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Abstract
Biological systems typically generate complex data  that encapsulate the dynamics 
of interactions among measurables over time. To support the formation of insights 
into time series data from a biological system, there is a requirement to develop new 
methods that can analyse and translate such complex data into a form th at allows 
trends, patterns, and predictions to be easily viewed, verified and tested. Here, a suite 
of novel analytical and matrix-based techniques for dynamical systems modelling are 
developed that are time-efficient and data-driven. These techniques facilitate a range 
of scientific analyses through novel matrix-based system identification and parame
ter estimation methods. The inference techniques are fast, optimised, and do not 
require a priori information to successfully infer network of interactions or autom at
ically construct data-consistent models from data. Two distinct principal (Jacobian 
and power-law) models (solutions) that are data-consistent may be constructed from 
a single time series data set. A recast technique has also been developed to recon
struct either one of the principal models from the other, providing support for model 
interoperability and multiple model integration.

The thesis demonstrates the effectiveness of a new theoretical framework devel
oped to incorporate a modelling and visualization pipeline able to deal with a wide 
range of time-series data sets relating to complex biological systems. The integrated 
framework is able to infer and depict interaction networks implicit in time series data 
in just a m atter of seconds and then display the evolution of that network dynamics 
in response to network perturbation such as drug treatments. Beyond this, there is 
a broader contribution to the field of biochemical system theory (BST), evidenced 
by establishing methods for transforming a constructed jacobian model to equivalent 
power-law models, and vice versa. The effectiveness of these new techniques is demon
strated using artificial time series data samples, simulated pseudo-data of biologically 
plausible models of real biological systems, and real experimental data derived from 
biological experiments.
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Chapter 1

Introduction
Drug development and clinical testing is recognised to be a time-consuming and expen
sive process (DiMasi J.A. 2003) with investors seeking maximum returns on minimum 
investment. In today’s global economy, the pharmaceutical sector must compete eco
nomically with other commercial sectors, while at the same time overcoming the sector- 
specific concern of a substantial translational gap between biomedical funding and results,
i.e. new drugs (Dorsey E.R. 2009). Additionally, there is the humanitarian goal to de
velop new, inexpensive and life-saving drugs that can treat patients quickly and efficiently 
(ImpactReport 2002, FDA 2012). Methods that help reduce development time and di
rect the discovery process - so reducing costs - can contribute to the competitiveness and 
humanitarian value of the pharmaceutical industry.

Rapid advances in the design and development of high-throughput technologies and 
methods that are capable of generating large amounts of data demand new mathematical 
approaches that can manage or handle routine analysis and modelling tasks in faster time. 
This requires an establishment of a sound theoretical and model-based approach that can 
cope with contemporary modelling challenges, including modelling of both limited and large 
quantities of time series data.

With respect to understanding complex systems, mathematical modelling may be em
ployed to describe the dynamics and behaviours of such systems. This process often in
volves formulating a set of mathematical equations to describe and represent the behaviour 
of the components, processes, and functions of the system. Usually some efficient and 
well-established mathematical and computational (inference) methods may be required to
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estimate the structure and find optimal parameters of the model from data. For example, in 
inferring a compound’s mode of action from time course gene expression profiles (Bansal M 
2006) used the time-series network identification (TSNI) method to demonstrate how to suc
cessfully infer and identify correct regulatory interactions among interrelated genes that are 
involved in (transcriptional) perturbation experiments (Bansal M. 2005, Bansal M 2006). 
Such practicable inference of system behaviour may be applicable and useful in predicting 
network response to external perturbations and identifying genes affected and responsive to 
drug input. Likewise, Gardner et al. used the network identification by multiple regression 
(NIR) method (Chua H.N. 2011, Gardner T.S. 2003), an ODE-based algorithm to infer in
fluence interactions (relation of the expression of genes with the expression of other genes) 
of a gene network, with each interaction implying a regulatory interaction between mRNAs, 
proteins, mRNAs, metabolites, etc within the cell. Their method too is useful in predicting 
the network response to drugs and identifying the unknown target genes from experimental 
data.

Mathematical modelling through time series data analysis has the potential to accelerate 
new drug design, development, and discovery. We anticipate that such contribution may 
lead to the development of a new mathematical science. The emergence of contemporary 
network science (e.g. automated reverse engineering of complex systems using time series 
data) can contribute immensely to advances in drug design and personalised medicine in 
cancer research. Through discovery of genetic or other biomarker information from indi
vidual data of patient groups, potentially sensitive candidates that may positively respond 
to treatments (FDA 2012) may be identified and selected. The seamless benefits that di
agnostics tools for detecting and mining biomarker information from time series data could 
deliver would be overwhelming if such detection could be made early and accurately.

An improvement on current data-driven modelling efforts may be required to address 
some of the most recent challenges in cancer drug development and availability, e.g. 83% 
of oncologists hit by cancer drug shortages resulting in delayed treatments and associated 
substantial cost burden imposed by those shortages (drug shortages hit vast majority of 
oncologists 2013). Complex systems modelling may well reduce the very lengthy process 
and “out-of-pocket” pre-tax cost of new drugs and apparent concern about how to improve 
lack of productivity (DiMasi J.A. 2003) may be reduced by supporting the drug development 
and clinical testing process with improved data-driven modelling or accurate remodelling
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of experimental data for informed technical and better decision making.
Mathematical modelling can be used to inform experimental design and enable low-cost 

hypothesis generation. In silico analysis and modelling may be used in system biology 
studies to address knowledge gaps and eliminate invalid assumptions made about target 
biological systems (Idowu M.A. 2011&, Idowu M.A. 2011a, Bown J. 2012).

To adequately deal with system-level understanding and challenges of complex systems 
(Kreeger P.K. 2010, Bown J. 2012), it might be necessary to develop a modelling approach 
that both provides new methods for studying and dealing with high-level network inference 
challenges and helps determine an optimal strategy for identifying a target system that 
has not been well studied. The modelling approach may involve multimodel solutions and 
integration, i.e. multiple models may be able to describe the system and, as a result 
of being consistent in the way they descript the system, may need to be integrated into a 
single modelling framework. Though such integration might introduce new complexities into 
the modelling challenges, the additional advantages and apparent benefits such as instant 
construction of models, faster identification and estimation of systems, and the synergistic 
effects of the combined power of such integration might create exciting new opportunities 
for a wider range of solution, e.g. methods that promote instant in silico network inference 
using simulated data may give new hints on the possible of in silico modelling and simulation 
of real complex systems.

As molecular profiling methods are being used to monitor cellular responses to perturba
tion due to disease or treatments, it is important to apply appropriate data analysis method 
(Bailey W.J. 2004). We recommend a time series data analysis method that is appropri
ate for dynamic modelling and reverse engineering of complex systems. The purpose of 
reverse engineering is to identify (sub)systems and underlying network of interactions from 
experimental data to promote deeper understanding where little or no knowledge about the 
processes or underlying principles behind the original system is known. Quantitative time 
series data (profile) of such complex phenomena may be modelled through network infer
ence. Such target systems are often described as interaction networks of interconnected 
and interrelated components (nodes, i.e. measurables) and the interactions between any 
pair of nodes represented by the weighted edges in the networks. Hence the demand for 
immediate modelling results may be tackled by fast inference algorithms that can provide 
instant inference of network of interactions from data. We advocate a case for fast network
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inference method that may produce instant system identification and parameter estimation 
results in a matter of seconds to adequately meet the model development challenges often 
associated with drug design and personalised medicine - effective individual treatment may 
require personalised dynamic modelling of individual time series data.

To permit real insights into biological time series data, practicable system identification 
and parameter estimation methods that can infer meaningful results in seconds or min
utes are required. Such methods that can translate times series data of complex systems 
into a representation of the underlying network structures and dynamics of the system and 
immediately construct network models that allow new predictions to be made are needed. 
This thesis identifies and validates a novel modelling technique for inferring and extraction 
useful information from data. Novel matrix-based inference methods are developed and first 
applied to known simulated test environments to identify fundamental algorithms that are 
frequently useful in supporting automated identification of systems strictly from their time 
series data. These new inference algorithms may be considered as fast, inexpensive strate
gies for solving system identification and parameter estimation problems in mathematical 
modelling. Though the techniques introduced in this thesis are purely based on time series 
data, the methods used are flexible enough to incorporate experts’ knowldge. The inference 
methods are generalisable, i.e. the algorithms are not limited by the nature of time series 
data considered but rather are able to deal with time series data in finance, econometrics, 
weather forecasting, control engineering etc, just to mention a few.

This thesis presents a new theoretical modelling and visualisation framework able to 
deal with a wide range of time series data sets relating to complex systems, e.g. biological 
pathways. The integrated framework developed is able to infer and depict the interaction 
network implicit in time series data sets and the evolution of that network dynamics in re
sponse to treatments. Fundamental research questions that relate to how some key pathways 
may be regulated in breast cancer are considered also. Here in this thesis, a demonstration 
of how to model time series data of important biological pathways (e.g. DNA damage re
sponse pathway) to automatically and dynamically (i.e. mimic and reflect changes in data 
in order to) construct predictive models that are consistent (i.e. able to reproduce exactly 
those same experimental data) is presented. We refers to this process as dynamic modelling. 
We seek to develop new inference methods that can accurately predict both the structure 
and dynamics of any target system purely by analysing the experimental time series data
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of that system theoretically and mathematically. 
The thesis considers four hypotheses:

1. there exists an integrated modelling framework able to give exact representation of 
time series data and such techniques are sufficient to produce meaningful solutions to 
system identification and network inference problems;

2. the framework identified in 1 is robust and applicable to a wide range of data (includ
ing both surplus and extremely limited data, e.g. data with only 3 time points)

3. the framework identified in 1 may inform experimental design and interpretation in 
biological systems;

4. the framework can produce an instantaneous result that indicates changes in cell 
signalling responses to drug action and specifically indicates sensitive and resistant 
signalling dynamics.

A confirmation (or refutation) of these hypotheses is evidenced in the following chapters.
Chapter 2 deals with a timeline historical account of external factors that may induce 

cancer formation, a brief introduction to cancer biology, cancer diagnosis, and treatments 
before introducing cancer systems biology and basic modelling approaches. Background 
information on the essentials of cancer biology and cancer systems biology are provided.

Chapter 3 considers system representation and a review of several system identification 
strategies used in the past and parameter estimation methods that have been proposed 
within the last few decades. The central theme of this chapter focuses on data-driven 
modelling of time series data based on ordinary differential equations (ODE), particularly 
biochemical system theory based ODE representation, and the advantages and main chal
lenges of BST and BST based inference methods for modelling dynamic time series data.

Chapter 4 describes the integrative framework developed: analytical methods for mod
elling time series data; an ODE-based Jacobian method of inference; new matrix decom
position and construction methods; and a power-law based half-system approach for ar
ticulating complex systems dynamics. To demonstrate the effectivenesss of the Jacobian 
based method, artificial data are used in the assessment of those inference methods. In this 
section, hundreds (i.e. 700) of simulated time series data are analysed and tested for the 
assessment of the fundamental methods that would be used in the actual biological exper
iments. This chapter addresses hypotheses 1 and 2 and produce scientific and theoretical 
evidences for their confirmation or refutation.
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As an addition to chapter 4, heuristically developed analytical methods are discussed 
in appendix section F.l. Also new complementary methods for inferring data-consistent, 
self-reconfigurable nonlinear (power-law based) models from time series data are required, 
developed, and presented in appendix F. These novel methods may be categorised into two 
broad groups, namely: direct inference and indirect (recast) methods. The direct method 
involves applying direct means to infer a jacobian or power-law based model from time series 
data. The indirect method, however, uses a new system identification method to first infer 
a jacobian model as instant and temporal solution to the inverse problem before recasting 
the inferred jacobian model to corresponding power-law model using our newly developed 
recast technique. The recast method, in addition to normal behaviour, also provides a 
novel analytical technique for integrating power-law and jacobian models together. This 
new approach may be used to extend our modelling strategy from matrix-based network 
inference to model interoperability and multiple model transformation in terms of finding 
multiple distinct models (solutions) to inverse problems. The structure of this thesis is 
illustrated in Figure 1-1.

Chapter 5 describes acquisition and analysis of real time series data of the DNA-damage 
response pathway. Instant analyses of time series data sets are performed to generate 
heatmap representations of the data and the application of the modelling method to the time 
series data supplied. This chapter deals on reverse engineering of DNA damage response 
pathway and application of dynamic modelling in revealing and understanding DNA damage 
dependent dual consequences of ATM kinase inhibition on cell survival. Hypothesis 3 is 
addressed in this chapter.

Chapter 6 describes acquisition and analysis of real time series data of PI3K-AKT sig
nalling pathways. Analysis of the supplied time series data sets is the form of heatmap 
representation of the actual data. The chapter concludes with an application of the mod
elling methods to generate new results. The results of modelling the PI3K-AKT signalling 
pathways are then interpreted and discussed. This chapter will confirm hypothesis 4.

Chapter 7 concludes with a discussion of the overall modelling approach and draws out 
a set of conclusions and recommendations for future work.
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F igure  1-1: Thesis structure.

1.1 M otivation
The need to develop a m athem atical and theoretical framework th a t supports (fast) mul
timodel integration and autom ated construction of dynamic (deterministic, reconfigurable, 
self-organising, unsupervised, and automatically constructible) (Idowu M.A. 20116) models 
from experimental time series d a ta  has resulted in a novel reverse engineering strategy th a t 
often gurantees the production of highly convenient, sophisticated and simple models capa
ble of supporting fast da ta  analysis and utilisation for systems identification and analysis 
purposes. In practice, this involves an autom ated inference or extraction of unsupervised
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predictive models of time series data that are useful for making accurate predictions about 
other unknown time points and structure of a compex system.
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Chapter 2

Cancer biology and m athem atical 
modelling

2.1 Causes of cancer
Cancer, as a disease of uncontrolled growth and unexpected cell division, is one of the 
major causes of death worldwide. In UK alone there are over a quarter of a million (around 
309,500) new cases of cancer diagnosed each year, and breast cancer is by far the most 
common cancer in women accounting for almost a third (about 31%) of all female cases in 
the UK. Just in 2009 alone, there were more than 156,000 cancer deaths in the UK, and over 
one in four (28%) of all deaths in the UK were due to cancer (UK 2012). Unlike their normal 
counterpart, cancer cells tend to follow abnormal rules of cell growth and division due to a 
number of reasons including complex genetic changes, faults and diversity, and identifying 
and understanding such underlying causes of and treatments for cancer is important.

As a disease involving dynamic changes in the genome, there are compelling evidences 
to suggest that cancer formation in humans may be a result of evolutionary and progressive 
changes and transformation in normal cells which eventually may result in defective genetic 
alterations (Hanahan D. 2000). It may be that almost all human cancers acquire abnormal 
capabilities that make them almost insusceptible to destruction and insensitive to anticancer 
drugs. Hanahan and Weinberg propose six fundamental capabilities that often manifest in 
human cancers, each a feature acquired as a result of defects in regulatory circuits that

27



govern normal cell behaviour: self-sufficiency in growth signals, insensitivity to antigrowth 
signals, evading apopotosis, limitless replication potential, sustained angiogenesis, and tissue 
invasion and metastasis (Hanahan D. 2000).

In the past it was suggested cancer resulted from prolonged conditions induced by some 
of the above-mentioned factors and other extrinsic (e.g. occupational or enviromental) fac
tors such as exposure to soot (scrotal cancer), exposure to X-rays1 (skin cancer), radioactiv
ity, radioactive gas product2, smoking and asbestos3, dibenzanthracene4(skin cancer), expo
sure to the dangerous chemicals aromatic amines5, exposure beta-naphthylamine6(bladder 
cancer), excessive radiation(leukemia), excessive alcohol intake (breast cancer), excessive ex
posure to pesticide (increased risk of brain tumours) (D.M 2006). However, there is a general 
agreement among biological researchers that the following intrinsic factors do contribute to 
genome instability: presence of oncogenes7; defective chromosomal changes8 or scrambed 
chromosome makeup or chromosomal translocation (gene amplification) or deletion, abnor
malities within a cell; mutation in genes; gain-of-function mutation9; loss-of-function mu
tation10; mutated apoptotic proteins; low-levels of or mutated tumour suppressor proteins; 
overexpression of cyclins; inactivation of tumour suppressor gene; and loss of expression of 
CDK inhibitors.

In many cases, this information about the mechanistic basis of a given pathology is 
vital for predicting cellular responses to drug treatments (Kreeger P.K. 2010). Identifying 
and mechanistic understanding of dysregulated pathways in cancer might significantly lead 
to optimal experimental design and informed modelling strategies for predicting better 
treatment outcomes than otherwise.

1X-rays were found to be both mutagenic and carcinogenic, i.e. able to damage DNA by directly 
removing electrons and, thus, ionize molecules

2 mines of the Ores mountains inhaled by miners
3 it was found mesothelioma could be caused by even a low-dose exposure to airborne asbestos 

leading to the discoveries of two human cancer viruses: Hepatitis B virus; and Epstein-Barr virus
4a chemical carcinogen in coal tar applied to the skin of rabbit ears
5aromatic amines produced in factories
6beta-naphthylamine is carcinogenic but was once present in food
7oncogenes, e.g. ras and BRCA-1 and BRCA-2; BRCA-1 and BRCA-2 account for 90 percent of 

all hereditary breast cancers (and up to 5-10 percent of all breast cancers in general population.
8chromosomal translocation can cause chronic myelogenous leukemia (CML)
involves mutation in genes encoding signalling molecule of growth factors, signaling receptors 

or intracellular receptors, intracellular transducers, and transcription factors, e.g. overproduction of 
positive regulators such as cyclinD

10involves mutation in genes encoding cell-cycle control proteins and DNA-repair proteins e.g. loss 
of (growth-inhibiting) negative regulators such as Rb, pl6
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2.2 Background on the essentials of cancer biology
Biological pathways, e.g. signal transduction, gene regulation and metabolic pathways, play 
important roles in biological systems (Kreeger P.K. 2010). These pathways encompass se
ries of important actions and events that produce certain changes and responses in cells, 
e.g. activation and inactivation of genes, DNA repair in response to DNA-damage in cells, 
phosphorylation and dephosphorylation of proteins, etc most of which are geared towards 
appropriating the necessary responses to intracellular or environmental stimuli, right ac
tions in defence, or stimulating new actions in recovery from abnormal negative influences. 
Contemporary cancer biology assumes that some commonly mutated pathways in breast 
cancer involve growth-stimulating, growth-inhibitory and DNA-damage response pathways. 
These involve the human epidermal growth factor (HER) receptor family, Phosphoinositide 
3-kinase (PI3K) /  Protein Kinase B (Akt or PKB) and Mitogen-activated protein kinase 
(MAPK) intracellular signalling pathways, Ataxia telangiectasia mutated (ATM)/ataxia 
telangiectasia and Rad3-related protein (ATR) pathways, or cell cycle control system. In 
this thesis, fundamental research questions that relate to how these pathways may be reg
ulated or dysregulated in breast cancer are considered.

Just as cancer is associated with heterogenous pathology with respect to tissue and 
cell type and origin, cancer systems biology is subjective to systematic research in which 
experimentation and generation of hypotheses are combined. Constant improvement in the 
understanding of the mechanistic nature of the disease is necessary. A contemporary view
point is that the disease involves dysregulation of multiple pathways (Kreeger P.K. 2010). 
Such views suggest that different malfunctioning components may be involved in a given 
case and in parallel at the same time (Kreeger P.K. 2010). For this reason, most treatment 
efforts which were once based on single cause notions ended up producing unsatisfactory 
outcomes.

Most of those treatments that were based on a single mutated oncogene often either 
ignored the after-effects or related consequences of those mutation or presumed that the 
multivariate nature of the molecular level changes involved could still be unwound by the 
treatment mechanisms suggested. Today, cancer is generally viewed as a highly heteroge
nous pathology whose molecular network activities are constantly bombarded by alterations 
and diverse genetic mutations (Kreeger P.K. 2010). An emerging and wisely accepted per
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spective is the necessity to move towards a system-level approach to improve current ex
perimental understanding of the multiple pathways involved.

Focus and research studies may be directed at the level of dynamic protein operations, 
such as phosphorylation, because this is the level at which most environmental and genomic 
influences are convoluted (Kreeger P.K. 2010). The nature of the biological pathways being 
studied depends on the sort of questions or problems being addressed. For example, signal 
tranduction pathways deal with the transmission of signals, gene regulatory networks involve 
the regulation of gene expression, etc.

In normal cells there is a balance between growth-stimulating and growth-inhibiting 
signalling pathways. Most cancer cells are developed when normal cellular control circuitry 
breaks down or fails to function properly. Growth factors eventually signal the cell cycle 
control system by stimulating DNA synthesis and division. The control of cell growth, 
cell division, and triggering of cell death are some of the major challenges in cancer drugs 
treatment. Each of these mechanism is an important subject area that must be studied. 
The following sections provide background information on the essentials of cancer biology.

2.2.1 Growth factors and the HER family of receptors
A growth factor is a substance that stimulates cellular growth, proliferation and cellular 
differentiation. There are special proteins, called transmembrane proteins (TP), that are 
capable of moving from one side of a membrane through to the other side. The human 
epidermal growth factor receptor (HER) is a family of transmembrane receptors that are 
involved with the regulation of cancer cell growth and survival. The activation and dimer
ization of HER family receptors results in the activation of target genes within the nucleus. 
These genes determine biological responses, such as proliferation or differentiation. They 
comprise four transmembrane proteins, each with different properties but all involved in 
the regulation of cell proliferation (C 2003). These receptors are responsible for mediating 
normal cell growth and differentiation (Alan 1999). Abnormal activities of these receptors 
have been found to lead to the development of a number of human cancers (E.K 2003). 
This is the reason why today some anticancer agents target HER receptors.

The four known members of the HER family are: HERl(ErbBl or EGFR - epidermal 
growth factor receptor); HER2 (or ErbB2 or c-neu); HER3 (or ErbB3); and HER4 (or
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ErbB4). These receptors are typically found on the cell surface of normal tissues of epithelial, 
mesenchymal, and neuronal origin (Olayioye M.A. 2000). They are structurally similar, but 
have distinct characteristics that dictate their signalling specificity. They share a structural 
configuration comprised of an extracellular domain; a single hydrophobic transmembrane 
domain; and a highly-conserved tyrosine kinase domain.

2.2.2 HER receptor ligand-binding
A ligand is a substance in the form of a molecule or molecular group (e.g. drug, hormone 
or antibody) that can bind to a target protein (receptor), alter its conformation (state or 
shape) to trigger a biological signal. HER receptors normally exist as inactive monomers. 
Activation of the receptor occurs on ligand-binding, and this triggers a cascade of events that 
leads to receptor dimerization, and ultimately mediates biologic processes such as cell growth 
and differentiation. Apart from HER2 the other members of the HER family require the 
binding of an extracellular ligand for activation. Different ligands bind different receptors 
(C 2003, Olayioye M.A. 2000) and their binding results in different effects (Jones J.T. 1999, 
W.J 2001). With the exception of Epidermal growth factor (EGF), which is found in many 
body fluids, the availability of these ligands is one way in which HER receptor activity is 
controlled.

2.2.3 Conformational change
Ligand-binding leads to a conformational change in the receptor. The receptor changes 
from a closed state to an open state. In the open state, a region of the receptor known 
as the dimerization domain is exposed. This allows the receptor to dimerise with another 
receptor in an open state, and initiate signal transduction (Dawson J.P. 2005) HER2 has 
no known ligand and its structural conformation is always open, mimicking a ligand-bound 
state. This allows HER2 to automatically dimerize with other HER receptors, making it 
the preferred pairing/dimerisation partner for the ligand-activated HER family members 
HER1, HER3, and HER4 (C 2003).
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2.2.4 Receptor dimerization (pairing)
Receptor dimerisation is an essential requirement for HER function and for the signaling 
activity of all HER receptors. The dimerisation process can occur between 2 different recep
tors from the HER family (heterodimerisation, e.g., HER1 and HER3) or between 2 of the 
same receptors (homodimerisation, e.g., HER1 and HER1) (Olayioye M.A. 2000). Stim
ulation by a specific ligand confers a specific dimerisation profile that is tissue specific or 
tumour specific (Olayioye M.A. 2000). Dimerisation results in activation of the kinase do
main, transphosphorylation, and the induction of intracellular signaling cascades (C 2003). 
The HER signaling network is highly complex with many possible dimeric receptor combina
tions, multiple associated ligands, and numerous intracellular pathways. Signaling diversity 
depends not only on the presence of specific receptors, but also on the characteristics of 
individual ligands (Olayioye M.A. 2000). Two important signaling pathways activated by 
the HER family dimers: the PI3K/Akt pathway - promotes tumor cell survival; and the 
mitogen-activated protein kinase (MAPK) pathway - stimulates proliferation (C 2003) In
tracellular signal transduction is initiated by the cytoplasmic domain of the receptor. HER1, 
HER2, and HER4 all have tyrosine kinase domains, but HER3 has an inactive domain and 
as a result is unable to directly initiate signal transduction (C 2003). In their inactive, 
monomeric state, the tyrosine kinase domains of the receptors are not activated. The phos- 
phorylated residues of the cytoplasmic domain act as binding sites for adaptor proteins such 
as She; kinases such as phosphatidylinositol 3-kinase (PI3K); protein tyrosine phosphatases; 
and guanine nucleotide exchange factors such as Sos (C 2003, Olayioye M.A. 2000). Each 
receptor possesses a distinct pattern of binding domains, and as a result will form distinct 
adaptor protein complexes on phosphorylation. This leads to variation in the downstream 
pathways they activate (Olayioye M.A. 2000).

2.2.5 Cancer and HER receptor dysregulation
Dysregulated HER receptor activity is implicated in a number of tumors, including ovar
ian, breast, prostate, and lung (C 2003). This dysregulation may be caused by receptor 
mutation, or over-expression, or the excessive production of ligands. This can result in 
activation of downstream signaling pathways, leading to uncontrolled cell proliferation; 
increased potential for invasion, metastasis, and angiogenesis; and decreased apoptosis
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(C 2003, E.K 2003). Therapeutic strategies are being developed which target HER family- 
receptors. These agents are primarily monoclonal antibodies which block ligand binding to 
the receptors, or small-molecule tyrosine kinase inhibitors which prevent signal transduction 
via the tyrosine kinase domain of the receptor (C 2003).

2.2.6 Intracellular dignalling pathways
The formation of a complex of adaptor proteins results in the activation of downstream 
signalling pathways (C 2003). The receptors in the HER family are linked to the MAPK 
pathway (Olayioye M.A. 2000). This is brought about through interaction between adaptor 
proteins and RAS GDP/GTP-binding proteins. Association of the PI3K adaptor protein 
with receptor tyrosine kinase domains leads to activation of the AKT pathway. The RAS 
proteins initiate a cascade of phosphorylation events in associated signalling molecules, 
leading to the activation of the MAP kinases. MAP kinases transfer the signal through 
the cytoplasm to the nucleus. Intracellular signalling proteins bind to phosphotyrosines on 
activated RTKs to form a signalling complex, sending multiple signals through multiple 
pathways, including SRC, STAT, PKC, PLC7 I/PKC, PI3K/AKT and MAPK pathways 
(Olayioye M.A. 2000, Alberts Bruce 2009). For the purpose of streamlined focus and 
data available for this research, we shall restrict our discussion to only the MAPK and 
PI3K/AKT pathways. The MAP kinase pathway includes the Mitogen-activated protein 
(MAP) kinases that lie in protein kinase cascades. These kinases comprise a family of 
protein-serine/threonine kinases, which participate in signal transduction pathways that 
control intracellular events including acute responses to hormones and major developmen
tal changes. The RTKs may also use an alternative relay mechanism that is responsible for 
promoting cell survival and growth through the enzyme phospoinositide 3-kinase (PI3K). 
PI3K basically phosphorylates inositol phospo lipids (and not proteins). Unlike their pro
tein counterpart, lipids are generally synthesised, modified and broken down by enzymes 
(Alberts Bruce 2009).

C ell d iv is io n  and  regu la tion

In normal cells there is a carefully regulated balance between growth-stimulating and 
growth-inhibiting signaling pathways. Growth factors signal the cell cycle control system
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by stimulating DNA synthesis and division. The binding of these growth factors to specific 
receptors on the plasma membrane is usually necessary for cell division (CellLectures 2010). 
Cyclins and cyclin dependent kinases (CDKs) play a major role in regulating the cell cycle. 
Signals affecting critical checkpoints determine whether the cell will go through a complete 
cycle and divide (CellLectures 2010).

The cell cycle control system is a complex and highly regulated system, characterised 
by temporarily ordered events of oscillations, checkpoints, positive and negative feedback 
loops. Its control of transitions can be summarised as follows: GO phase: resting phase; 
G1 phase: committed to high rate biosynthetic activities and progression through the cell 
cycle; S phase: DNA synthesis (chromosomes are duplicated); G2 phase: Significant protein 
synthesis; and M phase: Mitosis (nuclear division - cell divides into 2 daughter cells). The 
central players of the cell cycle control system are the Cyclin dependent kinases (CDKs), 
which govern the initiation, progression, and completion of cell cycle events. The control 
of transition between cell cycle phases is dependent on the quantity of Cyclins, CDKs, and 
CDK inhibitors. Understanding how these protein kinases may be regulating the cell cycle 
is important.

2.2.7 Diagnosis and treatm ent of breast cancer
Breast cancer is currently the most common cancer in the UK (Breathrough 2010). This 
section aims to give information on breast cancer diagnosis, drug treatments and the po
tential of computational and mathematical modelling in cancer systems biology aimed at 
pharmaceutical development.

Treatments given to women with breast cancer include one or more of radiotherapy, 
chemotherapy, hormone therapy, and targeted (biological) therapy depending on the par
ticular circumstances of the individual. The breast cancer treatment processes can be 
summarised in three major steps: referral, diagnosis and treatment.

S tep  1: R eferral
While patients are advised to see their GP immediately if they observe symptoms such as 
lump, nipple distortion or skin changes (ulceration). Nine out of ten breast lumps are not 
cancer. The GP will then refer them to a specialist if necessary. Over 80 percent of all
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breast cancer cases in the UK are in women over the age of 50. It is important to remember 
that breast cancer is rare in women under the age of 40 (Breathrough 2010). This age 
effect is observed since most cancers are formed from a number of abnormalities occurring 
concurrently. Therefore, cancer may be viewed as a disease formed over a long period of 
time for multiple abnormalities to aggregate.

S tep  2: D ia gn o sis  (T rip le A ssessm en t)
The triple assessment (testing for breast cancer) is based on three basic examinations, 
namely: clinical (physical) examination; breast imaging (mammogram or ultrasound); and 
core biopsy and/or fine needle aspiration (FNA). Biopsy may used if the symptom being 
investigated is a lump. Clinical examination involves a physical examination performed by 
a doctor or specialist nurse. Breast imaging is performed by using either mammograms 
(special X-rays that use a very low doses of radiation) or ultrasound scans of the breasts. 
Core biopsy is performed by taking samples of cells from the lump using a needle. A fine 
needle aspiration (FNA) thin needle used to take samples of cells from the breast lump 
area - may be given before or instead of a core biopsy. The sample is then taken to the 
laboratory, where it is studied by a pathologist. The results of the tests will determine 
whether cancerous cells are present.

It is important to know certain characteristics of the breast cancer to determine the best 
treatment option for the particular patient. Staging and grading are processes (or methods) 
used to define the exhibited properties of a cancer. The TNM (tumour, nodes, metastases) 
system of staging describes the size of a tumour, the number of lymph nodes affected, and 
whether and how far the cancer has spread. Using a scale between 0 and 4, a high number 
indicates that the tumour is large and has spread beyond the breast and to the lymph 
nodes or beyond. Tumours are graded between 1 and 3 depending on pathological features, 
including mitotic rate, tubule formation (ie how similar the cancer is to normal), and the 
morphology of cancer nuclei. A higher number is associated with a poorer prognosis.

S tep  3: T rea tm en ts for B rea st C an cer
Treatments available to breast cancer patients may be classified as local or systemic de
pending on staging and grading outcome. Local treatments aim to remove cancer from 
local sites through surgery and radiotherapy. Radiotherapy involves using radiation to de-
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stroy cancer cells. Systemic treatments involve the use of drugs that aim to specifically 
target and kill cancer cells which may have spread, e.g. chemotherapy, hormone therapy 
and targeted therapy. Chemotherapy involves using anti-cancer (cytotoxic) drugs to destroy 
cancer cells. Hormone therapy blocks the production or action of hormones that are consid
ered favourable to cancer. It also aims at reducing the ability of the cancer cells to respond 
to such hormones. Targeted therapy involves using therapeutic strategies such as HER- 
targeted monoclonal antibodies, e.g. Trastuzumab (Herceptin), for treating HER2-positive 
breast cancers. Functional loss of PTEN may be associated with acquired resistance to 
trastuzumab targeting ErbB receptor family.

2.3 Cancer system s biology and com putational M od
elling

Cancer systems biology is playing an invaluable role in the understanding of cancer biology 
today. Computational and mathematical modelling approaches and novel methodologies 
for analysing data are being used to reveal molecular biomarkers in biological systems. 
Through contemporary cancer systems biology scientists are gaining new insight in and 
retaining deeper understanding of complex biological phenomena. As mathematical models 
of these systems and processes aim to describe the different processes involved in a complex 
system, they seek to capture their dynamics and explain their behaviour using experimental 
data. Cancer systems biology is becoming more and more evident through the application 
of theoretical analysis and generation of new hypothesis. The ultimate aim of the modelling 
is to determine the optimal therapeutic strategy that has the potential to can collectively 
trigger mass apoptosis in defective cells or discover new biomarkers that may eventually 
lead to the reversal of drug resistant responses in during treatments.11

Modern biology is concerned with the understanding of the structures of biological sys
tems both at the systemic and molecular levels. In gaining this understanding the key nat
ural phenomena involved in biological growth, evolution and processes must be understood. 
This has always been a challenging process depending on the level of limitation imposed on 
the data capture mechanism or method. Notwithstanding, most of the basic functions of

11 Sum m ary of effective th erap eu tic  drugs: ER- and P R -p ositiv e  breast cancer: Tam oxifen, E xem estan e (A rom asin), Arim-
idex(anastrozole) and Fem ara(letrozole). H E R 2 /n eu -p o sitive  breast cancer:Trastuzum ab (H ercep tin ). A dvanced H E R 2 /n eu -p o sitive  
breast cancer (breast cancer th a t have progressed after previous H erceptin  treatm ent): L ap atin ib /p ertu zu m ab  (not standard  care)
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biological components and mechanisms of their fundamental processes, which are involved 
at the genetic, cellular, and organic level, together with those favourable and unfavourable 
conditions that affect or determine their overall responses and behaviours are now being 
studied and understood at a scale more than ever before. However, the strategic method 
for studying cancer biological systems requires more than just an hybridization of the best 
conventional reductionist approach or most effective holistic approach. Whichever approach 
that is being used must take cognisance of essential fundamental needs such as instant sys
tem identification requirements, fast model construction, data consistency, optimal utilisa
tion of limited data, accurate forecasting, and new knowledge discovery (Idowu M.A. 20116). 
The following requirements, if adequately collectively met, should be the foundation upon 
which effective and workable strategic methods for cancer studies are developed.

We recommend that methods that implement system identification and parameter es
timation algorithms should run fast (i.e. in a matter of seconds or a minutes) to be of any 
practical use.

We recommend that the model construction process (using a data-driven modelling 
approach) should execute fast just as the system identification and parameter estimation 
methods are expected to run efficiently too. It seems that to guarantee that an automated 
process completes its model construction task efficiently such a process needs to implement 
a non iterative technique (e.g. matrix based methods or solutions). For this reason, an 
objective to ensure that all methods developed in this thesis is matrix-based.

A model that is capable of simulating (without any error) an exact replica of the original 
experimental (time series) data that was used to construct it may be regarded as being data 
consistent. We assume that in a deterministic systems most predictive models should be 
data consistent with historical time series data.

Our experimental time series data studies demonstrate that at least three (3) time points 
are enough to infer a network of interactions (i.e. transformation matrix) from an unknown 
system. However, the number of time points required to successful infer and identify a 
system must be > the total number of dependent measurables wiithin the system. Where 
limited data is available, the system identification method should make optimal utilisation 
of the limited data a priority.

Accurate forecasting can only be guaranteed only if the predictive model is data consis
tent, though the converse may not be true under limited data availability.
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This is perhaps one of the most important elements of all the recommendations; the 
primary goal of our modelling efforts would be to discover new information about the target 
systems. Hence it is important to keep a focus on how new information (that are relevant) 
may be extracted from experimental time series data acquired from a complex system.

We will return to describe how the computational and modelling framework developed 
in this thesis seeks to meet each of these requirements in the concluding chapter (chapter 
7) of this thesis.

Both molecular biology and genomic biology have evolved over the years and the result 
of their revolutions is this emerging field called systems biology (Ideker T.L. 2006). To some 
systems biology may be viewed in terms of investigating the behaviour and relationships 
of all the elements in a particular biological system (Ideker T. 2001). Its goal is to seek 
to predict the quantitative behaviour of a biological process under realistic perturbation 
(J 2003). One emerging trend in most recent definitions about systems biology is the 
holistic approach that must be adopted - seeking to understand and predict the behaviour 
of biological systems at the system level (Ideker T.L. 2006), (Ideker T. 2001), (J 2003).

A good and intriguing definition of systems biology coined around its operational com
ponents is the description “Measurement, Mining, Modelling, and Manipulation”12. In 
recent times, more and more multivariate data of biological processes are being captured 
using advanced high-throughput technologies such as the reverse-phase protein microarrays 
(RPPA). After data acquisition computational algorithms will be required to mine and gen
erate hypothesis from such data and consequently computational modelling are then used to 
develop new predictions (Ideker T.L. 2006). These predictions may be useful in informing 
new experimental design. Ultimately, forms of experimental manipulations or biochemi
cal interventions (Ideker T.L. 2006) must be used to test those predictions produced from 
computational modelling. Prom this description, data acquisition supported with effective 
computational algorithms and good modelling techniques for making predictions help in 
making contemporary systems biology a powerful scientific subject. With the advent of 
high-throughput technologies for capturing data from assays, high-throughput analysis of 
intracellular signalling data may be produced.

Cancer systems biology focuses on understanding the molecular interactions and char
acteristics of cancer cells. Prom a computational perspective, the use of computational

12definition and illustration taken from the http://csbi.mit.edu/ webpage
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models of cancer consistent with experimental data is required to uncover new insights into 
cancer mechanisms. Such models are powered by computational and mathematical methods 
for identifying systems and estimating best parameters that will produce realistic models. 
These system identification and parameter estimation challenges requires fast and efficient 
computational methods to be developed. Human cancer systems biology uses predictive 
models of cancer to describe and understand the behaviour and nature of the disease in 
humans to influence drug discovery (Butcher E.C. 2004). To help improve decision making 
in pharmaceutical development, emergent properties of complex human cells are captured 
and integrated into the relevant drug discovery process, enabling clinical indication selection 
(Butcher E.C. 2004).

At the cell signalling pathway network and cell-cell interaction scales, systems biology in 
the pharmaceutical industry may focus on the identification and measurement of molecular 
components, generate data from high-throughput assays at multiple interactive pathways to 
address cell responses to physiological stimuli and pharmaceutical agents, develop and use 
an appropriate cancer models designed to address specific questions at either the pathway 
or organ level (Butcher E.C. 2004). Focusing on the building blocks of biological sys
tems (genes, proteins, metabolites), data derived from such components may be analysed 
to identify new targets and generate testable hypotheses, informing experimental design, 
accelerating drug discovery, and validation of drug efficacy under specific conditions.

Drug approval rates still lie far below the cost of new drug discovery (?), demonstrat
ing that cell biology is expensive research - huge investment into genomics and screening 
technologies is required. It is believed that computational systems biology might help im
prove these rates and achieve greater impact on target validation and clinical development 
decisions.

Computational systems biology requires the integration of experimental and computa
tional research to understand complex biological systems including practical innovations 
in medicine, drug discovery and engineering. (H 2002 a). Its primary goal is to provide a 
framework for the generation of new hypotheses and accurate prediction based on in silico 
simulation of related disease biology (Ideker T. 2001, Ideker T. 2003). Often faced with 
the problem of lack of adequate data the adopted system identification strategy encounter 
great challenges. A lot still remains unknown about organ and system-level responses, even 
if cell-level responses behaved as expected, and without this knowledge the disease-relevant
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biology cannot be integrated into the drug discovery process. To address the problem of 
inadequate data more costs will have to be incurred in the purchase of high-throughput 
technologies furthering the rate at which investment cost exceeds that of benefits. Difficult 
balance must be struck between outstanding modelling outcomes and data limitation.

Still other factors such as tumour heterogeneity have the potential to make cancer drug 
discovery process an even more challenging endeavour (Alexander Kamb & Lengauer 2007). 
The “war on cancer” is far from being won as organ level understanding is multi-scale, 
requiring knowledge of operations that occur dynamically at gene, pathway and cell levels. 
Since cells may be represented individually, questions of spatio-temporal heterogeneity such 
as how to predict tumour behaviour and response to intervention in spatially distributed 
mediums must be addressed (Salvatore Pece & Fiore 2010). In addition to this, multi-scale 
models are extremely difficult to construct and integrate due to the levels of uncertainties 
and change in the underpinning knowledge base, model purpose and scope (Bown J. 2012).

For model complexity to be interpretable, “models need to be as simple as possible 
but no simpler”13, i.e. adequate care should be taken to ensure that where model kinetics 
and parameters may be aggregated into smaller number of representative parameters or 
constants, they should be aggregated into understandable components. Another way of 
promoting model simplicity is by streamlining the model’s scope, covering and focusing on 
only the questions to be addressed by the model (Idowu M.A. 2011a, Bown J. 2012).

Another great challenge of recent systems biology and contemporary medicine is re
lated to personalised medicine or healthcare solutions, which involves an identification and 
application of an individual (patient’s) biofeatures to drug therapy discovery, efficacy mod
elling and healthcare management (J.K 2006). This would require biomarker diagnostics, 
data analysis, information extraction, visualisation of association network of system kinetics 
(Idowu M.A. 20116). In this approach health services and coherently tailored and prescribed 
therapeutics may be made available to individual patients or defined sub-populations ap
plying recent knowledge obtained from pharmacogenomics and clinical practice (A.M 2007).

Therefore, it is important to understand that the overall goal of modern systems biology 
is to understand physiology and disease from the level of molecular pathways, regulatory

13One of Albert Einstein’s quotes: “It can scarcely be denied that the supreme goal of all theory is 
to make the irreducible basic elements as simple and as few as possible without having to surrender 
the adequate representation of a single datum of experience.”-“Everything should be made as simple 
as possible, but no simpler.”
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networks, cells, tissues, organs and ultimately the whole organism (Butcher E.C. 2004) 
requires pulling together broad resources and scientists from many disciplines (A.R. 2008).

2.4 Process-based m odelling
When investigating how multiple interrelated components of a complex systems interact 
mathematical models can be used. Conventionally, there are two basic classes of models, 
depending on the modelling approach or how the models are created and used: process- 
based models and data-driven models. A process-based modelling approach is one strategy 
often used to capture and describe the important mechanistic details of the underlying 
processes and fundamental behaviour of a complex system producing process-based models 
during the process. Such models are then used to investigate emergent properties that are 
often impossible to infer intuitively (A.R. 2008).

Process-based modelling often involves very difficult challenges due to the nature of 
the complications that may arise during the integration of all key processes, especially on 
multiple scales - the fundamental principles governing the various interactions must be 
understood, captured and well formulated, each of these being a challenging tasks on its 
own. All the various complexities involved must be considered e.g. gene to gene interactions 
in gene networks, signals transduction in mutiple signalling pathways all the way up from 
the molecular level to higher biological scales at the population level (A.R. 2008). Predictive 
individual-based models of cancer cells e.g. models of signalling (or gene) networks may be 
used to predict key biomarker functions. The potential to introduce other more complicated 
modelling questions or challenges such as how to handle genotype-to-phenotype mapping to 
predict the behaviour of a cancer cell introduces new insights into the complexity involved 
in the challenge. One major problem that is yet to be tackled in process-based modelling is 
the challenge of bringing multiple processes that cut across multiple scales in quantitative 
terms without combining facts with erroneous assumptions that have the potential to affect 
modelling outcome in a drastic way (A.R. 2008).

The construction of “highly scalable models of biologically plausible cells arranged in 
biologically plausible structures that model cell behaviour (lifecycle), interactions (bio
mechanics) and response to therapeutic interventions (cellular signalling)” has been sug
gested (Bown et al. (Bown J. 2012)) in response to addressing the fundamental goal of
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systems biology - that is, the requirement to address and promote biology (or pathology) 
understanding at the system level also (Ideker T.L. 2006), (Ideker T. 2001), (J 2003). How
ever, major challenges such as dealing with complexity in multi-scale modelling, uncertainty 
and change in the underpinning knowledge base, and uncertainty in the model purpose and 
scope (Bown J. 2012) should be addressed. In addition to these, it has to be decided which 
type of modelling (functional) form is most appropriate for the particular system being 
investigated.

It is common to use the Michaelis-Menten rate laws approach (Briggs G.E. 1925) in 
process-based modelling. Generally, the key biological processes are first investigated and 
then formulated with appropriate mathematical functions to describe and incorporate then 
with kinetic equations and parameters. For example, cell processes may be described by 
modelling and approximating the relevant and important underlying intracellular processes. 
Though such process-based models are often difficult to create and complicated to estimate 
parameters, they are able to capture the necessary information about the various processes 
that should be integrated. Process-based models must make the right assumptions about all 
the key associations, dissociations, internal processes and external influences within a given 
system. For example, to identify molecular targets, computational systems biology may use 
computational modelling approaches that integrate cell structure and dynamics (H 2002 b). 
Initial knowledge about cell activity, processes or responses may be extracted from the 
biological experts and literature. The topologies of the networks (and their components) 
ought to be known and specified. Such topologies and all the related associations amongst 
the systems component are intimated in sets of ordinary differential equations (ODEs). The 
ODE model is then used to describe the rates of change in the biological components, which 
will be used in simulating the dynamics of all the individual components and the whole. 
Such models have the potential to offer real insights into the missing knowledge between 
biological mechanisms and signalling responses (Bown J. 2012), (B 2006), thereby assisting 
in providing a platform for promoting understanding of how these signalling networks work.

2.4.1 Major challenges of process-based modelling
Since cancer is characterised by abnormal activities of (multiple) pathways, it may serve well 
to characterise signal transduction in a multi-pathway network, where cell processes are con-
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trols by those signals (B 2006). Recent target-based cancer drug development approaches 
are now focusing on the abberation of the interconnecting network of cellular signalling path
ways involving ligands, transmembrane receptors, intracellular signalling protein kinases, 
and transcription factors (Adjei A.A. 2005). In cellular signalling models, the networks that 
connect these multi-pathways are revealed to have highly complex topologies with feedback 
loops (Papin J.A. 2005), crosstalk, possibly alternate interconnectivities, often enabling 
cells to be robust to perturbation (Bown J. 2012). Hence it is almost impossible to keep 
track of all these activities reducing model identifiability and creating a huge gap in knowl
edge about model construction and system processes formulation. The potential for making 
wrong assumptions and outdated assessment of system states is great, not mentioning the 
difficulty in dealing with data from different scales.

Due to the level of complexity involved in formulating the essential cellular functions 
in signal transduction systems, it is important to seek alternative methods that can be 
used to extract useful predictions from experimental data for complex cellular signalling 
networks (Brown K.S. 2004). Both the choice of model to be used and the modelling method 
adopted should depend on the nature of the biological questions to be addressed. Important 
issues such as data limitations, multi-scale integration challenges, false assumptions must 
be considered before choosing the appropriate modelling formalism to be used (Morris M.K. 
2010). These are some of the issues addressed in this thesis.

2.5 Data-driven m odelling
The advent of high-throughput technologies and equipments has contributed immensely to 
the acquisition and development of large-scale quantitative studies of signal-transduction 
networks. Such data are hard to understand completely by inspection and intuition (Janes K.A. 
2006). In analysing such large data sets, data-driven modelling approaches may require 
developing computational algorithms and methods for analysing experimental data. Data- 
driven modelling is an approach in which system identification and model construction and 
calibration depend on a given experimental data and consistency with that given data. 
With careful optimisation, adequate and efficient analysis of such acquired measurements 
the constructed data-driven models may help extra useful information from experimental 
through reverse engineering. Modelling frameworks that incorporate data-driven models
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a n d  m e th o d s  a re  fa s t b e c o m in g  im p o r ta n t  p la tfo rm s  for sy s te m s-le v e l re se a rc h  in  s ig n a llin g
networks (Janes K.A. 2006). Data-driven modelling is described fully in chapter 3.

This integration of biological data into m athem atical models often involves tim e se
ries measurements following some stimulus e.g. gene expression, protein concentration, or
m etabolite concentrations (Voit 2008). Inform ation extraction or d a ta  mining of tim e series 
d a ta  sets is aided through the development of fast and efficient com putational techniques
for reverse engineering experimental data. During the process, data-consistent models are 
constructed using network inference algorithms th a t may or may not make use of a pri
ori assumptions about network interconnectivity. Most of the time, these com putational
algorithms struggle in ensuring th a t the constructed model is consistent w ith the given ex
perim ental da ta  (Voit 2008). Some optim isation work might be required to ensure th a t the 
network inference algorithms produce fitness results th a t converge rapidly fast, reach true 
global optimum, do not overfit noisy or partially  missing data  (Voit 2008). This effective 
management of experimental d a ta  is essential in pharmacokinetics. Com putational systems 
biology will continue to support drug design i.e. experimental design and clinical decisions
will continue to be informed by the results obtained from data-driving network inference.

Time series data

Artificial
(simulated)
data
Pseudo
biomodel data
Proteomics 
and genomics
Clinical data

Reverse engineering and data-mining strategies

Dynamic modelling solutions 
•Data-consistent models 
•Optimised models 
•Robust models
Novel computational and 
mathematical techniques 
•Network inference 
•Parameter estimation
Models:
•ODE
•Half System 
•S-system

Discoveries and generation of hypotheses

Complete 
recovery of 
artificial 
networks
Personalised
medicine
predictors
Therapeutic 
markers and 
predictors
Signalling 
pathways and 
networks

Figure 2-1: A proposed robust and inexpensive matrix-based reverse engineering framework that 
is able to optimally utilise limited time series data.

Experim ental protein interaction data  by high-throughput techniques usually have many 
false positives; specifically, proteins th a t do not interact in reality are observed to interact
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in the experiments (Chen L. 2009). As a result, many of these presumptions are made in 
mathematical models, rendering such models inconsistent with new experimental data. On 
the other hand, because of the incompleteness of an experimental dataset, there may also 
be false negatives; that is, proteins that interact in reality are not observed to interact in 
the experiments (Chen L. 2009). Other challenges include the volume of experimental data 
required for some methods such as Bayesian inference, aritifical neural network (ANN), 
running time of estimating parameters, difficulty in interpreting solutions biologically - 
no causation; no mechanisms. For this reason, dynamic and more flexible computational 
methods and network inference algorithms are required.

In cells, pathologies emerge as a result of changes to relatively few pathways in the 
network of signalling, biochemical and transcription processes. Whilst the cell is robust 
to perturbation of most of the pathways, correlated perturbation of a comparatively small 
subset can lead to profound changes in the integrated dynamical behaviour of the cell. Our 
investigation addresses the question of whether time series data may be used to understand 
cancer in terms of a dynamic cell network, investigating how the results of time series data 
analyses may be used to identify biomarkers from tissue samples, employing dynamic models 
driven by real experimental data focusing on gaining new insight into multiple-drug target 
interventions.

A data-driven modelling strategy is an approach which is based on the implementation 
of artificial intelligence and/or useful information extracted from data. It allows the de
velopment of inference methods to determine the structure of the interaction network that 
best approximates the key characteristic features of the system that produces the source 
data. Hence a constructed model produced from a data-driven modelling strategy seeks 
to incorporate a simulation intelligence and capability to reproduce (simulate) the original 
(source) data. We seek to develop and optimise only inference methods that are capable of 
demonstrating complete recovery of artificial networks of interactions purely from artificial 
data. A further optimisation of those methods may be required for unsupervised reverse 
engineering of biological time series data. The figure above (Figure 2-1) illustrates the re
verse engineering strategy adopted in this thesis. As illustrated in the figure, in contrast to 
most traditional process-based modelling approaches, the data-driven modelling approach 
we have adopted does not require static (fixed) structures of discrete symbols or components 
to be formalised and does not require continuous human intervention (because it requires
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no additional a priori assumptions to be specified as inputs) during the development pro
cess. The approach we seek to develop is ODE based, completely data-driven (i.e. purely 
formalised based on the states of the system measured at some given time points and the 
dynamics of the systems over a time period), and will require a deterministic, continuous 
model to be formulated analytically and mathematically. The model construction process 
may be completely automated.

In all case studies, the data-driven strategy used will seek to optimally utilise the 
given time series data obtained from real experiments or manufactured from an indepen
dent process-based model of important pathways (i.e. DNA damage response pathway or 
PI3K/AKT/MAPK signalling pathways). The algorithm developed and presented in chap
ter 4 will be used to automatically create the dynamic models that are consistent (i.e. able to 
simulate or reproduce the exact time data series data input), and ultimately seek to predict 
both the structure and dynamics of the biological systems (Idowu M.A. 20116, Voit 20026).
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Chapter 3
System  identification m ethods

3.1 Data-driven M odelling Approach
In this section we introduce system representation approaches with system identification 
and parameter estimation challenges. First we introduce the concept of reverse engineering, 
particularly those based on power-law formalism. The power-law formalism of the biochem
ical systems theory (BST) is identified as a more effective alternative to the well-knwon 
Michaelis-Menten formalism (Briggs G.E. 1925). The BST may be viewed as a mathemat
ical modelling theory for describing complex systems. Stressing the need to reduce model 
structure restrictions to encourage robust model reconstruction, we review common mod
elling challenges confronting contemporary modelling and revisit how modelling challenges 
and issues were addressed in the past. We identify some of the effective data-driven mod
elling techniques used in the past and, in a chronological order, consider some key issues 
that have emerged over the years and relate them to why the core method developed in this 
thesis is important. By discussing some of the modelling developments that have emerged 
over the period of the last decade, we recount some of the failures and successes of reverse 
engineering strategies, particularly those based on BST. With a view to working towards 
fast and immediate reconstruction of dynamic models from time series data, we reaffirm 
the use of synthetic benchmark data for the support and development of effective, fast and 
robust inference methods as a useful technique for carrying out risk-free assessment of po
tential and competing inference methods. Finally, the BST is reintroduced in a much deeper 
detail by introducing the Half-system, S-system and the generalised mass action (GMA)
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systems as some of its forms.
This chapter as a whole focuses on data-driven modelling of time series data based on 

ODE, particularly BST based ODE representation, and the advantages and challenges of 
BST and BST based inference methods for modelling dynamic time series data.

3.1.1 ODE based modelling
Ordinary differential equations (ODEs) are commonly used to describe dynamic systems. 
Whenever time series profiles of constituents of a complex dynamical system become avail
able, such time-evolution dynamics may be described either by a set of ODEs, e.g. jacobian 
or power-law model. Such time series evolution may be described in mathematical terms 
to capture system behaviour and states recorded at various time points and intervals. One 
of the most difficult challenges in modelling biological systems from time series data is the 
determination of a data-consistent solution to its model reconstruction problem, i.e. inverse 
problems. Solving an inverse problem often requires developing or applying system identifi
cation and parameter estimation strategies to (re) construct a predictive model and calibrate 
its parameters in such a way that the overall model itself may be workable and consistent 
with experimental data. Depending on the nature of the systems, the modeller may adopt 
a power-law model, either as a complementary approach to other existing approaches or 
as an alternative means to formulate and validate system behaviours or dynamics through 
modelling. In describing complex biological processes through modelling, one must take 
into account a consideration of the underlying nonlinear phenomena involved and all the 
essential relationships among the system components. S-system (Voit 2008, Voit 2000) is 
an example of an ODE model that may be used to approximate and articulate complex 
system dynamics in meaningful ways.

3.1.2 System s representation, identification and parameter 
estim ation

In studying biomolecular networks, computational techniques may be used to analyse and 
model data to reveal important mechanisms. An understanding of some of the various 
computational methods that others have used in the past is important. It seems that many 
modelling strategies, including those developed in recent times, are either based on further
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development of older techniques that require some form of optimisation or newer approaches 
developed specifically to further address key context-sensitive questions. It could be said 
that many of those methods, in trying to find the best solutions to difficult questions, worked 
reasonably well in addressing the key modelling challenges that had to be tackled. In fact, a 
knowledge of some of their foundations is essential for the development of newer techniques. 
However, it is important to reveal one key factor we have identified that appears to be 
missing in most modelling approaches. That is the need to develop a mathematical and 
theoretical framework that supports multimodel integration and automated construction 
of dynamic models from experimental data. In practice, this might be an automated and 
immediate inference method or strategy for inferring multiple context-sensitive models from 
single datasets; a system for recasting a jacobian model to either power-law Half-system or 
S-system; or any other similar process for promoting cross-platform integration of modelling 
approaches. An appendix section F.1.1 contains a full description of matrix-based analytical 
methods for recasting jacobian models to power-law models (Idowu M.A. 2013).

Network systems biology, a vital aspect of systems biology which deals with the under
standing of biomolecular networks at gene, protein, cell, tissue, or organism level, tends to 
rely on information from experimental data. Through application of computational meth
ods and mathematical models the important biological functions of cellular systems and 
details of their underlying network interactions can be revealed. From a system or net
work perspective, data obtained from gene regulatory networks, transcription regulatory 
networks, protein interaction networks, metabolic networks, signal transduction networks, 
and integration of heterogenous networks may be used in modelling studies, e.g. inferring 
topological information from data of such a system or network (Chen L. 2009). For exam
ple, the formation of a global view of cellular function requires a complete measurement 
of the expression of all the genes in a cell. This gene expression profiling can be used 
to study the regulatory relationship between genes. Fast system identification may help 
provide quick-and-dirty estimates of interaction networks from available data to formulate 
new hypotheses for further testing e.g. inference of signal transduction pathways and drug 
targets from data of perturbed experiments (Chen L. 2009). New data generated from such 
a network model may be used for predicting and analysing system dynamics to aid in the 
understanding of how the system works.

This inference of relevant information often poses difficult challenges and involves in
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corporating existing methods or developing and integrating new computational tools and 
methods for modelling experimental data and analysing modelling results to generate in- 
silico topological maps for understanding biological processes at the genome or proteome 
levels.

Genome level investigation involving molecular network studies on gene regulation and 
expression in transcriptional regulatory and gene regulatory networks may be conducted, 
e.g. measuring the products of transcriptional regulation, investigating the interaction and 
effects of a transcriptional factor in promoting or activating the recruitment of RNA poly
merase to specific genes1. An investigation into the various roles that transcription factors 
play, how they regulate gene expression, how RNA polymerase function in transcription 
of genetic information from DNA to RNA etc these are some of the important issues that 
may have to be addressed through modelling of experimental data. The result of such in
vestigation may turn out to be different from one experiment to another, e.g. interaction 
between a promoter and RNA polymerase could turn out to be negative, i.e. indicating 
some repressive effects.

Another important area in which modelling might help is in the area of quick simulta
neous detection and analysis of multiple mRNA expression levels during Microarray exper
iments. Modern-day Microarray techniques and technologies such as the DNA microarray 
(genome or DNA chip) are now being used to produce large quantities of data. The dy
namics and underlying biological processes involved in those data can be inferred. For 
example, mRNA synthesis and degradation may be better understood by modelling those 
large amount of data produced during microarray experiments.

Other investigations might involve protein modification, complexes and pathways forma
tion, or other such protein-protein interactions that may form a protein interaction network 
at the proteome level (Chen L. 2009).

Here, the interaction between components (nodes) of the transcription regulatory net
works, i.e. gene products (mRNA, transcription factors and other protein) and genes, 
may be represented as the edges of a representative gene regulatory network diagram 
(Brazhnik R 2002). The modelling challenges in this context include inferring both the

1Activators enhance the interaction between RNA polymerase and a particular promoter, encour
aging the expression of the gene. Activators do this by increasing the attraction of RNA polymerase 
for the promoter, through interactions with subunits of the RNA polymerase or indirectly by chang
ing the structure of the DNA
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indirect and direct interactions between the different genes and proteins from data in a fast 
and consistent way, making allowances for gene, protein and metabolite spaces to be inte
grated into a single network diagram (Brazhnik P. 2002). This last point requires thinking 
in terms of new modelling concepts and logics that is both flexible and robust in structure. 
An objective of the modelling task may be to determine how by both internal and external 
signalling some particular genes are being transcribed.

Essentially the nature of the network to be studied will determine the type of interactions 
that are involved, e.g. transcription factors to DNA interaction (transcription regulatory 
networks); gene to gene interaction (gene regulatory network); protein to protein inter
actions (protein interaction network); enzyme-substrate interactions (metabolic network); 
molecule to molecule interactions (signalling network). So as here, if the nature of the 
network concerned is metabolic or part of signal transduction, then network-based studies 
of interactions, pathways, and subnetworks may be considered as basic components. Often 
the modeller’s aim is finding and applying efficient method to analyse and model either 
transcriptomic, proteomic, or metabolomic data to discover or reveal some essential biolog
ical mechanisms in cellular systems. The overall challenge might be understanding complex 
system functions from a system viewpoint.

Gaining system level understanding requires overcoming the difficulty and complexity 
involved in dynamical interaction network of genes, proteins, and biochemical reactions 
(Chen L. 2009). In this regard, it helps to know about the computational methods in 
systems representation and identification of biological systems.

On the basis of experimental data generated from biological systems, effective compu
tational methods can help provide deep insights into the mechanisms of cellular systems 
(Chen L. 2009).

It is common to express or model biological networks in terms of ordinary differential 
equations (ODEs). However, in situations where the actual architectures of the network 
model must be derived from data, the types of ODE models for capturing all the important 
nonlinear functions and processes hidden in experimental data should be flexible, robust 
and generic enough to enable dynamic modelling in concept with some level of abstraction. 
Details of how this may be achieved will be discussed in chapter 4. However, it is important 
to identify the contributions others have made in the area of dynamic modelling using data.
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3.2 A review of determ inistic m odelling approaches
A deterministic modelling method may conceptualise outcomes of causality in a system 
by seeking to predict those outcomes based on some supportive scientific and theoretical 
evidences. In formulating an automated deterministic model, the model structure and 
parameter search space domain may be adapted to recalibration based on known principles, 
theories, or formalism. The choice of the parameter estimation strategy employed may 
be directly conditioned to whether or not a right modelling approach is used. A review 
of existing modelling approaches and system identification methods is presented before 
explaining the data-driven modelling approach developed in this thesis.

According to Irvine (D.H 1988) the biochemical system theory (BST) may be consid
ered as an efficient modelling framework for analysing nonlinear models due to the avail
ability of efficient recasting and anaytical methods built around it. The BST or power-law 
based framework, which includes Half-systems and S-systems, was originally developed for 
analysing organisationally complex systems and is ideal for representing growth and devel
opment patterns, genetic circuits, immune networks, ecological interactions etc (D.H 1988). 
They can be used to conveniently represent complex systems (e.g. molecular and cellular 
networks) and quantifiable elements of such systems using special functions in biophysics 
and physics (e.g. rate laws for enzyme kinetics, growth laws, probability functions, Cobb- 
douglas production functions (in economics)). For example, general methods exist within 
the S-system framework for finding steady-state solutions and performing sensitivity and 
stability analyses. Hence the BST formalism is naturally a good theory for modelling bio
logical systems. Sorribas and Cascante et al. (Sorribas A. 1994) used a power-law model 
(solution) to identify a metabolic pathway using dynamic data and steady-state measure
ments. Hernandez-Bermejo et al. (Hernandez-Bermejo B. 1999) presented a power-law 
model derived by a least-squares (LS) minimisation criterion as a data-consistent alter
native to other traditional derivations. They further extended its definition to include 
more operating points (Hernandez-Bermejo B. 2000). The foundation of the power-law 
formalism could be traced back to Michael A. Savageau (Ni Ta-chen 1996) who presented 
it as an alternative to other traditional formalisms like the Michaelis-Menten formalism 
(Briggs G.E. 1925) when modelling metabolic pathways of the human red blood cell. Alves 
and Savageau (Alves R. 2000) introduced the concept of mathematically controlled compar
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ison to differentiate between two promising candidate models (i.e. workable solutions) using 
robustness and stability measures that determine the sensitivity to parameter fluctuations 
profiles and deviation from and/or return to steady state after a small perturbation. Voit 
and Radivoyevitch (Voit E.O. 2000) used the BST modelling framework to model systems 
with DNA microarray data and enzymatic process information. Voit (Voit 2002a) pre
sented and recommended BST as a modelling framework for processing and analysing large 
amounts of experimental time series data of genetic and metabolic data. Voit is a leading 
expert on mathematical modelling using the BST. Tournier (Tournier 2005) modelled a 
subsystem of a real metabolic pathway with S-system based on the stability analysis of the 
steady state and relationship between the kinetic parameters of the model. An iterative pro
cess is adopted to numerically compute positive equilibria. With proposed conditions for the 
existence of a unique equilibrium in the phase space firmly established, the S-approximation 
algorithm used involves symbolic computation of partial derivatives. The use of context in
formation supplied by the biologists is encouraged to derive a piecewise approximation of 
biological systems. Gonzalez et al. (Orland R. Gonzalez 2006) proposed a parameter es
timation algorithm called simulated annealing (SA) to infer S-system models from time 
series data of biological systems, e.g. signal transduction, gene regulatory and metabolic 
networks. Polisetty, Voit, et al. (Polisetty P.K. 2006) presented an inference method called 
branch-and-reduce to tackle global optimization challeges identifying metabolic system pa
rameters using the generalised mass action (GMA) models. This method is suggested to 
be a better alternative to genetic algorithm (GA), SA, and even most nonlinear regression. 
Voit (Voit 2005) introduced the smooth bistable S-systems as a possible answer to ques
tions related to multiple stability conditions necessary for capturing and communicating 
switching phenomena that may be observed in cell cycle control, gene expression, signal 
transduction or similar. Voit proposed how bistability representation could be achieved by 
suggesting piecewise power-law approximation using the magnitude of a model parameter 
to determine and control the internal structure of systems. Chou, Voit, et al. (Chou I- 
Chun 2006) proposed the alternating regression (AR) method of parameter estimation in 
biochemical systems models. AR, combined with methods for decoupling ODE, provides 
fast and effective tool for estimating the parameters of S-system models from time series 
data. This method works through a decoupling of the ODEs to allow system parameters to 
be estimated one equation at a time using concentration and slope values of each dependent
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variable. A major drawback of AR is its frequent convergence issue. Vilela, Chou, et al. 
(Vilela M. 2008) proposed a novel parameterisation method for identifying S-system mod
els from time series data without requiring a priori topological information to be specified 
based on eigenvector optimisation of a matrix formed from multiple regression equations of 
the linearised decoupled S-system. With further extension the method is able to add con
straints on metabolites and fluxes, and using synthetic time series data, demonstrates an 
effective, automated reverse engineering strategy for identifying correct network topology 
from a collection of other data-consistent models. Rosario and Voit (Rosario R.C.H.d. 2008) 
investigated and evaluated the performance of a lin-log method for modelling the glycolytic 
pathway in Lactococcus lactis using in vivo time-series data. In this approach dealing with 
several variables that approach low concentration (and ultimately zero) values is challenging. 
Ko, Voit and Wang (Chih-Lung Ko 2009) introduced a constrained optimisation technique 
for estimating parameter values of GMA models using both time series measurements and 
steady-state data. Such constraints, which are based on the flux connectivity information 
of the system at the steady state, may help produce more accurate representations of model 
parameters than in unconstrained conditions.

Tominaga and Okamoto (Tominaga D. 1998) developed and applied a GA method to 
infer S-systems models. The method may require a time consuming effort. Kikuchi et al. 
(Kikuchi S. 2003) used GA to optimise the parameters of S-system models of small-scale 
genetic networks based only on time series data of gene expression - a strategy presented 
to predict both network structure and dynamics using a unified extention of GA and S- 
systems. This method requires large quantities of data to work. Nyarko and Scitovski 
(Nyarko E.K. 2004) presented a method for solving identification problems using GA and 
second-order ODE model. Spieth et al. (Spieth C. 2004) introduced a GA-based memetic 
inference method for modelling gene regulatory networks based on S-systems in order to 
avoid cyclic network disallowance in bayesian networks. Kimura et al. (Shuhei Kimura & 
Konagaya 2005) presented a method of inferring S-system models of genetic networks using 
a cooperative coevolutionary algorithm and measured time-series data of gene expression 
obtained from a fairly large network system. The coevolution algorithm breaks a fairly 
large inference problem into smaller manageable subproblems that can be solved simulta
neously. However, the method is based on an iterative process and a form of clustering 
strategy may be required to analyse large-scale datasets. The method might converge to
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a local minimum and cannot no guarantee of actual parameter estimates. Noman and Iba 
(Nasimul Noman 2005) presented an improved evolutionary method for inferring gene reg
ulatory networks using S-system and differential evolution (DE) based on in silico time 
series data. They used multiple artificial time series data. Later (Nasimul Noman 2006) 
they proposed an information criteria based fitness evaluation to select model instead of 
the traditional mean squared error (MSE) fitness test using both small and medium-scale 
artificial networks during verification. They used S-systems to model a genetic network 
and successfully identified the network topology and kinetic parameters, with larger net
works decoupling of S-system solution may be required. Searson et al. (Searson D.P. 2007) 
presented S-systems with evolutionary algorithms to infer chemical reaction networks from 
fed-batch reactor experimental data with limited input of a priori knowledge about products 
and reactants.

Akutsu et al. (Akutsu T. 2000) proposed the linear programming (LP-) based method 
to infer S-systems based models from time series data using finite differences of derivatives. 
This method also depends on availability of large quantities of time series data to work. 
Diaz-Sierra and Fairen (Diaz-Sierra R. 2001) proposed a nonlinear optimisation algorithm 
to estimate kinetic parameters using time series data and approximate system responses to 
perturbation from steady-state using multilinear regression. Moles et al. (Carmen G. Moles 
& Banga 2003) attributed failure in inverse problems to traditional local optimisation tech
niques and proposed evolution strategies (ES), a form of stochastic algorithm, as determinis
tic and stochastic global optimization methods. Veflingstad and Voit (Veflingstad S.R. 2004) 
proposed preprocessing time series data and fitting them preliminarily by multivariate lin
ear regression to improve initial guess quality in priming network inference algorithm. The 
method used is based on Taylor’s theorem and depends on using steady-state data and 
linearisation techniques. Srividhya et al. (Srividhya J. 2007) presented a global nonlin
ear modelling technique that generates a complete dictionary of polynomial basis functions 
based on the law of mass action to construct biochemical pathways from time course data. 
Tucker and Moulton (Warwick Tucker 2006) presented the method of interval analysis to 
construct and estimate S-systems based model of a metabolic network. This completely 
deterministic method allows an exhaustive search of the domain of alll parameter values 
within a finite number of steps circumventing global minimisation problems using a pruning 
scheme that is based on a boolean function (the cone condition). They used a vector-based

55



technique to discard unrealistic network topologies from the solution set.
Almeida (J.S 2002) proposed using the artificial neural network (ANN) method, which 

is a form of artificial intelligence (AI) and machine learning technique, to identify complex 
relationships from experimental data of biological systems with applications to expression 
profiles, genomic, and proteomic data aimed at computer-aided medical diagnosis and bio
logical sequence analysis. Almeida and Voit (Almeida J.S. 2003) presented a data smoothing 
method with stepwise regression based on ANN for estimating S-system models of biological 
networks. They later (Voit E.O. 2004a) used the method of differentials substitution with 
slope estimates and system decoupling method of identification. With universal function 
computed by ANN in sequential and parallel order the inverse problems could be further 
simplified (BSTLab 2007)

Ebenbauer (Ebenbauer 2007) presented a dynamical (Lax) system that computes eigen
values and diagonalizes matrices in real spectrum. The stability of the derived Lax system 
was determined by checking all the computed eigenvalues of the derived matrices. Fu- 
jarewicz et al. (Krzysztof Fujarewicz &; Swierniak 2007) addressed the problem of fitting 
ODE models of cell signalling pathways. The fitting procedure, which is based on the gen
eralized backpropagation through time GBPTT - an extension of backpropagation through 
time (BPTT) known in neural network theory - involved measurements taken at discrete 
time moments with concentrations of protein, protein complexes, and messenger RNAs 
(mRNAs) as time variables. This GBPTT, similar to other approaches used in signal 
flow graphs theory and electrical circuits, is a structural formulation of adjoint sensitivity 
analysis suitable for solving hybrid problems and may be used in constructing an ODE 
model of a signalling pathway. Chou, Voit, et al. (Chou I-Chun 2007) proposed a novel 
three-way alternating regression (3-AR) method and optimised the technique to estimate 
parameters from data using S-distributions. They used both real and noisy (in silico) data 
acquired from both S-distributions and traditional statistical distributions. This technique 
performed reasonably well and failed to converge only in very few cases. Derek Ruths et 
al. (Derek Ruths 2008) introduced the tool PathwayOracle which was developed in python 
to investigate and understand the dynamics of a signalling network using a simple, easy- 
to-build, unparameterized model with method capable of predicting signalling responses to 
experimental stimuli and conditions.

Barabassi et al. (Albert R. 2001) hinted on the interplay between network topology and
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resilience (robustness against failures and attacks). They investigated and reported that the 
topology and evolution of real networks may be governed by robust organising principles. 
Most large complex networks are scale-free networks i.e. their degree distribution follows a 
power-law distribution. Hence modelling cellular systems should emphasise on capturing the 
network dynamics first before extracting topological features based on the philosophy that 
if the processes that assemble cellular networks are well captured, their topological features 
may be easily inferred. Torres et al. (Torres N.V. 2003) identified systemic level understand
ing of complex systems as a key requirement. A combination of structural and dynamic 
analyses of signalling networks is gradually becoming common practice (Papin J.A. 2005). 
Structural analysis deals with the identification of key pathways that determine the be
haviour of a system (Andrea Sackmann & Koch 2006), while dynamic analysis involves 
predicting the changes in the concentration of signalling proteins over time. Sackmann et 
al. (Andrea Sackmann k  Koch 2006) described a systematic approach for modelling signal 
transduction pathways using Petri nets (bipartite directed multi-graphs with a theory that 
provides a variety of established analysis techniques) and logical structures translated from 
biological phenomena. In focusing on building a discrete model of a signal transduction net
work without a priori knowledge about the actual kinetic parameters they first performed 
qualitative analysis of the pathway using Petri net theory before progressing towards quan
titative analysis. Kitayama et al. (Kitayama T. 2006) identified the need to avoid using 
iterative procedures or calculations in identifying large-scale systems. They proposed a sim
plified power-law approach to modelling large-scale metabolic pathways from the Jacobian 
representation and steady-state flux profiles of the system under a wide range of pertur
bations of metabolite concentrations. Bansal et al. (Bansal M. 2007) in analysing both in 
silico and expression profile data compared several reverse engineering methods (i.e coex
pression network and clustering algorithms, bayesian networks, and some ODE) highlighting 
the importance of efficient reverse engineering strategies in modelling gene regulatory in
teractions and the need to carry out adequate assessment of inference methods. They also 
proposed appropriating reverse engineering algorithms to data subsets. Nemenman et al. 
(Nemenman I. 2007) reconstructed metabolic networks from high-throughput metabolite 
profiling data using ARACNE, an algorithm developed for reverse engineering of transcrip
tional regulatory networks. They used synthetic data of model of red blood cell metabolism 
for the evaluation of the performance of their reverse engineering method. The performance
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of the method on metabolic data was comparable to that on gene expression data. They also 
highlighted the usefulness of testing potential inference methods with benchmark data sim
ulated from known networks. Goel, Chou and Voit (Goel G. 2008) developed and presented 
the dynamic flux estimation (DFE) as a methodological framework for estimating parame
ters of dynamic models of metabolic networks from time series data. This method integrates 
two distinct phases: a model-free and assumption-free estimation; and a model-based esti
mation. In the model-free phase model inconsistency between the data and alleged topology 
are addressed, while in the model-based phase the primary focus is on detecting and cor
recting ill-formulated mathematical functions. This approach is a significant improvement 
on all previously developed inference methods because it facilitates data consistency be
tween model and experimental data. Vilela, Vinga, et al. (Vilela M. 2009) later presented 
the DFE framework with an improved and more robust strategy for constructing metabolic 
models from time-series data . Voit, Goel, Chou and Fonseca (Voit E.O. 2009) combined 
process-based and data-driven strategies in estimating metabolic pathways from different 
data sources complemtary to DFE using the glycolytic pathway in Lactococcus lactis as 
example. Gennemark and Wedelin (Gennemark P. 2009) set some benchmarks to enable 
proficiency evaluation and comparisons between various ODE-based system identification 
methods using both simulated and real time series data of 40 test cases. Their ultimate 
goal was to solve all system identification challenges with their algorithm within hours and 
without the need for high computing power. The following fundamental issues are raised: 
unambiguously specification of reproducible ODE identification problems as mathematical 
optimisation problems and finding reasonably simple standard ways of representing a wide 
range of identification problems. The test challenges range from problems based on chemical 
rate equations to challenges frequently used in the development of optimisation algorithms.

In identifying some of the challenges associated with modelling approaches over the last 
decade, we learn that traditional modelling approaches may help explain some of the func
tions of the key components involved in biological systems. However, it may be necessary to 
avoid making any a priori assumptions about any underlying mechanisms involved within 
the systems, especially in in vivo systems (Voit 2000) where fast data-driven network re
construction algorithms may be required. Therefore it important to always keep in mind 
that data-driven modelling of individual parts of the overall systems should be studied in 
isolation but rather geered towards complementing integrated system modelling to support
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system level understanding. To this aim we may ask what type of modelling strategy best 
answers the research questions to be addressed.

In dynamic modelling using time series data, we have identified a new approach which 
might prove highly effective and can help build computational tools to support integrated 
system modelling. Some of the requirements for our approach have been adopted from 
a set of important needs identified in carrying out the above-mentioned review of system 
identification methods used in deterministic modelling, including those issues of concerns 
highlighted by Voit (Voit 2000). These requirements may be categorised into the following 
specifications: instant capture (extraction) of network structure and system dynamics in
formation from time series data; total avoidance of a priori assumptions about underlying 
processes during model construction; ensuiring data consistency between the constructed 
model and experimental data inputs; optimisation of parameter estimation methods to elim
inate redundant parameters in models; the need to develop or adopte non iterative system 
identification methods; the need to develop a generic method that can support automated 
ODE-based or BST-based reverse engineering geered towards system level understanding 
and multimodel and multi-scale integration; the need to (re)formulate a theoretical frame
work for general inverse problem solution; unsupervised model construction; mathemati
cally convenient model structure; efficient error detection strategy for correcting large-scale 
models; and support for (inter-model) recasting techniques.

Our proposed reverse engineering framework is developed specifically to address all the 
above-mentioned needs targeting optimal utilisation of limited (extremely small e.g. 3 time 
points) time series data. We assume that nearly all existing inference algorithm require 
large quantities of time series data to work and none often guarantees data consistency and 
accurate reproducibility of experimental time series data under data limitation. Voit et 
al. (Voit E.O. 2004&) cautioned on common mistakes and potential hindrances to effective 
identification of biological system identification using in vivo time series data. These in
clude algorithmic difficulties of nonlinear regression analysis, validity and consequences of 
incorrect a priori assumptions made in model design.
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Table 3.1: Summary of ODE-based deterministic modelling methods
M ethod M od el/S ystem Reference D ate Sum m ary Other com m ent

power-law Sorribas and C ascante e t al. 1994 system s identification
S-system Irvine 1988 system s m odelling

power-law power-law ODE Savageau e t  al. 1996 power-law m odel refinem ent strategy
GA S-system Tom inaga & Okam oto 1998 tim e consum ing process

Least-squares power-law H ernandez-Berm ejo e t al. 1999 /2000 power-law m odel derived by
GA S-system A kutsu e t al. 2000

least-squares m in isation  criterion  
poorer perform ance;

LP-based S-system A kutsu e t al. 2000 more d a ta  b etter  perform ance
num erical m ethod S-system A lves and Savageau 2000 m athem atica lly  controlled strategy

BST Voit and R adivoyevitch 2000 B ST  framework
m ultilinear regression power-law D iaz-Sierra and Fairen 2001 nonlinear op tim isa tion  algorithm

M echanics C om plex system s Barabassi e t al. 2001 understanding com plex networks
ANN A lm eida. 2002 b io logical sequence analysis

coexpression net. 
&; clustering algo.,

bayesian net., ODE insilico  d ata Bansal e t al. 2002 inference task  is very difficult
BST V oit 2002 B ST  review

GA S-system Kikuchi e t al. 2003 m odelling of genetic  networks
evolution  strategies ODEs M oles e t al. 2003 m odelling o f biochem ical pathw ays

GA S-system Kikuchi e t  al. 2003 m etabolic pathw ays m odelling
ODE Torres e t al. 2003 op tim ization  of biochem ical system s

Neural network and S -sy stem / Stiff ODE A lm eida and Voit 2003 M odelling of b io logical m odels
d a ta  sm ooth ing

GA 2nd-order DE Nyarko and Scitovsk i 2004 param eter identification  problem s
optim ised E S /M A S-system Spieth  e t al. 2004 m odelling gene regulatory networks

differential su b stitu tion , S-system A lm eida and Voit 2004 B S T  review
decoupling, and 
slope estim ates

m ultivariate linear regression ODE Veflingstad and Voit 2004 prim ing inference algorithm
B ST V oit e t al. 2004 system  identification  challenges

C oevolutionary algorithm S-system Kim ura e t al. 2005 analysis o f actual D N A  m icroarray d a ta
Evolutionary m ethod S-system  and DE Nom an and Iba 2005 inference o f gene regulatory networks

S-approxim ation S-system Tournier 2005 op tim ization  of biochem ical system s
GM A P olisetty, V oit, e t al. 2005 m etabolic sy stem  identification

S-system V oit 2005 sm ooth  b istab le  system
sim ulated annealing S-system G onzalez e t al. 2006 m odelling cell signalling pathw ays

info, criteria based fitness S-system Nom an and Iba 2006 identification  o f network top ology
Petri nets design Petri nets Sackm ann et al. 2006 m odelling signal transduction  pathw ays

evolutionary algorithm S-system  ODE Searson e t al. 2006 S-system s w ith  evo lutionary algorithm s
linearisation O D E /S -sy stem K itayam a et al. 2006 m odelling large-scale m etab olic  pathw ays

interval analysis S-system Tucker and M oulton 2006 m odelling o f a  m etabolic network
A lternating regression S-system Chou, V oit, e t al. 2006 param eter estim ation  m ethod

Eigenvalues dynam ical (Lax) system Ebenbauer 2007 lax sy stem  stab ility
G B P T T /B P T T ODE Fujarewicz et al. 2007 m odelling cell signalling pathw ays

A R A C N E algorithm N em enm an et al. 2007 m odelling red b lood cell m etabolism
im proved fitness function Nom an and Iba 2007 accurate param eter estim ation

m ass action Srividhya et al. 2007 reconstructing pathw ays from
3-AR S-system Chou, V oit, e t al. 2007

tim e course d a ta  
para, estim ation  using S-distribution s

PathwayO racle tool unparam eterised m odel D erek R uth s e t al. 2008 structural and dynam ic an alyses
eigenvector op tim isation D ecoupled S-system V ilela, Chou, V inga, 2008 au tom ated  reverse engineering

dynam ic flux estim ation  (D F E ) S-system
V asconcelos, V oit and A lm eida  

G oel, Chou and Voit 2008 assum ption-free estim ation
lin-log power-law Rosario and vo it 2008 m odelling tim e series d a ta

identification algorithm 40 O D E benchm ark system s Gennem ark and W edelin 2009 reverse engineering benchm arks
D FE S-system V ilela, V inga, M aia, V oit and A lm eida 2009 im proved assum ption-free estim ation

constrained op tim isation GM A Ko, Voit and W ang 2009 flux con n ectiv ity  relationships
D FE V oit, Goel, Chou and Fonseca 2009 estim atin g m etab olic  pathw ays

BST Chou and Voit 2009 B S T  and estim ation  m ethods
S-system Voit 2009 identification  m ethods

BST Voit 2009 pathway, design and operation
BST Voit 2009 challenges o f m odelling

NIR  algorithm G regoretti e t  al. 2010 netw ork identification
lin-log estim ation Lotka-Volterra V oit and Chou 2010 pathw ay m odelling

B-Spline
V oit and Kem p  

W ang, Glover and Qian
2010
2010

system s b io logy research 
stu d y  of inference algorithm s

List of some system identification and parameter estim ation techniques for analysing real and artificial time series data of biological networks.



3.3 Understanding BST as a m odelling approach
The BST (Savageau 1969) is a modelling framework that has emerged over the last 40 
years as being useful to modelling of gene regulatory networks and metabolic pathways. 
BST, also referred to as canonical modelling (Voit 1991), is based on rigorous mathemat
ical foundation and theorems. In contrast to other traditional model representation such 
as the Michaelis-Menten rate law (Briggs G.E. 1925), BST is preferable because of the 
overwhelming difficulty in determining the kinetic constants and coefficients of a Michaelis- 
Menten process-based model and the relatively straightforward computations of eigenvalues, 
sensitivities, gains, and other key characteristics of a BST model (Voit 2013). terms of cap
turing and approximating systems processes and gaining insight from the analyses of both 
the model itself and data. Though we accept that there cannot be exact mathematical 
description of processes in nature and all laws of nature can only be approximations, but 
still very useful approximation may be derived from using them (Voit 2000). One of the 
advantages of modelling based on BST is that the modeller is able to primarily focus on 
higher-level questions that a model is addressing without minding and specifying enormous 
and often problemmatic details involved at the atomic level. In this way, hindrances nor
mally posed due to redundant kinetic parameters in other traditional models may be avoided 
and cumbersome use of rational functions in parameter estimation.

3.3.1 Analytical convenience of BST
BST provides a convenient structure for analytical purposes. As indicated by Voit (Voit 
2000), this modelling formalism has the following features: minimal level of assumptions is 
required compared to other traditional modelling approaches; every parameter is unique, 
well-defined and has a clear meaning; the model structure is analytically convenient for 
carrying out comparative studies of alternative models in mathematically controlled exper
iments. In addition the power-law representation features are particularly suited to address 
our modelling research questions, i.e. constructing and integrating jacobian and power- 
law models as an integrated solution to reverse engineering problems; have strong support 
for the analysis of large-scale networks; have many system identification and parameter 
estimation methods developed to support its framework.
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3.3.2 Half system  ODE representation

The half system is a form of BST which provides a complete aggregation of system’s pro
cesses to single net terms which serves as an approximation of the production (synthesis) 
and degradation (depletion) of the molecular constituents within the system. Depending 
on the objectives of the modelling task the Half system model may be set up in such a way 
that a powerful and convenient tool for mimicking system dynamics and predicting future 
outcomes may be developed. Adopting a half system model as a nonlinear model facilitates 
system identification and parameter estimation challenges. This task practically involves 
recasting such half system model to a log-linear form and practically applying appropriate 
estimation techniques to infer a solution to the system of log-linear differential equations 
from time series data in a data-consistent way. For this reason, the half-system can also be 
called a “Lin-Log” model. The half system representation of dynamical systems is of the 
form: n + m

• V i- . i i .  I j i ' .Y f ' !
i =1

where i = 1 ... n; X{ are the dependent variables; n is the number of dependent state 
variables; m  is the number of independent state variables; gi5 are called kinetic orders 
and quantify the overall net effect of Xj on the production (or degradation) of Xi\ ai 
are called rate constants - they quantify the overall net turnover rate of the synthesis and 
depletion of Aj. A consideration with the Half system representation might be to reduce the 
model structure and number of kinetic parameters by eliminating all independent variables. 
Careful elimination of all redundant parameters will produce a most reduced form of the 
Half-system

3=1

This would be the result if we aggregated all constant product YYjt^+iiX^3) into the 
rate constants cti, forming a new [ainew] = a:;. ( a J i j ). If we remove all independent
variables and repeat the procedure for each dependent variable, a complete set of dependent 
variables and ODEs in matrix form would be created as:
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According to Voit (Voit 2000), systems of these types of equations are mathematically 
interesting but often inconvenient for carrying out steady-state analysis of biochemical sys
tems - each power law term can not equate to 0. It is important to understand why such 
mathematically interesting representations may be unsuited for the analysis of biological 
systems. With keen interest, we explored the potential power of Half-system in combination 
with the convenient features of S-system for the analysis of biological data. We have dis
covered a simple mechanism by which Half-systems may be recast to a convenient structure 
such as the S-system power-law alternative. This simple strategy will be explained in the 
appendix. The important thing to note here is that though a Half-system may be generally 
inconvenient for analysing biological systems, with some minor adjustments they can be 
transformed into an effective modelling strategy for modelling biological data.

3.3.3 S-system  ODE representation
The BST formulation

X i  = V ? - V -

where the production rate function = (Xi.YYjt^iX^13) and degradation rate function 
= Pi. YYjt:™ (X j t j) is a product of power-law functions of all independent and dependent 

variables; multiplied by a rate constant that determines the speed of the process (Voit 2000). 
This type of representation that uses exactly two seperate aggregate terms to represent the 
production and degradation rates of a variable is called S-system, where the S refers to 
synergism and saturation of the investigated system (Voit 2000). In BST the S-system 
representation of dynamical systems is of the form:

n + m  n + m  ,

X i= o i.  n (*?«)-&. ik v )
3= 1  3= 1
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where i = 1 ... n; n is the number of dependent state variables variables; m  is the number 
of independent state variables; gtj and htj are called the kinetic orders that quantify the net 
effect of X j on the production and degradation of X\\ cti and /% are called rate constants. 
These two factors determine the net turnover rates of the synthesis and degradation of 
X\. In reduced form (aggregating all independent variables into the new ainew and (3inew 
factors), the most reduced general representation

X i = * i m „ . n  ( * ; ” ) -  • n  ( X j , j )j=1 3=l
may be used, i.e.

" Xi '
X2 1 ----

----
-1

-
1___

___

«2-n?=i42i -  f h - n u x i 2j

9 i i

a n . n u x j  -  P n - n j = i x j

Note that constant factors a* and /% in the production an degradation terms for Xi respec
tively, may be > =  0, but must not be < 0. Since the influence of the variable X j  on the 
production and degradation of the variable X{ is determined by the negative, zero, or pos
itive value of the kinetic orders gtj and ht j , respectively, therefore activating or inhibitory 
influences may be specified by assigning either a positive (activating) value or negative (in
hibiting) value. A value of gtj = 0 (or htj = 0) turns the term (multiplier) X jlJ (or X j 10) 
°f v y  (or Vi ) to 1, i.e. X j exerts no direct influence on the production (or degradation) 
of Xi.

3.3.4 The Generalised Mass A ction (GM A) System
Another valid power-function representation in BST is the generalised mass action (GMA) 
description. This representation is also referred to as multinomial system 2 (Voit 2000). 
The GMA representation is of the form

Xi =  F il*  +  F a *  +  F is11 +  ... +  V i^

2Peschel and Mende, 1986
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where each has the same meaning as either the production rate term = a:*. Y V jli'iX j13) 
or degradation rate term V f  = /%. (X j13)• In the case of a GMA system, each eqution
may contain one, two, or more than two terms (Voit 2000).

3.4 M odelling based on BST

In every data-driven modelling challenge there are some key questions and analyses to be 
considered. Some of the key questions we have identified are discussed in this section. It is 
important to consider some key questions related to data: if the data is of time series type, 
one should ask should the model support backcasting or forecasting? We recommend that 
a good model should be able to facilitate both forecasting and backcasting. Backcasting 
deals with working backwards from a well defined time point to identify the transitions that 
may connect the previous states to that point in time. Backcasting may also be used as a 
technique for populating more data to a data set where necessary. However, it is essential 
that a verification process be developed and followed to determine how well the backcasting 
method works. One natural way of testing backcasting performance is by backcasting within 
the given set of all observed data and comparing the backcasting results with the real data 
that may have been recorded at those time points that lie within the backcasting time 
period.

It is also important that models be able to predict where the system might go from 
specific time points. The ability to do this depends on the predictive power and forecasting 
technique being used. After the predictive model has captured and formulated all key 
system functions, the resultant predictive model may be used to determine events whose 
outcomes are yet to happen or be observed. The goal of any forecasting technique is often 
to estimate the numeric value of a dependent variable of a model at some future time point.

Whether or not a model does support both backcasting or forecasting the modeller must 
develop and apply a system identification procedure to determine the appropriate model 
structure to make up the overall model architecture.
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3.4.1 System  identification and parameter estim ation con
siderations

Often assumptions are made by the modeller in the specification of a network model. How
ever, in dynamic modelling it may be required that a system identification strategy be 
developed and installed to prime model structure searching before parameter estimation. 
This priming of model structure can drastically improve parameter search space perfor
mance, or hinder it. System identification is one of the most important challenges that the 
modeller must tackle in dynamic modelling. By system identification, we mean both the 
method to build a mathematical model of dynamical systems from measured data and the 
architectural outcome (shape or structure) of the model itself. Effective methods that can 
optimise the desired outcome should be sought by the modeller. Such methods are very 
useful for reducing the parameter estimation burden that all network modelling processes 
must overcome.

On the other hand, parameter estimation of all model parameters is performed only 
after the complete model structure has been determined, calculated or assumed. The main 
objective of the estimation task is to find a set of parameter values which best describes the 
model in a way such that the model is capable of simulating the original data. Since system 
identification and parameter estimation problems are related, the modelling tasks may be 
classified into one major challenge. The outcome of system identification and parameter 
estimation often depend on both the method that is being used and sometimes the ingenuity 
of the modeller. Therefore, we think it is necessary to develop a modelling framework to 
support system identification and parameter estimation which will be based on data and 
such methods should be standardised (i.e. mathematically formalised on a theoretical notion 
that supports the capability to simulate or reproduce an original data input) where possible.

H and lin g  changed  d a ta  or d yn am ic d a ta  in p u t
Another consideration is to determine how and when the constructed model may adapt 
dynamically to dynamic data(Voit 2004, Veflingstad S.R. 2004). Changed input may be 
intrinsically triggered or caused by external factors and therefore may result in perturbed 
outcomes that is significantly different from previous results. A most challenging changed 
input scenario that might have to be tackled is that of a complete change in data sets, e.g.
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user intervening into new input specification because of new data that may be generated 
from new experiments. In such cases, if the system identification and parameter estimation 
procedure is not robust enough (i.e. unstable) in handling highly dynamic data a com
plete system identification and parameter estimation process might have to repeated each 
time. Such repetitions may be time-consuming and expensive if the parameter estimation 
approach used is slow. Complete automation in system identification and parameter es
timation process is required to adequately facilitate computational modelling and handle 
changed data input. In addition optimisation of the network inference strategy that is be
ing used can enhance system performance. So it is important to think in terms of whether 
the appropriate model is being used, ensuring that the model being used is robust and can 
handle small-scale and large-scale data, and making sure that the constructed model is both 
optimised (data-consistent), i.e. is able to simulate (reproduce) by itself the original data 
that was supplied as input.

Stability analysis consideration

Eigenvalue analysis (Voit 2004, Veflingstad S.R. 2004) may be employed to systems of 
differential equations to determine whether or not a system would reach a steady state. If 
the calculated eigenvalue of one the dependent variables of the model is positive, we may 
regard such system to be unstable. So it is important to think of how best to perform 
stability analysis. It is worth mentioning that without successful parameter estimation 
there cannot be meaningful stability analysis - accurate estimation of all parameters is 
essential. Effective modelling approach are considered to be those that incorporates efficient 
parameter estimation with effective stability analysis methods - one that is able to strike a 
balance between parameter estimation and equilibrium theories. This is a justifiable means 
of assessing how one constructed model might be better or worse than another candidate 
solution (constructed model of the same target system).

The complication of steady state computation based on Half-system

If the determination of the steady state condition of the system is one of the key objectives 
of the modelling tasks then an appropriate model formalism such as S-systems may far 
outperform most others, including Half-systems. A complication may arise from the steady 
state computation of Half-system based model. This is because every dependent variable
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should have at least one negative term in the set of ODEs; otherwise, the system may not 
reach a steady state. In my opinion, this is the main reason why experts such as Voit 
have categorically stated that Half-systems are generally inconvenient for the analysis of 
biochemical systems (Voit 2000). Not only were they right in pointing out Half-systems 
deficiency; a Half-system model is not good at all for the computation of steady states. 
This is because a Half-system model only consists of a product of powers (exponents) of 
variables that are often positive in the beginning, and continue to remain positive; even 
when their kinetic orders (exponents) are negative. Having said that, there is a simple 
remedy to this crippling effect of not being able to compute steady state - that is changing 
the rate constants to rate functions.

Advantages of power-law models

To briefly recount the key advantages of using a power-law model over an alternative, one 
might easily be tempted to say simplified computations, simplified optimisation algorithms, 
existence of efficient inference methods, and direct interpretability of parameters (Voit 2004, 
Veflingstad S.R. 2004).

3.4.2 Major challenges of BST model and m ethods
Chou and Voit (Chou I-Chun 2009) categorised some of the system identification and param
eter estimation challenges as either data-related or model-related; of mathematical struc
ture, and related to optimisation and support algorithms. Other BST based inference 
method challenges may include integration of ODE, smoothing overly noisy data, estima
tion of slopes from data, complexity of the inference work, constraining parameter search 
space, data preprocessing, detection and correction of model redundancy, etc.

As pointed out by Voit (Voit 2009), the primary goals of most modelling tasks could 
include allowance to extrapolate new situations and support accurate prediction for the 
understanding of pathway, design and operation. In agreement with Voit’s suggestion (Voit 
2009), in tackling the challenges of modelling one must identify speed, reliability, robustness 
and convenience as essential factors in dynamic modelling. In order to adequately tackle 
this challenge we may adopt the BST modelling approach, including those simple methods 
of estimating parameter values in other canonical models, e.g. the Lotka-Volterra and
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linear-logarithmic models Voit and Chou (Voit E.O. 2010).
Finally, the modelling results must be interpreted in the context of the biological path

ways of interest and related to the data input.
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Chapter 4
Novel reverse engineering and 
network inference m ethods

4.1 M ethod 1: core m ethod - jacobian approach
Here, we propose and present a novel computational, robust method (solution) for construct
ing underlying network of interactions purely from time series data. The method described 
in this chapter is completely data-driven and does not require any a priori information to 
be predermined to infer successfully.

The construction of an interaction network from time series data may be recast as 
seeking to identify a mathematical model that relates a given time point to its successor, 
consistent with every time step and for all measurables. This model may be expressed in 
the form of a n by m matrix, for n time points and m measurables. For a given time point 
t, the mathematical model must relate a measured value at t, Xi{t), to its value in the
subsequent time point Xi{t + 1). Moreover, this relation is required for all x ( l , . . .  ,m) and 
for all £(0,. . . ,  (n — 1)). This mathematical model, referred to here as a transformation 
matrix, must be calculated from the data, i.e. the jacobian model and partial derivatives 
must be inferred from data. This process may be described as an inverse problem, where we 
must identify the transformation matrix solution to the system describing the time series 
data.

Finding a time-invariant matrix to the time series inverse problem may require that 
the number of time points provided be at least equal to the number of measured variables
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+ 1. Whenever the available data set is limited in size, the number of time points is less 
than or equal to the number of measured variables, solution identification becomes more 
challenging.

The method proposed here requires a minimum of 3 time points to infer a network 
model that fits. As we show later, as the number of time points increases the network 
reconstruction process becomes more accurate. However, even with (only) 3 time points, 
we show that the method produces a data-consistent model of a given data set. A model is 
data-consistent if it is capable of reproducing exactly the original time series data that was 
used to infer the model.

Any time series data set can be described by a system of ODEs, whose variables are the 
measurables in the physical system. For example, a gene regulatory network with multiple 
genes can be represented by a set of nonlinear ordinary differential equations (ODE) with 
the expression level of each gene represented as a variable (E 2004). Reverse engineering 
of such networks, through gene expression data analysis and reconstruction of gene regu
latory networks, involves revealing the underlying network of gene-gene interactions from 
the measured dataset of gene expression. This process may involve a form of mapping the 
observed data to a constructed and representative network model inferred from data using 
reverse engineering techniques (Chen L. 2009). With respect to the identification of the 
transformation matrix, we show below how variables in the ODEs model map to matrix 
elements and our algorithm operates on this matrix to reverse engineer interaction network 
topology and edge weightings. Solving this inverse problem has implications for data mod
elling in systems biology generally and in particular in personalised medicine through for 
example protein interaction network modelling.

The algorithm we are about to present searches for a solution to the inverse problem, 
and the algorithm identifies the same solution every time for a given problem. However, 
if the size of the available dataset is small, i.e., total number of time points < number of 
measured variables, other potential solutions may still exist. Our approach is different from 
other forms of optimisation algorithms such as genetic algorithms that are based on finding 
the best set of parameters within a search domain, because starting points for the domain 
search process are decided prior to parameter estimation. Here, no single parameter is fixed 
prior to estimation and no start point comes into play; the solution must be derived based 
on the experimental data supplied. Though some parameters can be set to fixed values,
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our parameter estimation technique is purely based on and driven by experimental data, 
without any need for fixed parameters.

We outline how dynamic systems may be described by systems of ordinary differential 
equations, and present a matrix-based approximation to the solution. We then describe our 
algorithm to solve the inverse problem through identification of the values of elements in 
this matrix. We demonstrate the capability of the algorithm to reverse engineer interaction 
networks with a worked example, provide summary statistics on algorithm performance and 
comment on the uniqueness of the solutions discovered.

4.2 Ordinary differential equation system s
It is common to use ODE formalisms to model and analyse data in complex dynamical 
systems (E 2004). Sometimes, simple linear ODE models are sufficient representations of 
the system in order to identify essential relationships among network components based 
on time series data analysis. Solutions to systems of first-order ODE may involve matrix 
factorisation to approximate a matrix exponential (Liao J.C. 2003). Specifically, the solution 
of the homogenous equation

_  =  J . X ®  (4.1)
where X is a column vector representing the dependent components of the system, t is a 
time variable and J, the relative rate of change of X(t), is a matrix often referred to as 
acobian, is given by

X (t) =  eJtX 0  (4.2)

where X(0) =  Xo, the initial state of the system for a system of linear differential 
equations, involving a transforming matrix J and the solution [ieJ * 1 * X], a function of (J, 
X, t), where X is a column vector representing the dependent components of the system, 
and t is a time variable that represents a regular time interval between any two successive 
states, if J (the transformation matrix inferred from time series data) is derived such that 
it remains unchanged throughout the system (from the initial condition to steady-state, 
and after), then the model X =  J  * X may be said to be time-invariant because J is not 
dependent on time. In other words, the partial derivatives (elements) of the jacobian matrix
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(J) do not change and are not functions of time.

4.2.1 Problem statem ent

Let Xt and Xt+i be the state vectors known from given time series data, and assume that 
the time interval tc is regular and of small magnitude. Then X  «  Xt+\~ X t, and the inverse 
problem is mathematically equivalent to

X t + 1  ~ Xt «  X  = J.X  (4.3)tc
There may be more that one J matrix that satisfies the above equation, so the primary 
objective is of the reverse engineering strategy is to find the best J that describes - with 
least error - the transformation from any state X t to the next state X t+i.

4.2.2 Relative rate of change

J, the relative rate of change in X(t), may be described as

J = f  (44)
that is, J is the absolute rate of change X  in relation to the present state value X . 

Since it is true that f  £ d t = f  ̂  dX = In X  + c\, therefore one may describe J in terms 
of f  Jdt = J.t +  C2 =  In X  +  ci —>• J  = =  d^ X  ̂, which means that J  itself is that
relative rate of change, and it is equivalent to the rate of change in the logarithm of X(t) 
(Gilbert 1988).

The jacobian can, in a sense, be thought as a representation of the rate and extent of 
change over time for any component and its temporal influence on other components. The 
jacobian matrix may thus be regarded as a construct for describing system dynamics. The 
mathematical significance of determined eigenvalues, or chacteristic values, of the jacobian 
can help inform understanding of the behaviour of systems near a stationary point. By 
observing the eigenvalues of the jacobian matrix in a given neighbourhood, an indication 
of the stability of the system can be obtained. If the eigenvalues all have a negative real
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part, the system is said to be stable (Burke J.V. 2003). A positive real part in any of 
the eigenvalues means the system may be unstable at that point, exhibiting large transient 
peaks (Burke J.V. 2003). Regarding the determinant of the jacobian matrix, the absolute 
value of the determinant of the (jacobian) transformation matrix indicates the overall rate of 
change of all the measured variables (Axler 1995). A necessary and sufficient condition for 
the jacobian matrix invertibility is that the magnitude of its determinant > 0 (Axler 1995).

The algebraic representation of an ODE-based model solution for a time series problem 
is simple and straightforward.

’ Xi ' dXi v  , 
axi 1+ M i vax2X2 • .+ dX-\ ydXm^rn

X2 =
dX2 y  idXx Al +

dX2 v  dX2X2 • .+ dX2 y  dXm^ m

. Xn . M ulY.j . L dXx dxm Xoox2 •
dXm ydXm^ m J

And this is related to the eigenvectors and eigenvalues representation as follows

X i (t) = eAlt.[via].[pi] + eX2t .[v1 2 ].\p2\ + • • • + eXnt.[vUm}.[pm}

X 2 (t) = eAlt.[u2>1].[pi] + eX2t \v 2 2 ).\p2l +  • • • + eXnt.[v2tJ .[pm]

x n(t) = eAlt- k J - M  + eA2<-kn,2]-b2] + • • • + eAmt- K  ,J-\Pm\

where the parameters A* and Vi represent the eigenvalues and eigenvectors, respectively; 
and the initial condition, [Xi(0),X 2(0) , . . . ,  Xn(0)], is favourably chosen, i.e., decomposed 
and approximated, as the linear combination of the eigenvectors of the jacobian matrix using 
the parameter set \pi,p2, ... ,Pm\- Each measurable X{ (component within a network) is 
a function based on the initial condition. The initial condition (first measurement) or any 
state vectors at any timepoint may be rewritten (decomposed) in a form such that the 
parameter set \pi,p2, ... ,pm] becomes fixed (Gilbert 1988).
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4.2.3 Complex nonlinearity in system s of nonlinear ODEs
Since most complex systems are nonlinear in nature, nonlinear models are required to 
describe them fully. Moreover, some systems may require that second-order ODEs be 
used to formulate a sufficient description of their dynamics due to the complex nature of 
the processes involved. However, in such cases, the inference of the partial derivatives 
becomes a much more difficult task. In particular, the appropriate model structure needs 
to be identified, or at least estimated with a reasonable degree of confidence, before model 
parameters are estimated.

Here, we suggest that first-order linear ODE solutions based solely on time series data,
i.e., with no assumptions made about network structure, may be sufficient to derive valuable 
information about the most important links among variables if good search algorithms for 
network inference are employed.

In some cases modellers predetermine network structure prior to parameter estimation, 
e.g. (Tsai K.Y. 2005). By keeping model structure fixed in this way, the inference procedure 
is restricted and identification of other solutions that do not adhere to the fixed structure 
constraint is not achieved. Such techniques themselves are thus limited since they are only 
successful when the constraint imposed on the system is met. Of course, the rationale for 
fixing the network topology is that it eases identification of potential solutions for underde
termined systems (Tsai K.Y. 2005). As a result, many modellers tend to assign some fixed 
values to subsets of the kinetic parameters to ease the fitting process. A good algorithm is 
one which can allow kinetic parameters to be fixed and at the same time does not require 
a priori assumptions to be made to find an accurate solution.

We propose the following algorithm, effected via a combination of pre-conditioning, 
regression, analytical techniques, half and/or S-system approaches based on time series 
data. Our rationales for proposing linear ODE solutions to solving inverse problems in time 
series are as follows:

1. Second-order differential equations can be recast into first-order (ordinary) differential 
equations;

2. Any nonlinear ODE can be cast or approximated into a power-law form called (S- 
systems or half systems);

3. Nonlinear half systems are equivalent to systems of log-linear differential equations;
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4. Log-linear differential equations may be used using the same techniques for solving 
systems of linear differential equations.

Therefore, the development of a robust method for solving systems of linear differential 
equations is relevant to non-linear problems. Multiple regression and reverse engineering 
techniques, including the logarithmic inverse function, are important steps we have consid
ered. Here, however, we limit the focus of the paper to time series analysis under systems 
of linear ordinary differential equations.

4.2.4 M ethodology
In a system of linear differential equations an inverse problem may be written as in (4.4):

X  = J * X

where X  and X  are known vectors of same length, and J is the unknown matrix that must 
be identified. Note that there is difference between a general system of n linear differential 
equations with unknown (jacobian) elements and a general system of n linear equations 
with unknown vectors. The latter is much simpler to solve due to the reduction in the 
number of unknown parameters. However, the formulation of the inverse problem remains 
the same in structure.

A general system of m linear equations with m unknown parameters is of the form

b — A.x (4.6)

with the following matrix equations:

’ h  ' an x  i  + a12X2 +  . . • +  aimx m
b2 = Cb2\X  1 + ^ 2 2  X2 T  • • • "b  0>2mXm

brn .  amlXl  + am2X2 + - - • " b  amm Xm
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*  b i  ' a i l  a i 2  • • a i m X l

b 2
—

® 21 ® 2 2  ' • a 2 m X 2

b m a m l  f l m 2  • • • a m m

(4.8)

where b=[&i, &2, • • •, bm\T are the constant terms, au , a12, . . . ,  amm are the coefficients of 
the system, and x = [xi,X2 , .. ■ , xm]T are the unknown parameters; note [v]T denotes the 
transposed vector [v]. Finding a solution to the system above involves searching for values 
in the x vector where all the m equations are simultaneously satisfied and valid.

A general system of m linear differential equations with an unknown m x m jacobian 
matrix J is of the form X  = J.X  and has the following matrix equation:

'  Xi '
d X \  y  1 
M i  1 +

M l  v  _i_
d ^ x 2  +  • •

1 d X i  y  
• ^  d X m  711

M l
M

M l 
d x 2 • •

d X x
d X m

’  X l  '

x 2
=

d X 2 y  1
M A 1  +

d X 2 y  1
d X 2 A 2 +  • •

1 d X 2 y  
• d X m ^ ™ —

d X 2
d X i

d X 2 
d X 2 ’ ‘

d X 2
d X m X 2

.  X ™  .
M m . V .  4 .  

L d X i  ^
d X m X q 4 -
d x 2 2  ^  •

1 d X m  V
• • +  d X m ^ m  J

d X m 
L d X i

d x m
d X 2 • •

M il
• d X m  J .  _

(4.9)
X i

where X2 = X(t) is a known state vector recognised as the tth vector of X (not

. X ™ .
X at time t), X  is the derivative vector which may be calculated from two known state 
vectors (X t and Xt+i) as X  «  Xt+l~Xt where tc is the interval of separation, and J is 
the unknown m x m jacobian matrix. Therefore, at least two state vectors of the same 
length are required to define an inverse problem in systems of linear differential equations. 
The following multi-state representation defines an inverse problem involving n+1 different 
states:

Xi0x u .

1

MdX2 • * *
dXidXm Xi0x llL.

x 2ox 2 l . •X2n-i
=

dX2
M

dX2dX2 • • •
M ldXm x 2ox 2 l . • x 2 n _ l

XmoXm, • • • x m n _ 1
dXm 

L dXi dXm dX2 * • ‘
dXmdXm J

XmoXmi . • • X m n _ ,
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which is equivalent to

$1CM

£
0

£1* X in - X i n_ x 1 M l M l ^X^ X u x lx.tc tc tc d X i d x 2 • • dXm
X 2l —X 2n x 27- x 2, X2n d X 2 d X 2 d X 2 x 2ox 2 l . - X2n-,tc tc tc =

d X i d X 2 • • d X m

Xm-\ ~ X m(x X m2 X mx Xmn —X mn_ 1 d X m d X m d X m X m 0X m i . • • X TTlri_ 1_ tc tc tc L d X 1 d X 2 ‘ • • d X m J (4.11)
assuming the states values are captured at regular time interval tc. The smaller the value 
of tc the better the outcome of this derivative approximation; this is is because the linear 
approximation, etc «  1 + tc, of etc = 1 +  tc + ^  ^  + ... improves as tc gets smaller and
closer to 0 (Gilbert 1988). The solution to this system of linear differential equations:

( X u  -  x lo) ( X u  - x u ) . . .  ( X u  -  X ln_,) 
(Xu -  X 2o) (X22 -  X 2l) . . .  (X2n -  X 2n_,)

{Xmx ~ ^mo) (-^m2 — -^mi) • • • {Xmn ~ X mn_x)

8 Xi dXi
d X 2 dXi

M l
d X 2
d X 2
d X 2

dXm dXm

- X mn+1-Xmn  =  J *  X  i s  tllU S
tc

^x^
d X m
d X 2
d X m

dXvL axj. ax2 ■ • • axr

X lQX l x . . . X ln_x
X 2, X 2x. . . X 2n_x

Xrru, X rni . . ■ Xm n _ 1

(4.12)

M ldXi M l dx2 • •

141

( dX2dXi dX2 dX2 • • dX2dXm ■tc JX lxx l 2 . - X u V J X u X i x .
X 2 lx 2 2 . ■ X2n — exp dXm L dXi dXm dX2 * • dXm• dXm J * x 2ox 2 l . - X u - ,

Xmx Xm2 • • • x mn XmQX mx . • • x mn_x
(4.13)

Consequently solving an inverse problem in a system of linear differential equations 
is equivalent to identifying J, that fits the data best. This requires op
timal estimation of the partial derivatives (elements) of J; calculating all the en
tries (parameters) of the matrix of all first-order partial derivatives of vector-valued 
functions of variable i with respect to another variable j, where X x or X j  repre
sents the variable function of component i or j , respectively. Using simple vari-
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ables, the solution may be rewritten as: -X"(jv+i ) =  E .X ( n ) =  eJ'tc.X(n ) which is 
on the one hand a representation of system of linear equations, X ( n+i ) =  E .X ( n ), 
and on the other hand a direct interpretation of a system of nonlinear equations, 
X ( n +i ) =  eJ-tc.X {^ ), implying that E =  eJXc. Consequently E is equivalent to the 
matrix exponential (function) of the matrix product J.tc. The time constant tc is 
easily calculated as the difference in time between T\ at any state in X jv+i and To its 
previous state in X j y .  E can easily be approximated by our new regression techniques 
(described below), and these are variant forms of regression for ODE systems. Often 
regression analysis is used to understand the relation between two or more interre
lated variables. In systems of linear differential equations, regression analysis can 
be used to infer causal relationships or transformations between the model variables 
and states. So in principle, the state transformation (or the transposive regression) 
matrix, E, is the matrix exponential of (J.tc).

From these definitions, an appropriate method must be applied to find the inverse 
solution. One which is worthy of mention is the logarithm of E, which in this case is 
the actual result (J.tc) being derived from E such that its exponential equals E.

Approximating a value of E may comprise using a regression technique having the 
steps:

1. Acquire time series data with the number of time points >  3;
2. Preprocess the measured state values of one or more components of the system 

using matrix transposition; 3 4 5 6
3. Undertake regression analysis of the resultant data using a Moore-Penrose pseu

doinverse technique;
4. Postprocess the resultant data using matrix retransposition;
5. Calculate the logarithmic inverse of the retransposed result through application 

of eigenvectors and eigenvalues techniques;
6. Scale down the resultant data by factor (magnitude) of the time interval used.

The implementation of the steps 2-6 is shown in Sections 4.2.5 and 4.2.5 below. 
Section 4.2.12 considers the (artificial) simulation of time series data from a predeter-
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mined network model using data discretisation technique (step 1). The simulated data 
will be used to test and assess the proposed inference (reverse engineering) algorithm.

4.2.5 Transposive and repressive regression m ethods
In solving a system of linear differential equations, we define the solution to an inverse 
problem as one conditioned on the property:

or simply:

e x p ^ * X ( t ) =  X ( t+ 1)

E * X ( t ) = X { t+1)

where E  «  exp^J *tc\  the time interval t c is assumed to be regular; J is unknown at 
this point and must be identified, and X ( t ) and X ( t + i )  are known arrays of column 
vectors, each a representation of system states at two successive time points, termed 
before  and af ter .  Here we present for the first time two new algorithms to derive J, 
namely:

1. (T) Transposive Regression Algorithm
2. (R) Repressive Regression Algorithm

Derivation of the (T) Transposive Regression Algorithm

Steps 1 2 * 4 5

1.  E i  *  X ( b ef ore) X ( af t er)

2. X ( befor e ) T *  E f  =  X ( a f t e r ) T

3- X ( b e f o r e )  * X ( b e f o r e ) T  * E \ T =  X ( b e f o r e )  * X ( a f i er ) T

4 .  E \ T =  [ X ( b e fo r e)  *  X ( b e f o r e ) T ] ^ *  X ( b e f o r e )  *  X ( af t er ) T

5 .  E \  =  ( [ X ( b e f o r e )  *  X ( b e f o r e ) T ] ^ *  X ( b e f o r e )  *  X ( af t er ) T )
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6. Ei  =  X ( afUT) * X ( iefore)T * ({X(be/ore) * X ( before)T] - 1)T

In steps 1-2 recasting the problem by matrix transposition is essential, because 
each state is represented by a column-vector either in X (bef ore )  or X ( a f t e r ) ,  where 
X  (before) is an array of states before the transformation X  (before) =  [^(o) X ( i )  • • • X  (t-i)], 
and X ( a f t e r )  is an array of states after the transformation X ( a f t e r )  — P^(i) X ( 2) . . .  X (t)]. 
Steps 3-4 illustrate an application of the Moore-Penrose pseudoinverse, a widely 
known type of matrix pseudoinverse, independently introduced by Moore (E.H 1920), 
Bjerhammar (Arne 1951), and Penrose (Roger 1955). Finally, in steps 5-6, retrans
positions put E i  in proper order.

Derivation of the (R) Repressive  Regression Algorithm

Steps

1. E 2 * X ( b e f o r e )  — X ( a f t e r )

2. E 2 * X ( b e f o r e )  X ( b e f o r e )  =  X ( a f t e r )  X ( b e f o r e )

3. X ( b e f o r e ) T  * (#2 “  I ) T  =  ( X ( a f t e r )  ~  X ( b e f o r e ) ) T

4. X ( b e f o r e )  *  X ( bef o r e ) T  * (-®2 “  I ) T  =  X ( b e f o r e )  * ( X ( a f t e r )  ~  X ( be f o r e ) ) T

5. ( E 2 -  I ) T =  [ X ( b e f o r e )  * A'(fee/ore)T]_1 *  X ( bef o r e )  *  ( X ( a f t e r )  ~  X ( bef o r e ) ) T

6. ( E 2 — I )  =  ( [ X ( b e f o r e )  * X ( b ef o r e ) T ] 1 * X ( b e f o r e )  * ( X ( a f t e r )  ~  X ( b e f o r e ) ) T )

7 .  ( E 2 ~  I )  — ( X ( a f t e r )  ~  X ( b e f o r e ) )  * X ( b e f o r e ) T  * ( [ X ( b e f o r e )  * X ( b e f o r e )T] 1)T

8. E 2 — ( X ( a f t e r )  X ( b e f o r e ) )  * X ( b e f o r e ) T  * ( [ X ( b e f o r e )  * X ( b e f o r e )T] '*’)T 4“ I

Here, in step 1 we first repress the equation by subtracting X (bef ore )  from both 
sides of the equation. In steps 2-3 we recast the problem by matrix transposition. 
In steps 4-5 the Moore-Penrose pseudoinverse is applied. And the re-transposition 
step is introduced in steps 6-7. The identity matrix (I) is added to both sides of the 
equation to derive E 2 on the left hand side in step 8.
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It is not difficult to calculate the jacobian matrix once either E\ or E2 is found. There 
are two different methods to consider:

4.2.6 The search for the jacobian matrix solution

1. using eigenvalues and eigenvectors;

2. using a new approximation technique, presented here for the first time.

The difficulty in finding J is in calculating the principal matrix logarithm of E± 
or E 2 , that is, the exact inverse of e x p ( J*tc\

e x p =  E i  «  E 2

l o g m ( E i )  ^  l o g m ( E 2) 
tc t c

where logm(.. . )  represents the matrix logarithm function.

4.2.7 Application of eigenvalues and eigenvectors
Assuming that E\ or E2 is diagonalisable, the following method may be used to 
obtain the jacobian matrix from E \  or E2. First we seek to find the matrix v of 
eigenvectors of E\ or E2 as appropriate, referred to here as Em for convenience (for 
either case). Each column of v is an eigenvector of Em. We then find eigenvectors 
of Em from v and Em as eigm =  u-1 *  Em *  v. Next we replace each diagonal 
element of eigm by its natural logarithm and calculate the natural logarithm of Em 
as logm(Em) =  v *  logm(eigm) *  v~l . Finally, J is then calculated from logm(Em) as 
follows:

j  _  logm(Em) (v * logm(eigm) * v W real{------------------------- ) (4.14)

Note, only real values for parameters of J are considered.
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4.2.8 A new m ethod for calculating m atrix logarithmic in
verse

It is generally known that e x p (j*vp) is approximately equal to / + ( J  * Vp) on condition 
that Vp is a number and small enough (Gilbert 1988). Here, we will introduce a
scaling factor p  to t c in order to approximate Vp such that Vp « t c * p .  We may
calculate the value of J to be:

I  +  J  * ( t c * p )  =  [ e x p J*tcY (4.15)

J  * ( t c * p )  =  [ e x p J*tcY  — I (4.16)
j  ( [ e x p J*tcY  — I )  

( t c * p ) (4.17)

j  (£»" ~  I )
0t c * aO (4.18)

By substituting a small value for p, in the above equation, e.g. IIV IIV 1oT—i

1CT , we may approximate J. Note, the smaller the magnitude of this value the better 
the result of approximating J becomes. However, care should be taken not to allow 
the magnitude of this value to be smaller than this range in order to ensure that 
it is not approximated to zero internally. Note this new approximation technique is 
equivalent, in terms of the solution obtained, to (4.14).

4.2.9 Linking jacobian matrices and network m odels
The inference of the transformation matrix J and all its partial derivatives from 
experimental data sometimes requires multivariate regression to be performed on ex
perimental data with the aim of minimising the residual error between the model and 
the data, particularly in systems of linear and nonlinear ordinary differential equa
tions (ODE). For example, using the following system of linear ordinary differential 
equations:

84



X  ' d XiM d x x
d X 2

d X t
d X 3

d X id X 4 0 M
d X 6 7 _1

X 2 0 d X 2d X 2
d X 2
d X 3

d X 2
a x 4 0 d X 2

d X 6 * 2
C

O 0 0 d x 3d X 3
a x 3
d X 4

d X 3d X 5 0 * * 3
x 4 0 0 0 d X 4

d X 4 0 d X 4
d X 6 X t

x 5 M sd x l 0 0 Ms.d X 4 M ld X 5 M sd X 6 X 5

1__
__

__
_ 0 0 0 0 0 d X 6

d X 6 J . X 6

one can interprete the jacobian matrix to mean a direct representation of the network 
interaction and systems dynamics as indicated in Figure 1.

4.2.10 Results
4.2.11 M ethod validation
To test our approach for reconstructing network models from time series data, we 
use artificial data generated from known network models. These data are generated 
by simulating time series data from those models, and reconstructing the original 
network from the time series data alone with no knowledge of the generative model. 
Importantly, the original network is not provided to the reconstruction method - only 
the time series data, and this provides a source of independent test data not used 
in method construction. We test our method on 100 randomly generated networks 
as explained in 4.2.16. We consider two data discretisation approaches to generating 
time series data, namely: 1 2

1. discretisation using simple continuous models;
2. discretisation using application of eigenvectors and eigenvalues.
The objectives of the reverse engineering method and assessment are:

1. to simulated through discretisation of a continuous model (multivariate time 
series) data with known network models (jacobian matrices);
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2. to ensure that the simulated data is noise-free (noiseless);
3. to ensure that important features of the data such as correlation between the 

variables are preserved;
4. to test and evaluate the performance of our inference algorithms based on min

imum number of states ( < =  number of measured variables+1).

The test methods avoid independent simulation of time series data of any single 
variable; only multivariate discretisation is used. To demonstrate the performance of 
our inference algorithms we also avoid using the integral function during the discreti
sation process. First we describe the two (2) discretisation techniques than can be 
used used to generate an experimental time series data from a single jacobian network 
model. We then present an expanded example of how to reverse engineer the original 
jacobian matrix (network model) purely from the simulated data. Finally, we present 
summary statistics of performance of the method for reconstruction of a large number 
of networks generated at random.

l

4.2.12 Data discretisation using a simple continuous model
The solution to a system of ordinary differential equation X ( t )  =  J X ( t )  is X ( t )  =  
e JtX 0 as noted previously, so in order to discretise at regular time step intervals t (in 
this example our time step is 0.25 seconds), we define our discretisation process at 
any state k as :

X ( k) =  e J t . [eJ(-k- l » . X { 0)] =  e J t . X ( k- 1) (4.19) 1
1 These subsections 4.2.12 and 4.2.12 should be viewed as two alternative approaches to simulate 

an artificial experimental time series data for testing a reverse engineering method. In those sections 
we introduced and demonstrated how to create a time series data set called DS. Please note that 
DS is not a matrix but rather is an array of state vectors generated at regular time points a sample 
of time series data. So the reverse engineering of the time series DS is expected to produce the 
jacobian matrix J because the data DS was simulated from the network model defined by J. We 
used these sections to first demonstrate how to generate one of many quantities of test time series 
data sets that were used during the simulation experiments that led to the development of the 
fundamental algorithms introduced in the thesis as Core methods. Each generation (instance) only 
requires a different jacobian matrix to be formulated. A matrix construction algorithm is developed 
and presented in an appendix section. Hope this information helps!
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or at state (k+1):
X ( k+1) =  e J t . [eJ <kK X ( o ) ]  =  e J t . X (k) (4.20)

where X ( 0) , X ( k - i ) , X ( k ) , X ( k + i )  are the vector values at the time points 0, k-1, k, 
and k+1, respectively.

Define a network model that is to be used to simulate a test time series data as 
having the jacobian transformation matrix

-0.19242 -0.17738 -0.80447 -1.148 0 0.10009
0 -0.19605 0.69662 0.10487 0 -0.54453
0 0 0.83509 0.72225 -0.43897 0
0 0 0 2.5855 0 -0.60033

-1.4224 0 0 -0.66689 0.84038 0.48997
0 0 0 0 0 0.73936

and the initial condition, X(o), as:

* ( o )  =

1.7119
-0.19412
-2.1384
-0.83959

1.3546
-1.0722

Therefore, the state vector X (i) =  e J't * X ( q) is:

* ( i )

2.4189
-0.48906
-2.9903
-1.3564
0.90592
-1.2898

where t=0.25 seconds. Likewise, state vector X (6) =  eJ-6** * X(o) is then calculated
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and the result is:
19.4655

X  to  —

-6.0087
-16.122
-24.7886
-10.9378
-3.2502

Note that X ( q) could have been calculated from X i  as: X (6) =  eJ-5*t * JY(i). If we 
defined a time series dataset D S ±  =  [X(i) X ( 2) X ( 3) X f a )  X ( 5) X (6)], i.e., a time 
series data set for the next six states at regular interval of 0.25 seconds after the 
initial condition, then DS would be:

2.4189 3.4924 5.1484 7.7765 12.0971 19.4655
-0.48906 -0.92226 -1.5502 -2.4683 -3.8477 -6.0087
-2.9903 -4.1059 -5.6107 -7.7393 -10.9459 -16.122
-1.3564 -2.293 -4.0204 -7.245 -13.3126 -24.7886
0.90592 0.1048 -1.2125 -3.269 -6.3694 -10.9378
-1.2898 -1.5517 -1.8667 -2.2457 -2.7017 -3.2502

Assuming that the data set DS is a given experimental time series data that must be 
reverse engineered, is it possible to infer the original jacobian transformation matrix J purely 
from the given experimental time series data (DS)? Yes, it may be possible if we use the 
Transposive regression method (TRM) as demonstrated in subsection 4.2.14.

4.2.13 D ata discretisation using eigenvectors and eigenvalues
This section should be viewed as an alternative approach to the method described in 
4.2.12. Here we aim to use introduce another approach by which the time series data 
set DS generated above may be generated. This is to demonstrate we have a good 
understanding of how to generate time series data sets and appropriate a generated 
time series data to the network model that can simulate such data. It is widely known 
that the solution set of the system of ordinary differential equations X  i t )  =  J . X  (t ) 
can be represented by any combination of exponential functions of eigenvalues and



their eigenvectors in the form:

■ X^t)  ' 

X 2(t)
eAlt.[vn].[pi] + eX2t.[v12].\p2\ +  • 

eXlt.[v21\.[pi] +  eX2t.[v22].[p2] +  •
• + eAnM*>im]-M
• +  eA"4. K J  \Pm\

_ Xm(t) _ . eXlt.[vml\.\pi] +  eX2t.[vm2\.\p2 \ +  • ■■ + eXmt\v mrn\\vm] _
where the initial condition, Xo, is represented as a linear combination of the eigen
vectors of J (Gilbert 1988). Through further analysis, we introduce the matrix form 
of the initial condition as

'  ^ ( 0 )  ' *>11 *> 1 2  • • * > l m

^ 2 ( 0 )
=

*>21 *> 2 2 ‘ *> 2 m

x m ( 0 ) .  * > m l *> m 2  • *> m m

Pi
P2

1
1

1

so that we might present our general matrix form solution to be

1_______________

*>11 *>12 

*>21 *>22

• •  *>lm 

• •  *>2m

Pi ...................................

• • •  P2 .....................

g A i . t

eM.t

.  x m (t)  _ *>ml *>m2 • •  *>mm Pm gA  m-t

where each column vector in

*>11 *>12 
*>21 *>22

*> m l *> m 2  ' ' ' *> m m

is an eigenvector of the jacobian matrix J and the parameter set {Ai, A2, .. -, An} is 
a set of the eigenvalues of J. The parameter e is used to denote the exponential of 
1. Note that the parameter set { p i , P 2 , • • • ,pm} can easily be calculated by regression
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analysis (Gilbert 1988). Using the example in the previous section where J =

-0.19242 -0.17738 -0.80447 -1.148 0 0.10009
0 -0.19605 0.69662 0.10487 0 -0.54453
0 0 0.83509 0.72225 -0.43897 0
0 0 0 2.5855 0 -0.60033

-1.4224 0 0 -0.66689 0.84038 0.48997
0 0 0 0 0 0.73936

the eigenvalues and eigenvectors of J are calculated to be: real(eigVec) =

0.085886 0.085886 -0.30478 -0.30478 -0.44332 0.14915
-0.054869 -0.054869 0.6724 0.6724 0.11344 -0.56798

0.1344 0.1344 -0.15878 -0.15878 0.32878 -0.27401
0 0 0 0 0.82485 0.21687

-0.74638 -0.74638 -0.39895 -0.39895 0.04612 0.29707
0 0 0 0 0 0.66692

imag(eigVec) =

0.32489 -0.32489 0.34644 -0.34644 0 0
-0.25758 0.25758 0 0 0 0
-0.49251 0.49251 0.11919 -0.11919 0 0

0 0 0 0 0 0
0 0 0.3693 -0.3693 0 0
0 0 0 0 0 0
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eigVec=

0.0859 + 0.3252 0.0859 -  0.325i -0.30478 + 0.3462 -0.30478 -  0.3462 -0.443 0.14915
-0.0549 -  0.2582 -0.0549 + 0.258? 0.6724 0.6724 0.113 -0.56798
0.1344 -  0.491« 0.1344 +  0.4912 -0.15878 + 0.1192 -0.15878 -  0.119i 0.328 -0.27401

0 0 0 0 0.824 0.21687
-0.74638 -0.74638 -0.39895 + 0.362 -0.39895 -  0.36i 0.046 0.29707

0 0 0 0 0 0.66692

eigVal =

+ 0.61912 0 0 0 0 0
0 1.004 -  0.6191i 0 0 0 0
0 0 -0.36055 +  0.12352 0 0 0
0 0 0 -0.36055 -  0.12352 0 0
0 0 0 0 2.5855 0
0 0 0 0 0 0.73936

Setting the initial condition to

*(o) =

’ *i(0) ’ 1.7119 1
* 2(0) -0.19412 1
*3(0) -2.1384 = e i g V e c  * P  * 1=
*4(0) -0.83959 1
*5(0) 1.3546 1

_ *6(0) _ -1.0722 1
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implies that P =

-0.9804 -  2.2804z 0 0 0 0 0
0 -0.9804+ 2.2804z 0 0 0 0
0 0 0.020446 -  0.5584i 0 0 0
0 0 0 0.020446 + 0.5584z 0 0
0 0 0 0 -0.59519 0
0 0 0 0 0 -1.6076

with this estimated parameter set found through regression analysis. Therefore, we 
define our second discretisation process at any time point t as :

*(o ) =

'  X l (t) '
e (eigV ahi*t)

X 2(t) e {eigV al22 *t)

x 3(t) =  e i g V e c  * P  *
e (eigV alzz*t)

x 4(t) e {eig V ah i* t)

x 5(t) e (eigV al55*t)

_ X s ( t ) e {eigV al66*t)

Therefore, the timepoint at time t —> 0.25 secs becomes:

Xi(0.25) g ( e ig V a Z i i * 0 .2 5 ) 2.4189 -  O.Oi
X2(0.25) e (e ig V a l2 2 *0 .2 5 ) -0.48906
X3(0.25) = e i g V e c  * P  *

^ e i g V  a lz z  *0 .2 5 ) —2.9903 + O.Oz
^ ( e i g V a l  4 4 * 0 .25 ) -1.3564X4(0.25)

Xs(0.25) e (ez<71^ 5 5 * 0 .25 ) 0.90592 + O.Oz
_ X t (0.25)  _ g (e ig V a Z 6 6 *0 .2 5 ) -1.2898
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We define time series dataset DS2 =  [X\ X 2 X 3 X 4 X 5 X6] DS2 —

2.4189 -  O.Oz 3.4924 -  O.Oz 5.1484 — O.Oz 7.7765 -  O.Oz 12.0971 -  O.Oz 19.4655 -  O.Oz
-0.48906 —0.92226 +  O.Oz -1.5502 +  0.0z -2.4683 +  O.Oz -3.8477 +  O.Oz -6.0087 + O.Oz

—2.9903 +  O.Oz —4.1059 + O.Oz -5.6107 + O.Oz -7.7393 +  O.Oz -10.9459 + O.Oz -16.122 + O.Oz
-1.3564 -2.293 -4.0204 -7.245 -13.3126 -24.7886

0.90592 +  O.Oz 0.1048 + O.Oz -1.2125+ 0.0® —3.269 -f" O.Oz -6.3694 + O.Oz -10.9378 + O.Oz
-1.2898 -1.5517 -1.8667 -2.2457 -2.7017 -3.2502

Assuming that the data set DS2 is a given experimental time series data that must 
be reverse engineered, is it possible to infer the original jacobian transformation matrix J 
purely from the given experimental time series data (DS2)7 Yes, it may be possible if we 
use the Transposive regression method (TRM) as demonstrated in subsection 4.2.14.

4.2.14 Results: application of reverse engineering m ethods

We now demonstrate how well our reverse engineering (inverse problem solution) 
algorithms work using the time series created in the last section where

time(secs.) 0 0.25 0.5 0.75 1 1.25 1.5
X 1 1.7119 2.4189 3.4924 5.1484 7.7765 12.0971 19.4655
y 2 -0.1941 -0.48906 -0.92226 -1.5502 -2.4683 -3.8477 -6.0087

= -2.1384 -2.9903 -4.1059 -5.6107 -7.7393 -10.9459 -16.122
*4 -0.8396 -1.3564 -2.293 -4.0204 -7.245 -13.3126 -24.7886
X 5 1.3546 0.90592 0.1048 -1.2125 -3.269 -6.3694 -10.9378
x q _ -1.0722 -1.2898 -1.5517 -1.8667 -2.2457 -2.7017 -3.2502
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and we define
X (before) ~

1.7119 2.4189 3.4924 5.1484 7.7765 12.0971
-0.19412 -0.48906 -0.92226 -1.5502 -2.4683 -3.8477
-2.1384 -2.9903 -4.1059 -5.6107 -7.7393 -10.9459
-0.83959 -1.3564 -2.293 -4.0204 -7.245 -13.3126

1.3546 0.90592 0.1048 -1.2125 -3.269 -6.3694
-1.0722 -1.2898 -1.5517 -1.8667 -2.2457 -2.7017

X[after)

2.4189 3.4924 5.1484
-0.48906 -0.92226 -1.5502
-2.9903 -4.1059 -5.6107
-1.3564 -2.293 -4.0204
0.90592 0.1048 -1.2125
-1.2898 -1.5517 -1.8667

7.7765 12.0971 19.4655
-2.4683 -3.8477 -6.0087
-7.7393 -10.9459 -16.122
-7.245 -13.3126 -24.7886
-3.269 -6.3694 -10.9378

-2.2457 -2.7017 -3.2502

and t c =  0.25.
We provide a pseudo code for the reverse engineering steps as follows.

Table 4.1: Reverse engineering method: pseudo code 
Step Description

1
2
3
4
5
6
7
8 
9

E  * X[before) — X[after) 
X[before)T * ET — X [ after)T 

X[before) *  X[before) *  E T — X[before) *  X[after) 
ET =  \X[before) *  X[before) ] *  X[before) *  X[after)

E  =  {[X (before) *  X  (before) ] ~1 *  X  (before) * X ( after)T)T 
E  =  X  (after) *  X(before) *  ([-^ (before) *  X  (before) ] )T

Select fi : 10-12 <  ft <  10-6 
Since E M =  exp^J*tc*^  w I  +  ( J  * t c * fi) 

Therefore J  « Ctc*ti)

In steps 1-2 the reverse engineering problem if stated and then reformulatedy
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through matrix transposition. Steps 3-4 illustrate an application of the Moore-Penrose 
pseudoinverse, a widely known type of matrix pseudoinverse. In steps 5-6, retrans
positions put E  in proper order. In steps 7 a scaling factor fi is introduced to the 
product J  * t c to scale down the product t c * fi to satisfy the condition specified in 
step 8. Finally, the unknown jacobian matrix may be ‘reverse engineered’ using the 
approximation method derived in step 9 as a result of the conditioning requirement 
satisfied in step 8.

Example la : Application of the (T) Transposive Regression Algorithm

calculate E \  from E \  =  X ( a f t e r ) * X (b efo re )  * (P̂ " (before) * X ( before ) T] - 1]) T

0.95158 -0.042221 -0.22248 -0.42058 0.012662 0.059982
0.0012321 0.95216 0.18909 0.057435 -0.010828 -0.15008
0.022125 -0.00028992 1.2306 0.28972 -0.13526 -0.027802

0.0000076294 -0.000045776 0.0000076294 1.9086 0.0000019073 -0.22946
-0.38654 0.0082092 0.041029 -0.18741 1.2323 0.15822

-0.0000019073 0.0000038147 0.0000019073 0 0.00000023842 1.203

Then use either of the matrix logarithm techniques, introduced in Section 3.4, to 
reverse engineer J

-0.19248 -0.17737 -0.80446 -1.148 0.0000042473 0.1001
0.0000067921 -0.19605 0.69661 0.10488 -0.00000047751 -0.54451
0.000033966 0.000102 0.83509 0.72223 -0.43896 0.00010752
0.000022578 -0.00013168 0.000031848 2.5855 0.0000061946 -0.60039

-1.4224 0.000018331 0.00000762 -0.6669 0.84038 0.49001
-0.0000069427 0.000014074 0.0000044721 -0.0000014319 0.000001096 0.73935
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Exam ple lb : A pplication o f the (R) R epressive R egression A lgorithm

E 2 is Calculated, from E 2 — (X (after) X(before))*X ( b e f o r e )  * ( \ X ( b e f o r e ) * X ( b e f o r e )  ] )T'_I_
I.
-> E 2 =

0.9516 -0.042213 -0.22248 -0.42057 0.012661 0.059998
0.0012293 0.95216 0.1891 0.057434 -0.010828 -0.15009
0.022114 -0.00031662 1.2306 0.28973 -0.13527 -0.027828

0.0000038147 0.000015259 0.0000019073 1.9086 -0.00000047684 -0.22943
-0.38653 0.0082054 0.041027 -0.18741 1.2323 0.15821

0 0.00000095367 0.00000023842 0.00000011921 0.00000011921 1.203

Reverse engineering J from E 2 then produces: J =

-0.19241 -0.17731 -0.80448 -1.1479 -0.0000046917 0.10017
-0.00000044025 -0.19605 0.69663 0.10487 0.00000066244 -0.54452
-0.0000064513 -0.000016899 0.83509 0.72225 -0.43896 0.0000048789

0.000010899 0.000044338 0.0000026542 2.5855 -0.00000098578 -0.6003
-1.4223 0.000031253 -0.0000021115 -0.66688 0.84037 0.49

0.00000007547 -0.0000035556 0.0000010714 0.00000031275 0.00000043957 0.73936

4.2.15 Performance evaluation of algorithms
Network structure identification

The performance of the two algorithms introduced in this paper are evaluated in 
terms of their ability to identify original (unseen) network structures. Before param
eter estimation, model structures should be determined. The approximated network 
structure is easily derivable from the jacobian matrix (derivable from the zero and 
non-zero entries in the matrix representation of the system of ODEs), regardless of 
the magnitude of the parameter entries. Therefore, we simplify a weighted jacobian 
maxtrix into its Boolean form, revealing the network structure (model architecture) 
in terms of presence and absence of links. These structures are in form of matrices
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Figure 4-1: Relation between the derived boolean representation of the jacobian matrix and the 
corresponding network topology with inter-connected nodes.

containing only Boolean (0 or 1) entries: an entry of 1 depicts presence of an asso
ciation (non-zero parameter in the jacobian matrix); otherwise 0 for no association. 
This initial approximation determines the network topology (see 4-1).

Network C onnectivity Ratio

Given a (Boolean) matrix representation of the inferred jacobian matrix (network 
structure), we define network connectivity ratio as (Nlim0/0„ “Tw^mo/Zeroes) where 
NumOfOnes and NumOfZeroes indicate the total number of Is and Os in the Boolean 
matrix respectively.

M etric criteria

Three key properties of network representation are used for performance evaluation: 
a) ^ t a i  rafi° _ a relative ratio of the number of missing correct links in the inferred 
matrix to the total number of links inferred; b) In^ t r̂ ct relative ratio in terms of 
number of incorrect links in the inferred matrix to the total number of links inferred; 
and c) the norm score based on and In^ ^ ct ratios - an indication of the degree 
of closeness of the predicted network to the original network, measured as +

x f
/ Incorrect \ 2  \
V Total > / ’

9 7



Table 4.2: Summary statistics of algorithm performance
Test

Rimld.
Algorithm

#
Size (No. of 
time points)

Network 
Connectivity (%)

M i s s
T o t a lRatio

I n c o r r e c t
T o t a lRatio

Rank 
(Norm) Score

1 1 4 13 0.94167 0.14167 0.9575
2 4 13 0.94167 0.14167 0.9575

2 1 5 16 0.63918 0.14145 0.65904
2 5 16 0.63918 0.14145 0.65904

3 1 6 24 0.48424 0.33622 0.59018
2 6 24 0.48424 0.33622 0.59018

4 1 7 23 0.34182 0.17576 0.38604
2 7 23 0.34182 0.17576 0.38604

5 1 8 23 0.23455 0.097917 0.25519
2 8 23 0.23455 0.097917 0.25519

6 1 9 23 0.14268 0.032794 0.14787
2 9 23 0.14268 0.032794 0.14787

7 1 10 24 0.1063 0.043982 0.11522
2 10 24 0.10797 0.03455 0.11377

Results of transposive regression (#1) and repressive regression (#2) algorithms for a range of 
numbers of time points for networks of 10 interacting components. 100 network instances each of 

seven (7) different datasets are simulated and tested using performance criteria established in
4.2.16.

4.2.16 Algorithm performance
We tested our algorithms on 700 simulated datasets with a range of numbers of time 
points (4-10) using the same data discretisation techniques specified in 4.2.12 and 
4.2.13, all generated from networks with 25% connectivity ratio.
Well-formed jacobian matrices of artificial systems are required to generate data for 
performance evaluation of our method. A method for constructing nonsingular ma
trices was used to generate our artificial network data. Based on parameterisation 
of matrice implied determinants and minors, we were able to randomly generate a 
large set of new nonsingular jacobian matrices that were used to simulate test data by 
operating and manipulating products of factors of nonsingular matrices to guarantee 
that the jacobian matrices produced were not defective (see Appendix for nonsingular 
matrix construction). W ith hundreds of such matrices, we were able to generate a 
wide range of different artificial data to test our method. The number of non-zero 
elements in each of those matrices determined the network connectivity ratio for that 
system. Here, we fixed this to be 25% of the total parameters in a given matrix. 
Hence our matrices have 25% connectivity. Finally the results of the predicted net-



works were then compared to the corresponding information of the original networks 
recorded in the database.

Based on the performance evaluation criteria %n<%£*jct and the rank (norm) 
score, we analysed the results of the inferred network structure and measured de
viation of network structure size in terms of network connectivity percentage. We 
assume that an inferred network structure has the potential to be a reasonable or 
good result if its connectivity ratio is between 20 and 30%. Table 1 shows that at 
least 60% of the number of dependent variables (here 6) is the minimum number of 
time points required to obtain a reasonable or good inference result. However, with 
our methods the reconstructed models are often data-consistent, tha t is, have the ca
pacity to simulate or reproduce exactly the given dataset, irrespective of the number 
of time points (even when there are only a few time points). The evaluation criteria 
have been established to measure variation in performance depending on the number 
of time points. The results confirm th at performance improves with an increase in 
the number of time points (a decrease in rank score indicates an increase in perfor
mance). The whole performance evaluation process is automated and does not need 
supervision or user intervention.

The network connectivity ratio indicates the estimated number of jacobian ele
ments identified from (and used to explain) the available data set, which means that 
the richer the dataset, in terms of number of time points, the better the probability of 
identifying the correct links (or partial derivatives) that are suitable or valid, e.g. in 
Table 1, the first row indicated that on average at least 13 parameters (predicted from 
data to be non-zero) were ascertained to be valid parameters out of a total number of 
25, whereas the last row showed that at least 24 parameters were identified as being 
valid. All (10) diagonal elements were included as valid entries by default.

Not every identified link is valid, although often the majority of them are. The 
network connectivity ratio reveals the complexity of the predicted networks, i.e. the 
total number of correct (and incorrect) links in the predicted network. The 
value, as previously noted, reflects the number of correct links predicted.

As mentioned previously, the norm score based is based on the calculation ( ( ^ § ) 2+

99



r

( ^ T o ta i*)2J 2• We assume that the lower the norm score (recorded in C.1 2 ) the better 
the performance of the inference method. A high valued norm score might still pro
duce a data-consistent model, but the jacobian matrix of such system would be too 
sparse for the output structure to be a reasonable representation of the underlying 
data.

The result shows that performance, in terms of network structure identification, 
improves with an increase in the number of time points. The rank (norm) score 
(error ratio) value, a function of and In^ t r̂ ct ratios, confirms approximately 
(1-°l11£,)_ * 100 =  88.5% success rate in inference of network structure for datasets with 
size of 10 time points. It is remarkable that with such limited information on data 
and no information on topology, our inference methods are able to infer completely 
(100%) the actual network structure at times. Obviously, there is a critical point 
when the performance rank score is expected to be less than 0.5 failure threshold, i.e. 
when we might say that the combined effects of number of misses made or invalid 
predictions put together is lower than that of correct predictions as can be seen in 
the test runs labelled 4, 5, 6, and 7 with number of time points 7, 8, 9, and 10, 
respectively. The performances of the test runs labelled 1, 2, and 3 with number of 
time points 4, 5, 6, respectively, are below the success threshold due to insufficient 
data. As expected, under such extreme conditions of data inadequacy there would be 
far too small number of equations to be solved than number of parameter variables 
required to be estimated to identify all necessary and valid interactions. However, 
in many occasions our algorithms still, though constrained within the limits of those 
underdetermined test conditions, did not compromise in reducing fraction to
absolute minimum as possible. For instance, the results confirm that on average only 
about 14.2% of total predictions made is incorrect, even with limited number of 4 
and 5 time points. The combination of pleasant outcomes such as those mentioned 
and the often guaranteed data-consistency in the data simulated from those inferred 
models, even under extreme lack of data, is one major strength common in both 
algorithms.

In summary, the results show an improvement in method performance with in
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creasing data size. Overall performance is close to optimum, i.e the original network 
is recovered with approximately 88.5% success rate on average, when the number of 
time points available is equal to number of measured variables even though this net
work is unseen to the algorithm and there are many possible data-consistent weighted 
networks. The main challenge is in keeping both the and In^ tr(̂ l ct ratios as low 
as possible. These two metrics may also be used in robustnessness and sensitivity 
analysis of any proposed method, keeping in mind that the primary objective of any 
proposed method is to minimise and /n̂ g ct- values. Ultimately, the challenge 
is to preserve data-consistent model generation while at the same time maximising 
the likelihood of identifying the original set of links by inference.

4.2.17 Conclusion: jacobian m ethod
Clearly, network structure identification and parameter estimation of dynamical sys
tems are necessary steps in representing system dynamics in terms interaction net
works. We demonstrate that algorithmic analysis of time series data may produce 
data-consistent models. On a promising note, the novel inference algorithms presented 
in this paper are identified, through simulation study and assessment, to develop such 
data-consistent models. As demonstrated in this thesis using a worked example, there 
is a strong theoretical basis for their use in time series data analysis. Moreover, their 
utility is demonstrated by their performance result under testing conditions using 
artificial data sets generated in silico.

We assessed the performance of our unsupervised inference algorithm using 700 
hundred test networks, that is networks that were used to generate randomly valued, 
independent test data, through two different methods and similar in form (but not 
values) to the worked example, and importantly the underlying network structure 
was never provided to the algorithm in this validation. We demonstrated significant 
improvement in network reconstruction as more data became available, here increas
ing time series time points from 3 to 10, and showed very good performance as the 
data size tends to 10 time points. We recognise that 3 data points is a very small data 
set, but show that even with this limited time series data we are able to reconstruct
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a data-consistent network. Our algorithms are aimed at simplifying and standard
ising the methods of finding unique solutions whenever they exist and using those 
standardised methods to adequately find other potential data-consistent solutions in 
non-unique scenarios. Of course, as the number of time points in the time series data 
supplied reduces, the number of possible networks able to explain the data increases. 
Note that this ability to work with limited data can be combined with the capacity 
for the approach to include a priori knowledge, and this knowledge may substantially 
reduce the solution space. Consequently the approach can blend available knowledge 
with knowledge gaps to produce data-consistent models of system dynamics.
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Chapter 5
Dynam ic m odelling of 
DNA-dam age response (DDR ) 
pathways
An important challenge in cancer biology is the understanding of the ATM DNA 
damage response pathway, its regulation and dynamical behaviour in both normal 
and cancer cell lines. In this chapter we use a set of time series data from controlled 
experiments to investigate this pathway and seek to contribute to the interpretation 
of these experimental results using the inference methods described. The illustration 
presented here primarily is aimed at providing useful and practicable descriptions on 
how to predict disease nature and states using only time series data.

Experimentally we adopt a time dependent treatment strategy to investigate the 
signalling alterations and phospho induction of ATM and its substrates by both lower 
(0.1//M) and higher (0.4//M) concentration of Doxorubicin (Dox), a radiomimetic 
drug, with and without treatment of KU55933, an ATM kinase inhibitor. This drug 
intervention strategy which is based on varying levels of drug dosages is used to strat
ify experimental trials to provided rich quantitative data for information extraction 
purposes and knowledge discovery. The mathematical and computational modelling 
strategies assessed previously using artificially controlled in - s i l ic o  experiments are 
now applied to real biological data. In this way, those same strategies that worked
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during in - s i l ic o  experimentation are now applied here in analysing time series data 
to extract new information about cell sensitisation and identify potential cancer drug 
therapies or inform the design of new therapeutic targets and alternatives in cancer 
treatments.

Assuming that quantitative data provide a representation of the unknown dy
namics of signal activation of different proteins involved in DNA damage response 
pathway is available, it follows that such data may be analysed to generate new 
and useful information, e.g. hypotheses, about the possible or potential biological 
signalling, if extracted carefully. Furthermore, we demonstrate that by using the de
veloped inference methods informative and data-consistent network models may be 
inferred and constructed from such experimental time series. The inference method 
applied is demonstrated to be useful in interpolating and extrapolating graphs of ex
perimental data. In this case study, the dynamics of the predicted (interpolated and 
extrapolated) data are expected to be consistent with the original experimental data 
supplied.

5.1 Understanding the D N A -dam age response path
way

How is ATM-mediated signalling different from ATR-dependent signalling? ATM is 
known to be activated in response to DNA damage and double-stranded DNA breaks. 
ATR on the other hand may initiate a signal cascade that results into cell cycle arrest. 
Chkl and Chk2 are responsible for blocking entry into mitosis by (indirect) inhibition 
of Cdc25 activity. BRCAl, in addition to other control mechanisms, is responsible 
for rapid mobilisation of repair proteins to DNA damage. E2F is responsible for 
the switching on of important genes that encode proteins required for entry into the 
S-phase of the cell cycle. Histone H2AX is a repair component.
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5.2 Aims and objectives

Here, using only experimental data of real biological experiments (subsection 5.2.2) 
obtained from the DNA-damage response (DDR) pathway we ask if it is possible 
to use this data to understand the roles of ATM and ATR and various mechanisms 
by which these pathways are being regulated and influencing the control of cellular 
responses to varying levels of DNA-damage in ATM-mediated and ATR-dependent 
signalling. In seeking answers to these questions the following objectives are set:

1. To study the ATM-mediated DNA-damage response pathway and determine 
its regulation in response to drug treaments with and without ATM inhibition. 
Since ATM is a central mediator of responses to DNA double-strand breaks 
(DSB) in cells, any insights into the mechanisms involved in ATM-related path
ways or development of new sensitisers to therapeutic treatments may help 
improve existing benefits to cancer patients (M.B 2008).

2. To apply computational and mathematical modelling strategies to time series 
data of biologically controlled experiments and varying drug interventions to 
predict and explain cellular states and responses.

3. To perform in  s il ic o  prediction of effects of ATM inhibition and activation ki
netics in DNA damage response pathway 4

4. To interpret the results of (3) in order to understand the potential roles and 
mechanism of action of Doxorubicin (Dox) and its application in the treatment 
of cancer and inform the design of real biological experiments to understand the 
temporal effects and final outcomes of drug treatments based on varying levels 
of Dox input.

105



Data Input:
Acquisition of time series 
data of DDR pathway

]
DNA-Damagej 
Response 
(DDR) 
Pathway

/  /
Modelling Output & 
Interpretation:
How are cellular responses to DNA- 
damage controlled?

------------------------- *Apoptosis

Cell Arrest

Transcription? 
Translation? 
Cell-cycle control? 
DNA repair? 
Cytoprotection? 
Cytotoxicity?

Phosphorylation?

P53 J /
?  ? ? 

BRCA 1 | j E2F1~| j H2AX |
R ese arch  Aim/Objective: 
Can dynamic modelling 
help answer some of these 
important questions?

Proposed Data-Driven M odelling Strategies: 
Instant analysis of time series data 
Dynamic (data-consistent) modelling 
Novel system identification method 
Fast model parameter estimation method 
Heat-map representation of network interaction 
Automated display of 2D graphs of network topology

Figure 5-1: Understanding cellular responses to DNA-damage response pathways and ATM as a 
mediator of responses to DNA-damage.

5.2.1 D D R  cancer biology
DNA damage may be caused by genotoxic agents, e.g. exogenous factors such as ex
posure to ionising radiation, UV light and some genotoxic chemicals. Certain internal 
factors such as cellular metabolism (instability) and replication errors may lead to ab
normal consequences that may also result into DNA damage in cells (Date 2003). This 
damage in cells is often characterised by multiple signalling cascades (both known and 
unknown) that need to be understood.

It is generally known that X-ray-induced DNA damage may initiate a signalling 
pathway through the activation of the protein kinases ATM and ATR, which phospho- 
rylate the kinases Chkl and Chk2. The kinases Chkl and Chk2 may also phoshorylate
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other important proteins such as the regulatory protein p53. In other words, DNA 
damage may result into p53 activation. This decreased p53 degradation, which is 
a consequence of p53 phosphorylation, may result in an increase in p53 concentra
tion (Alberts Bruce 2009). Since some cancers may be characterised by loss of p53 
function and p53 plays an important role in cell-cycle arrest, it is important that 
we understand some of the key roles that ATM, ATR and p53 may play in ATM 
signalling and DNA damage response pathway. Also since Chkl and Chk2 are par
ticularly important in their roles in blocking cell cycle progression through inhibition 
of Cdc25 activity, understanding the various mechanisms involved before and after 
their phosphorylation by the ATM and ATR kinases associated with the site of DNA 
damage is also important.

We propose that by analysing and modelling quantitative time series data of 
pATM, pATR, p53, pChkl, pChk2 , pBRCAl, pE2F l, pH2AX involved in ATM/ATR 
signalling pathway, new therapeutic targets may be identified for the development of 
effective cancer drugs and such analysis may be used to characterise the mechanism 
and dynamics of DNA damage response signalling.

The real biological experiments being conducted are designed to understand the 
temporal effects and final outcomes of drug treatments, and are based on varying 
levels of Doxorubicin (Dox) input. Dox is a DNA structural distortion inducer that 
damages DNA and can be used as a chemotherapeutic agent. In these experiments, 
the application of Dox is to be considered in two different dosages and in parallel over 
a fixed time period, under certain test conditions, i.e. in the presence or absence of 
KU55933 (KU), a widely known inhibitor of ATM.

As indicated earlier our objective is to seek to uncover and understand the un
derlying mechanisms by which DNA-damage response pathway may be impacted on, 
comparing both Dox and Dox+KU application methods. Here, these data are mod
elled to infer networks of interactions. These networks of interactions inferred from 
real experimental data may in some special cases require some additional biological 
experts’ knowledge, particular in interpreting the modelling results to arrive at a con
crete conclusion within a given biological context. However, it is essential that the
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modelling process does not depend on additional input beyond those supplied time 
series data.

5.2.2 Biological experiments and m ethod
The biological experiments were conducted by the biological domain expert and the 
measured time series data supplied to us in raw (tabular) form. An immortalised hu
man keratinocyte cell line (HaCat) is used to generate quantitative time series data 
of DDR pathway dynamics following drug intervention for the development of an ex
perimentally based deterministic model. Both a lower (0.1/xM) and a higher (0.1/dVI) 
concentration of the widely used radiomimetic drug, Doxorubicin (Dox), was used 
for cell treatments with and without 10/xM of ATM kinase inhibitor, KU55933 (Ku). 
The two concentrations of genotoxic agent were chosen in order to delineate the cor
responding signalling dynamics at a lower and a higher degree of DNA damage and 
characterise the signalling alterations upon a repairable DNA damage and irrepara
ble state (apoptosis). The time series experiments under different conditions (Table 
1 ) were performed targeting all major proteins that respond to DNA damage (Ta
ble 2) and carried out their semi quantitative analysis. Relative quantifications of 
phospho induction of each protein were performed by high throughput HRP based 
ELISA to produce experimentally determined data consistent profile of the dynamic 
processes within biological system and parallel cytotoxicity analysis to provide kinetic 
parameters for a systems biology application.

The developed inference procedure requires that time series measurements be 
recorded at regular intervals.Either we ignore the 2-hr data or use an appropriate 
technique to first consider time intervals of 2 (rather than 4) hrs and then interpolate 
across the whole data set to determine data points every two hours or select the time 
series data values at regular time intervals of 4 hours. Therefore omitting the 2 hr 
data point is preferred over interpolating the data set mainly because we want to 
avoid any form of bias being introduced into the original data set. We note that the 
almost redundant 2-hr time point data is not removed from the original data set in 
order to use it for verification purposes after system identification procedure has been
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Table 5.1: Treatment conditions for Neutral Red (NR) uptake based cell cytotoxicity 
assay. ____________________________________________

Cell cytotoxicity assay (NR-uptake) conditions
Time
point

lOOnM Dox lOOnM Dox 
-hlO/xM KU

400nM Dox 400nM Dox 
+ 10juM KU

0 UT UT UT UT
1 2 hr 2 hr 2 hr 2 hr
2 4 hr 4 hr 4 hr 4 hr
3 8 hr 8 hr 8 hr 8 hr
4 12  hr 12  hr 12  hr 12  hr
5 16 hr 16 hr 16 hr 16 hr
6 20 hr 20 hr 20 hr 20 hr

Table 5.2: DDR substrates analysed in the study
DDR Kinases DDR substrates

pATM Serine 1981 pP53 S 15
pATR Serine 428 pBRCAl S 1524

pChk2 Threonine 68 E2F1
pChkl Serine 296 H2AX

executed.

5.3 Dynamic m odelling and system  identification  
m ethods

The biological experiments considered in this case study focus on the analysis of 
the DDR pathway data to understand the effects of DNA-damage and cellular re
sponses to Dox input. Multiple key proteins of the DNA damage response pathway 
are therefore considered together with their activation levels. These activation levels 
are recorded by measuring fold phospho-induction of ATM, ATR, Chkl, Chk2, p53, 
E2F1, BRCAl, and H2AX producing experimental data of the DNA damage response 
pathway through cellular immunostaining with cytotoxity assays.

We seek to deduce the effects of different drug treatments on cell death and cell 
survival by inferring underlying signalling networks from available quantitative data of
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the DDR pathway. Our main objective is to determine how resulting network topolo
gies inferred from data might help understand some of the key molecular mechanisms 
and activity impacted on by observing their perturbation differences in network ar
chitectures. Cell death responses to treatments with ATM inhibition are studied in 
parallel to identify new therapeutic targets. Modelling results should help gain new 
insights into how cellular responses are being regulated in response to ATM inhibition 
and drug input such as Dox targeting the DDR pathway.

5.3.1 D D R  modelling challenge
Computational and mathematical modelling has many advantages. However, real 
practicable demonstration and (re)utilisation of the overall modelling process can 
be difficult to evidence. In our approach, we seek to find convincing evidence to 
demonstrate the importance of mathematical modelling and its application in in -  
s i l ic o  analysis of biological data. To this aim we apply the technique introduced 
in Chapter 4 to model real time series data of ATM/ATR signalling pathway. An 
assessment of the entire modelling process will demonstrate whether the method is 
effective and capable of giving new insights into the underlying mechanisms that 
emerge as a result of drug intervention.

5.3.2 Computational modelling objectives
The following are points considered as part of the modelling objectives:

1. Heatmap images of experimental data sets should be instantly generated from 
the supplied biological data;

2. The data-consistent jacobian model constructed m u s t  be inferred purely from 
the given time series data; 3

3. The supplied time series data may require more data to be interpolated or ex
trapolated, e.g. more data may be required to generate a rich 2D plotted graph 
of system’s states, therefore the inferential procedure m u s t  support backcasting 
and forecasting of unknown system states;
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4. Extraction of either the overall or transient maps of network topology represen
tative of the entire or some shorter period covered by the time series data.

5.3.3 An overview of the com putional modelling approach
The models that will be used to describe the various systems will be purely data- 
driven. First, the given time series data will be analysed to produce a heatmap visual 
representation of all time series data input to the system. This is a particularly useful 
visual means of validating that the right set of data is being used. Such heatmaps may 
also serve other multi-purposes including effective aids for visualising both the data 
input and simulated data output as well as comparing and stratifying the magnitudes 
of all model parameters.

Figure 5-2  shows the time series data sets representing the effects of doxorubicin- 
induced mutation with or without ATM inhibition by KU. Time series measurements 
at lower (O.l^M) and higher (0.4//M) dose-intensities of both doxorubicin and dox- 
orubicin+KU treatments are supplied. At 0.1/dM Dox input a gradual and steady rise 
is observed in both pATM and p P 53 up to 20 hours. However, a rise in pATM (up 
to 16 hours) and dramatic rise in p P ,53 levels is observed at 0.4/zM Dox input. More 
inhibition of ATM by KU is observed at lower DNA-damage input. Higher activation 
of ATR in response to higher DNA-damage input is observed in the presence of KU.

The modelling framework in figure 5-3 illustrates the modelling approach adopted 
in this case study. This strategy shows how to analyse time series data of DNA 
damage response pathway to infer and construct a data-consistent predictive model 
of the DDR system. With such a constructed model new or missing time point data 
may be generated for forecasting or backcasting purposes. An unknown underlying 
network of interactions may be inferred from it without requiring a p r io r i  information 
about a specific part of the real network topology to be used. The constructed 
mathematical model could reveal new and diverse mechanisms about the underlying 
complex signalling networks depending on the treatment options and set of time 
points specified. Further studies may be required to confirm or determine the extent 
to which the modelling results or interpretation is conclusive.
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Experimental Trials: Preprocessed Historical Time Series Data (0.1 pM DOX.) Experimental Trials: Preprocessed Historical Time Series Data (0.4jJVI DOX.)

Ohr h>2 hr -»4hr H>8hr 12 hr -»16hr 20 hr 24 hr 0 hr n»2hr 4 hr 8 hr 12 hr 16 hr -s 20 hr ->24hr

pATM -> 1 1.15 1.22 1.31 1.56 1.7 1.73 1.85

pATRn> 1 1.05 1.07 1.09 1.03 1.1 1.14 1.18

pP53 1 1.01 1.07 1.13 1.31 1.38 1.65 1.27

pChk2 -h 1 1.03 1.01 1.04 1.28 1.31 1.38 1.38

pChkj h > 1 1 0976 0.999 1.13 1.19 1.37 1.1

pBRCA 1 1.01 1.07 1.04 1.14 1.15 1.54 1.15

pE2F1-» 1 0.694 0.519 0.68 1.01 0.69 0 725 0.53

pH/X-» 1 1.11 1.25 1.29 1.97 2.31 2.7 2.6

3 pATM-»

2.5
pATR-»

2

pP53 

pChkj h>

1.5 pCh^ -»

1 pBRCA h >

0.5
pE/1-*

0

P^AXhi

1 3.4 3.8 4.3 4.9 5.2 3.4 2.02

1 1.2 1.2 1.2 1.5 1.7 0.84 1.6

1 8.8 9 14 15.5 18 19 22

1 1.4 2.1 3.4 4.7 8.1 7.5 7.8

1 0.95 1.2 14 5.4 12 9.3 6.5

1 1.4 1.8 2.7 2.8 2.7 2.9 1.63

1 2.9 3.5 4.6 8.9 12 12.7 10.1

1 1 0.83 2.2 5.3 6.4 13 17
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Experimental Trials: Preprocessed Historical Time Series Data (0.1 DOX.+KU) Experimental Trials: Preprocessed Historical Time Series Data (0.4pM DOX.+KU)

Ohr 2 hr -4  4 hr ->8hr 12 hr 16 hr -»20 hr -»24hr 0 hr 2 hr -»4 hr -»8 hr —»12 hr —»16 hr —»20 hr -» 24 hr

pATMn.

pATR-s

pP53~*

pChk2

pCĥ  -» 

pSRCA —? 

pE/1-» 

pHjAX-»

1 1.01 0.91 0.838 1.09 1.11 1.47 1.56

1 0.987 0917 0.938 1.16 1.36 1.22 1.73

1 1.01 0.934 0.943 1.21 1.23 0.777 1.75
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Figure 5-2: Time series measurements at lower (O.l/rM) and higher (0.4^M) dose-intensities of both doxorubicin and doxorubicin-|-KU treatments.



5.3.4 Application of modelling m ethods
To understand the mechanisms by which ATM/ATR may be controlling cellular re
sponse to DOX input with and without ATM inhibition I analysed time measurements 
of pATM, pATR, pP53, pChkl, pChk2, pBRCA, pE2Fl, and pH2AX, recorded at 
timepoints 0, 4, 8, 12, 16, 20, and 24 hours. Instant analysis (i.e. heatmap visual 
representation ) of the time series data may be performed such as the heat map repre
sentation of values of key DNA damage response protein kinases (e.g. pATM, pATR, 
pP53, pChkl, pChk2, pBRCA, pE2Fl, and pH2AX) displayed below in figure 5-2. 
The first task is to infer from each data set a predictive and data-consistent model that 
simulates exactly the given data in an unsupervised fashion. This predictive model 
may be constructed from the data by an appropriate reverse engineering method 
such as the transposive and repressive regression methods introduced in chapter 4 
(Idowu M.A. 20116, Idowu M.A. 2012).

The dynamical models are constructed from experimental data of 7 timepoints 
only, i.e. 0, 4 , 8 , 12, 16, 20 and 24 hours. First we ensure that every constructed 
model is data-consistent by ensuring that the data simulated from each of the con
structed predictive models is compared with the orginal experimental data. An initial 
assessment of the constructed model is performed to see if the simulated and orginal 
data match. Models that do not pass this initial assessment test are then discarded. 
We applied the transposive regression method (Idowu M.A. 20116, Idowu M.A. 2012) 
to estimate model parameters and ensure data consistency.

Once the constructed model is produced, inferring the underlying network of in
teraction from such a network model is routine. The major challenge encountered is 
in the area of system identification and parameter estimation.

Visualisation of network of interactions (for examples network diagrams in Figures 
5-9 to 5-12) illustrated in Figure 5-3 is also required to carry out topological analysis 
in order to gain understanding and new insights into the biological pathway. This 
analysis of the modelling results may help establish gain new understanding and gain 
insight into the key underlying processes behind DNA damage response.
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We use Graphviz (Software 2011), an open source graph visualization software, to 
generate the topological map representations of the constructed network models. The 
descriptions of the graphs are specified in simple (raw) text files that the Graphviz 
layout programs can read to draw network diagrams either in Postscript or Pdf for
mats. The Graphviz visualisation software does not provide a GUI editor but it has a 
number of layout tools for making aesthetically pleasing drawings depending on what 
the user needs. The default tool for drawing directed graphs is the “Dot” tool which 
uses the Dot language. We have selected the Dot tool and applied to visualise all the 
network data used in all the case studies presented in this thesis. 1

5.3.5 Use of heatm aps
Instant characterisation of the dynamics of biological systems may be represented 
by heat maps of table of time series data. In such heatmaps individual values are 
represented with shades of colours coded in magnitudes and depicted with a range of 
light and dark colors, representing low and high values, respectively. Such instant heat 
maps may be used across a number of comparable time series datasets representing 
cells in different states.

1We do accept the fact that some of the network diagrams require some readjustments in the 
way the maps have been drawn. Therefore we recommend that a lot could still be done to make the 
drawings aesthetically pleasing.
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Figure 5-3: A new dynamic modelling and reverse engineering strategy for analysing time series 
data of DNA damage response pathway to infer and construct a data-consistent predictive model of 
the system.

5.4 Analysis and interpretation of results
This framework establishes a modelling infrastructure for analysing experimental data 
that accounts for the interactions among the measurables over time, represented as a 
single interaction network with weighted strengths. Context-sensitive interpretation, 
i.e. by the (biological) domain expert, of the patterns in the network structure is then 
possible. Networks might reflect feedforward and also feedback. Interrelationships 
between the different signalling nodes are represented by links (directional arrows) 
and each (parameter) is assigned a numerical value to depict the strength of the 
interactions; the stronger the interaction the larger the magnitude of the parameter 
value specified.

The following subsections contain information, such (extractable) information as 
inferred from data, for the visualisation of in - s i l ic o  model predictions. The topo
logical maps extracted from the inferred data-consistent network models are shown 
to approximate the biological system. These maps represent the interactions be
tween ATM and ATR and their immediate downstream substrate pP53 and other 
subsequent substrates, e.g. pChkl, pChk2 , E2F 1 , BRCAl, and H2aX. To aid inter
pretation, each of these signalling proteins is categorised into one of the following 
layers: double stranded breaks, DNA, tumour suppressor, cell cycle arrest, apoptosis, 
DNA repair (gene mobilisation and repair), and transcription factor.

5.4.1 The constructed jacobian and Half-system  models
Figures 5-4 depict the set of jacobian matrices representing the inferred jacobian 
models constructed using the transposive regression algorithm created in chapter 4. 
The matrices in figure 5-4 are inferred straight from the given time series data. Figures 
5-4 represents the constructed jacobian models of the four systems O.l^M Dox (top-
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left), 0.4//M Dox (top-right), 0.1 /iM Dox+KU (bottom-left), and 0.4/xM Dox+KU 
(bottom-left).

5.4.2 Initial analysis of data
As expected, a relative rise in levels of both pATM and pP53 was observed at O A fiM  
and 0.1//M Dox, i.e. without ATM inhibition. ATM inhibition was more pronounced 
at 0.1/dVI Dox and early point of 0.4/dVI Dox input than at any other times. This 
suggests that ATM switches roles at lower dosage or early time points of higher 
dosage with Dox. However, upon higher dosage (0.4^M) with Dox, ATM may then 
switch from cytoprotective to cytotoxic role when inhibited. These observations con
firm what was originally proposed by the domain expert that ATM may be playing 
both cytoprotective and cytotoxic roles. In addition to this confirmation, dynamic 
modelling may be used to determine the time-period at which the switch from cyto
protective to cytotoxic function may be happening.

Figures 5-5 to 5-8 show the relation between the experimental data (points) and 
simulated data generated from data consistent model (lines) for each of the proteins 
measured. As shown, the model - continuous in time - fits well to the discrete exper
imental data points and so is a data-consistent representation of the data.

Figure 5-7 was the most challenging analysis because of the inapparent co-dependency 
between the values of ATR and E2F 1 . Model predictions were most difficult in this 
case.

Since both the figures 5-7 and 5-8 show oscillatory patterns in dynamics, it may 
seem inappropriate that time invariant models be used to describe such systems. As 
suggested by the domain expert, such biological data should be split smaller segments 
(e.g. 0-8hr, 8-24hr, etc) to enable further analyses at different time periods to uncover 
the underlying signalling relationships in more details.

Figures 5-9 to 5-12 are derived from the topological data displayed in figure 5-4, 
i.e. each topological map is a network representation of the system representated by 
a transformation matrix specified in figure 5-4. There is a direct (1-to-l) connection 
between these topological maps and those four dynamic models inferred from the
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experimental data.
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Figure 5-4: The reverse engineered jacobian models that are consistent with historical time series measurements at lower (0.1/rM) and higher 
(0.4^M) dose-intensities of doxorubicin with and without KU treatment.



DDR pathway: system dynamics

Figure 5-5: Simulation of system dynamics: consistent with historical time series measurements 
at (0.1/iiM) dose-intensities of doxorubicin without KU treatment.

DDR pathway: system dynamics

Figure 5-6: Simulation of system dynamics: consistent with historical time series measurements 
at (0.4/rM) dose-intensities of doxorubicin without KU treatment.
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DDR pathway: system dynamics

Figure 5-7: Simulation of system dynamics: almost consistent with historical time series measure
ments at (0.1/dVI) dose-intensities of doxorubicin with KU treatment.

DDR pathway: system dynamics

Figure 5-8: Simulation of system dynamics: consistent with historical time series measurements 
at (0.4/xM) dose-intensities of doxorubicin with KU treatment.
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Figure 5-9: Derived topological map of network of DDR signalling pathway at O.lpM Dox input 
in the absence of ATM inhibition.

Figure 5-10: Derived topological map of network of DDR signalling pathway at 0.4/rM Dox input 
in the absence of ATM inhibition.
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Figure 5-11: Derived topological map of network of DDR signalling pathway with combinatorial 
treatment at 0.1/iM Dox and with ATM inhibitor.

2

Figure 5-12: Derived topological map of network of DDR, signalling pathway at QA/jM  Dox input 
in the presence of ATM inhibition.

2 An isolation of pATR due to existing co-dependency between the data of ATR and E2F1 (see 
the bottom-left table in Figure 5-2). As a consequence the above-displayed topological map (Figure 
5-11) may be marked “invalid”. However, the display illustrates how the inference method handles 
multiple variables with linearly dependent data.

122



5.4.3 Interpretation of results

Figure 5-9 represents the derived topological map of network of DDR signalling path
way at 0.1 //M Dox input in the absence of ATM inhibition. In the absence of ATM 
inhibition and at 0.1 /zM Dox input (DNA-damage) the edges (links) depict various 
interactions that can be explained biologically, (a) ATM activity is induced by that 
level of damage with P53 shown to be an immediate substrate of ATM (Banin et al., 
1998) (b) downregulation of E2F1 by the induced pP53 which may be intepreted to 
mean pP53 induction by ATM results in cell cycle (G l/S) arrest and sequestration 
of E2F 1 by Rb (Chehab et al., 2000, Maya et al., 2001) possibly suggesting E2F1 
inhibition mediated by pATM which may lead to cell cycle arrest as evidenced by the 
negative link between pATM and E2F1 (c) and pATM-mediated induction of pChkl 
(Ho et al., 2004). The figure also shows pATR inhibition (e) by pP53 as reported in 
previous studies in literature, e.g. downregulation of ATM expression by P53 (Claig 
et al., 2010), transcriptional upregulation of Cyclin G by P53 which results in PP2A 
recruitment (Okamoto et al., 1996) that eventually suppresses ATR activity (Leung- 
Pineda et al., 2006, Petersen et al., 2011), upregulation of WIP1 by pP53 (Fiscella 
M et al., 1997) which reverses the ATR-mediated DDR pathway (Lu X et al., 2005). 
Such pP53-mediated upregulation of WIP1 may also contribute to the suppression of 
pChk2 (Fujimoto et al., 2005) and -H2AX (Moon et al., 2010) as shown in (f). This 
result also indicates that ATM signalling at this lower scale of damage may be char
acterised by both pBRCAl-mediated (g) and ATM-mediate induction of pP53 (a) 
-leading to cell cycle and DNA repair. Overall, these results indicate that at 0.1/xM 
Dox level of DNA damage the cell may avoid triggering apoptosis by regulating the 
activities of pChkl, pChk2 and pATR and cell cycle arrest and DNA repair. Finally, 
these results indicate ATM’s roles in cytostatic and cytoprotection against genotoxi- 
city to promote DNA repair at a lower scale of DNA-damage (Khalil 2012).
As commented by Dr Khalil, since the cytotoxicity assay showed lower cell death at 
this point as compared to cells with a blocked ATM function, this up regulated pP53 
may exert CIP/KIP mediated cell cycle arrest and promote ATM dependent repair
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of the damaged DNA.
Figure 5-10 represents the derived topological map of network of DDR signalling 

pathway at 0.4/zM Dox input in the absence of ATM inhibition. Notice that the 
positive signal between ATM and P53 (a) is disrupted in figure 5-12 (no link between 
ATM and pP53) where ATM is inhibited at this same scale of DNA damage. A 
link (b) that represents the induction of pChk2 by ATM, which does not exist in 
figures 5-9 and 5- 1 2 , may indicate Chk2-dependent apoptotic signalling (Hirao et 
al., 2002, Rogoff et al., 2004). The presence of ATM-dependent (c) ATR-mediated 
(Adams KE et al., 2006, Jazayeri A et al., 2006) suppression or inhibition of BRCA1 
(d) possibly may be contributing to the greater apoptotic signalling observed after 
12  hours, because ATR-mediated phosphorylation of BRCAl promotes cell cycle and 
DNA repair (Tibbetts et al., 2000, Zhu et al., 2006). As Figure 5-12 indicates absence 
of ATR-mediated inhibition of BRCAl, it might be worth investigating if such system 
perturbation could be responsible for the lower apoptotic signalling that is evidenced 
in ATM inhibited state between the same 12-24hr period. Another unique signal 
observed here and that does not exist in figures 5-9 and 5-12 is the link (e) that 
suggests indirect activation of pChk2 by E2F1 via induced pChkl. This may be a 
key difference in this figure and figure 5-12. Another remarkable difference between 
this figure and figure 5-9 is that here apoptotic signalling may be triggered by ATM 
signal to pChk2 (instead of ATM signal to pChkl which causes cell cycle arrest) (see 
link (b)). pChkl is shown to positively signal to pChk2 here and in figure 5-12.

Dr Khalil comments that ATM inhibition at a higher scale of damage (between 1 2 - 
24hr treatment) showed lower cell death as compared to when ATM was functional. 
Interestingly, while at lower scale of damage in ATM inhibited state, the new positive 
link between E2F1 and pATR was proposed to be promoting cell death, at a higher 
scale of damage in ATM inhibited state, E2F1 levels were shown to have a repressive 
effects on ATR. Theoretically, this supports the earlier presumption and suggests that 
the lower cell death seen during ATM inhibition at higher scale of DNA damage may 
be the absence of E2F1 induction of ATR.

Figure 5-11 represents the derived topological map of network of DDR signalling
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pathway with combinatorial treatment at 0 .1 //M Dox and with ATM inhibitor. The 
ATM-induction of pP53 appears less strong (a) when ATM is inhibited than without 
(figure 5-9). The indicated inhibitory influences that pP53 exerted on pChkl, pChk2 , 
E2F1 and 7 -H2AX in the absence of ATM inhibition now appear to be reversed 
to positive in ATM inhibited states. The experimental data and dynamics of the 
system seem to suggest a later induction of pATR and E2F1 in response to ATM 
observation. Also a positive signal from E2F1 to pATR (e) is indicated which is 
associated with greater apoptotic activity commonly attributed to states with ATM 
inhibition. Alternatively, the disruption of ATM and loss of pP53-mediated inhibitory 
influence on pATR by pATM (previously shown in figure 5-9) may lead to further 
apoptosis. Furthermore, this result also suggests that pP53-mediated suppression of 
E2F1 by pATM (d), which can lead to cell cycle arrest, may eventually cease E2F1 
sequestration to upregulate ATR (e) that further triggers apoptosis when ATM is 
disrupted, an outcome that is consistent with the fact that during 0.1M Dox alone 
(as indicated in figure 5-9) downregulation of pATR by pP53 and BRCAl is thought 
to imply suppressed apoptotic activity and enhanced DNA repair. ATR activity 
has been reported to signal apopotosis before (Kumar et, al., 2005, Pabla et al., 
2008). These results indicate that DNA-damage at this scale of damage may result 
in sequestration of E2F1 which could lead to pATR upregulation (e). Hence this 
conclusion is consistent with the previous explanation about how ATR inhibition by 
pP53 (as indicated in figure 5-9) might result and lead to DNA repair at lower scale 
of damage.

Dr Khalil remarks, these experiments have not only revealed the effect of ATM 
kinase inhibition on cellular sensitivity to time course treatment of Dox, but also un
covered the underlying signalling network that is suggested to promote ATM mediate 
cell cycle arrest and DNA repair at a lower scale of DNA damage, and the concomi
tant signalling alterations and appearance of novel links following ATM inhibition 
that were suggested to influenced the observed alteration in the cellular sensitivity 
process. These results further indicate that greater sensitivity via DDR manipulation 
brought about by ATM kinase inhibition is caused by sequestration of E2F1 which
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otherwise would lead to upregulation of pATR activity.
Figure 5-12 represents the derived topological map of network of DDR signalling 

pathway at 0.4/xM Dox input in the presence of ATM inhibition. The presumed 
positive signal between ATM and P53 in figure 5-10 is totally disrupted here. This 
figure indicates the absence of ATM-mediated induction of pChk2 and absence of 
ATR-mediated inhibition of BRCA1 both of which are present in figure 5-10. Not only 
that, there exists no indirect activation of pChk2 by E2F1 via pChkl here. pChkl is 
shown to slightly positively signal to pChk2 here and in figure 5-10. BRCAl is shown 
to negatively signal to E2F1 thereby lowering apoptotic signalling (a).

5.4.4 Further analyses of segm ents of experim ental data
I n -s i l ic o  topological maps may be determined based on full time series data sets sup
plied or their partition sets that have been divided into non-empty (non-overlapping) 
subsets. Sometimes experimental designs or oscillations observed in system dynamics 
might require that transient topological maps be captured at partition intervals to ex
press the transient behaviours and multiphasic signatures in biological signalling net
works. As agreed with the domain expert, the recommended methodological approach 
to dynamic data that reaveal complex oscillatory patterns (i.e. figure 5-8) should be 
simple: split the biological data into the desired dimensions of non-overlapping data- 
segments (e.g. 0-8hr time point and from 8-24hr time point) to enable further capture 
of intermediate transitivity in dynamics and then reapply the developed inference 
method to delineate biphasic ATM function and uncover the underlying signalling 
relationships and the associated alterations during the shift of cellular response.

The analyses were performed as suggested and the results are then displayed in 
figures 5-13 and 5-14. In those figures, only the 0.4/xM Dox input information (on 
the right hand side) which contain the inferred models of DDR signalling pathway 
at 0.4/xM Dox input in the absence and presence of ATM inhibition were analysed 
because those were the data sets that exhibited pronounced oscillations in their dy
namics. Their derived topological maps are displayed in figures 5-13 and 5-14.

Figure 5-13 represents a further derived topological map of the network of DDR
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signalling pathway at 0.4/iM Dox input in the presence of ATM inhibition using a 
subset of data with time points Ohr, 2hr, 4hr, and 8hr. ATM functions in a cytotoxic 
role.

Figure 5-14 represents further derived topological map of network of DDR sig
nalling pathway at OA/jM  D o x  input in the presence of ATM inhibition using a subset 
of data with time points 12-24hr. ATM functions in a cytoprotective role.

Figures 5-13 and 5-14 represent the derived topological maps of network of DDR 
signalling pathway at O A fiM  Dox input in the presence of ATM inhibition. Specifi
cally, inhibition of ATM resulted in higher apoptotic cell death only at 2, 4 and 8hr of 
Dox treatments as compared to cells treated with Dox alone. Extension of treatment 
to 12, 16, 20 and 24hr switched the outcome of ATM inhibition where lower cell death 
was seen in Dox treatment with ATM inhibition than without. Apoptotic signalling 
is noticed at 2 , 4 and 8hr of this treatment (figure 5-13). A switch to lower apoptosis 
is then observed after 8 hours as compared (figure 5-14) to treatment without ATM 
inhibition.
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Figure 5-13: Further analysis: reverse engineered jacobian models that are consistent with his
torical time series measurements at (0.4pM) dose-intensities of doxorubicin with and without KU 
treatment using data with timepoints 0-8hr.

Derived Network of Interactions (0.4gM DOX.+KU)

IpATM IpATR >pP53 IpChkj 1 pChkj 1 pBRCA lpE/1 IpHjAX

pATM-s 0.0024 0 0 0 0 0 0 0014 0

pATR-> 0.22 -0.18 0.035 0.012 0.051 0.037 0.12 0013

PP53~* 0.059 0.017 0.13 0.015 0.069 0.023 0.14 0.0048

pChk2 -» 0.048 -0.013 0.017 0.16 0.027 0.014 0.032 0.0015

pChk| -* 0.002 0 0 0 0.0033 0 0.0011 0

pBRCA 0.14 0.0038 0.0039 0 0.0021 0.15 0.036 0.012

p E / m 0 0 0 0 0.0018 0 0 0

pHjAX-s 0.0076 0.0065 0.0084 0.0065 0064 0.005 0.11 0.16

0.25

0.2

0.15

0.1

005

0
-0.05

■0.1

Figure 5-14: Further analysis: reverse engineered jacobian models that are consistent with his
torical time series measurements at (0.4/zM) dose-intensities of doxorubicin with and without KU 
treatment using data with timepoints 12-24hr.
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5.5 Discussion and conclusion
We investigated the DNA-damage response pathway involving a number of signalling 
proteins (pATM, pATR, pP53, pChkl, pChk2, pBRCA, pE2Fl, and pH2AX) under 
0.1/iM and 0.4/xM of Doxorubicin, with and without ATM inhibition by KU. Relative 
quantification of individual proteins were measured after 2 hours and regular time 
intervals of 4 hours with the individual data based on the initial condition. The mod
elling approach was completely data-driven and entirely based on analysis of the time 
series profiles of the proteins involved in the DDR pathway. No a p r i o r i  knowledge 
about was given prior to the system identification process. The results themselves 
suggested some new insights and confirmed known results thereby demonstrating and 
validating the effectiveness of our data-driven modelling approach. The results we 
obtained are summarised below. Those new insights were obtained from compara
tive study of the topological information derived from structures of multiple network 
models inferred from experimental data. We inferred optimal data-consistent jaco- 
bian models of the system using the method of the transposive regression TRM. Then 
topological maps of interaction network were inferred from those models. 2D images 
of those maps were analysed further to determine cellular responses to intervention 
under inhibitory and non-inhibitory conditions of ATM.

The following key signalling determinants are inferred purely from experimental 
data. We infer that ATM upregulates pChkl and BRCAl at the lower scale of 
Dox treatment causing cell cycle arrest and repair in ATM non-inhibited state and 
ATR positively influence pChk2 in ATM inhibited state. With E2F1 levels induced, 
E2F 1 may be activating pChk2 indirectly (via pChkl) resulting in greater cell death. 
Disruption in ATM activation links to p53 at a lower scale of Dox treatment with 
KU and may lead to stronger ATR upregulation and eventually apoptotic signalling. 
ATM inhibition resulted in lower cell death as compared to ATM active state at 
higher scale of Dox treatment suggesting that ATM may be playing a cytotoxic role 
at higher Dox treatment.

The in - s i l ic o  prediction of system dynamics based on data of experimentally de
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termined fold induction of DNA damage response pathway also revealed oscillatory 
patterns in the modelling results of the system in non-inhibited ATM state. These 
modelling results may be suggesting the involvement of ATM kinase activity in down
stream protein oscillations following double stranded DNA damage [according to 
model result interpretation by the domain expert]. According to the domain expert 
Dr Khalil, oscillation of components of intra-cellular signal transduction pathways is 
a feature of feedback loops necessary to maintain system equilibrium. For example, in 
previous biological experiments and computational modelling studies involving oscil
latory phenomena in proteins (e.g. protein activation via recurrent initiation mecha
nism associated with feedback loops) at different concentration of genotoxic agent had 
been reported before [Lev Bar-Or et al., 2000, Lahav, 2004, Batchelor et al., 2008, Ma 
et al., 2005] as well as associated physiological consequences, particularly those that 
had direct impact and exhibited significant influences on cell mortality in response to 
DNA damage (Sun et al., 2009, Zhange et al., 2009). Therefore, the modelling results 
of experimental data, as supported with evidence in literature [Lahav et al., 2004, 
Xhang et al., 2009], suggests induced disruption of feedback loops at both lower and 
higher levels of DNA damage when ATM is inhibited.

The domain expert Dr Khalil also remarks, ATM functions both in cell cycle 
arrest and DNA repair whereby it promotes cytoprotection (Bao et al., 2001, Lim 
et al., 20 0 1), as well as functions as a central component in triggering apoptotic 
cell death (Westphal et al., 1997, Chong et al., 2000, Powers et al., 2004) and its 
specific downstream signalling preference is context dependent, ATM may have a 
cytoprotective effect during Dox time course treatment up until the 8hr time point (as 
cells were sensitised to ATM inhibition) and may switch its function and downstream 
signalling preference to apoptotic mode when the damage is enhanced at post 8hr 
time points (as lower cell death was seen during ATM inhibition). Network inference 
results confirm cytoprotective role of ATM in damage repair and survival at lower scale 
of DNA damage. ATM inhibition resulted in lower cell death as compared to ATM 
active state at higher scale of DNA damage. As expected, models of ATM pathway 
show different signals in different treatment therapies and data segments (i.e with
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different time segments). Additional time point data may be required to improve 
prediction results and explain the key signalling patterns and potential molecular 
targets that should be considered in line with the appropriate dosages of Dox and/or 
KU treatments.

Clearly effective system identification and parameter estimation methods such as 
the inference method demonstrated here are useful tools that may help understand 
various key factors, mechanisms and dynamics of the induced DNA damage response 
pathway that may be responsible for the cell to survive. Such methods are useful and 
may be applicable to the design and inexpensive assessment of potential therapeutic 
treatments, e.g. elucidating the role of ATM in damage response pathway more 
clearly after Dox treatment. As demonstrated in this report using a worked example, 
there is strong evidence to support the effectiveness of the modelling approach used 
in anlysing real life experimental data.
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Chapter 6
Dynam ic modelling of PI3K -A K T  
signalling pathways
Over the years diverse computational and mathematical methods for modelling bi
ological systems have been developed. The idea of using time series experimental 
data to model and understand signal transduction pathways seems attractive. This 
is due to the advancement in proteomics technologies. Today concentrations can be 
measured relatively easily and recorded for modelling purposes. Likewise if the mod
elling objective is to consider mRNAs at the genetic level, the experimental data for 
such biological research can be acquired using microarrays technologies - the latest 
advances in microarray technology make it possible to obtain large volumes of data 
in ways never imagined before. In systems biology modelling of signal transduction 
pathways continues to improve with numerous contributions from researchers all over 
the different fields involved.

Cancer systems biology involves both the understanding of causes and nature of 
cancer, the development of new technologies, and application of systems approach 
to cancer treatments. Though it involves the integration of multiple biological scales 
(e.g. molecular (signalling), cellular, tissue, organ, system, organism), this holistic 
approach is not commonly practised due to the complexity and enormous challenges 
involved in the complex interactions within and between cells, tissues, and organs. 
The fact that cancer studies may provide useful answers to questions asked at a
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molecular level may not mean challenges faced at other biological levels above it are 
automatically solved. Therefore, it is fitting to think about how to easily translate 
solutions to difficult challenges faced at a molecular level to the other biological 
levels above it. Adequate research time may be required to carry out research at 
each of the biological scales already specified. The modelling challenges encountered 
at each of these levels are in themselves extremely difficult barely leaving room to 
adequately address other important issues that relate to scalability. However, key 
processes that relate to signalling, apoptosis, DNA repair, cell cycle, cell growth 
and survival, must be addressed first at both the molecular and cellular levels. It 
is the understanding of such key processes, the various multivariate dysregulation 
involved in cancer formation, and prospective treatments available that is vital in 
cancer systems biology (Kreeger P.K. 2010). Because cancer is highly complex and 
heterogenous in nature with diverse genetic mutations and multiple dysregulated 
pathways, researchers seek to use mathematical modelling to understand how current 
understanding of cancer causes, development, and treatments may be improved.

Some of the challenges confronting cancer systems biology include inadequate 
or lack of understanding about the impact and consequences of critical molecular 
alteration on tumour cell phenotype, different tissue types, and diverse multiple effects 
on organs in response to systemic changes (Kreeger P.K. 2010). At the molecular and 
cellular level, a number of extracellular and intracellular signalling pathways may be 
dysregulated. One such system is the ErbB/HER signalling system which is frequently 
mutated in cancer and has been the subject of numerous studies (Kreeger P.K. 2010, 
Citri A. 2006, B.S 2005). In this case study we seek to investigate and understand 
the ErbB/HER-PI3K-MAPK signalling pathways.

In addressing important issues such as targeted drug therapies, many would agree 
mathematical modelling has great potential in supporting drug design. However, 
mathematical modelling is yet to adequately and efficiently deliver this potential, 
generally and specifically for drugs that target the human epidermal growth factor 
receptor (HER) signalling pathway in the treatment of cancers, especially those that 
are characterised by HER2 overexpression. The HER family, being an important and
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frequently studied signalling network (Oda K. 2005, Citri A. 2006, Soltoff S.P. 1994, 
Kim H.H. 1994), comprises members that are often implicated in human cancers. 
For example, the HER1, HER2 and HER3 receptors are commonly overexpressed 
in cancers (Slamon D.J. 1987, Slamon D.J. 1989, Naidu R. 1998, Stephens P. 2004) 
and this has motived researchers to seek to employ mathematical modelling to study 
their activation. Such studies focus on the tyrosine kinases and subsequent molecular 
targets downstream of the signalling cascade such as PI3K and MAPK pathways. 
The goal of such studies would be to determine how best to develop a therapeutic 
strategy aimed at a cancer treatment objective, e.g signalling of apoptosis in only 
cancer cells, restoring aberrant functioning to normal functioning, etc.

Most of the computational and modelling methods that target the HER, PI3K, 
and MAPK signalling pathways are process-based. For example, comprehensive de
tails about the underlying dynamical system may be formulated to construct an 
ordinary differential equation (ODE) model of the biological system. Such predictive 
models require that all key proteins have the necessary specification and formulation 
expressed within the appropriate compartments of the model and can be useful in 
simulating semi real data. The data produced from such surrogate experimental sys
tems, which may be a little different from real experimental data but very similar in 
many ways in the sense that the processes that have been captured and enbedded in 
them very much resemble those in the real systems, may be used to further test our 
modelling approach. Using plausible data such as those generated from a published 
process-based model (Goltsov A. & Harrison 2011) we further explore the capabilities 
of our inference algorithm, primarily to both demonstrate its value and explore some 
of its hidden weaknesses in a controlled environment.

Our aims in this case study are:

1 . to acquire samples of time series data of HER 2/3-PI3K-MAPK signalling path
ways simulated in - s i l ic o  from a biologically plausible process-based system of a 
real system;

2. to automatically construct more simplistic alternative ODE models that are
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able to capture and represent nonlinear system behaviours purely from the 
time-series data;

3 . to ensure that each constructed model is data-consistent and can reproduce the 
exact data through simulation;

4. to use each constructed model to understand the HER2/3-PI3K-MAPK sig
nalling pathways and effects of drug input like Pertuzumab (2C4), a monoclonal 
antibody for treating human cancers;

5 . to use the models to identify the various molecular factors that may be con
tributing directly or indirectly to the development of sensitivity and resistance 
to cancer treatment with 2C4;

6. to offer recommendations on useful and novel cancer treatments that target 
the HER 2/3-PI3K-MAPK signalling pathways by formulating experimentally 
testable hypotheses that may answer any of the broad issues presented in figure 
6- 1.

In human pathology it may be necessary to use time series data of important 
biological pathways to decipher some of the very complex intracellular mechanisms 
that may have produced such data. To achieve this aim computational modelling can 
be employed. As indicated earlier in the previous chapters, the prediction of system 
dynamics from data can be a difficult and challenging task. Application of data-driven 
strategy is complementary to other modelling approaches and can be useful for the 
understanding of complex biological systems in which extracellular and intracellular 
signalling pathways are involved. Our focus is to demonstrate the importance and 
applicability of dynamic modelling (strictly based on data) rather than assumptions of 
processes in understanding intracellular signals emission and control within network 
of biological system using only simulated data of independent biogically plausible 
process-based models.
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6.1 Background
In cells extracellular signal molecules may activate multiple intracellular signalling 
pathways at the same time. By so doing they may be said to control communication 
between and within cells. Located at the cell surface are special proteins, called recep
tors, that are responsible for both the reception and transmission of these signals to 
intracelluar proteins (also called receptors). On contact and binding with extracellular 
molecules these cell-surface receptors are activated and initiate intracellular signalling 
pathways, while the intracellular receptors help make possible communication within 
intracellular pathways, i.e. intracellular signalling may trigger the activation of other 
protein targets e.g. effector proteins. These activation (or deactivation) of signalling 
pathways often occur and are constantly repeated across multiple pathways form
ing complex communication networks. As a result of these complex communication 
between and across multiple intracellular pathways it is difficult to understand how 
cell behaviour is being controlled and regulated. These signalling pathways involve 
metabolic pathway proteins and molecules and gene regulatory proteins.

Modelling of biological pathways may be initiated by describing the activities of 
the dysregulated pathways of a cellular system, characterising some of the most im
portant key signal transduction processes of the complex system together with the 
various interactions among intracellular species (Kholodenko B.N. 2010, Kreeger P.K. 
2009, Aldridge B.B. 2006). Often such systems have established known and unknown 
crosstalks (David Gilbert 2006), feedback loops (Papin J.A. 2005) within and across 
multiple pathways, alternative interconnectivities (Citri A. 2006) all forming highly 
complex topologies which are often robust to system perturbation during drug treat
ments (H 20026, Goltsov A. & Harrison 2011).

Biochemical signalling (or absence of signalling) tends to manifest changes in the 
systems involved and these signalling systems are often viewed in terms of changes 
caused and effects propagated in them over a period of time (Alberts Bruce 2009). 
It is important to consider both the direct and indirect (alternative normal and ab
normal) regulatory mechanisms by which the activity of specific or key proteins are
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being controlled within or outwith the cells. Hence cancer modelling often starts by- 
addressing the challenge of specifying or identifying aberrant signalling within and 
across a set of targeted pathways.

6.2 Understanding signal transduction
Through signal transduction the behaviour of the target cell is altered as cell-surface 
(or intracellular) receptors (acting as transducers) convert and transmit extracellu
lar signals into intracellular communication. This communication primarily involves 
signalling activation of receptors and transduction of a network of other signalling 
proteins. (Alberts Bruce 2009)

Special signalling proteins may activate other signalling proteins either through 
phosphorylation (addition of a phosphate group to an organic molecule, e.g. pro
tein, to alter its function and activity) causing many enzymes to be turned on and 
off. Others may be activated by dephosphorylation. To add to the complexity a 
single receptor may activate signalling pathways in parallel, and so may influence cell 
behaviour in a number of different ways (Alberts Bruce 2009). Understanding the 
various signalling mechanisms through which key changes may be effected is often a 
modelling focus.

For example, the Ras-MAPK and PI3K/AKT pathways are important pathways 
that control cell division, motility, and survival (Bown J. 2012). Because EGFR 
signalling always activates these pathways understanding the ErbB system and sig
nalling within the Ras-MAPK and the PI3K/AKT pathways are common objectives 
of cancer treatment research. Network modelling aimed at experimental drug de
sign may then focus on identifying aberrant signalling that may have contributed 
to the development of the cancer (Amit I. 2007) and also those that may propa
gate detrimental effects on cancer cell survival. Both of these objectives requires 
computational and mathematical modelling strategies. The main aims of modelling 
the ErbB system are to: describe input-output characteristics of the systems; deter
mine the various key signalling responses to input signals and drug action; identify
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the potentially active key targets for anticancer therapy; develop efficient strategies 
for identifying the mechanisms of drug sensitivity and resistance; and establish de
sign and selection criteria for the optimisation of therapeutic treatment of cancer 
(Schoeberl B. 2009, Chen W.W. 2009, Faratian D. & Harrison 2009).

6.2.1 Major modelling challenges
Using mathematical and computational modelling to identify molecular targets from 
times series data is a difficult task, especially if required to be performed with a view to 
improve diagnosis and predict early prognosis of cancer. The need to adequately and 
correctly predict cellular responses to anticancer therapies demands that the systems 
biology modelling that is being used be able to identify and differentiate between 
the various highly complex topologies inherent in quantitative data acquired from 
cell lines which are either tumour-specific or normal-tissue related (Bown J. 2012). 
Our modelling objectives in this case study use purely time series data representing 
cellular systems and analyse them to infer and differentiate between different disease 
states. We therefore seek to predict and characterise cellular systems based on the 
molecular signatures of the signal transduction and associations among the system 
components. By exploring the applicability of the systems biology modelling strategy 
in this regards we may offer this solution as a complementary tool and approach to 
other forms of traditional modelling techniques. The complexity involved, apart from 
the inference of crosstalks across multiple pathways (David Gilbert 2006), the tasks 
of having to uniquely identify the various key feedback loops (Papin J.A. 2005), and 
alternate and compensatory pathways that help keep biological cells robust to system 
perturbation all complicate the modelling challenge.

We seek to capture the dynamics of the networks of the systems using most basic 
equations expressed using nonredundant parameters that uniquely and unambigu
ously describe the rates of change of concentrations of species involved in the net
work. We seek to offer insights into the performance of our new inference algorithms 
in terms of how their system identification abilities in differentiating between multiple 
alternate signalling networks revealed from data.
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The mathematical modelling may be employed as a strategy for studying sig
nalling systems’ responses to stimuli. Such understanding of signal transduction 
mechanisms, (trivial and non-trivial) cross-talk communications across multiple sig
nalling pathways, and signalling responses to drug interventions or perturbation in 
cellular systems may contribute to the development of effective strategies to inform 
the identification of therapeutic biomarkers (Goltsov A. & Harrison 2011).

From the computational and modelling viewpoint, the improvement in data sim
ulation strategies, inference methods development and experimentation are gradually 
rising but not in line with rates of increase in the amount of data available. Among 
the list of recent approaches to modelling biological signalling network, the ordinary 
differential equations (ODE) approach is most attractive. However, it is important 
to note that modelling of signal transduction is challenging due to system identifica
tion and parameter estimation challenges. The notion that the modeller may decide 
upfront the entire topology can potentially invalidate system identification and pa
rameter estimation if care is not taken.

6.2.2 Towards multiple parameter fits
Among a number of challenges the modeller has to face system identification and pa
rameter estimation are the most difficult. The parameter estimation task can be diffi
cult, time-consuming, and is often with no real success in a short time frame, especially 
if the model is process-based, i.e. requires a much deeper level of detail than simplistic 
models. In dealing with uncertainties sometimes it might be best to use a non iterative 
method that estimates multiple parameters all at once (Gutenkunst R.N. 2007). For 
example, Gutenkunst et al., in estimating the parameters of a growth-factor-signalling 
model, managed to narrow down the parameter search spectrum to a well-constrained 
domain. In a later work they reported each model examined in their collection had 
an unsystematic spectrum of parameter sensitivities that complicated the estimation 
process in predictive models. Their insights into the prevalence of sloppiness in pa
rameter sensistivity spectra (Gutenkunst R.N. 2007) suggests that single-parameter 
estimation should be avoided and parallel parameter estimation methods should be
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used whenever possible. They suggested that valuable time could be saved to focus 
on enhancing the predictive power of the model if the estimation strategy employed 
is appropriated. For this purpose we avoid single-parameter estimation whenever we 
can.

Our parameter estimation method offers more benefits than optimising single pa
rameters one after another. Not only does it provide means of estimating all model 
parameters at once, it completely minimises the possibility of obtaining suboptimal 
results, thereby saving time and reducing model design or development cycle.

6.3 Reverse engineering o f R TK -PI3K -M APK  sig
nalling pathways

6.3.1 Problem definition
It is commonly known and accepted that the enzyme-coupled transmembrane receptor 
tyrosine kinases (RTKs) phosphorylate tyrosines on themselves and other intracellular 
signalling proteins (Alberts Bruce 2009). On binding to activated RTKs and activa
tion, signalling proteins may send signals through multiple pathways which may then 
relay signals downstream (e.g. through Raf-Mek-Erk signalling) to the nucleus along 
the MAPK-pathway. The terminal kinase Erk may either phosphorylate and inac
tivate pRaf (thereby forming a negative feedback loop) or enter into the nucleus to 
phosphorylate gene regulatory proteins that may activate the transcription of other 
genes to effect changes in the cell. Alternatively other relay mechanisms for promot
ing cell survival and growth through activation of other pathways (e.g. PI3K) may 
be involved. However, such multilevel control of signal transduction from membrane 
receptors to nucleus may vary for different cell lines, depending on the interactions 
among the individual components of the signalling networks, whether the cells in
volved are cancerous or not, and in part on the expression level of the proteins involved 
(McCubreya J.A. 2006). Understanding the control and regulation of signal transduc
tion and the mechanisms, development, loss of responsiveness (after treatment) and
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acquired resistance to anticancer drugs may require novel computational and mathe
matical modelling techniques able to deal with the challenges associated with complex 
dynamical systems modelling. These challenges include inferring and identifying var
ious alternative relay mechanisms for promoting cell survival and growth through 
PI3K activation, lack or mutation of PTEN in uninhibited PI3K signalling, cell sur
vival and growth through the PI3K-AKT signalling pathways (Alberts Bruce 2009) 
and MAP kinase (Erk) signalling. The process-based model that generated the data 
used in this case study had been well-tested against real experiments and biological 
experiments and simulated results are in good agreement.

The problem definition is this: can our model inference algorithm differentiate 
between data obtained from models operating in “sensitive mode” and those in “re
sistant mode” in response to RTK inhibition with and without 2C4 treatment? The 
process-based model has been programmed with known regimes of function in either 
sensitive or resistant modes before data generation. This important question we seek 
answers to is “is it possible to infer and identify regime difference (in terms of drug 
sensitivity and resistance to RTK inhibition) purely from the time-series data sup
plied to our modelling framework?” In this way we use the process-based model as a 
surrogate experimental system where - importantly - we are certain of the process- 
based model functioning and its response to drug action, but base our analyses only 
on the time series data derived from that model.

6.3.2 The datasource model of input data: the PI3K /  PT E N  
/  AKT signalling networks

First we refer to the work of Goltsov et al. (Goltsov A. & Harrison 2011) which 
hypothesised that the sensitivity-to-resistance transition may be a result of transi
tion from compensatory features inherent in signalling networks. Having previously 
shown that PTEN plays a key role in the development of resistance to RTK inhibi
tion (Faratian D. & Harrison 2009) they performed both experimental and theoretical 
studies to detail the behaviour of the signalling network in relation to acquisition of
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drug resistance exploring the observed effect of PTEN expression levels on resistance. 
Their results revealed several compensatory mechanisms through which a particu
lar behaviour could be effected through multiple cross-talk across multiple pathways 
and mutation drug targets leading to the development of resistance in phenotypes 
under specific drug regimes (Araujo R.P. 2007, H 2007, H 2004). Using computa
tional and experimental methods they elucidated and established the link between 
properties of the PI3K/PTEN signalling cycle and cellular response to RTK stimuli 
mediated through the ERK/PI3K/PTEN/AKT pathways, determining the change 
in sensitivity of AKT activation to RTK inhibition by pertuzumab using a control 
kinetic parameter that encapsulates the functional properties of key signalling com
ponents that regulate enzyme activities (Goltsov A. & Harrison 2011). By varying 
the control parameter they were able to effect combination of perturbations to the rel
evant component, i.e. the PI3K/PTEN/AKT signalling cycle (see subsystem framed 
in figure 6-2 ), and adjust network dynamics to effect sensistivity-to-resistance tran
sitions between different impact of inhibition by external inhibitors (Goltsov A. & 
Harrison 2011). The dynamics of the subsystem was characterised the control pa
rameter

Ctrl = VpT™.—  (6.1)
* P I Z K  ' * A K T

where VPTEN, VPI3K, VAKT are determined based on the initial concentrations 
PTEN 0, PI3K 0, AKT0, respectively, in terms of the following expressions:

Va ^ c a t .  P T E N  P T E N q (6.2)

17 ^ c a t . P I Z K  P I 3 K q
V P I Z K

v  —v A K T

m . P I Z K

AK Tn
d . A K T

(6.3)

(6.4)

With the control parameter C t r l  they were able to appropriately switch on and steer 
some of the key features of the subsystem of the signal transduction system to effect 
desired changes into the systems by switching the model circuit into either sensitivity
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M K P 3

Figure 6-2: Schema of process-based model of RAF/MEK/ERK and PI3K/PTEN/AKT 
signaling network.

or resistant mode with or without 2C4 input. For more information see (Goltsov A. 
& Harrison 2011).

In view of the above simulation method for generating time series data we consid
ered the time series data generated by Goltsov et al. (Goltsov A. & Harrison 2011) 
and acquired from this model output a number of samples of time series data sets 
all simulated from his predictive models (see figure 6-2 ) and used those data as data 
input to this case study for the assessment of our inference methods.

l

6.3.3 The acquired data samples
The time series data sets used in this case study are acquired from the process-based
model developed and presented by Goltsov et al. (Goltsov A. & Harrison 2011). As

XA subsystem of PI3K/PTEN/AKT cycle is marked by dotted frame. LY294002 and bpV(pic) 
are inhibitors of PI3K and PTEN, respectively. HER2, HER3: the epidermal growth factor 
receptors; HRG: heregulin; 2C4: pertuzumab; HER23: HER2/HER3 heterodimer; She: Src- 
homology and collagen domain protein; GS: Grb2-SOS complex; PIP2: phosphatidylinositol; PIP3: 
phosphatidylinositol-3,4,5-trisphosphate; RAF* and PI3K*: activated RAF and PI3K enzymes; 
PP2A: protein phosphatase 2A; PDK: phosphoinositide-dependent kinase 1; MKP3: MAPK phos
phatase 3 (Goltsov A. & Harrison 2011).
Image credits: A. Goltsov et al. / Cellular Signalling 23 (2011) 407-416.
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described in their paper, the control kinetic parameter in their model was used to serve 
as a resistance factor that calibrates the model’s resistance responsivity measures 
against RTK inhibition. The data sets are supplied and grouped into four main 
categories, namely: S-, R-, S+, R+ representing

1 . S-: systems characterised by sensitivity to RTK signals without 2C4 treatment,

2 . R-: resistance to RTK signals without 2C4 treatment,

3. S+: sensitivity to RTK signals with 2C4 treatment, and

4. R+: resistance to RTK signals with 2C4 treatment, respectively.

In these models, sensitivity or resistance is determined by PTEN expression level. 
In order that we did not bias our data driven modelling with this key information, 
PTEN is not included in the time-series data set. However, the following assumptions 
were made during the simulation process: a) that all S- and S+ data sets assume 
PTEN expression level is full, hence they are regarded as being “100% n o r m a l and 
b) that all R- and R+ data sets assumed reduced and mutated PTEN expression level, 
i.e. '50% m u ta t e d ”, hence any data generated and grouped into either the category 
of R- or R+ represents a cancer cell system.

6.3.4 Pertuzumab (2C4): a monoclonal antibody that tar
gets the HER family of cell-surface receptors

The human epidermal growth factor receptor HER-2 is an important receptor for the 
classification of potentially aggressive breast cancer and key target in the treatment 
of HER-2-expressed breast cancers. Both HER-2 protein overexpression and gene 
amplification have been identified as key indicators of invasive breast cancer. In 
the treatment of breast cancer with drug agents, e.g. trastuzumab and pertuzumab, 
identifying the various roles that potential biomarkers associated with drug sensitivity 
and resistance play is key. To apply and assess the performance of our computational
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and modelling method we use time series data generated from biologically plausible 
process-based model of signal transduction network.

As described in Chapter 4, data-consistent ODE models may be constructed from 
time series data that approximate or represent biological systems. We apply the 
TRM algorithm to the time series data supplied by Goltsov which represent the 
signal transduction systems represented in (Goltsov A. & Harrison 2011) in which 
kinetic parameters and topological information had been tested and well-defined.

We first propose that given that only time series data sets of some system mea- 
surables, akin to what might be carried out in a wet-lab experiment, we might be 
able to take such complex data set representative of cell lines that may or not re
spond to drug action and apply our inference method to identify and differentiate 
between those data in the [S-] and [R-] group and those in either [S+] or [R+]. If 
our assessment result is conclusive then the proposed method is important to any 
drug screening programme, i.e. based on some fairly routine biological analyses and 
immediate systems-scale modelling of biological data we can screen whether a drug 
is effective or not.

This case study primarily focuses on the asessment and capability of our inference 
method in differentiating between time series data representative of different system. 
We focus on whether of not unique signals may be identified in each of the systems 
which uniquely seperates from any other system (s) to meaningfully indicate drug 
sensistivity and drug resistance.

Instant visualisation based on heatmap representation is first performed on the 
given time series data sets, see Figures D -l to D-3. The higher the entry-value the 
deeper the colour shade that is used to depict that value. Please note that the diagonal 
entries are not included in the heatmap program. Such instant visualisation of data 
help provide instant analyses on the magnitudes of the time series data values to 
determine the maximum and minimum entries in a given data set. Please note that 
the heat maps are not calculated based on global scales so heatmap image is based 
on the maximum entry in each individual time series data table.

Each of the figures represents a collection of the S-, R-, S+, and R+ signal trans
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duction network of the HER2/3-PI3K-MAP signalling pathways over a certain period 
of capture, i.e. 8, 10, and 12 minutes, with their data in normalised form. We spec
ulate that the information extracted about the most immediate system’s response 
to treatment, drug’s normal mechanism of action, and after-effects of 2C4 could be 
different depending on the time step (here 8, 10 or 12  minutes), and so the infor
mation extractable from these inference activities give insights into the robustness of 
our inference methods. Normalising the time series data across the different groups 
of data sets eases the comparison process component-wise. Finding efficient inference 
algorithms that are stable and reliable is difficult and it is important to demonstrate 
that this method is capable of making precise predictions in changing conditions.

Each time series data contains exactly 8 time points at regular intervals. Irregular 
time intervals within the data sets will definitely complicate the model construction 
problem. The measure of model sensitivity considered here is simple: that is to check 
whether or not the key signals expected with be shown in the interaction maps. In 
addition, varying the time scales might also help explore whether a particular signal 
would be sustained, drained, or recovered after a longer period of time or not.

Since the number of time points is less than the number of measurables within 
the system we also deal with a further complication in parameter estimation, akin 
to normal expectation in real-life scenarios. In Figures D-l to D-3 top datasets S- 
and ST (i.e top-left and top-right, respectively) represent data representative of cell 
lines that are potentially sensistive to RTK inhibition in the absence and presence 
of 2C4, respectively. The bottom datasets R- and RT (i.e bottom-left and bottom- 
right, respectively) represent data representative of cell lines that have potentially 
developed resistance to RTK inhibition in the absence and presence of 2C4 input, 
respectively.

6.3.5 M odelling of i n - s i l i c o  experim ental tim e series data
Usually the inference algorithms introduced in chapter 4 are sufficient for dealing 
with most of our system identification and parameter estimation challenges; only in 
rare cases should we require additional techniques to be used. The only exception
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to purely using the transposive regression method TRM (introduced in chapter 4) is 
when improper parameters occur after the initial normal estimation attempt, i.e. if a 
single parameter is estimated with an inappropriate magnitude (e.g. 40 times more 
than that of every other parameter in the model).

D ea lin g  w ith  im prop er p aram eter  e s tim a te s  in m od els

Whenever the model reconstructure and parameter estimation output is unaccepted 
(e.g. the magnitude of parameter value is large and seems unrealistic) still we must 
avoid compromising on the predictive capability of the TRM method. We compromise 
the data-driven model reconstruction strategy which is based on the TRM algorithm 
if we tamper with any of the estimated values of the parameters of the model. How
ever, if improper values of parameters are returned after the model reconstruction 
we may be able able to pin-point specific compartments of the model that may re
quire a necessary readjustment in its structure. Note that this readjustment would 
be limited to preprocessing the model structure in preparation for a reestimation of 
all model parameters only. Our recommendatation for seeking out where such read
justments might be necessary is to first simulate the given time series data, compare 
the simulated data with the original data, identify the components whose data are 
not reproducible and then reconcile the specification in those components with the 
improper parameter values obtained. Such readjustment of model structure aimed 
at data consistency is  n o t  more than repreparing all the model parameters for a new 
estimation to eliminate doubtful results, i.e. any results that include one of more 
unacceptable or unconvincing parameter value(s). Steps for dealing with improper 
parameter estimates are clearly demonstrated in Appendix E (supplementary infor
mation) .

In this case study, we investigate to see if our inference algorithm are able to 
generate similar networks to the processes and assumptions defined in the process- 
based model. To conduct this scientific research, no a p r io r i  information is supplied 
before interpreting the results. In fact the simulation of time series data was done 
independently by another modeller. The key objective is to investigate if our methods
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can help interpret model dynamics without knowing anything about how the systems 
worked orginally. By analysing time series data generated from the process-based 
model we are able to inform our understanding of responses to that intervention 
introduced.

150



0.58774

F igure  6-3: Result of S- normalised data, 8 minutes.
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Figure 6-4: Result of S- normalised data, 10 minutes.
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F ig u r e  6-5 : R e s u lt  of S- n o rm a lis e d  d a ta ,  12 m in u te s .
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F igure  6-6: Result of R- norm alised data, 8 minutes.
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F igure  6-7: Result of R- norm alised data, 10 minutes
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F ig u r e  6 -8 : R e su lt  of R,- n o rm a lis e d  d a ta ,  12 m in u te s
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0.23749

F igure  6-9: Result of S-t- normalised data, 8 minutes.
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F igure  6-10: Result of S+ normalised data, 10 minutes.
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F ig u r e  6 -11 : R e s u lt  of S +  n o rm a lis e d  d a ta ,  12 m in u te s .
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F igure  6-12: Result of R +  normalised data, 8 minutes.

F igure  6-13: Result of R +  normalised data, 10 minutes.

F ig u r e  6 -14 : R e su lt  o f R +  n o rm a lis e d  d a ta ,  12 m in u te s .
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6.4 Presentation of m odelling and inference results
In this section we present the inference results of time series analysis. The results of 
time series data analyses of the normalised data are displayed as heatmaps (see figures 
D-5, D-6 , and D-7). We search for patterns in those results, summarise some of the 
key features we have identified, and present the extracted features into a table (see 
figure 6.1 for summarised description). In the heatmaps, positive and negative signals 
are depicted by red (high intensity) and white (low intensity) colours, respectively.

Figures 6-3 to 6-14 represent the derived topological maps of cell lines with S- 
(Figures 6-3, 6-4, and 6-5), R- (Figures 6-6, 6-7, and 6-8) and R+ (Figures 6-12, S+  
(Figures 6-9, 6-10, and 6-11), 6-13, and 6-14) features with 8 , 10 and 12 minute time 
steps.

6.4.1 General consideration
Note that the results of data sets with 8 and 10 minute time steps are tagged early, 
while the results of those with 12  time steps are tagged as late, e.g. S- (late) or R+  
(early) would represent the results of S- (8 and 10 minute time steps) or R+ (12  

minute time steps), respectively. This is because for normalised data the analyses 
and interpretations of the topological maps are broadly independent of time step for 
8 and 10 minute time steps. The data for the 12 minute time step is also similar but 
there are some key differences.

6.4.2 Result and interpretation
S-, R-, S-F and R+ data: activation of pAKT is indicated in all topological maps with 
evidence of crosstalk signals (see Figures 6-3 to 6-14).

S- and  R-

Both S- and R- show the effect of PI3K inhibition by PTEN and RTK signalling 
mediated through HER23 dimerisation. PI3K inhibition is observed early in S- (see
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Figures 6-3 and 6-4) and PI3K inhibition is indicated late in R- (see Figure 6-8), i.e. 
S- (8-10  minute time steps) and R- (12  minute time steps), respectively.

Note that for time step 12 minutes, PI3K is inhibited in all cases (R-, S+ and R+) 
except S- (see Figure 6-5). Also for 8 and 10 minute time steps, PI3K is inhibited in 
all cases (S-, S+ and R+) except R- (see Figures 6-6 and 6-7). Hence for time step 12  

minutes, PI3K-mediated signalling is seen only in S-, and for 8 and 10 minute time 
steps, PI3K-mediated signalling is seen only in R-.

In both S- and R-, HER23-mediated signalling is evidenced. HER23 signalling 
appears to be more influential in R- than in S-. However, in R- such RTK signalling 
propagated downstream promotes more pAKT-mediated signalling compared to S- 
(see Figures 6-7 and 6-4) and positively influences PI3K-mediated signalling and 
crosstalk. In S- there is no evidence to suggest pRAF-mediated signalling (for 10 and 
12  minute time steps). This unique feature distinguishes cell line with S- from the 
other cell lines, i.e. R-, S+ and R-K Another remarkable difference between S- and 
R- is that in R- the results reveals pRAF- or pERK-mediated crosstalk signals. No 
such signal is displayed in S- results.

Figure 6.1 gives a summarised description of the analyses of the derived topological 
maps for all time steps 8, 10 , and 12 minutes.

S +  and R-f-
For 8, 10, and 12  minute time steps, both S+ and R+ show the effect of strong inhibi
tion of PI3K by PTEN and 2C4, late pHER23-mediated signalling due to prolonged 
inhibition by 2C4 (see Figures 6-11 and 6-14), pRAF- or pERK-mediated crosstalk for 
12 minute time steps (see Figures 6-11 and 6-14), pRAF-mediated signalling through
out (see Figures 6-9 to 6-14) and resultant positive pRAF-pMEK-pERK feedback loop 
(see Figures 6-11 and 6-14). For 8 and 10 minute time steps, in both S+ and R+  
downstream propagation of HER23-mediated RTK signalling is deficient, i.e. there 
is no appearance of early pHER23-mediated signalling, as expected (see Figures 6-9 
to 6-10 and 6-12 to 6-13). For 12  minute time steps, R+ shows pAKT-mediated 
crosstalk signalling (see Figure 6-14) but S+ reveals no evidence of pAKT-mediated
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signalling (see Figure 6-11).
Table 6.1: Analyses of topological maps data.

cell
line

PTEN
inhib.

seq.8-10-12

pHER23-
mediated

signal.
8-10-12

pAKT-
mediated
crosstalk

8-10-12

pERK-
or

pRAF-
mediated
crosstalk

8-10-12

pRAF-
mediated
signalling

8-10-12

positivepMEK-pRAF
signalling

8-10-12

nature of 
resultant 

feedback loop 
(for 12 min.)

S- YYN YYY YNY NNN NNN NNY None
R- NNY YYY YYY YYN YYY NNY pRAF pMEK <— pERK
s+ YYY NNY YYN NNY YYY NNN positive pRAF —> pMEK —» pERK
R + YYY NNY YYY NYY YYY NNN positive pRAF —>■ pMEK —» pERK

S-, R- compared with S + , R-f-

HER23 inhibition is more pronounced in both S+ and R+ than in S- and R-. However, 
for time step 12 minutes, this inhibition of HER23 dimerisation is released (reversed) 
resulting in excited pRAF- or pERK-mediated crosstalk signals and positive pRAF- 
pMEK-pERK feedback loop in both S+ and R+ (see Figures 6-11 and 6-14). However, 
positive pMEK-pRAF signalling is seen in both S- and R- results for time step 12 
minutes (see Figures 6-5 and 6-8).

6.5 Remarks
S-, as expected, demonstrates early inhibition of PI3K, shows no pAKT-mediated 
crosstalk signals for 8 minute time steps, no pRAF-mediated signalling for 10 and 
12 minute time steps, and no evidence of positive feedback loop at all. R- shows 
little effect of PI3K inhibition for 8 minute time steps, demonstrates pAKT-mediated 
crosstalk signalling throughout, shows presence of pRAF- or p-ERK-mediated crosstalk 
for 8 and 10 minute time steps, and (reversed) positive pERK-pMEK-pRAF feed
back loop. S+ may be characterised by positive pRAF-pMEK-pERK feedback loop 
with absence of pAKT-mediated crosstalk resulting from 2C4 input. R+ may be 
characterised by positive pRAF-pMEK-pERK feedback loop with presence of pAKT- 
mediated crosstalk resulting from 2C4 input.
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These above results suggest that (sensitive) cell lines that may positively respond 
to 2C4 treatment are devoid of positive feedback loops and cell lines characterised 
by presence of pRAF- or pERK-mediated crosstalk signals are resistant and may not 
respond well to 2C4 treatment. With respect to response to 2C4 treatment, inhibition 
of HER23-dimerisation may eventually result in positive feedback loop outcome in 
both sensistive and resistant cell lines. However, 2C4 treatment may eventually bring 
about a deactivation of pAKT in the presence of PI3K inhibition in sensitive cell 
lines. Such a favourable outcome (inhibition of the survival of sensitive cancer cell 
lines) cannot be guaranteed in resistant cell lines. We detect 2C4’s mechanism of 
action works through blockade of receptor signalling through AKT but can create a 
positive feedback loop in the mitogen-activated protein kinase cascade.

Clearly, network structure identification and parameter estimation of dynamical 
systems are necessary steps in representing system dynamics in terms of interaction 
networks. We demonstrated that algorithmic analysis of time series data may be 
very useful and could serve as both a data mining strategy and knowledge discovery 
method for making predictions and generating new hypotheses in complex systems 
modelling. On a promising note, the novel inference algorithms presented in this 
case study required no additional knowledge input except experimental time series 
data sets. As demonstrated in this case study using worked examples aimed at drug 
design, we here again have demonstrated the effectiveness and practicability of our 
inference algorithm through scientific assessment of its performances under controlled 
test conditions using simulated data sets generated from biogically plausible process- 
based models of a real system constructed by Goltsov et al (Goltsov A. & Harrison 
2011).

We have demonstrated the application of our method by considering the impact 
of cancer drug intervention strategies on the (human) cell signalling network (for 
example (Goltsov A. & Harrison 2011)). This cell signalling model describes the 
PI3K/AKT signalling network and considers the effects of different perturbations 
on the network response to growth receptor inhibition. By perturbing the system 
with various mutations, distinct regimes of functioning were observed in the network.
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Specifically regimes where the system was sensitive to intervention, where inhibition 
of the input signal led to inhibition of the output signal, and where the system was 
resistant to intervention, that is where the system was robust to input signal inhibi
tion. Moreover, the transition between sensitivity and resistance was governed by a 
control parameter derived from the relative balance of the activities of three enzymes 
and drug interventions that target this balance may effect a shift in therapeutic re
sistance to therapeutic sensitivity. Our assessment of the results demonstrates the 
effectiveness of our inference algorithm both in performance and successful predic
tions of key underlying mechanisms of drug action strictly based on time series data 
analysis, i.e. without any additional information such as network connectivity and 
associations among the components of the dynamical systems.
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Chapter 7
Conclusions

7.1 Confirmation of hypotheses
In the introduction of this thesis we set out the following hypotheses:

1 . there exists an integrated modelling framework able to give exact representation 
of time series data and such techniques are sufficient to produce meaningful 
solutions to system identification and network inference problems;

2 . the framework identified in 1 is r o b u s t and applicable to a wide range of limited 
conditions, i.e. limited data (where the number of measurables exceeds the 
number of time points), and beyond, i.e. surplus data;

3 . the framework identified in 1 may inform experimental design and interpretation 
in biological systems;

4 . the framework can produce an instantaneous result that indicates changes in 
cell signalling responses to drug action and specifically indicates sensitive and 
resistant signalling dynamics.

These hypotheses were confirmed in chapter 4 (hypotheses 1 and 2 ), chapter 5 
(hypothesis 3) and chapter 6 (hypothesis 4). The hypotheses were formulated dur
ing the process of developing a data-driven modelling approach complementary to 
process-based modelling, i.e. our attempt to develop a robust computational and 
mathematical modelling framework for analysing time series data of dynamical sys
tems.
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7.1.1 H ypothesis 1
System identification problems are important problems in computer science, mathe
matics, and biomedicine (systems biology), mechanical engineering, financial math
ematics, and so on. In dynamic modelling these are interconnected with finding 
optimal solutions to system identification and parameter estimation problems. Both 
system identification and parameter estimation problems are critical challenges often 
encountered in dynamic modelling and they pose difficult challenges and questions 
which involve finding solutions that are data consistent. Such solutions require ap
plication of theoretical, mathematical, and sometimes experimental methods to data 
analysis and systems of mathematical equations.

We reasoned that if we could typify an inverse problem as a reverse engineering 
challenge characterised by a well-defined system of differential equations and formu
late and optimise this system of equations using time series data so that only most 
basic ODEs are expressed, the essential dynamics of such model may well represent 
the dynamics of the target system. If there is a match in the dynamics, the de
rived model is important, fundamental source of many other solutions, minable and 
sufficient to infer essential network of interactions.

In chapter 4, we demonstrated how the matrix-based reverse engineering and 
inferential procedure involves some form of mapping of the observed data to an exact 
reconstructed and representative network model inferred from data. The inference 
method always infers a jacobian model of the target system without inputing into the 
system a p r io r i  information about the architecture of the target systems.

We extended the predictive capability of the discovery strategy by increasing the 
number of distinct model solutions that can be provided to an inverse problem. This is 
achieved by developing new methods (i.e. variants of the fundamental methods which 
are slightly different from those fundamental core methods) to support jacobian to 
power-law model integration thereby ensuring that nonlinearities in complex systems 
may be captured and modelled using ODE models designed for formulating both 
simple and complex nonlinear phenomena.
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The recast technique presented in chapter 4 is an integral part of a new theoretical 
framework developed to extend the capabilities of both our reverse engineering and 
current BST frameworks to support automated time series data modelling in systems 
biology and beyond. The modelling approach described is extremely fast, optimised, 
and completely data-driven. The method is generalised and applicable to any time 
series data of dynamical systems, i.e. with unknown underlying network of interac
tions. In addition, multiple data-consistent power-law (half-system) models may be 
inferred from such time series data without requiring a p r io r i  information about the 
architecture of the target systems.

Ultimately, we have devised and now have an important modelling framework 
for mining a n y  single l im i te d  time series data by constructing a set of both multiple 
data-consistent jacobian models and multiple data-consistent power-law (half-system) 
models (solutions). The same strategy, if applied on u n lim ite d  (abundant) data often 
(i.e. >  90% of the time) guarantees that th e  actual solution to the inverse problem is 
found, and if not found, the suggested solution is either close to that original solution 
or a n o th e r  consistent solution to the problem (i.e. another d if f e r e n t  b u t o r ig in a l  
s y s te m  through which the same data could have have been created).

Hypothesis 1 was confirmed in chapter 4 and has been tested and confirmed hun
dreds of times and may easily form a new reverse engineering theory for solving inverse 
problems.

7.1.2 H ypothesis 2
We define a robust inference method as an effective method that always successfully 
identifies or infer a system from which the (perturbed) data input could be generated 
even if the entire set or subsets of the data were changed. To say that the proposed 
inference method is robust and applicable to a wide range of limited data, we mean 
that the proposed method is effective, can be applied on any time series data (i.e. 
data insensitive), requires only minimum number (i.e. 3) of time points (i.e. 3) to 
infer a workable system capable of explaining the data (data consistent), and able to 
identify any true, unique, or optimal solution. However, this robustness is ascertained
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to produce exact reconstruction of network only under some certain unrestricted 
conditions (exact inference): that the number of unique time points is at least equal 
to the number of dependent variables (system measurables); and the supplied time 
series data are recorded at regular time intervals. As demonstrated in chapter 4 
the inference method developed is data insensitive, data consistent and capable of 
inferring the true (actual) system from which the time series data were generated. 
It is this robust feature that distinguishes out inference method from many other 
inference strategies. In addition, even in extreme underdetermined conditions (i.e. 
where the number of timepoints is between 3 and a number less than total number of 
measurables) the algorithms are resilient, sophisticated, still able to infer a solution 
that is most consistent with the limited data. Hypothesis 2 was confirmed by the 
results generated in chapter 4, 5, and 6. Hence we may regard this inference method 
as a generalised reverse engineering theory for solving inverse problems.

7.1.3 H ypothesis 3
To test our inference algorithms on real biological data, we applied it to time series 
(proteomic) data of DNA-damage response (DDR) signal transduction pathway. As 
demonstrated in chapter 5, the method when previously applied on data engaged a 
topological modelling of DDR and facilitated a data-rich interpolation (repopulation 
or refill) of the original data, without which no data-rich graph of the dynamics of 
DDR could be plotted under limited data availability. From those plotted graphs 
oscillatory patterns were deciphered as important distinguishing features inherent in 
the dynamics of DDR at 0.4/dVI Doxorubicin (Dox) treatment with and without ATM 
kinase inhibition. To further elucidate the mechanism behind such attribution of crit
ically important signalling alterations, extensive analysis of DDR data at 0.4/zM Dox 
was identified as means of differentiating between the two sets of treatments, i.e. 
treatments 0.1//M Dox vs. 0.4/xM Dox. Such computationally determined inference 
and interpretation is important to channel the course of further experimental testing 
or better inform experimental design to verify signal to response relationship, e.g. 
information about the requirement to acquire and recompare DDR data between 0-8
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and 8-24hr time points of treatments, the inference of the implied switch of E2F1 and 
chk2 influences on ATR from negative in 0-8hr to positive in 8-24hr. Hypothesis 3 
was evidenced in chapter 5 informing experimental design and interpretation, suggest
ing how further insights may be gained from regenerated computationally developed 
topological map of critically important subsets of marked data.

7.1.4 H ypothesis 4
To test the inference methods on another biological system, we applied it on time 
series (proteomic) data simulated from biologically plausible process-based model of 
RTK/PI3K/AKT signalling pathways. Again as demonstrated in chapter 6, the ap
plication of the inference algorithm extends to any time series data of dynamical sys
tems, where those systems can be identified through network inference. In that case 
study we were especially interested in the impact of cancer drug intervention strate
gies on the (human) cell signalling network using pseudo-real experimental data, i.e. 
data generated from well-tested process-based model of real biological systems which 
described the PI3K/AKT signalling network and considered the effects of different 
perturbations on the network response to growth receptor inhibition. By perturbing 
the system with various mutations, distinct regimes of functioning were observed in 
the network. The result of the modelling confirmed changes in cell signalling dynam
ics, e.g. causation of sensitivity to drug intervention, effects of inhibition of RTK 
signal and how it affected output signals, drug resistance mechanisms, and transition 
or switch mechanisms between therapeutic sensitivity and therapeutic resistance. The 
results of time series data analyses of the normalised data were displayed (see figures 
D-5, D-6, and D-7). We searched for patterns in those results, summarised some of 
the key features inferred from the topological maps, and presented the extracted fea
tures into a table (see figure 6.1 for summarised description). The features presented 
in figure 6.1 are extracted purely from the in-silico determined heatmaps presented 
in chapter 6 and topological maps appended in the appendix. Ultimately a table of 
summarised explanation about those results are presented in figure 6.1 as another 
justifiable proof of hypothesis 4.
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7.2 Concluding remarks
Modern biology is concerned with the understanding of the structures of biological 
systems both at the systemic and molecular levels. In gaining this understanding the 
key natural phenomena involved in biological growth, evolution and processes must 
be understood. This has always been a challenging process depending on the level 
of limitation imposed on the data capture mechanism or inference method. Notwith
standing, most of the basic functions of biological components and mechanisms of 
their fundamental processes, which are involved at the genetic, cellular, and organic 
level, together with both favourable and unfavourable conditions that affect or deter
mine their overall responses and behaviours are now being studied and understood at 
a scale more than ever imagined before. However, the strategic method for studying 
cancer biological systems requires more than just an hybridization of the best conven
tional reductionist approach or most effective holistic approach. Whichever approach 
that is being used must take cognisance of essential fundamental needs such as instant 
system identification requirements, fast model construction, data consistency, opti
mal utilisation of limited data, accurate forecasting, and new knowledge discovery 
(Bansal M. 2007, Gennemark P. 2009, Shovman M. 2010, Idowu M.A. 20116, Id- 
owu M.A. 2011a, Idowu M.A. 2 0 12 , Bown J. 2012, Idowu M.A. 2013).

In this thesis, the requirement to capture and model system dynamics before in
ferring topological features is first recognised (Albert R. 2001). The inference method 
that has been developed adopts a generic approach to dynamic modelling in such a 
way that a n y  time series data of complex system (e.g. biological systems and beyond) 
can be modelled with seconds or a minute. We identified the need to provide an infer
ence system that is able to support both systemic level modelling and understanding 
(Torres N.V. 2003) and dynamic modelling of subsystems based on availability of 
experimental time series measurements. Our dynamic modelling strategy targets 
the need to provide techniques that can support structural and dynamic analyses 
(Andrea Sackmann & Koch 2006). Incorporated into our modelling framework is 
a visualisation pipeline for generating in  s il ic o  topological map or network diagram
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of a constructed model in 2D using Graphviz tool. In building a model of artifitial 
networks we first used assessment tests to develop, select, refine and optimise our 
inference methods based on qualitative and quantitative analyses of results gener
ated by those methods. The condition to avoid using any a p r i o r i  information about 
the original networks of interactions of the target systems was identified and satisfied 
throughout the simulation experiments and all case studies. Not only that, we ensured 
that none of the methods we have developed uses an iterative procedure to estimate 
parameters (Kitayama T. 2006). Our inference algorithm is able to construct both 
the jacobian or power-law based model that is consistent with the given time series 
data (Goel G. 2008) using the least number of ever parameters possible. To satisfy 
the requirement to optimally utilise limited data as much as possible, the strategy we 
have used is able to construct a workable dynamic model from subsets of large quan
tities of time series data or limited data, including those with a minimun of three (3) 
time points. The reverse engineering solution we have provided is matrix-based and 
uses a deterministic modelling approach. Hence we are able to provide matrix-based 
analytical methods and recast techniques (Shovman M. 2010, Idowu M.A. 20116, Id- 
owu M.A. 2011a, Idowu M.A. 2 0 12 , Idowu M.A. 2013) for transforming to and from 
one model type (e.g. jacobian model) to another (e.g. power-law model). Ultimately 
we have provided an inference method for solving inverse problems based on time 
series data. Our method does not require high computing power to work because it is 
based strong mathematical analysis which makes it highly convenient and desirable 
to use.

In summary, although most of the initial development and assessment tests were 
based on computational studies, at this maturing phase nearly all the fundamental 
results (after eliminating all heuristic approaches and trivial solutions) are fundamen
tally based on theoretical and mathematical analyses. The computational aspects of 
the approach have now been trivialised by the powerful mathematical analyses that 
have been founded on basic matrix operations. Hence the algorithm runs in seconds.

167



7.3 Future work and considerations
A method for reverse engineering limited and unlimited time series data can be useful 
for a number of reasons. The following progress and limitations are worthy of note.

1 . It is widely known that the solution set of a system of ordinary differential 
equations can be represented by any combination of exponential functions of 
eigenvalues and their eigenvectors, I introduced and demonstrated its applica
tion to data discretisation using matrix-based technique (Idowu M.A. 2011a). 
The reverse engineering technique introduced in (Idowu M.A. 2011a) may fur
ther be developed into a sophisticated quantisation algorithm (quantiser) in 
such a way that large quantities of time series data may be q u a n tiz e d  into a 
simple model that represents those data to save space.

2 . I introduced a new approximation technique for calculating the logarithmic 
inverse of a matrix for the first time in (Idowu M.A. 2011a) using a scaling 
factor fi. What is the best way to determine the optimal range for /a. 3 4 5

3. Are there better ways to improved the layout of the in  in s i l ic o  topological maps 
presented in chapters 5 and 6?

4 . I developed and presented a new method for constructing and decomposing 
square matrices (see appendix G (Idowu M.A. 2012) ) which is useful for creat
ing the non defective transformation matrices that were used in data discretisa
tion and benchmark tests described in chapter 4. Currently the decomposition 
algorithm is being considered for decompartmentalisation of “big” models into 
smaller decompartmentalised model subunits. What is the best compatmental- 
isation theory available for this?

5 . I demonstrated that the matrix factorisation algorithm presented in appendic 
(Idowu M.A. 2011a) is fundamentally well-connected to the Cholesky decompo
sition if applied on symmetric matrices. I also demonstrated that it is related to 
the LU decomposition method via a diagonal matrix multiplier. Through the
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method a new direct relation between Cholesky decomposition and LU factori
sation is demonstrated for the first time in (Idowu M.A. 2011a). The original 
purpose for creating this matrix factorisation technique is: a) to provide support 
to find the various associations between the predetermined partial derivatives of 
a jacobian model and other unknown partial derivatives within the same model 
and b) to promote and report parametric reverse engineering. A theoretical 
foundation for parametric reverse engineering has been laid in the form of ma
trix factorisation based on their implied minors. However, this still requires 
some groundbreaking research to take root.

Apart from the above-mentioned considerations, there are more immediate issues 
to consider. The following are pressing challenges in this thesis: considerations of 
ill-posed (bad data) inverse problems; need to improve current technique to accom
modate data with irregular time intervals; determination of factors influencing non 
identifiability of a unique solution under surplus data; challenges posed due to linear 
dependency in time series data; recasting a jacobian model to process-based model 
with Michaelis-Menten formalism; design of web based user interface for automated 
reverse engineering; development of standalone user interface for 2D/3D visualisation 
of topological maps and state transition results; application of method to geneomic 
data, proteomic data, tissue data, patient data; application of method to non biolog
ical system modelling.

The inference algorithms we have developed may be used to increase current un
derstanding of biological systems at system levels through application on genomic, 
proteomic, tissue-level and other personalised data of individual patients. Since the 
time-scales associated with most of these multi-scale and multi-process systems can 
drastically differ from one another, a time-scale insensitive inference approach is re
quired for processing their data based on multiple temporal scales. Such is our in
ference method that it can process multi-scales and is applicable to a wide range 
of time series data dictated by highly complicated factors, conditions, and environ
ments, e.g. many snapshots of time-based responses driven at different scales and 
influenced by spatial factors. The solutions provided to these inference challenges
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may be very useful and complementary to process-based modelling approaches, e.g. 
they may provide relevant and useful meta view on how to constrain process-based 
modelling of multi scale systems. It may be possible to incorporate the inferential 
power and capability of the novel data-driven modelling strategy into a process-based 
modelling framework of another’s gearing the integrated framework towards instant 
inference of data and promoting system level modelling and understanding. Imagine 
a combined system-wide mapping content based on topological maps of network of 
interactions inferred from genomic, proteomic, and tissue-level time series data all 
providing the much required information about target cellular systems. The impact 
that such innovation could make would be huge in furthering scientific wisdom and 
contemporary understanding of biological sciences.
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Figure A-l: The initial proposed system identification (inference) framework.

Figure A-2: Evaluation of optimum results (100 networks).
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Figure A-3: Evaluation of optimum results (50 networks).

Figure A-4: Assessment and comparison of optimal system identification methods
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Figure A-5: Assessment and comparison of optimal system identification methods

# Method nLinks
2 ml 42
3 m2 34
4 m3 49
5 m4 26
6 mS 28
7 m6 28
8 m7 26
9 m8 26

10 m9 28
11 ml O 32
12 ml 1 49
13 ml 2 70
14 ml 3 25
15 ml 4 34
16 ml 5 58
17 A 20
18 a14 21
19 a13 21

nMis...
O .012801 
0.030061 

0.0096835 
0.045758 
0.0491 62 
0.1 4704 

0.046202 
0.1 1 046 
0.09873 

0.0801 89 
0.043671 
0.01 5578 
0.1 2645 

0.088995 
0.0046044 

0.30797 
0 .28035 
0.25883

nine... 
0.35391 
0.25762 
0.46263 

0.034494 
0.111 63 
0.19802 

0.033494 
0.092916 
0.1 6443 
0.24242 
0.511 31 
0.64092 

0.069064 
0.30259 
0.53933 

0 .0043333 
0.00611 9 
0.013358

Norm 
0.38828 

0.273 
0.51 55 

0.057306 
0.1 2459 
0.24791 

0.057067 
0.1 4435 
0.1 9303 
0.26206 
0.56347 
0.7761 

0.1 4443 
0.32651 
0.62836 
0.31 29 

0.28495 
0.2633

_  0 361 9
0.33605
0.39948
1.29205

42 T13 22
43 T12 24
44 T1 1 26
45 T1 O 27
46

C47 Omin

0.1 2405 
0.054486 
0 .0491 32

28 0.045357
28 C 0 046487-7-

0.25883
0.050351
0.053803

0.015907 
0.0361 41 
0.060646

0.013358
0.92007
0.93254

0.24708 
0.1 9354 
0.1303 

0.081 748 
0.094741

0.2633 
0.921 55 
0.9341 3

Figure A-6: Optimum result selection: “best overestimates” and “best underestimates’
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Experimental time senes data (Fold induction • O.IjiM  D O X) Experimental time series data (Fold induction • 0.4(aM DQX)
. r n ' o . . . . [T t y • ,n-.r IpFI pH ay i-.™ U p _ _ _ _ . pOhk . nH. A*i  pATM— rp m tt— — r " T

pATM -» 41.00638390.021928 0 0 023432 0 0.007436?0.0100390 008382 pATM -» 0.0063839 0 0.0025298 0 0.0011134 0 0 0.001931

p A T R -» 0.00559850.025935 0 0.031987 0 0.00782030.0114010.010265 p A T R -x 0.0116990.0259350.0028373 0 0.0032131•0.0262180 00408060.001325

pP53"* ■ -1.4586 0.12558 0.0100720.017642 0.76353 0.31173 0.5777 pP5 3 ^ ■ 0 0.12558 0 0.20594 0.17037 0.47364 0.29619

pChkj -> -0.00371110.029525 0 0 040635 0 0.00857180.0145130.011679 p C h k j-x 0.0085523 0 0.0068820.040635 0 0270430.019041 0.0231520.010122

pChk. -» 0.98M3 •1035 0.01205 011735 0.15298 0.53081 0 22 83 8 0.41967 pChk, -» 0 0 1 3 5 2 8 0 0.027299 0 0.15298 019142 0.28039 0.076008

pBRCA 0.0174080.049562 0 0047529 0 0017431 0.017971 0.019272 pBRCA 0.0053829 0 0 0 0.00966540.0174310.0169920.0039567

p E / 1 - » 0.0106810.094843 0 0.13173 0 0.0251280042832 0.03672 p E j F I - * 0.0084069 0 0.0064941 0 0.0226 0.00982780.0428320.011693

p H jA X -> 0.0121770.0055705 0 0.029756 0 0 0.0109890.0024956 p H jA X -^ 0.022069 0 -0 0356606 0 0.00806770.030188 0.01033 0.0024956

Expenmental time series data (F old induction-0.1|iMDOX.+KU)
Li.m 1 _nrv>i i n P P i _ _ 1. pH AY Experimental time series data (Fold induction-0.4|iM OOX+KU)

■Uf-hl____l-nrv'. .l.nF Fi___i  PH ,AXtpAFM — ' r'"-'2 ' r 1 • r-j ■ 1 flnllVI ^30

pATM -4 0.0063839 0 0.0)40328 0 0.0169460.0185530.0154610.0029364 pATW -> -0.03638390.00109720.00232680.00187840.0025482 0 •0.0018281 0

p A TR -» 0.00135050.0259350.00110770.002266-0.(1114289 0 0.023573 0 pATT?-^ 0.0579250.0259350.0451790.041613 0.01828 0 0.023885 0

pfV 0.10018 0 0.12558 0 0.0824530018434 0.20878 0.036912 pP5 3 ^ 0.36816 0.44362 0.12558 0.84685 0.16997 0 0.092574 0

pChk2 -4 0.00240830.0)232870.030381 0.0406350.011 IK 0.01649! 0.0265490.023573 pC'hkj -» 0.0312850.0093310.00788590.0406350.0073899 0 0.007823 0
pChk( -4 0.084618 0 0.14516 0 0.15298 0.089001 0.21974 0.02202 p Ch ^  -» ■ 0.19931 0.19341 -1.1183 0.15298 0 0.12108 0

pBRCA 0.010613 0 0.022754 0 0.0248720.01743! 0.031503 0 pB RC A  - > 0.0232830.00269450.00220740.0140910.00272230.0174310.0071905 0

pEjFU 0.016285 0 0.030277 0 0.0216920.00214360 0428320.013363 p E jF t  -» 0.0592130.0347110.026419 0.11919 0.030359 0 0.042832 0
pHjAX-4 0.049756 0 0.18422 0 0.31721■ 0.270750.0024956 p H / X n . 00037990.0054085000186170.0165450.0048936 0 0 00845940.0024955

Figure B-l: The equivalent derived half-system representations of the four systems.
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A ppendix C 

Tables

Table C.l: S-, normalised data, 8 minutes. Inferred matrix of signalling network
H E R 2-2C 4 H ER3-H RG HER-2 HER-3 pHER_23 PI3K pA K T pR A F pM EK pER K

H E R 2-2C 4 0.11684 0 0 0 0 0 0 0 0 0
H ER3-H RG 0 0.11684 0.59453 -0.39175 -0.081213 0 0.00097477 0.00031813 0.0012719 -0.00054211

H ER-2 0 0 -0.062939 -3.0651 0.01887 0 0.010622 -0.00018926 0.00011554 0.005046
H ER-3 0 0 0.42817 -5.9601 -0 .076933 0 0.0033227 0 0.0016198 0.00075748

pHER_23 0 0 1.5552 -0 .58774 -0.35961 0 -0.041841 -0.0017727 0.0020644 0.0098105
PI3K 0 0 0.49609 -0.46052 0.58204 0.11684 0.09777 0.0013574 0.0048934 0.010772

pA K T 0 0 -5.5389 9.8927 4.0409 0 -2.349 0.012564 0.094897 -0.43869
pR A F 0 0 -42.422 208.17 0.344 0 29.094 -0 .98067 -13.603 -6 .776
pM EK 0 0 -35.55 63.788 20.46 0 -10.007 0.2345 -0 .25296 -1.5961
pER K 0 0 9.4195 -19.254 -5 .9175 0 4.1296 -0 .050686 -0.095101 -0 .37466

S-, norm alised d a ta , 8 m inutes.

Table C.2 : St , normalised data, 8 minutes . Inferred matrix of signalling network
H E R 2.2C 4 HER3-H RG HER_2 HER-3 pHER_23 PI3K pA K T pR A F pM EK pER K

H E R 2.2C 4 -1.2295 0.017084 9.6122 0 0 0 0.02116 -0 .006245 -0.0032535 -0.0097418
HER3-H RG -0.91239 0.043299 12.117 0 0 0 -0 .072257 0.0057339 0.020718 0.0056158

H E R -2 0.65078 0.0010841 -11.218 0 0 0 0.0016816 -0.00047422 -0.00026663 -0.00073892
H ER-3 0.0073602 0.061454 0.057876 0.11684 0 0 -0.0015009 0 0.00026629 -0 .00030834

pH ER -23 -0.13342 0.25 -0 .28026 0 0.11684 0 0.09201 -0 .091416 -0.029932 -0.12443
PI3K -0.09492 0.19824 -0.23749 0 0 0.11684 0.18758 -0 .08306 -0.030435 -0 .12294

pA K T -0.1613 0.1617 -0 .25164 0 0 0 0.032715 -0.087143 -0.041159 -0.15819
pR A F 3.0181 -1.4342 -3 .8382 0 0 0 6.3668 -1.572 -2 .0997 -1 .2604
pM EK -1.4037 0.52914 4.412 0 0 0 -1.8089 1.6233 0.28323 0.50849
pER K 0.35434 -0.090932 -2.028 0 0 0 0.21893 -0.28452 0.4867 -0 .45816

S + , norm alised d a ta , 8 m inutes.

Table C.3: R-, normalised data, 8 minutes . Inferred matrix of signalling network
H E R 2-2C 4 HER3-H RG H E R -2 HER-3 pH ER -23 PI3K pA K T pR A F pM EK pER K

H ER2-2C 4 0.11684 0 0 0 0 0 0 0 0 0
HER3-H RG 0 0.11684 0.27298 0 0.22637 -0.095056 -0.13611 0.00063424 0.029688 -0.024728

H ER-2 0 0 -1.6894 0 1.4204 -0 .43614 -0 .55337 0.0022856 0.10298 -0.10321
H ER-3 0 0 0.020918 0.11684 0.01736 -0.0074169 -0.01047 0 0.00228 -0.0019061

pH ER -23 0 0 0.86538 0 0.40916 -0.32088 -0.33091 -0.00162 0.067504 -0 .040777
PI3K 0 0 0.80422 0 0.57771 -0.74491 0.037114 -0.0046761 -0.011762 -0.06008

pA K T 0 0 0.54513 0 7.0681 -8.9562 1.4628 0.069272 -0.43652 0.70915
pR A F 0 0 26.384 0 -143 .54 144.16 17.371 -1 .423 -15.368 -9 .7362
pM EK 0 0 4.8287 0 14.877 -28.499 11.666 0.25792 -2.4907 3.1353
pER K 0 0 -1.4209 0 -9.5101 14.307 -2 .93 -0 .069154 0.49032 -1.9655

R-, norm alised d a ta , 8 m inutes.

177



Table C
HER2_2C4 HER3-HRG HER-2 HER_3 pH ER -23 PI3K pA K T pR A F pM EK pER K

H E R 2 2 C 4 -1.3254 0.022053 11.007 0 0 0 0.0015913 0 0.00073126 -0 .0053267
H E R 3 H R G -0.95367 0.0185 13.652 0 0 0 0.0029608 0.00010331 0.0020439 -0 .0093586

H E R -2 0.74159 0.0015144 -12.708 0 0 0 0.00011544 0 0 -0 .00039812
H E R -3 0.0067761 0.061053 0.059707 0.11684 0 0 0 -0.00020418 -0.00012351 -0.00080398

pH E R -23 -0.20882 0.27782 -0.032249 0 0.11684 0 -0.0045136 -0 .055314 -0.015317 -0.11231
P I3K -0.20031 0.24074 0.036965 0 0 0.11684 0.012012 -0.022258 0.0032215 -0.08591

pA K T -1.1168 0.56228 1.2553 0 0 0 -0.22748 -1.4503 0.7908 -1 .4654
pR A F 0.43851 -0.17287 -0.94591 0 0 0 0.87622 0.55676 -1.3518 0.2426
pM EK -0.048453 -0.0016989 0.49929 0 0 0 0.063901 0.97033 -0 .10644 -0 .017036
pER K 0.008296 0.0089932 -0.19792 0 0 0 -0.067637 -0 .15933 0.49685 -0.26601

R + , norm alised d a ta , 8 m inutes.

Table C.5: S-, normalised data, 10 minutes. Inferred matrix of signalling network
H E R 2-2C 4 HER3-H RG HER-2 H E R -3 pH ER -23 PI3K pA K T pR A F pM EK pER K

H E R 2-2C 4 0.24967 0 0 0 0 0 0 0 0 0
H ER3-H R G 0 0.24967 0.38431 -0.24588 0.052338 0 0.0018854 0.00011924 0.0018809 0.00036178

H E R  2 0 0 -0.11546 -2.591 0.034981 0 0.0069652 0 -0.0011059 0.0042589
H E R -3 0 0 0.36922 -5.0968 -0 .06864 0 0.0042882 0 0.0013675 0.0011904

pH E R -23 0 0 1.4094 -0 .24358 -0.29857 0 -0.060272 -0.0012618 0.00058773 0.003031
P I3K 0 0 0.38282 -0.3196 0.44505 0.24967 0.036434 0.00091732 0.0050355 0.0013844

pA K T 0 0 -2.3452 4.7599 2.2769 0 -1.3967 -0 .0061373 0.0051843 -0.32059
pR A F 0 0 -149 .87 495.77 50.06 0 -2.4705 -1 .0378 -1 .5871 -11 .204
pM EK 0 0 3.1626 -10.005 0.96102 0 -1.9992 0.0015499 0.21988 0.074145
pER K 0 0 -5.08 12.096 1.0796 0 1.1188 0.017102 0.022761 -1.0051

S-, norm alised d a ta , 10 m inutes.

Table C.6: S+, normalised data, 10 minutes.. Inferred matrix of signalling network
H E R 2-2C 4 H E R3.H R G HER_2 H E R -3 pH ER -23 PI3K pA K T pR A F pM EK pER K

H E R 2-2C 4 -1.0372 0.006509 6.8708 0 0 0 0.055891 -0 .011689 -0.011222 -0.017232
HER3JHRG -0.50664 -0.026718 8.3427 0 0 0 0.098522 0.0089149 -0.011411 -0.020401

H E R .2 0.46994 0.00031782 -8.2495 0 0 0 0.0039563 -0.00077401 -0.00078002 -0.0011968
H E R  3 -0.0035489 0.043485 0.04582 0.24967 0 0 0.0039627 -0.00065255 -0.0010172 -0 .001334

pH E R  23 0.2353 0.039108 -0.46281 0 0.24967 0 0.52623 -0.1508 -0 .12733 -0 .19277
P I3K 0.20798 0.025022 -0.38047 0 0 i0.24967 0.52774 -0 .13537 -0.11357 -0.17898

pA K T 0.054377 0.065022 -0.39066 0 0 0 0.36974 -0 .15514 -0.11912 -0 .23839
pR A F 0.69269 -0.38709 -1.6845 0 0 0 2.8694 -1 .0822 -1.238 -0 .57596
pM EK 1.7146 -0.62604 -2.8948 0 0 0 1.4007 1.466 -0 .42135 -0 .037398
pER K -0.3058 0.060954 1.5217 0 0 0 -0.020473 -0.40081 0.51121 -0.46889

S + , norm alised d a ta , 10 m inutes.

Table C.7: R-, normalised data, 10 minutes . Inferred matrix of signalling network
H E R2-2C 4 HER3-HRG HER_2 H E R -3 pH ER -23 PI3K pA K T pR A F pM EK pER K

H E R 2.2C 4 0.24967 0 0 0 0 0 0 0 0 0
H ER3-H R G 0 0.24967 0.20108 0 0.18612 -0.18277 -0.012746 0.0015931 0.005048 0.00092903

H E R -2 0 0 -0.95948 0 0.92885 -0.77772 0.060018 0.0066261 0.006915 0.024727
H E R .3 0 0 0.015798 0.24967 0.014604 -0.014455 -0.0010045 0.00012567 0.00039571 0

pH E R  23 0 0 0.81607 0 0.7189 -0 .84426 -0.096303 0.0040128 0.0049581 0.010806
P I3K 0 0 0.35545 0 1.0319 -0.86811 -0.14209 -0.0037016 -0.0082171 -0.1033

p A K T 0 0 -0.78953 0 8.3974 -7.5046 -1 .0487 0.0573 0.004631 0.35067
pR A F 0 0 -88.663 0 25.529 78.782 -59.215 -1 .7387 -0 .49646 -22.191
pM EK 0 0 0.47033 0 9.9987 -12.704 1.618 0.04728 0.12069 0.83625
pER K 0 0 0.31528 0 -8.638 10.213 -0.33239 -0.033886 0.05096 -1.3665

R-, norm alised data , 10 m inutes.

Table C.8:: R+, normalised data, 10 minutes. Inferred matrix of signalling network
H E R2-2C 4 HER3-HRG HER-2 H E R -3 pH ER -23 PI3K pA K T pR A F pM EK pER K

H E R 2.2C 4 -1.0895 0.043369 6.0822 0 0 0 -0.0070478 -0.030283 -0 .0037085 -0 .015069
HER3-H R G -0.65659 0.043343 7.5627 0 0 0 -0.0067231 -0.036222 -0 .0041668 -0.021095

H E R -2 0.36912 0.0032041 -6.7449 0 0 0 -0.00058675 -0.0024229 -0.00037094 -0.0011492
H E R  3 -0.005519 0.04475 0.040937 0.24967 0 0 0.00010333 -0.00028207 -0.00020313 -0.00072032

pH ER  23 -0 .66024 0.31486 2.4425 0 0.24967 0 -0.035723 -0.21365 -0 .05056 -0.14382
P I3K -0.70072 0.30171 2.5959 0 0 0.24967 -0.032365 -0.2068 -0 .037721 -0.12922

pA K T 17.979 -4.014 -70.677 0 0 0 1.1942 6.1149 1.9194 1.4397
pR A F -9.747 2.5313 33.613 0 0 0 -0.81261 -3.5299 -1 .2544 -0 .8401
pM EK 3.8073 -0.77589 -20.993 0 0 0 0.44582 2.036 0.0031599 0.30951
pER K -0.23574 -0.056398 4.9697 0 0 0 0.047567 -0.018877 0.39193 -0 .25348

R + , norm alised d a ta , 10 m inutes.
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Table C.9: S-, normalised data, 12 minutes. Inferred matrix of signalling network
H ER2-2C 4 HER3-H R G H E R .2 HER-3 pH E R .23 PI3K pA K T pR A F pM EK pER K

H E R 2-2C 4 0.31441 0 0 0 0 0 0 0 0 0
H ER3-H RG 0 0.31441 0.11183 0 -0.056892 0.14268 -0.065248 0.00019541 0.00034356 -0.01411

H E R .2 0 0 -1.6096 0 -0.061086 1.1873 -0.58651 0.0015693 -0.005936 -0.1269
HER-3 0 0 0.00895 0.31441 -0.0046785 0.011524 -0.0052733 0 0 -0 .0011407

pH ER -23 0 0 0.84127 0 -0.19078 0.31563 -0.30162 0.0014015 0.0028479 -0 .038932
PI3K 0 0 1.6826 0 1.1167 -2.2399 0.64571 -0.0039602 0.0050867 0.046861

pA K T 0 0 -0.61379 0 1.5444 0.22901 -1.3792 -0.006219 -0.011409 -0.22851
pR A F 0 0 112.27 0 115.53 -265 .26 104.53 -0.713 0.87768 15.984
pM EK 0 0 -13 .416 0 -9 .4728 29.6 -14.585 0.0058852 -0.067892 -2.103
pERK 0 0 9.15 0 2.1511 -13.226 8.3687 -0.014975 0.065766 0.33066

S-, norm alised data , 12 m inutes.

Table C.10 : ST, normalised data, 12  minutes. Inferred matrix of signalling network
H E R 2.2C 4 H ER3-H RG H E R .2 HER_3 pH ER -23 PI3K pA K T pR A F pM EK pER K

H E R 2.2C 4 -1.0402 0.0066441 6.6138 0 0.049494 0 0 0.0012252 0.0020391 0.0011176
HER3-H R G -0.59318 -0.0030487 8.1431 0 0.068405 0 0 -0.00038255 0.0039523 -0.00065358

HER-2 0.44518 0.00037751 -7.8716 0 0.0034564 0 0 0 0.0001381 0
H E R .3 0.0029554 0.033567 0.028731 0.31441 0.0025998 0 0 0.00017058 0 0

pH ER -23 0.24617 0.0022193 0.16261 0 -0.089915 0 0 -0.00013071 -0.0014056 -0 .0012304
PI3K 0.050891 -0.0026779 0.049802 0 0.39488 0.31441 0 0.0066192 0.0096068 0.0063906

pA K T -0.010031 0.031483 -1.211 0 0.43217 0 0.31441 0.090283 0.10367 0.097757
pR A F -5.5887 0.31886 25.196 0 3.2785 0 0 -1.6683 -1 .0834 0.029628
pM EK 3.5774 -0.23042 -29 .677 0 -0.4632 0 0 1.5315 0.12728 0.15019
pER K -4.8775 0.5416 38.649 0 0.13408 0 0 -1.0332 0.2202 -0 .69077

S + , norm alised d a ta , 12 m inutes.

Table C .ll: R-, normalised data, 12  minutes. Inferred matrix of signalling network
H E R 2.2C 4 HER3-H RG H E R .2 HER_3 pH ER -23 PI3K pA K T pR A F pM EK pER K

H E R 2-2C 4 0.31441 0 0 0 0 0 0 0 0 0
H ER3-H RG 0 -1.3222 0.80099 0 -0.13031 0 0.02025 0.00042818 0.0031043 0.0093713

H ER-2 0 1.1461 -1.451 0 0.28246 0 -0.0032994 -0.00021265 -0.0048591 0.0011307
HER_3 0 0.012454 0.0088027 0.31441 -0.00097074 0 0.00029568 0 0 0.00013035

pH E R .23 0 -0.014004 1.1884 0 -0.10566 0 -0.16392 -0.0022988 0.0013032 -0 .030915
PI3K 0 0.099858 0.096067 0 0.41275 0.31441 0.0048365 0.00020501 -0.0028906 -0.0069281

pA K T 0 -2.5674 5.819 0 1.376 0 -2 .5548 -0 .0018314 -0.01517 -0 .074524
pR A F 0 -59.879 -64.728 0 42.748 0 -8 .9996 -1 .1206 0.16712 -12.804
pM EK 0 11.305 1.7979 0 -0.081733 0 -1.7991 -0 .022571 -0.049175 0.55839
pER K 0 6.1681 -10.077 0 -0 .22174 0 2.8917 0.035385 0.030676 -0.63921

R-, norm alised data , 12 m inutes.

Table C.12: R+, normalised data, 12  minutes. Inferred matrix of signalling network
H ER2-2C 4 HER3-H RG HER-2 H E R .3 pH ER -23 PI3K pA K T pR A F pM EK pER K

H E R 2-2C 4 0.31441 0.088701 0.34918 0 -0.053727 0 -0.034979 -0.093614 0.00098489 -0 .036844
H ER3-H RG 0 -0.062911 2.5155 0 0.05362 0 0.016633 0.064946 0.035672 0.021642

H ER-2 0 0.016103 -2.6376 0 0.045185 0 -0.00066436 -0.018663 -0.025462 -0.0035541
H ER-3 0 0.031875 0.031016 0.31441 0.0047198 0 0.00077625 0.0019234 -0.00030623 0.00068279

pH ER -23 0 0.087272 0.40595 0 -0.1437 0 -0.032437 -0.092232 -0.0093118 -0 .037027
PI3K 0 0.020401 0.059304 0 0.37539 0.31441 -0.013192 -0.028131 0.017523 -0.0032556

pA K T 0 -0.52442 5.895 0 -0.21267 0 0.25191 2.6844 0.1648 0.23441
pR A F 0 -0.053684 -1.5973 0 1.6072 0 -0.11349 -0.86843 -0.49765 0 .20836
pM EK 0 -0.53052 1.0259 0 1.4848 0 0.39608 1.3497 -0 .63648 0.27901
pER K 0 0.15506 -0 .36967 0 -0.51986 0 -0.057329 -0.18689 0.52672 -0 .35778

R.+, norm alised data , 12 m inutes.
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3 49 mid 4 57 mid5 71 mid i-Bmin
HERj -* ^ 0.357 0.301 0.275 0.263 0.256 0 255 0 254

001: 00088 C 00738 0.00674 0 00644 0 00631

HER3HRG -* 0 0.246 0158 0.117 0 0967 0.0905 0 0867 0 0849

PHER03 -» 0 0 585 0.837 0 935 0.974

P!aK ^  0 0.403 0.752 0.907 0 969

pAKT -* 0 0 195 osa 0916 U-9W 0.995

her2:c4 -» 0 0 0 0 0 o 0 o

pRAF -» 0 00838 0.607 0.962 0 909 0.575 0.199 0 0566

pMEk-* 0 0 0231 •15 j] "1 0 981 0.97

pERK —» 0 0 0 0495 I 0.394 1 0.744 0 906 0973

4, 5 71 mid
HER.,-* 1 I 0 0264 0 00757 0 00489 0410333 0.U02G6 000233

007 0 0699 0 0704 0 0733

HER3HRG 0 0 966 0 946 0 946 0956 0 969 ■ ■
pHER^-* 0 0 167 0 239 0 264 0 267 0.259 0 248 0.235

PtjK -> o 0.141 0.207 0 24 0.255 0 250 0 254 0 246

pAKT-* 0 00503 0162 0 292 0 412 0 51 0.579 0.623

HFR22C4 -> 0 0 429 0.222 0.123 00762 0 0539 0 0431 0 0377

pRAF -» 0 000982 0.0738 0.177 0221 0 161 0 0884 0 0451

pMEK -» 0 0 00311 00503 0 211 0466 0 683 0.79 0 825

pERK-* 0 0 0.00145 0 0257 0 124 0.307 0.514 0 686

Investigating acquisition of drug resistance to 2C4 (R+) 
using 8-timepoini normalised data with tegular limeslep inieivals of I 1429 minutes

3 43 ..... 6 86 ram 1 8 min.
H E ",- J I 0 O 2 6 4 0 0136 0.00757 0 00333 000266 0 00233

0 0717 0.07 0.0699 0.0704 00713 0 0723 0.0733

HER3HRG-* 0 0966 0.946 0.946 0.956 0 969

pHEFtjg -» 0 0 166 0.239 0 264 0266 0.259 0240 0.235

PlgK-* 0 0 14 0205 0.238 0252 0 255 0 252 0 244

pAKT -* 0 0 0587 0212 0.406 0.602 0.83

HER22C4-* 0 0 429 0222 0 123 0 0762 0.0539 0.043, 0 0377

pRAF-* 0 nnu3 0(383 0187 0207 0.116 00408 0 0,47

pMEK -* 0 0 00311 0 0498 0204 0 429 0 595 0656 0 667

pERK-* 0 0 0.0C146 0 0253 0117 0278 0.451 0595

Figure D -l: Heat map representations of 4 different normalised d ata  sets generated from 
a biologically plausible process-based model of H ER2/3-PI3K -M A PK  signalling pathways 
with 8-timepoint readings recorded over a period of 8 minutes only.

her2-*
■Omni! 43 min 2 36mir,,

001 0 00523
A l t  fflif
0 00333 0 00256 000223 0 00206

HERj -* ■ 0 0711 0.C698 0 0702 0 0713 0.0725 00738 0 075

HER3HRG 0 0935 0 923 0.929 0.946 0 965 0933 ■
pH E R ^ 0 0 191 0255 0 267 0259 0 244 0 228 0213

py<-> 0 0.162 0.226 0252 0 257 0.252 0.24, 0220

pAKT -* 0 0 0744 0 226 0384 0 509 0 592 0.637 0664

HERJ2C4 -* 0 0362 0 163 0 0848 0 0539 0.0414 0.0361 0 0334

pRAF-* 0 0 0193 0126 0 221 0 161 0.0751 0.0319 00134

pMEK -* 0 00078 0.114 04 0 683 0803 0.823 0 817

pERK-* 0 0 0 00757 0 0892 0 303 0.553 0.741 0.851

using 8-timepoint i w
ante to C4 (R+) 

vats of 1 286 minutes

HERj -* ■ 00223 0.01 000523 0.00256 0.00223 0 00206

007,1 orHB 0 0702 00713 0 0725 10738 0 075

HER3HRG 0 0935 0.922 0.93 0 946 0.965 0.983

pHER  ̂-* 0 0.191 0 255 0.266 0.258 0 244 0 223 0.212

PljK -* 0 0 16 0 224 0249 0 255 0 249 0.239 0226

pAKT-* 0 009 0.307 0.553 0.829 0 998

HERj2C4 -* 0 0362 0.183 00948 0 0539 0 0414 0 0361 00334

pRAF-* 0 0 0221 0 138 0215 0116 0 0312 0.00941 000372

pMEK-* 0 0 143779 0.112 0.373 0.595 0 661 0665 0654

pERK-* 0 0 0 00757 0.0052 0 274 0 483 0 643 075

Figure D-2: Heat map representations of 4 different normalised d ata  sets generated from 
a biologically plausible process-based model of H ER2/3-PI3K -M A PK  signalling pathways 
with 8-timepoint readings recorded over a period of 10 minutes only.
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Figure D-3: Heat map representations of 4 different normalised d a ta  sets generated from 
a biologically plausible process-based model of H ER 2/3-PI3K -M A PK  signalling pathways 
with 8-tim epoint readings recorded over a period of 12 minutes only.

HER1________0

■ ■  ■ ■ Cell membranePI3K
M u t a t e d
P T E N

SlA K I
(pi o life rati on agent)
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■  ■  I I  L d

P T E N  
(tumour ^

(HRC-)0
!_ ^  *j|Fj |  °

I MAR K K

MAPKKK

Is resistance 
to 20-4 
treatment 
based on 
PTEN status?

N u c l e u s

It cel I is 
sensitive to 
20-4
treatment,
why?

Figure D-4: Using signal transduction network d a ta  to infer or predict signalling from 
enzyme-coupled cell-surface receptors to intracellular kinases: modelling a) drug resistance 
(L.H.S) and b) sensitivity to RTK inhibition (R.H.S) purely from data  generated from 
well-tested process-based models th a t switched between these two modes.
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HER22C4 HB43HRG HER2 HER3 PHER23 ^  PI3K PART pRAF pMEK pERK HER22C4 HBR3FRG TO TO pHER23 S+ PI3K pAKT pRAF pMEK pERK

HER22C4 1 HER22C4 HER22C4 -0.12791 0.0017773 06022014 60006497 0.00033848 ■ 0.0010135

rB?3H?G 0.19652
■

-065892 41.1366 0.0016396 060053509 0.0021393 000091183 HER3HRG HER3H5G -0075298 0.0035734
'

-0.0359633 0,00047321 0.0017098 0.00046346

TO 4)020534 ■1 0.0061564 0.0034655 00016463 TO TO 0.058012 -1 0.0001499

TO 0.071839 ■1 -0.012908 0.00055749 0.00027177 0.00012709 TO TO 6662994 0.52597 049534 1 ■ 0.012846 0.00077254 0.0022791 -0002639

pTO3
■

41.37792 4)23123 4)026904 -06011399 0.0013274 0.0063082 pTO3 pH£R23 -0.47606 0.89203 -1 0.4169 0.3283 6.32618 6.1068 6.44398

PflK 0.85233 -0.79122 0.20074 0.16793 0.0023321 0.0084073 0.018507 P13K Pf3K 6.39968 0.83473 -1 0.49198 0.78984 6.34974 -0,12815 6.51766

pAKT -0.5599 0.40847 4)23745 0.00127 0.0095926 4)644345 pAKT pAKT -0.641 0.64258 -1 0.13001 6.3463 6.16356 6.62864

pR.AF 4)20379 0.0016525 0.13976 •0.0047109 -0065346 4)63255 pRAF pRAF 0,47404 622526 6.60285
■

624691 6.32979 6.19796

pt€K 4)55731 0.32075 -0.15688 06036782 4)6039656 4)625022 m. pMEK 631816 0.11993
■

6.41 036793 0.064195 0.11525

pERK 0.48922 ■1 -0.30734 021448 -0.0026325 -0.0049393 4)61943 paw pERK 0.17472 -0.044838 0.10795 6.1403 0.23999 622592

TO2C4 HER3H5G TO TO pHER23 PI3K pAKT pRAF p l« paw HER22C4 HB53HRG TO TO PHER23 PCK pAKT pRAF pMCK pERK

D.
HER22C4 mm  HER2 MS pHER23 P13K pAKT pRAF p3ft

R+
herbc4 mm m m pms pck pAkt e»raf m  perk

HER22C4 1 HER22C4 HER22C4 -0.12041 0.0020035 ■ 0.00014457 ■ 0.00048394

TOHRG 0.42802 ■ 0.82925 -0.34822 6.49861 0.0023234 0.10876 6.090585 HHR3HRG HER3H5G 6669856 00013551 ■
0.00021688 0.00014971 0.00068551

TO -1 0.84077 -0 25816 632755 0.0013529 0060957 6661093 TO TO 0.058358 0.00011917 -1

TO 0.17903 1 0.14858 6663479 6.08961 0.0004196 0.019514 6616314 TO TO 6.057995 052254 0.51102 1 6.0017475 6.0010571 6.006881

pTO3
;

0.47281 6.3708 638239 6001872 0.078005 604712 pTO3 p r o s •0.75164 ■ -0.11608 0.42056 -0.016246 6.1991 6655133 6.40425

PI3K ■ 0.71835 -0.92625 0.046149 6.0058145 -0014625 6674706 PI3K PI3K 683206 ’ 0.15355 0.48534 0049896 6.092457 0613382 635686

pAKT o.cfioffie 0.78319 -1 0.16333 0.0077345 6048739 0.07918 pAKT pAKT 6.76211 0.3837 0.85663 6.15523 69897 0.53965 ■1

pRAF 0.18302 6.9957 ■ 0.1205 6609871 6.1 OK 6.067537 ffiAF pRAF 0.32439 6.12788 6.69974 0.64819 0.41187 -1 0.17948

p*K 0.16943 052202 -1 0.40935 OOM0501 6087396 0.11001 (*« pfiCK 6.049935 6.0017508 0.51456 0*5855 1 610*9 6.017557

pERK 6.099315 686472 ■ 620479 -00048336 0.034271 -013738 pBRK perk 0616697 0.0181 -039835 6.13613 6.32068 6,53539

1TO2C4 TO1R0 TO TO pTO3 PI3K pAKT pRAf |*« pERK HER22C4 T O tfG TO TO pHER23 PCK pAKT pRAF pMEK pERK

F ig u r e  D -5 : D e riv e d  h e a tm a p  o f s ig n a llin g  n e tw o rk  o f H E R  2 /3 - M A P K /P I 3 K  s ig n a ll in g
p a th w a y s  o b ta in e d  th ro u g h  n e tw o rk  in fe ren ce  m e th o d  a p p lie d  o n  n o rm a lis e d  d a t a  (w ith
o n ly  8 t im e  p o in ts ) .

PER3HRG

HER2

hER3

PHER23

PI3K

pAKT

pRAF

pita

pm

HER22C4

HER22C4

FER3HRG

HER2

TO
pHER23

R3K

pAKT

pRAF

pMEK

pfiW
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c.
HER22C4 HER3HR0 HER2 HER3 pHER23 PI3K pAKT pRAF pMEK pERK HER22C4 HER3H30 HEff 1ER3 pHER23 PI3K pAKT pR.AF pMEK pERK

HER22C4 1 FER22C4 HER22C4 -0.15096 0.00094734
’

0.0081.346 -0.0017013 -0.0018333 -0.002503

HER3HRG 0.64966
■

41.6398 41.13619 0.0049059 0.00031027 0.0048942 0 00094138 H933HRG EBR3ERG -0.(60729 -0.0032026
’

0.011809 0.0010686 -0.0013678 -0.0324454

HER2 4J.044S62 •1 0.013501 0.0026882 0.00042682 00016437 HER2 KER2 0.056966 -1 0.00047958 000014508

HERS 0.072442 -1 -0.013467 000034135 0.00026831 0.00023356 HER3 te a 4)014214 0.17417 0.18352 1 0.015872 -0.0026137 -0.0040742 -0.0053431

pHSBJ
■

-0.17283 -021184 -0.042764 0.00089527 0.00041701 0.0021506 ptfR23 pF£R23 0.44714 0.074317 -0.87948 0.47445

’
-0.28857 -024197 -0.36632

PI3K 0.86017 41.71812
■

056099 0.081365 0.0020612 0.011314 00031107 P13K PI3K 03941 0.047413 -0 72094 047309 -0.25651 -02152 -033914

pAKT 41.4927
■

0.47835 -029343 -0.001^94 0.(010892 -0067352 pAKT pAKT 0.13919 0.16644 -1 094645 -0.39712 •0.30492 -0.61022

pRAF -03023
■

0.10097 -0.0049832 -0.0020933 -00032013 -0.022599 pRAF pRAF 024141 -0.1349 -0.58706
■

-0.37715 -0.43145 -020072

pMEK 0.3161 •1 0.096054 -0.19982 0.00015491 0.021977 00074108 f*6( pMEK 0.5923 -021626 -1 0.48387 0.50643 -0.14555 -0.012919

pffiK 41.41997
■

0.089253 0.092493 0.0014139 0.0018817 -0083094 pffiK pffiK -020096 0.040057
■

-0.013454 •02634 0.33595 -030814

HER22C4 HER3HRG HER2 HER3 pHER23 PI3K pAKT pRAF pkffi pB?K HK22C4 HBGffiG ffiQ F«3 pHER23 PI3K pAKT pRAF pMEK pERK

HER22C4 FH3HRG HER2 H013
D

pHER23 ' PI3K pAKT pRAF pM« pERK HER22C4 FH53FRG HBR2 FOB
R+

p(£R23 PCK pAKT pRAF pMEK pERK

HER22C4 1 FER22C4 HR22C4 -0.17913 0.0071305 ■ -0.0011588 -0.004979 0.00060973 -0.0024776

HTOHRG 1 0.80538 0.74546 -0.73205 0.051051 0.0063808 0.020219 0.003721 HTOtfiG m m -0.08682 0.0057312 ■ 0 00088898 -0.0047896 0,00055097 00027893

HER2 -1 096808 -0.81056 0.062553 0.0069059 0.007207 0025771 HER2 HER2 0054726 0.00047504 -1 -0.00035922 0.00017038

HER3 0.063276 1 0.058493 0.057896 -0.0040233 0.00050334 0.0015849 000028711 FER3 HER3 -0.022105 0.17924 0.16396 1 0.00041387 -0.0011298 0.00081359 -0.0028S51

pE€R23 0.96661 0.85151 -1 0.11407 0.004753 0.0058727 0.012799 pHBR23 pHER23 -027031 0.12891

’
0.10222 -0.014826 -0.087472 -0.0207 -0.058882

P ® 0.34446 ■ -0.84127 0.1377 -0.0035872 00079631 -010011 P13K PI3K -026993 0.11623 ' 0096179 -0.012468 -0.079664 -0014531 -0.049778

pAKT -0094021 ' 089368 0.12488 00068235 0.00055148 0.041759 pAKT pAKT 025438 -0056794 -1 0016897 0.086519 0.027157 0.02037

pRAF -1 028793 0.88856 0.66787 0.01961 00055994 -025028 pRAF [RAF -028998 0.075307 ■ -0.024175 -0.10502 -0.037319 -0.024993

pMEK 0037022 0.76705 -1 0.12738 0.0037217 0.009500-2 0.065826 pMEK m 0.18138 -0.036959 A 0.021237 0.096985 0.00015052 0.014743

pffiK 0.0308? -084578 ■0.032546 -0.0033179 00049897 ■ 0.1338 pffiK pERK -0047435 -0011343 ■ 0.0095714 -0.0037984 0.078864 0.051005

HER22C4 IflBrtiG HER2 EHR3 PHER23 H3K pAKT pRAF f* 0 pSTK KR22C4 HER3FRG ptfi!23 PGK pAKT pRAF pMEK pERK

F ig u r e  D -6 : D e riv e d  h e a tm a p  of s ig n a llin g  n e tw o rk  o f  H E R  2 /3 - M A P K /P I 3 K  s ig n a llin g
p a th w a y s  o b ta in e d  th ro u g h  n e tw o rk  in fe ren ce  m e th o d  a p p lie d  on  n o rm a lis e d  d a t a  (w ith
o n ly  10 t im e  p o in ts ) .
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TO2C4
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pTO3
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pAKT

pRAF
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pERK

Q.
HER22C4 HER3HRG HER2 HB?3 pHB?23 Pt3K pAKT pRAF pMB\ pERK
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TO
TO

pTO3

PBK

pAKT

pRAF
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pERK
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0.12054 -00077643 -1 -0015608 0.051606 0.0042888 00050608

-0.1262 0014013 ■ 0.0034692 -0026733 0.0056974 8.017873

TO2C4 TOHRG TO TO pH0R23 PI* pAKT pRAF pl€K pERK

TO2C4 TO3HRO TO TO R+
(WR23 PI3K pAKT pRAF pMEK pERK

0.90042 025403 ■ -0.15387 -0.10017 -02681 08028206 8.10552

-0.025009 ■ 0.021316 00066122 0.025818 0.014181 0.0086035

0.0061052 -1 0017131 ■ 0.00025188 -0.0070758 8.0056535 -0.0013475

0.10138 0.098648 1 0015012 00024689 08061175 8.0(097398 0.0021717

021498 ■ -0.35398 -0879904 82272 8.022938 8891211

0.054346 0.15798 ■ 063756 -0835142 -0.074938 0646679 8.0086726

-0.08896 ■ -0.036076 0.042733 0 45537 0827956 0.039764

-0.033402 -0.39384 ■ 0.070613 8.54034 -0.30964 0.12964

•0.3573 0.69093 0.26676 0.90901 -0.42866 018791

029439 -0.70183 -0.98898 -0.10884 835482 ■ 8.67926

TO2C4 TOHRG TO TO pHBR23 PI* pAKT pRAF p,VEK pERK

HER3HRG

HER2

HES3

pHER23

PBK

pAKT

pRAF

pk«

HER22C4

HER22C4

I-ER3HRG

TO
HER3

3HSR23

PI*

pAKT

pRAF

p*!®
pERK

F ig u r e  D -7 : D e riv e d  h e a tm a p  o f s ig n a llin g  n e tw o rk  o f H E R  2 /3 - M A P K /P I 3 K  s ig n a llin g
p a th w a y s  o b ta in e d  th ro u g h  n e tw o rk  in fe re n c e  m e th o d  a p p lie d  o n  n o rm a lis e d  d a t a  (w ith
o n ly  12 t im e  p o in ts ) .
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Figure D-8: Corresponding result of S-, S+, R-, R +  data, absolute data , minutes.

Figure D-9: Corresponding result of S-, S + , R-, R +  data, absolute da ta , 10 minutes.
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Figure D-10: Corresponding result of S-, S+ , R-, R +  data, absolute d a ta , 12 minutes.

188



A ppendix E

Supplementary information

Using one of the sample data in chapter 6, we demonstrate how the network model of 
such data may be constructed, all other construction is constructed in similar fashion.

Let us say the following time series data were to processed to infer a network 
model:

time(mins.) 0 8
7

16
7

24
7

32
7

40
7

48
7 8

Her 2 1 0.35681 0.30083 0.27459 0.26289 0.25763 0.2552 0.25407
Hers 1 0.018774 0.011996 0.0088041 0.0073793 0.0067392 0.0064443 0.006306

HersHrg 0 0.24551 0.158 0.11701 0.098736 0.090516 0.086723 0.084944
pHer2 3 0 0.5855 0.83651 0.93496 0.97361 0.98976 0.99688 1
PISK 0 0.4834 0.75191 0.9066 0.96887 0.98964 0.99707 1
pAkt 0 0.19463 0.62196 0.91637 0.98362 0.99516 0.99858 1

Her22CA 0 0 0 0 0 0 0 0
pR af 0 0.083794 0.60699 0.98216 0.90939 0.57473 0.19932 0.056605
pMek 0 0.023066 0.43632 0.99983 0.99529 0.98892 0.98115 0.97012
pErk 0 0.00015359 0.049494 0.39413 0.74423 0.90638 0.97282 1
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Then we define X  (before)

1 0.35681 0.30083 0.27459
1 0.018774 0.011996 0.0088041
0 0.24551 0.158 0.11701
0 0.5855 0.83651 0.93496
0 0.4834 0.75191 0.9066
0 0.19463 0.62196 0.91637
0 0 0 0

0 0.083794 0.60699 0.98216
0 0.023066 0.43632 0.99983
0 0.00015359 0.049494 0.39413

0.26289 0.25763 0.2552
0.0073793 0.0067392 0.0064443
0.098736 0.090516 0.086723
0.97361 0.98976 0.99688
0.96887 0.98964 0.99707
0.98362 0.99516 0.99858

0 0 0

0.90939 0.57473 0.19932
0.99529 0.98892 0.98115
0.74423 0.90638 0.97282

X [ after)

0.35681 0.30083 0.27459 0.26289 0.25763 0.2552 0.25407
0.018774 0.011996 0.0088041 0.0073793 0.0067392 0.0064443 0.006306
0.24551 0.158 0.11701 0.098736 0.090516 0.086723 0.084944
0.5855 0.83651 0.93496 0.97361 0.98976 0.99688 1

0.4834 0.75191 0.9066 0.96887 0.98964 0.99707 1

0.19463 0.62196 0.91637 0.98362 0.99516 0.99858 1

0 0 0 0 0 0 0

0.083794 0.60699 0.98216 0.90939 0.57473 0.19932 0.056605
0.023066 0.43632 0.99983 0.99529 0.98892 0.98115 0.97012

0.00015359 0.049494 0.39413 0.74423 0.90638 0.97282 1

t c =  f  -  0 =. 1 6  8 .  
7 7 ’ regular time periods.

E.0.1 Calculate E \

Use the Transposive (or Repressive) regression method (Idowu M.A. 20116) to anal
yse the time series to calculate E \ \

E ±  =  X ( a f t e r )  * X  (be f o r e ) T  * ( [ X ( b e f o r e )  * X ( b e f o r e )7*] *)T
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The following result is produced: 
r e a l  ( E i )  =

0.78 -0.423 0 0.0512 0 0.00287 0 -0.000154 0.00093 0.00308
0.042 -0.0233 0 -0.00451 0 0.000365 0 0.0000184 -0.0000643 -0.0000881
0.549 -0.303 0 -0.0564 0 0.0049 0 0.000235 -0.000797 -0.00105
1.28 -0.691 0 0.68 0 -0.021 0 -0.000858 0.00774 0.0149

0.902 -0.418 0 0.735 0 0.0404 0 0.000828 0.000645 -0.000898
-0.338 0.532 0 1.27 0 -0.0695 0 0.00368 -0.0192 -0.103

0 0 0 0 0 0 0 0 0 0
17.7 -17.6 0 -14.0 0 14.9 0 -0.0983 -3.57 -1.82

-3.55 3.57 0 3.05 0 -0.79 0 0.0499 -0.124 -0.299
-0.55 0.55 0 0.249 0 0.447 0 -0.00375 0.12 0.334

C alcu la te  J\

Next construct the logarithmic inverse as discussed in section 4.2.8. This process is 
used to reverse engineer Ji from E \ .  The following result is produced: 
real(Ji) ~

-0.0629 -3.07 0 0.0189 -0 0.0106 -0 -0.000189 0.000116 0.00505
0.428 -5.96 0 -0.0769 -0 0.00332 -0 0.0000683 0.00162 0.000757
6.05 306.0 -30.0 -1.04 0.0267 0.0568 -0.0431 0.00091 0.0213 0.0184
1.56 -0.588 -0 -0.36 0 -0.0418 0 -0.00177 0.00206 0.00981

-92.9 1444.0 -0.532 32.9 -29.4 8.58 0.0597 0.0602 -0.116 2.52
-5.54 9.89 -0 4.04 0 -2.35 0 0.0126 0.0949 -0.439

-0.00378 0.0193 0.00281 0.00117 -0.000911 0.000267 -35.6 0.00000192 -0.00000652 0.000081
-42.4 208.0 -0 0.344 0 29.1 0 -0.981 -13.6 -6.78
-35.6 63.8 -0 20.5 0 -10.0 0 0.235 -0.253 -1.6
9.42 -19.3 0 -5.92 -0 4.13 -0 -0.0507 -0.0951 -0.375

E.0.2 Calculating E E \ \  an alternative m ethod
It would be reassuring to use another technique to confirm the last result. To do this, 
we first eliminate the 7t/l-row from the time series data. The technique we are about 
to describe may be applicable to any data with zero-row(s) or constant-row(s). We
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define a constant-row as any row with a sequence of constant value in the series data, 
e.g. the 7 th row being referred to here. This means that the states matrices X ( before )  

and X ( af ter) must be redefined thus:
X(before)

1  0 . 3 5 6 8 1 0 . 3 0 0 8 3 0 . 2 7 4 5 9 0 . 2 6 2 8 9 0 . 2 5 7 6 3 0 . 2 5 5 2

1  0 . 0 1 8 7 7 4 0 . 0 1 1 9 9 6 0 . 0 0 8 8 0 4 1  0 . 0 0 7 3 7 9 3  0 . 0 0 6 7 3 9 2  0 . 0 0 6 4 4 4 3

0  0 . 2 4 5 5 1 0 . 1 5 8 0 . 1 1 7 0 1 0 . 0 9 8 7 3 6 0 . 0 9 0 5 1 6 0 . 0 8 6 7 2 3

0  0 . 5 8 5 5 0 . 8 3 6 5 1 0 . 9 3 4 9 6 0 . 9 7 3 6 1 0 . 9 8 9 7 6 0 . 9 9 6 8 8

0  0 . 4 8 3 4 0 . 7 5 1 9 1 0 . 9 0 6 6 0 . 9 6 8 8 7 0 . 9 8 9 6 4 0 . 9 9 7 0 7 5

0  0 . 1 9 4 6 3 0 . 6 2 1 9 6 0 . 9 1 6 3 7 0 . 9 8 3 6 2 0 . 9 9 5 1 6 0 . 9 9 8 5 8

0  0 . 0 8 3 7 9 4 0 . 6 0 6 9 9 0 . 9 8 2 1 6 0 . 9 0 9 3 9 0 . 5 7 4 7 3 0 . 1 9 9 3 2

0  0 . 0 2 3 0 6 6 0 . 4 3 6 3 2 0 . 9 9 9 8 3 0 . 9 9 5 2 9 0 . 9 8 8 9 2 0 . 9 8 1 1 5

0  0 . 0 0 0 1 5 3 5 9  0 . 0 4 9 4 9 4

X ( a f t e r )  =
0 . 3 9 4 1 3 0 . 7 4 4 2 3 0 . 9 0 6 3 8 0 . 9 7 2 8 2

0 . 3 5 6 8 1 0 . 3 0 0 8 3 0 . 2 7 4 5 9 0 . 2 6 2 8 9 0 . 2 5 7 6 3 0 . 2 5 5 2  0 . 2 5 4 0 7

0 . 0 1 8 7 7 4 0 . 0 1 1 9 9 6  0 . 0 0 8 8 0 4 1 1 0 0 7 3 7 9 3  0 . 0 0 6 7 3 9 2  0 . 0 0 6 4 4 4 3  0 . 0 0 6 3 0 6

0 . 2 4 5 5 1 0 . 1 5 8 0 . 1 1 7 0 1 0 . 0 9 8 7 3 6 0 . 0 9 0 5 1 6 0 . 0 8 6 7 2 3  0 . 0 8 4 9 4 4

0 . 5 8 5 5 0 . 8 3 6 5 1 0 . 9 3 4 9 6 0 . 9 7 3 6 1 0 . 9 8 9 7 6 0 . 9 9 6 8 8 1

0 . 4 8 3 4 0 . 7 5 1 9 1 0 . 9 0 6 6 0 . 9 6 8 8 7 0 . 9 8 9 6 4 0 . 9 9 7 0 7 1

0 . 1 9 4 6 3 0 . 6 2 1 9 6 0 . 9 1 6 3 7 0 . 9 8 3 6 2 0 . 9 9 5 1 6 0 . 9 9 8 5 8 1

0 . 0 8 3 7 9 4 0 . 6 0 6 9 9 0 . 9 8 2 1 6 0 . 9 0 9 3 9 0 . 5 7 4 7 3 0 . 1 9 9 3 2  0 . 0 5 6 6 0 5

0 . 0 2 3 0 6 6 0 . 4 3 6 3 2 0 . 9 9 9 8 3 0 . 9 9 5 2 9 0 . 9 8 8 9 2 0 . 9 8 1 1 5  0 . 9 7 0 1 2

0 . 0 0 0 1 5 3 5 9 0 . 0 4 9 4 9 4 0 . 3 9 4 1 3 0 . 7 4 4 2 3 0 . 9 0 6 3 8 0 . 9 7 2 8 2 1

Again we may employ either the Transposive or Repressive) regression method 
(Idowu M.A. 20116) to analyse this extracted data to construct a new matrix, E E \ .  
The following step is appropriate for the reconstruction:
E E \  =  X ( af t e r )  *  X (before)  *  ( [ X (before)  *  X (before)  ] ) T

r e a l  ( E  E i )  =
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0.78 -0.423 0 0.0512 0 0.00287 -0.000154 0.00093 0.00308
0.042 -0.0233 0 -0.00451 0 0.000365 0.0000184 -0.0000643 -0.0000881
0.549 -0.303 0 -0.0564 0 0.0049 0.000235 -0.000797 -0.00105
1.28 -0.691 0 0.68 0 -0.021 -0.000858 0.00774 0.0149

0.902 -0.418 0 0.735 0 0.0404 0.000828 0.000645 -0.000898
-0.338 0.532 0 1.27 0 -0.0695 0.00368 -0.0192 -0.103

17.7 -17.6 0 -14.0 0 14.9 -0.0983 -3.57 -1.82
-3.55 3.57 0 3.05 0 -0.79 0.0499 -0.124 -0.299
-0.55 0.55 0 0.249 0 0.447 -0.00375 0.12 0.334

Notice that E E \  should be identical (or almost identical) to the earlier result E x  
if 7th-row and 7t,l-column were eliminated. So we may redefine E E \  as a re d u c e d
f o r m  of E x. Next we construct the appropriate J J i  from E E x  using the logarithmic 
inverse method in the same way J± was constructed in the previous section using 
E E x , the re d u c e d  f o r m  of E x , instead.

Calculating JJ\
To r e v e r s e  e n g in e e r  J J i  from E E i  the following result is produced 
r e a l { J J \ )  ~

-0.0629 -3.07 0 0.0189 0 0.0106 -0.000189 0.000116 0.00505
0.428 -5.96 0 -0.0769 06 0.00332 0.0000683 0.00162 0.000757
7.51 295.0 -30.8 -1.49 0.377 -0.0459 0.000171 0.0238 -0.0129
1.56 -0.588 -0 -0.36 -0 -0.0418 -0.00177 0.00206 0.00981

-89.7 1388.0 0.855 31.9 -28.6 8.34 0.0585 -0.111 2.45
-5.54 9.89 -0 4.04 -0 -2.35 0.0126 0.0949 -0.439
-42.4 208.0 -0 0.344 -0 29.1 -0.981 -13.6 -6.78
-35.6 63.8 -0 20.5 -0 -10.0 0.235 -0.253 -1.6
9.42 -19.3 0 -5.92 0 4.13 -0.0507 -0.0951 -0.375

Now compare this new result J J \  with obtained earlier, notice the similarities 
and differences. Substantial discrepancies occur in rows 3,5, and 7 (though row 7 is not 
included in J J \ ) .  This suggests that appropriate handling of zero-data (or constant-
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data) together with their corresponding resultant rows and columns is important and 
may be key to effective development of inference algorithm. Apparently the entries 
of J \  and J J i  seem invalid (i.e. may not be data-consistent) if plugged into the ODE 
model with jacobian definition, i.e. both J \  and J J i  have at least one parameter 
greater than 1300 in magnitude. Though these entries may appear unusual, the 
following test results demonstrate that the models still remain data-consistent.

E.0.3 Assessment of initial results

We check to see if an ODE model with the jacobian Ji is data consistent. Such 
model should have the solution X i+ i  =  e x p J l*tc * X i ,  where is the known state 
before transformation, X i+1 is the new state after transformation, t c (earlier de
fined to be equal to | )  is the period between any two successive states, i  =  0 , 
1 , 2 , . . .  such that X 0 is the initial condition. G iv e n  th a t  th e  in i t ia l  c o n d i t io n  X q

T
is 1.0 1.0 0 0 0 0 0 0 0 0 , w h a t is  th e  s y s t e m  s ta t e  a f te r  | m in u te s  ?
X ! =  e x p (J l*f)*X0 where
J \

-0.0629 -3.07 0 0.0189 -0 0.0106 -0 -0.000189 0.000116 0.00505
0.428 -5.96 0 -0.0769 -0 0.00332 -0 0.0000683 0.00162 0.000757
6.05 306.0 -30.0 -1.04 0.0267 0.0568 -0.0431 0.00091 0.0213 0.0184
1.56 -0.588 -0 -0.36 0 -0.0418 0 -0.00177 0.00206 0.00981

-92.9 1444.0 -0.532 32.9 -29.4 8.58 0.0597 0.0602 -0.116 2.52
-5.54 9.89 -0 4.04 0 -2.35 0 0.0126 0.0949 -0.439

-0.00378 0.0193 0.00281 0.00117 - 0.000911 0.000267 -35.6 0.00 -0.00 0.000081
-42.4 208.0 -0 0.344 0 29.1 0 -0.981 -13.6 -6.78
-35.6 63.8 -0 20.5 0 -10.0 0 0.235 -0.253 -1.6
9.42 -19.3 0 -5.92 -0 4.13 -0 -0.0507 -0.0951 -0.375

Therefore X i =  0.357 0.0188 0.246 0.585 0.483 0.195 -0 .0 0.0838 0.0231 0.000154
This result confirms that Ji is data-consistent.
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E.0.4 Major challenge

One interesting question to ponder over is how to infer the s u p e r la t iv e  ( s o lu t io n )  f o r m  
of Ji and J J i  in a data-consistent fashion and without compromising on parameter 
estimates due to lack of adequate data. We use the term s u p e r la t iv e  f o r m  to refer to 
the (actual) original matrix that should be (or should have been) inferred, i.e. the 
most basic matrix that is associated with parameter values of small magnitudes only.

Id en tify in g  in correct row  en tries (in  th e  ja cob ia n )

A quick-and-dirty way to identify wrong entries in the jacobian which may require 
further adjustment in their parameters is by comparing the result (Ji * X f )  with 
(Ji *e:rpmJl*A* X i ) .  Both results are expected to be equal to AT; since X  =  J \  * X i  — 
J i  * e x p m J l*x * X i ,  where A is an infinitesimally small number. If they are not, the 
rows with significant differences in values are marked for adjustment. For example, 
using the time series above, let A =  0.00000001 comparing [ J i * X i  with e x p ^ 1* ^ * X i \ :

J\*Xi
-3.128 -3.128
-5.5319 -5.5319
311.77 311.77
0.9675 0.9675
1349.0 1349.0
4.3538 4.3538

0.015547 0.015547
165.75 165.75
28.237 28.237

-9.8344 -9.8344
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confirms that though J\ may be data-consistent but if A —y 0.001 the new result
J-\ * X i J i  * e x p ( J i  * X \ J 1 * X i - J i * e x p J i * x * X i  - i n n o z

-3.128 -3.1148
J i * X i  *  i U U / 0

0.54578
-5.5319 -5.5076 0.5703
311.77 300.85 3.4787
0.9675 0.96556 0.2371
1349.0 1302.2 3.4594
4.3538 4.3279 0.78431

0.015547 0.014529 6.1337
165.75 164.73 0.81074
28.237 28.071 0.75916

-9.8344 -9.7736 0.81628

demonstrates that rows 3,5,7 have error differences of more 1%. To correct these 
weaknesses we co u ld  c o n tin u e  tw e a k in g  the rows 3,5,7 u n ti l all worst error differences 
< 1 % while keeping A constant at 0.001. One thing is certain and that is: the pro
cess of obtaining the superlative result must be standardised. Otherwise unrealistic 
parameter values would be unaviodable.

E.0.5 Finding a superlative (jacobian) solution

It might be necessary or required to impose some structural constraints on the inverse 
problem before proceeding to parameter estimation. For example, we might use 
to calculate:

e x p J l*1 =  e x p Jl =
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0.80416 -0.43747 0 0.045157 0 0.0032568 0 -0.0001489 0.00073671 0.0028787
0.045275 -0.02628 0 -0.0052728 0 0.00029397 0 2.1673e -  005 —2.6187e -  005 —8.5209e -  005
0.59053 -0.34202 0 -0.066438 0 0.0040513 0 0.00027737 -0.00031051 -0.00099651
1.1699 -0.63302 0 0.70764 0 -0.019608 0 -0.00086809 0.0067155 0.01337

0.82048 -0.43388 0 0.73433 0 0.057623 0 0.0010493 0.0017218 0.0017303
-0.63844 0.82682 0 1.3438 0 -0.05924 0 0.0044331 -0.013003 -0.11422

0 0 0 0 0 0 0 0 0 0
16.914 -15.6836 0 -14.2233 0 15.8615 0 -0.023139 -4.0544 -1.8787

-5.0199 5.3142 0 3.811 0 -1.2478 0 0.060253 -0.012113 -0.34479
-0.12232 0.055983 0 -0.067224 0 0.5911 0 -0.006607 0.11167 0.40833

which may be represented with the following adjacent matrix (network topology)

1 1 0 1 0 1 0 1 1 1
1 1 0 1 0 1 0 1 1 1
1 1 0 1 0 1 0 1 1 1
1 1 0 1 0 1 0 1 1 1
1 1 0 1 0 1 0 1 1 1
1 1 0 1 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 1 1
1 1 0 1 0 1 0 1 1 1
1 1 0 1 0 1 0 1 1 1

One superlative form of S might be the symmetrix

S a =  b o o l e a n is e ( ( S  4- S ' ) / 2 )
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such that

Ss = booleanisey

—y Ss

1 1 0.5 1 0.5 1 0 1 1 1
1 1 0.5 1 0.5 1 0 1 1 1

0.5 0.5 0 0.5 0 0.5 0 0.5 0.5 0.5
1 1 0.5 1 0.5 1 0 1 1 1

0.5 0.5 0 0.5 0 0.5 0 0.5 0.5 0.5
1 1 0.5 1 0.5 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0
1 1 0.5 1 0.5 1 0 1 1 1
1 1 0.5 1 0.5 1 0 1 1 1
1 1 0.5 1 0.5 1 0 1 1 1

1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 1
1 1 0 1 0 1 0 1 1 1
1 1 1 1 1 1 0 1 1 1
1 1 0 1 0 1 0 1 1 1
1 1 1 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 1

This structure S s can be used to constrain or redefine the reverse engineering problem 
before E± is calculated at all. Because the superlative structure S s is slightly larger in 
size (in terms of the number of parameters set to 1) than the initial structure in E i ,  
the new jacobian results that would be obtained by it might even be more accurate 
(and with parameter values of small magnitude). The parameters of the superlative 
structure are often more realistic than those without. Note that all diagonal entries 
of S s must always be set to 1 before estimation and the flexibity to redefining the 
network connectivity as desired is possible.
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A ppendix F

Alternative methods: m atrix-based  
analytical techniques

F .l  M ethod 2: heuristic developm ent of new ana
lytical m ethods

In previous works (Idowu M.A. 2011a, Idowu M A. 2012) the initial development and 
assessment of our matrix-based network inference algorithms process was as follows: 
as a first step a number of promising inference methods was selected, each inference al
gorithm determined a set of network interactions which had to be assessed to explain 
the observed experimental data. That provided a baseline data set. The selected 
methods were developed to identify and extract only the strongly connected links 
within those results by eliminating all insignificant or potentially redundant associa
tions from the initial sets of results. Subsequent resultant outcomes were then com
pared mathematically and computationally using well-defined network metric mea
sures. The inference methods that successfully yielded most strongly connected links 
were identified and further optimised using matrix manipulation techniques including 
functions associated with logarithmic inverse ((Idowu M.A. 2011a, Idowu M.A. 2012)) 
and pseudoinverse ((Gilbert 1988, E.H 1920, Arne 1951, Roger 1955)) operations (Fig
ure A-l).
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Through thorough elimination of all redundancies in model reconstruction meth
ods, significant consideration was given to understanding the essential techniques that 
mostly yielded positive results by comparing between the intermediate modelling re
sults obtained from the predicted networks and those results in the hidden (expected) 
target network structure (Figures A-2 and A-3). No information about the original 
(target) network structure was supplied to any of the algorithms, i.e we ensured that 
the algorithms made no use of a p r io r i  information about network structure through
out the model reconstruction process. Setting both data consistency and network 
topology consistency as primary targets, it was possible to identify two fundamental 
inference algorithms from those sets of newly developed algorithms. Hence only those 
fundamental inference methods that yielded satisfactory results were chosen for fur
ther restandardisation and optimisation. Further assessment tests were performed to 
ensure that most of the final outcomes were both topologically and data consistent, 
i.e. the model structure often closely matched the original (hidden) network models 
that were used to simulate the conditions for the assessment tests; and the simulated 
time series data outputs generated from the constructed models often matched the 
original time series data input to the test systems as demonstrated and evidenced 
in (Idowu M.A. 2011a) (Figures A-4, A-5, and A-6). To further extend the work in 
(Idowu M.A. 2011a) we established a new reverse engineering framework (Figure 2-1) 
that incorporates network inference, parameter estimation, and multiple model speci
fications (solutions) into an integrated modelling unit. During the method refinement 
and restandardisation process matrix-based recast were formulated to establish new 
inferential procedures to further accelerate the multiple model reconstruction process, 
i.e. ensuring that most operations being performed are matrix-based.

F.1.1 M ultiple model integration
We extend the predictive capability of discovery process by increasing the number 
of distinct model solutions that can be provided to an inverse problem. This is 
achieved by developing new methods to support jacobian to power-law model in
tegration thereby ensuring that nonlinearities in complex systems may be captured
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and modelled using ODE models designed for formulating both simple and complex 
nonlinear phenomena.

The novel methods presented here may be categorised into two broad groups, 
namely: inference or automated construction of jacobian or power-law model from 
time series data (straightforward or direct method); and recasting of inferred jacobian 
(or inferred power-law) model to construct a power-law (or jacobian) model from time 
series data (indirect method). The recast method, presented and discussed in the 
methodology section, uses a fast and powerful network inference algorithm such as 
the transposive regression method (TRM) presented in (Idowu M.A. 2011a) to first 
infer either a jacobian or power-law model from any time series data supplied before 
recasting it to another desirable model type or format.

F.1.2 Extending biochemical system  theory (BST) frame
work

In BST, all system variables are represented in power-law formalism and expressions. 
Hence the models are said to be power-law based. Power-law based models are par
ticularly useful for modelling dynamical systems that are often associated with high 
levels of non-linearity, e.g. genetic networks, metabolic networks, signal transduction 
network etc (Chen L. 2009).

Inverse (or system identifictaion) problems in BST may be solved using power- 
law based models, e.g. half-system, S-system, or the generalised mass action (GMA) 
kinetic models. This usually requires employing appropriate parameter estimation 
methods to calibrate power-law models. Here, though S-system and GMA models 
are more generalised forms of BST, we focus primarily on half-system based model 
as a form of BST and how it may be related to a jacobian model. The quest to 
unveil such connection has revealed new insights into the architecture of BST and ja
cobian models. These special relationships provide reusable strategies for integrating 
jacobian models to models based on the BST framework, and vice versa.
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F.2 M ethod 3: H alf-system  based inference algo
rithm

The half system is a form of BST which provides a complete aggregation of a sys
tem’s processes to single net terms which serves as an approximation of the production 
(synthesis) and degradation (depletion) of the molecular constituents within the sys
tem (Voit E.O. 2000). Depending on the nature of the time series data and primary 
objectives of the modelling task the half-system model may be used as an effective 
and convenient strategy or tool for identifying and mimicking system dynamics and 
predicting future outcomes.

Adopting a half-system model as a nonlinear model may help ease system iden
tification and parameter estimation challenges. This task practically involves the 
construction of ODE based log-linear model and applying appropriate parameter es
timation techniques to infer optimal solution from time series data. For this reason, 
the half-system may be called a Lin-log model.

The half system representation of dynamical systems is of the form:

A, =  a,. l i (A .f  •)
3 = 1

where i  =  1 . . .  n; n  is the number of state variables; g tj are called kinetic orders 
(models parameters) and quantify the overall net effect of each X j  on the production 
(or degradation) of X f ,  a* are called rate constants. In matrix form, the half-system 
may be represented as:

’ X x '
x 2 = « 2 .n  u x i 2i

_ . . i - vf '  _

(F.l)
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which is equivalent to the logarithmic equations

log(Xi) log(ai) +
- log(X2) log(a2) +

log(Xn) log(an) +

#11k)g(Xi) +  ...
g 21 log(Xi) + ...

9m log(^i) +  • • •

+ 9in log(^n) 
+  9 2n l o g ( ^ n )

+  9nn log(^n)

(F.2)

As a preliminary step, the logarithm of the variables and kinetic parameters and 
the derivatives of the variables are related:

’ log(Xx) ' log(au) 9 x x  9 x 2  • • 9 x n

log(X2) log(a2) g21 92i ■ • 9 2 n

. log(X„) . !og(«n) 9 n l  9 n 2  ■ ' ‘ 9 n n

1
log(Xi)
log(*2)

log(Xn)

(F.3)

where all the unknown parameters are the matrix collection M

log(ou) 0n 9xi ••• 9m 
log(«2) 9 2i 9 2i  • • • 9 2n

log(nn) g nl gn2 . . .  g nn

(F.4)

and must be inferred from the available time series data to produce a data-consistent 
predictive model.

The next section describes how M (the model parameters) may be estimated. The 
recommended solution is also based on the algorithm presented in our previous work 
(Idowu M.A. 2011a).
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F.2.1 Half-system: estim ation of kinetic parameters

The arrays of column vectors in equation F .3 required to estimate both the l o g { a i )

and q. . values in M are

lo g (* i)
log(X2) and

1
log(X i)
l o g ( X 2)

If we let

log(Xn) log(X„)

X i

X ( t )  =
x 2

X n

be a known state vector at timepoint t, then the derivative vector X  may be calculated 

from the two known state vectors ( X t and X t+ 1 ) as X  «  where t c is the

interval of separation. The following depiction of a multi-state representation of 

l o g ( X ( t )) involving multiple time states

log{Xi 0) log(Xi j  . .  
log(X2o) log(X2 l ) . .

■ iog(x1. . J  ' 
• iog(x2,.,)

r x i , - x i ntcX2, -*2n
X l2-X i itcx 29- x 2,

Xis-Xi,- ,  ]tc^2S X2S _ ^
=  Logl tc tc tc

_ log{Xn0) log{Xn i ) . . • log(Xna_x) _ Xn-[ ~^nn Xn<2 Xn Xns —Xns_itc tc tc

may be used to represent an array of column vectors log(XiQ) log{Xix) . . .  log(Xis_ 1) 
on the L.H.S., where each k~th entry of log(Xit) is a logarithm of the derivative of the 

time-course data of the variable X {  at timepoint k, from its initial condition s t a t e o to 

state s t a t e s- The following equation is implied from the previous section, which can 

be solved easily using one of our parameter estimation techniques, e.g. Transposive 

regression (Idowu M.A. 2011a). Here, we reformulate the problem into a solvable
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expression.

log(Xi 0 ) log(Xu ) .. 

log(X2o) log(X2l) ..
• log{XU-i) '
■ iog{x2._i) =  M.

ones{ 1,  
log(Xi0) log{Xu ) 

log(X2o) log{X2l)

s )
■ • iog(x 
•• log{X2, .J

_ log{Xno) log(Xni) . • log{X„s_,) _ log{Xno) log(Xni) logiXn,^) _

This inverse problem is completely solvable using the inference method introduced 

in (Idowu M.A. 2011a). Given the solution the matrix M approximates all kinetic 

parameters gtj and logarithm of the rate constants log(ai). Calculating the rate 

constants a* from the first column of M is straightforward - by calculating the log

arithmic exponentiation of each element of the column, since e109̂  =  a n where e, 

the exponentiation of 1, is ~  2.718282.

Next we derive new expressions that establish the relationship between a jacobian 

model and power-law. Ultimately, the new expressions may be used to transform a 

model from its jacobian form to half-system representation, and vice versa.

F.2.2 Relating the jacobian to  half-system  model

H alf-system : red u ceab le  p aram eter c o m p lex ity

The Half-system

Xi = a(.f[(x!<*)
3 = 1 J He

may be decomposed into two power-law products

->• Xi =  a ^ n ? = i(^ r ) -n f= n +i ( 4 ij)-I hs
where n is the total number of dependent variables, m — n is the total number 

of independent variables, i.e. number of constants. These independent variables (i.e. 

constants) are mathematically aggregatable, i.e. they can be combined (multiplied 

together) with the initial rate constants and then replaced with single new rate con-
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stants, say new&i, such that

m
new(*i = OLi. (Xj13)

j = n + 1

, which is equivalent to

Xi =  cti. (X j10) * constant
3 = 1 - hs

Hence the complexity of Half-system is reduceable to the representation

Xi = ruSv,ai. t [ ( X 9j ,i)
3 = 1 -I hs

since the product of all independent variables is a constant. The vector values of the 

dependent variables X* and Xi are derivable from the available time series data and 

we propose that the set of all kinetic parameters gtj may be estimated either from the 

same data or indirectly from an inferred jacobian model that must be data consistent. 

Section F.2.1 has addressed the former, an illustration of both the former and the 

latter is presented in the next section.

F.2.3 Estim ating fractions of kinetic parameters in pairs
Here we show for the first time how to estimate the kinetic orders (parameters) of 

the half-system either from the available time series data or inferred jacobian model. 

The method is based on the relative ratios of pairwise data of the time series. We 

also establish and introduce a new technique for calculating the kinetic parameters of 

half-system in pairs - only the ratios of pairs of kinetic parameters are calculated, the 

actual value of each individual parameter has to be derived from these intermediate 

results. We first recall the jacobian definition

’ X x ' d X id X i d x x 
d X 2 • • d Xid X m

x 2 d X 2 d X 2 d X 2
= J X  = dX-i d X 2 ' ■ d X m

. X m d X m d x m d X mL OXt d X 2 • ’ • dXm J
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and assume it is related to its equivalent half-system by the relation

X  = J*
X x Q5IQ

3
*1*

X 2 r TTl 1 d X 2
= " . • I I O ; " ) — dXi

L 3 = 1 hsys
X m . d X m  L d X i

X \ + +  • • • +
■‘X1 + $fexa + ...+

d X v
d X 2 X r (F.6)
dXn

Next we observe that differentiating X  

w.r.t. the dependent variable X j  produces:
_ T~rmai• 117=1 is further differentiated

dXj _  T
dXj

a m
3 =1

In order words,

This also implies that

t . . _ 13 V. —>Jlj — —_ Zip
X X ,

dXi
dX xXi + dXi

dX 2 X 2 + . . .+ dXi
dX m

, i.e.

Similarly

X  X jd X i

Xi = x k dXi 
9lk'dXk

emerges from differentiating w.r.t. the variable X k. 
Therefore

X± dX±  = X k dXi_ 
9 i i 'd X j gih'd X k

It turns out that multiplying both the LHS and RHS sides by i.e.

• d X k _  Xj dXj d X k _  X j  8 X k X k 
l 'dX i g . /d X j 'd X i  9 , / d X j  gik

(F.7)

(F.8)

(F.9)

(F.10)

(F.ll)

(F.12)

(F.13)
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and rewriting equation F.13 produces
dX k _  9î _ _  Xk̂  9ij_ = 9ij_ ^  dX k _  dXj dX k (F.14)

as expected. Ultimately we deduce the relation between the partial derivatives of the 
jacobian and the kinetic orders of the related and emergent half-system to be

, where c is a constant and, as demonstrated, derivable direct from the jacobian 
matrix. We interpret the above relation to suggest that the unknown pair of kinetic 
order (parameters) g {j and g ik to be estimated are related through the equation

which is naturally convenient for our system identification and model reconstruction 
purposes because X j  and X k can be chosen from any given time series data and the 
partial derivatives d X i  and d X k are related entries of the inferred jacobian matrix, 
i.e. assuming the jacobian is data-consistent with the actual time series data.

F.2.4 Validating the calculated kinetic orders
To further validate the proposed method of calculating the parameters of the half-

d X k _  X k gi} _  ( g | ) c o n s ta n t (F.15)c o n s ta n t

system, we use equation F.16 which suggests

W C  because the rest of the terms become zero as we differentiate w.r.t. to
the variable X j .  Though the |^ - is a partial derivative, it is a constant number in 
the inferred jacobian matrix. Therefore

9 ij

9ik
(F.17)
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validates that
9 ij _  X j (dXj) _  X j Jjj
gi>= Xk (fx£) Xk Jik

(F.18)

must be true.

F.2.5 Vectorisation of estim ated ratios of kinetic orders (pa
rameters)

The estimated ratios of the kinetic orders of the half-system may need to be assem
bled in parallel (i.e. reformulated in vectorised format) to accelerate the estimation 
process. The following illustrates this:

r r axi d X j d X i  "I
9 ii
0ii

9 a  
9i2

X i  d X i X i  d X i X i d X i
9im X i dX-i d x 2 X m dXj

9 X m
(F.19)

Worling with vectors of parameters is much better than estimating individual kinetic 
parameter one after the other.

F.2.6 M atriculation of estim ated ratios of kinetic orders (pa
rameters)

Similarly the estimated ratios of the kinetic orders may be further rearranged in 
matrix form to further speed up the estimation process. Extending the last expression 
to build a matrix of row vectors in terms of ratios of the kinetic parameters yields:

a x 1X i  QX-i a x i  X i axj_ X^

1-----

0 n
0 u
022
021

012
022
022

9l l_
0im
022
02m =

X i  - H id X xa x 2 
X 2 dX 2 X i d X 1

x 2 - M T  • •a x 2 a x  2 X 2 a x 2
• •a x 2

X m
x 2.
X m

dXi
dXma x 2a x 2a x 2
dXm

■ 
li 

_______1

0mm
9 m2

0mm 
0mm _

dXm X m  QXm X i ’~&Xxn L a x  i
8Xm X m  dXm x 2 ’S :  • • a x 2

X m  
* X m

dXmdXm.dXm.9X m
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which can be decomposed into the following expression:

0n 0---0 
0 p22...  0

0 0

dX, dXi  -|1 1 X i  dXi X i d X 1
1 1 1 x 2 • • X m • d X 1

0 u 012 9 \m d X2 a x 2 dXmd x 2
1 1 1 X 2. dX2 1 . . . X 2 d x 2

021 022 02 m = X i d X 1 X m • dX 2 
dXm

1 1 1 9Xm dXm
0m 1 9 m 2 0mm X m  dXmx i  - m : X m  9Xmx 2 - m :  • • 1

L 9 X 1 d x 2 J(F.21)
An alternative representation that is also valid is:

i0u
0

0 . . . 0
022

9ii 912 • • • 91 m
9 21 9 22 * • • 0 2 m

d X i d X T
1 X 2 d X 2 

X l  - M i  * • 1 X m X 1 •
9 X md X i

d X 1 d X xd x 2
X mx 2 ■

d X 2
d X i 1 . . . 9Xm^ X 2a x 2 d X 2

0 0.. 1
9 m m

>m2 ' ' * Jmm X 2x m d X m
1

(F.22)
The following equivalent symbolic representations and identities emerge:

Gdiag * G — X dilg * (Jdilg * J) * Xdiag] (F.23)

Gdiag *  G =  ( Jdiag  *  X ^ iag)  *  { J  *  X d ia g )] (F.24)

Gdiag *  G =  (X d ia g  *  Jdiag)  *  J  *  X ^ ia g ■ (F.25)

The last expression emerges from natural properties of diagonal matrices (Gilbert 
1988).

F.2.7 Inverse diagonalisation of the principal entries of the 
jacobian

The (reciprocal) inverse of the principal entries of the jacobian set may be diago- 
nalised, factorised from the derived expression

G d i a g  * G  — ( Jd ia g  * ■ ■̂ diag) * J  * -^-diag

210



as
Gdiag  *  G  —  ( ( J * X d ia g )d ia g )  *  J  *  X diag

G  diag *  G  =  J dil g *  {^ d ia g  *  ^  *  X diag)

implying that

Gdlg * G  =

17MIT'-ax! '
0

0

0 . . . 0

/Mi'i vax2 >. . . 0

0 • • • T 5 Xvax™ J

(M l)
Xl (dX7\ x 2 -\9Xx'

Xi.L X m  d X i  )

fM i) Xm ( d X \• \ d x 2 ) ■ • • Xi -\dXrn
d X 2 \ Xm. ( d X 2d X 2 ) • • • x 2 - \ d X m

( 9 X m N•V d X 2 ) * • \ d X m >

, which is equivalent to the generalisation

0 . . . 0

Gdiag *G =

7MTT>
0 l

' 'S X 2 >
0

x^ ( d X i \ x 2 (9Xi\ X m (  9 X \ \X i  X d X !  > Xx •\ 9 X 2 > • •• X i  X 9 X m ’Xi ( d x 2 \ x 2 ( 9 X 2 \ Xm (  9 X 2 \x 2 - \ d X i ) X 2 X 9 X 2 ) • • • X 2 * '  9Xm (F-
Xi_ ( M n ^ x2 ( 9 X m \ X m ( 9 X m \x m x  9 X t  > X m d  d X 2 ) " X m '  9 X m '  -

by nature. Since

0- • • /OXm.) 
' axm

Gdiag *G — Jdilg * * J  * Xdiag

7MTT'-ax1 )
0 . . . 0
l7MI7 • • •

'-ax2 >

0 0 ( M m . )' axm ' _

(F.26)

(F.28)

lXi 0 . . 0 d X x  
9 X  x

9 X x  
9 X 2 ’ • d X x

9 X m ’ Xx 0 . . 0
0 lx 2 . . 0 9 X 2 

9 X  x
9 X 2 
9 X 2 ■ ■ 9 X 2

9 X m
0 * 2 . . 0

0 0 . . 1• x 3 J 9 X m  L d X x
Mzrl 9 X 2 •• Mm.

•  9 X m  j 0 0 . . • * 3  .

which is an elegant and sophisticated representation for the expressing the quantities
of G~dLg * G.
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F.2.8 Derivation of the kinetic orders matrix of the half- 
system  model

The matrix of all kinetic orders G may be estimated with a set of diagonal entries 
using the derivation

Gdiag  *  ( Jdiag  *  X d i a g )  *  J  *  X d ia g

or
G =  Gdiag * X diag * Jdiag * J * X d,tag

which means that the target G diag may be fixed or predetermined as desired yielding 
the following matrix form:

ioo

G = 0 022 . . .  0

0 0 ■ ■ ■ 9mm .

1x 2
.0
.0

ltmtt'■ dXi > 0 . . . 0
1TMaTV 0X 2 >

..0

x 3 J 0

’ X ! 0 . . . 0
0 * 2 . . . 0

0 0 . . • * 3

0 .. ■ (
1dXm \ dXm

d x i d X L ax.
d X i d X 2 ■ ' ‘ d X m

d X 2 d X 2 d X 2
d X i d X 2 ’  ' • d X m

d X m d X m d X m
d X i d X 2 • • 9 X m

(F.29)

l

F.2.9 Relation between the jacobian and kinetic orders ma
trix

From the expression

G  — G diag *  X diag *  Jdiag *  J  *  Xdiag

xWe may use the last expression in eq. F.29 to obtained different sets of kinetic parameters for 
different subsets of time series data
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we may derive an expression for the jacobian model using the formula

J  — Jdiag * Xdiag * Gdiag * ^  * ^diag

which, in matrix form, is:

l ioo

’ x 1 0 . . 0 1
011

1oo 9 i i 9 l 2  ■ * 9 I r a

J  = 0 ( i t ) - - - o 0 X-2 . . 0 0 022 9 2 1 9 2 2  ' ’ 9 2 m

0 0 0 . . • * 3  . 0 0 . . .  1
9 m m . 9 m l 9 m 2  ' ' 9 m m

1X!
0

0 . . . 0
£ - °

0 0.. 1
• x 3 J

(F.30)

F.2.10 Significant contribution to  BST: new recast technique 
(BAE)

Our theoretical contribution to BST in terms of how an inferred jacobian model of a time 
series data of a dynamical system may be related to a derived data-consistent half-system 
model is summarised. The first among our discoveries is the expression coined bidirectional 
associativity expression (BAE). BAE establishes a direct link between the jacobian and the 
matrix of kinetic orders for the jacobian model and half-system model. Symbolically stated 
BAE is

Xdiag * Gdlag * G = Jdiag * J  * Xdiag (F-31)

which in matrix form is represented as

'  X x 0. . 0
1011

oo

9  a 9 l  2 • * 9 l m

0 . . 0 0 022 9 2 1 9 2 2  ’ ' 9 2 m

0 0 . . Xs _ 0 0 . . .  1
9 m m  m . 9 m l 9 m 2  • ’ 9 m m  _
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(Ml)Ux, ) 0 . . . 0

7?E2.\d̂X2 ' . . . 0

0 0 (Mhl\

d X  1 d X ^ d X  1
d X x d X 2 • • d X m
d X 2 d X 2 d X 2
d X i d X 2 • • 9 X m

d X m d X m d X m
L d X i d X 2 ' • • J L

X i
0

0

0 . . . 0  
x 2...  0

0 . . . X 3

(F .32)

such that

’ lo g p ii)  ' log(ai) g lx g l2  • • 9m
log(X2) — log(cn2) g 2i g 22 • • 927X

. log(X„) . . log(an) gnl g n2 . ’ ’ 9nn

' log(Xi) ’ log(ai)
log(X2) = log(a2) +

. log(X„) _ . log(Qfn) . -

’ log(Xi) ' log(ai) r

log(X2) - log (<*2) =

. log(X„) _ _ log(Q!n) _ -

911 912 • • • 9\i 
921 922 • • • 927

9 r i l  9 n 2  '  ‘ '

$ 1 1  9 l 2  • • • 9 17 

921 922 ‘ ‘ ‘ 927

9 n  1 9 n 2  ‘ ‘ ‘ 9 n ■

1
log(Xi)
log(*2)

log(Xn)

log(Xi)
log(X2)

log(X„)

log(Xl)
log(X2)

log(X„)

9 11 0 . . . 0

1____

1------00

Gdiag
0 922 . . . 0 = 0 J22-X2 nj 2.x

0 0 . . 9mm 0 f) Jmm-XmU - - -  J m.X  J

(F .33)

(F .34)

(F .35)

(F .36)

We note that in the BST half-system representation the rate constants a l ( i  =
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1,2, . . .  n )  must be consistent with the expression

log(ai) ’ log(Xi) ' $11 9l2 ’ ’ • 9\n ' log(Xl)
log(a2) = log(X2) - 921 922 • • • $2n log(X2)

I'bOO _ log(-Xn) _ 9n1 9n2 ‘‘ ’ 9nn . log(X„) _

which we find to be highly convenient because

$11 $12 • • $ l n l°g(X1)
G .X log = los ( § ) = $21 $22 ••• $2n log(X2)

lv5oo
___t $nl  $n2 ' ' $nn . log(X„) _

lo g ( X )  — lo g ( a ) =  lo g ( J .X )  — lo g ( a ) =

G .X io g  =  Gdiag  * X d ia g  * Jdiag * ^  * X d i a g - X i og (F.38)

l o g ( a )  =  log {J d ia g  * X diag * G ^ ag * G *  X j £ g . X ) -

Gdiag * X di^g * Jdiag * J  * X d ia g -X io g  (F.39)

F.2.11 Application of new recast m ethod to real experim en
tal data

Figures B-l depict the set of Half-system models derived using the recast technique in
troduced in this section. The matrices in figure B-l are derived using the information 
in figure 5-4, i.e. the matrices in figure 5-4 (chapter 4).

Figure B-l shows the result of obtaining other solutions that are dependent of in
formation obtained from one of the four models, for instance, we used the information 
about the diagonal entries in the 0.1/iM Dox (top-left) result to control and influence 
the nature of the outcomes generated in the other three results. Though figure B-l is 
not used in our final analysis (it demonstrates three main possibilities: 1) imposing 
structural constraints (i.e. information about part of the network) of one network on

215



others to steer and determine their final outcomes, whenever necessary; ii) e n a b lin g  
multiple models inferred from different time series data sets to be f ix a te d  and made 
comparable to each other - this is useful when comparative study is required; and iii) 
aligning all inferred models to common, dependent, and shared scaling factors. Notice 
that in figure B-l the level of (colour) contrast is on average less than that in figure 
5-4. This is because in figure B-l common constraints had been imposed to steer the 
inferred outcomes. This steering was done by fixing all the diagonals of the matrices 
of the kinetic orders (parameters) to the same value. It may be necessary sometimes 
to keep all the diagonals of the matrices of multiple models constant to measure how 
varied the non-diagonal parameters are approximated across the models. Comparing 
the magnitudes of these non-diagonal parameters and their perturbation profiles may 
give new insights into the topologies of the systems from a perspective different from 
normal network inference. These perturbation profiles (i.e. fluctuation or difference 
in parameters) may be evidenced by the colour contrast displayed in the generated 
heatmaps of the inferred models.

F.2.12 Conclusion: power-law m ethod
Ordinary differential equations (ODEs) are commonly used to describe dynamical 
systems. Whenever time series profiles of constituents of a complex dynamical system 
become available, such time-evolution dynamics may be described either by a set of 
ODEs, e.g. jacobian or power-law model. Such time series evolution are described in 
mathematical terms that capture nonlinear dynamics of system behaviour and states 
recorded at various time points and intervals.

One of the most difficult challenges in modelling biological systems from time series 
data is the determination of a data-consistent solution to its model reconstruction or 
system identification problem, i.e. inverse problems. Solving an inverse problem often 
requires developing or appropriating effective system identification and parameter 
estimation strategies to (re) construct a predictive model calibrated with optimal set 
of parameters in a workable and data consistent way. Depending on the nature of 
the systems, the modeller may adopt a power-law model, either as a complementary
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approach to other existing approaches or as an alternative means of formulating 
and validating system behaviours or dynamics through modelling. In formulating 
and describing complex biological processes, it is important to take into account a 
consideration of the underlying nonlinear phenomena involved and all the essential 
relationships among the system components.

A half-system is a form of BST (power-law) based model which can be used to 
approximate and articulate highly complex system dynamics in meaningful ways. The 
recast technique introduced and presented here is an integral part of a new theoretical 
framework that is currently being developed to extend the capabilities of both our 
reverse engineering and current BST frameworks to support automated time series 
data modelling in systems biology and beyond. The modelling approach we have 
described is extremely fast, optimised, and completely data-driven. The method is 
applicable to any time series data of dynamical systems, i.e. with unknown underlying 
network of interactions. Multiple data-consistent models may be inferred from such 
time series data without requiring a p r i o r i  information about the architecture of the 
target systems.
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Appendix G
New m atrix construction and 
decom position m ethods
We present a new method for constructing and decomposing square matrices. This 
method, based on the computed parameterisation of their implied determinants and 
minors, operates on the product of factors of a new form of matrix decomposition. 
This method may be employed to build new matrices with fixed determinant(s). We 
demonstrate that this new approach is fundamentally well-connected to the Cholesky 
decomposition if applied on symmetric matrices. We also demonstrate that it is re
lated to the LU decomposition method via a diagonal matrix multiplier. Also through 
this new method a direct relation between Cholesky decomposition and LU factorisa
tion is shown. This method, presented for the first time, is useful for (re)constructing 
matrices with a predefined determinant and simulating inverse problems. The infer
ence method introduced here also is based on new matrix manipulation techniques 
that we have developed for the identification of systems from reproducible time series 
data.

In systems biology, where theoretical models are important aids in interpreting 
complex systems dynamics, a robust framework that is inexpensive and able to sim
plify the creation and evaluation of system identification and parameter estimation 
problems and solutions is valuable. The framework we have developed is matrix- 
based and sophisticated enough for the identification of ODE models from time series
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data. We demonstrate that through simple matrix manipulation techniques, powerful 
and effective computational tools, complementary to existing reverse engineering and 
modelling packages, may be developed. These techniques are useful for understanding 
complex network structures and dynamics.We present a new method for constructing 
and decomposing square matrices. This method, based on the computed parameter- 
isation of their implied determinants and minors, operates on the product of factors 
of a new form of matrix decomposition and may be employed to build new matrices 
with fixed determinant(s).
Suppose the square matrix A is to be partitioned into LDU decomposition factors, 
i.e., A is to be transformed into equivalent lower, diagonal, and upper matrix factors, 
then one may employ the Gaussian elimination method (Gilbert 1988). Importantly, 
here we show that A may be decomposed and recomposed in terms of its implied 
determinant and minors. Given A may be factorised in terms of its minor and deter
minants, we examine the determinant of A we suggest that if the entries of the LDU 
factors of A are modified such that the determinant value remains fixed, then any 
matrix that is reconstructed as a product of those modified LDU factors will have 
its determinant equal to that fixed value. Thus we propose that by this new method 
multiple nonsingular matrices with a predefined determinant may be created. This 
algorithm, presented here for the first time, provides a robust method for construct
ing nonsingular or singular matrix with a predefined determinant and is applicable to 
matrices of different sizes. This method provides us with a new tool for decomposing 
square matrices. We demonstrate that for symmetric matrices our new LDU decom
position method is related to the Cholesky decomposition method (Gilbert 1988) and 
to the LU decomposition method (Gilbert 1988).
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G .l A new matrix decom position and com position  
m ethod

It was Householder (A.S 1975) who first hinted that when an LDU factorization exists 
and is unique there might be a closed (explicit) formula for the elements of the L, D, 
and U factors in terms of the ratios of the determinants of certain submatrices of the 
original matrix A. However, Householder did not explain how to determine this.

Matrix decomposition is used in matrix algebra to solve systems of linear equa
tions. An LDU factorisation of a matrix, A, is basically a decomposition of the matrix 
to the form A  =  L .D .U  where L and U are lower- and upper-unit triangular matri
ces, respectively, and D is a diagonal matrix. To develop a method for constructing 
matrices with a predefined determinant, we discovered that an optimised variant of 
the LDU technique is necessary. This decomposition technique, initially viewed as 
an optimised reverse engineering method of matrix composition, may be viewed from 
the perspective that the product of L d -D d -U d  factors is also useful for generating re
producible time series data. Expressed in terms of the parameterisation of its implied 
minors and determinant, it can be used to create nonsingular jacobian matrices. As 
demonstrated later, the L d  and Ud factors are triangular matrices but not necessarily 
unit-trianglular. From the definition A  =  L d -D d -U d , reading from LHS to RHS, we 
may view the decomposition process as transforming the matrix A to L d -D d -U d , while 
on the other hand, interpreting from RHS to LHS, a composition method of creating 
a matrix with known properties is effected.

G.1.1 Definitions
If A is an n  x n matrix, and i and j  are positive integers less than or equal to n, 
then an i  x  j  minor (often denoted M ^ j)  of A is the determinant of the ( n - i )  x ( n - i )  
matrix obtained from A by deleting from A its $ h row and } h column. This means 
that the minor M32 of a 3 x 3 matrix A may be alternatively represented as d e t  , 
that is, M32 =  d e t r i2 C iz .
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Let L d  be the lower triangular matrix component of the L d-D d -U d  factorisation of A. 
L d  has only zero-values above its diagonal; all the entries in the first column of L d  
are the same as entries in the first column of A and all other non-zero entries are 
either determinants of submatrices formed with or minors of A. Each diagonal 
entry of L d  at position (i) is the determinant of the upper left i - b y - i  submatrix of A 
represented as d e t i  1, where i =  1, 2, ... , length(A);

a i,\ 0 0

L d = ^ 2,1 d e t 2 0

®3,1 d e t r „
r l , 3 c l,2

d e ts

(G.l)

Let D d  be a diagonal matrix that is the reciprocal of the product of the determinant 
of the submatrix formed with i at the z^-position and that of submatrix formed 
with A i^ i from the ( i  — l ) th point above the diagonal if it exists such that

i

a i , i
0 0

0
1

0( a x j  *det2)

0 0
1

(idet2*detz)

(G.2)

Let Ud be an upper triangular matrix with all entries below the diagonal set to zero, 
all entries in the first row of Ud are equivalent to entries in first row of A; all other 
entries in Ud are minors of the sub-blocks formed with A ^ i, such that Ud is of the 
form:

Ud =

We wish to show that

A? —

® 1,2 ^ 1 ,3

0 d e t 2 d e t r „
r l ,2 c l,3

0 0 d e ts

® 1,2 ®1,3

® 2,2 ^2,3 =  L d *2,1

®3,1 ®3,2 ®3,3
1det*(af)ei* parameter is a determinant or minor of A.

(G.3)

(G.4)
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, and that a generalised method for constructing matrices with fixed determinant 
exists.

G.1.2 Representation of m atrix entries by minors

We claim that entries of matrices may be representated by algebraic sums of products 
of their minors. For example, let A 3 be a 3 x 3 square matrix (with 3x3=9 parameters) 
such that

A ,
a l,l 1̂,2 ®1,3
a 2,l (det2+a1 2 *a2 1) (detT,1 2Cl 3 +aii3*a2,i)

al,l °i,i
®3,1 (detri 3Ci 2 +ali2*a3,i1 r3,3ai,i (ax 1 *det2)

L,2 cl,3 * d e t r „ +  a . ,rl,3 cl,2 M * a3 * d e t2).

(G.5)

where

In the same way, A 4 , a 4 x 4 square matrix (with 16 parameters), may be derived. 
In generalising the algorithm to create square matrices of sizes > 4, only a slight 
modification is required. We illustrate how to obtain this generalisation by creating 
A 4 as an example.

G.1.3 Construction of 4x4 matrices

It is important to show how the L d-D d -U d  method may be applied also to the com
position or decomposition of a 4x4 matrix. A 4 is derived as a product of L d *  D d *  Ud 
factors:

A 4

a i , i ^ 1 ,2 ® 1 ,3 a i ,4

® 2,1 ^ 2 ,2 ^ 2 ,3 ^ 2 ,4

® 3,1 ® 3,2 a 3,3 ^ 3 ,4

a 4 , l ^ 4 ,2 ^ 4 ,3 ^ 4 ,4

= Ld* Dd*Ud
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where L d  =

a l , l 0 0 0 i

° i , i
0

®2,1 d e t 2 0 0
> D d  =

0 1
( a x 1 * det2)

®3,1 d e t
r l,3 c l ,2

d e ts 0 0 0
« 4 ,1 d e t „ „ d e t

r l , 4 c l,2 r l ,2 ,4 cl,2,3
d e t^ 0 0

® 2,1 ®3,1 ®4,1

0 d e t 2 d e t r „
rl ,2 c l ,4

0 0 det^ d e l .
” 1,2,3 c l ,2 ,4

0 0 0 d e t 4

0
0
1(*det2*det2 ) 
0

and Ud =

It is not surprising seeing that exactly 4x4 =  16 distinct parameters are required 
to construct a 4x4 matrix with a predefined determinant we choose.

0
0
0
i

{detz*deti)

G.2 M atrix construction w ith fixed determ inant(s)
In the simulation (artificial creation) of inverse problems for the development and 
optimisation of inference methods, it is important to ensure that the target jacobian 
matrix to be inferred is well-conditioned, i.e. it is nonsingular. Nonsingularity may 
be eliminated by ensuring that the determinant of the matrix is not zero (and not 
close to it). One of the primary reasons for using nonsingular matrix models in 
simulating time series data is to ensure that the orginal jacobian matrix being used 
is reproducible and can be inferred. Only nonsingular matrices may guarantee that 
the uniqueness of a potential solution during the inference process is not lost.

G.2.1 Example # 1 : matrix com position
To construct a matrix with determinant equal to -8, first establish the product of Z ,̂ 
D d and U d :

1 0 0 0 1 0 0 0 1 2 3 4
5 - 4 0 0 0 _  i 0 0 0 - 4 - 8 -1 2, D d  = 4 ii

9 - 8 - 4 0 0 0 1
16 0 0 0 - 4 0

13 -1 2 0 --8 0 0 0 1 0 0 0 - 8
atrix composition method A ±a = L d -D d Ud gives the resu 't:
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1 2  3 4
5 6 7 8^4a =: 9 10 12 12
13 14 15 18

G.2.2 Example # 2 :  matrix com position w ith fewer parame
ters

To create a matrix with determinant of -8 from fewer nonzero parameters, the re
quirement is that the parameter det^  must be set to -8 and that none of the diagonal 
entries of D d  is zero.

1 0 0 0 1 0 0 0 1 2 3 4 1 2 3 4
5 - 1 0 0

*
0 - 1 0 0

*
0 - 1 0 0 = 5 9 15 20

6 0 12 0 0 0 - 2 0 0 0 12 0 6 12 352 24
7 0 0 - 8 0 0 0 1

4 . 0 0 0 - 8 7 14 21 12

G.2.3 Example # 3 : symmetric m atrix com position
A nonsingular symmetric 4x4 matrix may be constructed by replacing Ud with the 
transpose of Ld-

Atsi = L d*Dd*L% =

1 0 0 0
5 - 4 0 0
9 - 8 - 4 0
13 -1 2 0 - 8

1 0 0 0

0 1
4 0 0

0 0 1
16 0

0 0 0

------1
HSS

1 5 9 13
0 - 4 001 -1 2
0 0 - 4 0
0 0 0 001

1 5 9 13
5 21 37 53
9 37 66 93
13 53 93 135

(G.6)
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G.2.4 Example # 4 : variant sym m etric matrix com position
Alternatively, a nonsingular symmetric 4x4 matrix may be constructed by replacing 
Ld with the transpose of Ud-

A 4s2 =  U j * D d * U d (G.7)

1 0 0 0 1 0 0 0 1 2 3 4 1 2 3 4
2 - 4 0 0 0 _  1 A 0 0 0 - 4 - 8 -1 2 2 0 - 2 - 4

A 4s2 — * 4 * =3 - 8 - 4 0 0 0 i
16 0 0 0 - 4 0 3 - 2 - 6 -1 2

4 -1 2 0 - 8 0 0 0 1
32 . 0 0 0 - 8 4 - 4 -1 2 -1 8

G.2.5 M ultiple matrices w ith a predefined (fixed) determ i
nant

We have demonstrated (using 4 examples) how multiple 4x4 matrices with a fixed 
determinant of -8 may be constructed using our L d-D d -U d  method and showed in the 
previous section how the following matrices all with the same determinant could be 
easily created. Specifically A 4a, A 4b, A 4 s i, and A4s2 all have equal determinants, i.e. 
d e t ( A 4a) =  d e t ( A 4b) =  d e t ( A 4 si) =  d e t ( A 4s2) =  —8. The method, shown here for 4x4 
matrices, operates independent of matrix size.

G.3 D ecom position of matrices
G.3.1 L d - D d - U d  Decom position of a Symmetric M atrix
If a square matrix is equal to its transpose then such matrix is said to be symmetric. 
If M s is symmetric, then M s =  M j and is regarded to be of the form

m i ,2 ^1.3
mi,2 ™2,2 COCN

CO ™2,3 m 3,3

(G.8)
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As shown earlier, the Ld.Dd.Ud decomposition of symmetric matrices, e.g. Ms, has

G.3.2 Relation between Cholesky and L d . D d . U d  decom posi
tion m ethods

The Cholesky decomposition of a symmetric, positive-definite matrix M s is a factori
sation of M s into L C.L*C where L c is a lower triangular matrix with positive diagonal 
entries, and L* is the conjugate transpose of L c.

Prom the last definition M s =  L d -D d .Ud — U j-D d -U d  — L d -D d-L d we can derive 
the Cholesky decomposition factors as follows:

the following properties: L j =  U d and L d  =  U j . This means that the L d .D d .U d  
decomposition of

M s =  L d .D d .Ud =  U j . D d .U d =  L d .D d .L Td (G.9)(G.9)

M s =  L d * D 1J 2 * D 1J 2 * L ^

Since D d is a diagonal matrix, therefore

T'd

M s =  ( L d * D XJ 2 ) * ( L d * D l / 2 ) T  =  L C.L \  

M s =  (U d * D XJ 2 ) T  * (U d * D lJ 2 )  =  L c.L-c

where L c =  (L d * D xd 2) =  (U d * D d ) T for any square matrix M „. This establishes 
the relation between our L d .D d .Ud decomposition and the Cholesky’s.
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G.3.3 Relation between LU and L ^ . D ^ X J ^  factorisation m eth
ods

Our analysis shows that by solving the system Ax=b with Gaussian elimination, a 

lower triangular matrix of the form

L =
1 0 0

al,2 1 0ml,l
al,3 êtrl,3cl,2 1ml,l det2

results, which has the same outcome as

a i , i 0 0 i

a i , i
0 0 i

m i , i
0 0

L =
® 1,2 d e t 2 0 0 1

d e t 2 0 =  Ld * 0 1
d e t 2 0

a i ,3 d e t r „
r l,3 c l ,2

d e ts 0 0 1
d e t z 0 0 1

d e t z

using our convention. Since

ai,i 0 0 1 0 0 al,l 0 0

Ld = ® 1,2 det2 0 = a l ,2

a l , l
1 0 0 det2 0

®1,3 detr r
r l,3 c l ,2

det3 a l,3 

.  °1,1
^ 7'1,3 C1,2det2 1 0 0

----1
COto3̂

L *  Dm

where Dm =
Ti 0 0

0 det2 0

0 0 det[
is the diagonal matrix containing only the principal

minors of the target matrix. Therefore we establish the relation between LU factori

sation and our Ld-Dd-Ud decomposition method through the following derivation:

Let L  * D m  =  L d  where D m  is the right matrix multiplier that transforms the L 

factor of the well-known LU decomposition to our Ld factor.

Because both the Ld and L factors are derived from the same Gaussian elimination 

process, it turns out that D m  is a diagonal matrix. Therefore, L  =  L d - D

Since D ^ . D m  =  I  where D m  is any square matrix, LU1 its implied inverse and I
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is the identity.
Ld-Dd-Ud = Ld-I-Dd-Ud

Ld-Dd-Ud — Ld-iD ^ .Dm) .Dd-Ud

Ld.Dd.Ud =  (Ld.D~1).(Dm.Dd.Ud)

Since L =  (Ld.Dm1), therefore

Ld.Dd.Ud = {L ).{D m.Dd.Ud)

And since we want to preserve the integrity of the matrix A in both our decomposition 

and the LU decomposition processes, the following property holds:

A =  Ld* Dd* Ud =  LU

Therefore, LU factorisation itself may be seen to have a new interpretation in terms 

of our decomposition method, i.e.

LU =  (La.D-1) *  (Dm.Dd.Ud)

L =  (Ld.D-1)

U =  (Dm.Dd.Ud)

where the matrix Dm is derived to be

Dm
a l , l 0 0

0 det2 0

0 0 det

1 0 0 a l , l a i,2 ®1,3

a l,2 1 0 * 0 det^ dpt
r l,2Cl,3

m l , l dpt
r l , 3 cl,2

a i , i ° i , i

a l,3 1 0 0
det%

.  m l , l det2 det2

(G.10)
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where L is lower triangular and U is upper triangular as expected.

G.3.4 Other variants of our L d - D d - U d  decom position m ethod
Other variants of Ld-Dd-Ud decomposition factors may exist in terms of

A  — LV.DV.UV
0 1 ,1 0 0 1

01,1 0 0 O l , l 0 ,1 ,2 O l,3

0-2,1 1 0 * 0 det2
0-1,1 0 * 0 1 d e tr l , 2 cl,3

d e t2

0 3 ,1 d e tr l ,3 ° l ,2
de t2 1 0 0 deta

det2 0 0 1

which has a symmetric matrix equivalent as

As =  UVST-D-ltS . UI)

or

As — LVS.DVS.LVS

O l , i 0 0 1
01,1 0 0 O l , l O l,2 O l,3

O i,2 1 0 * 0 d e t2
01,1 0 * 0 1 ded"rl,2  c l,3

d e t  2

O l,3
Hpfaecn , 2 ci,3  

d e t  2 1 0 0 1 0 0 1

O l , l 0 0 1
01,1 0 0 O i , l 0 2 ,1 0 3 , 1

0 2 ,1 1 0 * 0 de t2
01,1 0 * 0 1 d e ^r l , 3 cl,2

d e t2

0 3 ,1 d e ^r l , 3 cl,2
de t2 1 0 0 d e t  a 

d e t  2 0 0 1

Note, these may not be the most reduced forms of factorisation and may require 

further optimisation of entries.

G.4 Applications of L d - D d - U d  m ethod to  system s of 
linear equations

G.4.1 Solving system s of linear system s
The Ld-Dd-Ud decomposition can be applied to solve a system of linear equations such 

as A.x =  b by first computing the Ld-Dd-Ud decomposition of A as A =  ( Ld *  D ]/2) *  
(Ld *  D lJ 2)T if A is symmetric and positive definite. For example, finding xu (below) 

the decomposition can be applied to solving the equation {Ld *  D lJ 2) *  x u =  b where
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x u =  (L d  * D lj r  * x . This means that the L d-D d -U d  decomposition method may be 
applied in solving

A .x  =  b

problems without having to compute the actual inverse of A.

G.4.2 Application to tim e series inverse problem analysis

In a system of linear differential equations an inverse problem may be defined in the 
form

X  =  A *  X

where X  and X  are known vectors of same length, and A is the unknown matrix 
that must be identified. Note that there is difference between a general system of n 
linear differential equations with unknown (jacobian) matrix parameters and a general 
system of n linear equations with unknown vector parameters. The latter is much 
simpler to solve as explained above. However, the formulation of the inverse problem 
remains the same in structure. Its algebraic representation is as follows:

’ X i
X 2

_ x n

where the partial derivative parameters are the entries of the jacobian matrix A; A 
contains the relative rates of change with respect to the dependent variables (Gilbert 
1988). In light of this definition, a time series inverse problem may be defined (in 
a mathematical sense) as a general system of m linear differential equations with an 
unknown m x m jacobian matrix A may be rewritten in the form X  =  A . X , which

f t * l + * to a x x
d X m x m

f i * i +
d X 2 v  
d X 2 2 • '

d X 2
d X m x m

t ^ x 1 + d Xo  ^ 2  • d X m
d X m x m

(G .ll)
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has the matrix equation form

X x ' d X x
d X i

d X i  
d X 2 • •

d X x
d X m ’  x t  "

x 2
=

d X 2
d X i

d X 2 
d X 2 • *

d X 2
d X m X 2

p
- 

■
1__

__
__

_
d X m d X m d X m

. x m .L a x i d X 2 • • • d X m  J

(G.12)

where X 2 X ( t ) is a known state vector, i. e. the t th vector of the given time

series X. Rewritten in a multi-state definition, if m number of (state) measurements 
are taken after the initial condition, it becomes

’ X u x u . ■ X u - ,

1

d X i
d X 2 • •

d X x
d X m ’ X u x u .

1-----7ei—1

x 2ox 2 l . - X u . , :
d X 2a x i d X 2 

d X 2 ' •
d X 2
d X m * X u X , , . ■ X u . ,

X m QX mi . • • X TTln_ 1
d X m  

L d X 1
d X m  
d X 2 • •

d X m
• d X m  J x m o x m i . • • X m n- 1

which is equivalent to
I" X ^ - X 1(i X l 9 - X i , dX-1 axi dXx ' X u X u . ■ X u - ,tc t c tc dXx a x 2 • • dXm

x 2, — X 2n X 2q—X 2} X2n X 2n_ ̂ d X 2 d X 2 d X 2 x 2ox 2 l . ■ X u - ,tc tc tc = d X i d X 2 ' ' dXm

X m-\ ~ X m  ̂ Xm.2 Xfn-y X m n —X m n_ 1 dXm ■ dXm d X m X rnoX r n i . • • X TTln_ 1_ tc tc tc L d X i d X 2 • • • d X m Jassuming that the state vector measurements are captured at regular time intervals 
of t c . Note that etc «  1 +  t c , of etc =  1 +  t c +  ^  +  ... improves as t c gets closer
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to 0 (Gilbert 1988). The solution to this system of linear differential equations is

M i
d X i

M i 
d X 2 ‘ •

1-----<£>

d X 2
d X i

d X 2 
d X 2 * • d X 2

d X m
■ t c

Xux l2. ■ xu x uxu ■■Xu-,
x 2lx 22. ■ X2n - e x p

d X m  L d X i
d X m  
d X 2 • • d X m

•  d X m  J * x 2ox2l. ■Xu.,

X - m i  X rn 2  • • • X m n V X m • ■ ^mn-1

Further analysis of such inverse problems might require matrix decomposition, e.g., 
the system above may be redefined as

X ( a f t e r )  =  e x p [A*tc] * X ( before)

G.4.3 Solving tim e series inverse problem using m atrix ma
nipulation

In solving time series inverse problems of the form

X  {af t er )  =  e x p [A*tc] * X { before)

where the jacobian matrix A must be identified and t c is the time interval of very 
small magnitude, Idowu and Bown (Idowu M.A. 2011a) developed the transposive 
regression method for finding E  =  exp^A*tc .̂

G.5 Conclusion: matrix construction and decom 
position m ethod

We have demonstrated that through simple matrix manipulation techniques, it is pos
sible to derive methods for creating and deconstructing matrices with known determi
nants. A robust matrix-based framework to enable simplified creation and evaluation
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of system identification and parameter estimation problems and solutions is being de
veloped, and the method presented here is an essential part of that framework. This 
framework, an important tool for developing and managing optimisation methods, is 
required in systems biology and applicable to other areas such as artificial intelligence, 
network science, etc. The inference method is sophisticated enough for the identifica
tion of ODE models from time series data. In future work, we will demonstrate how 
these matrix decomposition and composition methods presented here may be applied 
to the development of new techniques for understanding complex network structures.
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