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At the end of May, 17 scientists involved in an EU
COST Action on Conservation Physiology of
Marine Fishes met in Oristano, Sardinia, to
discuss how physiology can be better used in mod-
elling tools to aid in management of marine
ecosystems. Current modelling approaches incor-
porate physiology to different extents, ranging
from no explicit consideration to detailed physio-
logical mechanisms, and across scales from a
single fish to global fishery resources. Biologists
from different sub-disciplines are collaborating
to rise to the challenge of projecting future changes
in distribution and productivity, assessing risks
for local populations, or predicting and mitigating
the spread of invasive species.

Keywords: conservation physiology;
species distribution; modelling; climate effects

1. INTRODUCTION
The marine environment is changing at an un-
precedented rate due to natural and anthropogenic
changes (warming, acidification, fishing, eutrophication,
hypoxia and pollutants [1,2]). In recent decades, climate
warming has generally caused poleward shifts in distri-
bution [3], and evidence is mounting of changes in
predator–prey relationships affecting ecosystem dyna-
mics [4]. The physiologist investigates how individual
Received 2 July 2012
Accepted 6 July 2012 1
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fish are affected by changing environments, whereas
environmental managers, politicians and stakeholders
are more concerned about how these changes will affect
species, resources, ecosystems and human societies.
Connecting these different perspectives requires tools
that properly scale individual-level responses to
population-level consequences, and which can harness
physiological principles to gain a cause-and-effect
understanding of environmental change on fishes [5,6].
Our strategy for advancing these tools was to facili-
tate collaborations between physiologists, ecologists,
experimentalists and modellers.

The main objective of the EU COST Action on
Conservation Physiology of Marine Fishes (http://
fish-conservation.nu/) is to coordinate European
research efforts on the physiological mechanisms that
determine distribution and abundance of marine
fishes (figure 1), including invasive species, and so
contribute to sustainable management of biodiversity
and fishery resources. A wide range of models and
topics were discussed at the meeting, spanning several
levels of biological complexity (tissue, organism, popu-
lation and ecosystem) and allowing broad evaluation of
how fish physiology could be integrated into models.
Here, we provide a brief summary of these discussions.
2. GLOBAL BIOCLIMATE MODELS WITH
ENVIRONMENTAL ENVELOPES
How global change will affect species distributions and
productivity depends on both the severity of local
changes and the sensitivity of local species. Cheung
et al. [7] quantified thermal niches and habitat prefer-
ences of some 1000 species by overlaying observed
distributions with current maps of temperature and
other environmental conditions. Spatial shifts in distri-
bution and changes in fisheries catch potential were
projected by merging these niches with outputs from
global climate change models, including species dis-
persal and changes in phytoplankton productivity.
Subsequently, using a simple conceptual model of
how environmental factors affect growth, maximum
body size and other life-history characteristics, one
may project effects of temperature, oxygen and acidity
on future fish distribution and abundance, with
implications for fisheries [8].
3. RESOLVING TEMPORAL AND
SPATIAL SCALES
To be computationally feasible, global models rely on
coarse spatial grids and sometimes annual timesteps.
When projecting changes within a regional sea or a
single ecosystem, temporal and spatial resolution of
models can (and must) be much finer. Shorter model
time steps (hours to minutes) and finer spatial resolution
allow mesoscale hydrographic features (2–200 km)
important to biological processes to be represented
(e.g. tides, fronts and eddies). These temporal and spatial
scales also match better with individual-level processes
where physiology can translate local environmental fac-
tors into performance metrics, such as growth and
survival. These models demand more detailed physio-
logical knowledge, such as species-specific rates of
respiration, consumption and digestion [8,9]. A single
physiological trait with much ecological relevance may
This journal is q 2012 The Royal Society
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Figure 1. Schematic of how metabolic scope is a key link between environmental changes, such as climate warming and effects
at the level of the population, species or marine ecosystem.
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be scope for aerobic activity (also termed metabolic
scope), the ability to provide oxygen for energy-using
activities, such as locomotion, digestion, tissue repair
and turnover [10]. Such detailed information can be
directly useful to managers, for example, as maps of
quantitative physiological traits and how these vary on
daily and seasonal timescales, at local geographical
scales, or between different adjacent habitats [11].

These smaller-scale models need to deal with increas-
ingly complex aspects of physiology, for example, cues for
movement. For larvae, hydrodynamic, particle tracking
and physiological-based foraging and growth modules
are often coupled to estimate the three-dimensional
trajectory of environments experienced by larvae, often
revealing key processes affecting survival and year-class
(recruitment) success [12]. The vertical swimming
behaviour of larvae may be tailored to specific environ-
mental preferences, food abundance or individual state
such as size or satiation [13], and can greatly influence
modelled outcomes. In larger organisms, horizontal
movements must also be accounted for. By translating
local environmental gradients into gradients of physio-
logical performance, movement rules using only local
information can be devised, and their consequences for
species distributions compared with observations [14].
Differences in behavioural strategy cause different
environments to be experienced among individuals,
contributing to variation in growth and survival.

For models at this regional or ecosystem level,
fisheries institutions routinely collect monitoring data
on species distributions, abundance, age and size
composition and trophic interactions. All of this infor-
mation, plus fishermen’s knowledge [15], can be used
either directly to parametrize physiological functions
or indirectly to provide estimates of unknown
physiological variables [16].
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4. BEHAVIOURAL ECOLOGY CONNECTS
ENVIRONMENT AND PERFORMANCE
Although regional, bio-physically coupled models have
higher temporal and spatial resolution than global
Biol. Lett. (2012)
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models, simplifications are needed to represent individual
responses to the local environment. Important behaviours
may occur very infrequently and within short time
windows, or depend on rare events such as predation
attempts [17]. The relationships between environmen-
tal variables and species responses can emerge within
physiologically based behavioural models. As an example,
models, including prey and predator environments
may yield insights into optimal foraging ecology and
risk-taking behaviour [18] in situations where changes
in food availability not only affect growth but also
risk-taking and therefore individual survival.

Recent developments in sensors and data storage
tags promise exciting insights into highly detailed
individual behaviour in wild fish [19]. Accelerometers
can be calibrated to estimate metabolic rates and
swimming patterns, magnetic sensors on the jaws can
detect foraging episodes, pressure sensors record verti-
cal behaviour, etc. The potential to couple temporally
resolved behavioural and physiological data, also
within models, is particularly appealing.
5. THE ADAPTED ORGANISM
An important question related to environmental change
is: will species be able to adapt to the new environments
or will they go locally extinct? At a most fundamen-
tal level, organisms adapt to environmental changes
through evolutionary changes (slowly) or there can be
phenotypically plastic responses (faster). A related ques-
tion is: how will the strength of trophodynamic coupling
change if predators and prey exhibit markedly different
physiological responses to environmental change [6]?
Individual growth rate is commonly used as a proxy
for fitness, but growth is only one process competing
for the resources available to an organism [20]. The
performances that experimental physiologists quantify
in controlled laboratory experiments, such as aerobic
scope, are complex traits that reflect more fundamental
physiological and biochemical processes that may have
evolved within specific environmental and ecological
contexts. Examples of questions one can ask are what
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causes scaling relationships [21,22], and do metabolic
differences relate to diet specialization [23]?
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6. A HIERARCHY OF MODELS
The above demonstrates that models can be arranged
in a hierarchy, from global models revealing general
patterns to specific projections for individuals in
their habitat, and how physiological knowledge can be
infused at every level to refine model predictions.
Furthermore, detailed models can test implicit assump-
tions of more general models. Scaling from smaller to
larger spatial scales may also be possible via coupling
models. For example, estimates of larval survival
from local, risk-based foraging models can be input to
bio-physical models of drift, which in turn can be
implemented as recruitment modules within global
models of fish productivity. In this way, physiological-
based mechanistic effects within individuals can be
systematically scaled up to consequences at the popu-
lation level, while being consistent about the role of
behaviour. With this in mind, the value of incorporating
physiology should always be assessed relative to null
models without physiology. For example, a metric of the
horizontal velocity a species would need to move to stay
within the same thermal niche can be mapped simply as
the expected rate of change in surface temperature divided
by the local spatial gradient in temperature [24]. Such
projections can be directly compared with those of physio-
logically driven bioclimate envelope models [7] to reveal
the effect of incorporating species-level information on
predicted changes.
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7. MEETING OUTCOMES
Our discussions indicated that (i) modellers should
acquaint themselves with the details of other types of
models (including null models) to understand how
specific (complex) models might be compared or
coupled to more general (simpler) models to test and
refine tools, (ii) physiologists should consider the
scale at which their knowledge can best be applied,
such as accepting more approximations in the general
models, (iii) an important advancement will be project-
ing how physiological changes in predators and their
prey will affect the functioning of food webs, and
(iv) cross-disciplinary discussions that may be painful
at first (owing to differences in vocabulary and jargon)
will ultimately be rewarding and, in our case, provided
an essential first step towards building better models
for conservation physiology of marine fishes.

CNR–IAMC (National Research Council, Institute for
Coastal Marine Environment), Oristano, Sardinia, is
thanked for great hospitality. Funding was provided by EU
COST action FA1004. For more information, see http://
fish-conservation.nu.
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