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Abstract. Manycores are consolidating in HPC community as a way of
improving performance while keeping power efficiency. Knights Landing
is the recently released second generation of Intel Xeon Phi architec-
ture. While optimizing applications on CPUs, GPUs and first Xeon Phi’s
has been largely studied in the last years, the new features in Knights
Landing processors require the revision of programming and optimization
techniques for these devices. In this work, we selected the Floyd-Warshall
algorithm as a representative case study of graph and memory-bound ap-
plications. Starting from the default serial version, we show how data,
thread and compiler level optimizations help the parallel implementation
to reach 338 GFLOPS.
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1 Introduction

The power consumption problem represents one of the major obstacles for Ex-
ascale systems design. As a consequence, the scientific community is searching
for different ways to improve power efficiency of High Performance Computing
(HPC) systems [8]. One recent trend to increase compute power and, at the
same time, limit power consumption of these systems lies in adding accelerators,
like NVIDIA/AMD graphic processing units (GPUs), or Intel Many Integrated
Core (MIC) co-processors. These manycore devices are capable of achieving bet-
ter FLOPS/Watt ratios than traditional CPUs. For example, the number of
Top500 [2] systems using accelerator technology grew from 54 in June 2013 to
91 in June 2017. In the same period, the number of systems based on accelerators
increased from 55 to 90 on the Green500 list [1].

Recently, Intel has presented the second generation of its MIC architecture
(branded Xeon Phi), codenamed Knigths Landing (KNL). Among the main dif-
ferences of KNL regarding its predecessor Knights Corner (KNC), we can find
the incorporation of AVX-512 extensions, a remarkable number of vector units
increment, a new on-package high-bandwidth memory (HBM) and the ability

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

154

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Centro de Servicios en Gestión de Información

https://core.ac.uk/display/162901545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


to operate as a standalone processor. Even though optimizing applications on
CPUs, GPUs and KNC Xeon Phi’s has been largely studied in the last years, ac-
celerating applications on KNL processors is still a pending task due to its recent
commercialization. In that sense, the new features in KNL processors require the
revision of programming and optimization techniques for these devices.

In this work, we selected the Floyd-Warshall (FW) algorithm as a repre-
sentative case study of graph and memory-bound applications. This algorithm
finds the shortest paths between all pairs of vertices in a graph and occurs
in domains of communication networking [14], traffic routing [12], bioinformat-
ics [16], among others. FW is both computationally and spatially expensive since
it requires O(n3) operations and O(n2) memory space, where n is the number
of vertices in a graph. Starting from the default serial version, we show how
data, thread and compiler level optimizations help the parallel implementation
to reach 338 GFLOPS.

The rest of the present paper is organized as follows. Section 2 briefly in-
troduces the Intel Xeon Phi KNL architecture while Section 3 presents the FW
algorithm. Section 4 describes our implementation. In Section 5 we analyze per-
formance results while Section 6 discusses related works. Finally, Section 7 out-
lines conclusions and future lines of work.

2 Intel Xeon Phi Knights Landing

KNL is the second generation of the Intel Xeon Phi family and the first capable
of operating as a standalone processor. The KNL architecture is based on a set of
Tiles (up to 36) interconnected by a 2D mesh. Each Tile includes 2 cores based
on the out-of-order Intel’s Atom micro-architecture (4 threads per core), 2 Vector
Processing Units (VPUs) and a shared L2 cache of 1 MB. These VPUs not only
implement the new 512-bit AVX-512 ISA but they are also compatible with prior
vector ISA’s such as SSEx and AVXx. AVX-512 provides 512-bit SIMD support,
32 logical registers, 8 new mask registers for vector predication, and gather and
scatter instructions to support loading and storing sparse data. As each AVX-
512 instruction can perform 8 double-precision (DP) operations (8 FLOPS) or
16 single-precision (SP) operations (16 FLOPS), the peak performance is over
1.5 TFLOPS in DP and 3 TFLOPS in SP, more than two times higher than that
of the KNC. It is also more energy efficient than its predecessor [17].

Other significant feature of the KNL architecture is the inclusion of an in-
package HBM called MCDRAM. This special memory offers 3 operating modes:
Cache, Flat and Hybrid. In Cache mode, the MCDRAM is used like an L3
cache, caching data from the DDR4 level of memory. Even though application
code remains unchanged, the MCDRAM can suffer lower performance rates. In
Flat mode, the MCDRAM has a physical addressable space offering the highest
bandwidth and lowest latency. However, software modifications may be required
in order to use both the DDR and the MCDRAM in the same application.
Finally, in the Hybrid mode, HBM is divided in two parts: one part in Cache
mode and one in Flat mode [5].
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From a software perspective, KNL supports parallel programming models
used traditionally on HPC systems such as OpenMP or MPI. This fact represents
a strength of this platform since it simplifies code development and improves
portability over other alternatives based on accelerator specific programming
languages such as CUDA or OpenCL. However, to achieve high performance,
programmers should attend to:

– the efficient exploitation of the memory hierarchy, especially when handling
large datasets, and

– how to structure the computations to take advantage of the VPUs.

Automatic vectorization is obviously the easiest programming way to exploit
VPUs. However, in most cases the compiler is unable to generate SIMD binary
code since it can not detect free data dependences into loops. In that sense,
SIMD instructions are supported in KNL processors through the use of guided
compilation or hand-tuned codification with intrinsic instructions [17]. On one
hand, in guided vectorization, the programmer indicates the compiler (through
the insertion of tags) which loops are independent and their memory pattern ac-
cess. In this way, the compiler is able to generate SIMD binary code preserving
the program portability. On the other hand, intrinsic vectorization usually in-
volves rewriting most of the corresponding algorithm. The programmer gains in
control at the cost of losing portability. Moreover, this approach also suggests the
inhibition of other compiler loop-level optimizations. Nevertheless, it is the only
way to exploit parallelism in some applications with no regular access patterns
or loop data dependencies which can be hidden by recomputing techniques [6].

3 Floyd-Warshall Algorithm

The FW algorithm uses a dynamic programming approach to compute the all-
pairs shortest-paths problem on a directed graph [7, 20]. This algorithm takes
as input a N ×N distance matrix D, where Di,j is initialized with the original
distance from node i to node j. FW runs for N iterations and at k -th iteration it
evaluates all the possible paths between each pair of vertices from i to j through
the intermediate vertex k. As a result, FW produces an updated matrix D,
where Di,j now contains the shortest distance between nodes i and j. Besides,
an additional matrix P is generated when the reconstruction of the shortest path
is required. Pi,j contains the most recently added intermediate node between i
and j. Figure 1 exhibits the naive FW algorithm.

4 Implementation

In this section, we address the optimizations performed on the Intel Xeon Phi
KNL processor. First of all, we developed a serial implementation following the
naive version described in Figure 1, as this implementation will work as base-
line. Next, we optimized the serial version considering data locality and data
level parallelism. Finally, we introduced thread level parallelism exploiting the
OpenMP programming model to obtain a multi-threaded implementation.
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4.1 Data Locality

To improve data locality, the FW algorithm can be blocked [19]. Unfortunately,
the three loops can not be interchanged in free manner due to the data depen-
dencies from one iteration to the next in the k -loop (just i and j loops can be
done in any order). However, under certain conditions, the k -loop can be put
inside the i-loop and j -loop, making blocking possible. The distance matrix D
is partitioned into blocks of size BS × BS, so that there are (N/BS)2 blocks.
The computations involve R = N/BS rounds and each round is divided into
four phases based on the data dependency among the blocks:

1. Update the block k,k (Dk,k) because it is self-dependent.
2. Update the remaining blocks of the k -th row because each of these blocks

depends on itself and the previously computed Dk,k.
3. Update the remaining blocks of the k -th column because each of these blocks

depends on itself and the previously computed Dk,k.
4. Update the rest of the matrix blocks as each of them depends on the k -th

block of its row and the k -th block of its column.

In this way, we satisfy all dependencies from this algorithm. Figure 2 shows
a schematic representation of a round computation and the data dependences
among the blocks while Figure 3 presents the corresponding pseudo-code.

4.2 Data Level Parallelism

The innermost loop of FW BLOCK code block from Figure 3 is clearly the most
computationally expensive part of the algorithm. In that sense, this loop is the
best candidate for vectorization. The loop body is composed of an if statement
that involves one addition, one comparison and (may be) two assign opera-
tions. Unfortunately, the compiler detects false dependencies in that loop and
is not able to generate SIMD binary code. For that reason, we have explored
two SIMD exploitation approaches: (1) guided vectorization through the usage

Fig. 1: Naive Floyd-Warshall Algorithm

Fig. 2: Schematic representation
of the blocked Floyd-Warshall Al-
gorithm
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Fig. 3: Blocked Floyd-Warshall algorithm.

Fig. 4: Pseudo-code for
FW BLOCK implementation
using guided vectorization

Fig. 5: Pseudo-code for FW BLOCK im-
plementation using intrinsic vectorization

of the OpenMP 4.0 simd directive and (2) intrinsic vectorization employing the
AVX-512 extensions. The guided approach simply consists of inserting the simd
directive to the innermost loop of FW BLOCK code block (line 4). On the op-
posite sense, the intrinsic approach consists of rewriting the entire loop body.
Figures 4 and 5 show the pseudo-code for FW BLOCK implementation using
guided and manual vectorization, respectively. In order to accelerate SIMD com-
putation with 512-bit vectors, we have carefully managed the memory allocations
so that distance and path matrices are 64-byte aligned. In the guided approach,
this also requires adding the aligned clause to the simd directive.

4.3 Loop Unrolling

Loop unrolling is another optimization technique that helped us to improve the
code performance. Fully unrolling the innermost loop of FW BLOCK code block
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was found to work well. Unrolling the i-loop of the same code block once was
also found to work well.

4.4 Thread Level Parallelism

To exploit parallelism across multiple cores, we have implemented a multi-
threaded version of FW algorithm based on OpenMP programming model. A
parallel construct is inserted before the loop of line 13 in Figure 3 to create a
parallel block. To respect data dependencies among the block computations, the
work-sharing constructs must be carefully inserted. At each round, phase 1 must
be computed before the rest. So a single construct is inserted to enclose line 16.
Next, phases 2 and 3 must be computed before phase 4. As these blocks are
independent among them, a for directive is inserted before the loops of lines 18
and 22. Besides, a nowait clause is added to the phase 2 loop to alleviate the
thread idling. Finally, another for construct is inserted before the loop of line
26 to distribute the remaining blocks among the threads.

5 Experimental Results

5.1 Experimental Design

All tests have been performed on an Intel server running CentOS 7.2 equipped
with a Xeon Phi 7250 processor 68-core 1.40GHz (4 hw thread per core and
16GB MCDRAM memory) and 48GB main memory. The processor was run in
Flat memory mode and Quadrant cluster mode.

We have used Intel’s ICC compiler (version 17.0.1.132) with the -O3 opti-
mization level. To generate explicit AVX2 and AVX-512 instructions, we em-
ployed the -xAVX2 and -xMIC-AVX512 flags, respectively. Also, we used the
numactl utility to exploit MCDRAM memory (no source code modification is
required). Besides, different workloads were tested: N = {4096, 8192, 16384,
32768, 65536}.

5.2 Performance Results

First, we evaluated the performance improvements of the different optimiza-
tion techniques applied to the naive serial version, such as blocking (blocked),
data level parallelism (simd, simd (AVX2) and simd (AVX-512)), aligned access
(aligned) and loop unrolling (unrolled). Table 1 shows the execution time (in
seconds) of the different serial versions when N=4096. As it can be observed,
blocking optimization reduces execution time by 5%. Regarding the block size,
256 × 256 was found to work best. In the most memory demanding case of each
round (phase 4), four blocks are loaded into the cache (3 distance blocks and 1
path block). The four blocks requires 4 × 256 × 256 × 4 bytes = 1024 KB =
1MB, which is exactly the L2 cache size.

As stated in Section 4.2, the compiler is not able to generate SIMD binary
code by itself in the blocked version. Adding the corresponding simd constructs
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Table 1: Execution time (in seconds) of the different optimization techniques
applied to the naive serial version when N=4096.

naive blocked simd simd (AVX2) simd (AVX-512) aligned unrolled

602.8 572.66 204.52 100.47 36.95 33.28 22.95

to the blocked version reduced the execution time from 572.66 to 204.52 seconds,
which represents a speedup of 2.8×. However, AVX-512 instructions can perform
16 SP operations at the same time. After inspecting the code at assembly level,
we realized that the compiler generates SSEx instructions by default. As SSEx
can perform 4 SP operations at the same time, the 2.8× speedup has more sense
since not all the code can be vectorized. Next, we re-compiled the code including
the -xAVX2 and -xMIC-AVX512 flags to force the compiler to generate AVX2
and AVX-512 SIMD instructions, respectively. AVX2 extensions accelerated the
blocked version by a factor of 5.8× while AVX-512 instructions achieved an
speedup of 15.5×. So, it is clear that this application benefits from larger SIMD
width. In relation to the other optimization techniques employed, we have found
that the simd (AVX-512) implementation runs 1.11× faster when aligning mem-
ory accesses in AVX-512 computations (aligned). Additionally, applying the loop
unrolling optimization to the aligned version led to higher performance, gaining
a 1.45× speedup. In summary, we achieve a 26.3× speedup over the naive serial
version through the combination of the different optimizations described.

Taking the optimized serial version, we developed a multi-threaded imple-
mentation as described in Section 4.4. Figure 6 shows the performance (in terms
of GFLOPS) for the different affinity types used varying the number of threads
when N=8192. As expected, compact affinity produced the worst results since
it favours using all threads on a core before using other cores. Scatter and bal-
anced affinities presented similar performances improving the none counterpart.
As the KNL processor used in this study has all its cores in the same package,
scatter and balanced affinities distribute the threads in the same manner when
one thread per core is assigned. Regarding the number of threads, using a sin-
gle thread per core is enough to get maximal performance (except in compact
affinity). This behavior is opposed to the KNC generation where two or more
threads per core where required to achieve high performance. However, it should
not be a surprise since the KNL cores were designed to optimize single thread
performance including out-of-order pipelines and two VPUs per core.

It is important to remark that, unlike the optimized serial version, the parallel
implementation used a smaller block size since it delivered higher performance.
A smaller block size allowed a finer-grain workload distribution and decreased
thread idling, especially when the number of threads was larger than the number
of blocks in phases 2 and 3. Another reason to decrease block size was that the
L2 available space is now shared between the threads in a tile, contrary to the
single threaded case. In particular, BS=64 was found to work best.
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Fig. 6: Performance for the different affinity types used varying the number of
threads when N=8192.

Figure 7 illustrates performance evolution varying workload and MCDRAM
exploitation for the different vectorization approaches. For small workloads (N
= 8192), the performance improvement is little (∼1.1×). However, MCDRAM
memory presents remarkable speedups for greater workloads, even when the
dataset largely exceeds the MCDRAM size (N = 655536). In particular, MC-
DRAM exploitation achieves an average speedup of 9.8× and a maximum speedup
of 15.5×. In this way, we can see how MCDRAM usage is an efficient strategy
for bandwidth-sensitive applications.

In relation to the vectorization approach, we can appreciate that guided
vectorization leads to slightly better performance than the intrinsic counterpart,
running upto 1.03× faster. The best performances are 330 and 338 GFLOPS
for the intrinsic and guided versions, respectively. After analyzing the assembly
code, we realized that this difference is caused by the prefetching instructions
introduced by the compiler when guided vectorization is used. Unfortunately,
the compiler disables automatic prefetching when code is manually vectorized.

6 Related Works

Despite its recent commercialization, there are some works that evaluate KNL
processors. In that sense, we highlight [18] that presents a study of the per-
formance differences observed when using the three MCDRAM configurations
available in combination with the three possible memory access or cluster modes.
Also, Barnes et al. [3] discussed the lessons learned from optimizing a number
of different high-performance applications and kernels. Besides, Haidar et al. [9]
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Fig. 7: Performance evolution varying workload and the MCDRAM exploitation.

proposed and evaluated several optimization techniques for different matrix fac-
torizations methods on many-core systems.

Obtaining high-performance in graph algorithms is usually a difficult task
since they tend to suffer from irregular dependencies and large space require-
ments. Regarding FW algorithm, there are many works proposed to solve the
all-pairs shortest paths problem on different harwdare architectures. However,
to the best of the authors knowledge, there are no related works with KNL pro-
cessors. Han and Kang [10] demonstrated that exploiting SSE2 instructions led
to 2.3×-5.2× speedups over a blocked version. Bondhugula et al. [4] proposed
a tiled parallel implementation using Field Programmable Gate Arrays. In the
field of GPUs, we highlight the work of Katz and Kider [13], who proposed a
shared memory cache efficient implementation to handle graph sizes that are
inherently larger than the DRAM memory available on the device. Also, Mat-
sumoto et al. [15] presented a blocked algorithm for hybrid CPU-GPU systems
aimed to minimize host-device communication. Finally, Hou et al. [11] evaluated
different optimization techniques for Xeon Phi KNC coprocessor. Just as this
study, they found that blocking and vectorization are key aspects in this prob-
lem to achieve high performance. Also, guided vectorization led to better results
than the manual approach, but with larger performance differences. Contrary
to this work, their implementation benefited from using more than one thread
per core. However, as stated before, there are significant architectural differences
between these platforms that support this behavior.
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7 Conclusions

KNL is the second generation of Xeon Phi family and features new technolo-
gies in SIMD execution and memory access. In this paper, we have evaluated
a set of programming and optimization techniques for these processors taking
the FW algorithm as a representative case study of graph and memory-bound
applications. Among the main contributions of this research we can summarize:

– Blocking technique not only improved performance but also allowed us to
apply a coarse-grain workload distribution in the parallel implementation.

– SIMD exploitation was crucial to achieve top performance. In particular,
the serial version run 2.9×, 6× and 15.5× faster using the SSE, AVX2 and
AVX-512 extensions, respectively.

– Aligning memory accesses and loop unrolling also showed significant speedups.
– A single thread per core was enough to get maximal performance. In addi-

tion, scatter and balanced affinities provided extra performance.
– Besides keeping portability, guided vectorization led to slightly better per-

formance than the intrinsic counterpart, running upto 1.03× faster.
– MCDRAM usage demonstrated to be an efficient strategy to tolerate high-

bandwidth demands with practically null programmer intervention, even
when the dataset largely exceeded the MCDRAM size. In particular, it pro-
duced an average speedup of 9.8× and a maximum speedup of 15.5×

As future work, we consider evaluating programming and optimization tech-
niques in other cluster and memory modes as a way to extract more performance.
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