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Abstract
Biological processes that occur in the soil have important environmental implications. 

These processes include root growth and microbial interactions with roots and soil 

particles and they influence the efficiency of crop production and, in turn, global food 

security. The observation and imaging of these below-ground processes is difficult due 

to the opacity of soil and so this thesis presents a new artificial soil analogue that is 

transparent and therefore allows optical imaging. Transparent soil is a 3D matrix of 

chemically treated particles of the low refractive index fluoropolymer Nafion, water, 

plant nutrients and air and has water retention and ion exchange properties similar to 

natural soils. Before imaging, the transparent soil was saturated with a refractive index 

matched liquid for appropriate transparency. The substrate was used for 3D imaging of 

living root systems and high resolution imaging of living roots at a cellular level in 

relation to the fluorescent-labelled Nafion particles of the substrate.

Soil physical conditions influence the growth rate and direction of roots. The substrate 

compaction and particle size range was varied in transparent soil to quantify the effect 

of these conditions on 3D root trajectories of lettuce plants. Root systems of plants 

grown in different substrate conditions were imaged and the root lengths were 

measured along with the curvature and verticality at sequential points along the roots. 

There was a greater range of root curvatures in substrates with larger particle sizes and 

deviation from vertical increased with distance along the root. In substrates with 

different compactions, there was no effect of compaction on the root curvature or
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verticality measurements, however the measurements were influenced by the distance

along the root.

Soil microbes were also studied using the transparent soil system. Pseudomonas 

fluorescens, a plant growth promoting rhizobacteria, associates closely with plant roots 

and can act as a biocontrol agent by conveying pathogen resistance to the plant. For this 

reason, the interaction between lettuce roots and GFP labelled P. fluorescens was 

studied with the aim of quantifying colonisation patterns along the root and the 

abundance of bacteria in the substrate surrounding the roots. Transparent soil with two 

different particle size categories was used to investigate if the substrate particle size 

affected the colonisation of the roots. Imaging of living roots and bacteria was carried 

out at 3D sample points along the root and adjacent to the root and it was found that 

there was a greater abundance of bacteria on the roots than in the substrate. There was 

a consistent base level of bacterial fluorescence in imaging points that did not include 

roots, regardless of whether or not there was a plant in the sample and the distance 

from the root. Substrate particle size had no effect on root colonisation.
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Chapter 1. General Introduction
The agricultural revolution of the mid-20th Century greatly increased the yield of crops 

around the world. This was achieved through the breeding of heavy-cropping dwarf 

varieties of wheat and rice that were compatible with generous fertiliser application 

(Evans, 1998). Now, half a century on, the agriculture industry is facing more challenges 

than ever before. These include a decrease in the application of fertilisers because fewer 

resources will be available to produce them and because of the harmful environmental 

effects of the fertilisers from agricultural land (Rouse et al., 1999, Hart et al., 2004). In 

addition, many parts of the world are experiencing an increasing number of extreme 

weather events such as flooding (Manton, 2010) which can have direct impacts on 

agricultural productivity. An increasing world population, estimated to reach 15 billion 

by the end of the century under some projections from the United Nations (Anon., 

2010), will have unprecedented food demands.

Plant nutrient use efficiency (NUE) is the percentage of nutrient input that is recovered 

as nutrient output (Sheldrick et al., 2002) and the global NUE of nitrogen, phosphorus 

and potassium has been estimated at 50%, 40% and 75% respectively (Tan et al., 2005). 

The roots of crop plants are responsible for the plant's uptake of resources from the soil 

(Waisel et al., 2002) and it is thought that plant's NUE is influenced by numerous root 

properties such as the architecture of the root system (Lynch, 2007) and also by 

rhizosphere processes such as the release of compounds in root exudates and the
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association between roots and soil microorganisms (Rengel & Marschner, 2005).

Manipulation of root phenotype for improving NUE and therefore crop production is 

one area that holds great potential for improving the efficiency of agriculture (Zhu et al., 

2011). First, we need to gain a better understanding of the mechanisms that are 

involved in soil exploration and nutrient acquisition by roots.

1.1 Root growth and function

Root elongation is localised to meristematic regions, unlike in most animals where 

growth is diffuse with parts growing simultaneously. Russell (1977) described a 

conceptual model of the root apex which divided the apex into zones: meristematic, 

elongation and maturation or differentiation. This model was expanded to include the 

branching zone and the zone of moribund roots (Coleman et al., 1983).

As well as contributing to the root cap, cells from the meristem also go on to form all of 

the other root tissues. This process begins when the meristem moves forward. Cells 

divide and elongate, pushing the root tip through the soil in the zone of elongation. This 

zone is temporal and spatial because the same region of soil is occupied first by the 

meristem, then by the zone of elongation, the zone of differentiation and eventually the 

same cells in the same space will be mature, differentiated root tissue. During 

elongation, the cells expand and the differentiation process begins, where protoderm, 

provascular tissue and ground tissue form with cells that will become the epidermis, 

vascular tissue and cortex during maturation, respectively. In maturation, the cortex 

cells begin to transport minerals from the epidermis to the vascular tissue. Intercellular
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spaces also appear which allow oxygen to diffuse through the root. A mature

endodermis is also formed during this time. This provides a water tight sheath (the 

Casparian band) around the vascular tissue which is required for the processes of 

nutrient transport and transpiration to operate (Moore et al., 1998b).

1.1.1  L a te r a l r o o t  fo r m a t io n

Lateral roots are roots that initiate from another root, and so most of the mature root 

system consists of lateral roots. Therefore where and when they form are extremely 

important aspects in the formation of the root system. Lateral root initiation is a 

genetically regulated process in that the actual initiation will always happen in the same 

way, but the timing of initiation and the resulting lateral root density are very plastic 

depending on soil characteristics and other environmental factors. In angiosperms and 

gymnosperms, lateral roots develop from a small group of founder cells of the pericycle 

inside the parent root (McCully, 1975). Although these cells have left the apical 

meristem, where division usually occurs, they remain competent to divide (Dubrovsky et 

al., 2000, Beeckman et al., 2001). Once the founder cells are specified, they undergo cell 

divisions to give rise to the lateral root primordium, which then grows through the 

cortex of the parent root.

The development of lateral roots in Arobidopsis has been described in detail and divided 

into distinct stages based on anatomy and cell divisions (Malamy & Benfey, 1997). Once 

the primordium has reached the root surface, it emerges through the epidermis, and 

becomes a new meristem (De Smet et al., 2006). Overall, describing lateral roots by
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measuring parameters such as their distribution along the parent root, branching angle

and length provides a great deal of information about the root system and its responses 

to environmental conditions.

1.1 .2  R o o t  s y s t e m  a r c h it e c tu r e

The root system architecture (RSA) results from the branching pattern and trajectories 

of root apical meristems growing through the soil and has an influence on the survival 

and yield of the plant (Yang et al., 2012). Each root apical meristem executes individual 

growth actions such as expansion and initiation of new apical meristems, and the 

resulting root system is a complex network of interconnected roots (Dupuy et al., 

2010b). The shape of the root system can be quantified by measuring variables such as 

root depth, volume and diameter (Hodge et al., 2009) and the topology of root 

architecture can be described using densities of graph structures (Fitter & Stickland, 

1992, Dupuy et al., 2005). High throughput phenotyping of root system architecture is a 

promising new approach for selective breeding of plants with desirable rooting 

characteristics and new methods are needed for improving the reliability and 

throughput for root system imaging (De Dorlodot et al., 2005, Yazdanbakhsh & Fisahn, 

2009, Trachsel et al., 2011, Zhu et al., 2011).

Roots are adapted to grow in soil, which is an extremely complex environment. It usually 

consists of a heterogeneous matrix of mineral fragments, organic matter particles, air- 

filled pore spaces and moisture and thus provides a spatially and temporally variable
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supply of resources for plants (Park, 2001). Roots must interact effectively with the soil

in order to exploit the resources and to securely anchor the plant.

1.2 Root-soil interactions

Soil conditions are highly variable depending on, for example, the soil structure, 

moisture content and compaction. Roots are able to respond to these variable factors. 

For example, the root cap is an important part of the root, which facilitates its passage 

through the soil along with its other functions in perceiving signals such as gravity, 

pressure and moisture (Barlow, 2002). Root cap cells produce mucilage which lubricates 

the root and promotes nutrient mobilisation for uptake. Along with mucilage to 

promote movement through the soil, border cells of the root cap are sloughed off at the 

edges, reducing friction experienced by the root (lijima et al., 2000). There is a constant 

turnover of cells as division occurs in the meristem adding cells to the root cap.

Root hairs are tip-growing extensions that form from root epidermal cells. Their pattern 

of formation differs greatly between species (Datta et al., 2011). They greatly increase 

the root surface area (Smith et al., 1979) and have a strong influence on the rhizosphere 

by releasing organic compounds and interacting with microorganisms (Bertin et al.,

2003). Root hairs can enter narrow soil pore spaces because of their very small 

diameters (e.g. 10 pm in Arabidopsis (Grierson & Schiefelbein, 2002)) and thus increase 

the effective diameter of the root. There is also developmental plasticity in the 

formation of root hairs. For example, root hair length is influenced by external 

phosphorus supply (Zhu et al., 2010).
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The rhizosphere is the zone of soil surrounding the roots which is influenced by the

plant (Waisel et al.; 2002). The rhizosphere is distinct from the bulk soil for a number of 

reasons. The chemistry of the rhizosphere is strongly influenced by the plant, because it 

is a site of exchange, where mineral elements are taken up by roots, forming a nutrient 

depletion zone. Organic compounds are released by roots, which act as a food source 

for rhizosphere microorganisms (Badri & Vivanco, 2009). Roots can cause physical 

compaction of soil in the rhizosphere which can in turn affect the soil hydraulic 

conductivity (Aravena et al., 2011). In some soil types, there can be a higher water 

content in the rhizosphere soil than in the bulk soil despite water uptake by the roots, 

for example, due to hydraulic redistribution (Caldwell & Richards, 1989) and compaction 

(Aravena et al., 2011).

Rhizosphere microorganisms play very important roles in the soil ecosystem. They can 

enhance the availability of nutrients to the plant, for example rape plant roots form 

essential associations with soil bacteria which produce siderophores (compounds that 

enhance the availability of Fe) in order to acquire Fe from the soil (Rroco et al., 2003). 

Rhizosphere bacteria can also protect the plant from other bacterial and fungal 

pathogens (Dowling & O'Gara, 1994). Arbuscular mycorrhizal fungi associate with plants 

and many studies have concluded that the association between AM fungi and plant 

roots has a positive influence on the plant's nutrient acquisition (Koide, 1991, Hernando 

Posada et al., 2013), for example by increasing phosphorus supply to plants (Matsubara 

& Harada, 1996, Hernando Posada et al., 2013).
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1.2 .1  I n f lu e n c e  o f  s o i l  fa c to r s  o n  r o o t  g r o w th  a n d  RSA

Phenotypic plasticity is a fundamental characteristic of the modular growth of root 

systems. Individual roots have an enormous capacity for altering their growth in 

response to local environmental factors to effectively explore the soil (Hutchings & de 

Kroon, 1994). This capacity tends to be larger in roots than in other plant organs, such as 

shoots, and in other organisms, for example animals, where there is very little plasticity. 

These plastic responses in root growth serve the purpose of investing the plants' 

resources in the most profitable, efficient way. The parameters of RSA that are sensitive 

to alteration include root hair formation, primary root growth, root branching angle, 

lateral root formation and anatomy. Roots alter aspects of their growth in order to 

maximize the plant's performance by responding to the environment (Hodge, 2006).

An illustrative example of root plasticity is the proliferation of root growth in soil 

patches with a relatively higher nutrient content, a response first noted around 150 

years ago (Nobbe, 1862). There have been many studies since then focusing on the 

changes in RSA induced by nutrient heterogeneity (Jackson et al., 1990, Hutchings & de 

Kroon, 1994, Hodge, 2004, Hodge, 2006). The plasticity of root growth in response to 

nutrient availability is usually considered as foraging and is appropriate in soils 

considering the inherently patchy distribution of nutrients that occurs (Robinson, 1994).

The proliferation of lateral roots within a nutrient rich patch is the most frequently 

studied local response to nutrients. The first detailed studies focused on lateral root 

responses to nitrate (Drew et al., 1973, Drew & Saker, 1975) and phosphate (Drew &
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Saker, 1978). This was achieved by applying N03' (nitrate), NH4+ (ammonium) and P, 

(inorganic phosphate) to a segment of barley seminal roots and it was found that this 

stimulated lateral root proliferation. This proliferation consisted of an increase in the 

number of primary and secondary lateral roots and a faster elongation rate in the 

treated zone. The proliferation response in nitrate patches has also been investigated in 

Douglas fir (Pseudotsugo menziesii) where root proliferation in a N rich patch increased 

twofold when the rest of the root system was deprived of N (Friend et al., 1990). The 

direction of root growth is not only determined by nutrient availability, but in fact the 

soil physical conditions play an important role in shaping the root system.

Mechanical impedance to the root can occur in soil that is too hard due to compaction 

or soil drying and can limit root elongation (Taylor & Ratliff, 1969, Bengough & Mullins,

1990). Strong soils result in an increase in root diameter and a decrease in root 

elongation, which alleviates stresses at the root tip and decreases bending but limits 

plant development (Clark et al., 2003, Valentine et al., 2012). Certain root tip traits may 

be beneficial for growing through strong soil and root hairs could play an important role 

for anchorage when the root tip experiences mechanical impedance (Bengough et al., 

2011). The overall effect of strong soils is that they can cause plants to have smaller, 

shallower root systems. In barley, high soil strength influenced seminal root elongation 

more than lateral elongation and in a split-root experiment with roots growing in 

compacted and loose soil simultaneously, there was a proliferation of root growth in the 

loose soil (Bingham & Bengough, 2003).
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There is still much to learn about the implications of soil factors, such as compaction, on

the growth and development of the whole plant (Tracy et al., 2011). A complete 

understanding of the reasons for yield reduction in crops grown at high soil strength 

would require a systems approach to link RSA phenotype, root cellular responses, root 

to shoot signalling and genetic processes (Whalley et al., 2006). The tools for studying 

these plant processes are becoming available, however the observation of plant roots in 

an environmentally relevant way has long been a problem for plant scientists.

1.3 Classical methods of studying roots

Because of the opacity of soil, roots are difficult to observe in their natural environment. 

There are some classical methods for observing roots which have sought to evade this 

problem. Whole plant excavation allows measurements of the entire root system, but 

provides little information about the root distribution and may cause damage to the 

plant, especially to fine roots (Weaver, 1926). The profile wall method (Schuurman & 

Goedewaagen, 1971) involves digging a trench into the soil surrounding the roots and 

using the vertical wall of the trench to observe root distribution. This enables only a 

section of the root system to be observed and it may be difficult to determine which 

plant the roots are connected to. In order to obtain more information about the position 

of roots, the pinboard method was developed (Schuurman & Goedewaagen, 1971), 

where a board with a grid made of metal pins is driven into a trench wall to hold the 

roots close to their original position while the surrounding soil is removed. This provided
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more information on the root architecture in situ but the process of separating the roots

from the soil could cause the roots to move and image analysis was difficult.

Another widely used method is coring where a sample of soil is taken using an auger 

(Polomski & Kuhn, 2002). Coring gives information about root length and weight in a 

small area but no insight into the overall architecture. In this case also, the roots must 

be separated from the soil. Despite these restrictions, coring can provide useful data 

and has recently been tested for its suitability in characterising root length density in 

maize (Buczko et al., 2009). To observe root distribution precisely, blocks of soil 

containing roots can be embedded with resin which fixes the soil particles and roots in 

situ. It is then possible to grind the surface of the block so that it can be imaged at a 

series of thin sections (Melhuish, 1968). This method has been built upon since its 

original inception, for example, through fixing samples with varnish in the field before 

removal and impregnation with resin to improve the precision of the technique 

(Mooney et al., 2006). Despite its advantage of accuracy, this process is extremely time 

consuming and requires the use of specialised equipment.

The techniques described above can be used to study the distribution of roots in soil but 

different approaches have been used to investigate changes in distribution over time, or 

growth. Rhizotrons can be used for this purpose. They can be subsoil structures 

consisting of transparent windows or transparent (usually Perspex) tubes, through 

which the roots can be viewed and their growth can be tracked over time (Rogers, 1933, 

Pierret et al., 2003, Faget et al., 2010). This method has provided useful information, for
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example on the uptake of water from soil by wheat roots (Boyer et al., 2010), although

there are restrictions. The nature of this observation method determines that to be able 

to see a root, it must be touching the viewing panel, which undoubtedly will affect the 

roots' growth and behaviour compared with unrestricted growth in soil. Recording and 

measuring roots often requires the production of images.

1.4 Application of imaging to root research

Imaging is the reproduction or visual representation of objects. An image represents an 

object in a way that can persist over time and can also be manipulated, measured and 

observed. Imaging utilises electromagnetic (EM) radiation from a range of wavelengths 

in the EM spectrum (Figure 1.1), usually ranging from infrared radiation with a 

wavelength of c. 105 m to X-rays with a wavelength of c. 1010 m. The way in which the 

EM radiation is used in imaging varies with wavelength and with application. Imaging 

with visible light can be performed by capturing light that is reflected from objects, as in 

the very first cameras and modern CCD cameras. Fluorescence imaging can also be 

performed with light in the visible and ultraviolet spectra and involves the absorption of 

light by a material which subsequently emits light of a different, longer wavelength. X- 

rays can penetrate some materials more easily than light and so in X-ray imaging, the X- 

rays are projected through an object and are then detected from the opposite side of 

that object. An image is produced which maps the different levels of X-ray absorption 

across the object.
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Figure 1.1. The electromagnetic (EM) spectrum. Imaging uses EM radiation in the 

range of infrared (10~5 m) to X-ray (1010 m). This image is reproduced under a free 

documentation license (GNU).

Imaging has proved to be an important tool in root biology. On the large scale, imaging 

allows researchers to address questions about the structure and geometry of the root 

system (Wang et al., 2008) and individual roots and imaging at different time points 

allows the measurement of further parameters such as growth rate (Yazdanbakhsh & 

Fisahn, 2009). Live cell imaging and its associated genetic tools has provided information 

about signalling between root cells and the activity of various cell types, mostly through 

targeted expression of fluorescent proteins (Day & Davidson, 2009). The science of 

image analysis is also facilitating quantification of image data, and in fact there are tens

12



of software packages dedicated to analysing root system architecture (Lobet, 2012).

Ultimately, being able to use imaging to find out where roots are and to localise events 

within their cells and in the rhizosphere in relation to the substrate structure will 

contribute to knowledge about their functionality and may be helpful in parameterizing 

root models.

1.4 .1  Im a g in g  r o o t s  in  s o i l

X-ray micro-tomography (X-ray pCT) provides a useful, non-destructive tool for imaging 

roots in soil (Gregory et al., 2003, Heeraman et al., 1997, Watanabe et al., 1992). 

Recently, it has been demonstrated that this technique can be used in screening of crop 

plants for root traits (Gregory et al., 2009) and for imaging root system architecture at a 

series of time points (Tracy et al., 2012). One major limitation of X-ray pCT has been the 

image resolution. However, as the technology for the scanners has improved, the 

resolution has increased and it has been demonstrated that it is possible to acquire 3D 

images of the small roots of Arabidopsis thaliana plants in soil (Tracy et al., 2010, 

Dhondt et al., 2010). One of the main advantages of X-ray pCT is that it is possible to 

analyse soil structure in 3D as well (Young et al., 2001). Therefore, there is potential for 

this technique to be used for detailed analysis of the interaction between roots and soil 

particles, although the development of tools for this kind of analysis is extremely 

complex (Schmidt et al., 2012).

Another technique that can be used for analysis of roots in soil is Nuclear Magnetic 

Resonance (NMR) imaging, which has been used in studies of root systems in different
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types of soil (Bottomley et al., 1993, Bottomley et al., 1986). The effectiveness of this

technique varies with different soil types, soil water content and the amount of 

ferromagnetic particles in the soil (Rogers & Bottomley, 1987). It has proved to be a 

useful tool for studying water movement in plants (Scheenen et al., 2000) and in 

detailed investigations into plant metabolite production (Kockenberger, 2001).

Although there are new NMR and X-ray pCT scanners being developed to allow a greater 

image resolution (< 0.5 pm with X-ray scanners developed for materials research (Tracy 

et al., 2010)), there are physical limits to throughput and contrast with these methods 

and much higher resolutions can be achieved with optical techniques. The scanning 

process is time consuming and it is expensive to buy and run a scanner, therefore it is 

not yet suitable for high throughput screening of root traits and the technology is not 

available to all researchers. The data produced are always greyscale and so researchers 

rely on complex segmentation techniques (Zhou et al., 2006, Mairhofer et al., 2012) to 

discriminate the roots from the soil particles.

1 .4 .2  O p tic a l im a g in g  o f  r o o t s

Light imaging covers a broad range of techniques where the uniting factor is that the 

information from the sample that is captured to create the image is in the form of light, 

ranging from ultraviolet to near infrared in the electromagnetic spectrum (Figure 1). 

Light interacts with matter in many different ways such as reflectance, absorption and 

fluorescence and it is these interactions that can be exploited in order to produce 

images in powerful ways. In many cases light imaging is suitable for studying biological
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samples because it is possible to cover a huge range of scales, from satellite imaging

covering thousands of kilometres per image, down to a few nanometres in resolution in 

3D with 3D structured illumination microscopy (Gustafsson, 2005, Schermelleh et al.,

2008). Acquisition is usually quick, facilitating imaging over time or studying large 

numbers of samples and numerous research groups have custom-built their own 

systems at relatively low cost to suit a particular application (Sharpe et al., 2002, 

Huisken et al., 2004, Santi et al., 2009, Clark et al., 2011). It is also possible to image a 

host of root and rhizosphere processes using light imaging, rather than simply the root 

structures themselves. However, light cannot penetrate the soil for imaging roots, and 

so various methods for growing roots in transparent systems have been developed to 

circumvent this problem.

1 .4 .2 .1  G ro w th  e n v ir o n m e n ts  s u i ta b le  f o r  l ig h t  im a g in g

Common methods for culturing plants for optical imaging of the roots involve using 

growing conditions which are usually homogenous physically and in water and nutrient 

distribution. These methods include hydroponics (Alloush, 2003) and aeroponics 

(Redjala et al., 2011). In hydroponics the root system is supplied with a plant nutrient 

solution which is usually circulated and aerated to provide oxygen and maintain the 

supply of nutrients to the roots. Aeroponics is similar to hydroponics, but the roots are 

misted with the nutrient solution. Such systems have been used to grow plants for 

studying, for example, cellular divisions in Arabidopsis roots (Sena et al., 2011), pH in 

maize root cortices (Kosegarten et al., 1999), and the root system architecture of rice
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plants (De Dorlodot et al., 2005). Another approach is the pouch system where plant 

roots grow on the surface of moistened germination paper (Hund et al., 2009, Liao et al.,

2001). Previous imaging studies on 3D root system architecture (RSA) have been 

conducted using plants grown in phytagel, which is similar to agar (Fang et al., 2009, 

Fang et al., 2011, Clark et al., 2011). Previous work has shown that agar and agarose 

behave very differently to soil with relation to soil strength and therefore great care 

should be taken when interpreting the results of experiments using different gel 

strengths to impose physical impedance on roots (Clark et al., 1999). The availability of 

suitable transparent growth substrates for root studies, particularly in situ and/or in 3D, 

has been a major limitation in the application of optical imaging to root research.

1 .4 .2 .2  C o m m o n  m e th o d s  f o r  s tu d y in g  r o o ts  u s in g  l ig h t  im a g in g

1.4.2.2.1 Cam eras and lig h t m icroscopes

Information on root growth has been obtained using fairly simple imaging techniques, 

such as cameras and scanners. For example, time lapse video recording was used to 

image root growth in response to physical impedance (Gordon et al., 1992) and maize 

roots' response to tensile loading (Hamza et al., 2006). Root gravitropism has also been 

studied using video recording (Mullen et al., 2000, Brooks et al., 2010). Images from a 

relatively simple camera setup have also been reconstructed to produce 3D images at 

the root system scale in order to measure phenotypic root traits of rice genotypes (Clark 

et al., 2011). For detailed studies of the cells of root tissues, magnification is required 

and so microscopes are used and most modern light microscopes can be operated with
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a CCD camera for capturing images. The light microscope has helped to provide great

insight into the anatomy of roots, and has often been used to examine sections of roots 

with coloured stains (e.g. Zeier et al., 1999, Kubo & Hayashi, 2011). It has also been used 

to study living plants and for example, Beemster and Baskin (1998) analysed the 

relationship between root cell division and expansion. Arguably the most exceptional 

benefit of using light for imaging is the potential to detect luminescence, which is light 

emitted from material as an output from a reaction other than heat. This includes 

fluorescence, where light is emitted as the result of the absorption of photons and 

bioluminescence, where light is emitted via a chemical reaction (Daintith & Martin,

2005).

1.4.2.2.2 Fluorescence m icroscopy

To use fluorescence microscopy, the sample being studied must have some form of 

luminescent properties. The advantage of using fluorescence is that the fluorescent 

molecules (fluorophores) are excited by and emit light of different wavelengths. 

Therefore, with the use of filters, it is possible to image several fluorescent signals 

separately. Fluorescent dyes can be used to label particular anatomical features without 

the need for modification of the plant itself (Haseloff, 2003), such as neutral red which is 

taken up into the vacuoles of living plant cells (Dubrovsky et al., 2006). Alternatively, 

plants can be modified to express genetically encoded fluorescent proteins such as the 

green fluorescent protein from Aequorea (GFP) and its spectral variants, which have 

become indispensable tools in the life sciences as biological markers (Day & Davidson,

2009). It has allowed, for example, the production of plants with a range of spectral
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variants of fluorescent proteins marking cell membranes and nuclei. This has enabled

automated analysis of the dynamics of root cell shape during development (Federici et 

al., 2012) and new image analysis tools (Wuyts et al., 2011) to compute tissue growth in 

the root meristem.

Compound microscopes can be equipped with UV light illumination and excitation / 

emission filters so that a combination of light imaging and fluorescence imaging can be 

used. For example, Kubo and Hayashi (2011) related gene expression to root 

morphology of an Arabidopsis mutant and fluorescent probes were used to image Na+ 

and K+ in the cytosol of root hairs under salinity stress (Halperin & Lynch, 2003). 

However, confocal laser scanning microscopy (CLSM) has superseded fluorescence 

microscopy because of the various advantages that it offers. Confocal microscopes use 

laser illumination to excite fluorophores in the sample and a specified range of the 

emitted light is collected from the point of focus, and out-of-focus light is excluded by 

an aperture. The integration of the aperture, which blocks out of focus light, allows a 

sample to be scanned at different depths, or to be "optically sectioned", and by this 

means a 3D image can be acquired (Hepler & Gunning, 1998, Pawley, 2006). The latest 

confocal microscopes now allow subcellular resolution at more than 1 mm in depth and 

have up to 32 channel detectors.

CLSM has been used frequently in the field of root research. Bengough et al. (2010) used 

confocal imaging to collect data from roots growing in a granular media consisting of 

glass ballotini (spherical beads) and were able to track the movement of the root cells
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over time. It has also been possible to image internal chemical processes which regulate

the systemic functions of plants. The chemistry of the root apoplasm and cytosol is 

important for the regulation of nutrient uptake. Fluorescent probes injected into living 

plants have been used, for example, to measure spatial differences in apoplastic pH in 

relation to corn root gravitropism (Taylor et al., 1996) and Ca2+ (Monshausen et al.,

2008). The CLSM system has been used to image spatial and temporal gene expression 

to gain insight into the function of potential regulators of root function. Brady et al. 

(2007) created a detailed spatiotemporal map of gene expression in the developing root 

using a combination of microarray analysis and image analysis, made possible by 

imaging plants with transcriptionally regulated GFP expression.

Another advantage of using fluorescent microscopy is the ability to discriminate 

between roots and microorganisms. This has provided great insight into the biology of 

the rhizosphere including the interaction between bacteria and roots. For example, the 

association between N fixing cyanobacteria and roots has been examined using confocal 

imaging of fluorescent stained roots and bioluminescent cyanobacteria (Ahmed et al.,

2010) and the stages involved in the symbiotic process of root nodulation have also 

been observed in 3D (Haynes et al., 2004), although not in soil. The spatial colonisation 

of tomato roots by Pseudomonas fluorescens has been characterised from imaging 

studies (Gamalero et al., 2005, Humphris et al., 2005). Confocal imaging has also been 

used to examine the role of root hairs in initial root colonisation by rhizobia capable of 

biological fungal disease control (Prieto et al., 2011) and viral movements and 

interactions (Valentine et al., 2004).
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Despite the advances made using these fluorescent imaging techniques, the systems

have some limitations. Firstly, the commercial CLSM systems available are very costly 

and would be outwith the budget of many research groups. There are also physical 

limitations with these traditional fluorescent imaging techniques including poor axial 

resolution, quite a small potential imaging depth, so that an entire 3D root system could 

not be imaged and problems of image distortion that can be caused by spherical 

aberration. There is also the problem that during imaging, the whole depth of the 

sample is being illuminated even though only one thin section is being imaged, which 

can lead to photodamage of the sample due to prolonged exposure to intense laser light 

(Huisken, 2012).

1.4.2.3 E m erg in g  te c h n iq u e s  f o r  o p tic a l  im a g in g

Planar optode imaging has recently been applied to the study of rhizosphere pH 

(Blossfeld & Gansert, 2007, Blossfeld et al., 2010). The technique allows for detailed, 

dynamic 2D imaging of pH gradients with the plants growing in soil and the roots 

growing along a flat surface with a planar optode. By imaging roots at 15-minute 

intervals, daily variations in pH and overall acidification were revealed. The application 

of optodes is not limited to studying pH. For example, Blossfeld et al. (2011) carried out 

a combined study on the dynamics of rhizophere pH and soil oxygen, which has 

important implications in the survival of rhizosphere bacteria as the rhizosphere 

becomes hypoxic with root growth over time. The technique has also been used to 

study the depletion of ammonium around roots (Stromberg, 2008) and in bulk soil (Delin
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& Stromberg, 2011). Because of the detailed quantification of rhizosphere processes

made possible with this technique, it seems likely that this adaptable approach will 

become more popular and available to root researchers as an imaging tool.

Light sheet-based microscopy techniques are suitable for 3D fluorescent imaging of 

biological samples. The method involves a sheet of laser light which illuminates an 

optical section of the sample. An objective lens is positioned perpendicularly to the 

illumination plane which the illuminated section of the sample is focused on. 3D images 

are created by moving the sample through the illumination plane while a sequence of 

2D images is captured (Huisken et al., 2004). This technique has advantages over CLSM 

because of an improvement in the axial resolution and also because the excitation light 

illuminates a much smaller section of the sample for each image, thus avoiding potential 

problems of photodamage to the sample. This is particularly important when imaging 

live specimens at multiple time points. Light sheet microscopy (LSM) has been applied to 

the study of plant roots. Sena et al. (2011) used light sheet fluorescence microscopy to 

image cell divisions and the nuclear dynamics of Arabidopsis roots grown in a small 

hydroponics system over a few days. Arabidopsis primary root tip growth and lateral 

root emergence have also been imaged using a light sheet based system (Maizel et al.,

2011).

Recent advances in optical imaging allow imaging of large samples in 3D, up to several 

mm in size, and with high resolution. Optical projection tomography (OPT) was 

developed for imaging animal embryos and involves projecting light through the sample
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and collecting transmission images while the sample is rotated through 360° (Sharpe et 

al., 2002). Fluorescence can also be captured by using a UV light source to illuminate the 

sample and emitted light can be captured as well as the transmission images. This has 

proved very useful for imaging embryo morphology and gene expression patterns 

simultaneously (Fisher et al., 2008, Fisher et al., 2011). OPT has been used to image 

plant shoots and roots (Lee et al., 2006) but the challenge remains to use this approach 

to image living plant roots over time.

There has been a recent development in microscope optics to allow imaging of large 

samples (up to 6 mm) but with subcellular resolution without the need to reconstruct 

the image from a series of tiles. The development is a giant lens, 0.5 meters in length, 

with 4x magnification, a N.A. of 0.47 and a large working distance of 3 mm. It has been 

called the mesolens (Amos et al., 2010, Saini, 2012). The aim is to integrate the 

mesolens into confocal laser scanning and light sheet microscopes for 3D imaging. The 

mesolens would be extremely useful for many kinds of biological samples and it would 

also be beneficial for imaging plant roots to gather information on the whole root and 

relate the morphology and growth to cellular processes with one image.

1.4.3 Challenges for high throughput phenotyping

Imaging can be used for plant high throughput phenotyping in crop breeding (Furbank,

2009). A large number of root systems can be imaged, information describing the root 

system architecture extracted and analysed and plants with beneficial traits can be 

selected in relation to the genomic information (De Dorlodot et al., 2005, Yazdanbakhsh
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& Fisahn, 2009, Clark et al., 2011, Grift et al., 2011). High throughput, 3D imaging of

roots in an environmentally relevant situation would provide useful information for the 

purpose of selective crop breeding. However this is currently an important challenge in 

the field of root biology because 3D imaging in soil is time consuming and therefore not 

currently suitable for high throughput studies and current growth systems for fast, 

optical imaging do not have the physical heterogeneity of a soil substrate. In order to aid 

the application of new optical imaging techniques to roots and soil biology, it would be 

beneficial to develop alternative growth substrates for plants and soil biota.

1.5 Aims

Because root structures have been evolving to function in naturally heterogeneous 

substrates for millions of years (Elick et al., 1998), it is only logical to try to incorporate 

the physical heterogeneity of soils into substrates for culturing plants for root studies. 

An optically transparent substrate which also incorporated soil-like physical 

heterogeneity would provide root researchers with more environmentally relevant 

alternatives to phytagel and hydroponics for imaging studies. The first aim of this thesis 

is to describe the development of a transparent soil: a transparent, heterogeneous 

substrate that can support the growth of soil biota and is compatible with many of the 

optical imaging techniques described in this Chapter. Secondly, the aim is to use the 

substrate to optically image roots in 3D, producing data suitable for image analysis. The 

third aim is to manipulate the physical properties of the transparent soil in order to 

replicate different soil conditions, grow plants in the substrates, image the root systems
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and analyse the effect of substrate physical conditions on the root growth trajectories.

The fourth aim is to use transparent soil to gain insight into the interactions between 

plant roots and their associated bacteria.
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Chapter 2. Application of refractive index matching to 
engineer a soil-like transparent substrate

2.1 Introduction

Soil is a heterogeneous matrix of rock fragments, organic matter, water and air. It is this 

structure that is essential for hosting a vast array of soil organisms, and indirectly all 

other terrestrial life (Park, 2001). Although there are methods that enable imaging in 

natural soil in situ, ways of observing soil using light are limited. Light and optics as a 

medium for imaging biological samples can provide valuable information through the 

use of dyes and fluorescent proteins (Gurr, 1971, Day & Davidson, 2009). For this 

reason, it is beneficial to use a transparent substrate instead of soil so that the light used 

for imaging can penetrate the substrate. Previous studies have used gel-based 

substrates for growing plants and imaging the roots (Fang et al., 2009, Clark et al., 2011) 

but these substrates do not have any of the chemical and physical complexity of real 

soil. The objective of this study is to engineer a transparent heterogeneous substrate 

that can be used for imaging the roots of living plants and soil organisms in situ using 

the principle of refractive index (Rl) matching.

Materials and techniques that can be applied to engineer a Rl matched transparent 

granular substrate that could be used for imaging plants and soil organisms were 

investigated. At the boundary of two transparent materials with different refractive 

indices, the path of light is distorted through refraction (Figure 2.1, B). By matching the
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Figure 2.1. Illustration of the use of Rl matching for soil science. A) Soil sample 

saturated with water where the soil itself is opaque and therefore the laser beam 

cannot penetrate the sample. B) Transparent particles of the low refractive index 

fluoropolymer, Nafion in water. The laser beam can penetrate these transparent 

materials but because of the Rl mismatch between the liquid and particles, the laser 

beam is scattered and imaging at depth is not possible. C) Nafion particles in a Rl 

matching liquid. The laser beam penetrates the sample and the amount of scattering of 

the laser beam is greatly reduced by matching the Rl of the liquid and particles.

refractive index (Rl) of a solid and a liquid, this effect is negated so that the boundaries 

between the materials become invisible. Rl matching has proved a powerful approach in 

many areas of physical sciences, such as fluid dynamics (Budwig, 1994) and colloid 

sciences (de Villeneuve et al., 2005). In soil mechanics, amorphous silica particles have
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been used with oil-based Rl matching solutions (Mannheimer & Oswald, 1993) and have

similar mechanical properties to clay (Iskander et al., 2002). This system has been used 

for investigating particle displacement in response to the application of mechanical 

forces. Recently, the technique of Rl matching has been adapted for growing and 

imaging aquatic biofilms on particles of Nafion (Leis et al., 2005) where limited Rl 

matching was achieved using water.

The aim of this Chapter is to develop a transparent, refractive index matched substrate 

with solid particles, water and plant nutrients. This will be done by searching for and 

testing solid transparent materials with low refractive indices and searching for suitable 

aqueous solutions to match the refractive index of the solid materials. Both materials 

are required to have chemical properties that have as little effect on the plants' 

physiology as possible. Manipulating the particle sizes of the solid material is one way to 

control the properties of the substrate and so methods of engineering this property will 

be tested. The interaction between the solid particles and fluorescent dyes is also of 

interest for the purpose of labelling the particles for detection during fluorescent 

imaging and so another aim of this Chapter is to explore the interaction between the 

solid transparent materials and a selection of fluorescent dyes. Overall, this Chapter 

compiles information on transparent materials that were considered and tested and 

describes a series of pilot experiments to test the suitability of different materials for 

use in constructing the transparent soil substrate.
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2.2 Materials for refractive index ( RÎ  matching

In the fields of geotechnical engineering, fluid dynamics and physics, Rl matched soil- 

substitutes have been constructed using materials such as amorphous silica gels or 

powders (Lai et al., 1994, Iskander et al., 2002, Liu & Iskander, 2010, Iskander & Liu,

2010), quartz (Fontenot & Vigil, 2002, Ezzein & Bathurst, 2011) and glass (Mannheimer 

& Oswald, 1993, Marulanda et al., 2000). These materials have been suitable for 

physical studies of soil processes. However they are not suitable for biological studies 

because their RIs are significantly higher than water, meaning that aqueous solutions or 

organic liquids have to be used for matching. The aqueous solutions used in previous 

studies have included glycerine, zinc iodide and ammonium thiocyanate and the organic 

liquids have included kerosene, paraffin oil, turpentine and olive oil (Budwig, 1994). 

These liquids would be unsuitable for culturing plants and soil organisms. We searched 

the scientific literature and online materials databases for transparent materials with 

low RIs with a target value of n < 1.34 (Rl of water: n = 1.33). The other properties that 

were considered in our search were transparency, suitability for sterilisation by 

autoclaving, water retention (how well water is retained in a matrix), suitability for 

manipulation of particle size, ion exchange capacity and cost. Three candidate materials 

are described below.

2.2.1 Cryolite

Cryolite (Na3AIF6) is a rare mineral with a white to transparent appearance (Figure 2.2) 

and a refractive index of 1.336 (Ralph & Chau, 1993-2012). Although cryolite's Rl is very
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close to that of water and is therefore suitable for Rl matching, there are various

practical issues which make it difficult to use. As it is a naturally occurring mineral, it is 

usually the case that there are impurities within the material which impede its 

transparency. It is also fragile and so small grains continually break off while it is being 

handled. Cryolite is also difficult to source because it has been located in very few mines 

globally, including in western Greenland and it is therefore very rare and costly. We 

were able to source the material only from ebay, UK.

2.2.2 Fluorinated ethylene propylene (FEP)

Given the lack of naturally occurring suitable materials, we turned our attention to 

transparent synthetic materials, and in particular fluoropolymers. Teflon FEP is a brand 

of fluorinated ethylene propylene that is produced by Dupont de Nemours® and was 

supplied by Dupont de Nemours®. Additionally, FEP is recycled industrially and we were 

also able to source low cost recycled FEP from Holscott Fluoroplastics Ltd., UK. It is often 

used as a non-stick hydrophobic coating but can be obtained in a non-processed form as 

granulates (Figure 2.3, A). It is reasonably transparent in small volumes and has a Rl of 

1.337 (DuPont, 1996). The hydrophobicity of FEP can be problematic for maintaining 

water availability for plants throughout the matrix, although chemical etching can be 

used to decrease the hydrophobicity (Acton Technologies, 2000 - 2008). It was possible 

to grow Nicotiana benthamiana (tobacco, from SCRI stocks) in a substrate composed of 

FEP granulates with added Modified Strullu Romand (MSR) nutrient medium (Strullu & 

Romand, 1986) medium in 3.5 ml plastic cuvettes (Fisher Scientific UK Ltd., 

Loughborough, UK). The seeds were surface sterilized by washing in 10% bleach
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(Domestos, Unilever, UK) for 20 minutes followed by several sterile dH20 washes. They

were then transferred to the cuvettes on top of the substrate using a pair of fine forceps 

(Figure 2.3, B). Saturation of the substrate was necessary throughout the growth period 

to prevent the plants from drying out, due to the relatively large particle size (approx. 

3 mm) and hydrophobic surface properties of the FEP. Ideally the substrate could be 

used at a variety of water contents therefore these properties were not ideal.

FEP was tested to assess whether it had any chemical effect on the growth of Nicotiana 

benthamiana plants. MSR medium was used for culturing tobacco seeds. FEP particles 

were incorporated into 7 g L1 phytagel (Sigma, International) with MSR nutrient 

medium that was set in 9 cm petri dishes. Seeds were sown on the surface of the 

phytagel and the petri dishes were sealed with 50 mm parafilm (VWR, Pennsylvania, 

USA) and were placed vertically in the growth room so that the roots grew on the 

surface of the gel to negate any mechanical impedance caused by the particles. Controls 

were also set up using phytagel with no FEP. Plants were imaged and the root length 

was recorded after 3, 7 and 10 days. This was done by placing the petri dishes directly 

on a flatbed scanner and scanning at 300 dpi (Epson expression 1640 XL, Hemel 

Hempstead, UK) with a black background. Primary root lengths were measured from the 

resulting scans using the segmented line function from ImageJ software (National 

Institutes of Health, USA). 16 plants were subjected to each treatment. T-tests 

(performed in Sigmaplot 12.3, Systat Software Inc., London, UK) showed that there was 

no significant difference between the root lengths of plants grown with or without FEP 

at 3 days (p = 0.809), 7 days (p = 0.511) or 10 days (p = 0.588) (Figure 2.4).
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Figure 2.2. Particles of the mineral cryolite -  a candidate material for constructing a 

transparent granular, Rl matched substrate. Scale bar = 1 cm.

Figure 2.3. FEP - a candidate material for constructing a transparent substrate. 

A) Granulates of FEP in its unprocessed form. Scale bar = 1 cm. B) Root imaging was 

achieved in an FEP-based, saturated, Rl matched substrate. Red arrow indicates the 

root.
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40 n

Days of growth

Figure 2.4. Mean primary root lengths o/Nicotiana benthamiana plants grown in 

Modified Strullu Romand (MSR) medium (Strullu & Romand, 1986) with and 

without FEP after 3, 7 and 10 days of growth. Error bars show standard error.
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2.2.3 Nafion

Nation is a brand of perfluorosulfonic acid / tetrafluoroethylene (Teflon) copolymer that 

allows ion transport and therefore is commonly used in fuel cells in membrane form 

(e.g. Bi et al., 2008, Lu et a I 2012), although it is also available in pellet form from Ion 

Power Inc. (Figure 2.5, A). It has the chemical structure shown in Figure 2.5, B. The 

material has a low light attenuation, a refractive index of 1.34 (Leis et al., 2005) and is 

hydrophilic when hydrolysed, therefore providing water retention in a matrix of Nafion 

particles. Particles of Nafion have been used for growing and imaging aquatic biofilms 

(Leis et al., 2005) where limited Rl matching was achieved using water. Given these 

properties and the fact that the material has been used in culturing live organisms, 

Nafion was a good candidate for a solid material to use in a transparent granular 

substrate for growing and imaging plants and soil organisms, despite its relatively high

Figure 2.5. Nafion. A) Nafion pellets as supplied by Ion Power Inc. Scale bar = 1 cm. 

B) Chemical structure of Nafion.
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cost (approx. $5 per gram, compared to approx. £5 per kg for FEP). Table 2.1 

summarises the properties that were considered for cryolite, FEP and Nafion.

Nafion FEP Cryolite

Transparency ++ + -

Cost - ++ -

Refractive index 1.34 (Leis et al., 
2005)

1.34 (DuPont, 
1996)

1.338 (Josephson 
& Flessa, 1972)

Sterilization by 

autoclaving

+ + +

Water retention 

(how well water is 
retained in a matrix)

++ - +

Suitability for 
manipulation of 
particle size

++ + +

Ion exchange 

capacity

++ n/a ?

Table 2.1. Summary of properties of the materials that were considered for use in 

constructing transparent soil. ++ indicates very suitable, + indicates suitable and -  

indicates not suitable. The autoclaving procedure was 121 °Cfor 20 minutes at 2 bar. 

Transparency, water retention and the effect of autoclaving were all assessed 

visually. Manipulation of particle size was tested using methods described in section 

2.4, page 38. Values for Rl are quoted from the cited literature.
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2.3 RI matching liquids

The RI matching liquids used in engineering studies (previously described in section 2.2, 

page 28) would not be suitable for growing and live imaging of plants. We did not find a 

suitable solid transparent material with a RI equal to that of water and so it was 

necessary to increase the RI of the solution used to saturate the pore spaces of the 

substrate so that it was equal to the RI of the solid material. The RI was increased by 

adding solutes to water-based plant nutrient solutions, which were either MSR medium 

(Strullu & Romand, 1986) or 2.2 g L'1 Murashige & Skoog Basal medium (Sigma), but the 

additive substance had to be considered carefully. The ideal substance should have little 

effect on the viscosity and light attenuation of the liquid and should not have an effect 

on the organisms cultured in the substrate. Various substances were considered based 

on their transparency, viscosity, effect on plant growth and cost and their properties are 

summarised in Table 2.2.

One of the substances considered was methyl cellulose, but this made the liquid too 

viscous and could not be sterilised by autoclaving without denaturisation. Sucrose was 

also considered as an additive. The relationship between sucrose solution and RI is well- 

described (Rosenbruch et al., 1974) and sucrose has been previously applied in RI 

matching (Budwig, 1994). However sucrose has been shown to invoke responses in the 

gene expression, development and growth of plants (Rook & Bevan, 2003). Sorbitol is an 

alcohol sugar and, like sucrose, is effective at increasing the refractive index of a 

solution. However, unlike sucrose it is a compatible solute (an organic compound that
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does not interfere with enzyme function). Sorbitol solutions do however exert an

osmotic stress on the plants, which has been found to decrease maize root elongation 

rates (Bustos et al., 2008).

Another option that was investigated was Percoll. Percoll is a commercially available 

transparent colloid suspension, normally used for density gradient centrifugation of cells 

and other particles. It is a silica solution with covalently linked silane and is impermeable 

to biological membranes. Although some light scattering occurs with Percoll because of

Methyl
cellulose

Sorbitol Percoll

Effect on plant 
growth

+ - ++

Transparency - ++ +

Cost ++ ++ -

Viscosity - ++ ++

Table 2.2. Summary of chemicals used for increasing the refractive index of the 

matching solution for transparent soil. ++ indicates very suitable, + indicates suitable 

and -  indicates not suitable. The most suitable concentrations to be used were 

determined later based on the refractive index matching. The effect on plant growth 

was inferred from the chemistry of the substances and from literature on the effect 

of sorbitol on plant development (Bustos et al., 2008). Transparency and viscosity 

were assessed visually.
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the colloidal particles, it was deemed to be the most suitable Rl matching liquid because

of its impermeability to membranes and therefore would be suitable for imaging at 

multiple time points to reduce the stress on the plant. However, sorbitol was also used 

in some cases, especially where root imaging was carried out at only one time point, 

because it is much less expensive than Percoll. The properties of methyl cellulose, 

sorbitol and percoll are summarised in Table 2.2. It is worth noting that the 

concentration of the matching solution must be decided on through experimentation in 

combination with the solid material with which it is to match. One method for finding 

the best solute concentration for Rl matching with a solid material is described in 

Section 3.2.2 (page 54).

In order to use transparent soil as a substrate for plant growth experiments, particles of 

the solid material could be added to a container with some water and plant nutrients to 

form a soil-like matrix of solid particles, air-filled pore spaces and liquid in the smaller 

pores. The process of saturating the pore spaces for refractive index matching of the 

transparent soil was performed using a 5 ml syringe and a 60 mm long hypodermic 

needle (BD Becton Dickinson UK Ltd., Oxford, UK). The needle was inserted from the 

surface of the substrate, as far from the plant as possible to the base of the tube where 

the Rl matching liquid was slowly released. In cases where a lot of air bubbles were 

trapped in the transparent soil, gently tapping the sample on the bench helped to 

release them. Visual assessment revealed that trapping of air bubbles became more of 

an issue when small Nafion particle size categories were used (e.g. <500 pm, separated 

by sieving using a 500 pm mesh size sieve, Fisher Scientific UK Ltd., Loughborough, UK.)
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and so another method for releasing air bubbles was investigated. Liquefaction, a

process that occurs naturally in soil due to the application of certain forces (Sonmez, 

2003), was also investigated as a means of releasing bubbles from the saturated 

substrate. This was tested using a lab orbital shaker (Stuart brand, Bibby Scientific Ltd., 

UK) at the highest frequency setting (1250 rpm). The results were that the bubbles were 

often released but the shaking also resulted in disturbance of the plant. For this reason, 

liquefaction was not used but as a technique it does have potential subject to some 

more development and testing and may be particularly useful for larger samples.

2.4 Engineering particle size distribution

Nafion particles were supplied as pellets with a diameter of 3-4 mm (Ion Power Inc.), 

but in order to control the particle size distribution to increase water retention, a 

number of techniques were investigated, mostly based on reducing the initial particle 

size by fracturing the material. The particle size range of sand (50-2000 pm (Jahn et al.,

1990)) was used as a reasonable target particle size for the transparent soil. Although 

Nafion is rigid, the results of preliminary experiments to find a method for breaking up 

the pellets revealed that mechanical impact (using a hammer) of dry pellets at room 

temperature caused their deformation rather than breaking them up (i.e. they were 

squashed rather than shattered), due to the structure of the polymer. This was 

concluded after visual assessment. The results were similar when a standard ball mill 

(MM200, Retsch, Castleford, UK) was tested.
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In general freezer milling involves a sample holding cylinder with a metal impactor

which operates in a tank of liquid nitrogen. The effect of the liquid nitrogen is to cool 

the material, thus changing its mechanical properties making it more brittle. A freezer 

mill (6850, SPEX SamplePrep, UK) was effective for reducing the size of Nafion pellets 

into a range of particle sizes. Duration and frequency of milling could be controlled in 

order to manipulate the resulting particle sizes. The most effective procedure was found 

to involve a period of precooling a sample of 10-20 g for 2 minutes in the sample 

holder, in a polystyrene box with liquid N2, milling at the highest frequency (10 arbitrary 

units) for a period of 2 minutes and then sieving through a series of sieves with mesh 

sizes 500, 850, 1250 and 1600 pm (Fisher Scientific UK Ltd.). Particles larger than 1600 

pm were returned to the freezer mill. Once all of the particles were smaller than 1600 

pm, the distribution of material in each of the size categories was visually assessed and 

there were usually more particles in the largest size categories. To even-out the 

distribution for subsequent experiments where equal volumes of the different particle 

size categories were required, some of the particles in the largest category were 

returned to the freezer mill.

Milling at room temperature or in liquid nitrogen was not sufficient to reduce the size of 

FEP particles. Some deformation occurred after using milling machines but the particles 

did not shatter. A Tesco BL09 350W Value Blender (Tesco, Dundee, UK) was also tested 

for breaking up the FEP particles but was not effective. These conclusions were drawn 

after visual assessment of the particles after hammering, milling or blending. The 

chemical structure of FEP is quite different from Nafion and it is possible that the
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porosity of Nafion could make it more susceptible to breaking during freezer milling. 

Probably the best option for making FEP with customised particle sizes would be to 

commission production at the melt extrusion stage, although this was not carried out.

2.5 Controlling the properties of the solid/liauid 

interface

It is important to be able control the surface properties of the solid particles because 

the interaction with water has an effect on the overall water retention of the substrate. 

Water tension at the surface of particles is a significant contributing factor to soil water 

retention and therefore the availability of water to the roots. Since most polymers, such 

as FEP, are hydrophobic, the water retention of a particulate matrix of these materials 

would be poor. Hydrophilic particles of polymers such as Nafion however have a greater 

propensity to maintain a coating of water under non-saturated conditions, thus avoiding 

complete drying of the substrate. It was also desirable for the particles to be hydrophilic 

since the Rl matching technique involves saturation of the substrate before imaging and 

it was thought that air bubbles were less likely to form and become trapped when the 

solid particles are hydrophilic.

A number of approaches were investigated for increasing the water retention of FEP. 

Hydrophilic coatings are available for use in the sailing industry. One such coating was 

tested by spray coating with an aerosol -  hyspeedkote (Mailspeed Marine, UK), but was 

not effective because it did not adhere to the FEP particles. Hyspeedkote is orange in 

colour and so it was clear from visual assessment after spraying that the chemical was
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not coating the FEP particles. Chemical etching is used for FEP to improve bonding with

other materials. It involves submerging the FEP in the chemical etchant, FluoroEtch® 

(Acton Technologies, Pennsylvania, USA), which strips the fluorine from the carbon 

backbone of the FEP, replacing it with hydroxyl, carbonyl and carboxyl groups, changing 

its surface structure to allow bonding (Acton Technologies, 2000 - 2008). This process 

was tested on 2 pieces of FEP tubing, 5 cm length, 3 cm diameter (Holscott 

Fluoroplastics Ltd., UK) by submerging them in a beaker of undiluted FluoroEtch® 

(enough to submerge the tubes) for > 1 hour. It was found, from visual assessment of 

the contact angle between the etched and non-etched tubes and water (where an acute 

contact angle indicated high hydrophobicity and an obtuse contact angle indicated low 

hydrophobicity) to decrease the hydrophobicity of the material. The addition of 

surfactants to the liquid in the substrate was also tested as a means of reducing the 

number of trapped air bubbles after saturation. The number of bubbles was assessed 

visually and it was found that the addition of surfactants did not lead to a noticeable 

improvement.

Nation is available in precursor and acid forms, which have different surface properties. 

They exchange ions in solution and this process is inextricably linked to physics of the 

solid / liquid interface.

2.6 Ion exchange

Ion exchange capacity is also an important property of soil, because it allows the 

adsorption of mineral ions to soil particles. These ions exchange with other ions in the
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soil water, thus supplying nutrients for plant nutrition. It is therefore an important

factor to control in an artificial system. Unlike FEP, Nation has ion exchange capabilities 

and if directly combined with any plant nutrient solution to create a substrate, the 

protons of the Nation's sulphonic acid groups (SOsH+) exchange with other cations in the 

solution and the excess protons in the solution causing it to become acidic very rapidly 

and the pH of the solution can become very low and therefore unsuitable for any plant 

growth.

I experimented with methods described by Van Nguyen et al. (2007) for chemically 

treating the surface of the Nation particles in order to remove inorganic impurities and 

ensure the full conversion to the H+ form before occupying the surface exchange sites 

with common soil cations. It was found that by repeatedly washing a 10 g sample of the 

hydrolysed Nation particles with a concentrated plant nutrient solution (MSR medium at 

stock concentration (Strullu & Romand, 1986)) by immersing the particles in a beaker 

with a volume sufficient to cover the particles, cations from the nutrient solution bound 

to the exchange sites, replacing the protons, which were discarded by changing the 

washing solution. The process was monitored by measuring the pH after each wash 

using a using a desktop pH meter (Mettler Toledo FE20). Eventually, the pH remained 

stable, showing that the exchange sites were saturated with cations such as Mg2+, K+, 

Ca2+, and Na+.

This process resulted in the development of the following protocol which was used for 

preparing Nafion particles for transparent soil and was used throughout the thesis.
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Cation exchanging Nation particles were made by ensuring full conversion to the acid 

form by washing in a solution of 15% w v 1 KOH, 35% v v 1 DMSO and 50% dH20 at 80 °C 

for 5 hours, then with dH20 (milliQ) at room temperature for 30 minutes followed by 

several dH20 rinses. This was followed by 2 washes in 15% v v 1 nitric acid in dH20 at 

room temperature: 1 wash for 1 hour and 1 wash overnight. The particles were treated 

with 1M sulphuric acid for 1 hour at 65 °C, and the acid was removed and replaced with 

dH20 at 65 °C for 1 hour. After cooling, the particles were washed several times with 

dH20. They were then washed in a 3 wt % H202 solution at 65 °C for 1 hour and allowed 

to cool. The particles were rinsed again multiple times with fresh dH20 (Van Nguyen et 

al., 2007). To titrate the particles with mineral ions, concentrated (i.e. undiluted) MSR 

medium (Strullu & Romand, 1986) was used to immerse the particles. These were 

shaken at 30 °C in an incubator shaker (New Brunswick Scientific, Enfield, USA) for 30 

minutes before renewing the nutrient solution. This was repeated until the pH of the 

nutrient solution was neutral and stable after adding it to the particles. pH was 

measured using a desktop pH meter. The particles were rinsed with dH20 to remove 

excess MSR medium. Before use, the particles were autoclaved submerged in dH20 for 

sterilisation using a Boxer 220/40LR benchtop autoclave (Lab3 Ltd. Northampton, UK) 

for 20 minutes at 121 °C and 2 bar. This regime and machine was used throughout the 

thesis.
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Nafion also has the useful capability to be chemically converted from the precursor form 

to the cationic form (exchanging anions) using a method developed by Salerno et al. 

(2012) (Figure 2.6). This was done by using a bridging cation, dimethylpiperazinium 

(DMP), which ionically binds to the Nafion exchange sites, and provides further 

exchange sites where initially fluoride ions were available for exchange. To do this, acid 

form Nafion particles were added to DMP in a beaker (with enough DMP to cover the 

particles) at room temperature for 3 hours. The DMP was removed by pouring it from 

the beaker and the particles were rinsed several times in dH20 and left overnight in 

dH20. The Nafion was then treated with KOH, where the F' ions were exchanged with 

hydroxide ions. This was done by removing the dH20 and flooding the particles with 3M
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Figure 2.6. Schematic diagram of the steps taken to produce cationic Nafion. DMP is 

added to precursor Nafion, which exchanges with the fluoride ions. KOH is then used to 

hydrolyse the Nafion, leaving an exchangeable hydroxide ion. Reproduced from Salerno et 

al. (2012) with permission from John Wiley and Sons.
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KOH. This was left at room temperature for 8 hours and then rinsed multiple times in

dH20 over 24 hours. The nutrient titration of the Nation was then carried out in the 

same way as with the anionic Nation, described in the previous paragraph.

2.7 Labelling

2 . 7 . 1  Visualising transparent soil particles

When applying fluorescent imaging to biological structures such as roots in a 

transparent granular substrate, it is beneficial to be able to locate the transparent 

particles by making images of them. To achieve this using transparent soil, one approach 

was to use fluorescent dyes. In fluorescent imaging, there are many fluorescent dyes 

available with a range of absorption and emission wavelengths. Dyes with peak emission 

in the red range of the spectrum (>580 nm) were tested with Nafion and FEP particles. 

Red dyes were chosen to avoid overlap with GFP, the most common fluorescent protein 

used as a marker in live organisms, and because there is good availability of red 

fluorescent dyes (Gurr, 1971).

In terms of image visualisation and image processing, it is most desirable for the dyes to 

be adsorbed on the surface of the particles. The advantage of this is that when the 3D 

image is produced, the boundaries of the particles can be easily visualised in relation to 

the plant roots and in image analysis; having the particle boundaries delineated 

facilitates measuring the particle dimensions and locations. We tested several red 

fluorescent water soluble dyes by making up an aqueous solution of the dye, where the 

concentration was based on previously used concentrations in the literature. The dyes
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tested were sulphorhodamine B (5 x 1 0 6 M), sulphorhodamine 101 (5 x 10 6 M), 

Rhodamine 6G (1 x 10~3 M) (all from Invitrogen) and Pyronin Y (3.3 x 1 0 3 M, Sigma).

FEP Etched FEP Nation

Sulphorhodamine 6

Sulphorhodamine 101

Pyronin Y 

Rhodamine 6G

Figure 2.7. CLSM images showing the interaction between red fluorescent dyes and FEP, 

etched FEP and Nafion particles. Binding was evident where there was a bright red 

region around the surface of the particle. Sulphorhodamine B, sulphorhodamine 101 

and Rhodamine 6G bound to the Nafion particles, but in all other cases, the dye did not 

bind to the material.
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500 pi of the dye solution was added to single particles of FEP, etched FEP and H+ form 

Nafion in wells of 96 well flat bottom 400 pi microplates (Fisher) and images of the dye 

surrounding the particles were captured using a Leica TCS SP2 confocal laser scanning 

microscope with a 10x / 0.30 dry objective lens. This confocal microscope was used 

throughout the thesis. The results showed that none of the dyes bound to FEP; the dyes 

sulphorhodamine B( 5x  10'6 M), sulphorhodamine 101 (5 x 10'6 M) and Rhodamine 6G 

(1 x 10'3 M) (all from Invitrogen) bound to Nafion in the anionic form. Pyronin Y 

(3.3 x 10'3 M, Sigma) did not bind to anionic Nafion (Figure 2.7). None of the dyes were 

tested with cationic Nafion, and so dyes which do not bind to anionic Nafion may bind 

to cationic Nafion.

Several blue dyes were also considered and tested for labelling the Nafion particles in 

order to complement experimental setups where there would be emission from 

biological structures with fluorescent proteins in the red (c. X 630 -  700 nm) and green 

(c. X 515 -  555 nm) parts of the spectrum. 7-amino-4-methyl coumarin (Sigma) was not 

tested because it is not water soluble. Alexafluor 350 hydrazide (Invitrogen) may have 

been suitable but was not tested because there was no 350 nm laser available on the 

CLSM setup used, which was required for excitation of alexafluor 350 hydrazide. 

Another potential dye, Alexafluor 450 cadaverine was tested by making a 1 pg ml'1 

solution in dH20, adding the solution to 2 or more Nafion particles and checking for 

binding on the surface using the confocal microscope. Imaging was carried out using 

450 nm laser excitation and collecting emitted light between 480 and 580 nm. The dye 

did not efficiently label anionic, titrated Nafion, but was slightly more effective when it
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w a s  a d d e d  to  th e  a c id  p a r t ic le s , b e fo re  th e  n u tr ie n t  s o lu t io n  w a s  a d d e d . T h e  b o n d

between the dye and the particles' surface was certainly not as strong as that between 

the particle and the red dye sulphorhodamine B. It was not tested with cationic Nation 

and this may be another route for development.

None of the dyes tested bound to FEP, etched or non-etched (Figure 2.7), however there 

may be other ways of carrying out fluorescent imaging of materials such as FEP. For 

example, it might be possible to introduce the dye at the stage of processing the 

polymer by making the dye lipophilic by means of ion pairing with a water soluble ionic 

surfactant with the opposite charge to the dye molecule (Mohr, 2006). It was possible to 

image FEP particles with the confocal microscope by adding the red dye, 

sulphorhodamine B to the liquid saturating the pore spaces of the matrix at a 

concentration of 5 x 10"6 M in water, with the mixture in a 3.5 ml fluorometer cuvette

Figure 2.8. FEP granulates (red) and pore spaces (green). Top view (A) and oblique view 

(B) of 3D reconstruction of confocal image stack.
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(Figure 2.8) where the volumes with no fluorescence were determined as the particles

but image analysis of these images is more difficult than where the dye labels the 

particle-pore boundaries directly.

2.7.2 Imaging rhizosphere pH

The study of root-mediated pH balance of the rhizosphere is an important topic in root 

research because of the effect of rhizosphere pH on the solubility and bioavailability of 

plant nutrients and toxic elements (Blossfeld et al., 2011). The fluorescent pH indicator 

dye fluorescein, conjugated to 10 kDa dextran (Sigma) (Monshausen et al., 2007) was 

tested for imaging rhizosphere pH. This was carried out by growing lettuce plants 

prepared as described by Monshausen et al. (2007) and cultured in anionic Nafion 

transparent soil (set up as described in section 2.6, page 41). Immediately before 

confocal imaging, 30 pg ml'1 fluorescein in water was added to saturate the samples. 

Confocal excitation was alternated between 458 and 488 nm and emitted light between 

530 and 600 nm was collected (Monshausen et al., 2007). Two samples were tested and 

by qualitative examination of the images of the dye, no difference or gradient in 

fluorescence in the liquid in the pore spaces or around the roots could be detected using 

this method. This may have been due to an interaction between the dye and the Nafion 

which affected the chemistry of the dye molecules. The function of a dye may not be 

preserved once it is bound to Nafion.
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2.8 Conclusion

This Chapter has explored different ways in which transparent soils could be engineered 

in order to construct a transparent granular substrate that is suitable for culturing 

plants, has a low refractive index and is amenable to engineering of its physical and 

chemical properties. After much consideration over the materials that would be suitable 

for this application, Nation emerged as the material with the greatest potential for this 

application for the following reasons. Engineering of Nation was found to be achievable 

with common lab equipment. For example, manipulating the particle size of Nation 

could be done with a freezer mill, whereas to achieve a similar result with FEP, we 

would most likely have required the use of industrial equipment for melt extrusion and 

perhaps custom-made parts.

Nation has properties that are extremely useful in replicating soil factors, including its 

ion exchange capacity, which allows the sorbed nutrients to buffer the substrate 

solution, and its water retention properties. Its good transparency and reaction with 

fluorescent dyes enable effective optical imaging. FEP was less transparent, did not 

exchange ions and could not be labelled directly using any of the fluorescent dyes 

tested. For these reasons, Nation was used as the building block of transparent soil in 

the experiments described in the following Chapters of this thesis. However, Nation is 

expensive (Nation in this study was obtained from Ion Power Inc., Delaware USA, cost in 

the range of $4 -  5.70 per gram) and there may still be a place for a FEP-based 

substrate, subject to more method development to address the points raised above. For
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example, it was possible to make some 3D images of FEP granulates in a Rl matched

solution where a fluorescent dye was added to the solution to allow visualisation of the 

pore spaces (Figure 2.8) and water retention may be improved by chemical etching. In 

conclusion, we have developed one configuration of a transparent granular substrate 

for this application, but there may be other ways of achieving a similar end product 

using different materials, but the same principles described here, taking into 

consideration the points raised in this Chapter.
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Chapter 3. Development o f a transparent soil fo r 
imaging roots

This Chapter is based on the article Downie H, Holden N, Otten W, Spiers AJ, Valentine 

TA, et al. (2012) Transparent Soil for Imaging the Rhizosphere. PLoS ONE 7(9): e44276. 

See appendix (page 203) for the full article.

3.1 Introduction

We present the development of a substrate that consists of particles of the transparent 

ionomer (synthetic polymer with ionic properties) Nation. The Nation particles have ions 

required for plant growth adsorbed on their surfaces and the matrix includes water with 

plant nutrients in the smaller pore spaces and air in the larger pore spaces. By matching 

the refractive index (Rl) of the solid Nation particles and a liquid, the boundaries 

between the materials become invisible, thus revealing non-transparent structures 

within the solid-liquid matrix such as plant roots, which can then be imaged.

Imaging of roots at different scales is important because at the whole root system scale, 

it is possible to measure parameters of the root system architecture, which can also be 

influenced by environmental factors (Malamy, 2005). Equally, imaging at the cellular 

scale must be performed in order to gain information on fine structures such as root 

hairs (Prieto et al., 2011) and cellular chemical processes such as the chemistry of the 

apoplasm (fluid occupying space in cell walls and intercellular spaces) and the cytosol is 

important for the regulation of nutrient uptake. Fluorescent probes injected into living 

plants have been used to measure spatial differences in apoplastic pH in relation to corn
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root gravitropism (Taylor et al., 1996) and Ca2+ (Monshausen et al., 2008). Often 3D 

imaging provides more spatial information than imaging in 2D. In this Chapter, two 

different 3D optical imaging approaches have been tested for imaging plant roots in 

transparent soil. Optical projection tomography (OPT) and confocal laser scanning 

microscopy (CLSM) (both described in Chapter 1) were used for imaging whole roots and 

root sections to a cellular level, respectively.

The heterogeneous physical structure and availability of oxygen in transparent soil are 

thought to provide an environment that more closely represents a soil substrate than 

the gel substrates that have previously been used to image root structures (e.g. Fang et 

al., 2009). To test this, the aim was to grow plants in transparent soil, phytagel, sand and 

soil and measure parameters of the resulting root system architectures (RSA) from each 

substrate and then compare these to find similarities and differences. The second aim 

was to build on the method development from Chapter 2 focussing on the systems for 

imaging roots in transparent soil and to test the applicability of optical projection 

tomography (OPT) and confocal laser scanning microscopy (CLSM) to imaging plant 

roots in transparent soil.

3.2 Materials and methods

3.2.1 Construction of transparent soil

Nafion (Ion Power Inc., USA) in the form of 4 mm x 3 mm pellets in acid (NR50 1100) and 

precursor (R1 100) forms were used. Size reduction of Nafion particles was performed 

using a freezer mill (6850, SPEX SamplePrep, UK). The final particle size range was 200-
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1600 pm. Cation exchanging Nation particles were made by ensuring full conversion to 

the acid form by washing in a solution of 15% v v 1 KOH, 35% v v'1 DMSO and 50% dH20 

at 80 °C for 5 hours, then with dH20  (milliQ) at room temperature for 30 minutes 

followed by several dH20  rinses. This was followed by 2 washes in 15% v v 1 nitric acid at 

room temperature: 1 wash for 1 hour and 1 wash overnight. The particles were treated 

with 1M sulphuric acid for 1 hour at 65 °C, and the acid was removed and replaced with 

dH20  at 65 °C for 1 hour. After cooling, the particles were washed several times with 

dH20. They were then washed in a 3 wt % H20 2 solution at 65 °C for 1 hour and allowed 

to cool. The particles were rinsed again multiple times with fresh dH20  (Van Nguyen et 

al., 2007). To titrate the particles with mineral ions, concentrated (i.e. undiluted) MSR 

medium (Strullu & Romand, 1986) was used to immerse the particles. These were 

shaken at 30 °C for 30 minutes before renewing the nutrient solution. This was repeated 

until the pH of the nutrient solution was neutral and stable after adding it to the 

particles. The particles were rinsed with dH20 to remove excess MSR medium. Before 

use, the particles were autoclaved, submerged in dH20  for sterilisation.

3 .2 .2  Refractive index matching

To determine the best refractive index match between the particles and liquid, plastic 

cuvettes were filled with acid Nafion particles and saturated with a range of 

concentrations of sorbitol solutions from 0-13% (w v'1) to achieve a range of refractive 

indices. On one side of each cuvette, a straight line was drawn from top to bottom and a 

projection image was taken through the solid / liquid mix. There were 5 replicate images 

taken at each sorbitol concentration at 20 °C. The straightness of the line for each image
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was used as an indicator of the light path distortion by refraction. A threshold was

applied to each image to remove background and to get the clearest possible image of 

the line. The image was then skeletonized, where the line was thinned until it was 1 

pixel in width and a bounding box was created around this line. The straightness was 

calculated as straightness = height of bounding box / area of bounding box. This was 

carried out using ImageJ (National Institutes of Health, USA). Nutrient-titrated Nafion 

particles were also tested in this way, but with a larger range of sorbitol concentrations. 

The refractive index of the sorbitol and percoll solutions was measured at 20 °C using a 

hand refractometer (N-series, Atago Co., Ltd).

3 .2 .3  Characterising the properties of transparent soil

Water retention was measured in samples of transparent soil with 3 size categories of 

Nafion particles (200-500 pm, 500-850 pm and 850-1250 pm, n = 3 for each category), 

with a dry mass of 10.3 ± 0.1 g. The dry bulk density of each particle size category was 

measured by drying samples (n = 3 for each size category) of each particle size category 

at 60 °C in a drying oven for 24 hours, measuring 3 10 cm3 samples of each particle size 

category using a falcon tube, which was gently tapped on the bench for uniform packing 

and recording the mass of each sample. The dry bulk density for each particle size is 

shown in Table 3.1.

For saturation and packing, the samples were submerged in dH20, gently shaken and 

left submerged for at least 2 hours. The samples were not compressed as this was found 

not to change the volume. Water saturated samples were placed on ceramic plates in
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Particle size category Mean sample mass (g) Dry bulk density (g cm'3)

Small (200 -  500 pm) 9.5110.17 0.95 ± 0.02

Medium (500 -  850 pm) 9.9210.34 0.99 1 0.03

Large (850 -  1250 pm) 10.16 1 0.09 1.02 10.01

Table 3.1. Dry bulk density of 10 cm3 samples of Nafion with different particle size 

categories. Error margins are shown in standard error.

glass funnels, which were connected to hanging water columns. Different suctions were 

achieved by moving the water level in the water column to a specific height (from 0 -  

1 m). At each pressure, the water content of the sample was allowed to equilibrate and 

the mass was recorded by moving the sample to a balance to allow calculation of 

volumetric water content. Data on water retention in vermiculite and sand from other 

studies were used for comparison with our data on water retention in transparent soil 

(Schroth et al., 1996, Schmidt, 2011).

Exchangeable cations were extracted using the ammonium acetate method (Thomas,

1982) on titrated Nafion samples with a particle size range of 500-1600 pm, where 2 g 

air dried, anionic Nafion treated with nutrient solution, as described in section 3.2.1 

(page 53), was added to a 50 ml tube with 20 ml 1M NH4OAc. The sample was swirled in 

a shaker for 2 hours at room temperature, after which the NH4OAc was removed and 

retained for chemical analysis. Cation exchange capacity was quantified by inductively 

coupled plasma mass spectrometry (ICP-MS analysis, carried out by Macaulay Analytical
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at the James Hutton Institute, Aberdeen, UK). To measure anion exchange capacity,

sorbed chloride ions were exchanged with nitrate ions and exchange capacity was 

determined by measuring the extracted chloride ions (Pansu & Gautheyrou, 2006). 

These chemical analyses were carried out by Macaulay Analytical at The James Hutton 

Institute.

3.2.4 Plant culture

Arabidopsis tholiana expressing 35S:LTI6b- EGFP (constitutively expressed enhanced 

green fluorescent protein targeted to the plasma membrane), in the C24 background 

(originally obtained from Dr. J. Haseloff, University of Cambridge, UK) (Kurup et al., 

2005) and auxin reporter lines (Federici et al., 2012) were used for confocal microscopy. 

Nicotiana benthamiana (tobacco, from SCRI stocks) and Lactuca sativa (lettuce, var. 

capitata, Seed Parade, UK) seeds were surface sterilized by washing in 10% bleach 

(Domestos, Unilever, UK) for 20 minutes followed by several sterile dH20  washes. 

Arabidopsis thaliana seeds were sterilized on filter paper by adding 70% ethanol, 

allowed to dry slightly and addition of 90% ethanol before allowing to air dry. MSR 

nutrient medium (Strullu & Romand, 1986) was used for culturing tobacco seeds and 

half-strength (2.2 g L 1) Murashige and Skoog (M&S) basal medium (Sigma) was used for 

lettuce and Arabidopsis seeds. Seedlings were germinated before use in experiments by 

sowing seeds in Petri dishes with 5 g L"1 phytagel (Sigma) with MSR or M&S nutrient 

medium. Plants were incubated at 20°C with 16 hours light: 8 hours darkness.
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3 .2 .5  Plant growth comparison

The substrates used for analysing plant growth were: 1. Sandy-loam soil from Lower 

Pilmore field, The James Hutton Institute, Dundee, UK. The soil was sieved to 3 mm and 

packed to a density of 1.2 g cm'3 with a gravimetric moisture content of 20% (n=9) by 

weighing-out soil dried at 70 °C for 24 hours using a digital lab balance (Ohaus PA114, 

Nanikon, Switzerland), adding it to the sample holders, compressing to 20 cm3 with a 

smaller cylindrical tube and adding the appropriate volume of water with a pipette.

2. Horticultural grit sand (Gem, UK), packed to a density of 1.5 g cm'3 and MSR plant 

nutrient medium to achieve a gravimetric moisture content of 15.2% (n=9) in the same 

method as described for soil. 3. 4 g L 1 phytagel (Sigma) with MSR medium was prepared 

by autoclaving and poured into the samples holders (n=9). 4. Transparent soil with a 

Nation particle size range of 500-1600 pm was prepared as described in section 3.2.1 

(page 53) and packed to a density of 1.03 g cm'3 (n=6). Wild type tobacco (Nicotiana 

benthamiana) plants were used in this experiment and the growth period was 2 weeks 

after transferring the seedlings to the medium in cylindrical glass sample holders, 

diameter = 2.5 cm, height 7.5 cm. The growth room conditions were 20 °C, 16 hours 

light: 8 hours darkness. All plants were excavated, the roots were washed and they were 

mounted onto acetate sheets for scanning using a flatbed scanner (Epson Expression 

1640 XL). Primary and lateral roots lengths and numbers were measured using the 

segmented line function from ImageJ software (National Institutes of Health, USA). After 

imaging the plants' roots and shoots were separated using a pair of forceps, placed in 2
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ml pierced eppendorf tubes and dried at 60 °C in a drying oven for > 24 hours, after 

which the dry mass was recorded using a Sartorius microbalance.

3.2.6 3D imaging of roots in transparent soil

For OPT imaging the samples were prepared in glass cylindrical specimen tubes (2.5 cm 

in diameter, 7.5 cm in height) with a substrate volume of 15 cm3. Duration of growth 

was dependent on plant species but in general, imaging was performed before the roots 

reached the base of the tube. Tobacco plants used for OPT were imaged 10 days after 

sowing. Immediately prior to imaging, the samples were saturated with MSR medium 

with 13% sorbitol (w v1). The OPT setup was built in-house and consists of a light box, 

stage for sample with rotating stepper motor, stereo microscope (Leica MZ 16 FA) and 

camera (Leica DFC 350 FX). The stage and camera were controlled by software also built 

in-house, allowing control of the number of images acquired for each sample. The 

projection images were reconstructed to produce 3D data using a filtered 

backprojection algorithm with the Iradon function in Matlab (The MathWorks, Inc.). 

Arabidopsis plants used for confocal imaging were imaged 10-14 days after sowing.

3.2.6.1 C onstruction  o f  3D s lid es

For CLSM, plants were grown in purpose-built chambers, constructed using a 

microscope slide and long cover glass with a 4 mm spacer made using a cable tie 

between them on 3 sides and an opening at the top (Figure 3.1). The spacer was glued 

to the slide and cover glass using Araldite glass and ceramic adhesive (Huntsman 

International). These growth chambers will be referred to as 3D slides throughout the
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thesis. The chambers were covered with aluminium foil on the outside during growth to

exclude light from the roots. Foil was removed immediately before imaging. Before 

imaging, transparent soil was saturated with MSR containing 13% (w v1) sorbitol or 98% 

Percoll (Sigma) with 2% MSR medium (vv1) at stock concentration (Strullu & Romand,

1986). The refractive index of the solution matches the refractive index of the Nation 

particles used here to provide complete transparency in the substrate. 

Sulphorhodamine B (Sigma) at 1 pg ml'1 Rl matching liquid was used to dye the particles 

in situ before imaging by saturating the transparent soil. A Leica TCS SP2 confocal laser 

scanning microscope and objective lenses 2.5x / 0.07, 10x / 0.30 (dry), 20x / 0.50, 40x /

0.80 and 63x / 0.90 (water dipping) were used to obtain the confocal scans. To image 

GFP, a 488 nm laser was used for excitation and the emitted light was collected between 

500 and 530 nm. To image the RFP and sulforhodamine B, a 561 nm laser was used for 

excitation and light was collected between 580 and 620 nm. To image the calcofluor 

light was collected between 430 and 470 nm. For the signal from the lettuce roots, a 405 

nm laser was used for excitation and the emitted

3.2.7 Data analysis

Analysis of variance and multiple comparisons were carried out using Genstat 13th 

Edition (VSN International Ltd.). Sigmaplot 12 (Syststat Software, Inc.) was used for non­

linear and linear regressions. Avizo software (VSG) was used for visualisation of CLSM 

images. Image analysis for root tracking and 2D root measurements was carried out 

using Mevislab (Koenig et al., 2006) and Fiji Software (Preibisch et al., 2010) 

respectively. Root tracking used an algorithm by Friman et al. (2008).
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Transparent soil

Figure 3.1. A) Samples that were prepared for confocal imaging with transparent 

soil in 3D slides including Arabidopsis thaliana plants. B) Schematic diagram of 3D 

slides (not to scale).
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3.3 Results

3.3.1 Selection of materials

Nation was selected as the material to use as the basis of transparent soil partly because 

of its low refractive index (Rl, 1.34), which is close to that of water (1.33) and therefore 

matching can be achieved with an aqueous solution. The refractive index of hydrated 

Nation films has previously been reported as 1.3366 to 1.3433 (Leis et al., 2005), 

however because Nation is available in many different forms and because pellets rather 

than films are being used here, a method to measure the refractive index was 

developed. Using this method, data on refractive index was obtained, a curve was fitted 

to the data and the maximum value was used. It was found that the refractive index of 

acid Nation pellets (NR50 1100) was 1.340 (Figure 3.2, A). Figure 3.2, B shows refractive 

indices for other common transparent materials (Polyanskiy, 2008-2012) in order to 

contextualise these values. This demonstrates that the refractive index of Nation is very 

close to that of water, in comparison with other transparent materials.

During the experiments for calculating the Rl of Nation, solutions of a range of sucrose 

concentrations in water were used in order to find a solution with a refractive index 

matching that of the Nation particles. Sucrose was ideal for this application because of 

the well-described relationship between sucrose concentration and refractive index (the 

Brix scale) (Rosenbruch et al., 1974). However, sucrose is not always an ideal substance 

to use because of its effect on root growth (Bahmani et al., 2009) and so other options 

investigated were sorbitol and Percoll. Sorbitol solutions have RIs very close to those of
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Refractive index of solution

B 1-9 

1.8 -

Figure 3.2. Refractive index of Nafion. A) Optimal Rl of nutrient solution for Rl 
matching with Naf ion using projected straight line images deformed by the substrate. 
Curve shows Gaussian non-linear regression (R2 = 0.38). B) Refractive index of 
common transparent materials and Naf ion. Error bar shows standard error.
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Figure 3.3. Refractive indices of solutions used for Rl matching with Nafion. A) Sorbitol 

solutions have RIs very similar to sucrose solutions. A linear regression is shown 

where R2 = 0.99. B) The range of RIs that can be achieved using Percoll covers the 

value required for matching with Nafion. A linear regression is shown where R2 = 0.99.
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the equivalent sucrose solutions (Figure 3.3, A). Percoll, the silica-based colloid

suspension, has a smaller range of possible refractive indices, but nevertheless the 

refractive index of Nafion (equivalent to 10% sucrose) is within this range (Figure 3.3, B).

3 .3 .2  Transparent soil

By physically and chemically engineering Nafion particles and by using a Rl matching 

technique, a new substrate has been developed for the purpose of observing plants and 

soil organisms. During the period of plant growth, pores were partially saturated with a 

plant nutrient solution and air spaces were maintained for aerobic respiration. 

Immediately before imaging, the substrate was saturated using a Rl matched liquid plant 

nutrient solution, containing either Percoll or sorbitol, so that imaging of roots could be 

carried out in situ (Figure 3.4).
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Figure 3.4. Samples of transparent soil. A) Fully saturated with Rl matching solution. 

B) Large pores partially drained. C) Large pores fully drained. Scale bar = 2.5 cm. 

D) Latuca sativa plants growing in transparent soil and saturated with Rl matched 

liquid for imaging making the roots visible (right).
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3 .3 .3  Characterisation of transparent soil

Water retention is an important soil characteristic because it can determine the 

availability of water for plants under non-saturated conditions. Water retention of 

transparent soil with 3 particle size categories was measured using the hanging water 

column technique (Warrick, 2003) and compared to water retention in vermiculite and 

sand (Figure 3.5). In the 2 smallest size categories, and in vermiculite, the sharpest 

release of water occurred between -1.5 and -5 kPa. The water release in the largest

Figure 3.5. Water retention in transparent soil, sand and vermiculite. Water 

retention in 3 different particle size categories of transparent soil was plotted 

along with water retention data for sand from Schroth et al. (1996) and 

vermiculite from Schmidt (2011).
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sized particles was more gradual but in all sizes, a levelling off of water release occurred

towards -10 kPa and the residual water content measured in transparent soil ranged 

from 0.23 to 0.26 cm3 cm'3 at -10 kPa. This value was higher than is usual in sand 

(Schroth et al., 1996), despite the similarity in particle size.

The cation exchange capacity (CEC) of transparent soil was quantified by extraction 

using the ammonium acetate method (Pansu & Gautheyrou, 2006) and subsequent 

Inductively coupled plasma mass spectrometry (ICP-MS) analysis and was found to be 

81 meq lOOg'1. This is within the range that could be expected for vermiculite (80- 

150 meq lOOg1 (Lai, 2002)). It was found that Nation could be converted to the cationic 

form (details in section 2.6, page 41), and therefore would exchange anions rather than 

cations (Salerno et al., 2012). After carrying out the conversion, the anion exchange 

capacity (AEC) of cationic Nation was 47 meq 100 g'1 as quantified by saturating the 

exchange sites with Cl', exchanging them for nitrate ions and measuring the Cl' 

concentration in the exchanged solution by ICP-MS (Pansu & Gautheyrou, 2006).

3 . 3 . 4  Root growth in transparent soil

Primary root length and diameter and lateral root number and length of the root 

systems of Nicotiana benthamiana plants grown in transparent soil, soil, sand and 

phytagel were measured after excavation and scanning of the plants (Figure 3.6). Root 

and shoot dry weights were also measured and a general ANOVA showed that there was 

a significant difference in root dry weight (F3j3i =6.04, p=0.003) and shoot dry weight 

between the substrates (F3,3i =5.87, p=0.003). The results of a Fisher's protected least
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significant difference (LSD) test showed that although there was no significant

difference between root weight of plants from transparent soil (TS) and phytagel and 

roots from TS and soil, the root dry weights were different between the two pairs. Roots 

from plants grown in sand were significantly heavier than the roots from the other 

treatments, with the exception of those grown in soil, which were not significantly 

different (Figure 3.7). Similarly, the results of a Fisher's protected LSD test on the shoot 

dry weight measurements showed that there was no significant difference between 

shoot weight of plants from transparent soil (TS) and phytagel and roots from TS and 

soil or sand although there was a difference between these two pairs (Figure 3.7).

Lengths of the plants' primary roots were measured, along with the lengths of each of 

the lateral roots. A general ANOVA showed that there were significant differences in 

primary root lengths (F3#3i=11.75, p<0.001) and cumulative lateral root length 

(F3,31=4.19, p=0.014) between the plants grown in different substrates. Primary root 

length was not significantly different in plants from soil and sand, but the measurements 

were significantly smaller than the measurements of primary root length in plants 

grown in TS and phytagel, which were not significantly different from one another. Total 

lateral root length was not significantly different in plants from soil, sand and TS, but 

was significantly smaller in plants from phytagel (Figure 3.8).
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Soil Sand Phytagel TS

1

Figure 3.6. Images of plants after excavation from soil, sand, phytagel and 

transparent soil (TS). Plants grown in soil and sand have short primary roots but 

numerous long lateral roots. Plants grown in phytagel have long primary roots and 

usually no lateral roots and plants grown in TS have long primary roots but more 

lateral roots than plants grown in phytagel. Scale bar = 1 cm.
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Figure 3.7. Root and shoot dry weights of plants grown in soil, sand, phytagel and 

transparent soil (TS). Letters above the bars correspond to the results from the 

Fisher's protected LSD test. Error bars signify standard error.
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Soil Sand Phytagel T S

Substrate

Figure 3.8. Mean primary root lengths and cumulative lateral root lengths of plants 

grown in soil, sand, phytagel and TS. Letters above the bars correspond to the results 

from the Fisher's protected LSD test. Error bars signify standard error.

The number of lateral roots were also recorded and there was a significant difference in 

the number of lateral roots between plants from different substrates (F3/3i=9.64, 

p<0.001). Plants grown in phytagel had a significantly smaller number of lateral roots 

than the plants from the other substrates, and the median number of lateral roots in 

plants grown in phytagel was 0. Plants grown in sand and TS had a similar mean number 

of lateral roots to one another, and plants grown in soil had a lateral root number 

significantly greater than that of plants from all other substrates (Figure 3.9). The mean 

primary root diameter was also significantly different between plants from the different 

substrates (F3;3i =3.69, p=0.026). Plants from soil and sand had root diameters not
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significantly different from one another. These diameters were also not significantly 

different from the root diameter of plants grown in phytagel or TS, but the diameter of 

roots grown in TS was significantly larger than that of plants grown in phytagel (Figure 

3.9).
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Figure 3.9. Mean number of lateral roots and primary root diameter in plants grown 

in soil, sand phytagel and TS. Letters above the bars correspond to the results from 

the Fisher's protected LSD tests. Error bars signify standard error.

Overall, plants grown in phytagel developed very different root systems from plants 

grown in soil or sand (which had quite similar root systems). The main differences in the 

root systems were the length of the primary root, which was short in plants from soil 

and sand and long in plants from phytagel and the number and length of lateral roots,
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which were lower in plants from phytagel than in plants from soil or sand. Root systems 

of plants grown in transparent soil were different still because they had primary roots in 

the same length range as plants from phytagel but the number and length of lateral 

roots was comparable with plants from soil or sand.

3.3.5 3D imaging of roots in transparent soil

To assess the utility of the system for imaging root: particle interactions at various scales 

we imaged Nicotiana berithamiono and Arabidopsis thaliana using OPT and CLSM. 

Imaging at the whole root level (< 5 cm) was achieved using OPT and the root was 

segmented from the 3D image using a root tracking algorithm (Figure 3.10). Confocal

Figure 3.10. OPT images of Nicotiana benthamiana roots in transparent soil. 

A) Projection image of roots and small air bubbles trapped in the substrate. B) Root 

(green) and air bubbles (blue) after application of the root tracking algorithm. Scale 

bars = 1 mm.
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imaging was also applied to image roots in transparent soil to a cellular level (Figure 

3.11, Videos S1-S3, Appendix 2 & enclosed CD). Plants with plasma membrane localized 

reporter gene-encoded GFP expression were imaged at a range of scales to visualise 

root architecture in relation to Nation particles (Figure 3.12, A), lateral root initiation 

(Figure 3.12, B) and root epidermal cells and root hairs (Figure 3.12, C). The 3D 

distribution of the hormone auxin in Arabidopsis tholiona root tips was also visualised 

(Figure 3.12,D) using auxin reporter lines (Federici et al., 2012).

Confocal imaging relies on detecting fluorescence in the sample, therefore to visualise 

the Nation particles a fluorescent dye, Sulphorhodamine B was mixed with the Rl 

matching solution (either 10 wt % sorbitol or 100% percoll) and added to the substrate 

immediately before imaging. This allowed consecutive imaging of the roots and the 

surrounding Nation particles, which could then be combined later to visualise the path 

of the roots among the Nation particles (Figure 3.11).
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Figure 3.11. 3D volume renderings of confocal images of Arabidopsis thaliana 

roots (grey) in transparent soil with Nafion particles dyed with sulphorhodamine B 

(orange). A-C) Arabidopsis thaliana roots with plasma membrane localised 

expression of GFP in transparent soil at a range of scales where the scale bars 

represent 300 pm (A), 170 pm (B) and 40 pm (C). D) Root tip with nuclear RFP 

expression linked to auxin reporter (Federici et a!., 2012).
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3.4 Discussion

The main advantage of transparent soil over field soil is, of course, that its transparency 

allows the application of optical imaging techniques to observe biological structures in 

the substrate in 3D. However, transparent soil has a number of further advantages over 

the other transparent substrate that has been used for this purpose. The other 

transparent substrate that has allowed 3D optical imaging of roots is phytagel (gellan 

gum) (Fang et al., 2009, Fang et al., 2011, Clark et al., 2011). Phytagel is a homogeneous 

and very transparent (Maizel et al., 2011) agar substitute in which plants can grow. It is 

also inexpensive and quick to prepare, compared with transparent soil. However the 

results presented here show that using phytagel as the growth substrate for

N. benthamiana plants had a strong influence on the growth of the plants (Figures 3.6-

3.9).

Firstly, the plant biomass is significantly smaller in plants from phytagel than in plants 

from soil or sand (Figure 3.7). This could be because the phytagel is effectively a water 

saturated substrate, which necessitates anaerobic respiration in the root tissues, rather 

than more efficient aerobic respiration, resulting in lower biomass for plants with 

oxygen-deprived root systems in phytagel (Blackwell & Wells, 1983). Secondly, phytagel 

caused significant differences in the architecture of the root systems, compared with 

plants grown in soil and sand (Figure 3.6, Figure 3.8 & Figure 3.9). There are many 

factors that are known to influence the root system architecture (RSA) including water
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availability (Giuliani et al., 2005), and contact between roots and solid obstacles which

promotes lateral root initiation in the primary root (Goss & Russell, 1980).

Because of these factors, transparent soil represents an improvement on phytagel as a 

transparent substrate for growing plants for root imaging. As shown in the results, root 

and shoot biomass (Figure 3.7), total lateral root length (Figure 3.8) and number of 

lateral roots (Figure 3.9) were not significantly different in plants grown in transparent 

soil and plants grown in soil or sand. This may relate to the points outlined above: the 

substrate is not saturated and so aerobic respiration can occur in transparent soil, and 

the roots are making contact with solid obstacles and so the initiation of lateral roots 

may be stimulated (Goss & Russell, 1980).

Nation particle size of transparent soil affects the water retention, particularly at low 

pressures (Figure 3.6). Finding the best particle size to use is a trade-off between having 

small particle sizes which more closely represent soil or sand particles and having larger 

particles which makes saturation of the substrate before imaging more efficient because 

trapping air bubbles is less of an issue. The Nafion particle size range used here falls into 

the same category size as sand (50-2000 pm (Jahn et al., 1990)), however the water 

retention curve shows that there is a large amount of residual water present in the 

substrate at the highest pressure measured. The residual water content is not 

significantly different in the 2 largest particle size categories and is only slightly higher in 

the smallest particle size category. This may be due to the networks of hydrophilic nano­

channels present in Nafion. Although the exact nature of these networks is still unclear,
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it is estimated that the diameter of the channels varies between 1 and 6 nm (Ceynowa,

1984, Xue et al., 1989, Rieberer & Norian, 1992). At this range of scales, the hydrogen 

bonds holding the water molecules are extremely strong and it is unlikely that the water 

sorbed in the Nation particles could be accessed by most biological organisms.

Transparent soil has enabled the production of images with low levels of noise (Figures

3.11 & 3.12) and opens avenues for automated analyses of genetic screens (French et 

al., 2009). In addition, the availability of fluorescent signals eases the discrimination of 

biological structures where separation of the different wavelengths provides much of 

the segmentation of the biological structures. Transparent soil can also be used to 

capture cellular events using plants with plasma membrane and nucleus-localized 

reporter gene-encoded proteins (Figure 3.12, Videos S1-S3, Appendix 2 & enclosed CD), 

which could be used for automated analysis of multicellular development (Dumais & 

Kwiatkowska, 2002, Dupuy et al., 2010a).
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Chapter 4. Measuring the effects of substrate physical 

factors on 3D root growth trajectories

4.1 Introduction

4 .1 .1  Root tropisms

The architecture of root systems influences the effectiveness of the plant at taking up 

resources from the soil (Yang et al., 2012), at anchoring itself securely and at providing 

stability to the soil (Stokes et al., 2009). Tropisms play an important part in regulating 

the direction of growth of the root tip and the resulting trajectory or path of root tips 

over time in turn determines the morphology of the root system. Tropisms can be 

defined as differential growth responses that reorient the plant organs in response to 

the direction of environmental stimuli (Esmon et al., 2005). The best described 

responses are gravitropism (gravity), thigmotropism (touch), hydrotropism (water) and 

phototropism (light).

Roots tend to grow in the direction of gravitational pull (Moore et al., 1998a). As well as 

being considered a model response with which to study the molecular basis of sensing 

and signalling in plants (Boonsirichai et al., 2002), gravitropism plays a substantial role in 

determining the trajectory of a plant root. There have been several studies measuring 

gravitropically induced bending of roots after reorientation of the whole plant. Mullen 

et al. (2000) maintained a constant gravitropic stimulus on Arabidopsis roots using a 

rotating platform to show that the root response time was around 10 minutes. 

Experiments investigating the response of cucumber roots to light and gravity showed
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that root systems alter their entire architecture based on the sensing and signalling of a

small part of the root system (Otreba, 2009). The plasticity of gravitropism in 

Arabidopsis roots has also been quantified (Brooks et al., 2010). Root bending also 

occurs due to negative phototropism, and the curvature of rice roots has been 

measured in 2D after photo-stimulation (Wang et al., 2002). Some root analysis 

software incorporate functions to automate the measurement of root bending, such as 

RootTrace (French et al., 2009) and KineRoot (Basu et al., 2007).

4 .1 .2  E n d o g e n o u s  t r a j e c to r ie s

The trajectories taken by growing root tips are thought to be partly determined by 

inherent, genetically regulated mechanisms. In order to investigate what these 

trajectories might be, plants have been grown in microgravity during space flight 

experiments. It was found that Arabidopsis roots exhibit less stochasticity in their 

growth patterns and a higher degree of skewing, where the root deviates from vertical, 

when they were grown on agar plates in space than when they were grown on Earth, 

but their growth was not random (Millar et al., 2011). Moss cell populations have been 

found to default to a spiral growth pattern in microgravity (Kern et al., 2005) and so it 

could be the case that these organisms have endogenous growth patterns that are 

masked by the usual gravitational conditions on Earth along with their interaction with 

the substrate.

Roots also exhibit movements that are independent of a directional stimulus, which are 

known as nastic movements (Moore et al., 1998a) and it has been possible to record
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these movements. Darwin (1880), for example, carried out experiments where he grew

plants in darkness along inclined, smoked glass plates, where the roots left a track of 

deep and smooth waves. He interpreted these findings by explaining that the root 

inherently makes a 3D spiralling movement during growth, which he called 

circumnutation.

Since then, other studies have shown that this is the case through experiments, mostly 

with Arabidopsis, where the root is grown along an inclined agar surface. This results in 

a waving pattern of growth which is a result of a flattened right-handed 

circumnutational spiral (Simmons et al., 1995). A combination of waving and root 

skewing has also been observed on inclined agar plates (Oliva & Dunand, 2007). Root- 

gel interactions may also play a role in determining the waving growth pattern 

(Thompson & Holbrook, 2004). The inclined surface of an agar plate is, however, a highly 

unrealistic environment for root growth and so translating these results to plant growth 

in soil remains a challenge.

4 .1 .3  S u b s tr a te  e f f e c t s  o n  r o o t  t r a je c to r ie s

It has been observed that the characteristics of a substrate in which plants are grown 

have an effect on the growth pattern of the roots. For example, Antonsen et al. (1999) 

used nuclear magnetic resonance (NMR) to image the gravitropic response of oat 

seedling after reorientation. The plants were grown and imaged in different substrates, 

namely soil, glass beads and in humid air. They found that the substrate had an effect on 

the time taken for the roots to make the full 90° curvature and, in particular, the plants
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grown in soil took the longest time to re-orientate. They concluded that this was

because of the greater touch stimuli induced by the soil. Indeed, Massa and Gilroy

(2003) showed that the gravitropic response is overridden by a touch response when 

roots touched a barrier and began to grow agravitropically to navigate around the 

barrier.

Images of roots from X-ray pCT studies have been used to measure some aspects of 3D 

root geometries. For example, the ratio of root length: the distance between the 2 

extremities of the root has been used as a global measure of root tortuosity (Perret et 

al., 2007). Tracy et al. (2012) calculated root tortuosity as the ratio of primary root 

length : linear rooting depth and found that tomato plants grown in compacted soil had 

more tortuous primary roots than plants grown in less compacted soil.

In this Chapter, the effects of two substrate characteristics are investigated. These are 

substrate particle size and compaction. Land use can have a significant effect on soil 

particle size distribution (Tian et al., 2008) and the soil particle size can affect nutrient 

supply to the roots by mass flow and diffusion (Oliveira et al., 2010). Compaction is a 

problem on agricultural land caused by surface pressure by, for example, farming 

machinery. Root growth is impeded by compacted soils (Bengough et al., 2011, 

Valentine et al., 2012) and results in lower leaf elongation rates of cereal plants than in 

non-compacted soils (Young et al., 1997). It is evident that the growth trajectory of a 

root is influenced by responses to many different factors, including environmental 

factors such as gravity and light and local factors linked to the substrate such as
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mechanical stimulation, nutrients and water. There also seems to be endogenous

growth patterns, revealed by microgravity and inclined gel experiments but the role 

these have in determining growth trajectories in soil is unknown.

4 .1 .4  A im s

In the experiments described in this Chapter, lettuce roots were grown and imaged in 

transparent soil with the aim of performing local and global measurements of root 

trajectories in 3D. The second aim was to determine the effects of the substrate texture 

and compaction on the 3D root trajectories.

4.2 Materials and methods

4 .2 .1  S e e d  p r e p a r a t io n

Lettuce (Lactuco sativo) is a globally important fresh produce dicotyledonous crop plant 

and it is favourable to use in plant growth experiments because of its fast germination 

time and growth rate. On the day before setting up the samples, Lactuco sativa (lettuce, 

var. capitata, Seed Parade, UK) seeds were surface sterilized by washing in 10% bleach 

(Domestos, Unilever UK Ltd.) for 20 minutes followed by 4-6 sterile dH20 washes. The 

seeds were sown in Petri dishes containing 7 g L"1 phytagel (Sigma) with half-strength 

(2.2 g L 1 dH20) M&S basal medium (Sigma).
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4 .2 .2 .1  S u b s tr a te  c o m p a c tio n  e x p e r im e n t

Plants were set up in cylindrical glass vials (diameter = 2.5 cm, height 7.5 cm) with 

transparent soil consisting of anionic Nafion particles with a size range of 500-1600 pm. 

The Nafion particles were prepared as previously described (from page 53). Nafion 

particles were dried in an oven for 2 days at 50 °C and were then weighed and the 

appropriate mass of particles was added to each vial in order to set up the substrate 

treatments, as detailed in Table 4.1.

Distilled H20 was added to the vials to cover the particles and they were autoclaved in 

dH20 for sterilisation. The water on top of the particles was poured off and replaced 

with sterile half-strength Murashige & Skoog basal medium (Sigma) and the substrate 

was mixed. Much of the solution in the pore spaces between particles was removed 

using a Pasteur pipette with a pipette tip. The resulting particle mix was left in a laminar 

flow cabinet for around 3 hours to allow further evaporation of water to achieve the 

final gravimetric water content of the substrate, detailed in Table 4.1. For this reason, it 

was not possible to achieve precisely the same water content in each sample.

After measuring the gravimetric water content by weighing each sample using a digital 

lab balance (Ohaus PA114, Nanikon, Switzerland), the different compaction densities of 

the substrate were set up by mixing and then compressing the transparent soil, in all 

cases, to a final volume of 14 cm3, so that the samples which had the highest

4 .2 .2  Sam ple set up

85



Treatment -  substrate Number of Gravimetric water Final substrate
density (g cm'3) samples content (%) volume (cm3)

0.78 3 Unsaturated: 14

34.9 ± 0.4

0.7 3 Unsaturated: 14

35.9 ±0.7

0.62 3 Unsaturated: 14

34.8 ± 0.6

Table 4.1. Details of the setup of transparent soil samples for comparing root 

growth at different compaction levels.

compaction had a smaller final pore volume than the samples with lower compactions. 

One pre-germinated seedling was then transferred to the surface of the substrate at the 

centre of each vial.

4 .2 .2 .2  S u b s tr a te  p a r t ic le  s i z e  e x p e r im e n t

Four different substrates were prepared as shown in Table 4.2. The three transparent 

soil samples were prepared as described previously (page 53) and were separated into 

size categories 250-500 pm, 500-850 pm and 850-1250 pm by sieving. The particles 

were autoclaved in dH20 for sterilisation and then much of the water was removed 

using a Pasteur pipette with a pipette tip. Murashige and Skoog basal medium (Sigma)
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was added to Percoll (Sigma) at 10: 90% ( v v 1) and the pH was adjusted to pH 6.with 1 

M HCI. This Rl matching solution was then added to the particles to saturate the pore 

spaces. For the other treatments, phytagel (Sigma) was prepared at a concentration of 

5 g L1 or 10 g L'1 dH20 to create 2 different gel densities and in each case, the phytagel 

contained half-strength Murashige and Skoog basal medium (Sigma). In this experiment, 

the transparent soil samples were saturated throughout the growing period in order to 

have a closer comparison with the phytagel treatments. One pre-germinated seedling 

was then transferred to the surface of the substrate at the centre of each vial.

Treatment -  substrate 
composition

Number of 
samples

Water status Final substrate 
volume (cm3)

Small particles -  250 -  500 pm 4 Saturated 14

Medium particles -  500 -  850 
pm

4 Saturated 14

Large particles -  850 -1250 
pm

4 Saturated 14

Soft phytagel -  5 g L'1 4 Saturated 14

Hard phytagel -1 0  g L 1 4 Saturated 14

Table 4.2. Details of the setup of transparent soil and phytagel samples for 

comparing root growth in substrates with different textures.
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4 .2.3 P l a n t  c u l t u r e

In all cases ,  the "below ground" part of the sample was covered with aluminium foil on 

the outside of the vial during the growth period to eliminate light from the roots. The 

samples  were kept in a controlled temperature room at 20 °C with 16 hours light: 8 

hours darkness each day. In all cases  the plants were grown for 6 days in the substrates 

before imaging.

4 .2.4 Imaging

For the experiment comparing the effect of substrate compaction on root growth, the 

samples  were prepared by adding a Rl matching solution with 20% sorbitol (w v'1),

Figure 4.1. Im aging process. A ) Top view  diagram  o f the p lant sam ple, w here 4 pro jection  

im ages w ere taken at 9 0 ° interva ls by rotating the sam ple. B) Exam ples o f  2 consecutive  

im ages o f  a root system . O n ly  2 out o f  4 im ages w ere used because the im age pairs were  

m irror im ages o f  one another. The im ages that w ere used  were se le cted  b ased  on how  

clearly  the roots appeared.

88



accounting for the dilution effect of the water already present in the samples. The

saturated samples from the experiment comparing the effect of gels and particle size on 

root growth required no extra preparation for imaging.

Imaging was carried out using the optical projection tomography (OPT) system at The 

James Hutton Institute. For each sample, 4 projection images at a resolution of 

900 pixels mm'2 were taken with 90° of separation between them (Figure 4.1).

4 .2 .5  I m a g e  a n a ly s is

The root systems studied in this experiment were not old enough to have developed 

lateral roots and so only the primary roots were analysed. In order to calculate the 3D 

trajectories of the roots, the images were processed using the open-source software FIJI 

(Schindelin et al., 2012). Of the 4 images captured, 2 consecutive images were selected 

based on how clearly the roots appeared (Figure 4.1). The background was subtracted 

using the "subtract background" tool, and then the primary root was traced using the 

pencil tool, which gave a black line, 1 pixel in diameter. All of the XY coordinates along 

the line were extracted by an edge tracking algorithm and saved for subsequent 3D 

reconstruction.

Once this had been carried out for both of the images of a root, the 3D co-ordinates 

were calculated using the following procedure. One 2D image provided XZ, the other YZ 

co-ordinates. The Z co-ordinates common to both images were picked to find the 

complete X, Y and Z co-ordinates for each point This was done using a custom program
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written by Lionel Dupuy (The James Hutton Institute, Invergowrie, UK) in Python 2.7.3

(Python Software Foundation).

4 .2 .6  D a ta  a n a ly s is

The 3D coordinates were joined together to form a representation of the root 

trajectories 1 voxel in diameter consisting of a series of small straight sections. The total 

combined length of the sections could be calculated to estimate the root length. The 

length of the sections was not always the same because the distance between the 

coordinates was set using a determined number of pixels between the Z coordinates of 

each point. There were 15 pixels (0.5 mm) between each point in the Z dimension, 

therefore the 3D distance between each point varied (Figure 4.2). Root length, vertical 

curvature (the angle of deviation from a straight line along consecutive sections of the 

root) and 3D verticality (angle of deviation from vertical, where 0 = vertical, of each root 

section) were calculated from the 3D coordinates using a custom Python program 

written by Lionel Dupuy (Figure 4.2). Distances between root extremities were 

calculated from the 3D vector given by the coordinates at the beginning and end of each 

root trajectory.

4 .2 .6 .1  S ta t is t ic a l  a n a ly s is

Means and standard errors were calculated using Sigmaplot 12.3 (Systat Software, Inc.). 

The data on root curvature from the substrate density experiment were log transformed 

and the curvature data from the substrate texture experiment were square root 

transformed in order to satisfy the requirements of normality for the statistical tests.
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General analyses of variance, restricted maximum likelihood (REML, linear mixed 

models) and Spearman's rank correlation were performed using Genstat, 14th edition 

(VSN International Ltd.). For the analysis of variance, all of the measurements for each 

treatment (i.e. multiple plants and multiple measurements from each plant) were 

pooled and the overall means for each treatment were used. For the REML estimation, a 

linear mixed model was used. Treatment and distance along the root were used as the 

fixed effects. Distance along the root was also squared in order to allow curves in the 

model and was also added to the fixed effects. The individual plant was used as the 

random model. There was assumed to be no interaction between individual plant and 

distance along the root. The curvature or verticality was considered as a variate. Simple 

linear regression was used to compare pooled data with the fitted values from models 

and a simple linear regression with groups was used to compare data grouped by 

individual plant with the fitted values from models.

9 1



Figure 4.2. Representation  o f  the m ethod  by which root length, curvature  and  

vertica lity were m easured  along the roots. A ) R oot length was the length  o f  the 3D  

tra jectory representing the root (r), w hich was com pared with the vector 

representing  the Euclidean d istance betw een the root extrem ities (v). B) Curvature  

was a m easure o f  the change in d irection o f  the root, where the b lue sections (i) 

represent the angles m ea su red  along the root. The 2 vectors representing  sections  

o f the root, Pi and P2, occupy a 2D p lane  in 3D space and curvature  (K) is 

ca lcu lated  in this plane. C) Verticality was a m easure  o f how  fa r  the roo t trajectory  

d eviated  fro m  vertical. The green sections represent the angles that were  

m easured.
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4.3 Results

4 .3.1 The effect of substrate compaction on primary root trajectories

3D root trajectories were reconstructed from plants grown in transparent  soil at 

densities of 0.62 g cm"3 (n = 3), 0.70 g cm'3 (n = 3) and 0.78 g cm 3 (n = 2). Primary root 

lengths were measured and the Euclidean distance between the base of the root and 

the root tip was  calculated for plants grown in transparent  soil at the different 

compaction levels (Figure 4.3). The overall mean primary root length was 36.4 ± 3.5 mm

Figure 4.3. M ean p rim a ry root lengths and  distance betw een root extrem ities  

(vector) o f  lettuce p lants grow n in transparent so il with 3 d ifferen t substrate  

com pactions. Error bars represent sta nd a rd  error.
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and a general analysis of variance (ANOVA) showed that there was no significant

difference in primary root length between the plants grown in substrates  with different 

compact ions (F2,7 = 0.25, p = 0.785).  Likewise, there was no significant difference in 

distance between the root extremities of the plants from different treatments  (F2/7 =

0.28, p = 0.766).  In the present study, the mean root: vector length was 1.24 and there 

was no significant difference in this ratio between the plants grown at different 

compaction levels (F2/7 = 0.22, p = 0 .8 1 1 )  (Figure 4.4).
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Figure 4.4. Ratio betw een the root length and the length o f  the d istance betw een  

the root extrem ities. This was used  as a g lobal m easure  o f  root tortuosity o f  p lants  

grow n in transparent so il with 3 d ifferent levels o f  com paction.
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Curvature was found to vary along the trajectory of the root and a list of angles of 

curvature was collected for each root trajectory and at each substrate compaction level. 

A general ANOVA was used to compare the variance in curvature of roots grown at 

different substrate compaction levels by pooling all of the measurements  for each 

treatment.  There was no significant difference in overall root curvature between roots 

from the different substrates (F2;342 = 2.74, p = 0.066). The spread of the data on root 

curvature was also visualised (Figure 4.5). The root curvatures in the substrates  with the 

highest compaction (0.78 g cm"3) had a wider range than those from the substrates with
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Figure 4.5. Box p lot show ing the sp rea d  o f data on root curvature in substrates with 

different com paction levels. The b lack line inside the box denotes the m edian and the  

white line denotes the m ean. The data show n have been square root transform ed.
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lower compaction levels, and in particular, the difference between the upper and lower

quartiles was highest at the highest compaction. The standard deviation of the 

curvature of roots grown at a substrate compaction of 0.62 g cm'3 was 2.2 x 10"2, at 0.70 

g cm’3 the standard deviation was 2.7 x 10’2 and at 0.78 g cm'3, the standard deviation of 

root curvature was 3.0 x 10'2.

Restricted maximum likelihood (REML) variance component analysis was used to allow 

the incorporation of a spatial factor along the roots into the analysis. Using this method, 

it was found that the compaction treatment had no effect on root curvature (F = 0.31, p 

= 0.748, Table 4.3). However, the measurements' distance along the root (sequence) did 

influence root curvature and there was an interaction effect between the treatment and 

distance along the root (Table 4.3). The linear mixed model could be fitted to the 

curvature data, incorporating distance along the root. The goodness of fit of the model 

was tested using a simple linear regression, which showed that the model (with 95% 

confidence intervals) accounted for 54.1% of the variation in the data (Figure 4.6). 

Another linear regression was carried out where the treatment levels were included as 

groups (Figure 4.7). In this case, the model could account for 79.2% of the variation in 

the data. Generally, there were no clear patterns in the way in which curvature varied 

between the treatments. Vertically along the root trajectories was also measured 

(Figure 4.8) and a general ANOVA showed that there was no significant difference in 

mean root vertically between the different substrates (F2/374 = 0.54, p = 0.586, Figure 

4.8). REML variance component analysis was used again for analysing the vertically 

along the roots. It revealed that the treatment had no effect on root vertically (F = 0.16,
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p = 0.859, Table 4.4), yet the measurements' distance along the root did influence the

vertically and there was an interaction effect between the treatment and distance 

along the root (Table 4.4). A linear regression, grouped by treatment level, showed that 

the model accounted for 38.7% of the variation in the data (Figure 4.10). Again, there 

was no clear trend in verticality along the root between the treatments.

Fixed term n.d.f. F statistic F pr.

Treatment 2 0.31 0.748

Sequence 1 26.60 <0.001

Sequence2 1 41.98 <0.001

Treatment.sequence 2 21.90 <0.001

Treatment.sequence2 2 21.45 <0.001

Table 4.3. Fixed effects from the REML component analysis on root curvature in roots 

grown in transparent soil with different compaction levels. "Sequence" is the 

distance along the root and n.d.f. = the number of degrees of freedom. The 

sequence2 term was used to allow non-linear fitting.
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Fitted and observed relationship with 95% confidence limits

Figure 4.6. Relationship  betw een the log transform ed curvature values o f  roots grow n  

in transparent so il with 3 d ifferent densities (data fro m  all roots have been poo led  in 

this p lot) and  the f itte d  values fro m  the REM L variance com ponent analysis. The red  

line show s the linear regression  with 95%  confidence lim its (blue lines) where

p <  0.001.
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Figure 4.7. L inear m ixed  m odel fro m  REM L variance com ponent analysis (curves) 

as applied  to curvature  data fro m  each p la nt (data points) fro m  the three  

substrate  density treatm ents: high d ensity  (0.78 g cm 3), low  density  (0.62 g cm 3) 

and m edium  density (0.70 g cm 3). The d ifferent sym bols s ig n ify  data fro m  

different ind iv idual p la nt sam ples.
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Figure 4.8. O vera ll m ean vertica lity in lettuce roots grow n in transparent so il with 

different com paction levels. Error bars sh o w  standard  error.
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Fixed term n.d.f. F statistic F pr

Treatment 2 0.16 0.859

Sequence 1 6.03 0.015

Sequence2 1 8.36 0.004

Treatment.sequence 2 16.36 <0.001

Treatment.sequence2 2 3.16 0.043

Table 4.4. Fixed effects from the REML component analysis on root verticality in 

plants grown in transparent soil with different compaction levels. "Sequence" is the 

distance along the root and n.d.f. = the number of degrees of freedom. The sequence2 

term was used to allow non-linear fitting.
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Figure 4.9. L in ea r m ixed  m odel fro m  REM L variance com ponent analysis (lines) as 

applied to vertica lity data fro m  each p la nt (data points) fro m  the three substrate  

density treatm ents: high density (0 .78  g cm '3), low  d ensity  (0.62 g cm 3) and  

m edium  density  (0.70 g cm 3). The d ifferent sym bols s ig n ify  data fro m  d ifferent  

ind ividual p lant sam ples.
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4 .3 .2  T h e  e f f e c t  o f  s u b s t r a t e  t e x t u r e  o n  r o o t  g r o w th  t r a je c to r ie s

Plants were grown in transparent soil with 3 different particle size categories (small 

250-500 pm, medium 500-850 pm and large 850-1250 pm) and in phytagel with two 

different densities (5 g L 1 and 10 g L 1). The plants grown in the transparent soil with the 

smallest particle sizes (250-500 pm) could not be imaged because the substrate became 

opaque over time. These samples were therefore excluded from further analyses. 

Primary root length was measured and a general ANOVA showed that there was no 

significant difference in primary root length (F3)i 2 = 0.32, p = 0.810) and distance 

between the root extremities (F3,i 2 = 0.53, p = 0.671) between the plants grown in any 

of the substrates (Figure 4.10). The overall mean root length: root vector ratio was 1.12 

and the ratios from the different substrate types were not significantly different from 

one another (F3/i2= 1.10, p = 0.398, Figure 4.11).

Similar to the experiment investigating the effects of compaction on root trajectories, 

there was variation in curvature along the roots and between the substrate treatments 

in this experiment comparing the effects of substrate textures on roots (Figure 4.12). A 

general ANOVA confirmed that there was a significant difference in root curvature 

between the substrates (F3;532 = 10.02, p < 0.001) and a post-hoc Fisher's protected LSD 

test showed that the roots grown in hard phytagel had the lowest curvatures. Roots 

grown in soft phytagel and in transparent soil with small particles had the next lowest 

curvatures and the curvatures of roots grown in transparent soil with large particles had
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Substrate

Figure 4.10. M ean prim ary root lengths and d istance betw een root extrem ities  

(vector) o f  lettuce p lants grow n in transparent so il with d ifferent particle  s ize  

categories and phytagel with tw o d ifferent densities. Error bars represent 

standard  error.
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Figure 4.11. Root length : vector length ratio as a g loba l m easure o f  root tortuosity  

o f p lants grow n in transparent so il with two d ifferent particle  size  com positions  

and in p hytagel o f  two d ifferent densities.
of

105



c

Substrate

Figure 4.12. O vera ll m ean root curvature  in substra tes with d ifferent textures. 

The data show n has been square root transform ed and  the error bars represent 

sta nd a rd  error. The letters above the bars ind icate  the results fro m  a Fisher's  

pro tected  least significant d ifference test.
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curvatures higher than all of the other treatments, with the exception of the transparent 

soil with small particles, between which there was no difference (Figure 4.12).

REML variance component analysis also showed that there was a difference in curvature 

between roots from the different substrates (F = 9.76, p = 0.014, Table 4.5). The 

curvature did not depend on the measurements' distance along the root but there was 

an interaction effect between the treatment and the distance along the root (Table 4.5). 

A simple linear regression was used to compare the data with the fitted values from the 

model, which accounted for 10.1% of the variation in the data (Figure 4.13). When the 

linear regression was grouped using the treatment levels, the model could account for 

60.1% of the variation in the data (Figure 4.14).

Fixed term n.d.f. F statistic F pr

treatment 3 9.76 0.014

Sequence 1 0.29 0.592

Sequence2 1 1.45 0.228

T reatment.seq uence 3 5.83 <0.001

treatment.sequence2 3 2.40 0.067

Table 4.5. Fixed effects from the REML component analysis on root curvature in 

plants grown in transparent soil with different substrate textures. "Sequence" is the

distance along the root and n.d.f. = the number of degrees of freedom. The 

sequence2 term was used to allow non-linear fitting.
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Fitted and observed relationship with 95% confidence limits

Square root vertical curvature of roots (rad)

Figure 4.13. Relationship between the square root transformed curvature values of 

roots grown in transparent soil with four different textures (data from all roots has 

been pooled in this plot) and the fitted values from the REML variance component 

analysis. The red line shows the linear regression with 95% confidence limits (blue 

lines) where p < 0.001.
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Figure 4.14. Linear mixed model from REML variance component analysis (lines) 

as applied to square root transformed curvature data from each plant (data 

points) from the four substrate texture treatments: medium particles, large 

particles, soft phytagel and hard phytagel. The different colours signify data from 

different individual plant samples.

Verticality also varied along the roots and between substrate treatments (Figure 4.15). A 

general ANOVA showed that there was a significant difference in mean verticality 

between the treatments (F3,532 = 4.33, p = 0.005, Figure 4.15). The roots of plants grown
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Substrate

Figure 4.15. Mean verticality in lettuce roots grown in transparent soil with 

different substrate textures. Error bars show standard error. The letters above the 

bars indicate the results from a Fisher's protected least significant difference test.

in soft phytagel and in transparent soil with small particles had the mean verticalities 

closest to zero (where 0 = vertical). The roots of plants grown in transparent soil with 

large particles had a mean verticality furthest from zero and roots of plants grown in 

hard phytagel had a mean verticality that was not different from that of plants grown in 

transparent soil with small or large particles.
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However, when the measurements' distance along the roots was incorporated into the

analysis using REML variance component analysis, it was found that the substrate had 

no effect on the roots' verticality (F = 0.83, p = 0.513, Table 4.6) but the distance along 

the root did have a significant effect on the verticality and there was an interaction 

effect between distance along the root and treatment. A grouped simple linear 

regression showed that the model accounted for 57.6% of the variation in the data 

(Figure 4.16), and there was a positive correlation between verticality and (distance 

along the root)2 (correlation: 0.233, p < 0.001).

Fixed term n.d.f. F statistic F pr

Treatment 3 0.83 0.513

Sequence 1 75.85 <0.001

Sequence2 1 11.58 <0.001

Treatment.sequence 3 4.76 0.003

Treatment.sequence2 3 11.31 <0.001

Table 4.6. Fixed effects from the REML component analysis on root verticality in 

plants grown in transparent soil with different substrate textures. "Sequence" is the 

distance along the root and n.d.f. = the number of degrees of freedom. The sequence2 

term was used to allow non-linear fitting.
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Figure 4.16. Linear mixed model from REML variance component analysis (lines) as 

applied to square root transformed curvature data from each plant (data points) 

from the four substrate texture treatments: medium particles, large particles, soft 

phytagel and hard phytagel. The different colours signify data from different 

individual plant samples.

112



4.4 Discussion

4 .4 .1  T h e  e f f e c t  o f  s u b s t r a t e  c o m p a c t io n  o n  r o o t  t r a j e c to r ie s

In the experiment comparing root trajectories in substrates with different compaction 

levels, there was no difference in primary root tortuosity (Figure 4.4). These results are 

contrasting with data presented by Tracy et al. (2012) where they found that soil 

compaction increased the tortuosity of the primary root. There could be several reasons 

for this discrepancy. The calculation of tortuosity by Tracy et al. compared the vertical 

rooting depth, rather than the Euclidean distance between the root extremities, with 

the root length. There was also a greater difference in compaction between the soils 

used in the experiments by Tracy et al. than there was here. Perhaps more 

fundamentally, plants from different genera were used in the two experiments and 

Tracy et al. used a real soil rather than a soil analogue.

Regarding root curvature at different densities, it might have been expected that there 

would be a trend in mean root curvature with different levels of compaction; however 

that was not the case here. There was a difference in the range of curvatures between 

the treatments and by visualizing the data in the form of a box plot, it was evident that 

the range of measurements was larger with higher compaction (Figure 4.5) and 

correspondingly the standard deviation is higher with higher compaction levels. This 

could be because with higher compaction, the particles in the substrate have a greater 

influence on the trajectory of the root. At low compaction, the root would be more able 

to push soil particles aside as it followed a trajectory based on the inherent growth
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pattern and tropic responses, whereas at high compaction it would have to grow around 

the particles more often and the trajectory would be more subject to thigmotropic 

responses. The data presented here show how this leads to root trajectories with a 

greater range of curvatures. The angle of curvature was influenced by the distance along 

the root, as confirmed by the REML component analysis (Table 4.3), but the shape of the 

curves varied greatly between individual plants (Figure 4.7). Because the curvatures 

were not dependent on the substrate compaction, it is not valid to generalise on root 

curvature between substrate treatments.

It was expected that higher levels of compaction would increase the mechanical 

impedance experienced by the roots and would result in shorter, more tortuous roots 

(Goss & Russell, 1980, Tracy et al., 2012), which would perhaps also have higher 

curvatures. In order to further examine the relationship between root growth and the 

transparent soil with different compactions, it would be possible to quantify the pore 

volumes, diameters and tortuosities of the transparent soils with different properties. 

This could be achieved using X-ray pCT and subsequent image analysis. Also, higher 

compactions could perhaps be achieved using transparent soil with smaller particle 

sizes, and so this would be one option for further studies.

No difference was found in the mean root vertically in plants grown at different levels 

of compaction (Figure 4.8). The distance of the measurement along the root did have an 

influence on the verticality and this effect also depended on the treatment (Table 4.4). 

From this, we can conclude that compaction did not affect the straightness of the
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growth trajectory because the treatments did not have an influence on the gravitropic

response of the root tips. However, the verticality did change with distance from the 

root base, which could perhaps be due to the timing of gravitropism in root 

development (Barlow, 2002) and because of the decreasing influence of the initial seed 

direction over time on the growth direction of the root tip.

4.4.2 T h e  e f fe c t  o f  s u b s t r a t e  t e x t u r e  o n  r o o t  t r a j e c to r ie s

In the experiment comparing root trajectories in substrates with different particle sizes 

and gel densities, no difference was found in the root lengths or in the global tortuosity 

of the primary roots (Figure 4.10 & Figure 4.11). These results are in agreement with the 

results presented in Chapter 3 (section 3.3.4, page 68) which showed that tobacco 

plants grown in transparent soil have primary roots the same length as plants grown in 

phytagel. Despite the similarities in root length and global tortuosity between the 

plants, there were some interesting differences in root curvature between the 

treatments (Figure 4.12). Overall, the mean curvature was higher in plants grown in 

transparent soil than in phytagel. This could represent the smoother root trajectory that 

was possible in gel where the roots were not navigating around objects, as they were in 

transparent soil.

The roots of plants grown in the hard phytagel had less vertical growth trajectories than 

plants grown in soft phytagel (Figure 4.14). This corresponds with the studies by 

Antonsen et al. (1999) and by Massa & Gilroy (2003) which showed that the gravitropic 

response in roots can be overridden by touch stimuli. This may happen to a greater
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extent with the harder phytagel than the soft phytagel because of the increased 

resistance experienced by the root tip. Further experiments with a greater number of 

replicates, where the samples could be reoriented during growth would be required to 

fully test this hypothesis.

In both of the experiments presented in this Chapter, verticality varied with distance 

along the root. This could be because immediately after emergence, the direction of 

root growth could be influenced by the direction in which the seed was facing as the 

root emerged. The discrepancy of verticality along the root could also be because of the 

time lag between gravity perception and gravitropic response exhibited by roots (Kiss et 

al., 1996), however there was a strong positive correlation between distance along the 

root and verticality, which suggested that the roots deviated further from vertical near 

the root tip, which could be caused by a responses to the substrate. These hypotheses 

would require further experimental testing, ideally with a larger sample number, to be 

validated.

4 .4 .3  F u tu r e  d ir e c t io n s

4.4.3.1 M an ipu la tin g  tra n sp a re n t so il  f o r  m im ick in g  so il  p h ysica l 

con d ition s

The methods presented in this Chapter have described some simple ways in which 

transparent soil can be manipulated to replicate different soil compaction levels and 

soils with different particle sizes. As discussed, it may be possible to increase the range 

of compaction levels possible by using smaller particle sizes than were used here.
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Another potential way of increasing the resistance experienced by roots would be to

apply pressure to the surface of the substrate so that the particles could be less easily 

displaced by the roots (Clark et al., 2001). Similarly, a larger range of particle sizes could 

be tested, the upper limit being the size of the particulate raw material (2-3 mm), and 

the minimum possible size would be determined by practical considerations (very small 

particle sizes are difficult to work with and the substrate becomes difficult to saturate 

effectively for imaging).

In the longer term, if the transparent soil system could be scaled up sufficiently for high 

throughput root system analysis, the analysis techniques presented in this Chapter 

could be very useful. For example, in a crop breeding program to select plant varieties 

with deep rooting systems even in compacted soil, compacted transparent soil could be 

used and the root systems imaged. Subsequent 3D root measurements could be carried 

out, including 3D verticality, an indicator of deep rooting (Kato et al., 2006).

4 A .3 .2  Im age  a n a lysis  an d  d a ta  a n a ly sis

Analysis of root trajectories could benefit from techniques developed for analysing the 

3D path of living organisms taken over time, rather than as a growth trajectory as 

studied in this Chapter. Crenshaw et al. (2000) presented a method for standardising the 

analysis of 3D curved trajectories called the Finite Helix Fit (FHF) and applied the 

technique to the analysis of the movement of diverse living things including a flagellate, 

a ciliate, spermatozoa and a larvae. The 3D trajectories of sperm cells have received 

some attention, particularly with advances in 3D microscopy (Woolley & Vernon, 2001,
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Corkidi et al., 2008, Su et al., 2012). Various approaches have been used to analyse and

categorize their trajectories. It would be interesting to find out how the approach 

employed by root tips to explore a 3D volume compares to the trajectories taken by 

other organisms to explore a volume, taking into account the vast scale differences in 

time and space. More generally, techniques for analysing movement trajectories could 

be applied to describing root trajectories, particularly if time series data was available.

With more data, advanced analysis techniques could be used to describe the data more 

effectively. Time series analysis techniques, for example, could be used to elucidate any 

patterns in geometry along the roots, rather than using average measures. These 

techniques are commonly used for analysing many types of data accumulated over time, 

such as changes in landscape cover taken from satellite image data (e.g. Jakubauskas et 

al., 2001, Stow et al., 2004, Beck et al., 2006). However, because the data presented in 

this Chapter are not strictly time series data, this should be accounted for in the 

analyses. Eventually, with data from many plant species and in many substrate 

conditions, it would become possible to use such data to parameterize and improve the 

accuracy of crop models for predicting the growth of roots under given sets of 

conditions (Dupuy & Vignes, 2012, Fourcaud et al., 2008).

4 .4 .4  C o n c lu s io n s

Overall, these results show that global root measures of root morphology such as 

tortuosity are merely approximate descriptors of root geometry. Alternatively, by 

measuring geometric parameters along the roots, it was possible to describe the
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trajectory and directional growth of a root tip in greater detail, including how the root

geometry can change with distance along the root. The method presented in this 

Chapter of using transparent soil to grow plants for 3D imaging of the root system 

followed by analysis of the root trajectories represents a starting point for sophisticated 

analyses of root growth in a complex soil-like system. The analysis presented here, 

particularly the REML component analysis, demonstrated that the root trajectories can 

be analysed in novel ways, incorporating the distance along the root. This meant that 

behaviour of the root tip during the growing period and with depth in the substrate 

could be assessed.
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Chapter 5. High resolution 3D distribution of living 
Pseudomonas fluorescens on and around 
lettuce (Lactuca sativa) roots

5.1 Introduction

Soil contains a high concentration and diversity of bacteria that perform essential 

functions such as decomposition of organic matter and nitrification (van Elsas et al., 

2007). The way in which bacteria interact with plant roots is of interest because of the 

role of bacteria in plant growth promotion through biological control against plant 

pathogenic microorganisms (Whipps & Gerhardson, 2007) and through processes which 

provide plants with resources, such as during nitrogen fixation (Garg & Geetanjali, 

2007). The interaction can occur indirectly in the rhizosphere -  the zone of soil that is 

influenced by the roots by, for example, root exudates, or directly on the surface of the 

root -  the rhizoplane. Pseudomonads are Gram-negative generalist species and can be 

found in most soils. They are also among the best root colonisers and have a high 

rhizosphere competence (Lugtenberg et al., 2001).

Biofilms consist of bacteria embedded within a stable matrix of extracellular polymeric 

substances (EPS). These can form on plants, where they play an important role in the 

ecology of the species involved as well as the soil ecosystem at large (Danhorn & Fuqua, 

2007). The biofilm's integrity is dependent on a number of other factors including 

bacterial surface appendages such as pilli and flagella and lipopolysaccharide (LPS) 

coatings and the composition of the colonised surface (Donlan, 2002). Wheat root
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colonisation by Pseudomonas species and other native bacteria was quantified and

biofilms were found within 11 pm of the root surface and could be found on 40% of root 

surfaces (Watt et al., 2006). Exopolysaccharides of rhizosphere biofilms of Pseudomonas 

species contribute to biofilm survival and fitness under water-limiting conditions 

(Nielsen et al., 2011). The biofilm structure and composition of Pseudomonas 

fluorescens can be influenced by chemical factors such as the presence and 

concentration of metals (Koza et al., 2009).

After inoculation of seeds with Pseudomonas fluorescens and subsequent plant growth, 

bacterial cells can be found on the seeds and at the base of the root (Unge & Jansson, 

2001). After colonisation they remain as single cells or grow into microcolonies, 

including rhizoplane biofilms, sometimes covered in mucigel (Chin-A-Woeng et al., 

1997), which are usually found at root epidermal cell junctions (Rovira, 1956) and lateral 

root emergence sites (Unge & Jansson, 2001). Regarding the distribution of P. 

fluorescens cells and microcolonies along the root, there have been few conclusive 

studies. Dandurand et al. (1997) conducted a quantitative study on the spatial patterns 

of P. fluorescens strains in the rhizoplane of pea seedlings and found that there was a 

large amount of variation in the distribution between their samples and the distribution 

often seemed random. Humphris et al. (2005) found that border cells and mucilage 

produced by maize roots prevented colonization of the root tip by P. fluorescens SBW25, 

which was also the case in tomato and oat plants (Rovira, 1956). In other studies, wave­

like fluctuations in bacterial density along roots have also been described (van Bruggen 

et al., 2000, van Bruggen et al., 2008).
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Pseudomonas fluorescens releases various metabolites, some of which have a positive

effect on plant growth through biological control (Dowling & O'Gara, 1994, Lakshmanan 

et al., 2012). Siderophores are among the metabolites produced, which allow the 

bacteria to take up iron from the soil solution and it is thought that this gives the 

bacteria a competitive advantage over some plant pathogenic fungi, whose 

pathogenicity can be significantly reduced in the presence of P. fluorescens (Raaijmakers 

et al., 1995). Plant protection by pseudomonads can also be through an indirect route, 

by stimulating the plant's own defence mechanisms inducing systemic resistance to 

pathogens (Preston, 2004). The plant growth promotion effect of P. fluorescens 

colonization of the roots may be pertinent under stress conditions, evidenced by a study 

showing that the biomass yield of Catharanthus roseus was enhanced by P. fluorescens 

under drought stress conditions (Jaleel et al., 2007).

Biological control conferred by plant growth promoting bacteria has yielded inconsistent 

results in the field, often due to poor root colonization (Weller, 1988). In order to 

engineer successful plant-bacteria associations for this purpose, further information is 

required on their ecological associations so that the bacteria's location along the root 

can be optimised so that it coincides with the regions favourable for the pathogenic 

microorganisms (Gamalero et al., 2003). Root colonization by Pseudomonas fluorescens 

in the field will undoubtedly be influenced by the soil properties, although these factors 

have not been studied.
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The first aim of this Chapter is to use transparent soil to gain insight into the 

colonisation of lettuce roots by Pseudomonas fluorescens SBW25 and in doing so 

demonstrate the potential of transparent soil as a tool for quantitatively studying plant- 

microbe interactions. The second aim is to develop image analysis protocols to 

investigate how the particle size range of the transparent soil affects root colonization 

and bacterial density adjacent to the root surface.

5.2 Materials and methods

5.2.1 B a c te r ia l  c u ltu r e

Pseudomonas fluorescens SBW25 marked with GFP-ASV (mini-Tn7 (Gm, gentamycin 

resistant) PrrnB PI gfp.ASVa) (Lambertsen et al., 2004) was from A. Spiers. The bacteria 

were cultured in Luria-Bertani (LB) medium (Sambrook et al., 1989) with 1 mg L1 

gentamycin at 28 °C in a shaking incubator. Bacterial culture density was determined 

from the colony forming units (cfu) counted from LB plates, which were incubated at 

28 °C for 48 hours before counting the colonies. The bacterial suspension used 

contained 6 x 107cfu ml1.

5.2.2 P la n t  p r e p a r a t io n

Lactuca sativa (lettuce, var. capitata, Seed Parade, UK) seeds were surface sterilised by 

washing in 10% bleach (Domestos, Unilever UK Ltd.) for 20 minutes followed by several 

sterile dH20 washes. The seeds were sown in Petri dishes containing 7 g L 1 phytagel and 

half-strength (2.2 g L'1) Murashige and Skoog (M&S) basal medium (both from Sigma) for 

pre-germination one day prior to transfer to transparent media.
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16 samples were set up as summarised in Table 5.1. 3D slides were constructed as 

previously described (Section 3.2.6.1, Page 59) and were used as sample containers. 

Transparent soil with two different anionic Nation particle size ranges (500-850 and 

850-1200 pm) were prepared as described in Section 3.2.1, Page 53.

Prior to transferring the transparent soil to 3D slides, the substrate was saturated with 

dH20 and autoclaved. The water that could be poured off was removed and replaced 

with sterile half-strength M&S medium and mixed. This was repeated twice so that the 

liquid in the pore spaces contained plant nutrients. The liquid occupying larger pores 

was removed using a 3 ml sterile Pasteur pipette to achieve an approximate gravimetric 

water content of 35% (verified by weighing the samples).

Per gram of transparent soil (in working state, i.e. not saturated and not dry), 50 pi of

5.2.3 Sample set up

Nafion particle size range Plant status Number of

(Mm) replicates

500 -  850 (A) Present 4

500 -  850 (A) Absent 4

850 -  1200 (B) Present 4

850 -  1200 (B) Absent 4

Table 5.1. Summary of sample set up for experiment comparing bacterial

distribution under different conditions.
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bacterial suspension in LB medium was added and then mixed to evenly distribute the

bacteria. The transparent soil was then added to the 3D slides and compacted by 

tapping the slide on the bench. One pre-germinated seedling was added to the 

transparent soil in each sample using a pair of forceps. The substrate part of the samples 

were then covered in aluminium foil and placed in a growth room at 20 °C with 16 hours 

light: 8 hours darkness.

Imaging was carried out after 5 days and on the day before imaging, all samples were 

saturated with a half-strength M&S medium containing 1 mg ml'1 fluorescent brightener 

(calcofluor) (Sigma) in order to stain the root tissue. Immediately before imaging, this 

solution was removed and replaced with pure Percoll (Sigma) containing 1 pg ml'1 

sulphorhodamine B (Sigma). The Percoll was for Rl matching with the Nation particles 

and the sulphorhodamine B was for staining the surface of the particles.

5 .2 .4  I m a g e  a c q u is i t io n

Images were taken with a Leica TCS SP2 confocal laser scanning microscope using a 20x 

/ 0.50 n.a. water dipping objective lens so that the whole diameter of the roots could be 

captured in an image. Imaging was carried out at a resolution of 1849 pixels mm'2. The 

same laser intensity and gain settings (gain = 600) were maintained for GFP acquisition. 

GFP fluorescence was excited by illumination with the 488 nm wavelength line of an 

argon laser and detected between 500 and 530 nm. 2 x line averaging was used. In 

some cases, high resolution imaging of the root surface was carried out using a 63x /

0.90 n.a. water dipping objective lens.
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In each sample, 27 points, distributed in 3D, were sampled by imaging. This meant that

the effect of position along the root and perpendicular to the root could be quantified. 

In samples with plants present, the root tip was located using the bright field settings on 

the confocal microscope and 3 images were acquired at this position (labelled Rl,Figure

5.1), where the first image represented the upper surface of the root, and the last image 

was 90 pm further down in the Z direction, with one image taken in between (Figure

5.1,B). This procedure was repeated at each of the sampling points shown in Figure 5.1. 

In samples with no plants, the same imaging sample points were used as in the samples 

with plants. Position Rl was chosen to mimic the approximate area where the root tips 

were in samples with plants (Figure 5.1).
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Figure 5.1. Diagram representing spatial distribution of points where images were 

acquired. A) Distribution of points in X (horizontal) and Y (vertical) directions on 

samples with and without plants. The naming convention for the sampling positions is 

also shown (Rl, A l, etc.). B) At each point shown in (A), 3 images were taken in the Z 

direction to a depth of 90 pm from the first image.
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5 . 2 . 5  Biom ass m easurem ent

After imaging, the plants were removed from the transparent soil by gently pulling and 

then rinsing with water to remove remaining Nation particles. The roots were separated 

from the shoots using sharp forceps. Roots and shoot were placed in individual 2 ml 

Eppendorf tubes which were pierced in the lid to avoid the tubes opening during 

autoclaving. The samples were autoclaved for decontamination for 20 minutes at 121 °C 

and then placed in a drying oven for 72 hours at 60 °C. The samples were then weighed 

on a Sartorius micro balance and the dry mass for each root and shoot was recorded.

5.2.6 I m a g e  p r o c e s s in g  a n d  a n a ly s is

5 .2 .6 .1  Q u a n tify in g  b a c te r ia l  a b u n d a n c e

GFP expression from the bacteria was captured during imaging (Figure 5.2, A & B) and a 

number of steps were taken to process these images for consistent quantification. 

Firstly, the images were despeckled in order to remove background noise. The 

despeckle function is a median filter which replaces each pixel with the median value of 

its 9 x 9 pixel neighbourhood (Figure 5.2, C). A fixed threshold (min. 14, max. 255) was 

then applied to the image resulting in a binary image with multiple separate groups of 

individual white pixels representing the fluorescence from bacterial aggregates (Figure

5.2, D). In order to quantify these aggregates, these groups of pixels were selected. The 

images were automatically scanned to find white pixels and an edge tracking algorithm 

was used to find neighbouring adjacent white pixels until the perimeter of a group was 

delineated (Figure 5.2, E). This was carried out for the whole image, which enabled
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Figure 5.2. Image analysis steps taken in order to analyse and quantify bacterial GFP 
expression. A) Example of original confocal image from the GFP channel. Scale bar 
represents 200 pm. B) Magnification of image (A) (white window). Scale bar represents 
40 pm. C) Image after despeckle filter has been applied. D) Binary thresholded image -  
fluorescent aggregates are shown in white. E) Areas where P. f lu o re s c e n s  were 
detected. Outlines of fluorescent bacterial aggregates are in yellow. F) Outline of units 
has been overlaid on the unprocessed original image.



a number of measurements to be carried out. The measurements were number of

fluorescent bacterial aggregates per image, average aggregate size and area occupied by 

bacterial fluorescence. Individual bacterial cells could not be resolved from the images 

and counted and therefore the measurements were based on the number of pixels with 

significant GFP fluorescence, which was not adjusted for cell numbers.

S .2 .6 .2  C o rrec tin g  r e s u l ts  f o r  a v a ila b le  a re a

The vast majority of images analysed had volumes where bacterial occupation was not 

possible. These areas were either inside Nafion particles or inside roots. The fraction of 

the images that were unavailable for the bacteria was highly variable and so the area 

was quantified and an available volume correction was applied to all of the bacteria 

quantification data (Figure 5.3). To make an estimation of the area inside Nafion 

particles, images of sulphorhodamine B on the particles' surface were used. Firstly a 

fixed threshold was applied (min. 25, max. 255) followed by the despeckle filter. Further 

noise reduction was applied using a median filter where a pixel value was replaced if it 

deviated from the neighbourhood median by more than the threshold value. In this 

case, the settings were median = 5, threshold = 50 (Figure 5.3, B). A skeletonisation of 

the binary image was then applied where the objects in the image are thinned until they 

are 1 pixel in width. The image was then inverted (Figure 5.3, C) so that the regions 

inside the Nafion particles could be selected using a magic wand, where a region around

130



Figure 5.3. Method for estimation of the volumes of the image where bacteria could 

not be detected. A) Original confocal image of Nafion particles stained with 

sulphorhodamine B. B) Transformed image after processing by thresholding, 

despeckling and application of a median filter. C) Inverted skeleton of the 

thresholded image. D) Selection of areas of the image occupied by Nafion particles. 

Here three shades of blue are used to represent the areas occupied by the particles. 

Scale bar represents 200 pm.
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a given position is flooded until no pixels with the same value are found at the edge of

that region and these areas were then measured (Figure 5.3, C).

In some cases, images also included root sections and so areas inside roots occupied a 

proportion of the image. Similarly to the inside of particles, it was assumed that these 

volumes could not contain bacteria and so they were manually selected by creating a 

polygon which occupied the internal part of the root, and the areas were measured.

Once the areas inside particles and roots were measured for each image, the fraction of 

the image occupies by bacterial fluorescence was calculated using the following 

equation:

N

where N = original measurement of bacterial fluorescence and A = area of the image 

which is available for bacteria (%).

5 .2 .6 .3  M e a s u r in g  th e  p e r im e te r  o f  N a fio n  p a r t ic le s

To measure the perimeter of the Nation particles, the thresholded images produced as 

described in section 5.2.6.2 were used. In a second step, a series of morphological 

erosions, where white pixels were turned to black when pixels in a neighbourhood were 

black, was applied to the image in order to reduce the thickness of the particle 

perimeters. Erosion was stopped before the edges were being disconnected. A Gaussian 

filter was then applied, and the image was inverted. The areas of high pixel intensity
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were then identified using the same method as in 5.2.6.1. The perimeter (including both

internal and external edges) of these areas is then halved to find an estimation of the 

particle perimeter.

5 .2 .7  I m a g e  a n a ly s is  s o f t w a r e

All image analysis was carried out using the open source software FIJI (Schindelin et al.,

2012). The specific functions used were "analyse particles" for measuring bacterial 

abundance and Nation particle perimeter length. The despeckle function was used for 

removing noise from images. The median filter "remove outliers" was used and the 

"skeletonise" function was also used as described in section 5.2.6.2, page 130.

5 .2 .8  S ta t is t ic a l  a n a ly s e s

For all analyses, the 3 images taken in the Z direction at each position (Figure 5.1, B) 

were treated as replicates of the XY position because of the small Z distance (90 pm) 

between each image. Means and standard errors were calculated using SigmaPlot 12.3 

(Systat Software Ltd.). This program was also used to perform the linear regression 

analysis between particle perimeter length and bacterial aggregate number.

Further statistical analyses were performed in Genstat, 14th edition (VSN International 

Ltd.). The data on number of fluorescent aggregates, average aggregate size and 

percentage area of image occupied by bacterial aggregates were corrected for available 

volume and square root transformed for statistical analysis. A general analysis of 

variance (ANOVA) was used to analyse the effect of the particle size and the presence of 

plants on the number of fluorescent aggregates, average aggregate size and percentage
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area of image occupied by bacterial aggregates at each of the 9 XY positions. The 

blocking structure was set up in order to create levels where the Z position was a 

pseudo-replicate of the variate, which was the XY position. The fact that images were 

taken from different samples was also accounted for. Nafion particle size and whether 

or not there was a plant present in the sample were independent factors. A general 

analysis of variance was also used to analyse the effect of the imaging position along the 

X and Y directions on the number of aggregates, average aggregate size and the 

percentage area of the image occupied by bacterial fluorescence. In this case, the 

blocking structure was altered so that X position and Y position were considered as 

factors independently but otherwise, the blocking structure was the same. Post-hoc 

Fisher's least significant difference (LSD) tests were applied after analyses of variance to 

provide means ranking.

5.3 Results

The soil bacterium, Pseudomonas fluorescens, survived in transparent soil for a number 

of days and images were successfully acquired from each sample at each position 

(Figure 5.1). Fluorescence from the fluorescent brightener staining of the roots, 

sulphorhodamine B staining of the surface of the Nafion particles and GFP expression 

from the Pseudomonas fluorescens bacteria were captured on separate channels, which 

could be overlaid to visualise the distribution of roots, Nafion particles and bacteria 

(Figure 5.4). Dry weights of the roots and shoots of the plants used in the experiment 

were measured and the mean root dry weight of samples grown with small particles
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Figure 5.4. Examples of the confocal images taken at each position for one sample 
with a lettuce plant and small particles. Each image shows a merged image of the 
channels used. At positions Rl, R2 and R3, calcofluor staining on the surface of the 
root is shown in light grey, GFP detection from P. fluorescens is shown in green and 
sulphorhodamine B staining of the Nafion particles is shown in red. At each of the 
other positions, there was no detection of calcofluor staining but again, the GFP 
detection from P. fluorescens is shown in green and sulphorhodamine B staining of 
the Nafion particles is shown in red.
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Figure 5.5. Root and shoot dry weights of plants grown in small and large particle size 

categories. There was no significant difference in root or shoot dry weight between 

the treatments, n = 4 for each particle size category. Error bars signify standard error.

was not significantly different from the mean root dry weight of plants grown in large 

particles (overall mean = 0.16 mg, p = 0.512). The mean shoot dry weight was not 

significantly different in plants grown in large particles from shoot dry weight in plants 

grown in small particles (overall mean = 1.14 mg, p = 0.130) (Figure 5.5).

5.3.1 Comparative analysis between XY positions

The mean number of aggregates, the mean size of aggregates and the mean area of 

image occupied by bacterial fluorescence were measured for each 559504 pm2 image. 

All measures were significantly higher in samples where a plant was present, at
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p o s it io n s  R l ,  R2 a n d  R3 th a n  in c o n tro l s a m p le s  w ith  no  p la n t  p re s e n t  a n d  in s a m p le s

with plants at all A and B positions. Particle size had no significant effect on any of the 

measures of bacterial distribution at any of the positions (Figures 5.6, 5.7 and 5.8 and 

Tables 5.2, 5.3 and 5.4). The highest mean for all 3 of the measures of bacterial 

abundance was at position R2 (1250 pm from the root tip) in samples with plants and 

large Nation particles. There was also a consistent pattern through all of the

Position

Figure 5.6. M ean nu m b er o f  bocterio l aggregates present in the im ages at each  

position in sam ples with p lants and sm all particles, with no p lants and  sm a ll particles , 

with p lants and  large partic les and with no p lants and large particles. The data has 

been square root transform ed and error bars show  standard  error.
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m e a s u r e m e n t s  at p o s it io n s  R l ,  R2 a n d  R3 w h e re  th e  m e a n  w a s  h ig h e r  in p la n t  s a m p le s

with large particles than in plant samples with small particles, although the differences 

were not statistically significant. This pattern does not exist in the no-plant controls.

Position Particle size Presence of plant

R l 0.835 0.024

R2 0.174 0.004

R3 0.49 0.016

A1 0.298 0.121

A2 0.106 0.594

A3 0.421 0.234

B1 0.932 0.783

B2 0.423 0.638

B3 0.599 0.507

Table 5.2. R esu lting  p values fro m  analysis o f  variance o f  the effect o f  p a rtic le  size  

and presence  o f  p lant on the num ber o f  aggregates at each position. Presence o f  

plant had a sign ifica n t effect on num ber o f  aggregates at positions R l,  R2 and R3. 

These p values are show n in red.
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Figure 5.7. Mean average size of bacterial aggregate present in the images at each 

position in samples with plants and small particles, with no plants and small 

particles, with plants and large particles and with no plants and large particles. Error 

bars show standard error.
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Position Particle size Presence of plant

R l 0.951 0.003

R2 0.718 0.003

R3 0.913 0.02

A1 0.663 0.635

A2 0.607 0.201

A3 0.124 0.187

B1 0.614 0.428

B2 0.355 0.68

B3 0.781 0.409

Table 5.3. Resulting p values from analysis of variance of the effect of particle size 

and presence of plant on the average size of aggregates at each position. Presence of 

plant had a significant effect on number of aggregates at positions Rl, R2 and R3. 

These p values are shown in red.
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Position Particle size Presence of plant

Rl 0.591 0.004

R2 0.202 <0.001

R3 0.694 0.01

A1 0.398 0.579

A2 0.174 0.936

A3 0.195 0.091

B1 0.96 0.441

B2 0.563 0.748

B3 0.843 0.626

Table 5.4. Resulting p values from analysis of variance of the effect of particle size 

and presence of plant on the % of the image classed as bacterial fluorescence at each 

position. Presence of plant had a significant effect on the number of aggregates at 

positions Rl, R2 and R3. These p values are shown in red.
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5.3.2 Analysis comparing X and Y directions

To examine the difference in bacterial density along the X direction (distance from root), 

and Y direction (distance from root tip), data on the number of aggregates, average size 

of bacterial aggregate and the area of image occupied by bacterial fluorescence were 

plotted depending on X position or Y position (Figure 5.9). A general ANOVA showed

Figure 5.9. Overall mean number of aggregates (square root transformed) at X 

positions (R, A and B) and Y positions (1, 2 and 3) where there were plants or no 

plants. Letters above the error bars show the results of a Fisher's protected least 

significant difference (LSD) tests on the data where there was a significant 

difference in the means. Lower and upper case letters signify different tests. Error 

bars signify standard error.
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that for the number of aggregates, there was a significant difference between the X

positions in samples with plants (F2,2oo=51.18, p<0.001) and the post-hoc Fisher's 

protected least significant difference (LSD) test confirmed that the images that included 

the root (position R) had approximately a 6 times higher mean number of aggregates 

than the non-root images (positions A and B). There was no significant difference in the 

mean number of aggregates between the non-root positions (A and B) in the presence 

of plants, despite the difference in proximity to the root in these two imaging positions 

(Figure 5.1). There was a significant difference in the number of aggregates when the 

plant was present across the Y positions (F2,2oo=4.88, p=0.012). The post-hoc Fisher's 

protected LSD test showed that there were significantly less aggregates at position 1 

(the root tip) than at positions 2 and 3, between which there was no significant 

difference (Figure 5.9). There were no significant differences in the number of 

aggregates in samples with no plants in either of the directions.

Similar patterns were observed in the measurements of average size of aggregate and 

area occupied by bacterial fluorescence. In both cases, in the X direction, the mean 

result for position R (on the root) when the plant was present was significantly higher 

than at positions A and B (average size: F2,197=38.18, pcO.OOl, Figure 5.10, area: 

F2,2oo=64.02, p<0.001, Figure 5.11). There was no significant difference in average size or 

area along the X direction in samples without plants, but in these control samples, there 

was a significant difference in the average size of aggregates along the Y direction 

(Figure 5.11). The aggregate size was significantly smaller at position 1 (closer to the 

root tip) than at position 3 (closer to the root base) and the aggregate size at position 2
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w a s  n o t s ig n if ic a n t ly  d if fe re n t  fro m  th a t  at p o s it io n  1 o r  3. T h is  w a s  n o t th e  c a s e  in

samples with a plant, where there was no significant difference in aggregate size along 

the Y direction.

Figure 5.10. Overall mean average size of aggregates at X positions (R, A and B) and 

Y positions (1, 2 and 3) where there were plants or no plants. Letters above the error 

bars show the results of a Fisher's protected LSD test on the data where there was a 

significant difference in the means. Lower and upper case letters signify different 

tests. Error bars signify standard error.
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Figure 5.11. Overall mean area of bacterial fluorescence at X positions (R, A and B) 

and Y positions (1,2 and 3) where there are plants or no plants. Letters above the 

error bars show the results of a Fisher's protected LSD test on the data where 

there was a significant difference in the means. Error bars signify standard error.

5.3.3 Relationship between particle perimeter length and bacterial 
abundance

On the micro scale, it seemed that there were a high number of bacterial aggregates 

closely associated with surfaces of Nafion particles compared with the pore spaces and 

in the images analysed, there was variation in the amount of particle surface that was 

included. To examine whether the amount of particle surface in the image could affect 

the measurements of bacterial abundance, the total perimeter of the particles was 

measured in each image at the A and B positions (page 132) and the results were
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plotted. There was a positive correlation between the particle perimeter length and the 

number of bacterial aggregates (r2 = 0.270, p < 0.001, Figure 5.12). There were no strong 

correlations for the other bacterial measures (i.e. aggregate size and area of image 

occupied).

Figure 5.12. Scatter plot showing relationship between the number of bacterial 

aggregates recorded in an image and the total length of the perimeter of the 

Nafion particles in that image. The red line shows the result of a linear regression 

where r2 = 0.270. The data on aggregate number have been square root 

transformed.
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5.3.4 Root colonisation pattern

There was no significant difference in the area occupied by bacterial fluorescence at the 

3 positions imaged along the root in small particles (F2,32=1.55, p=0.3) or in large 

particles (F2)29=1.64, p=0.3), (Figure 5.13). 3D images of the root surfaces with bacterial 

colonisation were captured at high resolution (Figure 5.14). In some cases, it was clear 

that the density of bacteria was higher in the junctions between epidermal cells than on 

the rest of the root surface (Figure 5.14, A). In other cases the distribution was more 

diffuse and it was more difficult to observe a relation between the root anatomy and 

the distribution of P. fluorescens on the root epidermis (Figure 5.14, B-C). In one other 

case, the epidermis appeared to be damaged because the root cells were not aligned in 

a uniform pattern as usual and some cells were not visible (Figure 5.14, D). Some of the 

cells appeared to be occupied by bacteria.
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Figure 5.14. Moximum projection images of high resolution scans of lettuce roots 

(grey) with GFP expressing P. fluorescens (green). A-B) The bacterial density is 

highest in the junctions between the epidermal cells of the root. C) Bacterial flocks are 

visible in the liquid surrounding the root. D) The root epidermal cells appear to be 

damaged, and there are bacteria occupying spaces below the surface of the root, 

perhaps where the epidermal cells have ruptured. Scale bar represents 50 pm.
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5.4 Discussion

5.4.1 A new system for imaging the interaction between P. flu o rescen s  
and lettuce roots

The transparent soil system has allowed the quantification of bacterial abundance on 

and around lettuce roots by image sampling a volume of the complex substrate. This has 

allowed analysis of the bacterial distribution along the roots, and at varying distances 

from the roots. It has also been possible to image the boundaries of the Nation particles 

in the substrate in order to quantify the volumes where bacterial colonisation was not 

possible. It was difficult to incorporate an absolute measurement of bacterial cell count 

because individual cells could not be resolved using the microscope setup used. 

However, by using a higher power objective lens this would be possible or by using a 

microscopy technique other than confocal microscopy where very high resolution is also 

achievable.

It is also possible that the saturation of the substrate on the day before imaging for 

staining the root tissue, followed by the replacement of the liquid immediately before 

imaging for Rl matching would disturb the bacteria, particularly those which are not 

attached to roots or other surfaces. The saturation procedure for the transparent soil 

could be improved to minimise this effect, however it is noteworthy that this 

disturbance is mild in comparison to the treatment of roots and bacteria in preparation 

for other imaging methods, such as the fluorescence in situ hybridisation (FISH) 

technique where the roots are extracted, washed several times and fixed before 

imaging (Buddrus-Schiemann et al., 2010).

151



5.4.2 Influence of particle size on bacterial distribution along the roots

There were consistently a higher mean number of aggregates, a greater mean area 

occupied by bacterial fluorescence and a larger mean bacterial aggregates size found on 

the roots of plants grown in transparent soil with large particle sizes (850-1200 pm) 

than with smaller particle sizes (500-850 pm), although the difference was not 

statistically significant (Figures 5.6, 5.7 & 5.8). Motility in P. fluorescens has been shown 

to play an important role in movement towards and along roots (Toyota &. Ikeda, 1997) 

and it has been found that substrate pore size has an effect on the motility of 

P. fluorescens, where larger continuous pores allowed faster swimming speeds (Singh et 

al., 2002). This effect could have occurred in the transparent soil samples studied here, 

where effectively the chemoattractant from the roots may have diffused through the 

substrate with large particles (and therefore large pore spaces) more quickly than in the 

samples with small particles (and therefore small pore spaces), initiating the movement 

of the bacteria from the substrate to the roots more quickly, resulting in a higher level 

of colonisation along the roots in samples with large particles than in small particle 

samples. It is also possible that, rather than bacteria moving towards the roots, the 

bacteria adjacent to the root surface had a faster growth rate and divided more than the 

bacteria in the other sample points. These hypotheses would require further 

experimental testing with a greater number of samples in order to be conclusive.

5.4.3 Spatial distribution of bacteria

The clearest result from this experiment was that there were always more bacteria in 

images that included root sections than in the remaining images where no root was
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present. This was not surprising as Pseudomonas fluorescens is well known to be a plant

growth promoting rhizobacterium (PGPR) (e.g. Urashima & Hori, 2003, Dey et al., 2004, 

Jaleel et al., 2007, Abbas-Zadeh et al., 2010) and bacteria from the genus Pseudomonas 

are generally more abundant in the rhizosphere than in the bulk soil (S0rensen & 

Sessitsch, 2007). This was reflected in the results from all of the measurements of 

bacterial abundance, where the only significant differences between samples with or 

without plants were in the root sections and there was no significant difference at any 

of the sampling positions adjacent to the root. This showed that the presence of a plant 

in the sample did not have an effect on the abundance of P. fluorescens over the entire 

spatial range measured, but only if there was greater bacterial abundance in the 

immediate vicinity of the root. Qualitative assessments of the images captured of the 

roots (Figure 5.4) indicated that there was a high gradient of bacterial fluorescence 

adjacent to the roots which lessened with distance from the root. It seems that the 

distances between the image points was too large to capture this gradient and at the 

sampling positions in samples with a plant, there was an equivalent level of bacterial 

abundance to when no plant was present.

The spatial distribution of P. fluorescens outside the rhizosphere and in the bulk soil has 

not been well described. In this experiment, it was found that the position along the Y 

axis (i.e. distance from the surface) affected the average bacterial aggregate size 

measured (Figure 5.10), where the position furthest from the surface of the substrate 

had the smallest aggregate sizes, the position closest to the substrate surface had the 

largest aggregate sizes and in the position between these two, the aggregate size was

153



intermediate in samples where no plant was present. These differences could reflect a

difference in oxygen availability where it is likely that more oxygen was available closer 

to the surface of the substrate, and therefore further from the surface the availability of 

oxygen could have been limiting the size of the aggregates.

In the soil, bacteria inhabit niches on the surface of soil particles (Standing & Killham, 

2007) and the P. fluorescens bacteria in transparent soil were most often found on or 

adjacent to the surface of the particles which could explain the fairly weak correlation 

between the number of bacterial aggregates and the length of particle perimeter in the 

image (Figure 5.12). There was no notable correlation between Nation perimeter and 

the average colony size or the total area occupied by bacterial fluorescence. This means 

that most of the variation in the data cannot be explained by the differences in particle 

surface area between the images but rather most of the variation is likely to be 

stochastic.

5.4.4 Bacterial distribution along the roots

Previous studies have reported scarce or no Pseudomonas colonisation on the root tips 

of inoculated plants (Kragelund & Nybroe, 1996, Simons et al., 1996, Gamalero et al., 

2005, Humphris et al., 2005). On the contrary, Darwent et al. (2003) and Paterson et al. 

(2006) showed that the bioluminescent activity of Pseudomonas fluorescens was highest 

around root tips and in the experiment presented in this Chapter, there is clearly 

bacterial fluorescence present at the root tips and there was no difference in abundance 

across the root sections (Figures 5.4 & 5.13). There are two potential ways in which this
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discrepancy could have occurred. Firstly, in the studies where no colonisation at the root

tips was recorded, the inoculation was carried out on the seed (Kragelund & Nybroe,

1996), the germinated seed (Simons et al., 1996) or the seedling (Gamalero et al., 2005), 

whereas in the cases where bacteria were found at the root tip, the soil or substrate was 

inoculated. Another factor that can explain these differences is the procedure to 

prepare the root sample for quantification of bacteria. In some cases this involved 

washing steps (Kragelund & Nybroe, 1996, Gamalero et al., 2005) but in the studies 

where bacteria were found on the root tip, the imaging was carried out in situ. It is 

likely, therefore, that inoculation of the seed reduced colonisation of the root tip 

because the bacteria were moving down from the older parts of the root, rather than 

when the bacteria were colonising the root from the bulk soil. Washing steps for 

preparing the root for imaging may also have changed the quantity of bacteria that 

could be measured.

Peaks in bacterial colonisation have been observed along wheat roots between the root 

tip and base (Van Vuurde & Schippers, 1980) and van Bruggen et al. (2008) found a 

wave-like distribution of Pseudomonas fluorescens which may oscillate over time (van 

Bruggen et al., 2000) along the roots of wheat plants grown in soil inoculated with the 

bacteria where areas of high and low colonisation were observed at regular intervals. 

They used modelling techniques to show that this wave-like distribution could occur, 

and hypothesised that the distribution could theoretically be explained by predator- 

prey relations (van Bruggen et al., 2000). Although larger and older roots were used in 

the studies of van Bruggen et al. than the week-old plants observed here, the pattern in
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colonisation that was observed along the roots could represent the beginning of a wave­

like distribution (Figure 5.13). The transparent soil system could provide a useful tool for 

imaging the development of bacterial distribution along roots over time and in situ.

At the surface of the root, electron microscopy has been used to show that 

Pseudomonas fluorescens micro colonies inhabited the junctions in between epidermal 

cells, particularly near the base of the roots (Chin-A-Woeng et al., 1997). A similar 

distribution of bacteria between the epidermal cells has been observed in two cases 

here (Figure 5.14, A-B).

5.4.5 Conclusion

This Chapter presents the first scientific study where the 3D distribution of a live soil 

bacterium was quantified. It was found that there was a higher level of bacterial 

abundance along the roots than in volumes of the substrate surrounding the roots. 

There were also some interesting directional gradients revealed such as the size of 

bacterial aggregates along the Y direction (Figure 5.10) and the distribution of bacteria 

along the roots (Figure 5.13). These new insights were made possible by the 

development of a transparent soil that supports the growth and development of plants 

and soil organisms (Chapters 2 & 3). For future studies, it would be possible to conduct 

more detailed studies with improved replication to allow more robust statistical 

analyses.

Overall, this study represents an example of the kinds of analyses that are possible 

using transparent soil as a substrate in combination with 3D imaging techniques.
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Increased understanding of plant-microbe interactions is of utmost importance in

finding strategies to address the pressing issue of global food security and the 

application of transparent soil for 3D in situ imaging of these interactions represents a 

timely innovation that has the potential to uncover some of these opaque soil 

processes.
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Chapter 6. Summary and Conclusions

6.1 Summary

To our knowledge, the method development (Chapter 2) and validation (Chapter 3) 

described in this thesis allowed the production of the first refractive index matched, 

transparent, heterogeneous substrate for imaging roots and soil microorganisms. The 

structural and chemical complexity of the transparent soil allowed replication of soil 

properties such as the triphasic structure and ion exchange, whilst allowing optical 

access to living organisms within the substrate. This enabled the application of optical 

imaging techniques such as OPT and CLSM. Fluorescent dyes were used to detect the 

surfaces of roots and of Nafion particles and facilitated distinction between them 

(Chapters 2 & 3, Downie et al., 2012). Lettuce plants were grown in transparent soil and 

the roots were imaged using OPT in order to quantify the root trajectories and how they 

varied under different substrate physical conditions (Chapter 4). The results showed 

that the roots displayed a wider range of curvatures when grown in substrates with 

larger particle sizes. Verticality varied with distance along the roots and the variation 

depended on the substrate, although there was an overall positive correlation showing 

that the roots were less vertical with distance from the root base. When the plants were 

grown in transparent soil with different levels of compaction, the curvature and 

verticality varied with distance along the roots. Transparent soil provided a complex 

structure which allowed movement of bacteria through aqueous networks, a process 

which occurs in soils (Camper et al., 1993, Singh et al., 2002, Spormann, 1999). It was
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unsaturated for the growth period, promoting the survival of aerobic microorganisms.

There was a higher density of Pseudomonas fluorescens bacteria present on roots than 

in the surrounding substrate, and there was a high density of bacteria in the root 

epidermal cell junctions.

6.2 A new approach for soil m icroscopy

Understanding of soil microbiology is extremely limited because of the paucity of 

dynamic data that describe interactions between microorganisms, soil particles and 

roots. Past studies have focused on cataloguing the complexity of microbial 

communities, and it is thought that new techniques for imaging will help to enable a 

systems approach for helping to relate microbial dynamics to soil function (O'Donnell et 

al., 2007). Further research could build on experimental systems developed in this thesis 

(e.g. Chapter 5) to better understand the dynamics of root bacteria interactions. For 

example, time lapse imaging could reveal the dynamics of the growth of bacterial 

microcolonies in relation to the root growth rate and cell expansion. New microscopy 

techniques such as selective plane illumination microscopy, would improve acquisition 

rate and lower the propensity for photo-damaging the sample (Huisken et al., 2004). For 

example, this could be used to allow tracking of bacterial cells, which would help to 

analyse the stages of root colonisation by bacteria with biocontrol properties.

Roots interact with many groups of microorganisms, including pathogenic bacteria and 

fungi, and also beneficial microorganisms which help provide nutrients to the plant or 

convey protection against pathogens. There is much to understand about these
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interactions, and imaging in transparent soil could help with measuring, for example,

the abundance of microorganisms associated with different plants, the exchange of 

proteins between plants and microorganisms (De-la-Pena & Vivanco, 2010), competition 

between groups of microorganisms (de Boer et al., 2005) and symbiotic root-bacteria 

associations such as nodule formation for N fixation by bacteria which can then be taken 

up by the plant (Garg & Geetanjali, 2007). Arbuscular mycorrhizal fungi associate with 

plant roots and can help plants to take up nutrients from the soil by exploring a larger 

volume of soil than the root system itself (Koide, 1991). Not much is known about the 

geometry of the fungal hyphae in situ and how their prevalence is affected by soil 

physical factors (Piotrowski & Rillig, 2008). Transparent soil could be combined with new 

techniques such as imaging of nanoparticle quantum dots to track organic nitrogen 

uptake and transport by fungi (Whiteside et al., 2009, Whiteside et al., 2012).

Soil physical conditions also have a strong effect on biological activity in soil, and 

transparent soil offers new opportunities to understand how roots respond to the soil 

physical conditions (Kozlowski, 1999, Moran et al., 2000, Lipiec & Hatano, 2003, 

Bengough et al., 2006, Pierret et al., 2007). In this thesis, work has focused on the study 

of root trajectories but future work using transparent soil would benefit from combining 

this type of data with information on the high-resolution interactions between the roots 

and the soil particles. For example, imaging roots over a series of time points would 

allow root growth rate to be quantified along with the associated movement of Nafion 

particles, which could be tracked using particle image velocimetry (PIV, Bengough et al., 

2010). Among other things, this would be useful for analysing how different plant
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genotypes respond to substrates with different levels of compaction. Imaging of the

Nation particles which make up the substrate along with the roots could also be used for 

measuring the contact area between the roots and the particles, which has important 

implications in water and nutrient uptake (Schmidt, 2011, Schmidt et al., 2012).

Plant breeding could greatly benefit from the development of cheap transparent soils. In 

particular, breeding crops with improved root system architecture is currently very 

limited because of the difficulties in observing beneficial root traits. One area of interest 

where data on root systems is required is high throughput root phenotyping. This 

requires researchers to screen multiple plant genotypes in order to select plants with 

desirable root traits as a part of breeding programmes, and therefore large numbers of 

samples are required (White et al., 2012, Gregory et al., 2009). Past studies have not 

considered soil conditions and therefore translation to field conditions is impossible 

(Pacheco-Villalobos & Hardtke, 2012). Sample size is also a consideration as applicability 

of results from very small, young plants to full grown plants in the field is desirable.

Transparent soil has the potential to be a competitive option in the field of 3D root 

system architecture phenotyping (Fang et al., 2009, Fang et al., 2011, Clark et al., 2011), 

but an up scaling of the production of Nafion for transparent soil would be required to 

meet the demand for its use in this situation. This could perhaps be carried out in 

collaboration with an industrial scale polymer processing company where particle size 

manipulation and chemical processing could be carried out efficiently. If this were 

pursued, the cost of Nafion as a raw material would be a limiting factor (Nafion in this
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study was obtained from Ion Power Inc., Delaware USA, for $4 -  5.70 per gram). This 

problem could perhaps be circumvented by collaborating directly with the producers of 

Nafion or, alternatively, by further developing transparent soil using alternative, lower 

cost polymers, building on the work described here (Chapter 2). It would also be 

important to consider a greater level of automation in preparation for the imaging 

stage. As described, the substrate has to be saturated with the Rl matched liquid before 

imaging. This process could be automated by creating sample holders with in built 

mechanisms for adding liquid from the base of the sample that could also be used for 

draining the substrate to allow imaging at multiple time points without having a 

permanently saturated substrate.

Data provided by transparent soils could impact soil biological sciences in many ways. It 

has the potential to deliver significant information on the functioning of soil systems, 

contributing to a better understanding of biological mechanisms and their dynamics. For 

example, plants and microorganisms that produce fluorescent proteins could be used to 

locate a specific tissue type, cell organelle, gene expression or hormone production by 

imaging to study plant growth processes in relation to substrate heterogeneity (Kurup et 

al., 2005, Faget et al., 2010, Faget et al., 2012, Federici et al., 2012). Also, fluorescent 

bacteria can be used to give information on other factors in the soil such as bacterial 

luminescence in regions with high soil carbon from root exudation (Paterson et al.,

2006). Further work to combine these tools with novel light imaging techniques and 

transparent soil, providing an environmentally relevant substrate, to generate image 

data describing root and soil processes would be advantageous. This could include the
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acquisition of time series data of living soil systems, made possible by non-destructive

imaging in transparent soil.

The information on roots that can be obtained using transparent soil could be used to 

parameterise root models to describe and predict root growth direction and rate in 

substrates with a range of characteristics. Such models could allow valuable predictions 

of plant responses to soil heterogeneity (Garcia-Palacios et al., 2012). This thesis showed 

that transparent soil was used to obtain data at a range of scales, from plant cell nuclei 

and bacterial microcolonies to root systems, and therefore a would be relevant for 

parameterising multiscale models, from cell divisions to root system architecture (Band 

et al., 2012). The transparent soil presented in this thesis is the first substrate of its kind 

for 3D imaging of soil biota. Its application in studying root systems architecture has 

been validated and imaging of plant roots could be achieved to a cellular level in relation 

to the substrate particles.

Overall, transparent soil presents new opportunities to unravel the complex processes 

of plant-soil interactions in situ and in vivo and holds promise for a wide range of 

applications to aid the understanding of biological, chemical and physical mechanisms 

that underpin the sustainability of our ecosystems.
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A b s tr a c t

Understanding of soil processes is essential for addressing the global issues of food 

security, disease transmission and climate change. However, techniques for observing 

soil biology are lacking. We present a heterogeneous, porous, transparent substrate for 

in situ 3D imaging of living plants and root-associated microorganisms using particles of 

the transparent polymer, Nafion, and a solution with matching optical properties. 

Minerals and fluorescent dyes were adsorbed onto the Nafion particles for nutrient 

supply and imaging of pore size and geometry. Plant growth in transparent soil was 

similar to that in soil. We imaged colonization of lettuce roots by the human bacterial 

pathogen Escherichia coli 0157:H7 showing micro-colony development. Micro-colonies 

may contribute to bacterial survival in soil. Transparent soil has applications in root 

biology, crop genetics and soil microbiology.

I n tr o d u c t io n

The ability of plants and microorganisms to successfully exploit soil resources underpins 

the survival of all terrestrial life. Soil is a complex assemblage of mineral and organic 

particles that can host a very diverse range of biological organisms [1]. It comprises a 

solid phase, consisting of minerals and organic matter particles, and an aqueous phase 

with dissolved minerals and gasses essential for plant nutrition and microbial activity. In 

non-saturated soil, air is also available in large pores supplying gasses required for 

metabolic processes of plants and microbes. Imaging technologies are required to study 

and quantify soil biological processes [2], but this is difficult because of the inherent 

opacity of soil. Non-optical imaging techniques have been used to image plant roots in
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soil, for example, x-ray microtomography and MRI [3,4], but these methods are not

adapted for imaging biological activity, mostly because of the inability to use them to 

detect common fluorescent markers.

Biological studies are benefiting immensely from emerging optical imaging technologies. 

For example, Optical Projection Tomography (OPT), which uses a collection of 2D 

projections to reconstruct 3D volumes, has allowed the distribution of fluorescent 

markers to be mapped across intact whole embryos [5]. Recent advances in Selective 

Plane Illumination microscopy (SPIM) have allowed the light doses received by samples 

to be drastically reduced during live imaging. Using this technique, it was possible for 

the first time to track individual cell growth and cell division events across entire 

embryos during 24 hours [6]. It is now also possible to overcome diffraction limitations 

and increase resolution with techniques such as 3D structured illumination microscopy. 

This is now a common technique to observe sub-cellular processes [7].

Unfortunately, the study of soil biota is not benefiting much from technological 

advances in optical imaging because most soil organisms, such as many types of fungi, 

cannot be cultured in current artificial substrates, whilst others have their functions 

strongly affected by the medium they are grown in [8]. We have developed a substrate 

called transparent soil, with a matrix of solid particles and a pore network containing 

liquid and air. The physical structure was manipulated with the aim of generating 3D 

optical images of soil biota in a physically complex yet controllable environment.
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R e s u lt s  a n d  D is c u s s io n

M a k in g  s o ils  tr a n s p a r e n t  u s in g  R e fr a c t iv e  In d e x  m a tc h in g

At the boundary of two transparent materials with different refractive indices, the path 

of light is distorted through refraction. By matching the refractive index (Rl) of a solid 

and a liquid, this effect is negated so that the boundaries between the materials become 

invisible. Rl matching has proved a powerful approach in many areas of physical 

sciences, such as fluid dynamics [9] and colloid sciences [10]. In soil mechanics, 

amorphous silica particles have been used with oil-based Rl matching solutions [11] and 

have similar mechanical properties to clay [12]. This system has been used for 

investigating particle displacement in response to the application of mechanical forces. 

Recently, the technique of Rl matching has been adapted for growing and imaging 

aquatic biofilms [13] where limited Rl matching was achieved using water. In the 

present study, we have used particles of Nafion, which has a low refractive index (1.34), 

close to that of water (1.33), and therefore allows Rl matching with an aqueous solution 

(Fig. 1A,B). During the period of plant and microbial growth, pores were partially 

saturated with a plant nutrient solution [14] and air spaces were maintained for aerobic 

respiration. Roots can grow freely in 3D trajectories whilst responding to 

heterogeneous, complex touch stimuli, replicating the mechanical processes that would 

occur in soil [15]. Immediately before imaging, the substrate was saturated using a Rl 

matched liquid plant nutrient solution so that imaging of roots and microorganisms 

could be carried out in situ (Fig. 1A).
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R efrac tive  index o f  so lu t io n

E
I i Lateral root density

Substrate

Figure 1. A) Transparent soil is prepared for imaging by saturation with Rl-matched 

solution to achieve transparency (left, fully saturated; right, larger pores are 

drained). Scale bar = 2.5 cm. B) Optimal Rl of nutrient solution for Rl matching with 

Nafion using projected straight line images deformed by the substrate. Curve shows 

Gaussian non-linear regression (R2 = 0.38). C) Water retention in transparent soil 

with 3 different Nafion particle sizes compared to vermiculite [37] and sand [16]. 

Error bars show standard error. D-E) Comparison of plant growth in transparent soil 

and other substrates. D) Excavated plants with representative root systems from 

each substrate type after 2 weeks of growth. Scale bar represents 1 cm. E) 

Quantification of root system parameters in different substrates. Plants grown in 

transparent soil had lateral root lengths and densities more similar to plants grown 

in soil than plants grown in phytagel.
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M im ic k in g  p h y s ic a l  a n d  c h e m ic a l p r o p e r t ie s  o f  s o il

We have also sought to mimic physical and chemical properties important for 

supporting plant and microbial growth in soils in the transparent soil system. Nation, the 

building block of transparent soil, is a transparent ionomer (synthetic polymer with ionic 

properties) that is physically and chemically adaptable. Nation particle size distribution 

has been manipulated by freezer milling (250 -  1600 pm). We have also altered the 

surface chemistry of the particles in order to control water retention and nutrient 

availability through changes in ion exchange capacity. We analysed the water retention 

of transparent soil with 3 particle size categories and compared this to vermiculite and 

sand (Fig. 1C). In the 2 smallest size categories, and in vermiculite, the sharpest release 

of water occurred between -1.5 and -5 kPa. The water release in the largest sized 

particles was more gradual but in all sizes, a levelling off of water release occurred 

towards -10 kPa and the residual water content measured in transparent soil ranged 

from 0.23 to 0.26 cm3cm'3. This value was higher than is usual in sand [16], despite the 

similarity in particle size. Nation has a complex structure incorporating networks of 

hydrophilic channels that allow transport of water and other polar solvents [17]. 

Although the exact nature of these networks is still unclear, it is estimated that the 

diameter of these channels varies between 1 and 6 nm [18,19,20]. At this range of 

scales, the hydrogen bonds holding the water molecules are extremely strong and the 

water sorbed in the Nation particles cannot be accessed by most biological organisms.
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Cation exchange is an important characteristic of natural soils, particularly in those

containing clay, which acts as a buffer for minerals in the soil solution. The cation 

exchange capacity (CEC) of transparent soil was quantified as 81 meq 100 g'1. This is 

within the range that could be expected for vermiculite (80 -  150 meq 100 g 1 [21]). 

Additionally, anion exchange in soils involves some essential plant nutrients such as 

nitrate and phosphate, which are of strong interest in plant nutrition. The anion 

exchange capacity (AEC) of cationic Nation [22] was 47 meq 100 g 1.

R o o t g r o w th  in  t r a n s p a r e n t  s o il

Transparent soil can be used for a large range of other applications. At the macroscopic 

level, quantifying the growth of root systems is essential in understanding how plants 

obtain resources. To analyse root growth in transparent soil, we have measured primary 

root length, total root length and root diameter of root systems of plants grown on 

phytagel, sandy loam soil, sand, and transparent soil. The Analysis of Variance showed 

the type of substrate had a significant effect on root length (p<0.003) (Fig IE) and root 

diameter (p=0.026). The mean root diameter was 0.24 ± 0.01 mm in soil, 0.24 ± 0.03 mm 

in sand, 0.18 ± 0.02 mm in phytagel and 0.28 ± 0.03 mm in transparent soil. The least 

significant difference test showed that plants grown on transparent soil, soil, or sand 

had more lateral roots and a higher biomass than plants grown on phytagel (a common 

substrate used for growing plants and imaging roots). Root systems from soil and sand 

had shorter primary roots than plants grown on gel and transparent soil, but plants 

grown in phytagel had long primary roots and almost no laterals (Fig. 1D,E). Our results
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indicate that root growth in transparent soil is similar to that observed in soil and sand

and demonstrate the importance of physical heterogeneity in the growth substrate for 

producing soil-like root systems.

Transparent soil is suitable for growing and imaging the roots of various plant species, 

including alfalfa, barley, maize (data not shown), tobacco, lettuce and thale cress 

(Arabidopsis), and imaging at the whole root level can be achieved using OPT (Fig. 2A). 

Transparent soil provides images with low levels of noise and opens avenues for 

automated analyses of genetic screens [23]. In addition, the availability of fluorescent 

signals eases the discrimination of biological structures where separation of the 

different wavelengths provides much of the segmentation of the biological structures 

(Fig. 2B,C). Transparent soil can also be used to capture cellular events using plants with 

plasma membrane and nucleus-localized reporter gene-encoded proteins (Fig. 2C, SI, 

Videos S1-S3, Appendix 2 & enclosed CD), which could be used for automated analysis 

of multicellular development [24,25]. For example, we have imaged the 3D distribution 

of auxin in Arabidopsis thaliana root tips (Fig. 2F) using auxin reporter lines [26].

A p p lic a tio n  o f  t r a n s p a r e n t  s o il  to  th e  s tu d y  o f  r o o t  b a c te r ia  in te r a c t io n s

We have applied transparent soil to study the mechanisms of transmission of food- 

borne human pathogens on fresh produce plants using GFP-labelled Escherichia coli 

0157:H7. Although this strain is an enteric animal pathogen, it is able to use plants as 

alternative hosts. The contamination route can be from crop irrigation or manure, via 

the rhizosphere before entering the human food chain [27]. In order to study the
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Figure 2. Imaging roots and microorganisms in transparent soil using OPT and 
confocal microscopy. A) Projection image from OPT scan of N ic o t ia n a  b e n t h a m ia n a  

roots. Scale bar represents 1 mm. B) Root tracking algorithm is applied to the 
reconstructed data to segment and dilate (to improve visibility) the root (green) from 
the small air bubbles (blue). Scale bar represents 1 mm. C-F) Snapshots of volume 
renderings of confocal scans. C) A r a b id o p s i s  t h a l ia n a  roots expressing GFP in plasma 
membranes (grey) in transparent soil with sulphorhodamine-B-dyed particles 
(orange) where scale bars represents 300 pm. Inset shows root skeletonisation and 
edge detection applied to scan (C) to detect roots and particles. D) GFP labelled 
E s c h e r ic h ia  co li  0157:H7 cells and colonies on surface of L a c tuc a  sa t iva  (lettuce) root 
with prominent root hairs. Scale bar represents 30 pm. E) Box shows enlarged region 
of lettuce root in (D) with Nafion particles visible in orange. Scale bar represents 100 
pm. F) A ra b id o p s i s  t h a l ia n a  root tip with nuclear RFP expression linked to auxin 
reporter [41]. Inset with box shows enlarged region. Scale bar represents 54 pm.
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mechanisms of survival of E. coli 0157:H7 in a soil-like environment, lettuce seeds were

germinated and inoculated with E. coli 0157:1-17 before transferring them to the 

transparent soil. Our results showed that after 7 days of growth, E. coli 0157:H7 had 

survived in a soil like environment in the form of micro-colonies of various sizes. Micro­

colonies developed in the rhizosphere [28]. Since E. coli 0157:H7 is not solely a 

rhizosphere bacteria, the formation of micro-colonies shows an adaptation to the plant 

host, which will increase survival in the root zone (Fig. 2D). As a pathogenic bacteria, E. 

coli 0157:H7 survives by colonizing host organisms and in the initial stages of 

colonization, adheres to the host [29]. When using transparent soil, there is a potential 

problem of moving the bacteria during saturation of the substrate in preparation for 

imaging but this should not affect attached bacteria such as E. coli 0157:H7 in the 

preliminary stages of colonization. Saturation is, however, a potential limitation of the 

method if studying microbes that are not attached to surfaces because it is likely that 

these would be moved during saturation. In summary, our results show that transparent 

soil is ideal for imaging studies of certain plant-microbe interactions in situ at the 

microscopic level.

N e w  o p p o r tu n i t ie s  f o r  p la n t  s c ie n c e s

Soil microbes provide numerous important services [30] and their interactions with 

plants enhance the supply of nutrients, for example by nodulation [31] or by biological 

fertilization [32]. The transfer of human pathogens in the food chain [27] and spread of 

crop diseases [33] also involve complex plant-microbe interactions. The use of
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transparent soil will facilitate quantitative imaging of the dynamics of in situ root-

microbe interactions using high resolution imaging with fluorescence for detecting 

microorganisms expressing fluorescent proteins (Fig. 2D). For plant genetics and crop 

breeding, transparent soil could be integrated with high-throughput screening systems 

for root traits [34] that may improve nutrient acquisition and reduce the need for 

fertilizers [35]. Overall, this approach presents new opportunities to unravel the 

complex processes of plant-soil interactions in situ and in vivo and holds promise for a 

wide range of applications to aid the understanding of important underlying 

relationships that underpin the sustainability of our ecosystems.

Materials and methods 

C o n s tru c tio n  o f  t r a n s p a r e n t  s o il

Nafion was from Ion Power Inc., USA, in the form of 4 mm x 3 mm pellets. Acid (NR50 

1100) and precursor (R1 100) forms were used. Size reduction of Nafion particles was 

performed using a freezer mill (6850, SPEX SamplePrep, UK). The final particle size range 

was 350 - 1600 pm. Cation exchanging Nafion particles were made by ensuring full 

conversion to the acid form by washing in a solution of 15% v/v KOH, 35% v/v DMSO 

and 50% dH20 at 80 °C for 5 hours, then with dH20 (milliQ) at room temperature for 30 

minutes followed by several dH20 rinses. This was followed by 2 washes in 15% v/v 

nitric acid at room temperature for 1 hour and then overnight. The particles were 

treated with 1M sulphuric acid for 1 hour at 65 °C, and the acid was removed and 

replaced with dH20 at 65 °C for 1 hour. After cooling, the particles were washed several
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times with dH20. They were washed in 3 wt % H202 solution at 65 °C for 1 hour and

allowed to cool. The particles were rinsed again multiple times with fresh dH20 [36]. To 

titrate the particles with mineral ions, stock solutions of MSR medium were used to 

immerse the particles. These were shaken at 30 °C for 30 minutes before replacing the 

nutrient solution. This was repeated until the pH was neutral and stable. The particles 

were rinsed with dH20 to remove excess MSR. Before use, the particles were autoclaved 

in dH20 for sterilisation.

R e fr a c t iv e  in d e x  m a tc h in g

To determine the best refractive index match between the particles and liquid, plastic 

cuvettes were filled with acid Nation particles and saturated with a range of 

concentrations of sorbitol solutions from 0-13% (w/v) to achieve a range of refractive 

indices. On one side of each cuvette, a straight line was drawn from top to bottom and a 

projection image was taken through solid / liquid mix. There were 5 replicate images 

taken at each sorbitol concentration at 20 °C. The straightness of the line for each image 

was used as an indicator of the light path distortion by refraction. The thresholded 

image was skeletonized and a bounding box around the line was created. The 

straightness was calculated as straightness = height of bounding box / area of bounding 

box. Nutrient-titrated Nation particles were also tested in this way, but with a larger 

range of sorbitol concentrations.
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C h a ra c te r is in g  p r o p e r t ie s  o f  t r a n s p a r e n t  s o il

Water retention was measured in transparent soil with 3 size categories of Nation 

particles (200 -  500 pm, 500 -  850 pm and 850 -1250 pm, n=3), with a dry mass of 10.3 

± 0.1 g. Saturated samples were placed on ceramic plates in glass funnels, which were 

connected to hanging water columns. Different suctions were achieved by moving the 

water level in the water column to a specific height. At each pressure, the water content 

of the sample was allowed to equilibrate and the mass was recorded to allow 

calculation of volumetric water content. Data on water retention in vermiculite and 

sand from other studies were used for comparison with our data on water retention in 

transparent soil [16,37]. Exchangeable cations were extracted using the ammonium 

acetate method [38] and cation exchange capacity was quantified by subsequent ICP-MS 

analysis. To measure anion exchange capacity, sorbed chloride ions were exchanged 

with nitrate ions and exchange capacity was determined by measuring the extracted 

chloride ions [39]. Chemical analyses were carried out by Macaulay Analytical at The 

James Hutton Institute.

P la n t  c u l tu r e

Arabidopsis thaliana expressing 35S:LTI6b- EGFP (constitutively expressed enhanced 

green fluorescent protein targeted to the plasma membrane), in the C24 background 

(originally obtained from Dr. J. Haseloff, University of Cambridge, UK) [40] and auxin 

reporter lines [41] were used for confocal microscopy. Nicotiona benthamiana (tobacco) 

and Lactuca sativa (lettuce, var. capitata, Seed Parade, UK) seeds were surface sterilized
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by washing in 10% bleach for 20 minutes followed by several sterile dH20  washes. 

Arabidopsis thaliana seeds were sterilized on filter paper by adding 70% ethanol, 

allowed to dry slightly and addition of 90% ethanol before allowing to air dry. MSR 

nutrient media [14] was used for culturing tobacco seeds and half-strength Murashige 

and Skoog (M&S) basal media (Sigma) was used for lettuce and Arabidopsis seeds. 

Seedlings were germinated before use in experiments by sowing seeds in petri dishes 

with 5 g L'1 phytagel (Sigma) with MSR or M&S nutrient media. Plants were incubated at 

20 °C with 16 hours light: 8 hours darkness.

A n a ly s is  o f  p la n t  g r o w th  in  d i f fe r e n t  s u b s tr a te s

The substrates used for analysing plant growth were 1. sandy-loam soil from Lower 

Pilmore field, The James Hutton Institute, Dundee, UK. The soil was sieved to 3 mm and 

packed to a density of 1.2 g cm'3 with a gravimetric moisture content of 20% (n=9). 2. 

Horticultural grit sand (Gem, UK), with a dry bulk density of 1.5 g cm'3 and MSR to 

achieve a gravimetric moisture content of 15.2% (n=9). 3. 4 g L'1 phytagel (Sigma) with 

MSR (n=9). 4. Transparent soil, prepared as described below and packed to a density of

1.03 g cm'3 (n=6). Growth period was 2 weeks after transferring the seedlings to the 

media in cylindrical glass sample holders, diameter = 2.5 cm, height 7.5 cm. All plants 

were excavated, the roots were washed and they were mounted onto acetate sheets for 

scanning using a flatbed scanner (Epson expression 1640 XL, Hemel Hempstead, UK). 

Primary and lateral roots were measured using the segmented line function from ImageJ 

software (National Institute of Health, USA).
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B a c te r ia l  c u l tu r e  a n d  e x p e r im e n ta l  s e tu p

Escherichia coli 0157 : H7 was transformed with a fluorescent reporter plasmid (loc8- 

egfp) [42] and grown in MOPS glucose media with amino acids and chloramphenicol (25 

pg pi'1) at 18 °C with aeration for 20 hours. One day after sowing the lettuce seeds, 

germination occurred and 15 ml of bacteria suspended in half-strength M&S media at a 

cell density of 2 x 107 cfu/ml was used to inoculate the seedlings in a Petri dish, at room 

temperature, for 30 minutes, before transferring the seedlings into growth chambers 

with transparent soil, as described above. Imaging was carried out after 5 days after 

sowing. The method used for bacteria-plant interactions allowed colonization of the 

roots to develop from infected seedlings, rather than from the addition of the inoculum 

directly to the substrate or the more mature roots.

3D  o p tic a l  im a g in g  o f  s o i l  b io lo g ic a l p r o c e s s e s

For OPT imaging the samples were prepared in glass cylindrical specimen tubes (2.5 cm 

in diameter, 7.5 cm in height) with a substrate volume of 15 cm3. Duration of growth 

was dependent on plant species but in general, imaging was performed before the roots 

reached the base of the tube. Tobacco plants used for OPT were imaged 10 days after 

sowing. Arabidopsis plants used for confocal imaging were imaged 10-14 days after 

sowing. The OPT setup was built in-house and consists of a light box, stage for sample 

with rotating stepper motor, stereo microscope (Leica MZ 16 FA) and camera (Leica DFC 

350 FX). The stage and camera were controlled by software also built in-house, allowing 

control of the number of images acquired for each sample. The projection images were
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reconstructed to produce 3D data using a filtered backprojection algorithm with the

Iradon function in Matlab (The MathWorks, Inc.).

For CLSM, plants were grown in purpose-built chambers, constructed using a 

microscope slide and long cover glass with a 4 mm spacer between them on 3 sides and 

an opening at the top. The spacer was glued to the slide and cover glass using Araldite 

glass and ceramic adhesive (Huntsman International). The chambers were covered with 

aluminium foil on the outside during growth to exclude light from the roots. Foil was 

removed immediately before imaging. Before imaging, transparent soil was saturated 

with MSR containing 13% (w/v) sorbitol or 98% Percoll (Sigma). The refractive index of 

the solution matches the refractive index of the Nation particles used here to provide 

complete transparency in the substrate. Sulphorhodamine B (Sigma) at 1 pg ml-1 was 

used to dye the particles in situ before imaging. A Leica TCS SP2 confocal laser scanning 

microscope and objective lenses 2.5x / 0.07, 10x / 0.30, 20x / 0.50, 40x / 0.80 and 63x /

0.90 were used to obtain the confocal scans.

D a ta  a n a ly s is

Analysis of variance and multiple comparisons were carried out using Genstat 13th 

Edition (VSN International Ltd.). Sigmaplot 12 (Syststat Software, Inc.) was used for non­

linear regression. Avizo software (VSG) was used for visualisation of CLSM images. Image 

analysis was carried out using Mevislab [43] and Fiji Software [44]. Root tracking used an 

algorithm by Friman et al [45]. Skeletonization and edge detection was carried out using
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the standard Mevislab algorithms developed respectively by Milo Hindennach and Olaf

Konrad and Wolf Spindler.
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Appendix 2

Captions for videos on CD

Video SI. In situ 3D image of branched Arabidopsis thaliana roots expressing GFP in 

plasma membranes (green) in transparent soil with sulphorhodamine B dyed particles 

(red).

Video S2. In situ 3D image of Arabidopsis thaliana root with emerging lateral root 

expressing GFP in plasma membranes (green) in transparent soil with sulphorhodamine 

B dyed particles (orange).

Video S3. In situ 3D image of Arabidopsis thaliana root with root hairs expressing GFP in 

plasma membranes (green) with Nation particle of transparent soil (orange).
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