Structural Characterization of 3d Metal Complexes Containing an Unconventional Schiff Base Ligand

Carmen Cretu^{1*}, Diana Aparaschivei¹ Liliana Cseh¹, Ramona Tudose¹, Catalin Maxim², Marius Andruh², Athanasios Salifoglou³ and Otilia Costisor¹

¹Institute of Chemistry of the Romanian Academy, 300223-Timisoara, Romania ²Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, 020464-Bucharest, Romania ³Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124-Thessaloniki, Greece

Abstract

The design of appropriated organic ligands capable of binding metal ions provides a targeted entry to new materials with distinct structural and physicochemical properties. A representative family of such ligands includes Schiff bases. Here, we report new mono, diand polynuclear materials $[Co(L)]_3(ClO_4)_3 \cdot 4H_2O$ (1), $[Zn_2(L)(CH_3COO)_2]$ (2) and $[Cu_3(L)_2(\mu^3-ClO_4)_{0.66}](ClO_4)_{1.33} \cdot 1.33CHCl_3$ (3) containing N,N'-bis[(2hydroxybenzilideneamino)-propyl]-piperazine (H₂L) Schiff base as hexadentate ligand (Figure 1). The X-ray crystallography of the complexes reveal a retaining of the original chair piperazine conformation from the free ligand in the complex 2 and a changing into a boat conformation in the complexes 1 and 3. Moreover, in the respective complexes a different coordination number as 6 (1), 5 (2) and 4 and 5 (3) was observed upon coordination of the free ligand to Co(III), Zn(II) and Cu(II) ions. The modulatory property of H₂L is reflected upon the molecular assembly and coordination mode of the isolable species.

Figure 1. Molecular structure of Schiff base ligand and its metal-complexes

Aknowledgment

We are thankful to the Romanian Academy (Project 4.1.) for the financial support.