INVESTIGATION OF Cu₂O AS PHOTOCATHODE FOR P-TYPE DYE-SENSITIZED SOLAR CELLS

Marinela Miclau, Anamaria Dabici¹, Melinda Vajda¹, Narcis Duteanu², Daniel Ursu^{1*}

¹National Institute for Research and Development in Electrochemistry and Condensed Matter, 1 Plautius Andronescu Street, 300224 Timisoara, Romania e-mail: danielhoratiu@yahoo.com

Abstract

In p-type dye-sensitized solar cells (p-DSSCs), NiO is the most commonly used p-type semiconductor [1]. Considering the drawbacks of NiO, alternative p-type semiconductors with better optical transparency, lower VB edge position and higher hole mobility are desired for p-DSSCs [2]. The cuprous oxide (Cu₂O) is a natively p-type semiconductor with a direct band gap of about 1.9–2.2 eV [3]. Non-toxic nature, the stability, natural abundance, low cost production, good electrical properties and a good absorption coefficient for visible light prompted to investigate the cuprous oxide as a material suitable for the realization of low cost and large scale p-DSSCs [4]. the nanoparticles have been intensively studied as photocathodes materials for DSSCs because of their larger specific surface areas to absorb more dye molecules. At the same time, the small-sized particles have shown that the inefficient ability to scatter the solar radiation which reduces the light-harvesting efficiency. Based on these premises, we propose to investigate the effect of micrometer-size structures on the photovoltaic performance of p-DSSCs based on cuprous oxide.

In this work, 3D hierarchical structure built of the micrometer dendritic rods and the porous truncated octahedrons have been successfully synthesized via a facile one-step hydrothermal methods using copper (II) acetate and ethyl cellulose as reactants. The DSSC based on the porous structure exhibits approximately 15% increase in J_{SC} and V_{OC} than 3D hierarchical structure.

XRD patterns of the Cu₂O₁ and Cu₂O₂ compound, obtained from hydrothermal method are shown in figure 1. All the diffraction peaks could be indexed as Cu₂O (cuprite) with cubic structure (space group: *Pn-3m*; JCPDS Nr. 01-074-1230), only a small amount of CuO is detected as impurity in Cu₂O₂ sample. The formation of CuO phase is determined by the time reaction which in the case of Cu₂O₂ is still small to establish completely Cu⁺¹ oxidation state.

Figure 1. Room temperature X-ray diffraction patterns of Cu2O_1 and Cu2O_2 samples. The SEM image (figure 2a) of Cu₂O_1 powder shows the 3D hierarchical structure

The SEM image (figure 2a) of Cu_2O_1 powder shows the 3D hierarchical structure consisting of micrometer dendritic rods. In case of Cu_2O_2 sample, the SEM image (figure 2b) shows that the grains are in the shape of the porous truncated octahedron, partially covered by the microspheres.

Figure 2. SEM images of Cu_2O_1 (a) and Cu_2O_2 (b) samples.

Indeed, I-V characteristics of DSSC (Fig. 3) show that the photovoltaic performance has improved in case of the porous structure, showing approximately 15% increase in J_{SC} and V_{OC} .

Figure 3. J-V curve of p-type DSSCs based on Cu₂O_1 and Cu₂O_2 samples.

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-2016-0526, within PNCDI III.

References

[1] J. Bandara and J. Yasomanee, Semicond. Sci. Technol. 22 (2007) 20-24

[2] T. Jiang, M. Bujoli-Doeuff, Y.Farré, Y. Pellegrin, E. Gautron, M.Boujtita, L. Cario, S. Jobic, F. Odobe, RSC Adv.6 (2016) 112765-112770

[3] K.H. Han, M. Tao. Sol. Energy Mater. Sol. Cells 93 (2009) 153-157

[4] C. Wadia, A. P. Alivisatos, D. M. Kammen. Environ. Sci. Technol. 43 (2009) 2072-2079