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We study the effects of three-body collisions in the physical properties of a two-mode
Bose-Einstein condensate. The model introduced here includes two-body and three-
body elastic and mode-exchange collisions and can be solved analytically. We will
use this fact to show that three-body interactions can produce drastic changes in the
probability distribution of the ground state and the dynamics of the relative popula-
tion. In particular, we find that three-body interactions under certain circumstances
may inhibit the collapse of the relative population. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4936314]

I. INTRODUCTION

Most of our understanding of condensed matter is based on models that consider two-body
collisions. However there are many situations where three-body or higher order collisions are
relevant in the physical properties of such systems.1–3 For example, it is known that three-body
collisions are important in systems that show exotic quantum phases, such as topological phases2

or spin liquids.3 Moreover, it is suspected that many-body collisions are important in the coldest
phases of Bose-Einstein condensates (BECs), where the dilute regime breaks down.4 Microscopic
calculations show that polar molecules driven by microwave fields undergo three-body interac-
tions.5 The interaction potentials of molecules trapped in an optical lattice give rise to Hubbard
models with strong nearest-neighbour two-body and three-body interactions.

In this paper, we find the exact analytic solution of a generalized two-mode Bose-Hubbard
model that includes two-body and three-body elastic and mode-exchange collisions. Then we show
that three-body collisions can change dramatically the properties of the ground state of a two-mode
Bose-Einstein condensate. The effects are also observable in the evolution of the relative popula-
tion inhibiting, in some cases, quantum collapse. It is well known that three-body collisions are
responsible for particle loss in Bose-Einstein condensates, through a process called three-body
recombination.6 During three-body collisions, the particles recombine to form a molecule that is not
trapped by the potential. However it is now possible to inhibit molecular three-body recombination
in atomic Bose-Einstein condensates via the application of resonant 2π laser pulses.7 In such situa-
tions, our model becomes of special interest, since it takes into account three-body collisions where
particles do not recombine and remain trapped in the potential.

The model we introduce can describe the physics of a double-well Bose-Einstein condensate
or a spin-1/2 Bose-Einstein condensate consisting of particles with two internal degrees of freedom
trapped in a single well. In the context of the double-well Bose-Einstein condensate, the mode-
exchange collisions included here are known as generalized nearest neighbour interactions8 and give
rise to coherent tunneling effects.9,10 Recent analysis shows that stronger two-body interactions are
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correlated with two-body coherent tunneling dynamics in which two particles simultaneously tun-
nel through the barrier.10 This effect, also known as second order tunneling, has been observed in
the laboratory.9 Mode-exchange collisions are called inelastic collisions in the context of spin-1/2
condensates and occur when cold collisions take place in the presence of light fields. Such is the
case of spin-1/2 condensates where a laser field is used to induce Josephson-type interactions, which
produce transitions among the spin degrees of freedom.11

II. MODEL

We consider a general model of a two-mode Bose-Einstein condensate that includes two-body
and three-body collisions given by the HamiltonianH3 = H1 + H2 + H3, where (taking ~ = 1)

H1 = λa |aa†a + λb |bb†b + λa |b(a†b + b†a),
H2 =Uaa |aaa†a†aa +Ubb |bbb†b†bb +Uab |aba†b†ab

+Uaa |ab(a†a†ab + h.c.) +Ubb |ab(b†b†ab + h.c.)
+Uaa |bb(a†a†bb + h.c.),

H3 =Uaaa |aaaa†a†a†aaa +Ubbb |bbbb†b†b†bbb

Uaab |aaba†a†b†aab +Uabb |abba†b†b†abb

+Uaaa |aab (a†a†a†aab + h.c.)
+Ubbb |abb (b†b†b†abb + h.c.)
+Uaaa |abb (a†a†a†abb + h.c.)
+Ubbb |aab(b†b†b†aab + h.c.)
+Uaab |abb(a†a†b†abb + h.c.)
+Uaaa |bbb(a†a†a†bbb + h.c.). (1)

The operators a†,a and b†,b are associated with two modes, labeled A and B, with respective
frequencies λa |a and λb |b. These modes correspond either to atoms with two different hyperfine
levels12 or two spatially separated condensates13,14 (see Fig. 1). The Josephson-type interaction,
in which one particle is annihilated in one mode and created in the other, has coupling constant
λa |b. This process is induced by applying a magnetic field gradient13 or a laser.12 The terms in
H2, which have four bosonic operators, describe two-particle collisions. The two-body elastic scat-
tering strengths are given by Uaa |aa and Ubb |bb for same mode collisions and Uab |ab when the
particles colliding belong to different modes. Mode-exchange collisions have interaction strengths
Uaa |ab,Ubb |ab when two particles collide and one of them is transformed into the other mode and
interaction strength Uaa |bb when the collision transforms two particles in one mode into the other
mode. This process is also known as second order tunneling in the context of a double-well BEC.9,10

The HamiltonianH2 = H1 + H2 has been studied in detail in Ref. 15. This two-body interaction
Hamiltonian coincides with the two-mode Bose-Hubbard model if mode-exchange collisions are
neglected, i.e., Uaa |ab = Ubb |ab = Uaa |bb = 0. However, microscopic calculations show that such

FIG. 1. A Bose-Einstein condensate in an asymmetric double-well potential, characterised by the single well energies λa |a
and λb |b.
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interactions, known as inelastic collisions in the context of spin-1/2 Bose-Einstein condensates,
should be considered since they occur when particles collide in the presence of a laser field.11

Surprisingly, including such collisions allows for an exact analytic solution.15–18 Here we include
a three-body collision term given by H3, where three-body interactions consist of products of six
operators (three creation and three annihilation). This term includes all possible three-body colli-
sions where Uaaa |aaa, Ubbb |bbb, Uaab |aab, and Uabb |abb correspond to elastic scattering lengths
and Uaaa |aab, Uaaa |abb, and Uaaa |bbb correspond to mode-exchange collisions where one, two,
and three particles change mode, respectively.

We have found that the Hamiltonian H3 has six families of exact analytical solutions. In this
paper, we present the solution which we consider of greatest physical interest. The other solutions
will be presented elsewhere.

We start by considering the double-well potential shown in Fig. 1. Particles undergo two- and
three-body collisions and we assume that first, second, and third order tunneling events can occur. In
second (third) order tunneling, two (three) tunneling events can occur coherently. Therefore single
particles can coherently tunnel two (three) times and two (three) particles can tunnel simultaneously
during a collision.

We consider that a particle in well A (or B) has probability amplitude A1 cos θ (or −A1 cos θ) of
staying in well A (or B) and probability amplitude A1 sin θ of tunneling to well B (or A). A1 is the
first order tunneling strength and θ is the tunneling phase. Note that the minus sign appears because
we chose for simplicity well B to have negative energy corresponding to λb |b = −λa |a. We consider
A2 and A3 to be second and third order tunneling strengths. Therefore, A2sin2θ and A3sin2θ cos θ, for
example, are the second and third order probability amplitudes, respectively, for a single particle in
well A to tunnel back and forth.

The coefficients in the single particle Hamiltonian H1 are found by considering all possible
single particle events including second and third order tunneling. For example,

λa |a = A1 cos θ + A2(cos2 θ + sin2 θ)
+ A3 cos θ(cos2 θ + sin2 θ) = A2 + (A3 + A1) cos θ (2)

is the probability amplitude for a single particle in well A to end in well A. The general two-body
and three-body scattering lengths Ui j |lm and Ui jk |lmn are given by the product of the corresponding
second and third order tunneling strengths times the appropriate tunneling phase amplitudes (sin θ
if the particle tunnels during the collision and ± cos θ if the particle stays). For example, consider a
three-body collision during which two particles change state. The total probability amplitude will be

Uaaa |abb = 3A3 cos θsin2 θ. (3)

The factor 3 comes from the fact that there are three possible events that give rise to the same final
outcome, according to the different time orderings of the events.

In the case of two-body collisions, we consider that during a collision, two and three tunneling
events can occur. So collisions in which two particles in well A end up both in well B are given by

Uaa |bb = A2sin2 θ

+ 3A3(cos θsin2 θ − sin2 θ cos θ) = A2sin2 θ, (4)

where again the factor 3 comes from the time ordering. Such considerations give rise to the parameters

λa |a = A2 + (A3 + A1) cos θ,
λb |b = A2 − (A3 + A1) cos θ,
λa |b = (A1 + A3) sin θ,

Uaa |aa = (A2 cos θ + 3A3) cos θ,
Ubb |bb = (A2 cos θ − 3A3) cos θ,
Uab |ab = 2A2(sin2 θ − cos2 θ),
Uaa |ab = (3A3 + 2A2 cos θ) sin θ,
Ubb |ab = (3A3 − 2A2 cos θ) sin θ,
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Uaa |bb = A2 sin2 θ,

Ubbb |bbb = −Uaaa |aaa = −A3 cos3 θ,

Uabb |abb = −Uaab |aab = −A3(2 cos θ sin2 θ − cos3 θ),
Uaaa |aab =Ubbb |abb = 3A3 cos2 θ sin θ,

Uaaa |abb = 3A3 cos θ sin2 θ,

Ubbb |aab = −3A3 cos θ sin2 θ,

Uaab |abb = 3A3(sin3 θ − cos2 θ sin θ),
Uaaa |bbb = A3sin3 θ. (5)

At this point, it is important to illustrate the connection of this model with a physical model
of a BEC. Consider the many-body energy functional for bosonic particles of mass m trapped in a
potential V (r) undergoing two-body and three-body collisions,

H = H0 + HI2 + HI3,

H0 =


dr
�
− ~

2

2m
Ψ̂
†∇2
Ψ̂ + Ψ̂†V (r)Ψ̂�

=


drΨ̂†HtΨ̂,

HI2 =
g2

2


drΨ̂†Ψ̂†Ψ̂Ψ̂,

HI3 =
g3

2


drΨ̂†Ψ̂†Ψ̂†Ψ̂Ψ̂Ψ̂, (6)

where g2, g3 are two-body and three-body coupling strengths, respectively, and Ht is the Hamilto-
nian of the trap. The wavefunction Ψ̂ can be expanded in terms of a certain set of functions φi and
their corresponding annihilation operators ĉi as

Ψ̂ =

i

φiĉi. (7)

We employ the standard two-mode approximation

Ψ̂ = φ1ĉ1 + φ2ĉ2 (8)

and then the rotation

φ1 = cos(θ/2)φa − sin(θ/2)φb,
φ2 = cos(θ/2)φb + sin(θ/2)φa, (9)

where φa, φb are nearly normalized modes19 with


drφaφa = 1 + ϵ ,


drφbφb = 1 − ϵ , where the
amplitude of transition between them

ϵ =


dr φaHtφb (10)

is assumed to be very small. We obtain the HamiltonianH3 described above with

A1 =
1
2
(E1 − E2), A2 =

1
2

U2, U2 = U11 = U22, A3 =
1
2

U3, U3 = U111 = U222,

E1 =


drφ1Htφ1 , U11 =


drφ4

1, U111 =


drφ6

1,

E2 =


drφ2Htφ2 , U22 =


drφ6

2, U222 =


drφ6

2 (11)

plus several terms of order ϵ , ϵ2, and ϵ3 which can be treated perturbatively17,18 as long as ϵ ≪ A1θ.
We will discuss the experimental validity of this approximation in Sec. IV.
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III. RESULTS

Surprisingly, the Hamiltonian H3 = H1 + H2 + H3 has an exact analytic solution for this set of
parameters. The analytic expression of its eigenstates is

|Em⟩ = e
−θ
2 (a†b−ab†)|J,m⟩, (12)

where |J,m⟩ are the Fock states for 2J = N . N is the total number of particles, given by the operator

N̂ = na + nb = a†a + b†b, (13)

and m is the eigenvalue of the relative population operator,

m̂ = (a†a − b†b)/2. (14)

Since the number of particles in the system N is constant, m is restricted to values m = −J, . . . , J.
The unitary operator e

θ
2 (a†b−ab†) is known as the two-mode displacement operator with real

displacement parameter θ.
Interestingly, the eigenstate for m = −J corresponds to a coherent state, which gives an appro-

priate description of several physical aspects of the two-mode Bose-Einstein condensate.20 It is easy
to verify that e

−θ
2 (a†b−ab†)|J,m⟩ are the eigenstates of Hamiltonian (1). One must simply apply the

two-mode displacement operator to the Hamiltonian,

H0 = A1(a†a − b†b) + A2(a†a − b†b)2 + A3(a†a − b†b)3, (15)

which is diagonal in the Fock basis. The result of this transformation is the Hamiltonian H3 with
the coefficients shown in (5), except for an energy shift. For this reason, both Hamiltonians have the
same energy spectrum and their eigenvectors are related by the displacement operator. The ground
state of the system is |Eg⟩ = e

−θ
2 (a†b−ab†)|J,m0⟩, where m0 is the integer that minimizes the energy

Em = A1m + A2m2 + A3m3. This number can be determined with the expressions,

m±0 =
A2

3 A3

*
,
−1 ±


1 − 3A1A3

A2
2

+
-
, A3 , 0,

m0 = −
A1

2 A2
, A3 = 0. (16)

If 3A1A3/A2
2 > 1, m0 is a complex number and the energy has no local minimum. Therefore, the

minimum energy will correspond to the extreme point mex = −N A3/|A3|. On the other hand, if
3A1A3/A2

2 < 1 then the minimum, which is given by Eq. (16), is m+0 for A3 > 0 and m−0 when A3 < 0.
However, if the size of the system is big enough, then the cubic part of the energy prevails for
|m| ≫ 0. Under these circumstances, the energy of the extreme point Emex is smaller than the local
minimum Em±0

.
A quantity of interest is the probability distribution of the relative population for the ground

state, which is given by

P = |⟨N,m|ψ0⟩|2 = |dN
m,m0

|2, (17)

where

dN
m,m0

=


k
(−1)k−m0+m

(N + m0)!(N − m0)!(N + m)!(N − m)!
(N + m0 − k)!k!(N − k − m)!(k − m0 + m)!

× (cos
θ

2
)2N−2k+m0−m(sin

θ

2
)2k−m0+m (18)

are the Wigner rotation matrix elements.21 Note that the sum must be done for the values of k such that
none of the arguments of the factorials in the denominator are negative. Different ground states param-
etrized by m0 are obtained by changing the rate A1A3/A2

2. We plot in Fig. 2 an example for N = 100
particles with A3 = 0 (i.e., assuming that there are no third order tunneling and three-body collisions)
and m0 = A1/2A2 = −50. Such a state has a multi-peak distribution. However, if A3 = 0.0035, we get
a single peak distribution corresponding to m0 = −100, i.e., a coherent state. Each figure has an inset
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FIG. 2. Probability distribution P of the relative population for the ground state with N = 100, A1/A2= 100 and (left) A3= 0,
(right) A3= 0.0035. The ground state distribution changes from a multi-peak to a single peak distribution if three-body
collisions are included. The insets show the change in the spectrum.

with a plot of the corresponding spectrum, where we can see that three body processes generate a shift
of the minimum. This shows how three-body collisions and third order tunneling drastically change
the structure of the ground state of the system. Moreover, the energy gap between the ground and first
excited states is larger in Fig. 2(b). This is a typical feature of the self-trapping regime22 which suggests
that three-body terms tend to favor localization. We will confirm this insight below.

We now analyze the effects of three-body collisions on the evolution of the average rela-
tive population ⟨m⟩ = ⟨a†a − b†b⟩, for an initial condition |ψ(t = 0)⟩. The evolution of the relative
population is given by

⟨m⟩ = cos θ
N
−N

m |Cm|2

− sin θ
N
−N+1

CmCm−1


N(N + 1) − m(m − 1)Lm, (19)

Lm = cos[(Em−1 − Em) t], (20)

where the coefficients Cm are defined by

|ψ(t = 0)⟩ =
N

m=−N
Cme

−θ
2 (a†b−ab†)|N,m⟩. (21)

In Fig. 3, we plot Equation (19) for N = 100, A1 = 100, A2 = 1 and the initial condition |ψ(t = 0)⟩ =
|N,N⟩, i.e., all the particles start in a single well. We can see that the relative population shows
collapses and revivals for two body collisions. We can also observe that a small rate of three-body
collisions (A3 = 1/100) has a noticeable effect on the behaviour of the time evolution of the system,
and in fact, it tends to break down the perfect collapse-revival cycles of the relative population.
These cycles are characteristic of a delocalized dynamics, while the small-amplitude oscillations
of the population imbalance in Fig. 3(b) point to a self-trapped dynamics. This confirms that the
three-body terms tend to favor localization in this model.

IV. DISCUSSION AND CONCLUSIONS

At this point, let us discuss the experimental relevance of our results. In the case of a double-
well potential, the modes a and b are quasilocalised modes in wells A and B and A1 corre-
sponds to the asymmetry between the two wells. Thus, ϵ and A1 can be experimentally tuned
by changing the distance and the energy offset between the wells, respectively. Indeed, as dis-
cussed in Ref. 17, the condition ϵ ≪ A1 θ holds in a wide variety of experiments with double-well
BECs.23–25 More specifically, the linear tunnelling rate U1|2 =


dr φ1Htφ2 ≃ A1θ + ϵ takes experi-

mental values ranging from 5 · 10−4 Hz h24 to 2 Hz h,23 while the energy offset between the wells
can be as high as A1 = 530 Hz h.25 Even if the wells are intended to be perfectly symmetric, the
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FIG. 3. Evolution of the relative population ⟨m⟩ for N = 100 particles with A1= 100, A2= 1, and A3 specified in each
figure. The initial state corresponds to |ψ(t = 0)⟩= |N,N ⟩. We observe that the presence of three-body collisions changes
the dynamics of the system and in fact tends to break down perfect quantum collapse-revival cycles. We show that this
phenomenon occurs in a continuous fashion with respect to the parameter A3.

uncertainty in the trap depth leads us to assume a minimum trap asymmetry of A1 ≃ 20 Hz h.23

Regarding the other parameters, A2 and A3 represent the two-body and three-contributions to the
potential energy. It has been estimated the latter represent a few percent of the former. For instance,
in He,1 A3 is around 2% of the total potential energy. All these values are in line with the plots in
Sec. III. Note also that the three-body terms represent the leading-order corrections to the standard
two-body interaction. It is reasonable to assume that four-body and higher order terms will be
small with respect to the three-body ones and overall negligible. We can conclude that our model
is suitable to describe a wide variety of experiments involving double-well BECs. It would be
interesting to explore as well the microscopic derivation of a spin-1/2 BEC in order to determine the
connection with our model.

In summary, we introduced a model of two-mode Bose-Einstein condensate which includes not
only two-body but also three-body interactions. We find an analytic solution and provide the full
spectrum of eigenvalues and the corresponding eigenvectors. This allows us to analyse the role of
three-body interactions in physical quantities of interest, such as the probability distribution of the
relative population or the time evolution of its expectation value. We find that three-body collisions
have non-trivial effects, such as significant changes in the probability distribution of the ground
state or the inhibition of collapses in the evolution of the relative population of the modes. Our
work provides insights into the effects of higher order collisions in the physics of a two component
Bose-Einstein condensate. Following the formalism employed in this paper, higher-order collisions
can also be included in the model.16
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