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ABSTRACT

In the present paper, we have carried out quanBtastructure-fungicidal activity
relationships analysis on a novel series of Manhiabes with trifluoromethyl-1,2,4-triazole
and substituted benzylpiperazine moieties repottechave improved fungicidal activity
against Fusarium oxysporum f.sp. cucumerinuffhe chemical structures were energy
minimized based on semiempirical quantum chemicathod RM1. The molecular
descriptors were calculated using the DRAGON, mmsehem and ChemProp software.
Several models for the prediction of fungatidctivity have been drawn up by using
the multiple regression technique (MLR). Theejenalgorithm approach was employed for
variable selection method to search for the besting models. The predictive ability of the
MLR models was validated using an external tesb&8tout of 18 molecules. The best MLR

model was chosen by observing acceptablafj(;j and g’,, values, low residual errors and

high Multi-Criteria Decision Making (MCDM) scores. The MLR edaoat suggests the
positive impact of GETAWAY and edge adjacency matrix descriptordhe fungicidal
activity. The high acidic character of the molecule increase the fungaztity.

INTRODUCTION

Triazoles are often used in pharmacology, medicine and agriculture, fabnogd spectrum
of biological activities such as antimicrobial, cytotoxic, histaminic, anticonvulsant,
analgesic, anti-inflammatory, insecticidal, antimycotic, antimycobatteranticancer,
antiprotozoal, antimalarial and anti-ulcer activity [1].

Molecules containing thiazole ring systems are important becauseiofow toxicity and
excellent biological activity [2].

Triazoles undergo different types of reactions to yield other ratelfo compounds, e.g.,
mannich bases, thioureas, thioethers, schiff bases, triazolothiediszazolothiazines,
triazolothiazepines and triazolothiadiazines. They are nottaargition compounds but they
are also very effective organic compounds [3].

Triazole compounds have shown a great efficacy against antifun{sdtioms. The
mechanism of inhibition of fungal growth is well establish&tus, the azoles antifungal
action is performed in two steps: (i) inhibition of ergosteraitsgsis, a major component of
fungal membrane and (ii) the blocking of P450-dependent enzyamdanodterol 14e-
demethylase (CYP 51) [4]. Triazole fungicides are widely used broad-spetiingicides
that inhibit the sterol 14-demethylase, an enzyme involved in the biosynthesis of ergosterol
[5].

A series of novel 18 trifluoromethyl-substituted 1,2,4-triazole Mem bases containing
substituted benzylpiperazine ring have been synthesized agstigated for their herbicidal,
fungicidal and plant growth regulators activity [6] (Table 1).

The current paper presents a quantitative structure-activity relapsnstaudy for this series
of 1-[(4-substituted-benzylpiperazin-1-yl)methyl]-4-(substitutedgyideneamino-3-
trifluoromethyl-1H-1,2,4-triazole-5(4H)-thiones using multiplendar regression (MLR).
These compounds were optimized using the RM1 semiempiricacolal orbital method
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[7]. Descriptors calculated for the RM1 geometnesre related to the mycelial growth

inhibition activity against th&usarium oxysporum f. sp. cucumerinfungi test [6].

Table 1L The chemical structure of trifluoromethyl-suhsid 1,2,4-triazole Mannich bases
and theirfFusarium oxysporum f. sp. Cucumerinarperimental relative inhibition rates

(RIR)*
. Strongest
No Structure RIR HATS8u R2u | ERigllr basic pKa AH
kcal/mol
1 [ { O\ ﬁ“@ 0.01| 0402 | 2004 2 7.74 3.69
\ﬁ/N\/N\)
F %N/\N/\\
2 @Jk' : 0.804 | 0271 | 2103  2.167 7.74 47.91
A%
3 @VQ X&Q\ 0.187 | 0.426 | 1.972 2 7.74 -81.18
@vﬁ“ﬁj F@/
4 ! li 0 0.428 | 1.966| 2.167 7.74 -86.31]
5 |« /= A@ 0 0.398 | 2032 2.167 7.74 -73.74
O 0
Vo >\N/\N/\\
—— \\/N ;
6 / I 0.402 | 0.383 | 2015 2332 7.74 -40.62
7 \ﬁ” A@ 0509 | 0341 | 2082  2.167 6.76 -36.52
Q/\N/\]rk\/o .
PenoVv]
8 @Jf L 0719 | 0271 | 2129 2333 6.76 -16.0§
(\,.AAM
o | I [ LX\LQ\ 0.604 | 0.405 | 1.995  2.167 6.76 -49.72
A L
10 QQ %—"/ 0.401 | 0.357 | 2.061 2 6.76 -83.93
11 | . \N% v 0.303 | 0.398 2.03| 2167 6.76 -17.43
a2ACsUS AN
Y~ 1 LT
12 G_/_f N2 0.502 | 0.401 | 2009 2332 6.76 -11.64
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13 ¥ ”I 0.708 0.355 2.109 2 6.01 -19.18
JIOQOUsSa

14 ¥ “I 0.826 0.286 2.116 2.167 6.01 -64.77
JeaeN=t2s

15 Q\AO /QL\ , /| 0504 | 0388 | 2014 2 6.01 -58.49

16 @ S%/NVCC"/ 0705 | 0416 | 2.041]  2.167 6.01 -93.71
.

17 @CO /J:/\Q\ 0.607 | 0.389 | 2.043 2 6.01 -45.43

18| [T 7 /QL\FQ 0.608 | 0386 | 2034 2.167 6.01 -48.14

\

* HATS8u represents everage-weighted autocorrelatiolag 8 / unweighted (GETAWAY
descriptor); R2u - R autocorrelation of lag 2 / eighted (GETAWAY descriptor); EEIg11r -
eigenvalue 11 from edge adj. matrix weighted bypmasce integrals (Edge adjacency index);
heat of formationAH;) of the energy optimized structure.

MATERIALS and METHODS
Definition of target property and molecular structures

A series of 18 trifluoromethyl-substituted 1,2,#&nole Mannich bases containing substituted
benzylpiperazine ring (Table 1) was used, havirgyftingicidalFusarium oxysporum f. sp.
Cucumerinunrelative inhibition rate (RIR, expressed in %)dapendent variable.

All geometries of the title fungicides were miniredz with the semiempirical RM1 quantum
chemical approach [7] using the semiempirical NDB®@dule of Schrodinger software
(Schrodinger, LLC, New York, NY, 2015). The follavg quantum chemical descriptors were
derived for the RM1 geometries: electronegativitjardness, chemical potential,
electrophilicity, HOMO and LUMO molecular orbitahergies, heat of formation, dipole
moment, molecular surface area, softness, maximearage local ionization energy on the
molecular surface, minimum average local ionizagoergy on the molecular surface, mean
average local ionization energy on the moleculafase, maximum electrostatic potential on
the molecular surface, minimum electrostatic pa#érmdn the molecular, mean electrostatic
potential on the molecular surface, electrophiliaperdelocalizability, nucleophilic
superdelocalizability, radical superdelocalizapjliatom self polarizability. The outlines of
the calculated quantum chemical parameters praddéional information about the activity
of the studied compounds.

Structural 0D, 1D, 2D and 3D descriptors were dated for the lowest energy compounds
using the DRAGON (Dragon Professional 5.5 (2007alefe S.R.L., Milano, Italy),
InstantJchem (which was used for structure datab@m@agement, search and prediction)
(InstantJchem 15.7.27, 2015, ChemAxon (http://wyaermaxon.com) and ChemProp (UFZ
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Department of Ecological Chemistry 2014. ChemProp .2, 6
http://www.ufz.de/index.php?en=6738) software.
The variables were normalized using the followingagion (1):

X =X
Xij = mJS : (1)

where for each variable, XTy; andXy; are the valueg for the variablem after and before

scaling respectivelyXmis the mean an&, the standard deviation of the variable.

Structural descriptors were correlated with thegfawle relative inhibition rate by multiple
linear regression (MLR). MLR calculations were condal with a genetic algorithm for
variable selection included in the QSARINS v.2.agsam [8]. The RQK fitness function,
with leave-one-out cross-validation correlationftomnt was used as constrained function to
be optimized. The dataset was divided into trairsagand a randomly selected (30% of the
total number of compounds) test set. Compounds 0913, 18 (Table 1) were included in
the test set. Validation is a crucial aspect of gogntitative structure—activity relationship
(QSAR) analysis [9, 10]. In this light, the devedopMLR models were validated using
internal and external validation.

Model validation

All the statistical tests were performed at a sigance level of 5 %. In MLR models, outliers
were detected by a value of residual greater thantighes, the value of standard error in
calculation.

For internal validation results several measuresobiistness were employed: leave-one-out
cross-validation (§oc), Y-scrambling and Quo leave-more-out (LMO) cross-validation
(carried out for 30% of data out of training, each).

Y-scrambling testing was repeated 2000 times. lised for checking the robustness of a
QSAR model and the statistical significance of és¢imated predicted power. Satisfactory
leave-one-out cross-validatioalues are stable and predictive if validated keyldave-more-
out (LMO) procedure.

The data over fitting and model applicability wasntrolled by comparing the root-mean-
square errors of training (RM$Eand validation (RMSE;) sets. To test the predictive power

of the model, several parameters were calcula@d:[11], Q?,[12], Q%[13], RMSEy,
MAEx (Mmean absolute error for test set) and the prediczﬁ(/gfrgd) test [14]. It is considered

that for a predictive QSAR model, the valuergf, should be higher than 0.5.

The Multi-Criteria Decision Making (MCDM) [15] is d@echnique that summarizes the
performances of a certain number of criteria siangdbusly, as a single number (score)
between 0 and 1. A desirability function, takesuesl ranging from 0 to 1 (where O represents
the worst validation criteria value and 1 the besi) is associated to every validation criteria.
The geometric average of all the values obtainedhfthe desirability functions gives the
MCDM value. The ,MCDM all’ scores were calculateding all the criteria: fitting, cross-
validated and external and were used to chooskesteMLR models.

RESULTS AND DISCUSSION

A training set of 12 compounds and five test conmaisu(no.: 7, 9, 10, 13, 18) were used to
build the models and to measure their performanCesapound 2 was found as outlier and
was excluded from the final MLR models. Startingnfrall calculated descriptors several one
and two descriptor models were generated (Tabl&t2)ctural parameters derived from the

158



21st International Symposium on Analytical and Emenmental Problems

InstantJChem, Dragon and ChemProp programs andugmarhemical descriptors obtained
from the RM1 geometries were employed in the MLRuwations. Variable selection was
carried out by the genetic algorithm, using thevéeane-out fit criterion as constrained
function to be optimized. Several fitting and potdbility criteria were employed for model
validation (see Tables 2 and 3). Satisfactory ML&dgls were obtained. Good fitting results
were obtained for all MLR models. The predictiveligbof models 3 and 4 is acceptable

(except theQ?, value), the “MCDM all” scores indicating as satigfary models 3 and 4, too.

Table 2 Internal validation parameters of the MLR mod#iagining set)

Model 2 r2 q2 MCDM F
LMO a”

N _ RMSE, MAE; 2
. training adj
Variables

2
qLOO scr

2
qSCI’

1 Strongest 0.839 0.803 0.735 0.110 0.095 0.188 -0.494 0.699 023.38
basic
pKa
HATS8u

2 Strongest
basic
pKa R2u

3 Strongest
basic
pKa
EEigl1r

4 Strongest
basic

pKa

0.823 0.783 0.715 0.116 0.095 0.180 -0.499 0.667 020.86

0.818 0.777 0.683 0.117 0.105 0.183 -0.468 0.636 610. 20.16

0.705 0.675 0.583 0.149 0.127 0.092 -0.312 0.572 663. 23.87

I,2

. . . L2 . . —_ 2 . .
raining ~COITelation coefficient; I, -adjusted correlation coefficiert};,, - leave-one-out cross-validation

Mpdnhean absolute error;r2 correlation

correlation coefficient; "

RMSEroot-mean-square errors;
coefficient of the randomized responseﬁ;ﬁcr- cross-validation correlation coefficient of thendamized

responses;qﬁ,\,IO -leave-more-out cross-validation correlation coggfit; MCDM all-Multi-Criteria Decision
Making scores using all the fitting, cross-validhtad external criteria; F-Fischer test.

Table 3 External validation parameters of the MLR models (test set)

Model Q%  Q, Q4 RMSEw MAEex 12,
1 0.699 -0.030 0.853 0105 0074  0.699
2 0537 -0583 0774 0131 0.102 0537
3 0731 0081 0869  0.100 0.092 0731
4 0811 0352 0908 0084 0072 0.810

* Qi Q. Q% -external validation parameters; RM&Eoot-mean-square errors; MAE
mean absolute error;,-predictive f

The best MLR model was chosen by observing the accepigmge r:dj, 0’0o and
req, Values, high ‘MCDM all’ scores and low residual errors. Basethese criteria, the best

MLR model could be considered equation 3 (Table 2):
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RIR =0.583¢0.07)-0.5530.09)StrogestbasicpKa+ 0.2445¢0.10)EEig1Lr
N =12 N ,=5 r3,.,= 0818 SEE=0.135 r2 =0.777 ¢°,, =0.683 Q°,, = 0636

training test training adj

where: SEE represents the standard error of estangt— the Fischer test
The differences betweerf,. .and r’, of 0.0406,betweenr’, . and q’,, of 0.1345, and

aining adj training
betweend’,,and g7, Of 0.0474, indicate that model 3 is robust and has low otterdfi

effects. The low differences between the root-mean-square errors and béteeeman
absolute errors of the training and validation sets point tal diting results and a robust
model (RMSE-RMSE; = 0.017; MAE—MAEx= 0.013).

In order to check the reliability of the proposed equation, theemwed versus predicted
activities RIR values according to the QSAR equation using mlaleaescriptors, the
Williams and the Y-scramble plots predicted by the MLR 3 madeloutlined in Figures 1, 2
and 3, respectively.

Exp. endpoint vs, Pred. by model eq.
Pred, by model eq.

0.8263
0,723+
0,620
0,516
0,413
0.310
0.207
0,103
=] L=}

0.000 T T T T T T T 1
0,000 0,103 0.z207 0.310 0,413 0.516 0.620 0723 0.326

Strongest basic pka EEiglir Exp. endpoint

Fig. 1. Experimentalersuspredicted RIR values for the MLR3 model (Table 2).

Generally, the Williams plot is used to identify compourndsh the greatest structural
influence by >h'; h =leverage of a given chemicdi:= the warning leverage) in developing
the model. The Williams plot for the training set presentedrigure 2, establishes
applicability domain of the model within £235and a leverage threshold h* = 0.750. It is
obvious from Figure 2 that all the compounds in the datasetvinen the applicability
domain of the model.
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© Training
HAT ifi (h* = 0.750) vs. Std. residual SlEr e iction
Std, residuals
2,000
1,500
s}
1.000
.
© o
0,500
0.000
Q
0,500 .
[}
-1.000- o
© * o
[}
-1.500
-2.000 T T T T T T T 1
0.089 0.119 0.149 0,179 0.209 0.239 0,289 0,299 0.330
Strongest basic pKa EEiglir HAT ifi (h* = 0.750)

Fig. 2. Williams plot predicted by the MLR3 model (Taldp

Y-scramble test was verified if the developed QSARdel is robust and not derived due to
chance. The models are expected to have signifiamtscrambledr? (r2) and cross-

scr

validated (g%,) values for several trials, which confirm the robustness of thelajsed
models. From Figure 3 one can observe that in case of all the raedomadels, the values
of rZ, andq?, were < 0.5. The low calculated, and g2, values (Table 2, Figure 3) indicate
no chance correlation for the chosen model.

CR2Yscr

& Q2 fscr
Kry vs. R2 Yscr and Q2 ¥scr
RZ Vscr and Q2 Yscr ¥ o @ Mod, R2

® Mod. Q2

]
model R2 Jo
o
&

0,897

T T T T T T 1
0,125 0,185 0,245 0,305 0,365 0,425 0,434

Ky

Fig. 3. Y-scramble plots for the MLR 3 model.

The predictive ability of the MLR models 3 and 4 is acceptatiegrding to th?,,
Qz; andr., values, model 4 having lower fitting results camg to model 3.
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CONCLUSIONS

In this study we developed MLR models for a serdstrifluoromethyl-1,2,4-triazole
derivatives with fungicide activity againfusarium oxysporum f.sp. cucumerinu@ross-
validation (LOO and LMO), ‘MCDM all' scoresj-scrambling test and applicability domain
analysis validate the internal and external prediitities of the models developed using the
training and test sets. Therandomization test outcomes ensure that the dpedldvLR
model is robust and not derived merely due to chaMoreover, the applicability domain
evaluation confirms that the developed model igbé to make predictions, which were
checked by several external validation criteria.

The chosen regression equation 3 indicates thatValwes of the ‘strongest basic pKa’
descriptor (more acidic fungicides) and high valoéshe EEIG11r descriptor increase the
RIR values, respectively the fungicide activity.

We conclude that GETAWAY and edge adjacency madescriptors provide the highest
contribution to the fungicidal activity for the datset studied herein, the acidic ability
influencing the fungicide inhibition rate.
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