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Abstract

Partial Least Squares (PLS) regression of bloodrIipermeation data (logBB) including 348
diverse organic compounds and drugs was built ud3Dragon descriptors. The prediction
performance of the obtained PLS model is acceptdbke squared correlation coefficient
(cumulative sum of squares of all the Y's explaibgdll extracted componemﬁzy(cum) =
0.822, the crossvalidated correlation coefficienungulative fraction of the total variation of
the Y's that can be predicted by all the extracmuponentsQZY(cuM) = 0.640, the number
of independent variables, X=487, for a dataset 42 8ompounds (six compounds was
outliers). The Y-randomization test demonstratezl ahsence of chance correlation which is
confirmed by the lower values of regression linericepts for Rqcumy (0.307) and Qcuw
(-0.320). The descriptors such as polar surfaca @¥eO and N,O,S,P polar contributions),
octanol-water partition coefficient (Ghose-Crippamd Moriguchi), hydrophilic factor,
complementary information content index and the Inemof H-bond donor atoms showed the
largest Variables Importance in the Projection (MiRlues and can influence the logBB. The
values of logBB predicted by our model display low&ferences against experimental values
of 342 compounds than logBB values predicted byP@k.

Introduction

The blood-brain barrier (BBB) is a complex systenplicated in the normal function of the
central nervous system (CNS) through: (i) stridtiyiting the passive diffusion of polar
substances from the blood to the brain; (ii) medgathe transport of nutrients to the brain
and of toxic metabolites and xenobiotics from thairly (iii) overseeing the migration of
circulating immune cells. [1-3] Penetration of bdelorain barrier, represents one of the most
important and challenging areas in drug discovéhe presence of the BBB makes difficult
the development of new therapies for brain diseaselsiding meningitis, brain abscess,
epilepsy, multiple sclerosis, neuromyelitis optitate-stage neurological trypanosomiasis,
Alzheimer's disease, cerebral edema, HIV encemhatitc [4].To measure the drug transport
across the blood brain barrier the blood—brainitp@mt coefficient, logBB has been defined,
[5] logBB= 10g(Gorai/ Coiood), Where Grain and Giooq are the equilibrium concentrations of the
drug in the brain and the blood, respectively.

In vitro experimental determination of BBB permeation ipaensive, time consuming and
requires compound’s stability, purity and assay cibpe conditions, while in vivo
determinations based on radiolabeled compoundeegrgred in some cases. [6] In 1988 the
first theoretical modefor a large number of H2 histamine receptor agemstdicting logBB
values has been reported. [7] Ever since many ptieto correlate the experimental blood-
brain concentration ratio values with physiothemical parameters have been reported. [8-
24]

In this study the prediction of logBB values based larger dataset of compounds belonging
to different structural classes collected fromratare [12, 22, 23, 25-33] is reported. The aim
is to build a comprehensive and general model tier ilood brain barrier penetration of
different organic compounds and drugs.
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Methodology

Dataset. In our study we combined various literature dages to collect a large-scale logBB
dataset comprising 348 experimental logBB valué®s€ dataset are available upon request
from the authors and contains compounds that betondifferent structural classes: 197
compoundsclassified as permeable showing positiegBB values, ranging from 0 to 1.64,
and 151 compoundslassified as non-permeabtigsplaying negative logBB value, ranging
from -0.01 to -2.15.

Descriptors. The following classes of descriptors were calculated with the loélDragon
software [34]: of 1D-functional groups, 1D-atom centered fragmentB-t@oological
descriptors, 2D walk and path counts, 2D-autocatiats, 2D-connectivity indices, 2D-
information indices, 2D-topological charge indiceBD-Eigenvalue-based indices, 2D-
topological descriptors, 2D-edge adjacency indic2B;Burden eigenvalues, molecular
properties, 2D-binary fingerprints and 2D-frequericygerprints starting from the SMILES
codes.Molecular descriptors were checked and constanhear-constant variables were
excluded. If two descriptors register a correlatiooefficient of 0.99 one of them was
eliminated. The final set of descriptors used infSHhvestigation included 903 molecular
descriptorsThe complete list of molecular descriptors andrth@aning are provided on the
Dragon website.[34]

PLS method. PLS analysis is a linear modeling technique [3bheal at finding the
relationship between the independent variable XdméDragon descriptors) and response Y-
matrix (logBB). The information contained in thesdeptor X-matrix is projected on a
smaller number of latent variables called PLS comepnds, denoted by A. The prediction of
Y-values is carried out by extracting a set of b2thogonal components from the initial X-
matrix, which display the highest predictive pow&he number of A factors was determined
using the cross-validation method leave sevenwaitit, maximum number of iterations when
fitting the model of 200, whereas the confidenceslavas set at 3. The VIP reflects the
influence of the variables in the PLS model coniteyrthe property Y (i.e., its correlation to
all responses), and independent variables X [3&Valuate the robustness of the PLS model
obtained we used the response permutation metholdnmented in SIMCA package [36].

Robustness of the QSAR modelsGolbraigh demonstrated that thé i® not adequate to
assess the predictive ability of the QSAR modeT] [Bherefore, Y-randomization test is a
widely used technique to evaluate the robustnesa QSAR model. [38] It consists in
building a number of QSAR models using the inidabkcriptor matrix and the randomized Y
variable. The plot showing ZFK(CUM) (cumulative sum of squares of all the Y's explaibgd
all extracted components) ancf(@.v.) (cumulative fraction of the total variation of thés
that can be predicted by all the extracted compisheor all PLS-DA models (all the Y
permuted models, and also the initial model) onYha&xis and the correlation coefficients
between randomized and original response varialpiethe X-axis was analyze@7].If the
Y-axis intercept of the regression line does nateed 0.3-0.4 for Rcuwy, and 0.05 for
Q%cuwm), the model is considered free of chance correlaf@s] The selected PLS model was
subjected to 999 Y-randomizations.

LogBB prediction by QikProp. The QikProp software [39] developed by Professdlidfh

L. Jorgensen [40fitted to 710 compounds including 500 drugs, one of the siftihe art
tools in predicting log(BB) was used as refererareolur model. In addition to predicting the
absorption, distribution, metabolism, and excre(tABDME) physically and pharmaceutically
relevant properties of organic molecules or dri@g&Prop provides ranges for comparing a
particular molecule properties.
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Results and discussions

In order to correlate the experimental logBB valwéth structural descriptors, the
PLS calculations were initiated for 903 descriptangl 348 log BB values [36]. From the 125
principal components resulted, the first 10% of tbenponents already explain 54% of the
information content of the X-matrix. The first PloSodel was constructed using the initial X
matrix, was not satisfactory, therefore we proceedhe improvement of the statistics as
follows: (1) the normal probability plot of Y stamdlized residuals - standard deviation
higher than +3 - was the criterion for graduallyrahating the outliers; (ii) the overfit was
reduced by excluding the noise variables (variaiolefficient values close to 0). Therefore,
six compounds were identified as outliers as thindard deviations exceeded +3SD (+3.04
to +4.31) and 416 noise variables were progressieiinated. The statistical parameters of
the final model are suitable for a large datasetoshpounds. The cumulative sum of squares
(SS) of all the X values explained by all extractemimponents ??((CUM) = 0.559, the
cumulative SS of all the Y’s explained by all exted componentsRcuw) = 0.822, and the
fraction of the total variation of Y values thatnche predicted for all extracted principal
components Q(CUM) = 0.640.The variables which influence markedly our PLS mduéP >
1.6) include several straightforward descriptorshsaspolar surface area (PSA - N,O and
N,O,S,P polar contributions), octanol-water paotiti coefficient (Ghose-Crippen and
Moriguchi), hydrophilic factor, complementary infoation content index and the number of
H-bond donor atoms. This is in accord with well gued parameters such as lipophilicity,
hydrogen bonding capacity, molecular charge, mddecisize, molecular shape, and
molecular flexibility which was correlated with 10BB. [5] Complementary information
content index is an topological index which is cédted based on Shanon information theory
[41] Generally speaking, the molecular topologycrelated with a large number of
molecular and biological properties. In particuldwe topological indices of zero order are of
special importance for the suitable descriptiomafar volume of organic compounds which
in turn is correlated with logBB [42]. Higher polkgrand hydrogen bonding are detrimental
for blood-brain penetration, whereas higher molacublume was positively correlated. [5]
PSA is highly correlated with the hydrogen bondaapacity of a compound. [5] Norinder
and Haeberleifd3] observed a linear correlation between PSAtaedsum of N + O atoms,
and concluded that (N + Q)5 is favorable for blood brain penetration. Cl444] stated that
logP is favorable to get positive values of log BB.

The predictive capacity or validity of a QSAR mbaea measure of how accurately
the model can predict the biological activity oéthet of compounds. The final model was
internally validated using, the Y-permutation prigee using 999 randomizations to cover
the complete dataset, each time forming a disteet The scrambled models were
constructed with the same number of latent vargabtethe final model. The plot displayed in
Figure 1 demonstrates that the Y-intercept (logB®@icept) of the Rcumy and Gcuwm) lines
has lower values and indicates no chance corralédiothe selected model.
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R2={0.0, 0.307), G:2=(0.0, -0.32)
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Figurel. Y - Randomization results for the final PLS modéiex-axis reports the
correlation coefficient between original and peretutesponse data, while on thaxis are
represented Rblack triangles) and Qgrey squares) values for the 999 randomized nsodel

Several descriptors displaying higher VIP (Variablenportance in the Projection)
values might play a critical role in defining BBRBnmeability of organic compounds. Ttup
ten descriptors according toVIP magnitudes includetie PLS model are shown in Table 1.

Table 1L The most relevant descriptors of the PLS model

VIPcvS |CoeffC |CoeffCScvS
VarID |VIP |[E S E Descriptor significance
2.01
ALOGF |4 0.028 | 0.035 | 0.009 Ghose-Crippen octanol-watditioar coeff. (logP)
1.92
MLOGP |6 0.035 |0.032| 0.010 Moriguchi octanol-water pantitcoeff. (logP)
1.92
BLTD48 |6 0.035 |-0.032| 0.009 Verhaar Daphnia base-lineityxirom MLOGP (mmol/l)
TPSA(NOL1.82
) 3 0.021 |-0.031| 0.007 Topological polar surface aiag N,O polar contributions
1.81
MLOGP2|3 0.029 |0.029 | 0.016 Squared Moriguchi octanol-wpéetition coeff.
1.75 Topological polar surface area wusing N,O,S,P
TPSA(Totp 0.015 |-0.031| 0.008 contributions
1.72
Hy 9 0.049 |-0.030| 0.022 Hydrophilic factor
1.72
ALOGP: |2 0.025 |0.024 | 0.009 Squared Ghose-Crippen octaatdrypartition coeff.
1.63 Complementary Information Content index
CIC1 6 0.027 |0.017 | 0.011 (neighborhood symmetry of first order)
1.62
nHDon |9 0.040 | -0.033| 0.022 Number of donor atoms for IHeso(N and O)

*VIP = The influence of every term in the matrix X ontak Y's; VIPcvSE =The jack knife standard error of
the VIP computed by seven rounds of cross validatioeffCS =PLS regression coefficients corresponding to
centered and scaled X, and scaled (but uncent¥;etpeffCScvSE The jack knife standard error of the

coefficients CoeffCS computed by seven rounds eg€wralidation.

For the same dataset of compounds QplogBB (PrediotEn/blood partition coefficient) was

calculated with QikProp module from Schrodingetesuihe logBB predicted by our model
register lower differences with respect to expentakvalues than QikProp calculations (see
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Figure 2). The highest number of compounds disptayow differences to experimental
values (0.05-0.3) is predicted by our PLS modelergbs QikProp predictions exhibit higher
differences against experiment.
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Figure 2. The number of compounds versus logBBexp-logBBpb&tk bars render the PLS
model and grey bars depict the QikProp prediction.

These results can be explained by the fact thatdtdmeain of applicability of the
regression equation used by QikProp, is based diOMsompounds of the molecular weight
between 20-525 Da, while the molecular weight for dataset of N=348 compounds ranges
16-1202 Da.

Conclusions

We have applied a PLS approach to a dataset of c®s@pounds with known
experimental logBB values, which belong to différstnuctural classe&ome straightforward
descriptors such aspological polar surface areactanol-water partition coefficier#nd the
number of H-bond donor atoms influence the devaelopeS model, showing VIP values
higher than 1.6The final PLS model built on a large dataset exetuthe risk of arbitrary
correlation. Further QSAR experiments using diverseleling methodologies including 3D
descriptors and additional compounds will be pulsue
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