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Abstract

This thesis proposes a new texture analysis model which enhanced from

traditional complex network-based model for texture characterization via

spatial texture analysis. The conceptual framework of the proposed model

is to synergize between pattern recognition and graph theory research ar-

eas. The results of experiment show that the proposed model can capture

robust textural information under various uncontrolled environments using

standard texture databases.

Texture analysis has played an important role in the last few decades. There

are a growing number of techniques described in the literature, one of new

area research is a complex network for texture characterization, which has

developed in recent years. Inspired by the human brain system, the relation

among structure texture elements on an image can be derived using the

complex network model. Compared to the task of texture classification,

development of the original complex network model is required in order to

improve classification performance in environment variations. To fulfill this

requirement, the enhancing complex network by spatial texture analysis

(i.e., spatial distribution and spatial relation) has been achieved in this

thesis.

The proposed approach addresses the above requirement by investigating

and modifying the original complex network model by extracting more dis-

criminative information. A new graph connectivity measurement has been

devised, including local spatial pattern mapping, which is denoted as a

LSPM, to encode and describe local spatial arrangement of pixels. To the

best of the author’s knowledge, as investigated in this thesis, the encoding

spatial information which has been adapted within the original complex net-

work model presented here were first proposed and reported by the author.

The essence of this proposed graph connectivity measurement describes

the spatial structure of local image texture cause it can effectively capture

and detect micro-structures (e.g., edges, lines, spots) information which is



critical being used to distinguish various pattern structures and invariant

uncontrolled environments. Moreover, the graph-based representation has

been investigated for improving the performance of texture classification.

Spatial vector property has been comprised of deterministic graph modeling

which decomposing the two component of the magnitude and the direction.

Then, the proposed hybrid-based complex network comprises the enhancing

graph-based representation, and the new graph connectivity measurement

has been devised as an enhancing complex network-based model for texture

characterization in this thesis.

The experiments are evaluated by using four standard texture databases in-

clude Brodatz, UIUC, KTH-TIPS, and UMD. The experimental results are

presented in terms of classification rate in this thesis to demonstrate that:

firstly, the proposed graph connectivity measurement (LSPM) approach

achieved on-average 86.25%, 77.25%, 89.38% and 94.06% respectively based

on four databases. Secondly, the proposed graph-based spatial property

approach achieved on-average 90.92%, 87.92%, 96.56% and 92.65%, respec-

tively; finally, the hybrid-based complex network model achieved on-average

88.92%, 85.46%, 95.14% and 95.52% respectively. Accordingly, this thesis

has advanced the original complex network-based model for texture char-

acterization.

Keywords: complex network, texture characterization, texture represen-

tation, texture analysis, spatial texture analysis, LBP
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Chapter 1

Introduction

Computer vision is a research field which relevant to the extraction and representation of

images and videos by using computer algorithms. It comprises many problems including

detection, segmentation, recognition, and classification. The focus of this thesis is

the enhancement of existing complex network model for texture characterization using

spatial texture analysis.

The rest of this chapter is organized as follows: The notion of texture has been

introduced in Section 1.1 as well as their analysis by computer vision, including various

tasks, and challenges. The motivation for this work is introduced in Section 1.2, and

a problem statement of the thesis is provided in Section 1.3, including the hypotheses

and the overview of the proposed approach in Section 1.4 and 1.5. Finally, the outline

of the thesis and summary are described in Section 1.6, 1.7.

1.1 Texture analysis

1.1.1 What is texture?

Texture is a characteristic of physical structures and appearance assigned to an object

[102]. It is an efficient way to represent the appearance of an object in an image.

Texture can be defined as the visual perception of coarseness and smoothness [78].

Fig. 1.1 shows scheme idea how texture can provide an essential information for object

identification based on a physical characteristic. From the application perspective, a

texture is a characteristic of representing the physical properties of the surface of an
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1. INTRODUCTION

Figure 1.1: Object property by visual information.

object that is, a texture is directly related to the object’s surface [1]. The notion of

texture can be varied depends on the application aspects.

Texture can be arranged on a spectrum performing from regular to stochastic,

connected by a smooth transition [74] as illustrated in Fig.1.2. For regular texture,

these textures are similar to regular patterns. For stochastic textures, these texture

images look like noise. For example, random color dots are scattered over the image

which can be specified by the minimum and maximum of brightness and average color.

The statistical measurement can be used to receive qualitative for the characteristic of

the different textures. For instance, natural texture can provide higher entropy than

artificial or human-made texture. On this hand, texture characterization is a crucial

issue in computer vision and image analysis.

1.1.2 Challenges

Natural textures could be simply detected, segmented, classified and recognized by hu-

mans. We can efficiently perceive textures, for instance, we carry visual information

about an observed scene through the human visual system (HVS). Nowadays, the au-
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1.1 Texture analysis

Figure 1.2: An example of texture spectrum which created by [74]

tomatic texture understanding by computer algorithm remains a challenging problem

in computer vision research. Based on the conceptual idea of the level of image ab-

straction, they can be organized by following levels of image properties: pixel, image

primitive (e.g., edge, line, curve), texture, region, object and scene. (see details explain

in Section 2.1.1. For the level of abstraction in texture analysis, the texture is rela-

tively correlated to low-level feature as compared to some object recognition and scene

understanding. However, the texture is related to multiple difficulties and challenges

which we will describe as below.

The primary challenge in texture analysis is the diversity and complexity of natu-

ral textures. For example, considering only plant leaves a wide range of textures can

be found with different species of leaf. Their shape, color and texture as well as illu-

mination and image acquisition variations (e.g., point of view, orientation, noise, and

blur). This can be defined as a source of high intra-class variation. It is difficult for us

to identify the discrimination rule among the variation. Because of selecting training

samples may be significantly affected the discrimination results due to require a precise

recognition models to avoid overfitting. Accordingly, developing a method to analyze

various types of texture with multiple invariances is a complex task, as demonstrated

by ongoing research over many decades in this field. However, the variety of definitions

are given to visual textures depends on the application and type of input images.

The another challenging task is the scale of viewpoint variation on scene or object

in order to recognize and classify a different texture as shown in Figure 1.3. Texture de-
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Figure 1.3: Examples of texture images from the UIUC and KTH-TIPS databases. The

texture images are resulting in viewpoint changes and scale differences due to the camera

angle to the surfaces.(a) Corduroy or thick cotton fabric with velvety ribs appear, (b)

Bricks, and (c) Crackers on scale variation

scriptors generally require scale invariant feature while textures acquired from different

viewpoints should be recognized as the same class. Moreover, in some application with

fixed viewpoints, the scale can be used as a discriminative information for classification

task. Multi-scale analysis is also necessary, and most applications require local and

global scale invariance. In addition to the scale, natural textures may vary in terms of

orientation, illumination, occlusion, and other visual appearances. Many applications

require various types of invariances in order to correctly perform texture classifications.

Finally, the extraction of sufficient discriminative information while maintaining mod-

erately low dimensional and low redundancy of the texture descriptors is also a big

challenge.
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1.1.3 Classic approaches

The majority of texture analysis methods include feature extractions process which

describe the properties of texture in order to perform recognition. Deriving features is

required to extract meaningful information from a large number of pixels in an image.

However, the pixels as raw data are not sufficienty descriptive, in addition to its too

high dimensional data which lacks of discrimination of texture. Accordingly, various

feature extraction methods have been developed in the last decades, partially inspired

by the studies of human and animal visual systems [62,67,88].

Regarding to the literature, texture features should be informative, non-redundant

and should offer robustly invariances required for a given application. Many classical

texture analysis use local descriptors in the form of binary patterns [82] and filters [58]

to extract local or global features. Local descriptors can be encoded into a global

descriptor for an entire image or region, for instance, by a histogram of occurrence.

The detail of related approaches are discussed in Chapter 2. These descriptors can

be classified using machine learning methods such as Support Vector Machine (SVM).

These approaches also use hand-crafted, and pre-defined local descriptors which have

been outperformed by learning-based descriptors such as Bag of Features (BoF) [73]

and Fisher Vector (FV) [28].

1.2 Motivation for the thesis

As mentioned in Section 1.1.3, the analysis of static textures is crucial in many applica-

tions. Most classical approaches considered hand-crafted features which lack invariances

and abstraction for many applications and must be specifically designed for particular

problems. Moreover, these methods do not generalize well to complex and numer-

ous textures with high intra-class variation as confronted in various texture analysis

problems. Their limitations and performance often depend on the application.

In recent years, complex network has been applied for texture analysis for modeling

spatial correlation of pixels by representing pixels as a network based on graph theory [3,

16,25,37,45]. Generally, digital images are represented regarding matrices, where each

element corresponds to a pixel which provides a lack of representation of the original

visual information in the sense that it does not consider any information about the

spatial range between the pixels [37]. A graph-based approach has been applied to visual
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representation and analysis where each pixel is associated with a node and the difference

between the visual properties of adjacent pixels are used to define respective edge

weights [9]. A prototype of the complex network for texture analysis has been proposed

in order to develop and investigate texture characterization for texture recognition and

classification tasks since 2004 until the present. Backes et al. [16] have succeeded to

develop the complete model for texture analysis. Consequently, a new area was opened

for pattern recognition, where the complex network is employed as a tool for modeling

and characterization of natural phenomena.

Based on the original complex network model, there are several empirical properties

of image texture are discarded consideration which can be affected by the model. This

model suggested that features computed from degree histograms might be able to per-

form texture discrimination [16]. In this stage, the model of texture has been defined

as a complex network using radius r. Then, a set of threshold t must apply to the net-

work in order to compute different network behaviors. For connectivity measurement

of networks, the degree histogram is used to compute a set of desirable features. Based

on this description, the radius r and the set of thresholds t are essential parameters to

be configured, and it should be evaluated by concerning different configuration of these

parameters.

In the complex network model, the method is performed in the spatial domain;

therefore, it is based on directly modifying the value of the pixels. At this point, we can

ensure that the complex network is flexible for characterizing the texture information.

However, the model should be investigated and developed on, which we focus in this

thesis. Our proposed approaches inspired by local binary pattern (LBP) technique

[4,82]. The LBP operator is dominant feature descriptor for texture classification. The

method analyzes differences between a central pixel and its neighbors by thresholding

the intensities as binary numbers, also it is a great measurement of the spatial structure

of local properties of image texture. Accordingly, the synergy between complex network

model and LBP based on the spatial domain is a promising direction in this thesis.

1.3 Problem statements

According to how difficult in texture analysis is, modeling and describing the texture

to be more functional under various environments should be investigated for the clas-
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sification task. A traditional complex network model is one of a practical approach for

texture representation and analysis. The model was proposed to represent the spatial

relationships among structural texture elements which are a significant feature property

to distinguish a different class of image.

However, there are empirical properties of image texture that are discarded which

affects the capability of discrimination by the current model. For instance, if the

graph-theoretical approach can characterize the structure of texture elements, the dis-

crimination, and analysis of networks have relied on graph measurements, where can

indicate the most relevant topological features. Although the degree of a node can be

obtained from the topological feature result, only this feature is not enough to benefit

the model robustness in accordance with various environments, such as scale difference,

rotation invariance, and viewpoint variation. For an efficient texture characterization,

apart from the complex network-based model concept, pattern recognition techniques

should be employed for analyzing the local structure information. Moreover, if the pat-

tern recognition technique can apply to the complex network model, how to design and

integrate the model for enhancing the original complex network model-based texture

analysis and classification should be further investigated.

In response to these problems, this thesis will investigate the complex network-

based texture analysis for enhancing texture characterization to be more capable to

capturing sufficient discriminative information. Therefore, all problems will be solved

by the proposed system in this thesis.

1.4 Hypotheses

The objective of this thesis is to enhance the original complex network-based model

for texture analysis and characterization, through a spatial texture analysis. Inspired

by Pattern Recognition and Computer Vision concepts, in this thesis, the integrated

enhancing complex network model, and invariant texture representation is devised.

More specifically, the hypotheses of this thesis are three-fold:

• In order to develop a new graph connectivity measurement, the spatial distribu-

tion of pixels must be considered among dynamic network connectivity in order

to capture sufficient discriminative information being used to distinguish various

pattern structures. If the graph connectivity is measured by encoding the spatial
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arrangement of distribution of local pixels, then the spatial structure information

which represents visual micro-structure (e.g., edge, line, spots) can be detected

on local image texture. The encoded spatial arrangement is more invariant than

using a degree of node connectivity as feature descriptors in uncontrolled envi-

ronment databases.

• In order to investigate a deterministic weighted graph, the weight of edge can

be developed for seeking sufficient discriminative information as texture-enriched

representation. If a completed local textural information by decomposing the

difference of local image difference information, i.e., the signs and the magnitude,

is used for describing a topology of the graph, then the model can improve a

capability of texture classification.

• The original complex network model can be enhanced with invariants in uncon-

trolled environment databases if integrating between the new graph connectivity

measurement and the enriched graph representation is proposed.

1.5 A brief view of the proposed approaches

The proposed enhancement of complex network model via spatial texture analysis archi-

tecture consists of two aspects: pixels as network representation and network or graph

connectivity measurement. Fig. 1.4 illustrates a brief view of the proposed approach in

this thesis. The pixels as network representation can be generated by decomposing the

multiple scale analysis and graph-based spatial properties analysis. Then, the local spa-

tial pattern mapping (LSPM) is proposed as the new graph connectivity measurement

which resulting the topology of graphs. Feature descriptors are obtained by concate-

nating histogram of the graph measurements with multiple-scale analysis. In order to

evaluate the proposed approach, a discrimination function for texture classification was

generated by the nearest neighborhood as a classifier following 10-fold cross-validation.

1.6 Outline of the thesis

In Chapter 2, the background and a comprehensive literature review are presented. The

background will introduce conception of the complex network model in graph theory.

The complex network-based texture analysis is introduced in this chapter. Together
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Figure 1.4: Overview of model structure.

with a comprehensive literature review of texture analysis in classical approaches and

learning-based approaches. Some texture databases which is used for evaluation also

discussed in this chapter. Then the achievements of this thesis are presented in follow-

ing three chapters. The first aspect of achievements graph connectivity measurement

will be presented in Chapter 3. The second aspect, the deterministic a graph will be de-

tailed in Chapter 4. Chapter 5 will integrate the first and second aspects for proposing

the new model. To be more specific, in Chapter 3, the local spatial pattern mapping

(LSPM) will be introduced and evaluated using four standard texture databases. The

experiments demonstrate that a spatial arrangement approach to capturing vital in-

formation is able to advance the degree of histogram performance. In Chapter 4, the

proposed graph-based representation are investigated for enhancing the deterministic

graphs in Chapter 3. The demonstrated and evaluated by using the four databases, and
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conventional methods are considered. Chapter 5 presents the hybrid of the proposed

graph-based spatial properties (in Chapter 4) integrated into the model in Chapter

3. The experiments demonstrate that a more comprehensive and precise configura-

tion spatial information is able to advance the classification performance. Finally, the

conclusion of the whole thesis and the future work are given in Chapter 6.

1.7 Summary

This research aims to advance the original complex network-based approach for texture

characterization. Texture analysis is a novel research topic and has been an attracting

fast growing technique for texture characterization. This is a challenging topic and

remain unclear for characterization of texture because the methods often differ on

the type of images and properties. Therefore, efficient representation and invariant

characterization are required. Recently, the complex network has been applied for

texture analysis and classification in order to model spatial correlation of pixels which

representing pixels as networks using graph theory. This proposed method is supported

(underpinned) by the spatial texture analysis in which the graph theory and local

binary pattern (LBP) comprising both research areas for enhancing the original in

the complex network-based model. Local spatial pattern mapping can describe the

topology of a graph for extracting sufficient discriminative information. Moreover,

inspired by a completed local binary pattern (CLBP) approach, the magnitude and

direction of weighted graphs are employed in the deterministic graph, achieving the

complex network-based model for texture analysis and classification with invariant to

scale, rotation, illumination when compared with the state-of-the-art.
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Chapter 2

Literature Review

This chapter describes various significant approaches in texture analysis. It includes

the feature extractions which describe texture information, spatial or spatiotemporal

texture images in variety of applications including classification, segmentation, and

other analyzes.

2.1 Texture analysis

Texture is important visual information for assessing environmental and material prop-

erties for humans. The human visual system (HVS) has regions that dedicated to

processing textures which enable us to estimate object’s shape or tactile perception.

Furthermore, it is a basis visual property for depth estimation, motion and object

recognition.

2.1.1 Human texture perception

The human perception of textures have been widely studied in the field of psychology

[62] and human neuroscience [56,59,67] which computer vision research has inspired by

human brains at a fundamental level for algorithm development. For the Human Visual

System (HVS) structure as shown in Fig. 2.11, the human textural perception is relied

on the collaboration by many different areas of the brain. At this context, the HVS

transforms low-level feature in the visual input into high-level feature concepts such as

scenes and object categories. We can see when visual information input at retina moves

1This figure reproduced from https://manumissio.wikispaces.com/Association+Visual+Cortex
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Figure 2.1: Human visual system structure

from the rear of the brain towards the anterior region, and the information is processed

with increasing complexities and specificity. However, how the brain computationally

represents and transforms visual features is still unclear and challenging [88].

Julesz [62] is a psychophysics researcher who conjectured that the human preatten-

tive textural perception could not discriminate the two textures with identical second-

order statistics. Then, he experimented and proposed a theory of textons which states

that the elementary units of preattentive human texture perception are textons and

only the first-order statistics of textons have perceptual discrimination based on sim-

ilarity or dissimilarity of textons. The theory of textons has inspired and primarily

influenced to the development of texture analysis including structural methods and

dictionary learning-based approaches. Studied in [91], HMAX is a model that extended

the idea of simple cells (for detecting oriented edges) and complex cells (for detecting

oriented edges with spatial invariance ) by processing in hierarchy model. The HMAX

is modeled for the initial feedforward stage of object recognition in the human ven-

tral visual pathway. In computer vision, various algorithms are used for object scene

representation and spectral filtering methods such as Gabor filter banks [55,89].

Hierarchical processing is a fundamental principle in visual neuroscience, comprising

12
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Figure 2.2: Hierarchical framework of visual perception. Figure is reproduced from [48].

a series of discrete stages with increasing sensitivity to abstract representation [56,67].

The different stages of visual features are regularly considered in terms of low-level,

mid-level and high-level representations as illustrated by the example in Fig. 2.2.

Commonly, texture perception has focused on lower-level texture processing for texture

segmentation and discrimination, whereas the studies of higher-level processing of visual

textures have focused on judgments and interpretation of appearance and material

properties related to glossiness [56,67].

In feature extraction aspects, high-level feature relies on how we classify objects

in real life and our understanding of abstract representation, whereas low-level feature

mostly concerns about finding corresponding points between pixels in images, which
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involves the representation of elementary features, such as local color, degree of illumi-

nation and contrast in images. High-level algorithms are mostly related to the machine

learning. These algorithms concern with the interpretation and classification of a scene

as a whole which is inspired by hierarchical processing of the human visual system.

There are a lot of uncertainties in the field of visual neurosciences that have in-

fluenced to computer vision fields on higher-level visual representation [48, 63, 88], for

instance, the amount of visual information required for each stage level representation.

All of the information required to build the high-level semantic representation which

are transformed from the image-based representation of Striate cortex (V1), no new

information is added into but only transformed. On the other viewpoint, it might be

that the information used in a high-level semantic representation is retrieved directly

from low-level representation in V1 and/or earlier areas. These issues are the promis-

ing direction for researchers and are motivation to computer vision research, i.e., visual

scene detection.

2.1.2 Categories of features for texture discrimination

Feature extraction in texture analysis is a crucial process to extract meaningful in-

formation from pixel values in images. After past decades with continuous research,

many feature extraction methods and algorithms have emerged as described in the

following sections. The majority of texture features can be found in comparative stud-

ies [72, 89, 101, 114]. There are different approaches for feature categorization grouped

into statistical-based, structural-based, model-based, spectral-based, local descriptors,

and learning-based approaches.

Statistical-based approaches

Statistical-based approaches can be used for describing the relationships between pixel

values based on first-order, or higher-order statistics. Regarding Julesz [61,62] who has

studied texture perception for the context of texture discrimination. The statistical-

based approaches can be separated into the concept of first-order and second-order

spatial statistics [101]. First-order statistic is used for measuring the likelihood of

individual pixel values randomly chosen in the image. For instance, the average in-

tensity (mean), variance, skewness, and kurtosis in an image. Second-order statistics

are defined by considering the distribution of observing pairs of pixel values, such as

Gray-Level Co-occurrence Matrices.
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Figure 2.3: The evolution of texture representation over the past decades. Figure is

reproduced from [72]

.

The GLCM [18,19] is a 2-dimensional co-occurrence matrix which aims at describ-

ing the spatial relationship between a pixel and its neighbors by analyzing their joint

probability function. Higher-order statistics analyze the joint distribution of more than

two pixels, i.e., the Gray Level Run Length Matrix (GLRLM) [43]. The co-occurrence

matrix-based texture features have also been primarily used in texture classification

tasks and not in segmentation tasks [101]. This method requires some feature selection

for selecting the most relevant features and had a variance to noise and small intensity

variations.

The autocorrelation feature is one of the crucial statistical features. Texture in-

cludes the repetitive characteristic of texture element. Based on studies [107], for

textures with natural repetition, the autocorrelation feature becomes more useful for

evaluating the fineness or roughness, smoothness or coarseness of the texture, which

can be related and detected repetitive texture patterns (primitives) and describe the

regularity and coarseness of textures in the texture image.

Structural-based approaches

The structural-based approach considers textures as a composition of texture primitives

(repetitive texture patterns), for example, blobs, part of regional images with uniform

gray levels [101] which are arranged by the spatial organization rules or a statistical

description of the primitives shapes.
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Several methods have been developed to identify shape blobs using the operations

of mathematical morphology [51], texture boundaries detection such as Laplacian of

Gaussian (LoG) and Difference of Gaussian (DoG) filters [21,100]. As the primitives of

textures are identified, the spatial relationship between the primitives can be defined as

texture descriptors, furthermore, the statistics of homogeneous primitive, e.g. intensity,

shape, and orientation [99]. Generally, structural approaches are mainly focused on

regular textures by considering the primitives and placement rules. However, this

approach does not suitable for texture with high-degree of randomness and variability

of pattern, e.g. natural textures.

Model-based approaches

Several model-based approaches will be presented in this subsection. The fundamental

qualities of texture in the model-based approach are captured by a model with esti-

mated parameters. These parameters can be used as texture features or to synthesize

textures of desired properties. The model-based texture analysis makes an attempt

to understand a texture employing one of the following two models: generative image

model (e.g. fractal features) and stochastic image model (e.g. random field features).

Firstly, we describe the generative image model by a fractal-based approach which can

be used to develop discriminative and invariant features for texture classification, espe-

cially in cases where scale changes are prominent in textures [32]. In case of variations,

this issue can be handled by choosing and selecting the local interest points of their

characteristic scales. However, to optimize the suitable characteristic scale different

textures of scale variations should also be considered [30]. Based on the literature, we

found that fractal features are demonstrated as promising results which overcome scale

constraint, but the results also depend on resolution of an image [108].

Secondly, the stochastic image model such as random field feature image textures can

be modeled as a Markov random field (MRF) of pixels gray-level. The MRF ap-

proach describes the spatial relationship between the gray values of neighboring pixels,

capturing local contextual constraints to model an image globally [65]. For example,

a Gauss-Markov random field-based probabilistic texture model [31] is developed to

characterize hyperspectral textures. The MRF is a graphical model which using an

undirected graph corresponding to pixels as random variables with edges only between

neighboring pixels. The parameters of the model are estimated by responding an image

based on an optimization method that minimizes an energy function. The estimated
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Figure 2.4: The original LBP operator calculation

parameters are regularly used as texture features. Significant difficulties with random

field methods include determining an appropriate energy function and optimizing it.

Spectral-based approaches

In this sub-section, we explains spectral-based or filter-based features which mainly

including Gabor filter, Fourier filter, and Wavelet filter. Results of Fourier transform-

based features [11] lacks the robustness of various spatial localization of an image.

Gabor filters or Wavelet filers are more extensively employed for texture analysis.

Gabor filter-based texture features are necessary features for texture analysis [55,

58,89]. Moreover, Gabor functions shares lots of relevant features similar to the human

visual system (HVS) [91]. They consist of a sinusoidal plane wave of frequency and

orientation, which is modulated by Gaussian envelope. The Gabor filter can be defined

as a band-pass filter that useful for extracting a specific band of frequency parts from

images [96]. For texture analysis, we can use a set of Gabor filters with different

frequencies and orientations for feature extraction in discrimination task. For example,

Linear-Gabor features, Thresholded-Gabor features, and Gabor-energy features, etc.

The multi-resolution properties of the wavelet transform are useful for classifying

textures [52]. However, the wavelet transforms are usually computationally taxing.

The disadvantage of the wavelet transform was computational complexity and the spa-

tial resolution of the wavelets which discards spatial information. However, wavelet

transform have flexibility to choose different functions for different applications.

Local descriptors (LBP)
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The local texture descriptors aim mainly to provide local representations which

invariant to illumination, contrast, rotation, scale, and probably other criteria. The

local binary pattern (LBP) texture operator was first introduced as a complementary

measure for local image contrast [83]. Fig. 2.4 shows an example of an LBP operator

calculation. The operator works with the eight-neighbors of a pixel, using the value

of the center pixel as a threshold. An LBP code for a neighborhood was produced by

multiplying the thresholded values with weights given to the corresponding pixels and

summing up the result. A binary code that describes the local texture pattern is built

by thresholding a neighborhood by the gray value of its center. Based on Fig. 2.4, it

can be explained by the following mathematical:

LBPP,R(xc, yc) =
P−1∑
p=0

s(gp − gc)2p. (2.1)

where,

s(x) =

{
1 x ≥ 0
0 x < 0

(2.2)

where gc corresponds to the gray value of the center pixel of a local neighborhood.

gp(p = 0, . . . , P − 1) correspond to the gray values of P equally spaced pixels on a

circle of radius R(R > 0) that form a circularly symmetric set of neighbors. In the

equation (2.1) the signs of differences in a neighborhood are interpreted as a P -bit

binary number, resulting in 2P distinct values for the LBP code. The LBP method

can be regarded as a truly unifying approach. Instead of trying to explain texture

formation on a pixel level, local patterns are formed. Thus, the LBP distribution

can be used in recognizing a wide variety of texture types, to which statistical and

structural methods have conventionally been applied in a wide array of fields and has

demonstrated efficienct performance in several comparative studies [79,84,94].

LBP has been extended its development based on the original LBP operator which

derived from a general definition of texture in a local neighborhood. First, [83, 87] ro-

tation invariant texture is proposed based on local binary pattern. Rotation invariance

is achieved by recognizing the gray scale invariant operator incorporating a fixed set

of rotation invariant patterns. To remove the effect of rotation, a unique identifier is

assigned to each rotation invariant local binary pattern, which is given by:

LBP ri
P,R = minROR(LBPP,R, i)|i = 0, 1, . . . , P − 1 (2.3)
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where ROR(x, i) performs a circular bit-wise right shift on the P -bit number x in

i times.

The next extension for improving rotation invariance with uniform patterns. [83,87]

mentioned that the occurrences frequencies of the 36 individual patterns performed

vary greatly. The proposed uniform circular structure that contains very few spa-

tial transitions. The first rows of Fig.2.5 illustrated the uniform pattern. To defined

the uniform pattern, [83,87] introduced a uniformity measured by U(′binarypattern′),

which correspond to the number of spatial transitions or bit-wise changed 0 and 1 in

the ′binarypattern′. The patterns which correspond to uniformity pattern and non-

uniformity pattern according to U value of at most 2. This approach can be defined

by:

LBP riu2
P,R =

{∑P−1
p=0 s(gp − gc)2p ifU(LBPP,R ≤ 2

P + 1 otherwise
(2.4)

where

U(LBPP,R = |s(gP−1 − gc)− s(g0 − gc)|+
P−1∑
p=0

|s(gp − gc)− s(gp−1 − gc)| (2.5)

We noted that subscript riu2 reflects the use of rotation invariant uniform patterns that

have U value of at most 2. Fig.2.5 illustrated the 36 unique rotation invariant local

binary pattern which represented by [83, 87]. These patterns can be considered as the

LBP codes of some possible local patterns, including spots, flat areas, edges, edge ends,

and curves.

In the present, the LBP has been extended its development on discriminative per-

formance. For example, Completed LBP (CLBP) [49], Extended LBP (ELBP) [73],

Dominant LBP (DLBP), Local Ternary Patterns (LTP) [95] and Median Robust Ex-

tended LBP (MRELBP) [75].

The Completed LBP (CLBP) [49] has been proposed for extracting three com-

plementary descriptors. First, intensity component is captured from the center pixel

using global thresholding. Secondly, Sign and magnitude components are defined by

decomposing the local difference sign-magnitude transformation. The intensity, sign

and magnitude components are encoded into a CLBP descriptor.

The Extended LBP (ELBP) [73] is extended the CLBP approach by approaching

four components as texture descriptors. The first two components are based on lo-
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Figure 2.5: The 36 possible rotation invariant LBPri(8,R) The nine uniform LBPs

(LBPriu2(8,R)) are depicted in the first row. Figure reproduced from [83]. Illustration

of riu2 which refer to rotation invariant uniform pattern.

cal intensities, of center pixels for one and neighbors for the other. The other two

components are based on local differences.

For Dominant LBP (DLBP) is extended from the original LBP by using the most

frequent patterns in the image to describe textural information. This approach con-

siders complex patterns discarded by the uniform LBP in [4] which may be frequent

and representative in some textures (e.g., high curvature edges, crossing boundaries or

corners). The resulting DLBP descriptor is combined to Gabor-based features to cap-

ture complementary global textural information. Global rotation invariance is obtained

in [6] by extracting features from the Fourier transform of the LBP histogram on the

entire image.

Moreover, many extensions have also been developed to reduce the sensitivity to

noise, for example, the Local Ternary Patterns (LTP) [95]. The LTP is computed using

two binary patterns to maintain a relatively small dimension of the histogram which is

twice as large as the LBP. Other descriptors have been extended from the LBP to build

robustness to noise and blur including Median Binary Pattern (MBP), Noise Tolerant

Local Binary Pattern (NTLBP), Robust Local Binary Pattern (RLBP), Noise Resistant
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LBP (NRLBP) and Median Robust Extended LBP (MRELBP) [75]. These methods

offer various options to encode the local differences with low sensitivity to noise while

retaining a high discriminative power of the descriptors.

Learning-based approaches

In Fig. 2.3, since in the 1990s, the promising research direction of invariant feature rep-

resentation was acknowledged for developing robustness variation such as illumination,

scale, rotation, etc. For instance, the local invariant descriptors such as Scale Invariant

Feature Transform (SIFT) [76] and LBP [82] were a milestone of invariant local features

for development. Continuously, in 2012 deep Convolution Neural Networks (CNN) on

ImageNet [68] achieved record-breaking on image classification accuracy. Following

that, computer vision has been focused on deep learning methods for many problems,

which including texture analysis [27–29]. Besides, texture is a spatial phenomenon.

Texture characterization cannot be succeeded by a single pixel, and regularly requires

the analysis of patterns beyond local pixel neighborhoods. Accordingly, a texture image

is transformed for pooling local features, which are aggregated into a global feature for

an entire image or a region. Moreover, when the texture properties are considered by

translationally invariant, most texture representations or characterization are based on

an order-less aggregation of local texture features, such as a sum or max operation.

A significant number of CNN-based texture representation methods have been pro-

posed since 2012 when ImageNet classification result is announced [68]. A crucial

success of CNNs is their competency of learning large labeled datasets to extract and

to understand high-quality features.

Learning CNNs, however, amounts an estimated millions of parameters and a vast

number of annotated images, which is a constraints when using limited and small scale

training data in CNNs application.

CNN-based features pretrained on large datasets were found to achieve very well to

many problems, including texture analysis with a relevance adaption effort [26, 29, 85,

90]. Together with performing finetuning for specific tasks of texture classification is

also employed in the current literature. Comprehensive evaluations of the feature trans-

fer effect of CNNs for texture classification have been conducted in [27,29,86], with the

following critical insights. By focusing on model transfer, features are extracted from

different layers which could achieve different discriminative performance. Experiments

have confirmed that the fully-connected layers of the CNN tend to exhibit relatively
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critical generalization ability and transferability. Accordingly, the CNNS would need

retraining or finetuning on the transfer target. This point can inform us that, the

source training set is related to classification accuracy on different datasets, and the

source and target play a critical role when using a pretrained CNN model [20]. Based

on [27,29,86] works, it was found that deeper models transfer better and that the deep-

est convolutional descriptors give the best performance, above to the fully-connected

descriptors when reasonable encoding techniques are employed (such as FVCNN fea-

tures with Fisher Vector encoder) to the model.

The most straightforward approach to CNN-based texture classification is to extract

the descriptor from the fully connected layers of the network [27,29] e.g., the FC6 or FC7

descriptors in AlexNet [68]. The fully connected layers are pretrained discriminatively,

which can be either an advantage or disadvantage, depending on the information that

can be transferred to the domain of interest [26,29,44]. The fully-connected descriptors

have a global receptive field and are usually viewed as global features suitable for

classification with an SVM classifier. On the other hand, the convolutional layers of a

CNN can be used as filter banks to extract local features [27, 29]. Compared with the

global fully-connected descriptors, lower level convolutional descriptors are more robust

to image transformations such as translation and occlusion. Although, the pretrained

CNN model is capable of classifying images in different objects or scene classes, it may

be discarded in distinguishing the difference between different textures (material types)

based on images in ImageNet which may contain different types of textures (materials).

In case of finetuning CNN models, generally, this model performs on task-specific

training datasets which finetuning is supposed to improve the pretrained CNN model

[26, 44]. When using a finetuned CNN model, the global image representation is usu-

ally generated in an end to end learning (all parameters are trained jointly); that is,

the network can produce a final visual representation without supplementary specific

encoding or pooling steps. The characteristics of the datasets which used in finetuning

are also crucial to learning discriminative CNN features. The size of the dataset which

used in finetuning also have significance to the model as well, cause too small datasets

may be lacking for complete learning. Andrearczyk and Whelan [10] observed that

finetuning a network that was pretrained on a texture-centric dataset can achieve bet-

ter results when compared to a network pretrained on an object-centric dataset of the

same size. Moreover, the size of the dataset which used in the network is pretrained or
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finetuned outstandingly influences the performance of the finetuning as well. These two

observations can confirm us about an extensive texture dataset could bring a significant

contribution to CNNs in texture analysis.

2.1.3 Texture analysis problems

The discriminative feature of textures can be extracted from every pixel, interest point

and pooled, in term of a local descriptor into a global descriptor for a texture region

or an entire image depending on the application task. Here, we should note that the

concept and notation of texture may have different definition or viewpoint perspective

depending on the given objective and application tasks. Texture analysis can be related

to numerous areas of classification, segmentation, and synthesis. Notwithstanding, tex-

ture characterization or representation is a core of these area problems. Regarding a

classical-based approach in pattern recognition problem, texture classification funda-

mentally consists of two significant subproblems which including texture characteriza-

tion and classification [57]. Basically, it is agreed that the enrich texture feature plays

a relatively significant important role, even if poor features are used in the best clas-

sifier, it will fail to achieve good results [72]. Notwithstanding the numerous decades

of development, texture features have been continuously developed the performance

for real-world textures. On the other hand, in many computer vision applications, the

texture features development requires the real-time complexity of computation.

As Section in Learning-based approach, CNNs features have grown deeper in the

quest for higher classification accuracy. Depth or deeper layer has been shown to be

relevant to high discrimination ability and also interpretability increases with depth

as well. Ref. [35] investigated and confirmed representations at different layers resolve

different categories of meaning, and that different training techniques can have a sig-

nificant effect on the interpretability of the representation learned by hidden units.

Accordingly, the relation between the depth of a network and the complexity and spa-

tial support of the features varies between architectures.

In viewpoint of feature characteristic, it is important to distinguish between the

affine invariances required for general computer vision tasks (e.g., ImageNet) and some

texture datasets which only require invariances to rigid motions. For instance, the

CNNs trained on ImageNet learned invariance to scale which may have a negative

impact on datasets such as Brodatz, forest species datasets and tissue images with
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fixed viewpoints and where scale can be a discriminative property. With small training

sets, it might be difficult to control what CNNs learn as discriminative features. It

could be deceived, for instance, by orientation, illumination, scale, and shapes which

are only present in the training set as the invariance to these transformations must

be learned through training. A network may learn to recognize a particular shape or

object which is part of the training texture images rather than the texture of interest.

On the other hand, invariance to specific variations, or knowledge of which type of

feature should be inquired can be optionally required in shallow classifiers. However,

designing appropriate simple hand-crafted features is more natural and may perform

better in some scenarios. CNNs might also be combined with hand-crafted knowledge

and features in an ensemble manner. This problem often referred to as the black box,

is related to the difficulty in tracing the prediction of a network back to important

features, and revealing the internal process of a model. Therefore, here as texture

characterization, the inevitable difficulty in obtaining powerful texture representation

is relevant to two challenging issues; high-invariant and high-expertise representation.

High-invariant related challenges of texture characterization mainly rely on

how to develop the texture representations with high robustness and distinctiveness.

For instance, the large intraclass of datasets which consist of appearance variations

caused by changes in illumination, rotation, scale, blur, noise, occlusion, etc., and po-

tentially small interclass appearance differences. An additional difficulty is in obtaining

sufficient training data in the form of labeled examples, which are usually available only

in limited amounts due to collection time or cost.

High-expertise related challenges include the potentially large number of differ-

ent texture categories and their high dimensional representations, which have motivated

by big data. Here, the big data is associated with the high challenges and the scala-

bility or complexity of huge problems. Furthermore, the applications supported by a

limited resources platforms such as embedded and hand-held devices, these issues have

to be considered in promising research direction between highly compact and efficient

texture representations.

24



2.2 Complex network-based descriptor

2.2 Complex network-based descriptor

2.2.1 Complex networks

Complex network research emerges between the graph theory, physics, statistical me-

chanics and computer science [36], which are all active area of scientific research inspired

by the real-world network such as computer networks [7, 23], brain networks and soci-

ology [81, 106] as illustrated in Fig. 2.6. The research is mainly defining new concepts

and understanding of structural properties. The main result has been used for the

identification of a series of merge principles and statistical properties which familiar to

most of the real networks. There are numerical review articles [8,80] and books [2,106]

from which might be useful for the reader to consult. Therefore, it possibly opened a

new promising research direction for pattern recognition, where the complex network

is employed as a tool for modeling and characterization of natural phenomena.

Recently, research in the complex network has become famous in various areas such

as neuroscience [92], nanotechnology [77], and various applications [39]. These can

notify us about the gaining strength because of big data and recent faster computer

hardware, that can enable the processing of massive amounts of data. One of the main

reasons is their flexibility and generality for representing and characterizing any nature

structure. Some works have examined the complex network based on the interested

strcuture of network representation, followed by an analysis of the topological feature

of the obtained representation performed in terms of a set of informative measure-

ment. In the present, the direction of complex network research can be understood

as the topological characterization of the studied structure. Accordingly, the obtained

measurement can be used to apply in any applications in order to identify different

categories of the structure, which can be related to the area of pattern recognition [33].

By quantifying topology of the complex network, we can derive its presentation which

can conclude some critical information that related to the system. For instance, local

vertex measures can extract essential regions of the network including its estimation of

vulnerability, and groups or clusters of similar vertices, etc.

The concept of the complex network in some problem consists of two principal steps;

1) the deterministic modeling of the system and; 2) the characteristic of the resulting

network which we will explain in the next subsection.
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2.2.1.1 The deterministic graph of complex network model

Figure 2.6: Graphical representation of a undirected (a), a directed (b), and a weighted

undirected (c) graph with N = 7 nodes and K = 14 links. In the directed graph, adjacent

nodes are connected by arrows, indicating the direction of each link. In the weighted graph,

the values w(i, j) reported on each link indicate the weights of the links, and are graphically

represented by the link thicknesses [22]

Graph theory is an important framework of complex network [9,23]. As a complex

network can be represented by graph, by modeling the pairwise relation between image

elements in different mathematical structure. A graph can be undirected which there is

no variation between the two vertices associated with each edge. On the other hand, a

graph can be directed from a vertex to another, see Fig. 2.6 for an example of graphical

representation.

A undirected (directed) graph G = (V,E) consists of two sets V and E, such that

V = v1, v2 . . . , vV and E is a set of unordered (ordered) pairs of element of V . The

elements of Vv1 , Vv2 , . . . , Vvi are the vertices of the graph G, whereas the elements of

Ee1 , Ee2 , . . . , Eej are its edges. The number of elements in V and E are denoted by

i and j repectively. A main concept in graph theory is that of reachable between

two different nodes of a graph [36]. For graph structure model on images, it is useful

to consider a metrical representation of a graph based on 2D images. A graph G =

(V,E) can be described by giving adjacency matrix A, a V × V square matrix where

entry aij(i, j = 1, . . . , V ) is equal to 1 when the edge eij connected to another, and

zero otherwise. Several graph-theoretical approaches to image analysis and computer

vision [9, 71]. They are interesting graph-based approach to visualize representation

26



2.2 Complex network-based descriptor

and analysis. Graphs can represent each pixel to a node, and the difference between

visual properties of adjacent pixels are used to define the respective edge weights. The

advantage of graph-based approaches is that several useful image properties can be

derived from such graph representation.

2.2.1.2 Characteristic of the resulting complex network

The important properties of the complex network can be understood by a network mea-

surement [36, 115]. Network measurements are essential promising direction research,

including representation, characterization classification and modeling. Fig. 2.7 explains

the mapping of the generic complex network into the feature vector x such as vertex

degree. These mapping can provide the representation of network. Based on this strat-

egy, the additional information can be obtained through the structure of the complex

network by applying a transformation T to the original network, then obtaining the

measurement from the resulting network. As Fig. 2.7, a transformation T is applied

over the original network to obtain a transformed structure which extracted from the

new measurement XT . Generic mappings can be used in order to obtain the character-

ization of the network in terms of a suitable set of measurements. In case the mapping

is invertible, we have a complete representation of the original structure. Additional

measurements of a complex network can be obtained by applying a transformation T

on it and obtaining a new feature vector XT . The difference ∆X between the original

and transformed features vectors can also be considered in order to obtain additional

insights about the properties of the original network.

The related researchers also have been discussed for obtaining a richer feature along

the growth of the network. It is possible to derive from a set of measurement along with

network transformation. However, there are still significant questions of how to choose

the most appropriate measurement. [36]. Usually, a set of topological measurement

can be indicated by statistic approach. The available network measurement in order to

select a suitable set of feature has been used. Namely, the average vertex degree, average

shortest path length, and clustering coefficient were topically considered for complex

network characterization. The area of this stage is still open issues and promising

research direction.

The idea of this work is similar to the above related work and it focuses on pattern

recognition of texture. Due to its importance to human communication, representing
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Figure 2.7: The mapping from a complex network into a feature vector

and analyzing images in terms of graphs and complex networks offers a promising

research opportunity in forthcoming years.

2.2.2 Complex networks in texture analysis

A texture pattern can have many or few texture primitives (micro-textures) and/or

hierarchic spatial arrangements of these primitives (macro-texture). The textural per-

ception of an image depends on the spatial size of these primitives. Large primitives

give rise to macro-texture (i.e. coarse texture) and small primitive to micro-texture (i.e.

fine texture) as we explained in Section 1.1.1. Due to this characteristic, the definition

of a texture class must take into account not only the isolated primitives, but also the

relation among them and their neighbors. Consequently, texture characterization and

identification require a methodology which is able to express the context surrounding

each pixel, therefore joining local and global texture characteristics.

The complex network theory is also growing consideration from the computer vision

research. From the proposal of modeling an image as a network, many possibilities

arise, where the solution became a network problem. Since 2004, Luciano et al. [37,38]

proposed a general framework to integrate the areas of vision research and complex
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Figure 2.8: Overview of the original complex network model for texture analysis by

Backes et al. [16]

network where each pixel is represented as a node and the distance between gray-level.

The difference between every pair of pixels in the image and the distance between pixels

can be considered into the edge weight. The connected graph results are subsequently

thresholded at specified T . Based on these processes, we can consider all range of

spatial interaction between image elements for integrating efficiently the relevant visual

properties from low-level to high-level of abstraction. Moreover, another concepts and

tools underlying the complex network research such as tourist walk [15, 17], shortest

paths [42], community detection [60] modularity optimization [71], can be used to

provide relevant information for image and object characterization.

Texture classification using complex network has firstly proposed by Chalumeau et

al. [3]. They presented how complex network has been used for texture characterization

and representation. The results of these propose were used for DNA representations.

We can more clearly see that how useful of complex network is closely related to spatial
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Figure 2.9: Example of two complex networks on texture images. The differences in their

topological features results in measurement which can be used as texture descriptors.

correlation when appling the complex network model to characterize image textures.

More related work can be shown on [25]. Texture research based on the complex

network was focused in recently. Graph-based representation and complex network

model have been efficiently applied in texture analysis [16, 45–47]. The idea begins to

model images as networks by representing each pixel as a vertex [3,37]. Pairs of vertices

are connected and considered into edge-weight by their difference in intensity. These

connections can be transformed with addressing 2 parameters, a radius r for limiting

spatial distance and a threshold for connection weight pooling, where high-weighted

connections are removed as illustrated in Fig. 2.8. On this case, the Euclidean distance

between vertices is considered as the connection weight, and the complex networks are

obtained by thresholding for keeping connections between vertex and neighborhood.

Backes et al. [16] proposed an original complex network model for texture analysis

and classification as shown in Fig. 2.8. Graph-based representations have been used to

characterize the topological structure of networks, including of image pixels [23]. The

definition of the edge of weight was introduced by using spatial information for texture

analysis, and a set of different thresholds is used for evaluating the dynamic evolution

of the network. In [47], the original complex network approach is extended for dynamic

texture (videos) modeling by connecting vertices or pixels from different frames. The

network characterization is made by vertex measures with considering connections in

the same frame or between subsequent frames, providing spatial and temporal analysis.

In the most recent work [45], the authors explore the concept of diffusion and random
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walks on the complex network modeled from texture images.

Network measurement is obtained in terms of the distribution vertex degree or

number of edges incident on a particular vertex. This numerical measure of connectivity

between a vertex and its neighbors can be used to characterize the texture attributes

of an image. The coarseness and orientation of an image structure can be described in

terms of the topological properties of the network. While most of the previous works

on texture research based on complex network have focused on the characterization of

the topological properties, but the spatial aspect has received less attention. Moreover,

other empirical properties of image texture such as spatial arrangement are discarded

from the statistical properties by the conventional vertex measurement. Fig. 2.10

illustrate an image pixel as a network which proposed by Backes et al. [16]. A graph

G = (V,E) denote a weight graph generated by an image. V is the vertex set and E ∈ V

is the edge set. First, each pixel of an image is a vertex in the graph. The networks

are constrained by the Euclidean distance. Two vertices are connected if the distance

between them no longer than radius r. The difference between pairwise pixels value

can define the weight of edge. Threshold t generates the transformation of network.

The degree of nodes or vertices is derived to be the network statistical properties. Fig.

2.9 shows an example of the two complex network of texture images which proposed

by Backes [16]. Therefore, the differences in their resulting measurement of topological

features can be used as texture descriptors in order to analysis and classification [22].

Measurement of the complex network suppose to be the edge connecting node i and

j. The characterization of the topological and connectivity properties of the complex

network can be achieved by using measurements borrowed from graph theory. Based

on the specific topology features on the connectivity is characterized. Accordingly, the

discrimination and analysis of networks rely on the use of measurements that can indi-

cate the most relevant topological features. In the most case of complex network-based

texture analysis, the related measurement is a degree of node measurement. The degree

is an important characteristic of a vertex which makes deriving many measurements for

the network possible by defining the number of its direct connections to other nodes.
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Figure 2.10: Image pixel representation based on graph theory; (a) each pixel of the

image is a vertex in the graph; (b) two vertices are connected if d(vi, vj) ≤ r (r = 3) in

this example), whereas a weighted graph is defined by equation (1); (c) A threshold t is

applied to imitate a transformation in the network.(t = 0.245 in this example); and (d)

The binary pattern transformation after passed thresholding.

2.3 Texture databases

To select candidate databases, the texture of materials are the main criteria focused

in this thesis which shall only consists of grayscale texture images. Regularly, natural

texture images, real-life materials, cover natural textures, and scenes are contained

in selected databases. Databases contain material images under challenging conditions

such as uncontrolled illumination, viewpoint variation and scale changed. Four standard

texture databases which selected to evaluate proposed system are Brodatz texture

database, UIUC, KTH-TIPS, and UMD.

2.3.1 Brodatz texture database

The Brodatz Texture Database or album is the most famous and the most widely used

dataset in the texture analysis [66, 70, 93]. The Brodatz texture database is derived

from the Brodatz album [24]. The Brodatz textures consist of the most commonly used

texture data set, especially in the computer vision and signal processing community.

Because they are so commonly used by previous texture analysis and synthesis works.
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Figure 2.11: Various properties of texture databases

This database has 112 classes, and a small number of examples for each class. The

Brodatz album contains 112 images with size 512 × 512 and 256 gray values after

digitizing, showing a variety of textures, both small and large grained and make this

dataset has a rich diversity of textures. Some of these textures are almost similar, yet

some others are very inconsistent, inhomogeneous or non-identical. Therefore, a human

may even fail to classify these in groups correctly. Overall, it is a challenging dataset

to analyze [70]. Therefore, this database becomes a benchmark dataset for analyzing

any new approach or model for texture analysis.

2.3.2 UIUC database

The UIUC database [70, 113] contains 40 images each of 25 different texture classes,

hence total 1000 un-calibrated, unregistered images. These are gray-scale images having

image resolution 640 × 480 pixels. The database includes surfaces whose texture is due

mainly to variations (e.g. wood and marble), 3D shape (e.g. gravel and fur), as well as

a mixture of both (e.g. carpet and brick) [70]. Moreover, within each class, viewpoint

changes and scale differences are strongly evident as shown in Fig. 2.14. Uncontrolled

illumination conditions are also found for this database [34,70]. The database contains

materials imaged under significant viewpoint variations and also contains fabrics which

display folds and have non-rigid surface deformations [104]. Fig. 2.13 shows some

images for 25 classes. The dataset has relatively few sample images per class but with
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Figure 2.12: Images of Brodatz texture database.

high intra-class variability, including non-homogeneous textures and unconstrained non-

rigid deformations [70]. In terms of intra-class variations in appearance, this is the most

challenging one of the commonly used testbeds for texture classification [34]. Apart

from this shortcoming, the UIUC database has very few instances of a given material

so that it is difficult to perform categorization or to figure out generalization properties

of features [103]. In terms of scale and other viewpoint variations, the UIUC database

is by far the most challenging database [103].

2.3.3 KTH-TIPS database

The KTH-TIPS (Textures under varying Illumination, Pose and Scale) database ex-

pands CUReT database [40, 105] by photographing new samples of ten of the CUReT

textures at a subset of the different viewing and lighting angles used in CUReT, also

together with over a range of scales. Each class contains 81 images. Texture samples
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Figure 2.13: Images of UIUC texture database.

are 200 × 200 images as illustrated in Fig 2.15. Images of the materials present in the

KTH-TIPS database are sandpaper, crumpled aluminum foil, Styrofoam, sponge, cor-

duroy, linen, cotton, brown bread, orange peel and cracker B. These images are imaged

at nine distances from the camera to give equidistant log-scales over two octaves [53].

At every direction, images are captured using 3 directions of illumination (i.e., front,

side and top) and 3 poses, which provides a total of 9 images per scale, and 81 images

per material [53]. Fig. 2.16 shows some example frames of KTH-TIPS database.

2.3.4 UMD database

The UMD (University of Maryland, College Park) is a database of high-resolution

texture [109–111]that consists of 1000 un-calibrated, unregistered images, taken from a

family camera. It has 25 texture classes with 40 samples, having resolution of 1280 ×
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Figure 2.14: Some example images of UIUC texture database.

900 pixels as shown in Fig. 2.17. Similar to the UIUC database [70, 113], within each

class the UMD texture database has significant viewpoint changes and scale differences.

Moreover, the illumination conditions are uncontrolled for the UMD database. The

textures of this database are non-traditional, including images of fruits, various plants,

floor textures, shelves of bottles and buckets [111]. The database. Fig. 2.18 shows a

sample texture image per class of UMD texture database.

2.4 Discussions

This section summarizes the limitation of the traditional complex network-based tex-

ture analysis and how to advance it. In Section 2.4.1, the limitation of the traditional

complex network-based texture analysis is illustrated from two aspects: limitation in

deterministic the modeling of the system and characteristic of the resulting network.

Then, these limitations are summarized in Section 2.4.2, and how this thesis overcomes

these limitations is introduced in Section 2.4.3.
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Figure 2.15: Some example images of KTH-TIPS texture database.

Figure 2.16: Images of KTH-TIPS texture database.
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Figure 2.17: Image of UMD texture database.

2.4.1 The limitation of the original complex network-based for tex-

ture analysis

2.4.1.1 Limitation in the deterministic modeling of the system

From the investigated reported in Section 2.2, graph theory is main approach for repre-

senting pixel as network in complex network-based texture analysis. Although, graph

is idea for characterizing spatial relation among a pixel and its neighbors, the deter-

ministic of weighted graph is still lacked visual information for the tasks of texture

classification. To the best of author’s knowledge, Backes et al. [16] proposed a complex

network texture descriptor (CNTD) that denoted pixels as a network from the differ-

ence between pairwise pixel value, which is one of the original idea for generating the

weight of edges. Nevertheless, their approach faces main limitations: Firstly, their pro-

posed approach simply defines weights of graph by using only magnitude value rather

than value components. Secondly, multiple scale analysis has not been provided with

respect to investigate more discriminative information.
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Figure 2.18: Some example images of UMD texture database.

2.4.1.2 Limitation in the characteristic of the resulting network

The characteristic of the resulting network is important for complex network-based

texture analysis because the resulting network of topological features can be used as

texture descriptors in order to perform classification task. The above survey shares the

common ground in terms of the network measurement: they are constrained to lack

of spatial texture pattern for the discrimination capability of the model. Moreover,

to generate robust texture descriptor, the model has not been provided concerning ro-

bustness to more challenging environments, such as scale different, viewpoint variation

and rotation invariant.

2.4.2 Summary

Regarding the above mentioned points, the conclusion can be given that the current

traditional complex network-based texture analysis usually focuses on how to manip-
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ulate the concept of the graph and the network of texture analysis tasks rather than

investigating and developing the new position of texture analysis and classification re-

search. The key limitations of the traditional texture analysis based complex network

can be summarized as follows:

• The parameter radius r is a fixed rate to express the context the surrounding of

each pixel rather than applying multiple scale for increasing information; therefore

local texture characterization depends on the radius value.

• Existing approaches for the deterministic weight of edge are constructed based

on the difference of local pixel values, which is not enough for the discrimination

capability of the model when environmentally is uncontrolled.

• The traditional complex network model has demonstrated the spatial relation

among structural elements of texture patterns by complex network, but the spatial

structure information which is visual micro-structure (e.g., edge, line, spots) are

not sufficiently investigated.

2.4.3 How to overcome

Corresponding to these limitation, this thesis provides the following solution to conquer

the traditional complex network model for texture analysis:

• This thesis proposes an enhancing complex network-based model for texture via

spatial texture analysis which is invariant to uncontrolled environments.

• In this thesis, the deterministic of graph is investigated for seeking more local

discriminative information. Instead of using only simple local difference of pixel

values, this thesis proposes a completed local textural information by decompos-

ing the local image difference, i.e., the signs and the magnitude, for generating a

topology of the graph.

• Instead of using a statistic method for graph connectivity measurement to dis-

tinguish a different class of image, this thesis proposes a new approach: encoding

spatial arrangement approach for describing the context the surrounding of a ver-

tex in network, adapted into the traditional complex network model which lead

to substantial improvements on the discrimination performance.
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Chapter 3

Complex Network Model and

Spatial Information

3.1 Introduction

In recent years, graph-based representation and complex network model have been

efficiently applied in texture analysis [3,16,25,37,45] as described in section 2.1.3. Ac-

cording to Backes et al. [16] who original proposed complex network model for texture

analysis and classification, graph-based representations have been used to characterize

the topological structure of networks, including of image pixels [80]. Network mea-

surement is obtained from analysis of distribution of vertex degree or number of edges

incident on a particular vertex. This numerical measurement of connectivity between a

vertex and its neighbors can be used to characterize the texture attributes of an image.

The coarseness and orientation of an image structure can be described regarding the

topological properties of the network. However, other empirical properties of image

texture such as spatial arrangement are discarded from the statistical properties by the

conventional network measurement.

Based on the flexibility of complex networks for characterizing textural structures,

it is inspirational to apply standard pattern recognition techniques to complex net-

work model of [16] to enhance texture descriptors. Accordingly, the network or graph

measurement has been investigated in this chapter. We proposed an approach to char-

acterize texture primitives by considering spatial information based on the complex

network model of Backes et al. [16] for texture classification. A multi-scale analysis is
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Figure 3.1: The overview of proposed structure model.

applied for extracting more and better textural information. The overview model is

illustrated in Fig. 3.1.

This chapter has following main contributions summarized below:

1. A new graph connectivity measurement, denoted as Local Spatial Pattern Map-

ping (LSPM), is developed with enhanced performance to extract, and classify

texture features in complex network-based texture characterization [98];

2. Local texture features obtained are evaluated and compared with conventional

texture analysis;

3. Material images under challenging conditions, such as uncontrolled illumination,

viewpoint variation and scale changed, are gathered for creating a database which
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3.2 Network graph characteristics

Figure 3.2: An example of the topology of graphs with multiple scales analysis and

dynamic connectivity by a set of threshold.

is for evaluating the performance of the proposed model.

The rest of this chapter is organized as follows: The architecture of the proposed

complex network model is introduced in Section 3.2. Section 3.3 describes the local

spatial pattern mapping and its combination with the complex network model. The

experiments and texture databases are presented in Section 3.4. Finally, results and

discussion in our proposed model are detailed in Section 3.5.

3.2 Network graph characteristics

3.2.1 Weight of edges

The weight of edges is a parameter which represents pairwise connections between a

node and their neighbors. This parameter can be used for representing a local data

structure which has some numerical values. The simple local data structure of an

image is pixel information which including color value and coordination. Difference of

pixel intensities defines the weight of graph i.e. Co-occurrence pixels of a difference

of intensity can be used for constructing the weight of edges, and consequently this

approach can characterize the local image textures. For each non-directed edge e ∈ E,

a weight W (e) is associated, which is defined by the difference of intensity between a

pixel I(i, j) and its neighbors when d(vij , vi′j′) ≤ r. The weight of edges is given by:
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W (e) =

{
|I(i, j)− I(i

′
, j

′
)| if d(vij , vi′j′) ≤ r

0 otherwise ,
(3.1)

In this work, the weighted graph, equation 3.1, is transformed into a binary pattern

for deriving context information about index pixel surroundings. This approach enables

us to analyze a local texture analysis. This transformation and graph properties are

discussed in the following subsections.

3.2.2 Multiple scale analysis

The radial distance pattern mapping is generated for increasing scale of the pixel con-

nectivity as presented in Fig. 3.3. The radial graph can expand into other vertices

based on the spatially radial distance measurement for multi-scale feature extraction.

Fig. 3.3, each pixel of an image I(i, j) is denoted by a vertex (vij) in the graph. Two

vertices are connected when Euclidean distance d(vij , vi′j′) ≤ rmax . In this work, we

have set rmax = 1, 2 and 3 for generating the three pattern as Fig. 3.3(the bottom).

These patterns have different considering neighborhood or mapping dimensions which

equal to 4, 8 and 16, respectively. Equation 3.2 can define the multiple scale analysis.

e = (vij , vi′j′) ∈ I × I‖



√
(i− j′)2 + (i− j′)2 ≤ r1}

r1 <
√

(i− j′)2 + (i− j′)2 ≤ r2}
r2 <

√
(i− j′)2 + (i− j′)2 ≤ r3}

...

rmax−1 <
√

(i− j′)2 + (i− j′)2 ≤ rmax}.

(3.2)

In Fig. 3.3, the vij and vi′j′ represent vertices corresponding to pixel pi and pj , and

W (e) is weight of an edge. Based on radial distance mapping, we can generate a radial

graph into three patterns which based on their Euclidean distance, specifically, in term

of radial distance rmax = 1, 2 and 3 as defined in equation 3.2. Then, image-based

graph representation can be represented by Fig. 3.3 (in the last row). The local pixels

that have Euclidean distance d(vij , vi′j′) ≤ rmax where rmax = 1, 2 and 3 are indicated

by gray color as shown in Fig. 3.3.
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Figure 3.3: An example of pixel-based radial distance mapping based on graph represen-

tation.

3.2.3 Dynamic network transformation by a set of threshold

In order to receive additional information about the topological graph, a transformation

of a graph are obtained by applying a set of threshold into the edge weight. A threshold

(t) is a parameter related to the property of being an edge in graph theory [36, 80].

In the original complex network model [16], a set of thresholds is used to construct

a network that imitates dynamic transformation for the purpose of texture analysis,

connection weight pooling, where high-weighted connections are removed. Thus the

spatial relations of the attributes of features can be determined when applying threshold

parameters in the complex network model. The threshold t value is applied to the

original set of edges, as illustrated in Fig. 3.2. In this study, threshold values obtained

through an experiment. Then, the binary pattern transformation process is performed

by converting the vertices whose weights are less than or equal to threshold t to 1, while

the remaining vertices are converted to 0. This process is defined as follows:
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W
(t)
b (e) =

{
1 if W (e) ≤ t
0 otherwise ,

(3.3)

where t varies from t0 to tend, and experiments define the initial and final thresholds.

Fig. 3.4–3.5 are shown examples of feature appearances on images when applied dy-

namic transformation by t = 15, 30 and 45 along with difference rmax.

3.3 Spatial texture analysis via graph connectivity mea-

surements

In the original complex network model [16], the texture properties are characterized

by the distribution of vertex degree. However, some essential informative properties

such as spatial arrangement should be determined among the extracted topological

features. To our knowledge, spatial texture analysis was never previously been analyzed

in texture analysis based on a complex network model. Therefore, spatial arrangement

is our focus of this work.

3.3.1 Local Spatial Pattern Mapping

Local spatial pattern mapping, LSPM, is proposed to encode spatial texture pattern.

As we abovementioned, I(pi) ∈ [0, 255] to each pixel pi = (xpi , ypi) ∈ I where xpi and

ypi define respectively the x and y position of pixel pi in the image. The two vertices vi

and vj are connected, if the Euclidean distance between their pixel pi and pj is equal

or less than a given radius r. After the binary pattern transformation, the neighbors

of a vertex vi which have Euclidean radial distance rm1, rm2 and rm3 equal to 1, 2, and

3 are constructed by the radial symmetric neighborhood as in Fig. 3.3. This approach

enables us to describe local context information about pixel surroundings, (indicated in

gray in the figure). The results of these binary neighbors sets are used for encoding the

spatial arrangement in the next process. A set of binary neighbors for a radial distance

r is denoted by

k(t)(evi,vj ) =


[W

(t)
b (evi,v1),W

(t)
b (evi,v2), . . . ,W

(t)
b (evi,vn1

)] if d(vi, vj) < rm1

[W
(t)
b (evi,v1),W

(t)
b (evi,v2), . . . ,W

(t)
b (evi,vn2

)] if rm1 ≤ d(vi, vj) < rm2

[W
(t)
b (evi,v1),W

(t)
b (evi,v2), . . . ,W

(t)
b (evi,vn3

)] if rm2 ≤ d(vi, vj) < rm3

0 otherwise.

(3.4)
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Figure 3.4: An example of appearance on images when applying the dynamic transfor-

mation by a set of thresholding, radius rmax = 3.
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Figure 3.5: Another feature appearance on images when applying the dynamic transfor-

mation by a set of thresholding, radius rmax = 3.
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where vn1 , vn2and vn3 are denoted as vertices neighborhood of a vertex vi in the

Euclidean radial distance r1, r2 and r3. In this work, number of the vertices neighbor-

hood, n1, n2, and n3 are equal to 4, 8, and 16, whereas the radial distance rm1, rm2

and rm3 equal to 1 ,2 and 3, respectively.

The Local spatial pattern mapping or LSPM performs a spatial arrangement anal-

ysis. The uniformity of LBP mapping [4,83] is adapted for spatial mapping at different

radial distances. The LSPM method is used to describe the uniformity of texture prim-

itives when the binary pattern of a binary row record contains at most two bit-wise

transitions between 0 and 1 in the same way as uniformity in LBP theory [83]. We

define the LSPM method as follows:

lspm(evi,vj ) =

pn∑
j=1

k(t)(evi,vj )2
(j−1), (3.5)

where n is 4, 8, and 16, respectively. For considering the uniformity of lspm, the

following equation is used:

LSPM(nrmax , rn) =

{
lspm(evi,vj ) if U(lspm(evi,vj )) ≤ 2

p+ 1 otherwise,
(3.6)

where U is the uniform pattern of k(t)(evi,vj ) in equation 3.4, which is determined

when the binary pattern of a binary row record contains at most two bit-wise transitions

between 0 and 1. For example, the pattern of 00000000 shows the U value of 0, whereas

the binary pattern of 11000001 shows U of 2 as justified by [83]. This equation means

that if the lspm(evi,vj ) have U > 2, it defines for non-uniform pattern. This step enables

us to analyze the uniform pattern of pixel surroundings, which can refer to local texture

analysis. In practice, LSPM is implemented by using a look-up table of 2pn elements.

In this case, there are pn+2 output bits for each final histogram. The feature properties

as histogram for the radial analyses LSPM(pn, rn) are defined as follows:

F (t)(vi) =

 LSPM(4, 1)
LSPM(8, 2)
LSPM(16, 3)

> . (3.7)

In order to evaluate our proposed method, a discrimination function for texture

classification was generated by a nearest neighborhood. In the implementation of this
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Figure 3.6: Summary of various properties of important texture databases

work, the Classification Learner app of MATLAB 2016a version with default parameter

values was used for classification following 10-fold cross-validation.

3.4 Experiments

In the present study, three experiments were conducted to compare the results between

the original complex network texture descriptor (CNTD) by [16] 1 and our proposed

method. The first experiment was a comparison of threshold sets as represented in Table

3.1. The objective of this experiment was to select the best threshold sets by using

Brodatz as the validation database. The second experiment examined combinations of

feature descriptors by using the threshold set selected from the first experiment. Along

with Brodatz, this experiment used the additional three texture databases, UIUC,

KTH-TIPS, and UMD, in the evaluation. The summarized features of databases are

listed in Fig. 3.6. In this thesis, we built the new Brodatz dataset by cropping 12

subsections with non-overlapping of a larger Brodatz image. Thus it is difficult for us

to distinguish some images between each class. The last experiment was a comparison

between other conventional methods including LBP, LBPriu2, and CNTD [16], with the

proposed method.

1In the experiments, the texture features obtained by using only the degree of node (Deg) approach

instead of using statistical descriptors i.e., mean, contrast, energy, and entropy as applied in [16]
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3.5 Results and Discussions

3.5.1 Parameter analysis

Table 3.1: Result for the proposed method for different thresholds set. Using r = 1,2,3

for Brodatz database.

Set Thresholds No. of descriptors Success rate [%]

t0 tstep tfinal LSPM (proposed) CNTD

T1 5 5 85 578 88.13 ± 12.02 80.72 ± 15.80

T2 90 5 170 578 68.86 ± 21.82 70.38 ± 20.65

T3 175 5 255 578 19.39 ± 35.72 26.11 ± 35.88

T4 5 10 85 306 87.78 ± 12.49 80.98 ± 16.68

T5 90 10 170 306 69.23 ± 21.40 70.37 ± 20.79

T6 175 10 255 306 20.26 ± 35.95 27.16 ± 35.81

T7 5 15 80 204 87.62 ± 12.28 81.10 ± 16.39

T8 85 15 160 204 72.62 ± 20.06 71.80 ± 19.73

T9 165 15 240 204 24.50 ± 33.98 32.25 ± 33.71

T10 5 15 95 238 87.50 ± 12.41 80.98 ± 16.39

Regarding [16], the proposed approach suggests that the features determined by

degree histograms might be able to perform texture discrimination. There is radius

r and a set of threshold T are defined as parameters, which must be applied to the

networks. Based on the description of the method, both radius r and the set of threshold

t are crucial parameters to be configured. First, we start by analyzing the behavior of

the method for different threshold sets using a constant radius rmax = 3 in the Brodatz

dataset. Table 3.1 summarizes the results for 10 different configurations of thresholds

(T1, T2, . . . , T10). To compose each set of thresholds, the process was determined by

the original model of [16]. The set of threshold considered an initial threshold (t0),

which is constantly increased by a value (Tstep) until to a final threshold (tfinal). In the

Table 3.1, we split the range of thresholds into three divers intervals (T1, T2 and T3)

with using the same tstep value in each interval. This test is performed in order to verify

each interval of thresholds which concentrate with the most meaningful information

based on the topological structure of the network. The comparison results among

threshold intervals show that the most meaningful information could be extracted when
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t < 170. The initial interval of threshold T1 holds the main information about the

texture pattern from both methods, LSPM and CNTD, compared with T2. Increments

tstep = 10 and tstep = 15 were evaluated. While configurations from T4 to T9 present

the results of this test. This increased value was followed by a decrease in the number

of descriptors which can be indicated by the presence of redundant features in the

descriptors computed for tstep = 5.

3.5.2 Comparison of results from different threshold sets

The best threshold sets were selected to evaluate the methods in different databases

including Brodatz, UIUC, KTH-TIPS, and UMD. The configurations T1, T4, T7 and

T10 were chosen for evaluating in this experiment. The success rates of LSPM method

and CNTD were listed in Table 3.2 and 3.3, respectively.

Table 3.2: Experimental results of LSPM feature descriptor in different set of thresholds

from the texture databases

Databases T1 T4 T7 T10 Averages

Brodatz 88.13 ± 12.02 87.78 ± 12.49 87.62 ± 12.34 87.50 ± 12.41 87.76 ± 12.32

UIUC 76.91 ± 4.78 76.50 ± 4.69 76.65 ± 4.75 75.43 ± 4.67 76.37 ± 4.72

KTH-TIPS 89.27 ± 1.14 89.14 ± 1.18 88.22 ± 1.21 87.88 ± 1.22 88.63 ± 1.19

UMD 91.78 ± 2.87 91.60 ± 2.86 91.98 ± 2.92 91.45 ± 3.02 91.70 ± 2.92

Table 3.3: Experimental results of CNTD feature descriptor in different set of thresholds

from the texture databases

Databases T1 T4 T7 T10 Average

Brodatz 80.72 ± 15.80 80.98 ± 16.68 81.10 ± 16.39 80.98 ± 16.39 80.94 ± 16.31

UIUC 70.44 ± 5.49 70.70 ± 5.41 68.89 ± 5.61 69.52 ± 5.48 69.89 ± 5.49

KTH-TIPS 84.80 ± 1.29 84.50 ± 1.32 84.90 ± 1.29 84.73 ± 1.31 84.73 ± 1.30

UMD 90.01 ± 2.98 89.90 ± 3.02 89.03 ± 3.11 89.48 ± 3.10 89.60 ± 3.05

The accurate classification result for different set of thresholds from four databases,

Brodatz, UIUC, KTH-TIPS, and UMD, achieved similar accurate classification rates

of LSPM and CNTD approaches, as listed in Table 3.2 and 3.3, respectively.

In the results from each configuration, different threshold sets will be described in

following each dataset. Firstly, Brodatz texture database, the best accuracy result from
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Figure 3.7: Summarize column chart results from LSPM and CNTD methods from Table

3.2 and 3.3

the LSPM approach achieved a success rate of 88.13% for the configurations T1, whereas

the result of the comparison CNTD approach achieved classification rate of 81.10% for

T7. As the results have listed in Table 3.2 and 3.3, we can see all configurations

T1, T4, T7, T10 have similarity achieved the success rates. The average success rate

results achieved the rates of 87.76% for LSPM and 80.94% for CNTD approaches.

Secondly, UIUC database, the best accuracy results were 76.91% by T1, and 70.44% by

T4 from LSPM and CNTD approaches, respectively. The average success rate results

achieved rates of 76.37%, and 69.89% for LSPM and CNTD approaches. The next one

is KTH-TIPS database. The accurate classification result for the best set of a threshold

by using LSPM approach achieved rate of accuracy 89.27% for the configurations T1.

The accurate results from the CNTD approach also achieved the highest classification

rates of 84.90% for the configurations T7. The average success rates results were 88.63%

for LSPM and 84.73% for CNTD approach. Finally, UMD database, all the accurate

classification results from all configurations T1, T4, T7, T10 have similarity achieved

the success rates in the LSPM approach, the best results was 91.98% from T7. While

the CNTD approach achieved the best classification rate of 90.01% from T1.

The average success rate results are summarized as column chart in Fig 3.7. The

result showed that the LSPM approach could improve classification rates significantly
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Figure 3.8: Confusion matrix results from Brodatz database

Figure 3.9: Confusion matrix results from UIUC database
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Figure 3.10: Confusion matrix results from KTH-TIPS database

Figure 3.11: Confusion matrix results from UMD database
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Table 3.4: Result for the proposed method for different radius values for the Brodatz

database.

Radius Thresholds No. of descriptors Success rate [%]

t0 tstep tend LSPM (proposed) CNTD

{1} 5 5 85 102 72.51 ± 21.18 69.83 ± 22.09

{1,2} 5 5 85 272 82.61 ± 14.56 78.28 ± 16.61

{1,2,3} 5 5 85 578 88.13 ± 12.02 80.72 ± 15.80

when comparing with the CNTD approach for all evaluated databases. These results

can be used to confirm us about how important is the encoding spatial arrangement

by LSPM approach. Accordingly, to the LBPriu2 mapping, we can see that the local

structure pattern information such as microstructure, can be described by this method.

Thus, the LSPM approach can be employed for encoding the local structure informa-

tion. On the other hand, the CNTD method that used a degree of node (Deg) as a

feature descriptor in network measurement which this Deg only count the number of

value 1s in the binary neighbors’ sets instead of encoded them. Moreover, we have

shown the confusion matrices results which are demonstrated in Fig. 3.8–3.11, respec-

tively. Regards to these results, the proposed method is shown to be the most effective

one for texture characterization, providing an improved classification rate as compared

to the original complex network model or CNTD.

3.5.3 Comparison of results from multiple scale analysis

By applying the multiple scale scheme analysis, the better results are shown to be

obtained. In this section, we have experimented with comparing classification rates

using different radius. As shown in Table 3.4–3.7, the multi-scale of complex network

on rmax = 3 outperformed the classification rates when comparing with other scales.

It should be noted that although the rmax is strictly equal to 3 in this thesis, achieves

much higher classification rates than the original complex network model [16].

3.5.4 Comparison with other texture analysis methods

To further evaluate our proposed method, additional conventional texture analysis

methods are chosen for comparison which including LBP and LBPriu2 operators [83,87].
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Table 3.5: Result for the proposed method for different radius values for the UIUC

database.

Radius Thresholds No. of descriptors Success rate [%]

t0 tstep tend LSPM (proposed) CNTD

{1} 5 10 85 102 58.80 ± 6.52 57.25 ± 6.53

{1,2} 5 10 85 272 70.40 ± 5.68 66.70 ± 5.60

{1,2,3} 5 10 85 578 76.49 ± 4.69 70.71 ± 5.41

Table 3.6: Result for the proposed method for different radius values for the KTH-TIPS

database.

Radius Thresholds No. of descriptors Success rate [%]

t0 tstep tend LSPM (proposed) CNTD

{1} 5 5 85 102 76.90 ± 1.81 74.27 ± 1.97

{1,2} 5 5 85 272 87.20 ± 1.23 83.00 ± 1.45

{1,2,3} 5 5 85 578 89.27 ± 1.14 84.80 ± 1.29

Table 3.7: Result for the proposed method for different radius values for the UMD

database.

Radius Thresholds No. of descriptors Success rate [%]

t0 tstep tend LSPM (proposed) CNTD

{1} 5 5 85 102 83.25 ± 4.16 78.60 ± 4.63

{1,2} 5 5 85 272 90.42 ± 2.99 87.24 ± 3.16

{1,2,3} 5 5 85 578 91.78 ± 2.87 90.10 ± 2.98
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In the experiment, the LBP descriptor was computed by the concatenation of the his-

tograms when (P,R) = (8,2) to characterize a texture pattern, and results in a total

of 256 descriptors. The LBPriu2 descriptor was computed by the concatenation of the

histograms when (P,R) = (8,1), (16,2), (24,3) to characterize a texture pattern, and

results in a total of 54 descriptors.

For comparing with other methods, Principal Component Analysis (PCA) is applied

to downsize the feature space purpose [54] on the proposed methods. We denoted

CNTD, and LSPM approaches with PCA as CNTD–PCA and LSPM–PCA as listed

in Table 3.8. In order to determine optimal range number of principal components

in CNTD–PCA and LSPM–PCA, we have set the percentage of the total variance

explained by each principal component no more than 99.60%–99.70%, to obtain the

optimal number of PCs. Therefore, the optimal number of feature descriptor of CNTD–

PCA, and LSPM–PCA were selected as 21 number of features in this experiment.

Table 3.8: Comparison of success rate [%] between other texture analysis methods

Methods Number of features Success rate [%]

Brodatz UIUC KTH-TIPS UMD

LBP 256 85.16 ± 15.70 66.53 ± 4.47 96.68 ± 0.59 92.96 ± 2.58

LBPriu2 54 88.28 ± 13.34 82.21 ± 4.22 95.63 ± 0.56 94.52 ± 1.70

CNTD 578 80.72 ± 15.80 70.44 ± 5.49 84.80 ± 1.29 90.10 ± 2.98

LSPM 578 88.13 ± 12.02 76.91 ± 4.78 89.27 ± 1.14 91.78 ± 2.87

CNTD—PCA 21 84.12 ± 13.38 75.42 ± 4.44 86.79 ± 1.08 92.72 ± 2.07

LSPM—PCA 21 86.28 ± 11.87 77.25 ± 4.35 89.38 ± 0.99 94.06 ± 2.13

Based on Table 3.8, we will discuss the results one by one for each database. By

applying the PCA for reducing dimensional feature space, CNTD–PCA obtained bet-

ter results than CNTD in all databases. For Brodatz database, LBPriu2 and LSPM

achieved the best success rate of 88.28% and 88.13% respectively. By comparing with

CNTD and LSPM, we can see that the proposed LSPM method could be used for

enhancing the original complex network model for texture classification. For the UMD

database, the proposed method achieved similar classification rate with other methods.

On the other hand, the UIUC database which included different viewpoints with per-

spective distortion and non-rigid transformation, LBPriu2 methods outperformed the

other methods by 82.21%. These points can indicate the local features using the LBP
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3.5 Results and Discussions

can be promising for improving our approach. For KTH-TIPS, the LBP and LBPriu2

is shown to be the best results than others.

Accordingly, it can be concluded from experiment results that, for CNTD and

LSPM features, classification accuracy on LSPM from all databases are significantly

improved by the CNTD method. The encoding spatial arrangement of distribution

of local pixels, then the spatial structure information which is visual micro-structure

(e.g., edge, line, spots) can be more detectable on local image texture. The encoding

spatial arrangement is more robust than the degree of node connectivity for uncontrolled

environment database.

3.5.5 Robustness in uncontrolled environments

In the last subsection, the characteristics of complex-based network have been discussed

in terms of different configuration-wise aspects and also the benchmarking of the pro-

posed method with other texture analysis approaches. This section also introduces the

results concerning the robustness in uncontrolled environments of the method such as

rotation, scale changed, and viewpoint distortion. These issues are the essential and

desirable characteristics in texture recognition applications.

Fig. 3.12 – Fig. 3.15 show the results achieved for CNTD and proposed method

when it was applied to the rotation, scale changed and viewpoint variation texture

databases. The multiple scale analysis is applied for capturing local textural informa-

tion. The histogram at bins 1–6 is corresponding results when radius r equal to 1,

at bins 7–16 is corresponding results when radius r equal to 1, and at bins 17–34 is

corresponding results when radius r equal to 3. The proposed feature LSPM performs

encoding spatial arrangement of the binary neighbor sets in order to remove the effect of

rotation as explained in Section 3.3.1. Based on the features in Fig. 3.12, the proposed

features in rotated texture images are nearly the same. To be more understandable,

we have shown the Chi-square value (χ2) for calculating the distance between two his-

tograms of intra-class from databases. The proposed features can show the minimum

values rather than the CNTD features.

Fig. 3.13 illustrated the features as textures acquired from different viewpoints.

The results showed that the two features are nearly the same. As the Fig. 3.9, the

LSPM method showed a higher rate of predictable class than the CNTD, which may

59



3. COMPLEX NETWORK MODEL AND SPATIAL INFORMATION

Figure 3.12: 1st column: Texture image at orientations 0◦, 30◦ and 90◦. 2nd column: bins

1 - 34 of the corresponding concatenate histograms from r1, r2, r3 by the CNTD features.

3rd column: bins 1 - 34 of the corresponding concatenate histograms from r1, r2, r3 with

t = 20 by the proposed features

result from the effect of rotation removal. However, the local discriminative information

is required for improving the classification performance.

For scale invariance, the feature results in Fig. 3.14 and Fig. 3.15 can prove the

superiority of our proposed method. Although the proposed method was not better

than the LBP based methods in UIUC, KTH-TIPS and UMD databases, we obtained

better results than the CNTD. The network model is derived from the Euclidean dis-

tance between pixels and, in discrete space a small error is added because the Euclidean

distance is not a constant at all rotation angles. The proposed approach also considered

the intensity of the pixel as information to compose the edge weight in Eq. (2.1). Its

value does not change during image rotation and, in association with the normalization
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step, therefore, it diminishes the rotation error created by the Euclidean distance, and

making the proposed method relatively more robustness and tolerance to noise.

3.6 Summary

In Chapter 3, we proposed a new method in image texture characterization based on

a complex network model for texture classification. Local spatial pattern mapping

(LSPM) approach proposed for encoding spatial distribution of local pixels in the com-

plex network-based model. The multi-scale analysis in the complex network-based

model can improve classification performance. The deterministic graph in texture rep-

resentation should be investigated to be more discriminative information for increasing

performance of classification. (discussed in Chapter 4). The experimental results show

that the performance of LSPM in analyzing spatial information based on a complex net-

work model improves the accuracy of texture classification as compared to the original

complex network-based model (CNTD).
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3. COMPLEX NETWORK MODEL AND SPATIAL INFORMATION

Figure 3.13: 1st column: Texture image at viewpoint variation from UIUC database.

2nd column: bins 1 - 34 of the corresponding concatenate histograms from r1, r2, r3 by the

CNTD features. 3rd column: bins 1 - 34 of the corresponding concatenate histograms from

r1, r2, r3 with t = 20 by the proposed features
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3.6 Summary

Figure 3.14: 1st column: Texture image at scale changed from KTH-TIPS database.

2nd column: bins 1 - 34 of the corresponding concatenate histograms from r1, r2, r3 by the

CNTD features. 3rd column: bins 1 - 34 of the corresponding concatenate histograms from

r1, r2, r3 with t = 20 by the proposed features
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3. COMPLEX NETWORK MODEL AND SPATIAL INFORMATION

Figure 3.15: 1st column: Texture image as an object has viewpoint and scale variation

from UMD database. 2nd column: bins 1 - 34 of the corresponding concatenate histograms

from r1, r2, r3 by the CNTD features. 3rd column: bins 1 - 34 of the corresponding con-

catenate histograms from r1, r2, r3 with t = 20 by the proposed features

64



Chapter 4

Graph-based Representation in

Texture Analysis

4.1 Introduction

Graph-based representation has been approached for texture characterization based on

complex network model [42] which can be used to describe image structures. According

to Chapter 3, we proposed the local spatial pattern mapping (LSPM) approach as a new

graph connectivity measurement by encoding the spatial information in the complex

network model. The approach adopted a scheme idea of the local binary pattern [83]

to investigate the spatial arrangement of vertices for enhancing the original complex

network model [16]. The results are shown to be an effective method by using the

interaction between the spatial arrangement in which was inspired by the LBP and

the complex network model for texture classification. However, the local discriminative

information is required for improving classification performance.

Based on the graph theory, the image pixels can be represented by the set of vertices

and the set of edges. The weight of edge where generated for describing the topology

of a graph can be used to describe the image structure by a pairwise connection. This

value importantly employs for representing the information on the image texture, and

hence the deterministic the weighted graph is focused on this chapter. The difference of

local pixels is used to obtain the weight of edges. However, the necessary edge of weight

property such as the direction is discarded from the numerical value of the weighted

edges. Regarding the standard pattern recognition techniques such as LBP operator,
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4. GRAPH-BASED REPRESENTATION IN TEXTURE ANALYSIS

Figure 4.1: The general framework of graph-based spatial vector for texture analysis and

classification.

many methods have proposed for extending the basic LBP operator. A scheme idea

method that inspiring us for developing this work is CLBP method. Zhenhua et al. [49]

proposed completed modeling of LBP (CLBP) operator for texture classification. The

fundamental idea of this technique is a decomposition of two complementary compo-

nent which including the sign and the magnitude features for extracting the texture

information

Fig. 4.1 represents an overview of the general framework of a graph-based represen-

tation for texture characterization. The deterministic graph modeling is focused in this

chapter for analyzing and extracting meaningful information in local texture images.

The spatial arrangement of graph connectivity has approached for vertex measurement.

To summarize, the main contributions of this chapter can be described as follows:
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4.2 Graph-based image representation

1. Deterministic graph modeling of the complex network is developed with increased

performance in order to sufficiently extract discriminative information for texture

classification;

2. The extracted local discriminative information outperformed the results in Chap-

ter 3 and also conventional texture analysis;

3. The local grayscale difference and the local structure distributions features are

combined within a proposed deterministic graph modeling;

4. The developed deterministic graph modeling can achieve better performance in

uncontrolled environments in terms of rotation, scale changed and viewpoint dis-

tortion when compared the results in Chapter 3

5. The graph-based representation is employed as a new feature descriptor for cloth-

ing category classification [97].

The rest of this chapter is organized as follows: The architecture of the proposed

graph-based representation for texture analysis is introduced in Section 4.2 and 4.3.

Section 4.4 describes the vertex measurement which is used in the experiments. The

experiments and texture databases are presented in Section 4.5. Results and discussion

in our proposed model are detailed in Section 4.6. Finally, the application to clothing

images is demonstrated in Section 4.7.

4.2 Graph-based image representation

Graph structure is a principle idea for image representation which reflects the structure

context of the input image. Fig. 4.2 illustrates designing graph by using distance-based

approach. This is the simplest way to represent information about an image on a per-

pixel basis. An image I with a resolution of M × N pixels. Each pixel pn of a gray

image is characterized by an integer value g which have intensity values between 0−255,

I(pn) ∈ [0, 255], where n is a finite number of pixels equal to 1, 2, . . .M ×N . Suppose

I(i, j) = g, i = 1, . . . ,M and j = 1, . . . , N where i and j are the Cartesian coordinate of

the pixel I(pn). Let G = (V,E) is a graph comprising the set of vertices V and the set

of edges E which each pixel I(i, j) is considered as a vertex vij ∈ V . The two vertices
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4. GRAPH-BASED REPRESENTATION IN TEXTURE ANALYSIS

Figure 4.2: Inspiring graph structure for image presentation.

are connected by a non-direct edge e ∈ E, e = (vij , vi′j′ ), when the Euclidean distance

between two vertices is less than or equal to value r as represented in equation 4.1.

E = {e = (vij , vi′j′) ∈ I × I‖
√

(i− j′)2 + (i− j′)2 ≤ r}. (4.1)

4.3 The deterministic graph structure

4.3.1 Weight of edges

The weight of edges is used for representing a structure which pairwise connections

have some numerical values. The simple data structure of an image is pixel information

which including color value and coordination. A difference of pixel intensities defines

the weight of graph, that is, co-occurrence pixels of a difference of intensity can be used

for constructing the weight of edges, and consequently this approach can characterize

the local image textures. For each non-directed edge e ∈ E, we associate a weight

W (e), which is defined by the difference of intensity between a pixel I(i, j) and its

neighbors when d(vij , vi′j′) ≤ r. The weight of edges is given by:

W (e) =

{
I(i, j)− I(i

′
, j

′
) if d(vij , vi′j′) ≤ r

0 otherwise ,
(4.2)
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4.3 The deterministic graph structure

Figure 4.3: An example of the binary transformation by spatial vector. (radius rmax = 3)

4.3.2 Binary pattern transformation by spatial vector

This chapter considers the edges as a spatial vector that has a magnitude and direc-

tion properties as illustrated in Fig.4.4. The magnitude can be referred as non-direct

edges for a graph, whereas the direction refers to arrows in the graph. We define the

magnitude of the weighted graph by obtaining an absolute of the weighted graph value.

The sign of weighted graph value is used for determining the direction of an edge. The

binary pattern transformation can generate by thresholding. For the magnitude value,

this approach has required a threshold for generating the binary pattern, whereas the

sign can present by itself. Accordingly, a connected-graph based on magnitude prop-

erty and a connected-graph based on direction property are defined as the magnitude

and the direction of the edges on this work. These two approaches can extract dif-

ferent information on local pixels which are essential for texture analysis. Fig. ??

are demonstrated the binary pattern transformation based on magnitude and direction
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4. GRAPH-BASED REPRESENTATION IN TEXTURE ANALYSIS

Figure 4.4: A conceptual framework of spatial vector to a pixel as network by graph.

properties.

4.3.2.1 Connected-graph based on magnitude property

To define a threshold value, the auto local thresholding is approached by an average of

the absolute weighted graphs values as defined below:

tA(e) =
|(W1(e) +W2(e) + · · ·+Wv′(e)|

v′
. (4.3)

where v′ is number of neighbors of v. The adaptive local thresholding trn apply to the

original set of edges E for generating a weighted-binary pattern based on magnitude

property WBm, is given by:

WBm(e) =

{
1 if |W (e)| ≤ tA(e)

0 otherwise .
(4.4)

where tA is auto local thresholding which is generated by an average of the absolute

weighted graphs value in the equation 4.3. This approach is performed by converting

the pixels whose weights are less than or equal to threshold tA to 1, while the remaining

pixels are converted to 0.

4.3.2.2 Connected-graph based on direction property

WBd(e) =

{
1 if sign(W (e)) > 0

0 otherwise .
(4.5)

4.4 Network measurement

The graph-based image representation described the topology of graphs as we explained

above-section. The vertex measurement explains in this section. The degree of node
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4.4 Network measurement

(Deg) and local spatial pattern mapping (LSPM) are applied for evaluation in this

chapter. Based on this two measurement, the final histograms can be obtained to

characterize the topology of graphs for texture classification. Fig. 4.5 illustrated an

example of image appearances which are constructed by the connected graph based

magnitude and direction using Deg method as vertex measurements from Brodatz tex-

ture database.

4.4.1 Degree of node (Deg)

The basic topological property of a graph can be obtained regarding the degree (or

connectivity) of a vertex in the graph. The degree of a vertex v can be denoted by

deg(v) which is the number of graph edges which incident to the vertex. We defined

this deg(v) of magnitude and direction properties as follows;

degm(v) =
∑
e∈E

WBm(e), (4.6)

degd(v) =
∑
e∈E

WBd(e). (4.7)

Based on multiple scale analysis, we have set radial distance rmax = 3 in the exper-

iment. As an example in Fig. 4.3, The set of graph properties can be given by

GM (v) = [degmr1(v), degmr2(v), degmr3(v)], (4.8)

GD(v) = [degdr1(v), degdr2(v), degdr3(v)], (4.9)

The final feature vector by using degree of node as a vertex measurement is given

by

θ = [H(GM )H(GD)]. (4.10)

4.4.2 Local Spatial Pattern Mapping (LSPM)

Multi-radial distance analysis is employed for feature representation as we explained in

the chapter 3. After the binary pattern transformation, the neighbors of a vertex vi

which have Euclidean radial distance, rm1, rm2 and rm3 equal to 1, 2, and 3 respectively,

are constructed by the radial symmetric neighborhood. This approach enables us to

describe local context information about pixel surroundings. Fig. 4.6 illustrated an
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4. GRAPH-BASED REPRESENTATION IN TEXTURE ANALYSIS

example of image appearances results of the connected graph based magnitude and

direction using LSPM method as vertex measurements from Brodatz texture database.

A spatial texture analysis is performed by local spatial pattern mapping or LSPM.

The LSPM method is used to describe the uniformity of texture primitives when the

binary pattern of a binary row record contains at most two bit-wise transitions between

0 and 1 in the same way as uniformity in LBP theory [83]. We define the LSPM method

as follows:

lspmm(e) =
v′∑

n=1

WBm
n (e)2(v

′−1), (4.11)

lspmd(e) =
v′∑

n=1

WBd
n(e)2(v

′−1), (4.12)

where v′ is number of neighbors. For considering the uniformity of lspm, the following

equation is used:

LSPMm(pn, rn) =

{
lspmm(e) if U(lspmm(e)) ≤ 2

p+ 1 otherwise,
(4.13)

LSPMd(pn, rn) =

{
lspmd(e) if U(lspmd(e)) ≤ 2

p+ 1 otherwise,
(4.14)

where U is the uniform pattern of WBm(e) and WBd(e) , which is determined when the

binary pattern of a binary row record contains at most two bit-wise transitions between

0 and 1. For example, the pattern of 00000000 shows the U value of 0, whereas the

binary pattern of 11000001 shows U equal to 2 as justified by [83]. This equation means

that if the lspm(e) have U > 2, it defines for non-uniform pattern. This step enables us

to analyze the uniform pattern of pixel surroundings, which can refer to local texture

analysis. In practice, LSPM is implemented by using a look-up table of 2pn elements.

In this case, there are pn + 2 output bits for each final histogram.

G′M (v) = [LSPMm(4, 1),LSPMm(8, 2),LSPMm(16, 3)] (4.15)

G′D(v) = [LSPMd(4, 1),LSPMd(8, 2),LSPMd(16, 3)] (4.16)
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4.5 Experiments

Figure 4.5: An example of image appearances results of the connected graph based

magnitude and direction using Deg method as vertex measurements from Brodatz texture

database.

In this case, there are pn+2 output bits for each final histogram. The feature properties

as histogram for the radial analyses LSPM(pn, rn) are defined as follows:

δ = [H(G′M )H(G′D)]. (4.17)

4.5 Experiments

In all experiments, the nearest neighborhood with Euclidean distance is used as a dis-

crimination function, following 10-fold cross-validations for texture classification. The

simple classifier was chosen rather than a more sophisticated one in order to demon-

strate the importance of the features in the classification task.

In this study, three experiments were conducted to compare the results; firstly,
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4. GRAPH-BASED REPRESENTATION IN TEXTURE ANALYSIS

Figure 4.6: An example of image appearances results of the connected graph based mag-

nitude and direction using LSPM method as vertex measurements from Brodatz texture

database.

the connected-graph based on magnitude and direction properties; secondly, the com-

bined between magnitude and direction properties; thirdly, the comparison with other

methods. Moreover, along with the experiments, we conducted to compare the perfor-

mance of the system by using the degree of node (deg) and the local spatial pattern

mapping (LSPM) as vertex measurement. The results are evaluated by using four tex-

ture databases, Brodatz, UIUC, KTH-TIPS, and UMD. The summarized databases are

shown in Fig. 4.7.
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Figure 4.7: Summary of various properties of important texture databases

4.6 Results and discussions

4.6.1 Results of the connected-graph based on magnitude and direc-

tion properties

In the experiments, we have set radius rmax = 3, where r = {1, . . . , rmax}. It means

that radial distance of rmax is used to imply the scale of the radial distance pattern

mapping as described in equation 4.1. The experimental results are given in Table 4.1

for using the degree of node (Deg) as a vertex measurement and 4.2 for using LSPM

approach. For the results of the connected-graph based on magnitude and direction

properties that are given in Table 4.1 and 4.2, these approaches showed the connected-

graph based on direction properties is more efficient than thresholding in preserving the

local difference information. The results performed in the same direction as discussed

in [49]. Although the direction property can receive more classification performance,

the completely decomposing by magnitude and direction is required to achieve local

discriminative information for the classification task. Accordingly, it can assure us

that the magnitude and the direction of the spatial vector have influences on texture

classification in terms of the graph-based representation.

4.6.2 Comparison results of vertex measurements

The experimental results of each vertex measurement are given in Table 4.1 and 4.2. For

the summarize by column chart, Fig. 4.8 illustrate more interesting results. In Chapter
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4. GRAPH-BASED REPRESENTATION IN TEXTURE ANALYSIS

Table 4.1: Success rate [%] results by using Degree of node (Deg).

Descriptors Deg

Brodatz UIUC KTH-TIPS UMD

Magnitude 80.48 ± 17.22 65.47 ± 5.24 89.29 ± 0.96 82.35 ± 4.43

Direction 84.08 ± 16.25 78.15 ± 3.81 89.44 ± 1.04 86.97 ± 3.34

Combined 89.13 ± 11.98 85.11 ± 2.86 95.96 ± 0.66 91.21 ± 2.85

Table 4.2: Success rate [%] results by using Local Spatial Pattern Mapping (LSPM).

Descriptors LSPM

Brodatz UIUC KTH-TIPS UMD

Magnitude 83.79 ± 16.60 70.63 ± 5.11 88.57 ± 1.06 80.27 ± 3.85

Direction 89.68 ± 13.60 84.96 ± 3.40 96.19 ± 0.58 94.68 ± 1.81

Combined 90.92 ± 12.02 87.92 ± 2.67 96.56 ± 0.49 92.65 ± 2.26

3, we have discussed how important of encoding spatial distribution from the resulting

of topology graphs which demonstrated the outperformed results the degree of node

(Deg) in the original complex network model for texture analysis by [16]. Therefore,

the LSPM descriptor is proposed a new graph connectivity measurement, instead of

using the degree of node (Deg) [36]. As Fig. 4.8 (a) and (b), the results have shown

that the combined properties achieve more classification rate than only magnitude and

direction property. For Fig. 4.8 (c) illustrated comparison between a degree of node

and a LSPM descriptor results. Based on the results made us realized how the efficiency

of the local discriminative information from the connected graphs because the results

are shown similarity achieve classification rates. Therefore, we can conclude that for

seeking more local discriminative information, the deterministic of a weighted graph is

importantly effecting to the model.

4.6.3 Comparison with other methods

For more evaluate our proposed method, the additional conventional texture analysis

methods chosen for comparison which including, LBP and LBPriu2 operators were

chosen in this experiment [83,87], and the completed local binary pattern (CLBP) [49].
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Figure 4.8: Summarized column chart results from Table 4.1 and Table 4.2
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4. GRAPH-BASED REPRESENTATION IN TEXTURE ANALYSIS

Figure 4.9: Histogram for three texture from the UIUC database. The bins 1 - 34 of

the corresponding concatenate histograms from radial distance r = 2 < d(vij , vi′j′) ≤ 3.(a)

The histogram is obtained by using Combined–Deg feature; (b)The histogram is obtained

by using Combined–LSPM feature
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Table 4.3: Success rate [%] when comparison with other texture analysis methods

Methods Number of features Success rate [%]

Brodatz UIUC KTH-TIPS UMD

LBP 256 85.16 ± 15.70 66.53 ± 4.47 96.68 ± 0.59 92.96 ± 2.58

LBPriu2 54 88.28 ± 13.34 82.21 ± 4.22 95.63 ± 0.56 94.52 ± 1.70

CLBP 648 86.77 ± 13.93 93.64 ± 2.50 97.20 ± 0.51 91.69 ± 1.94

CNTD 578 80.72 ± 15.80 70.44 ± 5.49 84.80 ± 1.29 90.10 ± 2.98

LSPM 578 88.13 ± 12.02 76.91 ± 4.78 89.27 ± 1.14 91.78 ± 2.87

CNTD–PCA 21 84.12 ± 13.38 75.42 ± 4.44 86.79 ± 1.08 92.72 ± 2.07

LSPM–PCA 21 86.28 ± 11.87 77.25 ± 4.35 89.38 ± 0.99 94.06 ± 2.13

Combined–Deg 68 89.13 ± 11.98 85.11 ± 2.86 95.98 ± 0.66 91.21 ± 2.85

Combined–LSPM 68 90.92 ± 12.02 87.92 ± 2.68 96.56 ± 0.49 92.65 ± 2.26

The considered methods are as follows:

• LBP: The LBP descriptor was computed by the concatenation of the histograms

when (P,R) = (8,2) to characterize a texture pattern, a total of 256 descriptors.

• LBPriu2 operators: The LBPriu2 operators were chosen in this experiment [83,87]

In the experiment, LBPriu2 descriptor was computed by the concatenation of the

histograms when (P,R) = (8,1), (16,2), (24,3) to characterize a texture pattern,

a total of 54 descriptors.

• CLBP: This scheme method [49] is used by the different local sign-magnitude to

build CLBP C, CLBP S, and CLBP M operators. In the experiments, the joint

3D histogram was employed to obtain CLBP S/M/C. We used (P,R) = (16,2)

with riu2 mapping, totaling 648 descriptors.

Table 4.3 has shown the success rate of the proposed method and other texture

analysis methods from Brodatz, UIUC, KTH-TIPS and UMD databases. The com-

bined descriptor results of Deg and LSPM methods in Table 4.1 and 4.2 are selected

as the proposed descriptors for comparing with other methods. As the results, the

combined descriptors that proposed in this Chapter are outperformed the proposed

approaches in the Chapter 3, significantly. For Brodatz database, the results have

shown Combined–LSPM descriptor obtained the highest classification rate of 90.92%,

while the Combined–Deg obtained similarity the classification rate of 89.13%. For
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4. GRAPH-BASED REPRESENTATION IN TEXTURE ANALYSIS

the challenging UIUC, the proposed descriptors results were more efficient than the

others operators. These results confirmed the proposed approaches have efficiency for

challenging environments (i.e., scale changed, uncontrolled environment, illumination

changed) in texture classification task. Fig. 4.9 demonstrated the histogram from UIUC

database by plotting the feature vector for four samples. These examples are challeng-

ing since they were acquired from different viewpoints. We can see from the plot that

the histograms of each texture class are similar which corroborates the robustness under

changes in viewpoints, in the same way in Deg and LSPM descriptors. Although the

CLBP achieved the highest success rate on the UIUC database, this method required

a high number of descriptors, whereas the proposed method is small. Therefore, the

local discriminative information is beneficial information which can be extracted by the

proposed approaches. For KTH-TIPS database, a success rate of 96.56% is achieved

by the Combined–LSPM, which followed by a success rate of 95.98% is obtained by the

Combined–Deg. On the other hands, the highest success rate of 97.20% is achieved by

CLBP operator. For UMD database, a success rate of 94.52% is achieved by LBPriu2

operator, which followed by a success rate of 94.06% by the LSPM–PCA, the previous

approach. The Combined-Deg and LSPM methods reached to 91.21% and 92.65%,

respectively.

4.7 Application to clothing images

4.7.1 Motivation

Clothes can be defined as a deformable and a non-rigid object which is difficult for

classifying an item when clothes are crumpled in a pile of laundry. This task is extremely

challenging because clothing in free configuration can be highly wrinkled, tangled and

in a huge variation in poses. Therefore, it is difficult to encode the clothing category

into generic visual representation. Fig. 4.10 shows an example of clothing when lying

on a table which has variation in poses with a textured surface.

To overcome the above challenge, an efficient feature descriptor still requires in this

research area. Appearance information of clothes images have been used for developing

feature descriptors for clothing classification [5, 13, 64, 112]. For instance, Yamazaki et

al. [64,112] have proposed clothing classification system by using fabrics, wrinkles and
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Figure 4.10: An example of clothes which lying on a table with pose variations and

deformation of textured surface

cloth overlaps as features combining global and local information to derive input infor-

mation [5,13]. The results of a combined local feature of global characteristic achieved

high performance of classification. Accordingly, the wrinkle of fabric characterization

can be used as a visual information which can be directly related to the object’s surface.

These works inspired us to develop the feature descriptor for seeking the unique feature

on the surface fabrics, for example, texture patterns. However, it remains challenging

to investigate the feature-enriched representation due to the natural texture character-

ization of fabrics can be presented by random and persistent stochastic patterns [14].

Capturing texture feature is an efficient way in order to represent the appearance

of an object in an image. Textural information can provide an important information

for object identification based on physical characteristics. Therefore, texture analysis

research has greatly advanced for enhancing the texture pattern descriptors. In the

recent years, image representation by graph theory has been employed for texture

analysis [16]. Graph-based representation [80] is able to express the context surrounding

of each pixel, and the relation among structural texture elements which is a crucial

feature property used to distinguish a different class of image. Although the graph-

based representation is effective for texture analysis and classification, there are various

challenging issues which should be investigated for clothing category classification.

This paper proposes texture-based features for clothing category classification based

on graph representation. The advantage of rotation uniformity of LBP mapping and
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4. GRAPH-BASED REPRESENTATION IN TEXTURE ANALYSIS

Figure 4.11: Overview the proposed approach using texture-based features via graph-

based representation

graph theory is adopted to construct the feature descriptor. Therefore, the empirical

synergy between LBP and graph theory is a promising direction in this work. The

graph-based theory [80] is applied to represent the spatial relation of image pixels

and their neighbors. The proposed network measurement in section ??, local spatial

pattern mapping (LSPM) is employed to encode the spatial arrangement of local spatial

distribution. A clothing database and standard texture databases, Brodatz [24], and

UIUC [70] are used for evaluation. The experimental results show the effectiveness of

the proposed method compared to texture analysis based on conventional methods by

the success rate of classification.
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4.7.2 Proposed method

This section includes graph-based pixel representation and binary pattern transforma-

tion. Fig. 4.11 shows an overview of our proposed approach for clothing classification.

The system can be separated into two parts. The first part illustrates the process

of the graph-based pixel representation which including the deterministic of weighted

graph and the radial distance pattern mapping. The weighted graph is defined by

local grayscale difference. For the radial distance mapping which constructs by using

the Euclidean distance between a node and pairwise connection. We have set radial

distance rmax equal to 1, 2 and 3 as fixed window mapping with multi-scale of the

neighborhood. The second part is the binary pattern transformation. The Fig. 4.11

illustrates the proposed approach using texture-based feature for clothing classification.

The process is included in the two processes, deterministic weighted graphs, and bi-

nary pattern transformation as we explain in Section 4.3. The deterministic weighted

graph can be applied for extracting local textural information which is included in the

weighted-binary thresholding in Eq. 4.4 and the weighted-binary non-thresholding in

Eq. 4.5. Feature descriptors are derived by using riu2 mapping technique [4], which

the final histogram features are concatenated histograms from pattern 1, pattern 2,

and pattern 3 as defined in Eq. 4.17.

4.7.3 Results and discussions

In all experiments, the nearest neighborhood with Euclidean distance has been used

as a discrimination function, following by 10-fold cross-validations for discrimination

performance. The simple classifier, for example, the nearest neighborhood was chosen

rather than a more sophisticated classifier in order to demonstrate the importance of

the features in the classification task. The experimental results can be separated into

the results of the proposed approach in clothing dataset and in texture databases.

In the experiments, two standard texture databases and clothing dataset are used

for evaluation as follows:

• Clothing dataset: The sample images were captured by using Asus Xtion PRO

camera with controlled environment, for example illumination and scale. The

resolution of an image was 640 × 480 pixels. The scale distances between a

camera and a cloth was 900 [mm]. The databases include 4 categories, towel,
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Figure 4.12: Example images from our clothing dataset which including towel, pant,

skirt, and shirt.

shirt, pant, and skirt. In each category consist of 5 styles of clothing (see Fig.

4.12 for examples). This dataset contained 1000 images that including 50 images

per style, 250 images per category. All databases were captured from each piece

of clothing by throwing it randomly. Therefore, there were pose variations and

deformation of the textured surface such as crumpled and smoothed that also

made it challenging databases. Moreover, these clothes datasets have a large

intra-class variation. Note that the color information was not used in the following

experiment, because only grayscale images are used.

• Brodatz Texture Album: [24] is used in texture analysis and is a benchmark for

evaluating methods. These data arranged in 100 classes, each class containing 10

grayscale samples of 128×128 pixels obtained by splitting the data of each class

into 10 non-overlapping sub-images.

• UIUC database: This is a very challenging database [70]. The images have signif-

icantly different viewpoints and scales due to perspective distortion and non-rigid

transformation. The image size is 128×128 pixels. For each of 25 classes, 40

grayscale images were considered in the experiments.
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4.7.3.1 The proposed feature descriptor results in clothing dataset

The experimental results are shown as the confusion matrices results using the proposed

feature and other comparison features which included Feature descriptor [12], Gabor

filter [55], LBP, LBPriu2 [83, 87], and CLBP [49] features as illustrated in Fig. 4.13.

In this figure, diagonal values indicate the success rate of each clothing class. Rows

correspond to the true class, and column represents the predicted class. As the results,

the proposed feature achieve a relatively stable performance among all categories or

classes. In the proposed feature in pant, category achieved the highest success rate of

76.08%, while other methods were less than 67%. The worst result was obtained by

the LBP feature with a success rate of 39.72%. From author aspect, the configuration

of shirts and pants are more susceptible of being textured and crumpled. This likely

leads to higher inter-class similarities.

The weighted-binary thresholding and non-thresholding have proposed for extract-

ing local textural information in a different property. It should be noted that by com-

bining (WBt,WBnt) properties in the deterministic weighted graph performs better

than the separating the WBt or WBnt. To achieve high local discrimination capability,

the local grayscale difference discriminative information in terms of WBt and the local

textural distribution by adopting rotation invariant micro-structure in terms of WBnt,

were proposed to distinguish difference local structures information in this paper. Al-

though the clothing dataset is of high intra-class variation, the experimental results of

the proposed feature are shown to be effective in extracting local discriminative infor-

mation as texture-based features for clothing classification when compared with other

feature methods.

4.7.3.2 The proposed feature descriptor results in texture databases

Table 4.4 is listed the success rate [%] of the proposed approach and other texture anal-

ysis methods using the Brodatz, UIUC, and clothing dataset. The Brodatz database

results are shown that our proposed method achieved the highest success rate of

90.92% in texture Brodatz dataset. This result informed us about the combined local

grayscale distribution and the second-order local structure information in the deter-

ministic weighted graph can perform very well in local discrimination capability. UIUC

database is a challenging database which includes sample images of material content
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Figure 4.13: Confusion matrices for multi-class classification. In this figure, the class

labels 1-4 corresponding to ’towel’, ’skirt’, ’shirt’ and ’pant’.

Table 4.4: Comparison of the proposed method with other texture analysis methods

Method No. features Success rate [%]

Brodatz UIUC Clothing dataset

Fourier Descriptor 64 73.65 75.84 48.65

Gabor filter 40 58.29 50.24 77.69

LBP 256 85.16 66.53 68.82

LBPriu2 34 89.43 84.97 75.05

CLBP 648 86.77 93.64 74.90

Combined-LSPM (Proposed) 68 90.92 87.92 81.60

with strong scale, rotation-viewpoint changes, and non-rigid deformation. The exper-

imental results are shown that Completed LBP (CLBP) method achieved the best

success rate of 93.64%, following the proposed method with a success rate of 87.92

%. As the number of the feature are listed in Table 4.4, we can see that the CLBP

can extract more discriminative information than the proposed method based on the

number of features. Moreover, the LBPriu2 can also achieve good result which is com-

parable with the proposed method. This experimental result can notice us that the

UIUC database is affected by local grayscale different information. On the other hand,

the proposed method achieved almost 88% which is comparable with other methods.

Accordingly, these experimental results confirmed that the proposed feature descrip-

tor is effective for describing the texture pattern on image textures and the clothing

category classification.

86



4.8 Summary

4.8 Summary

In this Chapter, we propose a method for extracting the local sufficient discriminative

information from the deterministic weighted graph which aids in texture classification.

The radial graph represents image pixels with multiple radial distance patterns which

applied for generating different feature vectors for texture analysis. The connected-

weight graph based on magnitude and direction property approached for seeking more

local discriminative information. Four standard texture databases, Brodatz, UIUC,

KTH-TIPS, and UMD, are used for evaluation. The experimental results show the ef-

fectiveness of the proposed method compared to other methods, including the results in

Chapter 3 in terms of the accuracy of classification. Moreover, clothing databases which

includes deformable objects are used to evaluate the proposed method. Accordingly,

the completed local textural information by decomposing the local image difference,

i.e., the sign and the magnitude, can improve the capability of texture classification.
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Chapter 5

Hybrid-based Complex Network

Model

5.1 Introduction

Texture can represent the appearance of visual information such as the surface of an

object or image. Different methodologies have been proposed for analyzing features

from an image. Texture analysis based on complex network model has been investigated

and studied in this research. These methods perform in spatial domain which is based

on directly modifying the value of the pixels. Therefore, it is required to develop and

formulate a robust description of intensity values in the neighborhood pixels of an

image. Chapter 3 proposed a feature descriptor for enhancing the graph connectivity

measurement by employing the local spatial pattern mapping (LSPM) through the

original complex network model. The experimental results have shown the effectiveness

in the proposed method when compared with original complex network model and other

texture analysis methods. This work can let us know that to develop the model, the

vertex measurement is important to describe meaningful texture information and has

great effect to the system. In this case, we can explain uniformity and non-uniformity

by pattern mapping which was inspired by riu2 mapping for describing the topology

graph which obtained from dynamic network connectivity by applying a set of threshold.

Chapter 4 is focused on the deterministic graph modeling. After we generated the

weighted graph, we can extract more informative feature based on neighborhood pixels

of an image. This work was inspired by the completed local binary pattern mapping

89



5. HYBRID-BASED COMPLEX NETWORK MODEL

Figure 5.1: Structure of Overview model.

(CLBP) [49]. Images are represented by using graph theory as the concept of the

complex network model. However, the dynamic network connectivity does not apply

to analyze in this Chapter. Therefore, we can completely analyze relevant information

in the neighborhood pixels of the image. The experimental results have shown that the

deterministic modeling of the graph based on the neighborhood pixels of the image has

effective to improve the classification performance when comparing with other methods.

According to these experimental results, this chapter presents the hybrid complex-

network based approach for texture classification. This proposed model can describe

discriminative information of textural pattern based on complex network model by

combining the conceptual models of the Chapter 3 and Chapter 4 for the purpose of

the classification task. Fig. 5.1 shows structure overview of the proposed method.

More specially, as it is shown in Fig. 5.1, the topology graph is used to capture lo-
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cal discriminative information along with dynamic network connectivity. To verify the

performance of this proposed method, standard texture databases are used for evalu-

ation. Experimental results show that the proposed approach achieved outperformed

accuracy when comparing with the performance classification in Chapter 3 also which

advances the original complex network model [16] all databases. To summarize, the

main contributions of this chapter can be described as follows:

1. A hybrid-based complex network model by spatial texture analysis is devised with

increased performance for enhancing the original complex network model;

2. A deterministic network structure is developed with extracted local discriminative

information reaching a high capability based on the complex network model;

3. The proposed model achieved the best result in large intra-class changes, including

random rotation, large viewpoint variation, and largescale changes from UMD

database.

The rest of this chapter is organized as follows: The architecture of the proposed

approach is introduced in Section 5.2. The experiments and texture databases are

presented in Section 5.3. Results and discussion in our proposed model are detailed

in Section 5.4 and finally, the summarized of our proposed approach is described in

Section 5.5.

5.2 Proposed approach

Fig. 5.1 illustrated scheme idea of the proposed approach. The proposed approach

can be separated into two parts, the deterministic graph representation by a local

difference direction-magnitude transform, and the graph connectivity measurement. A

set of threshold t has been applied for generating dynamic network connectivity. After

that, the graph connectivity measurement, spatial arrangement by the LSPM and the

degree of node are used for characterizing the topology of graphs. In this section, we

will explain the weight of edges and binary pattern transformation process. Then, the

Principal component analysis (PCA) is employed for reducing dimensional data in this

approach.
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5.2.1 Weight of edges

This chapter represents the deterministic of the weighted of edges by different ways to

investigate the importance of the weight of edges which can be used to represent local

image textures. For each non-directed edge e ∈ E, we associate a weight W (e), which

is defined by the difference of intensity between a pixel I(i, j) and its neighbors when

d(vij , vi′j′) ≤ r. The weight of edges is given by:

W (e) =

{
I(i, j)− I(i

′
, j

′
) if d(vij , vi′j′) ≤ r

0 otherwise ,
(5.1)

In this work, the weighted graph is transformed into a binary pattern for deriving

context information about pixel surrounding. This approach enables us to analyze a

local texture analysis. This transformation and graph properties are discussed in the

following subsections.

5.2.2 Binary transformation

A threshold (t) is a parameter related to the property of being an edge in graph theory

[36, 80]. In the original complex network model [16], a set of thresholds is used to

construct a network that imitates dynamic transformation for the purpose of texture

analysis as we demonstrated in the Chapter 3. In this study, threshold values obtained

through an experiment. Then, the binary pattern transformation process is performed

by converting the vertices whose weights are less than or equal to threshold t to 1, while

the remaining vertices are converted to 0. This process is defined as follows:

W t(e) =

{
W (e) if |W (e)| ≤ t
0 otherwise ,

(5.2)

where W t(e) represents the weight of edges whose weights are less than threshold t,

while remaining pixels are converted to 0. Based on this equation 5.2, we can describe

the local weight difference by decomposing the magnitude and the sign components,

are given by:

WMb(e) =

{
1 if W t(e) 6= 0

0 otherwise .
(5.3)
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WDb(e) =

{
1 if sign(W t(e)) > 0

0 otherwise .
(5.4)

These approaches are performed by converting the pixels to binary values. To define

a threshold value, a set of threshold in Chapter 3 is used for the experiments in this

chapter.

5.2.3 Feature descriptors

In this Chapter, the feature descriptors are generated by using the degree of node (Deg)

and LSPM approach which are explained in this subsection.

5.2.3.1 Degree of Node (Deg)

The degree of a vertex v can be denoted deg(v) which is the number of graph edges which

incident to the vertex. We defined this deg(v) of magnitude and direction properties

as follows;

degm(v) =
∑
e∈E

WMb(e), (5.5)

degd(v) =
∑
e∈E

WDb(e). (5.6)

Based on multiple scale analysis, we have set radial distance rmax = 3 in the exper-

iment, we concatenate histograms for different value of threshold t, is given by:

Gr
M (v) = [degr,t0m (v), degr,t1m (v), . . . , deg

r,tfinal
m (v)] (5.7)

Gr
D(v) = [degr,t0d (v), degr,t1d (v), . . . , deg

r,tfinal

d (v)] (5.8)

δ = [H(Gr1
M ), H(Gr2

M ), H(Gr3
M )] (5.9)

θ = [H(Gr1
D ), H(Gr2

D ), H(Gr3
D )] (5.10)

The final histograms of the hybrid complex network model based on the magnitude

and the direction by using a degree of node, is given by:

Θ = [δ, θ]. (5.11)
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5.2.3.2 Local Spatial Pattern Mapping

A spatial texture analysis is performed by local spatial pattern mapping or LSPM. The

LSPM method is used to describe the uniformity of texture primitives when the binary

pattern of a binary row record contains at most two bit-wise transitions between 0 and

1 in the same way as uniformity in LBP theory [83]. We define the LSPM method as

follows:

lspmm(e) =
v′∑

n=1

WMb(e)2
(v′−1), (5.12)

lspmd(e) =

v′∑
n=1

WMb(e)2
(v′−1), (5.13)

where v′ is number of neighbors. For considering the uniformity of lspm, the following

equation is used:

LSPMm(pn, rn) =

{
lspmm(e) if U(lspmm(e)) ≤ 2

p+ 1 otherwise,
(5.14)

LSPMd(pn, rn) =

{
lspmd(e) if U(lspmd(e)) ≤ 2

p+ 1 otherwise,
(5.15)

where U is the uniform pattern of WBm(e) and WBd(e), which is determined when the

binary pattern of a binary row record contains at most two bit-wise transitions between

0 and 1. For example, the pattern of 00000000 shows the U value of 0, whereas the

binary pattern of 11000001 shows U equal to 2 as justified by [83]. This equation means

that if the lspm(e) have U > 2, it defines for non-uniform pattern. This step enables us

to analyze the uniform pattern of pixel surroundings, which can refer to local texture

analysis. In practice, LSPM is implemented by using a look-up table of 2pn elements.

In this case, there are pn + 2 output bits for each final histogram.

Kr
M (v) = [LSPMm,t0(pn, rn),LSPMm,t1(pn, rn), . . . ,LSPMm,tfinal(pn, rn)] (5.16)

Kr
D(v) = [LSPMd,t0(pn, rn),LSPMd,t1(pn, rn), . . . ,LSPMd,tfinal(pn, rn)] (5.17)
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In this case, there are pn + 2 output bits for each histogram. The feature properties as

histogram for the radial analyses LSPM(pn, rn) are defined as follows:

δ′′ = [H(Kr1
M ), H(Kr2

M ), H(Kr3
M )] (5.18)

θ′′ = [H(Kr1
D ), H(Kr2

D ), H(Kr3
D )] (5.19)

The final histograms of the hybrid complex network model based on the magnitude

and the direction by using a local binary pattern mapping (LSPM), is given by:

Φ = [δ′′, θ′′]. (5.20)

For comparing with other methods, Principal Component Analysis (PCA) is ap-

plied to downsize the feature space purpose [54] on the proposed methods. In order to

determine optimal range number of principal components, we have set the percentage

of the total variance explained by each principal component no more than 99.60%—

99.70%, to obtain the optimal number of PCs. To evaluate our proposed method, a

discrimination function for texture classification was generated by the nearest neighbor-

hood. In the implementation of this work, the Classification Learner app of MATLAB

2016a version with default parameter values was used for classification following 10-fold

cross-validation.

5.3 Experiments

In this Chapter, the experiments are followed by the Chapter 3. The first experiment

was a comparison of different threshold sets as represented in Table 5.2 and Table 5.3.

By applying PCA for reducing the feature spaces, the number of the descriptor are

listed in Table 5.4.

The summarized databases are listed in Fig. 5.2. In this thesis, we built the

new Brodatz dataset by cropping 12 subsections with non-overlapping of a larger Bro-

datz image. Thus, some image is difficult to distinguish between each class. The last

experiment was a comparison with other conventional methods and included Fourier

descriptor, Gray-occurrence matrices, Gabor filter, LBP, LBPriu2, CLBP. Moreover,

the results from the Chapter 3, Chapter 4 and Chapter 5 are chosen to compare the

results in Table 5.5.
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Figure 5.2: Summary of various properties of important texture databases

Table 5.1: The configuration threshold sets that which are applied in the experiments.

Set Thresholds

t0 tstep tfinal

T1 5 5 85

T4 5 10 85

T7 5 15 80

5.4 Results and discussions

5.4.1 Comparison of results from different threshold sets

The best threshold sets were selected regarding the experiments in the Chapter 3 for

comparison which included the configurations T1, T4and T7 as listed in Table 5.1.

The experimental results of a different configuration threshold are given in Table 5.2

for the Hybrid–LSPM approach, whereas the Hybrid–Deg is shown in Table 5.3. As

results, the classification rates of each set of threshold achieved similarity accurate

classification rates in all databases. The average success rate results are summarized as

column chart in Fig 5.3. By using Deg and LSPM as a descriptor in this approach, the

accurate classification rates are shown similarity achievement. These experiments show

results which not in the same direction according to the results in Chapter 3 and 4.

Although the Degree of node (Deg) is abandoning the local structural information as we
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Table 5.2: Experimental results of Hybrid–LSPM feature for different a set of threshold

on the four databases

Datasets T1 T4 T7 Average

Brodatz 88.92 ± 11.77 87.10 ± 11.98 87.55 ± 11.55 87.86 ± 11.77

UIUC 85.46 ± 3.42 85.18 ± 3.49 85.59 ± 3.54 85.41 ± 3.48

KTH-TIPS 95.14 ± 0.70 94.98 ± 0.71 94.80 ± 0.74 94.97 ± 0.71

UMD 95.52 ± 1.74 95.45 ± 1.72 95.61 ± 1.82 95.53 ± 1.76

Table 5.3: Experimental results of Hybrid–Deg feature for different a set of threshold on

the four databases

Datasets T1 T4 T7 Average

Brodatz 87.98 ± 11.20 87.58 ± 11.36 87.50 ± 11.29 87.69 ± 11.29

UIUC 83.19 ± 3.95 83.09 ± 3.72 83.29 ± 3.80 83.19 ± 3.83

KTH-TIPS 95.07 ± 0.67 94.96 ± 0.70 94.98 ± 0.66 95.00 ± 0.68

UMD 95.85 ± 1.62 95.55 ± 1.77 94.66 ± 1.88 95.35 ± 1.75

discussed in Section 3.3.1, their performance when applied in the hybrid-based complex

network is almost the same as the LSPM. Therefore, the Deg and LSPM descriptors

in graph connectivity measurement do not mainly contribute to the process to increase

the classification performance when we considered and compared the results in Chapter

3.

5.4.2 Comparison with other texture Analysis Methods

For further evaluate our proposed method, the additional conventional texture anal-

ysis methods are chosen for comparison which including, Fourier descriptor, Gray-

occurrence matrices, Gabor filter, LBP, LBPriu2, CLBP. Moreover, the results from the

Chapter 3, Chapter 4 and Chapter 5 were chosen in this experiment. The considered

methods are as follows:

• Fourier descriptors: The 2D Fourier transform was applied to each image follow-

ing with the shifting operator for the resulting spectrum. The feature descriptor

obtained by summing all the absolute values of the coefficients from the shifted

spectrum at the same radial distance from the image center [12].
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Figure 5.3: Summarize column chart results from Table 5.2 and Teble 5.3

• Gabor filters: This method provides the spatial localization difference frequency,

and orientation by using a sinusoidal plane wave [55]. From the convolution of

these filters over an input image, we used energy as a descriptor. A total of 40

filters (combinations of 8 rotation filters and 5 scale filters) and a frequency range

from 1.2 to 1.4 were applied in this experiment.

• Co-occurrence matrices: Each matrix represents the joint probability of a pair

of pixels which separated by determining distance d and direction θ. The co-

occurrence matrix for d = 1 and 2 with angles θ = 0, 45, 90, and 135, in a non-

systemic version for each image were computed in this experiment. Energy and

entropy descriptors were approached as feature descriptor from each co-occurrence

matrix to compose an image feature vector [50].

• LBP: The LBP descriptor was computed by the concatenation of the histograms

when (P,R) = (8,2) to characterize a texture pattern, a total of 256 descriptors.

• LBPriu2 operators: The LBPriu2 operators were chosen in this experiment [83,87]

In the experiment, LBPriu2 descriptor was computed by the concatenation of the

histograms when (P,R) = (8,1), (16,2), (24,3) to characterize a texture pattern,

a total of 54 descriptors.
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• CLBP: This scheme method [49] is used the different local sign-magnitude to

build CLBP C, CLBP S, and CLBP M operators. In the experiments, the joint

3D histogram was employed to obtain CLBP S/M/C. We used (P,R) = (16,2)

with riu2 mapping, totaling 648 descriptors.

Table 5.4: The number of feature by apply PCA approach in database

Method Brodatz UIUC KTH-TIPS UMD

D Acc D Acc D Acc D Acc

Hybrid–LSPM 24 88.92 ± 11.77 37 85.46 ± 3.42 22 95.14 ± 0.70 21 95.52,± 1.74

Hybrid–Deg 29 87.98 ± 11.20 47 83.19 ± 3.96 27 95.07 ± 0.67 27 95.85 ± 1.62

Table 5.5: Success rate [%] when comparison with other texture analysis methods

Methods Number of features Success rate [%]

Brodatz UIUC KTH-TIPS UMD

Fourier descriptors 64 74.45 ± 19.90 75.84 ± 3.90 89.48 ± 1.35 87.95 ± 3.16

Gray-occurrence matrices 24 79.68 ± 19.01 69.77 ± 5.27 80.00 ± 1.56 86.65 ± 3.66

Gabor filter 64 70.28 ± 21.06 59.90 ± 6.06 90.81 ± 0.88 81.32 ± 5.14

LBP 256 85.16 ± 15.70 66.53 ± 4.47 96.68 ± 0.59 92.96 ± 2.58

LBPriu2 54 88.28 ± 13.34 82.21 ± 4.22 95.63 ± 0.56 94.52 ± 1.70

CLBP 648 86.77 ± 13.93 93.64 ± 2.50 97.20 ± 0.51 91.69 ± 1.94

CN–Deg 578 80.72 ± 15.80 70.44 ± 5.49 84.80 ± 1.29 90.10 ± 2.98

CN–LSPM 578 88.13 ± 12.02 76.91 ± 4.78 89.27 ± 1.14 91.78 ± 2.87

CN–Deg(PCA) 21 84.12 ± 13.38 75.42 ± 4.44 86.79 ± 1.08 92.72 ± 2.07

CN–LSPM(PCA) 21 86.28 ± 11.87 77.25 ± 4.35 89.38 ± 0.99 94.06 ± 2.13

Graph–Deg 68 89.13 ± 11.98 85.11 ± 2.86 95.98 ± 0.66 91.21 ± 2.85

Graph–LSPM 68 90.92 ± 12.02 87.92 ± 2.68 96.56 ± 0.49 92.65 ± 2.26

Hybrid–Deg 87.96 ± 11.20 83.19 ± 3.96 95.07 ± 0.67 95.85 ± 1.62

Hybird–LSPM 88.92 ± 11.77 85.46 ± 3.42 95.14 ± 0.70 95.52 ± 1.74

Table 5.5 shows the success rate of the proposed method and other texture analysis

methods on Brodatz, UIUC, KTH-TIPS and UMD databases. The methods from the

Chapter 3 proposed a new graph connectivity measurement based on complex network

model (CN). Thus, the operators are denoted as CN–Deg, CN–LSPM, CN–Deg(PCA)

and CN–LSPM(PCA), respectively. The methods from the Chapter 4 proposed a graph

based image representation based spatial property. Therefore, the methods are de-

noted as Graph–Deg and Graph–LSPM. The results of Hybrid–LSPM and Hybrid–Deg
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Figure 5.4: Summarize column chart results from Table 5.5

100



5.4 Results and discussions

methods in Table 5.4 are selected as the proposed descriptors for comparing with other

methods, following with a different number of features by applying PCA approach,

respectively.

For Brodatz database, the results are shown Graph–LSPM descriptor obtained the

highest classification rate of 90.92%, which following with accurate classification rate

of 89.13% by Graph–Deg. On the other hand, the proposed approaches, Hybrid–LSPM

and Hybrid-Deg achieved similarity correct classification rates of 88.92% and 87.92%,

respectively. These accurate results are obtained as similar as the CN–LSPM method

and LBPriu2 operator, 88.13%, and 88.28%, respectively. For the challenging UIUC,

the Graph-based method, proposed in the Chapter 4 are more accurate than Hybrid-

based method. Although the Hybrid-based approach result is not achieved the highest

classification rate, these experimental results suggest that our method has good general-

ization capability. For KTH-TIPS database, the experimental results have shown that

the Hybrid-based method, the Graph-based method and LBP operator are achieved

similarity accurate classification rates in the database. Moreover, due to the results,

we observed that all the success rates have outperformed the CN–Deg or proposed by

CNTD [16] in a significant way. For UMD database, the experimental results are shown

that the Hybrid-based methods, Hybrid–LSPM and Hybrid–Deg, achieved the highest

accurate classification rate of 95.52% and 95.85% than other methods. These results

could be informed us about how to contribute the hybrid-based approach is, by using

the database category. The textures of this database are non-traditional, including an

image of fruits, various plants, floor texture shelves of bottles and buckets. Moreover,

this database has significant viewpoint changes and scale differences with uncontrolled

illumination conditions.

5.4.3 Analysis on all proposed approaches

This section discusses and analyzes the results of our proposed methods in Chapter 3, 4,

and 5. Fig. 5.4 has shown the summarize column chart from the results. In Chapter 3,

we proposed the LSPM methods (CN–LSPM) for encoding local spatial structure which

useful for texture discrimination. The results informed us about the LSPM can be em-

ployed as a new graph connectivity measurement. Although the local spatial structure

has encoded in this method, the discriminative capability should be improved. Accord-

ingly, the complementary features by local difference vector are adopted to characterize
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Figure 5.5: Confusion matrices comparison results on Brodatz database

Figure 5.6: Confusion matrices comparison results on UIUC database

Figure 5.7: Confusion matrices comparison results on KTH-TIPS database
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Figure 5.8: Confusion matrices comparison results on UMD database

the image local structure at the vertex and its neighbors in Chapter 4. We have devised

the graph-based spatial vector properties (Graph–LSPM) which decomposed into two

components; the connected-graph based on magnitude property (mag) and connected-

graph based on direction property (sign). The experiment results showed the sign or

direction component reached more accurately preserve information (more informative)

than the magnitude component. However, the combined (fuse) two components, the

magnitude and the direction components, showed they achieved better and more ro-

bust results than the results in Chapter 3. Fig. 5.4 demonstrated how accurate of

this complementary features outperformed other methods in Brodatz, UIUC, KTH-

TIPS databases. These mainly because of the local discriminative information that the

Graph–LSPM proposed for rotation and scale invariance. However, in UMD database

where included large-intraclass and affine variation, the performance of Graph–LSPM

is not better than Hybrid–LSPM because of it has limited capability to address affine

and viewpoint invariance. In Chapter 5, we proposed the hybrid-based complex net-

work model (Hybrid–LSPM) for enhancement the original complex network model.

This method noticed us about how the dynamic network transformation by a threshold

configuration has influenced to the model, especially in UMD database.

In Fig. 5.8 illustrated the confusion matrices comparison results from UMD database.

We can see the predicted classes in class 3-5 where CN-LSPM and Graph-LSPM do not

achieve prediction correctly, whereas the Hybrid-LSPM does more discriminate against

these classes. On the other hand, the CN–LSPM and Hybrid-LSPM methods achieved

better results than Graph–LSPM. This is an important finding that a set of thresholds,
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5. HYBRID-BASED COMPLEX NETWORK MODEL

which employed to express difference local graph structure can be used to address scale

and may contribute additional discriminative information if it is properly used in affine

invariances.

5.5 Summary

In this Chapter, we propose a hybrid-based method for enhancing the original complex

network model. The radial graph represents image pixels with multiple radial distance

patterns which are applied for generating different feature vectors for texture analysis.

The connected-weight graph based on magnitude and direction property is integrated

into the complex network model, following with the new graph connectivity measure-

ment which we referred as LSPM. Four standard texture databases, Brodatz, UIUC,

KTH-TIPS, and UMD, are used for evaluation. The experimental results show the

effectiveness of the proposed method compared to the previously proposed methods

and conventional texture analysis methods.

104



Chapter 6

Conclusions

6.1 Objectives and hypotheses revisited

In this chapter, the achievements are summarized, the initial hypotheses are reviewed,

and the limitations are illustrated. The scientific results support the validation of the

proposed hypotheses. At the same time that the boundaries of the proposed approaches

are investigated, the potential solutions to address these limitations are discussed.

The objective of this thesis are: (1) To enhance the original complex network-based

method for texture analysis through a spatial texture analysis; (2) To extract discrim-

inative information through an enriched texture characterization which is invariant to

uncontrolled environments 1; (3) To integrate enhanced complex network model and

enriched texture representation for texture characterization. Corresponding to the ob-

jectives, the hypotheses of this work are three-fold;

• In order to develop a new graph connectivity measurement, the spatial distribu-

tion of pixels must be considered among dynamic network connectivity in order

to capture discriminative information which being used to distinguish various

pattern structures. If the graph connectivity is measured by encoding the spa-

tial arrangement of distribution of local pixels, then the local spatial structure

information which is visual micro-structure (e.g., edge, line, spots) can be more

detectable on local image texture. The encoding spatial arrangement is more ro-

bust than a degree of node connectivity for uncontrolled environment database.

1here, the uncontrolled environment includes scale orientation, viewpoint variation, and illumina-

tion changed

105



6. CONCLUSIONS

• In order to enhance a deterministic weight of graph, the weight of edge can be

adapted for seeking more local discriminative information. If completed local

textual information is obtained by decomposing the local image difference in

terms of directions and magnitudes, topology if the graph can be generated and

the capability of texture classification can be improved.

• The efficacy in discrimination of the original complex network model can be im-

proved from uncontrolled environment databases if integrating between the new

graph connectivity measurement and the enriched as graph representation is pro-

posed. The completed local textural information from the graph representation is

more robust than the local structure information from the new graph connectivity

measurement under uncontrolled environment database.

From work reported in previous chapters, the objectives have been achieved, and

the hypotheses have been validated. More details are illustrated in the following sub-

sections.

6.2 Summary of contributions

This section summarized the achievements of this thesis in three phases: (1) enhancing

complex network-based for texture characterization, (2) graph connectivity measure-

ment, and (3) spatial vector-based graph representation.

6.2.1 Enhancing complex network-based for texture characterization

The major contribution of this thesis is to enhance complex network-based model for

texture characterization via spatial texture analysis. In the existing literature about

complex network model for texture analysis, the proposed model is the only one which

has been presented and demonstrated in pattern recognition perspective, opened new or

relevant research area in computer vision. This model contains two parts: the encoding

spatial arrangement part for the graph connectivity measurement, and the determin-

istic graph part through the spatial vector-based graph representation. On the one

hand, the proposed enhanced complex network-based model can contribute to robust

texture descriptor by encoding the spatial arrangement of distribution of local pixels

for an uncontrolled environment. On the other hand, the enriched deterministic of the
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weighted graph obtained by decomposing the magnitude and the direction, which is

a spatial vector property, is invariant to scale different, and rotation variation. This

invariant enriched deterministic graph modeling is integrated into the enhancing com-

plex network model for texture classification and achieves a substantial advancement

on the traditional model.

6.2.2 Graph connectivity measurement

This thesis presents a new network or graph connectivity measurement which denoted as

a local binary pattern mapping (LSPM) descriptor that is adaptable of binary pattern

mapping for encoding local spatial structure information in order to describe various

the microstructure pattern. In this proposed pipeline, the original complex network

model is advanced in discrimination capability. To be specific, instead of using a de-

gree of node, which distinguish different distribution of local pixel by statistic of number

of connectivity of a vertex in the graph, this thesis proposes the local spatial pattern

mapping (LSPM) descriptor in order to measure graph connectivity which shows the

effectiveness in the discrimination capability and rotation invariance.

The evaluations of the graph connectivity measurement include two parts: In Chapter

3, the performance of the proposed graph connectivity measurement by LSPM approach

is compared with the traditional complex network model, which is denoted by CNTD,

and other texture analysis methods by using four standard texture databases, Brodatz,

UIUC, KTH-TIPS and UMD databases. The proposed graph connectivity measure-

ment outperforms the traditional complex network model in terms of classification rate

performance from invariant to environment and discriminative capability perspective.

This is because the proposed descriptor encoding local structure information in var-

ious micro-structure on image texture, which achieves 88.13% accuracy on Brodatz,

a benchmark texture database, outperforming the traditional by 7.41%, and 76.91%

UIUC, challenging database that significantly viewpoint changes and scale difference,

outperforming the traditional by 6.44%. In Chapter 4, the proposed graph connectivity

measurement is employed in graph-based spatial property analysis in order to investi-

gate the contribution of the enriched deterministic graph representation. In the exper-

imental results shows that the enriched graph-based image representation integrated

with the new graph connectivity measurement improves the enriched graph-based im-

age representation. (success rates of +0.87%, +2.81%, +0.58%, and +1.44% in the
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enriched graph-based representation with the proposed (LSPM) approach, compared

with the enriched graph-based representation with a degree of node (Deg) approach,in

Brodatz, UIUC, KTH-TIPS and UMD, respectively.

6.2.3 Spatial vector-based graph representation

In Chapter 4, part of graph-based image representation is proposed and applied to a

hybrid-based complex network for texture analysis in Chapter 5. The task is to extract

local discriminative information through the deterministic a weight of edge in order

to improve a capability of texture classification. This graph representation adapts a

spatial vector property that has magnitude and direction for seeking relevant informa-

tion based on local image difference. This representation is robust to the uncontrolled

environment; scale changed, viewpoint variation and rotation. The experimental valida-

tions include the same four standard texture databases as all the proposed approaches

in this thesis.

The evaluations of the spatial vector-based graph representation include two parts:

In Chapter 4, the model is denoted as a combined method, the magnitude, and the

signs, in order to create a topology graph. Then, the proposed graph connectivity

measurement (LSPM) and the degree of node (Deg) are applied for evaluation of the

model. The experimental results show that combined–LSPM descriptor outperforms

the combined–Deg descriptor. Moreover, the proposed graph-based image represen-

tation achieves outperforms the traditional complex network model and the proposed

approach in Chapter 3. This substantial improvement can be attributed to the more

advanced the traditional complex network and the more robust the deterministic a

graph for generating the weighted graph which is part of complex network-based model

for texture analysis. In the second validation, the integrated this spatial vector-based

graph representation with the proposed graph connectivity measurement in Chapter

5 in order to investigate the contribution of the hybrid-based complex network. The

experimental results achieve a reasonable performance with texture classification task,

compared with the original complex network model.

6.2.4 Summary

This thesis proposes an enhancing complex network-based model for texture classifica-

tion via spatial texture analysis. The proposed enhancement model can be comprised
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of into two parts: The topology of graph part is devised graph-based image represen-

tation and the deterministic graph for seeking more local discriminative information

which approaches in classification task; the graph connectivity measurement part is to

encode spatial distribution of pixel and its neighbors that are robust to uncontrolled en-

vironment. Employing the enriched deterministic graph for generating topology graph

and the encoding spatial arrangement approach in graph connectivity measurement can

be enhanced in the traditional complex network-based model for texture classification.

6.3 The validation of hypotheses

From the achievements presented in this thesis, the pre-proposed hypotheses can be

validated which is discussed in this section.

The first hypothesis of this thesis is:

• In order to develop a new graph connectivity measurement, the spatial distribu-

tion of pixels must be considered among dynamic network connectivity in order

to capture beneficial information being used to distinguish various pattern struc-

tures. If the graph connectivity is measured by encoding the spatial arrangement

of distribution of local pixels, then the spatial structure information which is vi-

sual micro-structure (e.g., edge, line, spots) can be more detected on local image

texture. The encoding spatial arrangement is more robust than a degree of node

connectivity for uncontrolled environment database.

In this thesis, sufficient discriminative information and feature extraction aim to en-

hance the traditional complex network-based model. As it is reported in Chapter 3,

an accurate local spatial pattern mapping (LSPM) descriptor (part of the proposed

enhancing complex network-based model) outperforms a degree of node (Deg) method,

which can distinguish different distribution of local pixel by statistic of number of

connectivity of a vertex in the graph, in texture classification, especially in database

with significantly scale changed and viewpoint variation. This demonstrates that an

encoding spatial arrangement can be used for seeking sufficient discriminative infor-

mation than that by a degree of node. To develop a robustness graph connectivity

measurement is a solution for enhancing the traditional complex network model in the

classification task. In Chapter 4, the proposed graph connectivity measurement is em-

ployed to describe the graph-based spatial property representation. The experimental
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results prove that more discriminative information of texture can be acquired by an

enriched graph connectivity measurement, thereby improving the performance of the

classification rate. Besides, the local structure information of texture which is visual

micro-structure is also investigated based on the proposed approach.

The second hypothesis of this thesis is:

• In order to enhance a deterministic of a weighted graph, the weight of edge can be

adapted for seeking more local discriminative information. If a completed local

textural information by decomposing the local image difference, i.e., the signs and

the magnitude, is applied for generating a topology of the graph, then the model

can improve a capability of texture classification.

Instead of describing the texture pattern by applying a set of threshold in order to

obtain additional insights the properties of the network, this thesis proposed a more

additional discriminative information which enhances a deterministic a wight of edge by

decomposing the image local differences into the spatial vector property. This proposed

enhancement demonstrates its robustness in terms of the improvement in classification

rates. To be more specific, in Chapter 4, the enhancement graph-based spatial prop-

erties approach is presented. This is an enriched topology graph representation incor-

porating the magnitude and the direction based on the spatial vector. This proposed

method is applied to four texture databases. From the comparison experiments, the

proposed enhancement the deterministic of graph approach outperforms the proposed

method in Chapter 3, and the traditional complex network model (CNTD) [16]. This

deterministic graph is an enriched graph representation that can improve classification

rate combining both local binary gray-scale difference information and local structure

information of texture images. This result demonstrates that the proposed approach

achieves a higher degree of robustness to texture images in uncontrolled environments.

The third hypothesis of this thesis is:

• The efficacy of discrimination the original complex network model can be im-

proved from uncontrolled environment databases if integrating between the new

graph connectivity measurement and the enriched graph representation is pro-

posed. The completed local textural information from the graph representation

is more robust than the local structure information from the new graph connec-

tivity measurement for uncontrolled environment database.
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This hypothesis has been validated into two aspects: spatial vector-based graph

representation and spatial encoding of texture pattern, which is a new graph connec-

tivity measurement. Firstly, as it is reported in Chapter 3 and Chapter 4, the proposed

graph connectivity measurement approach by local spatial pattern mapping (LSPM),

significantly improve classification rate the degree of node, as proposed in the tradi-

tional complex network model [16]. Secondly, as reported in Chapter 4, the enhanced

deterministic graph by decomposing the image local differences into the spatial vec-

tor property, the magnitude and the direction, improving the discrimination capability

of the proposed approach in Chapter 4. From these two aspects, in Chapter 5, this

thesis proposed hybrid-based complex network model for texture classification which

integrates the enriched deterministic graph and spatial encoding schemes as the graph

connectivity measurement. The experiments have been evaluated by comparison the

classification rates of the degree of node (Deg) and LSPM, as graph connectivity mea-

surement. This result demonstrates that the enriched deterministic of graph approach

achieves a higher degree of discriminative capability than enriched graph connectivity

measurement. On the one hand, the comparison results between the Deg and the LSPM

achieves similarity classification performance. Therefore, the experimental result vali-

dates this hypothesis that the hybrid-based complex network model is able to enhance

the original complex network model through employing the enhancing deterministic

the graphs.

6.4 Limitations of complex network model in texture anal-

ysis

The complex network is investigated how texture image can be adequately represented,

characterized and analyzed in terms of a complex network with impressive results. The

advantage of the compromise between local and global properties and the interplay

between structural and dynamical aspects can provide valuable information about the

structure being analyzed. Accordingly, the Complex Network Theory, the success in

texture discrimination demonstrates the potential of the application of this approach in

computer vision problems and digital image processing. However, it may not necessarily

be the best solution to apply in advanced applications such as robot manipulation, real-

time application problems.
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It is important to notice that the graph-network model is derived from the Euclidean

distance between pixels and the difference of pixel intensity and neighborhood. The

local discriminative information by complex network model is obtained in the determin-

istic the graph, the weight of edge. Euclidean distance calculates the spatial relevant.

We can see that the proper optimization and/or normalization of these parameters do

not apply to the process. A set of threshold value applies for imitation the dynamic

transformation in the network. However, the optimized this parameter is essential for

analyzing and extracting information. This approach could be explored in more detail

using topology of graph methods and more mathematical model.

The unique spatial pattern mapping has proposed for encoding the spatial arrange-

ment of the local binary pattern. In Chapter 3, we generated radial distance pattern

mapping as three patterns based on Euclidean distance, then mapping them as a cir-

cular. However, the topology pattern structure for mapping should be more concerned

and investigated, along with the number of the neighborhood that relevant in each

pixel.

6.5 Future work

Future research can be considered to overcome the limitations of the proposed ap-

proaches, to explore other research paths and to continue to advance the field of texture

analysis using the complex network.

Biological image processing-related texture datasets could be used to explore other

research paths. They could now be applied to various texture problems and, in par-

ticular, in biomedical imaging for the segmentation and recognition. For instance,

recognition of lesionsS and cancers or the analysis of temporal textures exhibited in

sequences of ultrasound or X-rays.
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tion Invariant Image Description with Local Binary Pattern Histogram

Fourier Features. In Arnt-Børre Salberg, Jon Yngve Hardeberg, and

Robert Jenssen, editors, Image Analysis, pages 61–70, Berlin, Heidelberg, 2009.

Springer Berlin Heidelberg.
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tion. In Tomás Pajdla and Jiř́ı Matas, editors, Computer Vision - ECCV

2004, pages 253–266, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[54] Tom Howley, Michael G. Madden, Marie-Louise OConnell, and

Alan G. Ryder. The effect of principal component analysis on machine

learning accuracy with high-dimensional spectral data. Knowledge-Based

Systems, 19(5):363 – 370, 2006. AI 2005 SI.

118



BIBLIOGRAPHY

[55] Mahamadou Idrissa and Marc Acheroy. Texture classification using

Gabor filters. Pattern Recognition Letters, 23(9):1095 – 1102, 2002.

[56] Richard H. A. H. Jacobs, Koen V. Haak, Stefan Thumfart, Remco

Renken, Brian Henson, and Frans W. Cornelissen. Aesthetics by

Numbers: Links between Perceived Texture Qualities and Computed

Visual Texture Properties. Frontiers in Human Neuroscience, 10:343, 2016.

[57] A. K. Jain, R. P. W. Duin, and Jianchang Mao. Statistical pattern

recognition: a review. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(1):4–37, Jan 2000.

[58] A. K. Jain and F. Farrokhnia. Unsupervised texture segmentation

using Gabor filters. In 1990 IEEE International Conference on Systems, Man,

and Cybernetics Conference Proceedings, pages 14–19, Nov 1990.

[59] David J Heeger Eero P Simoncelli J Anthony Movshon Jeremy Free-

man, Corey M Ziemba. A functional and perceptual signature of the

second visual area in primates. Nature Neuroscience, 16:974–981, 2013.

[60] Hong Jin, Shuliang Wang, and Chenyang Li. Community detection

in complex networks by density-based clustering. Physica A: Statistical

Mechanics and its Applications, 392(19):4606 – 4618, 2013.

[61] B Julesz, E N Gilbert, L A Shepp, and H L Frisch. Inability of Humans

to Discriminate between Visual Textures That Agree in Second-Order

StatisticsRevisited. Perception, 2(4):391–405, 1973. PMID: 4803948.

[62] Bela Julesz. Textons, the elements of texture perception, and their

interactions. Nature, 290:91–97, March 1981.

[63] Peirce JW. Understanding mid-level representations in visual process-

ing. Journal of Vision, 15(7):1–9, 2015.

[64] K. Nagahama K. Yamazaki and M. Inaba. Daily Clothes Observation

from Visible Surfaces Based on Wrinkle and Cloth-Overlap Detection.

International Conference on Machine Vision Applications, pages 275–278, 2011.

119



BIBLIOGRAPHY

[65] R.L. Kashyap, R. Chellappa, and A. Khotanzad. Texture classification

using features derived from random field models. Pattern Recognition

Letters, 1(1):43 – 50, 1982.

[66] James M Keller, Susan Chen, and Richard M Crownover. Texture de-

scription and segmentation through fractal geometry. Computer Vision,

Graphics, and Image Processing, 45(2):150 – 166, 1989.

[67] Peter J. Kohler, Alasdair Clarke, Alexandra Yakovleva, Yanxi Liu,

and Anthony M. Norcia. Representation of Maximally Regular Tex-

tures in Human Visual Cortex. Journal of Neuroscience, 36(3):714–729,

2016.

[68] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet

Classification with Deep Convolutional Neural Networks. In Proceedings

of the 25th International Conference on Neural Information Processing Systems

- Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc.

[69] A. Laine and J. Fan. Texture classification by wavelet packet signatures.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11):1186–

1191, Nov 1993.

[70] S. Lazebnik, C. Schmid, and J. Ponce. A sparse texture representa-

tion using local affine regions. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 27(8):1265–1278, Aug 2005.

[71] Wenye Li. Modularity Segmentation. In Minho Lee, Akira Hirose,

Zeng-Guang Hou, and Rhee Man Kil, editors, Neural Information Process-

ing, pages 100–107, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[72] L. Liu, J. Chen, P. Fieguth, G. Zhao, R. Chellappa, and

M. Pietikainen. A Survey of Recent Advances in Texture Representa-

tion. ArXiv e-prints, January 2018.

[73] Li Liu, Lingjun Zhao, Yunli Long, Gangyao Kuang, and Paul Fieguth.

Extended local binary patterns for texture classification. Image and

Vision Computing, 30(2):86 – 99, 2012.

120



BIBLIOGRAPHY

[74] Yanxi Liu, Wen-Chieh Lin, and James Hays. Near-regular Texture

Analysis and Manipulation. ACM Trans. Graph., 23(3):368–376, August

2004.

[75] Wang X. Pietikinen M. Hu D. Liu L., Fieguth P. Evaluation of LBP

and Deep Texture Descriptors with a New Robustness Benchmark.

Lecture Notes in Computer Science, 9907, 2016.

[76] David G. Lowe. Distinctive Image Features from Scale-Invariant Key-

points. International Journal of Computer Vision, 60(2):91–110, Nov 2004.

[77] Bruno Brandoli Machado, Leonardo Felipe Scabini, Jonatan Patrick

Margarido Orue, Mauro Santos de Arruda, Diogo Nunes Goncalves,

Wesley Nunes Goncalves, Raphaell Moreira, and Jose F. Rodrigues-

Jr. A complex network approach for nanoparticle agglomeration anal-

ysis in nanoscale images. Journal of Nanoparticle Research, 19(2):65, Feb

2017.

[78] Andrzej Materka and Michal Strzelecki. Texture analysis methods

– a review. Technical report, Institute of Electronic, Techinical University of

Lodz, 1998.

[79] Loris Nanni and Alessandra Lumini. A reliable method for cell pheno-

type image classification. Artificial Intelligence in Medicine, 43(2):87 – 97,

2008.

[80] M. E. J. Newman. The structure and function of complex networks.

SIAM REVIEW, 45:167–256, 2003.

[81] M. E. J. Newman and Juyong Park. Why social networks are different

from other types of networks. Phys. Rev. E, 68:036122, Sep 2003.

[82] T. Ojala, M. Pietikainen, and D. Harwood. Performance evaluation of

texture measures with classification based on Kullback discrimination

of distributions. In Proceedings of 12th International Conference on Pattern

Recognition, 1, pages 582–585 vol.1, Oct 1994.

121



BIBLIOGRAPHY
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