested that changes in structure of a program were
key to deciding whether plagiarism has occurred or not. Techniques such as discussed by

Plagiarism/6

Jankowitz are needed to allow this discrimination to be made.

The plagiarism detection system should be a two stage process. Stage one is to use the
software to detect plagiarism as discussed above. The second stage in the detection system
would be for the lecturer to instigate a discussion with the students to see if they know how
the program works, why certain features were used etc. In the authors experience these
discussions usually show who has done the work if it was a group effort or who copied if the
programs are direct copies. The evidence gained in these two stages can be used to
redistribute marks between students who worked in a group or initiate any disciplinary
procedures necessary.
Any plagiarism detection system may show up plagiarism when it does not occur and not
show plagiarism when it does occur. Minimising these errors is an essential part of the
detection system. If a class of 100 students are all given the same piece of work to do then it
is likely that independently a number will use the same algorithms and produce similar code.
The second stage of the detection process is designed to show which students have worked
independently even though they may gain a similar final program.
Students who are not found out by the detection method may feel a sense of relief at being
allocated a mark when little effort was put in. These students are often known to their
colleagues who feel resentment at getting perhaps a lower mark despite putting in a lot of
effort. It is for these students that any detection system must be extremely accurate. It is
argued by Leach (1995) that just the knowledge that there is a plagiarism detection system is
sufficient to cut down dramatically the amount of plagiarism occurring.

It can be argued that if a student conceals the copying so well that the lecturer cannot detect
the plagiarism they must have put some work into the program. To do this they must have
understood the program they were altering and perhaps deserve to pass!

6. Avoidance of Plagiarism

Whereas detection of plagiarism involves some automatic analysis of the finished product,
avoidance techniques must be included in the assessment at the beginning. There are two
distinct avoidance techniques. One is to conduct the assessment in some controlled manner
similar to an examination. In this way the lecturer is totally convinced of the authorship of the
work but the assessments are limited in scope and may lead to examination fear in some
students. The other avoidance technique is to give different work to each student thus
illuminating any option of copying but not of another person doing the work for the student.
The simplest avoidance technique is an examination. However as was stated earlier in this

Plagiarism/7

paper, examinations and coursework assess different features and the focus here is how do we
assess a student writing a program. Various different “examinations” are possible:

Class test: Students are asked to write a program in a 3 hour controlled
environment. This can really only be used with beginners where the program are
small.

Whole Day Test: A program is given to the students at the start of the day and
they are given all day (6-8 hours) to write a program to do the task. Programs
cannot be too large as there is a time limit of perhaps 8 hours. The technique may
work better if the task is to alter a program rather than write one from scratch but
this is testing a different skill. This technique is often used in engineering
disciplines to test design concepts.
Prepared tests: A coursework is given out two to three weeks prior to the class
test. The students are asked to write a program to solve some problem. They
bring their code along to the test where they are presented with another problem
similar in nature to the original, or an addition to the original and asked to write a
program to solve this new problem. This technique is similar to that discussed by
Tumer(1995).

The problem with examinations is that they are time limited. This causes stress to the
students. The examinations as discussed above rely on technology which can fail thus
invalidating the examination. Three further techniques can be used that are not time restricted:

Different coursework: Each student is given a different piece of coursework. This
is too difficult in large classes so perhaps a smaller number of pieces of work are
allocated amongst the class at random. The lecturer must ensure that all pieces of
work are equal in difficulty and length.
Super problem: Here a large problem is developed with a number of alternatives
From these alternatives an individual piece of coursework can be generated. The
advantages are that the students are working on the same super problem and can
discuss their work this gaining from group contact but no two students are writing
the same program and hence plagiarism is limited. This method is reported in Smith
and T omlinson(l 995).

Version Control: In this technique all the versions that a student goes through to
come to the final product are kept and analysed. An analysis of the versions can
tell how well the program was constructed which is an often neglected area of
assessment, Lund(1995). A side effect of this is that the lecturer can spot
plagiarism. For example if version 1 is identical to another students work, or, only

Plagiarism/8

1 version exists, or a totally different program is submitted from that which was
developed.

These techniques do not stop a student getting a friend to do the work for them. There is no
control that the student typing in code is the student whose name is on the piece of work.
This would have to be found from some other security system.

7. Conclusions.

This paper has discussed plagiarism and methods of avoiding or detecting plagiarism, the
issue of plagiarism must not be ignored if we are to reward students for their efforts and not
some one else’s effort. Several methods of plagiarism avoidance or detection have been
discussed. The author considers avoidance methods are better as they minimise the nastiness
that can ensue when a lecturer accuses a student of cheating. Avoidance techniques usually
involve more work in setting up the coursework.
The following steps should be taken by lecturers to deal with the plagiarism question:

1. Tell the students the acceptable and unacceptable levels of working together.
2. Inform the students of the disciplinary procedures that may occur if copying is

found
3. Plan the assessments so that plagiarism can be avoided and the lecturer is confident

the they are marking the students work OR
4. Put in place automatic plagiarism detection methods and a method to deal with the

results of the detection system.
If students know that the issue is being dealt with seriously they will respond positively.

Plagiarism/9

7. References.

Benford, S., Burke, E. and Foxley, E. (1993) ‘Learning to construct quality software with the
Ceilidh system’, S o ftw a re Q u a lity J o u rn a l 2, pp. 177-197.

Clare, J. (1995) ‘Universities fail to make the grade’, D a ily T e le g ra p h March 22. 1995 pl9.
Donaldson, J. L., Lancaster, A. M. and Sposato, P. (1981) ‘A Plagiarism Detection System’

S IG C S E B u lle tin 13,1, pp21-25.

Grier, S. (1981) ‘A Plagiarism Detection System’ S IG C S E B u lle tin 13, 1, pp 15-20.

Halstead, M. (1977) E lem en ts o f S o ftw a re S c ien ce , Elsevier North-Holland, New York.
Jankowitz, H.T. (1988) ‘Detecting Plagiarism in Student Pascal Programs’ T h e C o m p u te r

J o u rn a l 31, 1, ppl-7.
Leach, R.J. (1995) ‘Using Metrics To Evaluate Student Programs’ S IG C S E B u lle tin 27, 2,

pp41-48.
Lund, G. (1995) ‘The Program Development Process’ in Hart. J. (ed.) In n o v a tio n s in

C o m p u tin g T each in g SEDA Paper 88 pp. 89-93.

Shaw, M. (1980) ‘Cheating Policy in a Computer Science Department’ S IG C S E B u lle tin 12,
1, pp72-76.

Smith, M. and Tomlinson, A. (1995) ‘Copying and programming’ in Hart J. (ed.)
In n o va tio n s in C o m p u tin g T each in g SEDA Paper 88 pp. 105-109.

Turner, J. (1995) ‘Post-assessment testing in computing’ in Hart. J. (ed.) In n o v a tio n s in
C o m p u tin g T each in g SEDA Paper 88 pp. 129-136.

Whale, G. (1990) ‘Identification of Program Similarity In Large Populations’ T h e C o m p u te r
J o u rn a l 33, 2, pp 140-146.

Wise, M. J. (1992) ‘Detection of Similarities in Student Programs : YAP’ing may be
preferable to PLAGUE’ing’ SIG C SE B u lle tin 24, 1, pp268-271.

Plagiarism/10

The Importance of Process.

G R Lund, L Elder, C J Miller and L D Natanson
S c h o o l o f In form atics, U n ive rs ity o f A b e r ta y D u n d ee , B e l l S tree t, D u n d ee , D D 1 1 H G

ABSTRACT: T his p a p e r in v e s tig a te s h ow s tu d e n ts d e v e lo p co m p u te r p ro g ra m s . I t is a r g u e d
th a t the d e v e lo p m e n t p r o c e s s is e q u a lly a s im p o r ta n t a s the f in a l p ro d u c t. D a ta h a s b een
c o lle c te d d u r in g the d ev e lo p m e n t o f co m p u te r p r o g r a m s a n d th is i s u s e d to v iew the d e v e lo p m e n t
p r o c e s s o f n o v ic e s a n d experts. A n u m b er o f m e tr ic s a re p r o p o s e d th a t s e e k to tra c k the
evo lu tio n o f co m p u te r p ro g ra m s. These m e tr ic s a re a lso u s e d a s th e b a s is f o r c la s s ify in g
s tu d en ts in te rm s o f th e ir re la tiv e skill.

KEY WORDS: P ro g ra m m in g P ro cess , P ro g ra m A ssessm en t, N o v ic e P ro g ra m m e rs .

1. Introduction.
The teaching and assessment of computer programming is an important feature of most if not all
Computing and Software Engineering degree courses. Current educational practice in the
assessment of computer programs is based on appraising the final version o f a program. Features
such as programming style, correct use of constructs, complexity, efficiency and correctness are
assessed and weighted to give an overall grade, as in Ceilidh (Benford et. al. 1993)
By contrast the software industry has in recent years focused on the software process, i.e. how

■ the software is developed. Indeed the whole software engineering movement aims to improve the
software development process and by inference improve the final product. In introductory
programming education the process of actually producing software is given little emphasis; the
emphasis is primarily on the final product alone. A survey of a number of standard programming
text books indicates that little of each book deals with how the student is to create the program.
This paper is based on the premise that the process involved in producing a computer program is
a key feature in influencing the final product, as discussed in Lund (1994). The first step in
considering the program development process is to capture suitable data throughout the
development cycle. This paper describes such a system. The system has been used to collect data
from students and experts (staff) during the development of a computer program. Important
characteristics of both the students and the expert program development processes are discussed
here. The paper goes on to propose a number of objective measurements that can be used to
characterise features of the program development process. These measurements clearly
differentiate between classes of novice programmers.

2. Data Collection.
To investigate how a program has evolved a system must be put in place to capture data
throughout the development of the program. The simplest way is to capture the state of the
program at various times throughout its construction. A system has been written that captures
the program every time it is submitted to the compiler. The students involved in this study were
programming in Pascal using VAX/VMS. Instead of using the standard compile command the
subjects were given an enhanced version that compiled, linked and ran their program and, invisibly
to the students, copied programs to a safe place for later analysis. This method of data capture
did not interfere with or delay the development process and the authors could be confident that
the data was not corrupted by the capture method. Indeed the data capture method gave the
students a better interface to the VMS compiler which meant they would use the system.
Once all versions of the program were captured some analysis was carried out. A number of
counts were made from each program. These include the number of lines of code, comment lines
and counts of various Pascal key words. Each version of the program was compiled to find the
number of compilation errors. For those programs which compiled successfully a measure of
what proportion of the specification achieved was calculated by detailing a number of tests that
covered the whole specification and then counting how many of these were passed successfully.
At the end of this procedure each version of the program was reduced to a number of counts and
the change in these counts over the development period represented the program construction
process.

3. So how do students develop programs?
The data as collected and analysed were inspected to see if any useful information could be
gained. Graphs of number of lines of code against version number show the development of
programs in terms of the code added. A second set of graphs plots the number of tests passed
against version number. These graphs illustrate the progress made towards the final goal over
time.
The data indicates that many students had a large number, sometimes a very large number, of
versions. This suggests a wide variation in the programming technique. It also illustrates that the
students have commitment and energy which may not be correctly focused.
The strategy used by a student falls into one of three categories. One strategy used by students
was to build up programs in stages: adding code to build part of the specification and focusing on
this until completed before moving onto the next stage. A second strategy was to enter most of
the code prior to the program passing any tests. Those students following this strategy did not or
were not able to split the problem up but aimed at building towards a correct solution by
correcting the whole program. A few of students exhibited no strategy and made little if any
progress towards a fully correct solution. They were unable to correct their compilation errors
showing a lack of understanding of the programming language.

4. How do experts program?

• The number of versions of the program created by experts was less than students indicating an
expertise in the development of programs.

• Experts would build up their program in stages. Each stage building on the previous stage,
adding more code to satisfy more of the specification.

• Evidence of incremental development shows the ability to partition the problem into sub
problems.

• The number of versions that compile was high and those that do not compile had fewer errors
and were corrected in fewer attempts. This shows expertise in the use of the language.

These observations suggest that experts follow an incremental policy for developing programs.
This policy can be described using pseudo code as:

Understand the problem and identify a development plan
Repeat

Add code for next stage in development
Loop

Loop
Compile
Exit if no compiler errors
Correct compiler errors

End Loop
Run program
Exit if code satisfies stage of development
Update code to correct run errors

End Loop
Until full specification complete

This is the way experts program and it should be the aim for our students. The next stage in this
study is to find ways to identify deviation from this model and provide feedback to the students to
help them get back on track.

The same program was developed by a group of expert programmers (staff). The results were
analysed using the same method and graphs drawn. Observation of the development profile for
these programmers shows

5. Measurement of Process.
The authors wish to find measurements taken from the development process that give a mark of
quality for the process undertaken.
• The time or effort put into the development cannot easily be measured. The n u m b er o f

vers io n s taken to produce the final program will be used to measure the length of
development.

• Proficiency at using the language and correcting errors is measured by the c o m p ilin g r a t io , the
proportion of versions that compiled, and the c o m p ilin g p r o g r e s s in d ic a to r which is the
proportion of versions that had fewer compiler errors than previously.

• Proficiency at solving the problem is measured by the ru n p r o g r e s s in d ic a to r which is the
proportion of versions that satisfy more of the specification than previously.

• A measurement of how much of the development made progress towards the goal can be given
by calculating the to ta l p r o g r e s s in d ica tor. A version makes progress over a previous version

if there were fewer compilation errors or it satisfied more of the specification.
These metrics have been calculated for each subject in the study. Here, the metrics are validated
by subjectively categorising the subjects in the study and examining how well the metric
discriminates between the categories. Each subject is categorised as an expert (experienced
programmer who exhibits decomposition skills), novice (learner programmer who is capable of
producing a correct program) and beginner (learner who failed to write a correct program).
• The n u m b er o f v e rs io n s is capable of discriminating between experts and novices. Beginners

sometimes gave up early and are confused with experts.
• The c o m p ilin g r a tio distinguishes novices from beginners. Experts can be confused with

beginners as they tend to have fewer versions overall and fewer attempts at getting a stage of
the development correct.

• The co m p ila tio n p r o g r e s s in d ic a tio n fails to discriminate categories of subject.
• The ru n p r o g r e s s in d ic a to r discriminates between categories of subject except where novices

have few versions that compiled.
• The to ta l p r o g r e s s in d ic a to r discriminates between the three categories of subject.
This shows that the four metrics, n u m b er o f v e rs io n s , c o m p ilin g r a t io , ru n p r o g r e s s in d ic a to r ,
to ta l p r o g r e s s in d ic a to r , can discriminate between various groups of programmer. These metrics
provide the lecturer and student with evidence of how well the student develops programs and
feedback can be tailored accordingly. At the outset of this paper the authors put forward the view
that the way a student builds a program is an important aspect of programming skill. A
combination of these metrics suitably scaled as in Rees(1984), is capable of gauging how well the
student can build programs and hence used as a grade for assessment.

6. Summary
This paper has introduced the idea of assessing the program development process as well as the
final program. This is in line with current thinking on quality. A number of metrics have been
defined and calculated for a group of experts and students. From the experimental data there is
evidence that these metrics do indeed measure the program development process and might be
useful to compute objective gradings for individual students.
Further work that is currently being carried out includes:
• investigating the relationship between program development process and the final program

produced,.
• exploiting this relationship between process and product by introducing teaching methods

aimed at improving the students' program development process and thus their programs.
• using the metrics to provide feedback to the students during the development of their program.
Reference
Benford, S., Burke, E. and Foxley, E. 1993 Learning to Construct Quality Software with the
Ceilidh System. S o ftw a re Q u a lity J ou rn a l. 2, pp. 177-197.
Lund, G.R., 1994 The Programming Process. In: J.S. Hart and M. Smith, editors. In n o v a tio n s in
the tea ch in g o f C om pu tin g . Staff and Educational Development Agency (SEDA) Paper 88.
Rees, M.J. 19984. Automatic Assessment Aids for Pascal Programs. A C M S IG P L A N N o tice s .
17(10) pp. 33-42.

Quality and Novice Programmers.

Appendix D. - Programs and Scripts
Programs used in the data collection and analysis.
PC.VMS
C n tL n 2. cpp
PRIV.VMS
M e t r ic . cpp

VMS script to capture the versions of the programs.
C++ program to analyse a single program.
VMS Script to control the analysis of a whole PSDP.
C++ program to calculate the potential process metrics for a single
program development

PC. TXT

$! T o c o p y f i l e s f o r f u r t h e r a n a l y s i s a n d t o im p r o v e t h e R i v e r
$! P a s c a l C o m p i l e a n d R u n s y s t e m .
$! W r i t t e n B y G . R . L . M a r c h 1 9 9 5
$ 1 A m e n d e d f o r R i v e r G . R . L . N o v 1 9 9 5 .
$!$!$!
$! C h e c k t h a t a p a r a m e t e r e x i s t s
$ i f p i . n e s . " " t h e n g o t o c o n t i n u e l
$ w r i t e s y s $ o u t p u t " P a r a m e t e r m i s s i n g "
$ e x i t
$!1!
$ c o n t i n u e l :
$! T o g e t t h e i m p o r t a n t b i t o f t h e u s e r n a m e i n n a m e
$ u s e r n a m e = f $ u s e r ()
$ x = F $ LO C A T E (" , " , u s e r n a m e)
$ y = F $ L O C A T E ("] " , u s e r n a m e)
$ l e n = y - x - 4
$ n a m e = F $ E X T R A C T (x + 4 , l e n , u s e r n a m e)
1!$!
$! F i n d t h e p r o j e c t n a m e
$ x = f $ l o c a t e (" . " , p l)
$ y = f $ l e n g t h (p l)
$ i f x . e q . y
$ t h e n
$ p r o j e c t = p i
$ e l s e
$ p r o j e c t = f $ e x t r a c t (0 , x , p l)
$ e n d i f
$!i!
$! C h e c k s o u r c e f i l e e x i s t s
$ w r i t e s y s $ o u t p u t " C h e c k i n g s o u r c e f i l e e x i s t s "
$ s o u r c e n a m e = p r o j e c t * " . p a s "
$ f u l l n a m e = f $ s e a r c h (s o u r c e n a m e)
$ i f f u l l n a m e . n e s . " " t h e n g o t o c o n t i n u e 2
$ w r i t e s y s $ o u t p u t " S o u r c e d o e s n o t e x i s t "
$ e x i t
$!1!
$ c o n t i n u e 2 :
$! C o p y s o u r c e f i l e a c r o s s
$ x = f $ l o c a t e ("] " , f u l l n a m e)
$ y = f $ l o c a t e (" ; " , f u l l n a m e)
$ g e n n o = f $ e x t r a c t (y + 1 , 5 0 , f u l l n a m e)
$ f i n a l n a m e = " i n s : [c l . g l . s a f e] " + n a m e + p r o j e c t + g e n n o + " . p a s "
$ x f i l e = f $ s e a r c h (f i n a l n a m e)
$ i f x f i l e .N E S . " " t h e n g o t o c o n t i n u e 3
$ c o p y ' f u l l n a m e ' ' f i n a l n a m e '

P age 1

PC.TXT

$ s e t p r o t = (w : r d) ' f i n a l n a m e '
$!$!$1
$ c o n t i n u e s :
$ I C o m p i le s o u r c e f i l e
$ w r i t e s y s $ o u t p u t " C o m p i l i n g p r o g r a m "
$ s e t n o o n
$ d e f i n e / u s e r _ m o d e s y s $ o u t p u t q s v w d v e f v . r g v
$ p a s c a l ' s o u r c e n a m e ' / l i s t
$ s e t o n
$ e r r o r f i l e = f $ s e a r c h (" q s v w d v e f v . r g v ")
$ i f e r r o r f i l e . n e s . " " t h e n g o t o c o n t i n u e 4
$ l i n k ' p r o j e c t ' , i n s : [c l . l i b r a r y] r i v e r , i n s : [c l . l i b r a r y] w e a t h e r ,
i n s : [c l . l i b r a r y] d i s p l a y
$ w r i t e s y s $ o u t p u t " R u n n in g p r o g r a m "
$ d e f i n e / u s e r _ m o d e s y s $ i n p u t s y s $ c o m m a n d
$ r u n ' p r o j e c t '
$!
$!$!
$ I T i d y u p
$ x f i l e = p r o j e c t + " . o b j ; * "
$ d e l e t e ' x f i l e '
$ x f i l e = p r o j e c t + " . e x e "
$ p u ' x f i l e '
$ x f i l e = p r o j e c t + " . l i s "
$ p u ' x f i l e '
$ e x i t
$!$!$!
$! C o m p i l a t i o n e r r o r s
$ c o n t i n u e 4 :
$ t y p e q s v w d v e f v . r g v / p
$ d e l e t e q s v w d v e f v . r g v ; *
$ e x i t

P age 2

/ / FILE: CountLn. h stru c t a_count {in t seq_num ; in t gen_num ; in t comp_err ; in t t e s t s ; in t line_count ; in t comment_count ; in t blank_count ;in t code_line ; in t procedure_count ; in t function_count ; in t while_count ; in t repeat_count ; in t until_count ; in t for_count ; in t if_count ; in t case_count ;} ;
void Open_File (in t argc, char* a r g v [), ifstream s in s , int& error) void C lose_F ile (ifstream s ins) ; void Read_Line (ifstream& in s , char l in e f j) ; void Output_Results(a_count count) ;void Process_Line(char l i n e [] , a_count& count, int& sta tu s) ; void In itia lise_C ou n t (a_count&) ; in t Blank_Line(char l in e []) ;in t Comment_Line(char lin e [] ,in t& in_comment) ;void Process_Code_Line(char l i n e [] , a_count& count,int& sta tu s) ;in t Next_Char(char l i n e [] , in t in d);void Get_Word(char l i n e [] , in t i,ch a r word[]) ;void Update_Count(char word[] , a_count& count) ;void Upper_Case(char w ord l[], char word2[]) ;in t Generation_Number(char name[]) ;in t Sequence_Number(char name[]) ;
const in t l_ s iz e = 256 ;/ / const in t FALSE = 0 ;/ / const in t TRUE = 1 ;

/ / FILE: CntLn2. cpp/ / . Counts the number o f l in e s and reserver words in a PASCAL program / / Written By GRL March 1996
#include#include#include#include#include#include

< s td lib . h><fstream.h> <iostream.h> <iomanip.h> <ctype. h> < str in g . h>
#include "CNTLN2.H"

in t m ain(int argc, char* argv[])/ / Main program to count lin e s of Pascal code plus the reserved words./ / GRL March 1996{ char l in e [l_ s iz e] ; a_count count ; in t sta tu s ; ifstream in s; in t error ;
O pen_File(argc,argv,ins,error) ; i f (error != FALSE){ return error ;}In itia lise_C ount(count) ; sta tu s = FALSE ;Read_Line (in s, lin e) ; while (l in s .e o f ()){ Process_Line(l in e , count, sta tu s) ;Read_Line (in s, l i n e) ;
}count. seq_num = Sequence_Number(argv[2]) ; count. gen_num = Generation_Number(argv[l]) ; cerr «"E nter error count > " «en d l ; cin » count. comp_err ; i f (count. comp_err == 0){ cerr « "Enter number o f t e s ts passed > " « e n d l ; c o u n t.te sts = 3333 ; cin >> c o u n t.te sts ;
}e lse{ co u n t.te sts = 0 ;}Output_Results(count) ;C lose_File (ins) ; return 0;

void Open_File (in t argc, char* argv[] , ifstream s in s , int& error)/ / . Procedure to open the sp e c ified f i l e / / GRL March 1996 / / Parameters/ / in argc - number o f parameters in the command lin e / / in argv - array o f the command words / / out in s - pointer to the openned input stream / / out error - error in d icator { error = 0 ; i f (argc != 3){ cerr « "Need to provide filename and sequence number on command l in e " ;cerr « endl ; error = 1 ;
}e ls e{ cerr « "File " « argv[l] « " being processed " « endl ; in s.open (a r g v [lj); i f (in s . f a i l ()){ cerr « "*** ERROR: Cannot open " « argv[l]« " for input." << endl; error = 2 ;;}}return ;

in t Generation_Number (char name[])/ / to get the generation number from the f i l e name{ in t x ; char y [4] ; y [0] = name[5] ; y [l] = name[6] ;y[2] = name[7] ;
y [3] = ' \ 0 ' ; x = a to i(y) ; return x ;

in t Sequence_Number(char name[])/ / to get sequence number from argument
{ in t x = 0 ;

x = atoi(name) ; return x ;

void C lose_F ile(ifstream s ins) ./ / Procedure to c lo se the sp e c ified f i l e / / GRL March 1996 / / Parameters/ / in /o u t ins - pointer to the openned input stream
{ in s . c lo s e ();

}
//c o u t « " f i le closed " « endl; return ;

void O utput_Results(a_count count)/ / Procedure to output the counts ca lcu la ted / / GRL March 1996 / / Parameters/ / in count - structure of the counts{ in t code lin e s ;
code_lines = count. line_count - count. comment count.blank_count ;tw(5) « count. seq_num ; tw(5) << count. gen_num ; tw(5) « count. comp_err ; tw(5) « co u n t.te sts ; tw(5) « count. line_count; tw(5)<< count. comment_count; t w (5)« count.blank_count ; tw(5)<< code_lines ; tw(5)<< count.procedure_count ; tw(5)<< count. function_count ; tw(5)<< count.while_count ; tw(5)<< count. repeat_count ; tw (5)« count. until_count ; t w (5)« count. for_count ; t w (5)« count. if_count; t w (5)« count, case count ;

cout «cout «cout «cout «cout «cout «cout «cout «cout «cout «cout «cout «cout «cout «cout «cout «cout «return

count-

void Read_Line (ifstream& in s , char l in e [])/ / Procedure to read a lin e of the input f i l e and p lace l in e read / / in to array lin e terminated with /0 / / Written by G.R.L. December 94 / / Parameters/ / in /o u t ins - pointer to the openned input stream / / out lin e - lin e input from f i l e
{ char next_ch; in t n=-l ;

in s . get (next_ch);while ((next__ch != '\n ') && ! in s .e o f() && { n < l_ s iz e))
{ n++ ;lin e[n] = next_ch; in s .g e t (next_ch);}n++ ;lin e[n] = 1\ 0 * ;while ((next_ch != ' \n ') && ! in s .e o f ()){

} in s .g e t (next_ch) ;
}

void Process_Line(char l in e [] , a_count& count, int& statu s)/ / Procedure to process the lin e input / / GRL March 1996 / / Parameters / / in l in e - l in e of tex t/ / in /o u t count - structure of a l l the counts/ / in /o u t in_comment - in d icator to say whether in a comment or not{ count. line_count ++ ; i f (Blank_Line(line))
{ count.blank_count ++ ;}e ls e
(i f (Comment_Line(line,status)){ count. comment_count ++ ;

}e ls e
{ P rocess_C ode_L ine(line,count,status) ;1}return ;}

void In itia lise_C ou n t (a_count& count)/ / Procedure to in i t i a l i s e the stru c t count / / Written by G.R.L. December 94 / / Parameter/ / out count - count values
{ count. line_count = 0; count. comment_count = 0 ; count.blank_count = 0 ; count.procedure_count = 0 ; count. function_count = 0 ; count.while_count = 0 ; count. repeat_count = 0 ; count. until_count = 0 ; count. for_count = 0 ; count. if__count = 0 ; count. case_count = 0 ; return ;}

in t Blank Line(char l in e [])

/ / Function to in d ica te i f a lin e i s blank / / GRL March 1996 / / Paremeters/ / in l in e - l in e under te s t/ / r e su lt - in d ica tes i f l in e i s blank e ith e r TRUE or FALSE{ in t i = 0 ;
i = N ext_C har(line,0) ;i f (l in e [i] == ’\ 0 •){ return TRUE ;}e ls e{ return FALSE ;}}

in t Next_Char(char l i n e [] , in t ind)/ / Function to find the next non blank character on l in e s ta r t in g at ind/ / GRL March 1996 / / Paremeters/ / in l in e - l in e under t e s t / / in ind - sta r tin g character/ / r e su lt - in d ica tes i f lin e i s blank e ith er TRUE or FALSE •{ in t i ;
i = ind ;w h ile (is s p a c e (l in e [i]) && (l in e [i] != 1\ 0'))
{ i++ ;}return i ;}

in t Comment_Line(char lin e [] ,in t& in_comment)/ / Function to in d icate i f a lin e i s a lin e with only a comment on / / GRL March 1996 / / Paremeters/ / in l in e - lin e under t e s t/ / in /o u t in_comment - sta tu s of comment in d icator/ / r e su lt - in d ica tes i f lin e i s a comment l in e e ith e r TRUE or FALSE{ in t s ta t ;in t code_found = FALSE ; in t i ;
s ta t = in_comment ; i = Next_Char(line, 0) ;while ((l in e [i] != *\ 0 ') && (!code_found)){ i f (s ta t == TRUE){ i f (l i n e [i] = = ' } ')

s ta t = FALSE ;}}e ls e
{ i f (l in e [i] == 1 { 1)

{ s ta t = TRUE ;}e ls e{ code_found = TRUE ;}}i = Next_Char(line, i+1) ;
}i f (code_found == TRUE){ return FALSE ;}e ls e
{ in_comment = s ta t ; return TRUE ;}}

void Process_Code_Line(char l i n e [] , a_count& count,int& sta tu s) / / Procedure to process a lin e o f code / / GRL March 1996 / / Paremeters/ / in lin e - lin e under t e s t / / in /o u t count - counts to be updated / / in /ou t sta tu s - sta tu s to be updated { in t i ;char w ord[l_size] ;
i = Next_Char(line, 0) ;while (l in e [i] != ' \ 0')
{ i f (status == TRUE)

{ i f (l in e [i] == ' } 1){ statu s = FALSE ;}}e ls e
{ i f (l in e [i] == '{')(statu s = TRUE ;}e lse

{ Get_Word(line,i,word) ;Update_Count(word,count) ;/ / i points at la s t character considered i = i + strlen(word) -1 ;

}}i = Next_Char(line, i+1) ;
return ;}

void Get_Word(char l i n e [] , in t i,c h a r word[])/ / Procedure to get the next word in l in e s ta r tin g a t i / / GRL March 1996 / / Parameters/ / in lin e - lin e from whcih to get word / / in i - s ta r t p o sitio n in lin e / / out word - f i s t word in lin e s ta r tin g at i { in t in d l = i ; in t ind2 = 0 ; i f (is a lp h a (lin e [in d l])){ while (is a lp h a (lin e [in d l])){word[ind2] = lin e [in d l] ; ind2 ++ ; in d l ++ ;}}e lse{ while (! (is s p a c e (l in e [in d l])) &&
!(line[i] == *\0 *) && ! (isalpha(line[indl]))){word[ind2] = l in e [in d l] ; ind2 ++ ; in d l ++ ;}}word[ind2] = ' \0' ; return ;}

void Update_Count(char word[] , a_count& count)/ / Procedure to update the counts fusing word / / GRL March 1996 / / Parameters/ / in word - word from which counts are updated / / in /o u t count - counts that are updated { char new_word[l_size] ;
Upper__Case (word, new_word) ; i f (strcmp(new_word,"PROCEDURE") == 0){ count.procedure_count ++ ;}i f (strcmp(new_word,"FUNCTION") == 0){

i f (strcmp(new_word,"WHILE") == 0){ count.while_count ++ ;}i f (strcmp(new_word,"REPEAT") == 0){ count. repeat_count ++ ;}i f (strcmp(new_word,"UNTIL")==0)
{ count. until__count ++ ;}i f (strcmp(new_word/ "FOR")==0){ count. for_count ++ ;}i f (strcmp(new_word,"IF")==0){ count. if_count ++ ;}i f (strcmp(new_word,"CASE") == 0){ count. case_count ++ ;}return ;

count.function_count ++ ;}

void Upper_Case(char wordl[] , char word2[])/ / Procedure to convert a word to uppercase / / GRL March 1996 / / Parameters / / in wordl - input word/ / out word2 - as wordl but a n y .le tte r s made upper case{ in t in d l = 0 ; in t ind2 = 0 ;
while (wordl[indl] != ' \ 0 *){ word2[ind2] = toupper(w ordl[ind l]) ;in d l ++ ; ind2 ++ ;}word2[ind2] = ' \0 ' ; return ;}

p n v . vms

$! To analyse all river files in a directory
$! Creates a .new file from all the .pas files
$! Written By G.R.L.
$!
$!
$! Define names
$ cnn_exe := $mct:[gl.programs]cntln2.exe
$ outfile = "RIVERDAT.NEW"
$ create 'outfile'
$ • seq = 1
$ name= "met: [gl.safe96."+pl+"]river*.pas”
$ write sys$output "Name "+name
$
$
$.loop_top:
$ sourcefile = f$search(name,1)
$ write sys$output sourcefile
$ if sourcefile .e q s . "" then goto loop_end
$! analyse the program
$ write sys$output sourcefile
$ write sys$output seq
$ x = f$locate("]",sourcefile)
$ shortname = f$extract(x+1,12,sourcefile)
$ set noon
$ define /user_mode sys$output x.x
$ define /user_mode sys$input sys$command
$ cnn_exe 'shortname' 'seq'
$ set on
$ append x.x 'outfile
$ delete x.x.
$!
$! prepare for next file
'$ seq = seq + 1
$ goto loop_top
$ loop_end:
$ exit

Page 1

metric.cpp

// FILE: metric.cpp
// Program to calculate metrics from .new files.
// Written By G.R.L. December 1997.

#include <iostream.h>
#include <fstream.h>

// Constants
//const int FALSE = 0 ;
//const int TRUE = 1 ;
const int max test = 16 ;

// Type definitions
typedef struct a_step {

int step ;
int genno ;
int n_comp_err ;
int n_test ;
int loc ;
int n_com_l ;
int n_blk_l ;
int n_cod_l ;
int n_proc ;
int n_func ;
int n_while ;
int n_rpt ;
int n_until ;
int n_for ;
int n_if ;
int n_case ; } ;

typedef a_step a_process[300] ;

// function prototypes
void read_file(char * n , a_process &p , int &mf ir
void output_comp_metric(float cr, float cpi, float
void output_stage_metric(int sic, int spf, int srn)
void'output_sn(int si, int s2, int s3) ;
void output_progress_metric(float rpi, float tpi) ;
void output_sp(float sp) ;
float calc_cr(a_process p,int n) ;
float calc_cpi(a_process p , int n) ;
float calc_cas(a_process p, int n) ;
int calc_slc(a_process p, int n) ;
int calc_spf(a_process p, int n) ;
int calc_srn(a_process p, int ri) ;
int calc_sl(a_process p, int n) ;
int calc_s2(a_process p, int n) ;
int calc_s3(a_process p, int n) ;
float calc_rpi(a_process p, int n) ;

t terror)
asc) ;

Page 1

metric.cpp

float calc_tpi(a_process p, int n) ;
float calc_sp(a_process p, int n) ;
int maximum (int a , int b) ;
int minimum (int a , int b) ;

int main(int argc, char * argv[])
{

a_process process ;
int n_step ;
int error ;
float cr ;
float cpi ;
float asc ;
int sic ;
int spf ;
int srn ;
int si ;
int s2 ;
int s3 ;
float rpi ;
float tpi ;
float sp ;

read_file (argv[l], process, n_step, error) ;
cout << n_step.<< endl ;
if (error == FALSE)
{

cr = calc_cr(process,n_step);
cpi = calc_cpi(process,n_step) ; •
asc = calc_cas(process,n_step) ;
output_comp_metric(cr, cpi, asc) ;
sic = calc_slc(process,n_step) ;
spf = calc_spf(process,n_step) ; •
srn = calc_srn(process,n_step) ;
output_stage_metric(sic, spf,srn) ;
si = calc_sl(process, n_step) ;
s2 = calc_s2(process, n_step) ;
s3 = calc_s3(process, n_step) ;
output_sn(si, s2, s3) ;
rpi = calc_rpi(process, n_step) ;
tpi = calc_tpi(process, n_step) ;
output_progress_metnc (rpi, tpi) /
sp = calc_sp(process, n_step) ;
output_sp(sp) ;

}
return 0 ;

}

// read the .new file
void read_file(char * n , a_process &p , int &m, int terror)

Page 2

m e tr ic . cpp

char lin e [80] ;
ifstream ins ;

cout << "File " << n << " being processes" << endl ;
ins.open(n) ;
if (ins.fai l ())
{

cout << " *** ERROR Cannot open file ***" << n << endl

error = TRUE ;
}
else

rr ;

r

roc ;

t ;

}
}

m = 0 ;
while (!ins.e o f ())
{

ins >> p[m].step >> p[m].genno >> p [m] .n_comp_e

ins >> p[m].n_test >> p[m].loc >> p[m].n_com_l

ins >> p[m] .n_blk_l >> p[m].n_cod_l >> p[m].n_p

ins >> p[m].n_func >> p[m].n_while >> p[m].n_rp

ins >> p[m].n_until >> p[m].n_for >> p[m].n_if

ins >> p[m].n_case ;
ins.getline(line, 80)
m++ ;

}
m -- ;
error = FALSE ;

void output_comp_metric(float cr, float cpi, float asc)
{

cout << "Compiling ratio " << cr << endl;
cout << "CPI • " << cpi << endl ;
cout << "Average steps to compile " << asc << endl ;

}

// calculate compilation ratio, proportion of steps that compil
e
float calc_cr(a_process p,int n)
{

int c = 0 ;
float cr ;
for (int i = 0 ; i < n ; i++)

Page 3

m e tr ic . cpp

if (p[i].n_comp_err == 0)
{ C + + ;
}

}
cr = float (c) / float (n) ;
return cr ;

{

// calculate compilation performance index
float calc_cpi(a_process p , int n)
{

int n_c ;
int step_p = 0 ;
int step_o = 0 ;
float cpi ;

}

n_c = minimum(30, p [0].n_comp_err) ;
for (int i = 1 ; i < n ; i++)
{

if (n_c > 0)
{

step_o ++ ;
if (n_c > minimum(30 , p [i] .n_comp_err))
{

n c

if (step o >

cpi =
}
else
{

cpi =
} ‘
return cpi ;

step_p ++ ;
}

minimum(30,p [i].n_comp_err) ;

0)
float(step_p) / float(step_o)

0 .0 ;

// calculate average number of steps to successful compile
float calc_cas (a_process p , i'nt n)
{

float cas ;
int n_comp_stage = 0 ;
int n_step = 0 ;

Page 4

m e tr ic .c p p

int n_c =0 ;

for (int i = 0; i <= n ; i++)
{

if (p[i].n_comp_err == 0)
{

if (n_c == 0)
{

// do nothing
}
else
{

n_step ++ ;
n_comp_stage ++ /

}
else
{

n_step ++.;
}
n_c = p[i].n_comp_err ;

}
if (n_c > 0)
{

n_comp_stage.++ ;
}
cas = float(n_step) / float (n_comp_stage) ;
return cas ;

// Function to calculate the stages (lines of code) metric
int calc_slc(a_process p, int n)
{

int sic = 1 ;
int n_loc ;

n_loc = p [0].loc ;
for (int i = 1 ; i < n ; i++)
{ '

if ((p[i].loc - n_loc) >= 12)
{

sic ++ ;
}
n_loc = p[i].loc ;

}
return sic ;

// Function to calculate the stages metric si
int calc_sl(a_process p, int n)

Page 5

m e tr ic . cpp

int i = 0 ;
int si = 1 ;
int n_loc ;

while ((p[i].n_test <= 2) && (i < n))
{

i++ ;
}
if (i == n)

return si ;
}
else
{

n_loc = p[i].loc ;
for (int j = i ; j < n ; j++)
{

if ((p[j]..loc - n_loc) >= 10)
{ s i ++ ;
}
n_loc = p [j]•loc ;

}
return si ;

}
}

{

// Function to calculate the stages (procedure/function) metri
c
int calc_spf(a_process p , int n)

. {
int spf ;
int n_pf ;

if ((p[0] .n_proc + p[0].n_func) == 0)
{

spf = 0 ;
} '
else
{

spf = 1 ;
}
n_pf = p[0].n_proc + p[0].n_func ;
for (int i = 1 ; i < n ; i++)
{

if ((p [i] . n_proc + p [i] . n_-func) > n_pf)
{

spf ++ ;
}
n_pf = p[i].n_proc + p[i].n_func ;

Page 6

m e tr ic . cpp

return spf ;
}

// Function to calculate the stages metric s2 - procedures/fun
ctions
int calc_s2'(a_process p, int n)
{

int i = 0 ;
int s2 = 0 ;
int n_pf ;

while ((p[i].n_test <= 2) && (i < n))
{

i + + ;
}
if (i == n)
{

return s2 ;
}
else
{

if ((p[i] .n_proc + p[i].n_func) == 0)
s 2 = 0 ;

else
s 2 = 1 ;

n_pf = p[i].n_proc + p[i].n_func ;
for (int j = i ; j < n ; j++)
{

if ((p[j].n_proc + p[j],n_func) > n_pf)
{ s2 ++ ;
}

n_pf = p[j].n_proc + p[j].n_func ;
}
return s2 ;

}
}

// Function to calculate the stages (run) metric
int calc_srn(a_process p , int n)
{

int srn = 0;
int n_rn = 0;
for (int i = 1 ; i < n ; i++)
{

if (p[i].n_comp_err == 0)
{

if (p[i].n_test > n_rn)
{

Page 7

m e tr ic . cpp

srn++ ;
n_rn = p[i].n_test ;

}
}
return srn ;

}

}

// Function to calculate the stages metric s3 - run -
int calc_s3(a_process p, int n)
{

int i = 0 ;
int s3 = 0 ;
int n_rn ;

while ((p[i].n_test <= 2) && (i < n))
{

i++ ;
}
if (i == n)
{

return s3 ;
}
else
{

s 3 = 1 ;
n_rn = p[i].n_test ;
for (int j = i ; j < n ; j++)
{

if (p[j].n_test > n_rn)
{

s 3 ++ ;
n_rn = p[j].n_test ;

}
}
.return s3 ;

}
}

// Function to output the stage metrics
void output_stage_metric(int sic, int spf, int srn)
{

cout << "Stage - lines of code " << sic << endl
cout << "Stage - procedure/function " << spf << endl
cout << "Stage - run progress " << srn << endl

}

// Function to output s metrics
void output_sn(int si, int s2, int s3)

tests

Page 8

m e tr ic . cpp

{
cout « "Stage - SI " << si << endl ;
cout << "Stage " S2 " << s2 << endl ;
cout << "Stage - S3 " << s3 << endl ;

}

// Function to calculate the run progress indicator
float calc_rpi(a_process p , int n)
{'

int n_run = 0 ;
int n_prg = 0 ;
int n_ttt = 0 ;
float rpi ;

for (int i = 0 ; i < n ; i++)
{

if (p[i] .n_comp_err == 0)
{

n_run++ ;
if (p[i].n_test > n_ttt)
{

n_prg ++ ;
n_ttt = p[i].n_test ;

}
}

if (n_run == 0)
{

rpi = 0 ;
}
else
{

rpi = float(n_prg) / float(n_run) ;
}
return rpi ;

// Function to calculate the' t o t a l ’progress indicator
float calc_tpi(a_process p , int n)
{

int n_ttt = 0 ;
int n_ccc = 0 ;
int n_tpi = 0 ;
float tpi ;

for (int i = 0 ; i < n ; i++)
{

if (p[i].n_comp_err < n_ccc)
{

Page 9

m e tr ic . cpp

n_tpi ++ ;

if (p[i].n_test > n_ttt)
{

n_tpi ++ ;
n_ttt = p[i].n_test ;

}
n_ccc = p [i].n_comp_err ;

}
tpi = float(n_tpi) / float (n) ;
return tpi ;

}

}

// Function to output the progress metrics
void output_progress_metric(float rpi, float tpi)
{

cout << "Run Progress Indicator " << rpi << endl ;
cout << "Total Progress Indicator " << tpi << endl ;

// Function to calculate the specification proportion
float calc_sp(a_process p, int n)
{

int n_t = 0 ;
float sp ;

for (int i = 0 ; i < n ; i++)
{

if (n_t < p[i].n_test)
{

n_t = p[i].n_test ;
}

}
sp = n_t / float(max_test) ;
return sp ;

// Function to output specificatio proportion
void output_sp (float sp)
{

cout << "Specification Proportion > " << sp << endl ;
}

// Function to find the maximum of 2 integers
int maximum(int a , int b)
{

if (a >b)
return a;

Page 10

m e tr ic . cpp

else'
return b ;

// Function to find the mimimum of 2 integers
int minimum (int a , int b)
{

if (a < b)
return a ;

else
return b ;

Page 11

