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Necessary symmetry conditions for the rotation of light
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Two conditions on symmetries are identified as necessary for a linear scattering system to be able to
rotate the linear polarization of light: Lack of at least one mirror plane of symmetry and electromag-
netic duality symmetry. Duality symmetry is equivalent to the conservation of the helicity of light
in the same way that rotational symmetry is equivalent to the conservation of angular momentum.
When the system is a solution of a single species of particles, the lack of at least one mirror plane
of symmetry leads to the familiar requirement of chirality of the individual particle. With respect
to helicity preservation, according to the analytical and numerical evidence presented in this paper,
the solution preserves helicity if and only if the individual particle itself preserves helicity. However,
only in the particular case of forward scattering the helicity preservation condition on the particle is
relaxed: We show that the random orientation of the molecules endows the solution with an effective
rotational symmetry; at its turn, this leads to helicity preservation in the forward scattering direction
independently of any property of the particle. This is not the case for a general scattering direction.
These results advance the current understanding of the phenomena of molecular optical activity and
provide insight for the design of polarization control devices at the nanoscale. © 2013 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0

Unported License. [http://dx.doi.org/10.1063/1.4808158]

An object which cannot be superimposed onto its mirror
image is said to be chiral. Chirality is entrenched in nature.
For instance, some interactions among fundamental particles
are not equivalent to their mirrored versions.! Also, the DNA,
and many aminoacids, proteins, and sugars are chiral. The un-
derstanding and control of chirality has become important in
many scientific disciplines. In chemistry, the control of the
chiral phase (left or right) of the end product of a reaction is
crucial, since the two versions can have very different prop-
erties. In nanoscience and nanotechnology, chirality plays an
increasingly important role.?

Electromagnetic waves can also be chiral. The electro-
magnetic field has its chiral character mapped onto a binary
property that can be related to the polarization handedness of
all the plane waves composing an electromagnetic field: Its
helicity.“’5 From these considerations, and since electromag-
netic waves are routinely used to interact with matter at the
nano, meso, molecular, and atomic scales, it is not surpris-
ing that the interaction between chiral light and chiral mat-
ter has become an important subject of study. Interestingly,
the subject is quite old and, from the beginning, has always
been associated with the rotation of the linear polarization of
light. For instance, Biot discovered that when light propagates
through a solution of certain types of molecules, its linear po-
larization rotates.® Commonly referred to as molecular opti-
cal activity, the study of its root causes has a long history.””
In 1848, Pasteur identified the absence of mirror planes of
symmetry of the molecule as a necessary condition.'? He
called it “dissymétrie moléculaire” and by it Pasteur meant

®Electronic mail: ivan.fernandez-corbaton @mgq.edu.au

0021-9606/2013/138(21)/214311/7

138, 214311-1

non-superimposability of the molecule and its mirror image,
in other words, chirality. Nowadays, this necessary condition
is assumed to also be sufficient, and the exceptions to the
rule are explained by other means.®!! A comprehensive the-
oretical study of optical activity based in symmetry princi-
ples can be found in Ref. 9, and the modern theoretical and
computational methods for optical activity calculations are re-
viewed in Ref. 12. Current investigations of optical activity in
metamaterials'*~!¢ are aimed at obtaining polarization manip-
ulation devices for integrated nanophotonics.

In this article, we rigorously study the necessary sym-
metries that an otherwise general linear system must meet in
order to rotate linear polarization states. We find two condi-
tions, the lack of at least one mirror plane of symmetry and
invariance under electromagnetic duality transformations to
be necessary symmetry conditions for such system. Duality
invariance is equivalent to the preservation of the helicity of
light. This conservation law was first established in Refs. 17
and 18. Please refer to Refs. 19-22 for examples of the use of
helicity and duality in the study of light-matter interactions.

We then consider a mixture of randomly oriented repli-
cas of a single particle. The aim is to identify the restrictions
imposed on the individual particle by each of the two neces-
sary conditions that the mixture as a whole must meet. We
find that the lack of at least one mirror plane of symmetry
of the mixture translates into the condition of “dissymétrie,”
i.e., chirality, for the individual particle. With respect to dual-
ity symmetry, we find that the mixture is not a dual symmet-
ric system unless the individual particle itself preserves helic-
ity, which does not happen in general.’>?? Since chirality of
the particle is accepted as the only necessary and sufficient
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condition for molecular optical activity of a solution, and
helicity conservation does not have a recognized role, there
seems to be a conflict between our results and the current
understanding of molecular optical activity. This conflict is
completely resolved. Due to the large number of randomly
oriented particles, the mixture acquires an effective rotational
symmetry, which is shown to lead to the conservation of he-
licity in the forward scattering direction independently of any
property of the individual particle. Therefore, in the forward
scattering direction, a solution of a chiral molecule can ex-
hibit optical activity without the individual molecule having
to preserve helicity. We will give analytical arguments and
provide numerical simulations that prove that, in general, all
other scattering directions break helicity conservation. The
polarization transformation in those directions is qualitatively
different from the forward scattering case. The solution as a
whole does not have duality symmetry: In a plane wave de-
composition, duality symmetry means helicity preservation
for all input and output momenta. In an ordered system or in
any non-forward scattering direction, explicit helicity preser-
vation by the individual particle is needed for optical activity.
This has direct implications for the design of materials with
artificial optical activity by means of ordered arrays.

A clear definition of what we are referring to by the term
“optical activity” is now in order. In this article, optical activ-
ity refers to the ability of a system to rotate the linear polar-
ization of light in a consistent manner: the incremental angle
by which the input linear polarization state is rotated at the
output does not depend on the initial angle of the input linear
polarization. We also include in our definition of optical activ-
ity the possibility of circular dichroism by allowing the output
polarization to become elliptical, while the main axis of the
ellipse still rotates in the aforementioned consistent manner.
The output ellipticity is also independent of the input polar-
ization angle. This definition coincides for instance with the
one given by Condon in its seminal work on optical rotation.?}
What is excluded from the definition is, for example, rotation
by an amount that depends on the initial angle of the input po-
larization. Such transformations are also sometimes referred
to as optical activity, for instance in some of the metamaterial
literature. %24

Throughout the paper, we will assume monochromatic
electromagnetic fields with a harmonic exp (—iw?) time de-
pendence. Consider the polarization transformation illustrated

FIG. 1. Transformation of input linear polarization states (diagram on the
left) to rotated elliptical output polarization states (diagram on the right). The
angle of rotation B and the major to minor axis ratio (ellipticity) of the ellipse
do not depend on the input angle .
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by Fig. 1. A linearly polarized input transforms into an ellip-
tically polarized output with its major ellipse axis rotated by
a fixed angular quantity 8 with respect to the angle « of the
input linear polarization. Both the angle of rotation 8 and the
major to minor axis ratio (ellipticity) of the ellipse are inde-
pendent of . Our aim is to identify what restrictions this class
of transformations impose over a general conversion. This is
most easily achieved expressing the input linear polarization
state [cos (), sin (a)]” in the circular polarization basis

E; _ 1 [1i cos(a) B 1 exp(io)
E, _E_l—i sin@) | V2 exp(—ia) |

where a general transformation of the input reads

F abl[ E 1

aexp(ia) + bexp(—ia)

V2| cexplia) + d exp(—ia)
ey

The angle of the major ellipse axis with respect to the
horizontal axis is 6 = % arg (F; F,*). According to our speci-
fication of constant angle of rotation 260 = 2(« + ) for all ¢,
which then forces F; F,* = nexp (i2(a + B)) where 7 is a real
number. Using (1), we obtain the relationship:

F, cd || E,

FF.* = ac* 4+ ad* exp(i2a) + bc* exp(—i2a) + bd*
= nexp(i2(a + B)),

which must be valid for all ¢ and hence imposes b = ¢
= 0 and gives 28 = 2(arga — argd). The most general
matrix which meets the requirement is hence diagonal

a 0
0 d

We conclude that our specified transformation is equivalent to
the conservation of circular polarization states. From now on,
we will refer to such a transformation as a generalized rotation
of linear polarization, and abbreviate it by GRLP.

We now consider an electromagnetic scattering situation,
where an incident field interacts with a linear scatterer. As a
result of the interaction a scattered field is produced. Both in-
cident and scattered fields can be decomposed in plane waves
and can contain components in all directions. We now im-
pose that the relationship between the polarizations of any
pair of incident and scattered plane waves is of the kind de-
picted in Fig. 1 and consider what symmetry restrictions are
consequently imposed on the linear scatterer. Since our de-
mand implies that all the polarization transformation matrices
between input and output plane waves are diagonal regard-
less of the input and output directions, the conclusion is that,
upon scattering, the system preserves the circular polarization
handedness of any plane wave. As it is shown in Sec. IV A
of Ref. 19, the circular polarization handedness of all the
plane waves composing an electromagnetic field is one possi-
ble definition of a fundamental property of the field: electro-
magnetic helicity. Only when all the plane waves composing a
field have the same handedness with respect to their momen-
tum vector is the helicity of the field well defined, and can
take the values £1. As an operator, helicity is defined as the
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projection of the angular momentum onto the direction of the
linear momentum,* i.e., A = J - P/|P|. For a single plane wave
of momentum vector p, the two possible states of definite he-
licity coincide with the two possible states of definite angular
momentum along p (Jp) with eigenvalues equal to £1, and
they also coincide with the two possible states of circular po-
larization handedness.

Our demands on the polarization transformation proper-
ties of the scatterer have resulted in the scatterer being re-
stricted to meet a conservation law: helicity conservation.
Consequently, the electromagnetic response of the scatterer
must be invariant under the transformation generated by the
helicity operator, electromagnetic duality.!”'8

In the same way that one of the components of angu-
lar momentum generates rotations along the corresponding
axis,? helicity is the generator of duality transformations:

E =cosyE —sinyH, H =sinyE +cosyH, (2)

where y is a real angle and the vacuum electric and mag-
netic constants are assumed to be equal to one. The typical
exchange E — H, H — —E is recovered for y = —n/2. He-
licity preservation and invariance under the transformation in
(2) are hence equivalent conditions in the same way that an-
gular momentum preservation along an axis is equivalent to
rotational invariance along that same axis. The GRLP condi-
tion on all scattering directions imposed on our system has
lead us to conclude that its electromagnetic response must be
invariant under duality transformations.

We would like to mention that a symmetry of a system
and its associated conservation law imply preservation of the
eigenstates of the generator of the symmetry, as explained in
Sec. 4.1 of Ref. 26. The different eigenstates of the generator
do not mix after interaction with the system but, since they
can pick up a different complex scaling during such interac-
tion, a conservation law does not imply that the average value
of the property represented by the generator of the symmetry
remains unchanged.

To proceed with the study of the symmetries of our sys-
tem, we introduce a concise notation that expresses the action
of the system S as a linear operator which takes input plane
waves of a given momentum p and helicity %, |p, &) into out-
put plane waves |p, £).

S=/df)/dp (aB1B, +) (+, pl + 2B, =) (=, pl). ()

The orthogonality relationships (A, p|p’, A') = 8,_»8(p — p’)
are assumed. The absence of helicity flipping cross-terms
P, —){+, pl, IP, +){—, p| in (3) reflects the helicity preserva-
tion condition. Taking a pair (p, p), the 2 x 2 sub-scattering
matrix that specifies the conversion is

ab 0

0 df 0

|a§| exp (i argall;’) 0
|dl',3| exp (i arg dg)

The dependence of the ap and dj on the momenta (p, p) al-
lows for different transformations of the required diagonal
kind with different angles of rotation By = ( argap — argdp )

We now ask the following question. Let us assume that
there exists a pair (p, p) for which 85 # 0. What can be said
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about the symmetries of the system? To answer this ques-
tion, we consider the mirror operation M across the plane
defined by (p, p) and assume that the system possesses this
mirror symmetry, i.e., it is invariant under the action of the
mirror operator: MP}JIS Mpp = S. This particular mirror op-
eration leaves the momentum vectors invariant because they
are contained in the mirror plane and, since any spatial inver-
sion operation flips the helicity value,* the states transform as
Mysp, £) = |p, F), Mpp|Pp, &) = |p, F). Using these trans-
formation properties, and the fact that the mirror operator is
unitary: Mp_]-)l = M;ﬁ we can see that, if the system is invari_-
ant under this mirror transformation, the angle of rotation ,3,‘,’
is equal to zero.

ab = (+,pIS|p. +) = (+. BIM}; S Mys[p. +)

= (—. pISIp, —) = dP = 2 = 0.

Therefore, if there exists a pair (p, p) for which ,Bg #0,
what we can say about the system is that it does not have
that particular mirror symmetry: Mp’l_)lSMpl—, # S. Summariz-
ing the discussion up to this point: By imposing that the sys-
tem performs GRLP for any pair of input output plane waves
and that the rotation is non zero for at least one pair, we have
found that it must preserve helicity and lack of at least one
mirror plane of symmetry. These are two necessary conditions
for GRLP. Expressed with the help of commutators>’ between
operators and denoting as M the mirror operation across the
plane perpendicular to vector &, our findings are

GRLP = [S, A] =0and 3 & s.t. [S, Ms] # 0. “

It can be shown that the two necessary conditions are not suf-
ficient in general. It can also be shown that, when further as-
suming rotational symmetry, the three conditions together are
indeed sufficient for nonzero GRLP.

Having derived (4) for a general linear system, we now
turn to the study of GRLP by a mixture containing a large
number of randomly oriented scattering particles immersed
in an isotropic and homogeneous medium. We assume that
the mixture has a linear response and contains only one kind
of particle. Our aim is to investigate what conditions (4) im-
poses on the scattering operator S, of the individual particle.
For this, we make use of the theory of independent random
scattering to compute the Mueller matrix of the mixture. The
Mueller matrix relates the input Stokes parameters with the
output Stokes parameters. The theory of independent ran-
dom scattering®®?’ is typically used to approximately de-
scribe electromagnetic propagation in a random solution of
small scattering particles. It is strictly applicable when the in-
dividual particles are sufficiently separated®® and the number
of particles tends to infinity. In this case, the Mueller matrix
of the total solution Ls(p, p) can be computed as the average
sum of the Mueller matrices for all possible orientations of
the individual particle. If f(-) is the function that converts a
2 x 2 scattering matrix to its corresponding Mueller matrix,’!
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we have that

Ls(p. B) = no / dRF(S* (0. D)

— o f dRF(G, BIRISRIP. A, (5)

where ny is the density of particles per unit volume, [dR in-
dicates the sum over all possible rotations, and SX(p, p) is the
2x2 scattering matrix of a R-rotated version of the individual
particle with coefficients (X, p|R'S, R|p, A). It is important to
note that due to the integral over all rotations, Eq. (5) is only
exact in the limit of infinite number of particles. From now
on, we will take (5) as an effective response for the mixture
and comment on which of the obtained results explicitly rely
on the [dR average and which do not.

We start with the condition concerning mirror symmetry:
3 & such that [S, My] # 0. The Mueller matrix of the mirror
system can be shown to be

Ly sy, (0 B) = 1o / dRf (7, BIR MS, MaRIp, 1)). (6)

Lack of the mirror plane of symmetry M, for the mixture im-
plies that Ls(p, p) # L5y, (0, P) for at least one pair (p, p).

Now, let us assume that the individual particle possesses
a symmetry of the rotation reflection kind:'' M;R; (32),
with m a positive integer. These families of operators con-
tain the common spatial inversion operations: For different
values of m we obtain parity, mirror symmetries and im-
proper axes of rotation. When we assume any of these sym-
metries for S, the argument of f( - ) in (6) can be written as
(A, PIR'RTS,RR|p, ), where R is a fixed rotation. Then

L, @8 =10 [ dRF(LBIRRIS, RRIp. )

== LS(p9 p)7 v (pv I_’)

The second equality follows from the fact that, when R cov-
ers all possible rotations once, RR also covers all possible
rotations once and the result of the integral is always the
same, independently of R (including the case of the identity
R = I). This is an application of the re-arrangement lemma
from group theory.*

We have just proved that for the mixture to lack one
mirror symmetry Mj, the individual particle must not have
any symmetry of the type MzR; (27”) The lack of all of
these symmetries (for all m) is equivalent to the particle being
chiral.!' Some qualitative consideration suffices to realize that
such condition on the particle is also sufficient for the mixture
as a whole to also lack all of the MR, (2) symmetries and
therefore become chiral. It is actually impossible for the ran-
dom mixture to possess one mirror plane of symmetry without
possessing them all. Since this result needs the averaging over
random orientations, it will not apply to an ordered system.
For instance, an ensemble of oriented molecules can easily
lack one mirror plane of symmetry without lacking them all.

We now turn to the duality condition [S, A] = 0. If
we impose [S,, A] = 0, it is easy to show that Lg(p, p)
= L aiga(p, p) for all (p, p). If all individual scatterers pre-
serve helicity, clearly the overall response of the mixture will

J. Chem. Phys. 138, 214311 (2013)

preserve helicity. Importantly, the [dR averaging does not
need to be invoked in such proof. This result also applies to
an ordered mixture or a mixture with a small number of parti-
cles. We now ask, Could it be that due to the averaging and/or
randomness of the mixture, [S,, A] # 0 but [S, A] = 0? We
later prove that, in general, the answer is no, and that helicity
preservation by the particle is necessary for helicity preserva-
tion by the mixture. A statement like [S, A] = 0, containing
the system scattering operator S involves all input and output
plane wave directions (see Eq. (3)), and implies the preser-
vation of helicity in all directions. Since we have seen that
helicity preservation is a necessary condition for GRLP and
not all scatterers preserve helicity,?”?? these results seem at
odds with the current understanding of molecular optical ac-
tivity where chirality of the molecule is seen as the only nec-
essary and sufficient condition. This conflict is resolved. We
now show that the forward scattering direction is a special
case since helicity is preserved independently of any prop-
erty of the individual particle. Using again the re-arrangement
lemma (which implies the [dR averaging) allows one to show
that Ls(p, p) = Lz 5z(p, p), for any rotation R. Such effec-
tive rotational symmetry implies conservation of the angular
momentum along any axis and ensures helicity preservation in
the forward scattering direction (p/|p| = p/|p|): Helicity be-
ing the angular momentum along the momentum axis of the
input and output plane waves (A = J - P/|P|), it must be pre-
served by a rotationally symmetric system when the two mo-
menta share the same axis (p/|p| = p/|p|). Therefore, in the
forward scattering direction, a solution of a chiral molecule
can exhibit GRLP. Having used the average over all possible
rotations ['dR to derive this result, it will not apply to ordered
systems or systems with a small number of particles. For ex-
ample, the result does not apply to an ensemble of oriented
molecules. The acquisition of effective rotational symmetry
due to orientation randomness and its breaking by an ordered
sample is illustrated in Fig. 2. In general, unless the individual
molecules preserve helicity, the ensemble will not meet one of
the necessary conditions for GRLP in an arbitrary scattering
direction. As a consequence, those directions cannot exhibit
polarization rotations of the type depicted in Fig. 1. These
considerations match the results in Refs. 24 and 16, where the
interaction of light with an array of ordered nanostructures re-
sults in a polarization transformation where, when interpreted
as a rotation, the angle of rotation depends on the input polar-
ization angle.

We now use the Mueller matrix formalism to study ran-
dom mixtures of different kinds of particles and provide ana-
lytical and numerical evidence that helicity is only preserved
for all (p, p) when the individual particles preserve helicity.
For a helicity preserving system, the two Stokes vectors of
well defined helicity [ 100 =+1 ] must be eigenvectors of the
Mueller matrix L. This imposes restrictions to the matrix co-
efficients L;; which can be used to determined whether a par-
ticular Mueller matrix preserves helicity

Lyt =Ls, Lig=Ly, Lyy=L31 =Ly =L3s=0. (7)

In general, Eq. (5) must be evaluated numerically. We later
provide numerically obtained values for mixtures of spheri-
cal, conical and helical particles. For the simple case of small
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(a) Disordered sample. Rotation by 90 degrees.

;
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sy U’sl -
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FIG. 2. Illustration of the effective rotational symmetry acquired by a ran-
dom solution. The left parts of the figures are the initial mixtures and the right
parts are the rotated versions of the initial mixtures. Even though the require-
ment of infinite number of particles cannot be graphically illustrated, it can
already be perceived for the finite number of particles in the figures that, af-
ter a rotation, the light scattering properties of an ordered sample (b) change
dramatically, while those of a disordered sample (a) do not; in fact, under
the assumptions made in the derivation contained in the text, they do not
change at all when the number of particles tends to infinity. Note that the ef-
fective rotational symmetry in (a) is acquired independently of any property
of the individual particle.

(with respect to the wavelength) spherical particle with rela-
tive electric constant € and relative magnetic constant u = 1,
there is an analytical expression for S, (p, f))z(’ which allows
to compute Lg(p, p),

_ 23 €—1
Ls(p, p) = dpplaxa + nok~a’ m
cos*(xpp) + 1 cos®(xpp) —1 0 0
cos*(xpp) — 1 cos®(xpp) +1 0 0
0 0 2 cos(xpp) 0 '
0 0 0 2 cos(xpp)

®)

where k is the wavenumber, a the radius of the sphere, and xpp
is the angle between the input and output momentum vectors.
The first term is the 4 x 4 identity matrix, which, as indicated
by the kronecker delta 8,5 is only added when p = p. It rep-
resents the contribution of the original input plane wave.

J. Chem. Phys. 138, 214311 (2013)

For general xpp, matrix (8) violates the helicity preserv-
ing conditions (7). Therefore, in general, a solution of small
spheres does not preserve helicity. The breaking of duality
symmetry can be traced back to the individual particle.

From a recently obtained result’® regarding the con-
ditions for duality symmetry (helicity preservation) on the
macroscopic Maxwell’s equations, we know that a particle of
arbitrary shape with electric constant € and magnetic constant
w immersed in a solvent (e, w,) would preserve helicity if
and only if € /u = €4/pu,. Then, particles with e =2.25, u =1
are non-dual when immersed in vacuum and hence do not pre-
serve the helicity of light.

For the case of the small spheres in Eq. (8), the fact that
helicity is not preserved by the individual particle makes the
whole random mixture non helicity preserving. The random-
ness of the mixture does not help in terms of helicity preser-
vation, except, as already explained, in the forward scattering
direction. We conclude that a necessary condition for a solu-
tion of small spheres to preserve helicity is that the individual
sphere preserves helicity. We have already discussed that such
condition is also sufficient.

To investigate whether the conclusions reached for small
spheres also hold for mixtures of other kinds of particles and
sizes, we numerically computed the rotational average (5) for
small conical, and helical particles and for spheres of different
sizes, with € = 2.25 and 4 = 1 immersed in vacuum.

To measure the degree of helicity transformation in each
case, we use the following metric on the resulting Mueller
matrices:

r— (L11+Lia—(La1+Las))?
2(Ly1+L1s—(La1+Lag))* + (L11+L1a+(Lay+Laa))?

n (L11—Lig+(Laj—Lay))?
2(L11—Lya+(Lay—Laa))*+(L11—L1a—(Lay—Las))*
9

The first (second) line in (9) is the relative helicity change
effected by the Mueller matrix on a Stokes vector of well
defined positive (negative) helicity. I' = O for a helicity pre-
serving Mueller matrix (7), and I" = 1 for a helicity flipping
Mueller matrix.

Figure 3(a) plots I' as a function of the relative angle
between the input and output momenta (xpp) for spheres,
cones, and helices of dimensions ~Aq/6, where Ay is the
wavelength.*® Figure 3(b) plots I'(xpp) for spheres of diam-
eters ~[Ao/2, Ay, 2Ag]. All cases show that the solutions do
not preserve helicity, strongly suggesting that, in general, for
the solution to preserve helicity, the individual particles must
preserve helicity. Note how helicity preservation properties
are independent of the geometrical properties of the particles.
Spheres have all mirror planes of symmetry, helices lack them
all and cones have some but not all. In all cases I"(0) = 0
in full agreement with our previous discussion about forward
scattering (p/|pl = p/Ipl)- In all cases I'(;r) = 1, indicat-
ing that for backward scattering (p/|p| = —p/|p|), helicity is
always exactly flipped. This is actually a general result due to
the effective rotational symmetry of the solutions. The angular
momentum along —p must be the same as the input angular
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FIG. 3. Helicity transformation metric I'(pp) results obtained from the nu-
merical computation of the Mueller matrices of vacuum solutions of different
kinds of particles with € = 2.25 and ¢ = 1. I' = 0 corresponds to helicity
preservation and I' = 1 to complete helicity change. I' = 0 for all xpp would
correspond to a helicity preserving solution. (a) Spheres, cones and helices
of dimension ~X(/6. The wavelength of light was 1o = 632 nm. (b) Spheres
with diameters ~[1o/2, Ao, 2A0]. All cases break helicity preservation. In the
small particle case (a), the results are very similar (small differences not visi-
ble in the figure) independently of the kind of particle. This can be explained
because all small particles can be treated in the dipolar approximation. When
the size of the particles is comparable to the wavelength (b), we observe a
more complex behavior of I'(xpp) with oscillations where I' is close to zero
for some angles. We speculate that this behavior is related to the excitation of
higher (than dipole) multipolar moments.

momentum along p since they share the same axis. Since he-
licity is A = J - P/|P|, helicity must exactly change sign due
to the preservation of J and the sign change in P in the back-
ward scattering direction p/|p| = —p/IpI.

The current understanding of the phenomena of molecu-
lar optical activity, when the molecules are in a disordered so-
lution, is that chirality of the individual molecule is the only
necessary and sufficient condition.®!! Helicity preservation
(duality symmetry) is not given a role. This apparent conflict
is completely resolved: As we have discussed, the large num-
ber of randomly oriented particles endows the mixture with an
effective rotational symmetry, which is shown to lead to the
conservation of helicity in the forward scattering direction in-
dependently of any property of the individual particle. There-
fore, in the forward scattering direction, a solution of a chiral
molecule can exhibit optical activity without the individual
molecule having to preserve helicity. In an ordered system or
in any non-forward scattering direction the effective rotational
symmetry disappears and explicit helicity preservation (elec-
tromagnetic duality symmetry) by (of) the individual particle
in the solvent is needed for optical activity in the sense used
in this article.

In his seminal work,?* Condon posed, to the best of our
knowledge, a still unresolved question: “The generality of the
symmetry argument is also its weakness. It tells us that two
molecules related as mirror images will have equal and oppo-
site rotatory powers, but it does not give us the slightest clue
as to what structural feature of the molecule is responsible
for the activity. Any pseudoscalar associated with the struc-
ture might be responsible for the activity and the symmetry
argument would be unable to distinguish between them.” Our
answer to Condon’s question is that helicity is the sought af-
ter pseudoscalar and that, when considering a single molecule
(not a solution), there are two structural features that are nec-
essary for the single molecule to be optically active in the
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sense used in this article: electromagnetic duality symmetry
and lack of at least one mirror symmetry. If the molecule
can be modeled as a dipolar scatterer, the electromagnetic du-
ality symmetry condition restricts its polarizability tensor.??
According to the results of this paper, these conditions also
apply to the polarizability tensors of the individual inclu-
sions in structured arrays designed to achieve artificial optical
activity.

In this article, we have used the formalism of symme-
tries and conserved quantities to study a class of electromag-
netic transformations which we have named GRLP. We have
identified two symmetry conditions necessary for an other-
wise general electromagnetic linear scattering system to ex-
hibit GRLP: Lack of at least one mirror plane of symmetry
and duality symmetry (helicity preservation). For the case of
a random mixture of a single species of particle immersed in
an isotropic and homogeneous medium, we have investigated
the restrictions that the two necessary conditions impose on
the individual scattering properties of the particle. We have
proved that the individual particle must be chiral. We have
also seen that helicity preservation in the forward scattering
direction is provided by the randomness of the mixture inde-
pendently of the properties of the individual particle. On the
other hand, we have shown that for helicity preservation in a
general scattering direction the individual particle in the sol-
vent must itself have an electromagnetic response invariant
under duality transformations, that is, it must preserve the he-
licity of light. Our results advance the current understanding
of the phenomenon of molecular optical activity. Addition-
ally, the general conditions in (4) together with the results of
Refs. 20 and 22 provide insight that may assist in the design
of polarization control devices, particularly at the nanoscale
where metamaterials are used to engineer effective electric
and magnetic constants.
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