Empirical Optimal Transport on Discrete
Spaces: Limit Theorems, Distributional
Bounds and Applications

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen
Doktorgrades
“Doctor rerum naturalium”

der Georg-August-Universitit zu Gottingen

im Promotionsprogramm

“PhD School of Mathematical Sciences (SMS)”
der Georg-August University School of Science (GAUSS)

vorgelegt von
Carla Tameling

aus Miinster

Gottingen, 2018



ii

Betreuungsausschuss:

Prof. Dr. Axel Munk

Institut fiir Mathematische Stochastik, Universitdt Gottingen

Prof. Dr. Anja Sturm

Institut fiir Mathematische Stochastik, Universitit Gottingen
Mitglieder der Priifungskommission:

Referent:
Prof. Dr. Axel Munk

Institut fiir Mathematische Stochastik, Universitidt Gottingen

Korreferentin:
Prof. Dr. Anja Sturm

Institut fiir Mathematische Stochastik, Universitidt Gottingen
Weitere Mitglieder der Priifungskommission:

Prof. Dr. Jorg Briidern

Mathematisches Institut, Universitidt Gottingen

Jun.-Prof. Dr. Daniel Rudolf

Institut fiir Mathematische Stochastik, Universitit Gottingen

Prof. Dr. Anita Schobel

Institut fiir Numerische und Angewandte Mathematik, Universitidt Gottingen

Dr. Yoav Zemel

Institut fiir Mathematische Stochastik, Universitdt Gottingen

Tag der miindlichen Priifung: 11.12.2018









Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisor Prof. Axel
Munk, who introduced me to the fascinating field of optimal transport. He believed in
me and my non-existing statistical skills a little more than three years ago. Without his
courage [ would never have started to do my PhD in mathematical statistics and maybe
not a PhD at all. His enthusiasm, broad expertise and guidance made this work possible.
Also, thanks to Prof. Anja Sturm for being my second referee. Furthermore, I appreciate
that Prof. Jorg Briidern, Jun.-Prof. Daniel Rudolf, Prof. Anita Schobel and Dr. Yoav
Zemel kindly agreed to be members of my thesis committee.

I was very happy to get introduced to the field of biological imaging by the group of
Prof. Stefan Jakobs from the MPI of Biophysical Chemistry, Gottingen. Here, I would
like to say thank you to Till Stephan and Dr. Stefan Stold who were incredibly patient in
explaining biological coherences and going over Illustrator files. Further, they provided
all the biological data used in this thesis.

I 'am in debt of Christian Bohm, who fixed all my IT-problems, no-matter-what special
feature I wanted to use, more or less immediately.

The financial support from the Research Training Group 2088 is gratefully acknow-
ledged.

Additionally, I owe many thanks to Dr. Max Sommerfeld for our productive discussions
and for answering every question regarding statistical knowledge I ever had. Thanks,
Max, for having become such a lovely close friend who has a friendly ear whenever |
need it and for being deeply honest in all discussions we have.

I would like to especially thank my colleagues from the IMS for creating such a lovely
working environment including fruitful discussions over lunch or even during evening
activities. In particular, thanks to Dr. Merle Behr, Anne Hobert, Henning Hollwarth,
Marcel Klatt, Dr. Claudia Konig, Peter Kramlinger, Dr. Katharina Proksch, Robin
Richter, Laura Fee Schneider, Marco Seiler and Dr. Yoav Zemel for being wonderful
friends and making me feel home in Gottingen. I appreciated it a lot that I shared the
"Frauenbiiro" with Anne Hobert and Dr. Katharina Proksch. Thank you two for always

creating a pleasant and helpful atmosphere in our office.



vi

I am also thankful for Marcel Klatt for proofreading this thesis with an incredible
accuracy and motivation and for Linda Hiillmann for proofreading some parts.

There are many others from my hometown, from my student days in Miinster and from
Gottingen who shared my path with me. Thank you all for being so good friends. Here,
I would like to mention Dr. Sonke Behrends, Laurica Pekoch and Katrin Wilke. Thanks
for giving me a good time here in Gottingen.

Last but definitively not least, I would like to say thank you to my parents, Marianne
Tameling and Heinrich Tameling, to my brother Gerd Tameling and to my boyfriend
Max Biicker. They all supported me during all my studies and made sure that I always
knew that I can rely on them. Especially, thanks to Max for his endless patience and for

moving in with me knowing that the last three months of this thesis just had started.



Preface

The beginning of optimal transport dates back more than two centuries. Since then
it has played its way into different mathematical disciplines. Among others it is a
well-established tool in probability theory to study for example limit laws, derive
concentration inequalities or for point process approximations. During the last two
decades distances based on optimal transport became also well-known in statistical
theory and found applications in a broad range of fields. Examples include machine

learning, risk measures in finance, classification and goodness-of-fit testing.

From the statistical point of view the interesting questions are the rate of convergence,
concentration results and distributional limits for the empirical optimal transport dis-
tance, i.e., based on the empirical measure generated from a sample. Distributional
limits are an essential tool in statistics for hypothesis testing and to derive confidence
bands. The theory of distributional limits for the empirical optimal transport distance
was restricted for a long time only to the one-dimensional case. These results were
extended to different special cases in higher dimensions during the last five years, but
are still incomplete. In this thesis we enhance the distributional limit results for the

empirical optimal transport distance on countable spaces.

Optimal transport is suitable to measure spatial distances between structures recorded
as images as it finds the optimal matching between these structures. Moreover, the
optimal transport plan (the optimal solution of optimal transport) allows to deduce how
far different parts of the structures are apart. To quantify spatial proximity of structures
recorded as images is especially important in biology, e.g. to study protein distributions.
We take advantage of the potential of optimal transport to measure spatial distances to
derive a new method based on optimal transport to analyze spatial proximity of proteins

in super-resolution microscopy images.

This thesis is organized as follows. In Chapter 1 we give an introduction to optimal

transport based on the historical development of this field of research. Furthermore, we
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state the main results from this thesis and compare them to existing literature. Chapter 2
deals with distributional limits for the empirical optimal transport distance on countable
metric spaces. As a special case we consider ground spaces that are trees (see Section
2.2). The results for the trees are used to derive a distributional upper bound for the
limiting distribution on general countable metric spaces. We conclude this chapter with
the numerical evaluation of this upper bound.

In Chapter 3 we derive a new method for colocalization analysis of images generated by
coordinate-targeted super-resolution microscopy methods based on optimal transport.
This new method - optimal transport colocalization (OTC) - is evaluated on different
real data sets to deduce different properties such as robustness against background and
independence of resolution.

This thesis is concluded with Chapter 4 - a discussion of the presented results and an

outlook to open research questions deduced from the results in this thesis.

Previous publications and joint work Large parts of this thesis have already been
published in Tameling et al. (2017), Tameling and Munk (2018) and Tameling et al.
(2018). The preprint Tameling et al. (2017) considers the theory for the limit laws for
the empirical Wasserstein distance for measures supported on countable spaces (Chapter
2).

The explicit limit distribution in Chapter 2.2 is joint work with Max Sommerfeld. The
author of this dissertation and Max Sommerfeld contributed equally to the derivation of
these results. The work on the distributional upper bound for the limiting distribution
was done by Max Sommerfeld. The numerical evaluation of this distributional upper
bound given in Chapter 2.2 was already published in Tameling and Munk (2018).
Most parts of Chapter 3 were published in the preprint Tameling et al. (2018). All
STED images in this chapter were generated by the Jakob’s Lab (Till Stephan, Stefan
Stoldt) from the Max Planck Institute for Biophysical Chemistry, Gottingen.
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CHAPTER 1

Introduction

The theory of optimal transport dates back to the early work of the French mathema-
tician Monge from the 18th century (Monge, 1781). Monge was concerned with the
problem of building fortresses. Therefore, he considered the question of how to move
a certain amount of material that is extracted from the earth or a mine to the building
site of the fortress in the most efficient way (see Figure 1.1). Here, efficiency means
the least possible transportation cost, which he assumed to be given by the product of
the mass and the distance. To formalize this problem in mathematical terms, we can
understand the ground level of the hole and the building site of the fortress as spaces
X and Y, respectively. Furthermore, we model the material as probability measures
on X and Y as obviously the volume of the hole and the fortress have to be the same
and describe the cost of transporting material from x € X to y € Y by a measurable
non-negative function c¢: X X Y — R,. The question of finding an optimal (minimal

cost) assignment reads

minfc(x, T (x)) du(x), (1.1)
T Jx

T

ae
AN

Figure 1.1: Monge’s problem of transporting extracted material to the building site of
the fortress.
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where we minimize over all measurable maps 7: X — VY such that THu = v. Here, THu
denotes the push-forward measure, i.e., for a measurable set A C Y the push-forward
measure is given by THu(A) = u(T~'(A)). Monge originally formulated this problem
for X,Y c R? and c(x,y) = ||x — y||, where || - || denotes the Euclidean distance. The
drawback of this formulation of the optimal transport problem is that mass splitting
is not allowed. This means that for each x € X we need to find a unique destination
y = T'(x). Therefore, one needs to impose fairly strong regularity conditions on u and
v to make this problem solvable. The fact that it took more than two centuries until
Sudakov (1979) claimed that he found a proof for the existence of an optimal map to
Monge’s original problem (the correct version of this proof can be found in Ambrosio
(2003)) and that Evans and Gangbo (1999) gave a rigorous proof, shows how difficult
this problem is.

A relaxed version of Monge’s optimal transport problem was introduced by Kantorovich
(Kantorovich, 1948, 1958). For probability measures u supported on the space X and v

on Y the Kantorovich optimal transport problem is given as

min f c(x,y) dn(x,y), (1.2)
XxY

mell(u,v)

where

My, v) ={re PXxY): n(AxY) =u(Ad), n(XxB)=wB)
forall A c X, B C Y measurable} (1.3)

is the set of couplings of u and v, i.e., the set of probability measures on the product
space X X Y with marginals u and v, respectively. In contrast to Monge’s problem (1.1),
the feasible set I1(u, v) of this formulation of the optimal transport problem is never
empty as the product measure u ® v is a feasible coupling, which may has non-finite
transportation cost. The Kantorovich formulation can be seen as a relaxation of Monge’s
problem, as it allows mass splitting, i.e., the mass located at x € X can be distributed to
several y € Y. If T is an optimal solution of Monge’s problem (1.1), then 7 = (Id X T)#u
in a feasible coupling, i.e., an element of II(w, v). This transport plan is the optimal
solution of (1.2) if the cost function c is continuous and g has no atoms, i.e., there is
no x € X with u({x}) > 0 (Ambrosio, 2003, Thm. 2.1). In the rest of this thesis we
only consider the formulation of Kantorovich (1.2) and will refer to this problem as the

optimal transport problem. Kantorovich also introduced the dual of this problem

sup fwdv—f¢dy, (1.4)
(@)D JY X



1.1. The discrete case 3

where

®, := {(¢, ) € L'(dp) X L'(dv): y(y) — $(x) < c(x,y)
for p-almost all x € X and v-almost all y € 3/} (1.5)

and proved that strong duality holds (the original proof can be found in Kantorovich
(1958), for an accessible proof see Villani (2003, Thm. 1.3)).

The heuristic in terms of the building fortresses problem between the primal optimal
transport problem (1.2) and its dual (1.4) is as follows. In the primal setting the goal
is to find the optimal transference plan to achieve the minimal possible total transport
cost for transporting the material from the mine to the building site of the fortress. On
the contrary, in the dual setting one can think of an external company that is hired to
take care of the transportation. So for this external company ¢(x) is the price for which
they can buy the material from the mine and /() is the price for which they can sell the
material to the building site of the fortress. Their profit is given by ¢/(y) — ¢(x). To make
sure that they are competitive their profit should be less or equal than the transport cost
c(x,y). Otherwise, there would be no need to hire them. To sum up, the dual problem
asks for maximizing the profit of the external company with the constraint that they

have to be competitive.

1.1 The discrete case

If we restrict X and Y to be finite spaces, i.e., X = {x,...,xy}and Y = {y1,...,Yu},
the optimal transport problem can be written as a linear program

min Z (X, Y)Way

xeX,yeY

S. t. Z Wiy = Fy,

yeY (16)

E Wyy = Sy,

xeX

w >0,

where w > 0 has to be understood component-wise. Here, w, r, s are elements in
RV*M RN and R, respectively. Furthermore, ¢ is a N X M matrix, such that c(x, y)
describes the cost to transport one unit from x to y.

In case of finite spaces, the probability measures can be represented by vectors that are
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non-negative and sum up to one. More precisely, we denote by

P(X):{r = (rdwex: e 2 0¥x € X, Y 1, = 1} (1.7)
xeX
the set of probability measures on X. A vector r € P(X) represents the probability
measure ) .y 70, with ¢, being the dirac measure at x.
For the linear program in (1.6) r and s do not need to be probability vectors. There
exists a solution for this problem as long as the supply equals the demand, i.e.,
2ivex I'x = 2yey Sy If we are concerned with the optimal matching of commodities that
are countable it is reasonable to use the number of items for the right hand site of the
constraints and even restrict w to be in NV However, there are also commodities
which can be better modeled as probability measures. For example, water or sand or
any other good that can be split into infinitesimal small portions.
Parallel to Kantorovich, also Koopmans (Koopmans, 1949) and Hitchcock (Hitchcock,
1941) worked on the optimal transport problem on finite spaces primarily motivated by
economical research questions. The Nobel Prize for economics which was awarded to
Kantorovich and Koopmans in 1975 demonstrates the outstanding importance of the
theory related to optimal transport.
The above introduced setting can be generalized to countable spaces X and Y. Here,
the probability measures can still be described by (1.7), they are sequences that are

non-negative and sum up to one.

1.2 Distance based on optimal transport

Based on optimal transport a distance on the space of probability measures was
developed. This distance is known as Wasserstein distance (Vasershtein, 1969), Earth
Mover’s distance (Rubner et al., 2000), Kantorovich-Rubinshtein distance (Kantorovich
and Rubinshtein, 1958) or Mallows distance (Mallows, 1972).

Definition 1.1 (Wasserstein distance). Let (X, d) be a Polish metric space and u and v

probability measures on X. For p > 1 the p-th Wasserstein distance is given by

1/p
W,(u,v) = { min f dP(x,y) dn(x, y)} , (1.8)
XxX

well(w,v)
where 11(u, v) is the set of couplings defined in (1.3).

To see that this is actually a distance we refer to Villani (2008, p. 94).
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In the case of a countable space X = {xi, x,, ...} the Wasserstein distance is defined
via a linear program given in (1.6) with distance as cost function. To be more precise,

W5 (r, s) is the optimal value of

min > d”(x, X)Wy,
w

veX (1.9

where r and s are probability measures on X, i.e., elements in P(X) defined in (1.7).
If we do not impose any condition on 7 and s the p-th Wasserstein distance W,(r, s)
may be infinite. We can guarantee that W,(r, s) is finite if the p-th moments of r and s

exist, i.e., r, s € P,(X) with

xeX

P(X) := {r ePX): Y d(xo, )1, < oo}. (1.10)

Here, x, is some fixed but arbitrary element in X. Note, that the space is independent of

the choice of xq as for some other element X, in X it holds

DG, 0 < Y 277 (dP (o, x0) + d” (xo, X))

xeX xeX

= op-! [d”(fco, Xo) + Z dP(x, x)rx] < oo.

xeX

The Wasserstein distance metrizes weak convergence in #, and implies convergence of
the moments of order p. During the last two decades this distance has become a standard
tool in probability, e.g. to study limit laws (Johnson and Samworth (2005); Rachev and
Riischendorf (1994); Shorack and Wellner (1986)), to derive bounds for Monte Carlo
computation schemes such as MCMC (Eberle (2014); Rudolf and Schweizer (2015)),
for point process approximations (Barbour and Brown, 1992; Schuhmacher, 2009),
bootstrap convergence (Bickel and Freedman, 1981) or to quantify measures of risk
(Rachev et al., 2011).

Besides of its theoretical importance, the Wasserstein distance is used in many appli-
cations as an empirical measure to compare complex objects, e.g. in image retrieval
(Rubner et al., 2000), deformation analysis (Panaretos and Zemel, 2016), meta genomics

(Evans and Matsen, 2012), computer vision (Ni et al., 2009), goodness-of-fit testing
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(Munk and Czado, 1998; del Barrio et al., 2000), machine learning (Rolet et al., 2016;
Arjovsky et al., 2017) and two-sample testing (Ramdas et al., 2017). There are several
reasons why practitioners choose the Wasserstein distance. Among others, advantages
of the Wasserstein distance are that it incorporates the distance from the underlying
space, the intuitive interpretation as amount of work and that it performs exceptionally
well at capturing human perception of similarity.

In such applications we usually have only access to a finite sample of the underlying

measure, i.e., we have data X, ..., X, ~ r. The empirical measure associated with this
data is given by
1 n
f'n = - Z (5}(1..
n 4
i=1
Similar, §,, = #Z?; Sy, is based on the sample Yi,...,Y, ~ s. The most obvious

estimate of the Wasserstein distance is the plug-in estimate, i.e., the empirical Wasser-
stein distance W,(t,, s) in the one sample case and W,(t,, §,,) in the two sample case.
The natural question that arises is the behavior of the empirical Wasserstein distance
(W,(%,,s) or W,(£,,8,,)) compared to its population version. It is a well known result
(see e.g. Villani (2008, Cor. 6.11)) that W,(t,,8,,) — W,(7, s) almost surely if the
p-th moments of r and s exist. One can now ask for the rate of convergence or for
distributional limits regarding the empirical Wasserstein distance to understand the
convergence behavior in more detail. Distributional limits are essential for statistical

applications, e.g. in hypothesis testing or in derivation of confidence statements.

1.3 Application of optimal transport - colocalization

In biology, spatial proximity, or colocalization, is an important feature to understand
interactions between proteins. The investigation of these protein synergies is a valuable
tool as many cellular processes depend on protein networks. Usually, the distribution of
proteins is visualized by fluorescence microscopy. The analysis of the images generated
by fluorescence microscopy give some indication of the spatial proximity of the proteins
under investigation. Commonly the resolution of these images was diffraction limited.
This diffraction limit was overcome during the last two decades by super-resolution
microscopy (nanoscopy). All nanoscopy techniques are based on an ’on’ (emitting
photons) and ’off” (dark state) switching of certain fluorophores attached to the proteins
under investigation (Sahl et al., 2017; Huang et al., 2009). These nanoscopy methods
can be clustered into two major groups - the coordinate-stochastic methods (Betzig
et al., 2006; Hess et al., 2006; Rust et al., 2006) and the coordinate-targeted methods
(Sahl et al., 2017; Klar et al., 2000; Hofmann et al., 2005). In coordinate-stochastic
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nanoscopy the super-resolution is achieved via a sparse subsets of fluorophores which
are in the "on’ state. It is assumed that only one fluorophore in a neighborhood below the
diffraction limit is in the ’on’ state. Hence, it is possible to estimate the locations of the
fluorophores from the raw data. Therefore, the data provided by coordinate-stochastic
nanoscopy are lists containing fluorophore locations.

Contrary to the coordinate-stochastic methods, coordinated-targeted methods as STED
(STimulated Emission Depletion) or RESOLFT (REversible Saturable/Switchable
Optical Linear (Fluorescence) Transitions) are based on scanning over the sample while
the off-switching in desired spatial coordinates is accomplished with targeted reversible
light. Due to the scanning the raw data generated by coordinate-targeted nanoscopy are
pixel images that represent the intensities of fluorescence distributions.

The colocalization analysis of such super-resolution data comes with new challenges as
the overlap between two different channels (images of protein distributions) is drastically
reduced due to the absence of large blurring in super-resolution data. Therefore, we
propose a new method based on optimal transport to evaluate the colocalization in STED
images. Optimal transport is especially well-suited for this task as it finds the optimal
matching between the protein distributions. This matching serves as an indicator for

possible interactions between the investigated proteins.

1.4 Literature review and connections to existing work

In this section an overview of literature regarding the relationship between the empirical
Wasserstein distance and the population Wasserstein distance is given. Furthermore,

existing literature regarding colocalization analysis is presented.

Rate of convergence of empirical Wasserstein distance The beginning of research
related to the rate of convergence of the empirical Wasserstein distance started already
more than 40 years ago. Ajtai et al. (1984) investigated the rate of convergence of the
empirical Wasserstein distance for the uniform measure on the unit square, Talagrand
(1992, 1994) extended this to higher dimensions. The two-sample case with equality
of the underlying measures for general measures on [0, 1]° with D > 3 was derived
by Dobri¢ and Yukich (1995). Horowitz and Karandikar (1994) then provided non-
asymptotic bounds for the average speed of convergence for the empirical 2-Wasserstein
distance. There are several refinements of these results, e.g. Boissard and Gouic (2014),
Fournier and Guillin (2015) and Weed and Bach (2017).
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Distributional limits for the Wasserstein distance As a natural extension of general
convergence results, there is a long standing interest in distributional limits for the
empirical Wasserstein distance, in particular motivated from statistical applications.
Most of this work is restricted to the univariate case X € R. Munk and Czado (1998)
derived central limit theorems for a trimmed Wasserstein distance on the real line
when r # s whereas del Barrio et al. (1999a,b) consider the empirical Wasserstein
distance when r belongs to a parametric family of distributions for the assessment
of goodness of fit, e.g. for a Gaussian location scale family. In a similar fashion del
Barrio et al. (2005) provided asymptotics for a weighted version of the empirical 2-
Wasserstein distance in one dimension and Freitag and Munk (2005) derived limit laws
for semiparametric models, still restricted to the univariate case. There are also several
results for dependent data in one dimension, e.g. Dede (2009), Dedecker and Merlevede
(2015). For a recent survey we refer to Bobkov and Ledoux (2016) and Mason (2016)
and references therein. A major reason of the limitation to dimension D = 1 is that only
for X C R (or more generally a totally ordered space) the coupling which solves (1.9) is
known explicitly and can be expressed in terms of the quantile functions F~!' and G™! of
r and s, respectively, as 7 = (F~! x G™")#L, where £ is the Lebesgue measure on [0, 1]
(see Mallows (1972)). All the above mentioned work relies essentially on this fact. For
higher dimensions only in specific settings such a coupling can be computed explicitly
and then be used to derive limit laws (Rippl et al., 2016). Already for D = 2 Ajtai et al.
(1984) indicate that the scaling rate for the limiting distribution of W(#,, r) when r
is the uniform measure on X = [0, 1]? (if the limiting distribution exists) must be of
complicated nature as it is bounded from above and below by a rate of order W.
Recently, del Barrio and Loubes (2017) gave distributional limits for the quadratic
empirical Wasserstein distance in general dimension with a scaling rate +/n. This
yields a (non-degenerate) normal limit in the case r # s, i.e., when the data generating
measure is different from the measure to be compared with (extending Munk and Czado
(1998) to D > 1). Their result centers the empirical Wasserstein distance with an
expected empirical Wasserstein distance (whose value is typically unknown) instead of
the true Wasserstein distance and requires 7 and s to have a positive Lebesgue density
on the interior of their convex support. Their proof uses the uniqueness and stability
of the optimal transportation potential (i.e., the minimizer of the dual transportation
problem (1.4), see Villani (2003) for further information) and the Efron-Stein variance
inequality. However, in the case » = s, their distributional limit degenerates to a
point mass at 0, underlining the fundamental difficulty of this problem again. An
alternative approach has been advocated recently in Sommerfeld and Munk (2018)

who restrict to finite spaces X = {xi,..., xy}. They derive limit laws for the empirical
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Wasserstein distance for 7 = s (and r # s). Under equality of measures they get for the
p-th empirical Wasserstein distance the scaling rate n'/?” and in the case of different

underlying measures a /1 rate.

Colocalization Colocalization analysis of conventional microscopy images is a widely
used tool to investigate protein interactions (Landmann and Marbet, 2004; Humpert
et al., 2015; Li et al., 2004; Herce et al., 2013; Demandolx and Davoust, 1997;
Adler and Parmryd, 2010; Agnati et al., 2005; Bolte and Cordelieres, 2006; Eggert
et al., 2014; Moser et al., 2017; Neumann et al., 2010; Osterwald et al., 2012; Worz
et al., 2010; Xu et al., 2016; Zinchuk and Grossenbacher-Zinchuk, 2009; Zinchuk and
Grossenbacher-Zinchuk, 2014; Zinchuk and Zinchuk, 2008). Common methods are
visual inspection of the overlay of two colored channels and methods based on pixel
intensity correlation (pixel-based methods). These pixel-based methods rely on a pixel
to pixel comparison between the two images. The most widely used methods based on
the correlation principle are Manders’ colocalization coefficient, Pearson’s correlation
and a thresholded version of Pearson’s correlation (Costes et al., 2004; Dunn et al.,
2011; Manders et al., 1992, 1993; Barlow et al., 2010). All theses coefficients are
a measure for the average degree of colocalization. Therefore, detecting correlated
regions and evaluating the colocalization in different spatial areas which is accompanied
by the evaluation of colocalization on different spatial scales is another relevant topic in
this research area (Wang et al., 2016, 2017, 2018).

For data sets recorded with coordinate-stochastic nanoscopy, it is quite common to
use colocalization methods based on concepts from spatial statistics (Coltharp et al.,
2014; Georgieva et al., 2016; Lagache et al., 2015; Lehmann et al., 2011; Malkusch
et al., 2012), including k-nearest neighbors and Ripley’s K. These methods are known

as object-based methods as they operate on the coordinates of the fluorophores.

1.5 Main results

In this section we give an overview of the main results of this thesis regarding the two
topics distributional limits for the empirical Wasserstein distance and optimal transport

based methods for colocalization analysis.

1.5.1 Distributional limits

The main contribution is a distributional limit result for the empirical Wasserstein
distance W,(£,,8,,) on countable spaces X = {xi, x», ...} (see Chapter 2). For all results

we assume that the empirical measures are formed based on independent and identically
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distributed (i.i.d.) data. We further assume that » and s have finite p-th moments,
i.e., both measures are elements of #,(X) in (1.10). In case that the diameter of the
countable metric space (X, d) is infinite, we need the assumption that = and s fulfill the

following condition (respective formula for s)

de(xo,x) 7o < oo, (1.11)
xeX

where xj is some fixed but arbitrary element in X. This condition is extensively

discussed in Chapter 2.1.2. Under equality of measures, i.e., 7 = s, we prove that

1
( o )2” W (R 8) 2> { max (G, A>}”.

n+m AeS*(r)

Here, 2) indicates weak convergence, G is a centered Gaussian which is the limit of
\n(t, — r) and S*(r) denotes a convex set that is related to the set of dual solutions of
the Wasserstein distance (see (2.4)). These results can be used for statistical testing and
confidence statements under the null hypothesis of equality of measures.

We also given an analogous result for the case that the underlying measures are different,
1.e., r # s. Further, we consider the one-sample case and derive analogous results in
both cases (under equality of measures and different underlying measures).

The distributional limits are derived as consequence of the directional Hadamard
differentiability (see 2.3.2) tangentially to the set of measures with finite p-th moment
(1.10) of the optimal value of the linear program given in (1.9) in conjunction with a

generalized delta method for non-linear derivatives.

All derived limit distributions are given implicitly via a maximization problem. In
the case of the underlying ground space X being a tree and under the assumption of
equality of measures we can explicitly calculate this maximum (see Chapter 2.2). This
explicit result can be used to upper bound the limiting distribution on general spaces

(see Sommerfeld (2017)). The accuracy of this upper bound is numerically investigated.

1.5.2 Colocalization

We derive a new method based on optimal transport - Optimal Transport Colocalization
(OTC) - to analyze colocalization in coordinate-targeted super-resolution microscopy.
OTC is a pixel-based method and hence, can be directly applied on raw STED data,
as the raw data are pixel-images. The major benefit of OTC over the conventional

pixel-based coefficients is the capability of capturing colocalization on different scales
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simultaneously. In contrast to the widely used colocalization coeflicients, OTC represents
a curve that measures colocalization in dependency of a spatial parameter. Additionally,

we propose methods to analyze the OTC curves from a statistical point of view.
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Introduction




CHAPTER 2

Distributional limits

In this chapter we introduce important notation and derive distributional limit results
for the empirical Wasserstein distance on countable spaces. Further, we give explicit
limit results in the case that the underlying countable space is given by a weighted tree
and use this to derive an upper bound for the limiting distribution on general spaces.

The accuracy of this upper bound is investigated in simulations.

2.1 Wasserstein distance on countable metric spaces

Let throughout the following X = {x;, x5, ...} be a countable metric space equipped
with a metric d: X X X — R,. The probability measures on X are infinite dimensional
vectors (sequences) 7 in P(X) given in (1.7).

We want to emphasize that we consider the discrete topology on X and do not embed X
for example in RP. This implies that the support of any probability measure 7 € P(X)
is the union of points x € X such that r, > 0.

The p-th Wasserstein distance (p > 1) is given by the p-th root of the optimal value
of the linear program in (1.9). As mentioned in the introduction this distance is finite
for all measures with finite p-th moment, more precisely for all , s € #,(X) in (1.10).
We need to introduce the weighted £!-space fclz’;o (X) which is defined via the weighted

£'-norm

Pl = Y, d7 (6 xo) I + | @.1)
xeX

with the same xy € X as in the definition of #,(X). The necessity arises due to the
fact that the set of probability measures with finite p-th moment is a closed subset

of £ Ellp (X) and hence complete itself. This will play a crucial role in the proof of the
X0

directional Hadamard differentiability (see Section 2.3.2). The weighted ¢'-norm (2.1)
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can be extended in the following way to sequences on X X X and hence to #,(X x X)

”w”fl(dfo) = Z dp(-an X) Wx,x’ + |Wx0,x’| + Z dp(xo, X,) Wx,x’ + |Wx,x0| .
x,x'eX x,x’'eX
2.1.1 Main results
Define the empirical measure generated by i.i.d. random variables X1, ..., X, from the
measure 7 as
1 n
i\‘n = (?‘n,x)xe)(’ where f'n,x = - Z ]l{Xk:x}’ (22)
=
and §,, is defined in the same way by Y;,..., Y, 4 s We assume that the collections
of random variables Xi,..., X, and Y1,...,Y,, are independent. Furthermore, let
(X = {(ax>xex eRY: Y lad < oo}
xeX
and its dual
°(X) = {(ax)xex e RY : supla,| < oo}.
xeX
We also require the dual norm of || - ||€1(d50), a weighted version of the {*-norm to
characterize the set of dual solutions:
llall g (q-r) = max (|ch0 , sup |d‘p(x, xo)ax|),
"0 x#xoeX
for p > 1. The space t’;i,,()() contains all elements which have a finite || - ||€w(d;§)—
X0

norm. This is the dual of the weighted £'-space ¢ [llp (X) (see Section 2.3.1 for further
explanations). '

For r, s € P,(X) we define the following convex sets

S8 = (A € O GO N e =Wirs)
A+ puy <dP(x,xX) VYx,x' € X} .

and
S'(r)={X ey, (X): 4, - Ay <d"(x,x') Vx,x €supp(r)}, (2.4)
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with supp(r) = {x € X: r, > 0}. For our limiting distributions we define the following

(multinomial) covariance structure

r(l—-ry) ifx=x,
X(r) = (2.5)

—rry if x # x'.

Theorem 2.1. Let (X, d) be a countable metric space and r, s € P ,(X) such that (1.11)
holds for some xo € X, p > 1, and ¥, be generated by i.i.d. samples Xi,...,X, ~ r.
Furthermore, let G ~ N(0,Z(r)) be a Gaussian process with X as defined in (2.5). Then

a) Forr = s it holds forn — o

1
W, (1) —> { max (G, >\>}p . (2.6)
AES*(r)

b) Forr # s it holds for n — o

72 1
n%(Wp(f‘n, 8) — Wy(r,s)) —>j —W;_p('r, s) { max (G, )\)} . 2.7
D (A.p)eS*(r.s)

Note, that we obtain different scaling rates under equality of measures r» = s (null-
hypothesis) and the case r # s (alternative), which has important statistical consequences.
For r # s we are in the regime of the standard C.L.T. rate /i, but for » = s we get the

1 . . .
rate n>, which is strictly slower for p > 1.

Remark 2.2. a) Note, that in Theorem 2.1 for v # s the objective function in (2.7) is
independent of the second component p of the feasible set S*(r, s). This is due to

the fact that in W,(%,, s) the second component is not random.

b) Observe, that the limit in (2.7) is normally distributed if the set S*(r, s) is a singleton
up to a constant shift. This is the case if the linear program underlying the definition
of the Wasserstein distance (1.9) is non-degenerate. In the case of equality of
measures the underlying linear program (1.9) is for all r degenerate and hence the

set S*(r) is never a singleton up to constant shifft.

c) We would like to emphasize that the set of dual solutions S*(r) is independent of r,
if the support of r is full, i.e.,

S ={Ael,(X): - <d”(x,x) Vx,x € X} (2.8)

This offers a universal strategy to simulate the limiting distribution on trees independent

of r. For more details see Appendix 2.3.3.
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Remark 2.3 (Degeneracy of limit law). In the case that r has full support and p > 1 the
limit in (2.6) degenerates to a point mass at zero if S* contains only constant elements,

i.e., 4, = cforall x € X and some c € R. In this case the variance of (G, \) is given by

ZczVar(Gx)+ Z ¢ Cov(G,, Gy)

xeX x,x'eX,x£x
= Z czrx(l — 1) — Z czrxrx»
xeX x,x €X,x£x’
= Z czrx(l — 1) — Z czrx Z Ty
xeX xeX x'eX,x'#x
=Y rl=r)= > rl-r) =0,
xeX xeX

Hence, as the variance is zero for all elements in S* so is the variance of the maximum
and this yields that the right hand side in (2.6) is a dirac measure at zero.
The set of dual solutions 8* contains only constant elements if and only if the space X

has no isolated point. To see this recall the definition of S* for full support of r in (2.8)
S ={xe £rr(X) s A= Ay Sd"(x, X)) Vx, ¥ € X},
The condition that defines S* is equivalent to
A — Aw| < dP(x, 7).

For fixed x € X there exits a sequence (X,)neny Such that the distance d(x, x,) gets
arbitrary small if and only if x is not an isolated point. If this holds for all x € X, i.e.,
the space X contains no isolated point, the dual solution X\ has to be constant.

Now, the question arises if there exists another scaling rate than n such that the limit
is not degenerated. This question can be answered for X being a subset of the real line
R that has no isolated point as it follows from Theorem 7.11. in Bobkov and Ledoux
(2016) that scaling with \/n provides then a non-degenerate limit law. On the other
hand, as soon as X C R contains an isolated point our rate coincides with the rate
given in Bobkov and Ledoux (2016).

For statistical applications it is also interesting to consider the two sample case,

extensions to k-samples, k > 2 being obvious then.

Theorem 2.4. Under the same assumptions as in Theorem 2.1 and with §,, generated
byYy,...,Y, bid- s, independently of X, ..., X, S and H ~ N(0,2(s)), which is
independent of G, and the extra assumption that s also fulfills (1.11) the following

holds.
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a) Letpy, = (nm/(n+m))Y2. For r = s and min(n, m) — oo such that m/(n+m) —

a € [0, 1] we have

Urw (5. 6.) 2 p

P EW,(£,,8,) — ¢ max (G, A); . (2.9)
’ AeS (1)

b) Forr + s and n,m — oo such that min(n,m) — oo and m/(n + m) — «a € [0, 1]

we have

pn,M(Wp(f'm §m) - Wp(’l“, 8)) i
! (2.10)
;W;—P(r, s){ max  Va(G,\) + V1 —a (H, M)} )

(A)ES*(1r,8)

Remark 2.5. In the case of dependent data analogous results to Theorem 2.1 and
2.4 will hold, as soon as the weak convergence of the empirical process w.r.t. the

I| - ||gl(d§0)—n0rm is valid. All other steps of the proof remain unchanged.

The rest of this subsection is devoted to the proofs of Theorem 2.1 and Theorem 2.4. To
prove these two theorems we use the delta method for mappings that are directionally

Hadamard differentiable tangentially to a set (see Definition 2.20).

Theorem 2.6 (Romisch (2004), Theorem 1). Let U and M be normed spaces and K be
a subset of U, f: K — Y a mapping and assume that the following two conditions are
satisfied:

i) The mapping f is Hadamard directionally differentiable at u € K tangentially to K
with derivative f,(-): Tx(u) — Y.

7
ii) For each n, X,,: Q, — K are maps such that a,(X, — u) — X for some sequence

a, — +oo and some random element X.
Then we have a,(f(X,) — f(u)) Z> fi(X).

Proof of Theorem 2.1 and Theorem 2.4. To use the delta method, we need to verify
(1.) directional Hadamard differentiability of W,’,’ (-,-) and (2.) weak convergence of
vn(#, — r). We mention that the delta method required here is not standard as the
directional Hadamard derivative is not linear (see Romisch (2004), Shapiro (1991) or
Diimbgen (1993)).

1. Theorem 2.21 in Section 2.3.2 proves directional Hadamard differentiability of
W), tangentially to the set of probability measures with finite p-th moment (#,(X))

with respect to the || - ||51(d50)—norm 2.1).



18 Distributional limits

2. The weak convergence of the empirical process w.r.t. the || - ||51(d§0)—norm is

addressed in the following lemma.

Lemma 2.7. Let Xi,...,X, ~ r be i.i.d. taking values in a countable metric

space (X, d) and let t, be the empirical measure as defined in (2.2). Then,
Vi@, ) 5 G

with respect to the || - ||, @l)-norm if and only if condition (1.11) is fulfilled. Here,

G is a Gaussian process with mean 0 and covariance structure

1 - fx=x
S(r) = rol—r) ifx=x,

—Ixly ifx * xl7
as given in (2.5).

Proof of Lemma. The weighted ¢'-space £ [ll,x,o is according to Proposition 3, Maurey
(1972) of cotype 2. Hence, Vn(#, — r) converges weakly w.r.t. the £ l(a’i’o)—norm
by Corollary 1 in Jain (1976) if and only if the summability condition (1.11) is
fulfilled. o

Theorem 2.1 a) is now a straight forward application of the delta method 2.6 and the
continuous mapping theorem for f(x) = x!/7.

For Theorem 2.1 b) we use again the delta method, but this time in combination with
the chain rule for directional Hadamard differentiability (Proposition 3.6 (i), Shapiro
(1990)).

The proof of Theorem 2.4 works analogously. Note, that under the assumptions of the

theorem it holds in the case of » = s

Prn(Br8) — (7, 8)) = (, /,Hlm vk, - ), ,/ﬁ Vm(S, - s))

2 (NaG, VT=aG)) (2.11)

with G’ £ G.
The delta method together with the continuous mapping theorem and equation (2.11)

gives

9 1/p
prlt,/rilJWp(f'na §m) i { max \/&(A’ G> + V] — a(l'l’a G/)} .

Ap)eS* (r,r)

Nevertheless, for all x € X where r, > 0 itholds A, = —u, and for all x € X where r, = 0

the limit element G, is degenerate. Hence, the limit distribution above is equivalent in
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distribution to

1/p
{ max Vo, G) - Vl—a(A,G’)} .

AES*(r,7)

The independence of G and G’ yields that va(\, G) — V1 — a{\, G’) equals
Va + (1 — a){\, G) in distribution and hence the limit reduces to

1/p
{ max (A, G)} .
AeS* (1)

2.1.2 Examination of the summability condition (1.11)

According to Lemma 2.7 condition (1.11) is necessary and sufficient for the weak
convergence with respect to the || - ||gl(d§0)—norm defined in (2.1). As this condition is
crucial for our main theorem on spaces that have an unbounded diameter and we are
not aware of a comprehensive discussion, we will provide one in this section. As this
condition is not needed in the case of bounded diameter (see Section 2.1.4) we will
assume throughout this section that the diameter of X is infinite.

The first question to investigate is whether this condition it valid for all x if it is valid
for one xjy. Contrary to the independence of the space #,(X) of the choice of x, the
summability condition (1.11) is in general not independent of the choice of x,. However,
in the case that X has no accumulation point, i.e., is discrete in the topological sense,

and the unit balls are totally bounded the condition is independent of the choice of x;.

Lemma 2.8. Let X be a space without any accumulation point with respect to the metric
d and assume that the unit ball, B\(x) = {x’ € X: d(x, x") < 1}, is totally bounded for
each x € X. If condition (1.11) holds for one xy € X then it holds for all x.

Proof. Let the condition (1.11) be fulfilled for xy and let X, be another element in X.
Then, it holds

Do, )V < ) 20N o, Xo) + dP (o, ) VT

xeX xeX

< 2r-! Z dP (X, x0) /1y + Z d(xo, x) \re |-
xeX xeX

The second sum is finite due to condition (1.11). The first sum can be handled as

follows.

DV ) N+ ) A0

xeX xeBj(xp) xeBIC (x0)
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here, the second sum is again finite due to condition (1.11). The unit ball B;(xp) is
complete and totally bounded and hence, compact. This yields that it can only contain
finitely many points and the first sum is finite. From theses observations, the claim

follows. |
In the case that x; is not an accumulation point another property holds.

Lemma 2.9. Let xy € X an isolated point with respect to the metric d. If condition
(1.11) holds for p, then it also holds for all 1 < p’ < p.

Proof. As x( is an isolated point there exists € > 0 such that d(x, xo) > € for all
x # xo9 € X. Then,

P
Z d’(xp, x) \/i”_x = ¢ Z (d(xo,x)) \/”_x

xeX xeX €

> eP Z (d(xo, )C) )p \/r—x

€
xeX

= eV Z d” (xo, x) \ry.

xeX

Exponential families As we will see, condition (1.11) is fulfilled for many well
known distributions including the Poisson distribution, geometric distribution or negative
binomial distribution with the Euclidean distance as the metric d on the ground space
X =N

Theorem 2.10. Let (Py,)y, be an s-dimensional standard exponential family (SEF) (see
Lehmann and Casella (1998), Sec. 1.5) of the form

1 = hyexp (Z niTi - A(n)) . (2.12)
i=1
The summability condition (1.11) is fulfilled if (P)y, satisfies

1.) hy>1forall x € X,

2.) the natural parameter space N is closed with respect to multiplication by % ie.,

n n/2
er)(rx<oo:>2x€/\’rx < 00,

3.) the p-th moment w.r.t. the metric d on X exists, i.e., Y. .cx dP(x, xo)ry < oo for

some arbitrary, but fixed x, € X.
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Proof. For the SEF in (2.12) condition (1.11) reads

Z dP(xo, x) J exp [Z nTi — A(n))

xeX

W D d (o, %) exp[ Z mT ] (2.13)

xeX

277)
< — d?(xg, x) exp[ n T ]h < 00,
Vi 2 )
where A(n) denotes the Laplace transform. The first inequality is due to the fact that
h, > 1 for all x € X and the second is a result of the facts that the natural parameter
space is closed with respect to multiplication with % and that the p-th moment w.r.t. d

exist. O

The following examples show, that all three conditions in Theorem 2.10 are necessary.
If the p-th moment does not exist, it is clear that condition (1.11) cannot be fulfilled as
Vx> x for x € [0, 1].

Example 2.11. Let X be the countable metric space X = {%}keN and let v be the

measure with probability mass function

11
L) K

i =

with respect to the counting measure. Here, {(n) denotes the Riemann zeta function. This
is an SEF with natural parameter n, natural statistic —log(k) and natural parameter
space N = (1, 00). We choose the Euclidean distance as the distance d on our space X
and set xy = 1. It holds

2=

k=1

> 11
Zg—k—:1<00 V?]EN

and hence all moments exist for all n in the natural parameter space. Furthermore,
hix = 1. However, the natural parameter space is not closed with respect to multiplica-

tion by % and therefore,

- 1 1 1l 1 1
;h_ﬂpmmzﬁz—)mzw Vn e (1,2],

i.e., condition (1.11) is not fulfilled.
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The next example shows, that we cannot omit condition 1.) in Theorem 2.10.

Example 2.12. Consider X = N with the metric d(k,l) = k! =1|. The family of
Poisson distributions constitute an SEF with natural parameter space N = (—o0, 00)
which satisfies condition 2.) in Theorem 2.10, i.e., closed with respect to multiplication
by % The first moment with respect to this metric exists and h;, < 1 for all k > 2.
Condition (1.11) for p = 1 with xy = 0 reads

(o) k (o)
> Vi Toexp-m) = 3 o2 exp(-1/2) = oo
k=1 ' k=1

foralln > 1, i.e., the summability condition (1.11) is not fulfilled.

2.1.3 Approximation of continuous distributions

In this section we investigate to what extent we can approximate continuous measures
by its discretization such that condition (1.11) remains valid. Let X = (%)kez with
M € N be a discretization of R and X a real-valued random variable with c.d.f. F which
is continuous and has a Lebesgue density f. We take d to be the Euclidean distance and

xo = 0. For k € Z we define

K+l k
rei= F(%) _ F(M). (2.14)

Now, (1.11) can be estimated as follows.

< p (k + 1) ( k )
> F|—|-F(=
= M M

SRR \/ (e 1)/M
= —| —\[M f f()dx
k;o Ml VM kiM
P

k
M

Ik \/_ (k+1)/M
> — M d
> 2w VM, T
0 1 (k+1)/M
> VM Z — I \f (x)dx
k=—o00 2p k/M

1
= VMgflﬁdp Vf(xdx,
R

where the first inequality is due to Jensen’s inequality. As the r.h.s. tends to infinity
with rate VM as M — oo, condition (1.11) does not hold in the limit. Hence, in general

our method of proof cannot be extended in an obvious way to continuous measures.



2.1. Wasserstein distance on countable metric spaces 23

The one-dimensional case D =1 For the rest of this section we consider X = R and

want to put condition (1.11) in relation to the condition (del Barrio et al., 1999b)

) F(@)(1 = F(1))dt < oo, (2.15)
LA

where F(t) denotes the cumulative distribution function, which is sufficient and ne-
cessary for the empirical 1-Wasserstein distance on R to satisfy a limit law (see also
Corollary 1 in Jain (1976) in a more general context).

Condition (1.11) is stronger than (2.15) as the following shows. Let X be a countable
subset of R such that it can be ordered indexed by Z. Furthermore, let d(x, y) = |x — y| be
the Euclidean distance on X. For any measure r with cumulative distribution function
F on X it holds

f VE®( = F(0)dt

= Zd(xkaxkﬂ) rj ”j
j<k j>k

d( Xy, Xp1) er Zd(xk,xkﬂ) Z

IA
M8 g

k=0 >k k=—c0 J<k
00 -1

< > dC ) ) N+ D dO xe) ) N
k=0 J>k k=—00 Jj<k

-1

= ) d(xo, x) Vi + | d(xo, x) VT,

k=0 k=—00

8

Hence, if condition (1.11) holds, (2.15) is also fulfilled. However, the conditions are

not equivalent as the following example shows.

Example 2.13. Let X = N and d(x,y) = |x — y| the Euclidean distance and r a power-
law, ie., r, = é%ni where {(s) is the Riemann zeta function. In this case (2.15)

reads

f F(1 - F@)dt = L

{(s)
1 - 1 1 « s
ST\ 2TF 5w 2 \e

and this is finite if and only if s > 3. On the other hand, condition (1.11) reads as

;( - )\/g(s)ks_ \/{(—Sst/Zl
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This is finite if and only if s > 4. Hence, for s > 3 condition (2.15) is fulfilled while
condition (1.11) is only valid for s > 4.

For p = 2 in dimension D = 1 there is no such easy condition anymore in the case of
continuous measures, see del Barrio et al. (2005). Already for the normal distribution
one needs to subtract a term that tends sufficiently fast to infinity to get a distributional
limit (which was originally proven by de Wet and Venter (1972)). Nevertheless, for a
fixed discretization of the normal distribution via binning as in (2.14) condition (1.11)
is fulfilled and Theorems 2.1 and 2.4 are valid.

2.1.4 Bounded diameter of X

A tremendous simplification is obtained once X is assumed to have bounded diameter.
First and most important, we do not need to introduce the spaces gjzﬁ.’o (X) and its dual
f;‘;,op (X) in this case. This is due to the fact, that as the diameter of the space with respect
to the metric d is bounded all moments of probability measures on this space exist.
Hence, we do not need to restrict to probability measures that have finite p-th moment
to guarantee that the linear program (2.23) defining the Wasserstein distance has a finite
value. Thus, we can operator on P(X) which is a subset of £!(X). This simplifies the

summability condition (1.11) to

Z\/r_x<oo

xeX

as we get directional Hadamard differentiability with respect to the || - ||;-norm.

2.2 Limiting distribution for tree metrics

2.2.1 Explicit limits

In this subsection we give an explicit expression for the limiting distribution under
equality of measures, i.e., in the case r = s, given in (2.6) and (2.9) when the metric is
generated by a weighted tree. Further, we assume that 7 has full support (otherwise see
Rem. 2.15).

Throughout this section, we assume that the underlying ground space X is a tree. More
precisely, we assume X to be the vertices of an undirected, connected graph 7 = (X, E)
that has no cycles. Here, E ¢ X x X denotes the set of edges, i.e., connections between
two elements in X. The non-existence of cycles means that we cannot find edges

e1, - ,e, such that there exists a path from x € X to itself. Further, we assume that the
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edges are weighted by a weight function
w:E —>R,.

Additionally, we assume that our tree 7 is rooted at root(7) € X. Then, the parent
(parent(x) € X) of x € X with x # root(7") is given as the immediate neighbor of x in the
unique path connecting x and root(7"). For the root, we set parent(root(7")) = root(7").
Furthermore, children(x) is defined as the set of vertices x” € X such that there exists
a sequence x’ = Xxi,...,X, = x € X with parent(x;) = xj,; for j = 1,...,n - 1.
Note that with this definition x € children(x). Observe that children(x) can consist
of countably many elements, but the path joining x and x" € children(x) is still finite.
Let Ag = {x e X : x =root(7)}, A; = {x € X : parent(x) € Ay} \ {root(7)} and A; =
{x € X : parent(x) € A;_,} for k > 2 € N. By the definition of the A;, these sets are
disjoint and it follows | J;-, Ax = X. Now let x, x’ € X, then there exist k; and k, such
that x € Ay, and x” € A;,. Then, there is a sequence of k; + k, + 1 vertices connecting x
and x’. Hence, the unique path joining x and x" has at most k| + k, edges.

The metric ds- on X is given by the length of the unique path joining two elements x, x’

in X. More precisely,

dr(x, ') = ) wie)),

J=1
where ey,...,e, € E is the unique path in 7 joining x and x’. This metric is well

defined, since the unique path joining x and x’ is finite as we have shown above.

Additionally, define
Sru)= > u

x’echildren(x)

and 1
v
Zr p(u) = {Z (S 7). |d7(x, parent(x))” } (2.16)
xeX
foru e :1,, (X) and we set w.l.o.g. xyp = root(7"). The main result of this section is the
following.o

Theorem 2.14. Let v € P ,(X) be a probability distribution on X that has full support
and fulfills condition (1.11). Further, let the empirical measures t, and §,, be generated
by independent random variables X, ...,X, and Yy, ...Y,, independent of the X;’s,

respectively, all drawn from r = s.

Then, with a Gaussian process G ~ N(0,X(r)) with X(r) as defined in (2.5) we have
the following.
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root root
Wi
w1+ wy w1 + ws
W»o W3
(a) full tree (b) tree reduced to support

Figure 2.1: Scheme for the reduction of X to the support of r. Solid circles indicate
support points, hollow circles elements which are not in the support.

a) (One sample) As n — oo,

W W, () — Zr p(G) (2.17)

b) (Two sample) If n A\ m — oo andn/(n+m) — «a € [0, 1] we have

1

( o )2” W0 80) 2> Zy (G, (2.18)

n+m

A rigorous proof of Theorem 2.14 is given in Section 2.3.4.

The same result was derived in Sommerfeld and Munk (2018) for finite spaces. For X
countable we require a different technique of proof. Simplifying the set of dual solutions
in the same way, the second step of rewriting the target function with a summation
and difference operator does not work in the case of measures with countable support,
since the inner product of the operators applied to the parameters is no longer well
defined. For this setting we need to introduce a new basis in ¢ 51150 (X) and for each
element r € 5;50 (X) a sequence which has only finitely many non-zeros that converges

to 7 in order to obtain an upper bound on the optimal value. Then, we define a feasible

solution for which this upper bound is attained.

Remark 2.15. In case that the support is not full we can generate a weighted tree for
the support points in the following way. If x is not in the support of v we delete x and
connect parent(x) to all nodes in the set A, (x) = {x’ € X: parent(x’) = x} with edges
that have the length of the sum of the edge joining x and parent(x) and the edge joining
X' € A,y and x. Then, we can use the same arguments as in the case of full support to

derive the explicit limit on the restricted tree. This is an upper bound of the limiting



2.2. Limiting distribution for tree metrics 27

distribution on the full tree with non full support. See Figure 2.1 for an illustration.

2.2.2 Distributional bound for the limiting distribution

In this section we use the explicit formula on the r.h.s. of (2.17) for the case of tree
metrics to stochastically bound the limiting distribution on a general space X which is
not a tree. As mentioned in the preface this distributional bound was derived by Max
Sommerfeld (Sommerfeld, 2017).

For a finite space X = {xi,..., xy} a spanning tree 7 is a rooted tree with vertices given
by the elements of X and edges such that any two vertices are connected by exactly one

path. The length of this path defines the tree metric dy-.

Theorem 2.16 (Sommerfeld (2017), Theorem 10). Let r, s € P(X) and let t,, §,, be
generated by i.i.d. X;,...,X, ~randY,,...,Y, ~ s, respectively. Let further T be
a spanning tree of X. Then, if r = s we have, as n and m approach infinity such that
nAm— candn/(n+m) — « € [0,1], that

nm \\/2p
lim supP[(—) Wy(En§) > 2| < P|Zrp(G) 2 2], (2.19)
n+m

n,m— oo

where G ~ N(0, 2(r)) (multivariate Gaussian) with (1) as defined in (2.5).

In order to investigate the accuracy of this upper bound, we simulate the true limiting
distribution and the upper bound for three different spanning trees on an equidistant
grid in [0, 1]? for different grid sizes.

The spanning trees considered are the dyadic partition, the chain and the fork, see Figure
2.2. For the dyadic partition a grid with 2* points on each side is chosen. Further, for
0 < I < k let P; be the natural partition of the grid X into 2% squares with 22%/2% points.
We enlarge the space X by the center points of all P; and identify the center points in
P, with the points in X. The enlarged space is denoted by X’. A probability measure r
on X can be naturally extended to a probability measure on X’ by giving zero mass to
all center points that are not in X. A tree on X’ can be build as follows. The parent of
a center point C € P, is the center point of the unique set in P,_; that contains C. The
root of this tree is the center point of all points in X, see Figure 2.2 (c). The spanning
tree *Chain’ (see Figure 2.2 (a)) is constructed by taking the top left pixel as the root
and going in a slalom through all other nodes. The top left pixel is also the root of the
spanning tree 'Fork’ (see Figure 2.2 (b)), having only branchings at each node in the

most left column of the grid X.

We investigate the behavior of the upper bound (2.19) for five different probability

measures, the uniform measure, a random measure, i.e., a realization of the Dirichlet
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v \_“/
',/"
h e \“.

(a) ’Chain’ (b)’Fork’ (c) ’Dyadic Partition’

Figure 2.2: Three different spanning trees on a 4 X 4 grid. The black rectangle
depicts the unit square [0, 1]?, the dots indicate the locations which represent the pixels,
i.e., X (the vertices of the tree) and the red lines indicate the edges.

distribution Dir(1) and three versions of a discretized bivariate Gaussian. For the
discretized bivariate Gaussian we took as weights the density of the bivariate Gaussian
at the points in the grid normalized so that their sum is one. For the first discretized
Gaussian we choose mean u = (0.5, 0.5) and the identity as covariance matrix X;. For

the second and third the mean is again u = (0.5,0.5) but this time with covariance

1 0 I 038
22 = ,23 = .
(0 0.2) [0.8 1 )

The first Gaussian is just a shifted bivariate standard normal, i.e., the directions are

matrices

independent. In the second case this probability measure is highly concentrated in the
y-direction, still both directions are independent. In the third case the directions are

highly correlated, see Figure 2.3.

0.020

0.018

0.016

0.014

0.012

0.010

0.008

(a) Gaussian 1 (b) Gaussian 2 (c) Gaussian 3

Figure 2.3: Discretized Gaussians. The probability weights of three discretized
Gaussians with mean ¢ = (0.5, 0.5) and covariances X, 2, and X3 as explained above.

All limiting distributions and their upper bounds based on the different spanning trees
are simulated by a sample of 1000 realizations for each grid size 8 X 8, 16 X 16,32 x 32,
respectively.

In Figure 2.4 we show the resulting densities for all five different considered measures

on the 8 x 8 grid. Surprisingly, we notice that the density of the upper bound based
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on the spanning tree "Fork’ is the closest to the true limiting density no matter which
measure is underlying. The density of the upper bound with the dyadic partition is more
concentrated but farther away from the true distribution than for the chain tree.

As displayed exemplary for the uniform distribution in Figure 2.5 the upper bounds
get farther away from density of the true limiting distribution if the gird size increases.
This is due to the fact, that for increasing grid size there are more and more nodes that
have a farther distance in the tree metric than in the Euclidean distance on the grid.
Note that the tree metric is defined via the length of the edges and this is given by the
Euclidean distance between the nodes, more precisely the distance in the tree metric
is alway greater or equal to the Euclidean distance. We detect the same pattern for all

other measures.
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Figure 2.4: The densities of the limiting distribution and the upper bounds based
on the three different spanning trees for different measures. The densities were
estimated by a kernel density estimator with Gaussian kernel and bandwidth according

to Silverman’s rule of thumb.
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Figure 2.5: The densities of the limiting distribution and the upper bounds
based on the three different spanning trees for the uniform distribution on three
different grid sizes. The densities were estimated by a kernel density estimator with
Gaussian kernel and bandwidth according to Silverman’s rule of thumb.
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2.3 Proofs

2.3.1 The weighted ¢' space and its dual

In this section, we investigate for p > 1 and x, € X the space {’;p
Xo

gclifo = {r e RX: Z dP(xg, x) |rel + |1y | < oo}.

xeX

in more detail. Observe, that the space 5;,,
X0
of xj as the following example demonstrates.

is in general not independent of the choice

Example 2.17. Let X = {%}neN U {0} and d(x,y) = |x — y|. Then, T given by
0, ifx=0,
= else,

is an element offjl,, (p=1) ie, xo=0, since
0

(o)

1
Zd”(xo,x) 7ol + |7y | = Z PRI

xeX n=1

However, for xo = 1 it holds

& (= 1)
D @Dl iy = 14 ) o = e
n=2

xeX

Hence, r is not an element of £ (ljp.
1

Nevertheless, we can give conditions on X under which the space {’;p is independent of
0
the choice of xy.

Lemma 2.18. Let X have no accumulation point with respect to d and let the unit
ball Bi(x) around each element x € X be totally bounded. Then, the space € [ll,, is
independent of the choice of x. '

Proof. Letr € fjl,, . Further, let X, be another element in X. Then, it holds
XO

DA Go W) Il + | <277 " dP(Fo, x0) Irl + 277 ) dP (g, ) Il + I, |

xeX xeX xeX
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The second sum is finite by assumption. For the first sum it holds

Dilrd= D ind+ DLl DL I+ D dGo, 0l

xeX X€B1(x0) xeBS (x0) x€B1(xp) x€BS (x0)

The sum over x € B]C(xo) is again finite by assumption. The unit ball B;(x) is totally
bounded by assumption and since X contains no accumulation point we can conclude
that |B;(x)| < o0. Hence, the sum over x € B;(xy) is finite. From this, it follows that r

is also an element of £}, . o
T

The rest of this section is devoted to the proof of the fact that 52‘11, is the dual of fcllp .

0 0

Note that, for the following considerations it is not important whether the space fcll,,
X0

is independent of x, or not. The space 5(‘1,, can be viewed as ¢! with weights. For a
X0
general sequence of weights (g,).ex, 1.€., gx = 0 for all x € X, we define the subset of X

on which the weights are strictly positive P(g) = {x € X: g, > 0}. The space fél, is then

defined as
f;,: r e RY: nglrx|+ Z |7 < oo,

x€P(g) xePC(g)

where P€(g) denotes the complement of P(g) in X. More precisely, the space f;, consists

of all elements r € R¥X with finite

Il = > gelrd+ > Ird

xeP(g) xePC(g)

norm. Our aim is now to calculate the dual of £ ;, explicitly. As it will turn out, the dual

space is isomorphic to a weighted £ space, i.e.,

o~ X. -
[g_l = {,\ e R": ilelg ]l{gx>0}gx1/lx + ]l{gx:()}/lx| < Oo}'

Observe, that this is a normed space with norm

-1
Al = sup | Lig 508 A + g, =01
g xeX

Remark 2.19. In case that P€(q) = {xo} is a singleton the £*,-norm can be written as
g

Al = max( sup g7 A
8

xo#xeX

, |Ax0|) :

The first step is to verify that the space ¢! is isomorphic to 5;. This holds true as the



34 Distributional limits

function
., if x € P(g),
¢: ' > b, ), = ¢ g (2.20)
e x € PS(g).
is an isometric isomorphism between ¢! and its weighted version f;. It is well known

that a basis of £! is given by e* with

1, ify=x,
(ex)y =
0, ify=#nx.

Hence, é* = ¢(e*) is a basis of f; with ¢(-) defined in (2.20). More precisely,

1
8y

@)y, =41, ify=xandye P°yg),

, ify=xandy € P(g),

0, ify+ux
The second step is to show that each f € (fé)* can be written as

fr) =) R 2.21)
xeX
with A = (A),ex € f;‘il. Here, 7, are the coeflicients of the basis representation, i.e.,

r= erx ?xéx.
Let 1, = f(é") be the value of the continuous linear functional at the basis element é*.

Forr € f; it holds by the continuity and linearity of f

fr) = D RfE) = ) Rl

xeX xeX

Hence, for the representation given in (2.21) it remains to show that A with the choice

A = f(é) is an element of {’;‘il. Therefore, let for x € X

r'= (]l{gx>0,g;1sign(/1x) + ]l{gxzo}sign(/lx)) é’,

where sign(-) denotes the sign function. For each x € X the sequence r* is an element
1
of £, as
Il = Isign(A)] < 1.

Further, it holds
F@) = g8 1] + Tig oy 144
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and hence, we can deduce that

SUp (L0087 1Al + Lig=0) 14l < sup f(r*) < [y < oo
XE,

xeX

This proves that A = (1,)cx With 4, = f(é") is an element of 5;‘11.
As the last step we show that for all A € 5;‘11 the functional

Ly(r) = Z ATy

xeX

is an element of (£})" and that it holds [ILxll, = |Alle,. Clearly, Lx() is a linear

functional and it is bounded as

INGE Z)]( AED < Al

and hence, it holds by the definition of the dual norm
LAl ey < ”’\”f:ll'

The equality ||L)\||(g§ e = Il ¢~ can be deduced from the fact that we have proven the
2
reversed inequality in the second step. Altogether, we can conclude that the dual space

1 . . . 00
of £, is isomorphic to {’g_l.

2.3.2 Hadamard directional differentiability

In this section we follow mainly Shapiro (1991) and Romisch (2004). Let U and Y be

normed spaces.

Definition 2.20 (cf. Shapiro (1991); Romisch (2004)).

a) Hadamard directional differentiability
A mapping f: Dy C U — Y is said to be Hadamard directionally differentiable
at u € Dy if for any sequence h,, that converges to h and any sequence t, \, 0
such that u + t,h, € Dy for all n € N the limit
f(” + Z‘nhn) - f(u)

fi(h) = lim ; (2.22)

exists.
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b) Hadamard directional differentiability tangentially to a set
Let K be a subset of U, f is directionally differentiable tangentially to K in the
sense of Hadamard at u if the limit (2.22) exists for all sequences h,, of the form
h, = t;'(k, — u) where k, € K and t,, \, 0 that converge to h. This derivative is
defined on the contingent (Bouligand) cone to K at u

Tic(u) = {h €U h=Tim 7 (hn— ), kn € K, 1\ 0}.

Note that this derivative is not required to be linear in A, but it is still positively
homogeneous. Moreover, the directional Hadamard derivative f;(-) is continuous if u is

an interior point of Dy (Rémisch, 2004).

Hadamard directional differentiability of the Wasserstein distance on countable
metric spaces For r, s € ,(X) the p-th power of the p-th Wasserstein distance is the
optimal value of an infinite dimensional linear program. We use this fact to verify that
the p-th power of the Wasserstein distance (1.9) on the countable metric spaces X is
directionally Hadamard differentiable with methods of sensitivity analysis for optimal

values in linear programming.

The p-th power of the Wasserstein distance on countable metric spaces is the optimal

value of the following infinite dimensional linear program
min E dP(x, X" YW, v
1
wefdfo (XxX) eX

subject to Z Wew =7 YxelX,
YeX (2.23)

Z Wew =Sy, VX €X,

xeX

wee 20, VYx,x' eX.

Theorem 2.21. W,f as a map from (P,(X) X P,(X), | - ||€1(d§0)) toR, (r,s) — W{,’('r, s)
is Hadamard directionally differentiable tangentially to P ,(X) X P ,(X). The contingent

cone, on which the derivative is defined, is given by

D(r,s) = D(r) X D(s)
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with

. 1 . _
D(r) := {d € Ly (OMO): ) dy =0, dy€[-ri 1~ rx]}
and the directional derivative is as follows

(di,dy) = sup (A, dy) +{(p,dy)), (2.24)
(A p)eS*(r,3)

where S*(r, 8) is set of optimal solutions of the dual problem which is defined in (2.3).

Proof. We start the proof with stating the considered functions and the spaces on which
they are defined. The objective function of the linear program that determines the
p-th power of the p-th Wasserstein distance is given as f: ¢ 01[,, XxX) » Rwmr
X0
2ixwex d(x, X' )w, . The constraints are encoded by the constraint function C: 531" (XX
0

X)x L, (X)x £}, (X) = £, (X x X) x £}, (X) x £}, (X) with

w
Clw,(r,s)) =|Zjw—-r]|, (2.25)
2How — S

here X,,%,: £ Llip (X x X) — {!, (X) are the summation operators over the first and the
X0

dy,

second component, i.e., (Z;w), = X vex Wrw and (Z,w)y = ) ex Wy.r. Furthermore,

we need the closed convex set K = 5[11,, (X x X); x {0} x {0}, where ¢!, (X x X), are
0

D
df,

the elements in é’;p (X x X) that have only non-negative entries. With these definitions

the p-th power of the p-th Wasserstein distance is the optimal value of the abstract

parametrized optimization problem

min  f(w) s.t. C(w,(r,s)) € K. (2.26)
wet!, (XxX)

de

We will use Theorem 4.24 from Bonnans and Shapiro (2000). To this end, we need to

check the following three conditions.

(1.) Convexity and existence of optimal solution
Problem (2.23) is convex, since the objective function f is convex and the con-
straint set K = { cllfo (X x X); x {0} x {0} is convex. It remains to show that the
constraint function C in (2.25) is convex with respect to —K, i.e.,

Y((w, (r, 8)), (W, (7, 8))) = Ix(C((w, (r, 8))) + (@, (T, 5)))
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(11.)

is convex for (w, (, 8)), (W, (¥, 8§)) € gclﬂ;o (X x X) % fclzfo (X) x f’}’fo (X), where I is
the indicator function on K.

Let (wy, 71, 81, W1, 71, §1) and (wy, 72, 82, Ws, T, §) be in fégo(XxX)xfjii,o(X)x
561150((\’) X f;fO(X X X) X f;fO(X) X ffllfo(x) such that C(w, (7, 81)) + (W, 71, 81)
and C(w,, (12, 82)) + (s, 72, §>) are in K. This yields for i = 1,2 that

w; +w; >0,
Ziw;—r;+7; =0, (2.27)

2w;—8;+ 8, =0.

Therefore, the convex combination
A (C(wy, (71, 81)) + (W1, 71, 51)) + (1 = ) - (C(ws, (12, 82)) + (s, T2, §2))

is for all A € [0, 1] an element of K.

Next, we want to show that the set of primal optimal solutions S(r, s) is non-
empty. Since X is countable, the space is separable. If we take the discrete

topology on X that is induced by the discrete metric

0 ifx=y,

d’(x,y) =
1 ifx#y,

our space is complete and hence, X is a Polish space. By Theorem 4.1 in
Villani (2008) the set of optimal solutions for (2.23) is non-empty for each
(r, 8) € Pp(X) X P,(X) in the right hand side of the constraints of (2.23).

Directional regularity
Set for some direction (d;, d,) € D(r, s) C {’;,, (X) x {’c]lp X
XO XO

Cw,?) = (w,w'l-—r—td,wl — s —tdy,1).

The directional regularity condition is fulfilled at w in a direction (d;, d,) if
Robinson’s constraint qualification is satisfied at the point (w, 0) for the mapping
C(w, t) with respect to the set K x R, (Bonnans and Shapiro, 2000, Def. 4.8).
According to Theorem 4.9 in Bonnans and Shapiro (2000) the condition

0 € int {Cluwy, (r, ) + DC(w, (r, $)(E}y (X x X),Ro(dr, do) - K},
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(iii.)

where R, (d,, d,) = {t(d;, d,),t > 0}, is necessary and sufficient for the directional
regularity constraint. We are going to show that the directional regularity
condition in a direction (d;, d,) € D(r, s) holds for all primal optimal solutions

wy € S(r, s). For a primal optimal solution wy it is
C(wo’ (T9 3)) = (w()a Oa O)

In the following, we prove that C(w, (7, s)) is bounded with respect to the product
norm on the space £ [1150 (XxX)x( [1150 (X)x {’;go (X) as this together with the linearity
of C in (w, (r, 8)) yields that the derivative is the mapping itself. Let || - || denote
the product norm on leii’o (XxX)x( tlli’o (X)x¢ nll’;o (X). Then, we obtain

IC(w, (r, sHI = [[wlla ) + 1121w = Tllaar ) + 12w = sllaar
< llwllor ) + IZwlla@ ) + Irllaw ) + 12wl + Isllow,)
< 2”w”€1(df0) + ||7°||51(d1;0) + ||3||€1(df0)

< 2||(w, (r, s))l.

Hence, it holds that
DC(wy, (r, s))(%o (X X X),R.(d,dr)) = (w,Zyw — tdy, Lr,w — td,)
for ¢t > 0 and the directional regularity condition reads
0 € int {(wy,0,0) + (w, Zyw — td;, Zow — td,) — K} .

This set is just {’(lip (X x X) x f}i,, (X) x fi,p (X)asw € f(lip (X x X) and hence the
X0 X0 X0 X0
directional regularity constraint is fulfilled.

Stability of primal optimal solution

We aim to verify that for perturbed measures of the form r, = r +1,d; + o(t,) and
Sy =8 +t,dy +o(t,) witht, [ 0, 7, s € P,(X), d| € D(r) and d, € D(s) there
exists a sequence of primal optimal solutions w, that converges to the primal
optimal solution w, of the unperturbed problem. For n large enough it holds
t, < 1. Hence, we can assume without loss of generality that ¢, < 1 for all n.
In this case r, and s, are probability measure with existing p-th moment, i.e.,
elements of #,(X). Now, Theorem 5.20 in Villani (2008) yields the stability of
the optimal solution as #,(X) is a closed subset of 5{1!,;0 (X).

So far, we checked all the assumptions of Theorem 4.24 in Bonnans and Shapiro (2000).
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The rest of this section is devoted to the derivation of formula (2.24). The Lagrangian L

of a parametrized optimization problem
min f(w,u) s.t. Clw,u) € K

is given by
Lw, A, u) = f(w,u) + (1, C(w, u)),

where f is the objective function, u the parameter, C the constraint function and (-, -)
the dual pairing (see for example Section 2.5.2 in Bonnans and Shapiro (2000)). We
refer to A as Lagrange multiplier. For the transport problem this yields with (r, s) being

the parameter and the definition of the constraint function in (2.25)

L(w, (v, A, p), (T, 5))
= Y A5 X)W + (W w) + (A Zw = 1)+ (, Tow — 8),

x,x'eX

Differentiating this in the Fréchet sense with respect to (7, s) and applying (d;, d,) to

this linear operator results in

D(r,S)L(w’ (V9 )\, l'l')’ (T’, 8))(d15 dZ) = _(<A9 dl> + <IJ” d2>)

as the Lagrangian is linear and bounded in (7, s). As this derivative is independent of w
and the set of Lagrange multipliers A(r, s) equals the set of dual solutions $*(7, s) in
the case of a convex unperturbed problem (see section above Theorem 4.24 in Bonnans
and Shapiro (2000)) it holds that the directional Hadamard derivative is given by

(di,do) > inf sup  DiyL(w, v, A, ), (r, 9))(d, dy)
weS(T,8) (A, p)eA(r,s)

= inf sup  —((A, dy) +{(u, dy))

weS(7,8) (A, p)eA(r,s)

= sup  —((Adp) +{p, do)).
(A,p)eS*(r,s)
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2.3.3 The limit distribution under equality of measures

First, observe that for the case r = s the set of dual solutions S*(r, ) in (2.3) is given
by

S'(r.r) = {h ) € £7,(X) X £7,(X) + ¢, A) + (. pa) = 0,
A+ puy <dP(x,x) VYx,x' € X}
=m0 x,X ) rld ) =0,

x€X, s.t.ry>0

A+ e <dP(x,x') VYx,x' € X}
= {()\, ) € é’;‘lp(X) X EZTF(X) : Ay = —u, for x € supp(r),
XO ,\'0

A+ e <dP(x,x') VYx,x' € X}.

The equality follows as for x = x” the inequality condition gives A, + u, < 0 and all r, in
the sum are non-negative. The conjunction of these two conditions yields 4, + u, = 0.
This set is a subset of the set given in (2.4), but changing S*(r, r) to S*(r) does not
change the optimal value of the linear programs in Theorem 2.1 and 2.4 as the Gaussian
process G is zero at all x ¢ supp(r).

In the case, that the support of 7, i.e., {x € X: r, > 0}, is the whole ground space X, the
set S*(r) is independent of r and hence given by

S = {)\ €l(X): A — A, <d’(x,x) Vx,x € x}.

%)
!

2.3.4 Proof of Theorem 2.14

Simplify the set of dual solutions S* As a first step, we rewrite the set of dual

solutions S* given in definition (2.8) in our tree notation as
S = {A €62,(X): A= Ay <dr(x, XY, x ¥ € X} . (2.28)
0

The key observation is that in the condition A, — A,» < dg(x, x")? we do not need to
consider all pairs of vertices x, X’ € X, but only those which are joined by an edge.
To see this, assume that only the latter condition holds. Let x, x" € X arbitrary and
X = xi,...,X, = X" the sequence of vertices defining the unique path joining x and x’,

such that (x;, xj.;) € E for j = 1,...,n— 1. That this path contains only a finite number
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of edges, was proven in Chapter 2.2.1. Then,
n—1 n—1 n—1 P
A=Ay =Y (A = Ay ) £ Y dr(xj,x5) < (Z dr (x;, xj+1)) < dy(x, XY,
j=1 Jj=1 j=1

such that (2.28) is satisfied for all x, x” € X. Noting that if two vertices are joined by an

edge then one has to be the parent of the other, we can write the set of dual solutions as

S = {)\ € f;‘ip(/\’) 2 Ay = Aparento| < dg-(x, parent(x))?, x € X}. (2.29)
0

Rewrite the target function To rewrite the target function we need to make several

definitions. Let

1 e
27 (x.x0) ify = x,

S5(x) 1 : _

& =\~ o if y = parent(x),
0 else.

Furthermore, we define for r € [:1" X)
.\'0

so= ), dExore

x’echildren(x)

and {
_ s5(x)
r, = Z Sy€ - ,r.]lA<n + X; dp(x, XO) Sxe(x)’

X€A <, \r00U(T)

here, A., = {x € X: level of x < n, x is within the first n vertices of its level},

A_, = {x € X: level of x = n, x is within the first n vertices of its level},

A., = {x € X: level of x > n or x is not within the first n vertices of its level} and e(x)

the sequence which is 1 at x and 0 everywhere else. For this sequence 7, it holds

= Talloar,y = D, d"(x, x0)

xeX

1 )
rl, — _ ;Ce(x)
e 2, P (%, %)

XeA-,

s

X€A-,

< ||”‘]1A>n||5'(d’;0) +

As n — oo, the first part tends to zero as r € 5;,, (X), and
)60

S,

XEA_,

<) D, Imld@x)< ) Indd e x) == 0.

x€A-, x’echildren(x) XEAS,
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Hence, our target function for r» € ¢ ;p (X)and X € f;ip(X) can be rewritten in the
X0 £)

following way
(r, A) = lim(r,, A)

= lim Z 5 (69 \)

x€A<,
= h_{g Z Z r x’(/lx - /lparent(x))
"% Aey xechildren(x) (2.30)

< r}l—g}o Z |/lx - &parent(x)|

x€A<,

2, e

x’echildren(x)

= 31_)1{10 Z |(S7"I")x| |/1x - ﬂ»parent(x)|

x€A<,

Observe that for A € S* it holds
|2 = Aparenio| < @ (x, parent(x)). (2.31)

By condition (1.11) G ~ N (0, Z(7)) is an element of f{ll,? (X). For A € §* we get with
(2.30) and (2.31) that ’

(G, ) < lim Z (S 7G),| d7(x, parent(x))”. (2.32)

xeA<,

Therefore, maxes-(G, A) is bounded by lim,,e X ea, [(S7G)ildsr(x, parent(x))?. We
can define the sequence v € £32,(X) by

Vroot = 0
. (2.33)
Vx — Vparent(x) = Slgn((STG)x)d'l'(x’ parent(x))p

From (2.29) and the fact that d”(x, parent(x)) < d”(x, root(7")) we see that v € §* and
by plugging v into equation (2.32) we can conclude that (G, v) attains the upper bound
in (2.32).

As the last step of our proof, we verify that the limit in (2.32) exists. Therefore, we

rewrite condition (1.11) in terms of the edges and recall that xy = root(7")

Dldrxy Vi ). > dr(x, parent(x))” V. (2.34)

xeX xeX x’echildren(x)
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The first moment of the limiting distribution can be bounded in the following way:

E| D, IS7G)ldr(x parent(x))’
xeX\{root(7)}

< Z dr(x, parent(x))? /(S 77),(1 = (S77),)

xeX

< Z Z dr(x, parent(x))” \ry

xeX x’echildren(x)

< 00

due to Holder’s inequality and (2.34). This bound shows that the limit in (2.32) is

almost surely finite and hence, concludes the proof.



CHAPTER 3

Colocalization

In this chapter we propose a new method to analyze spatial proximity - colocalization -
in coordinate-targeted super-resolution images.

The methods based on pixel intensity correlation are well-suited for the analysis of
diffraction limited data. To be more precise, two images Imgl and Img2 each with
N = N, X N, pixels where N,, N, are the number of pixels in x- and y- direction,
respectively, are considered as a data set (Imgly, Img2,),...,(Imgly,Img2y) fori =
1,..., N. The pixel intensity correlation methods are based on the correlation between
these data sets. These methods are very sensitive to the resolution of the images to
be compared. With increasing resolution the correlative nature, i.e., the actual signal
overlap, of colocalization decreases as it is more likely that two neighboring proteins are

imaged in two different pixels (see Figure 3.1). On the scale of a true single molecule

Confocal Image

Sample / .
. Fluorescent
Protein 1
rotein g) Reporter A

. Fluorescent STED Image
Protein 2_-0 Reporter B 9

I

Figure 3.1: Simulation of Confocal and STED images of two proteins which are
located at a distance of 45 nm. The resolution of the confocal image is 244 nm and for
the STED image it is 40 nm.

resolution all these methods would be zero or even negative and hence would indicate

no colocalization at all.
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A further challenge to be faced in the analysis of super-resolution data is that the data
sets that are generated by the two types of super-resolution microscopy methods are
fundamentally different. Coordinate-stochastic nanoscopy provides lists containing
molecule coordinates where coordinate-targeted nanoscopy yields pixel images con-
taining fluorescence intensities. For the lists with molecule coordinates obtained by
coordinate-stochastic nanoscopy methods from spatial statistics (object-based methods)
are widely used and show a good performance.

These object-based methods are not directly applicable to STED data sets as they are
pixel images. One could estimate the coordinates from the images using mathematical
approaches (see e.g. Blom et al. (2012)), but this goes along with the introduction of
a statistical error and the loss of the pixel intensity information. Consequently, there
is the need for a direct pixel-based method that is able to quantify colocalization in

coordinate-targeted nanoscopy.

3.1 Optimal transport colocalization

To reformulate the colocalization problem in terms of optimal transport, we consider
the set of N, X N, = N pixels of the pixel image as our ground space X = {xi,..., xy}.
Here, N, and N, denote the number of pixels in the x- and the y-direction, respectively.

More precisely, X(j-1yNy+i = P where P;jfori=1,...,Nyand j=1,..., N, denotes

ijs
pixel 7, j. Furthermore, the intensities generated by STED nanoscopy themselves are
viewed as probability measure supported on a subset of R? by rescaling the intensities
such that they sum up to one, i.e., they are elements of $(X). More precisely, for a pixel
size of / nanometers we consider the image as an probability measure on an equidistant
grid in [0, N, - [] X [0, Ny - [] which represents the pixels.

Let w* be the optimal solution of the linear program defining the Wasserstein distance
in (1.9) with p = 2 and the Euclidean distance as the metric on the set of pixels X. We
introduce the Optimal Transport Colocalization (OTC) at spatial size ¢ between two

probability measures 7 and s in P(X) as

N
OTC(t) := ) Ullxi - x,ll < 1w, (3.1)
ij=1

where || - || denotes the Euclidean distance and 1 the indicator function, i.e.,
L, if |lx; — x| < ¢

Ll —xjll <1} =
0, else.



3.1. Optimal transport colocalization 47

Intuitively, OT C(t) describes the amount of mass (intensity of an image) matched at
distances not larger than ¢ inherent in the optimal matching (of the intensity distributions)
between 7 and s. See Figure 3.2(c) for a schematic representation.

By definition OTC is a value in [0, 1] for any z. The OTC curves are monotone increasing
and they approach one. Due to the fact that OTC analysis provides curves and not a
fixed value, it is a relative rather than an absolute measure for colocalization. Hence,
we propose that it is most reasonable to compare two OTC curves where one can serve
as a reference curve instead of interpreting a single OTC curve.

The biggest advantage of OTC is that it is able to detect colocalization on different
scales simultaneously. Figure 3.2(a) illustrates the case of colocalized structures which
require only a relatively small spatial adjustment to be matched. If we analyze the
colocalization of Image 1 and Image 2 in Figure 3.2(a) we observe that these structures
are perfectly colocalized at a distance of one pixel in the diagonal direction. This is
displayed by the optimal transport plan which is indicated as light blue arrows in the
right column of Figure 3.2(a). The structures in Image 1 and Image 3 are colocalized
on different scales, i.e., the vertical line is shifted by one pixel and the horizontal part
by two pixels, see the respective optimal transport plan shown as light blue arrows in
the right column of Figure 3.2(a). The size of the pixels in the three images is set to 15
nm as in the following real data sets. Hence, the whole image is contained in [0, 150]°.
The OTC captures these different scales, see Figure 3.2(b). The red curve indicates
that the structures in Image 1 and Image 2 are perfectly colocalized at a scale of 25
nm. The green dashed curve shows that roughly 37% of the objects in Image 1 and 3
(i.e., the vertical part of the structure) are colocalized at a scale of 15 nm and perfect
colocalization appears on a scale of 30 nm. Manders” M1 and M2 coefficients equal
zero in both settings and Pearson’s correlation between Image 1 and Image 2 is -0.12 as
well as between Imagel and Image 3. Hence, the conventional coefficients detect no

colocalization at all for these structures.

3.1.1 Computational aspects of OTC

For all computational tasks we use R (R Core Team, 2018). The optimal transport plan
is calculated with the R-package transport (Schuhmacher et al., 2017). More precisely,
we use the shielding algorithm (Schmitzer, 2016) to solve the optimal transport problem.
To solve the optimal transport problem is a computational bottleneck as standard solvers
have a runtime of O(N? log(N)) (Pele and Werman, 2009). This renders many practical
real world problems computational infeasible (Schrieber et al., 2017) including to
calculate OTC for the whole STED images which are usually of size 1000 x 1000 or

even larger. Therefore, we propose a uniform random sampling scheme to select image
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sections of size 128 x 128 pixels from bigger images to gain computational speed. More
precisely, we select uniformly the upper left edge of the 128 x 128 image section and
test if the proportion of pixels that are nonzero is at least as large as the proportion in
the whole image. If this is not the case, we reject this section and repeat the process.
An additional advantage of this approach is that we analyze the colocalization in image
sections that are not only background. The OTC is robust to a varying size of randomly
selected image sections (see Supplementary Figure A.6). For smaller image sections the
OTC curves increase faster as the maximal distance on which mass can be transported
is smaller. Here, we consider the fact that changing the size of the image sections does

not affect the ordering of the OTC curves as robustness.

3.2 Statistical analysis of mean OTC curves

If we have access to several OTC curves for each combination of proteins, we propose
to use the mean OTC curve. A pointwise confidence band can then be generated by
bootstrap methods. It is necessary to use bootstrap methods as we cannot assume that our
data is normally distributed at each fixed ty € [0, dyax], Where d,e = maxi<; j<n [1x; — x|
is the maximal distance between any two pixels in the image. There are several methods
to derive confidence bands via bootstrap (Efron and Tibshirani, 1994). We will compare
the bootstrap-7 confidence bands (Efron, 1981), the bootstrap percentile confidence
bands (Efron, 1979) and the BC, confidence bands (Efron, 1987) exemplarily on n = 10
STED images of the protein Tom20 and the protein complex MICOS (exemplary images
are displayed in Figure 3.3).

For each fixed threshold #;, we have n observations of OT C(t;) which we use to calculate
the mean OTC value W(to) = %Z?:l OTC(ty);. Here, the subscript i denotes the
value of the i-th OTC curve evaluated at #,. To derive the bootstrap-¢ confidence bands
we resample from these n observations B times n observations OT C(t)7, . .., OT C(ty),

with replacement and evaluate for each of these samples the statistic

_OTC (ty) - OTC(ty)
- s*/\n ’

73 b=1,...,B, (3.2)

where OTC *(to) is the mean of the bootstrap sample and s* its standard deviation. The

1 — a bootstrap-f confidence interval is now given by
|OTC — 14475, 0TC - 217 (3.3)

Here, s is the standard deviation of OTC(t)y, ..., OTC(ty), and t'=%/? is the 1 — /2
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(a) Exemplary pixel images with structures that are colocalized on different scales. In
the right column the transport plans of Imagel with Image2 and Imagel with Image3
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Figure 3.2: Optimal Transport Colocalization (OTC) analysis.
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Figure 3.3: Exemplary STED images. Left: STED image of Tom20 (red) and MICOS
(green). Right: Overlay of both channels.

percentile of the distribution of the statistic 7 in (3.2). To get a pointwise confidence
band for the whole curve, we apply this procedure for every 7, € {30,45,...,240}.

For the bootstrap percentile confidence bands we generate B bootstrap replications of
the mean and then take the /2 and 1 — @/2 percentile of this distribution. To be more
precise, let F~! be the empirical quantile function of the means. Then, the confidence

interval is given by

|77 (%) £ (1-9)]- (3.4)

As for the bootstrap percentile confidence bands we generate B bootstrap replications

of the OTC mean for the BC, method. The confidence interval for this method given as

[F (@), F(a)] (3.5)
where
50 + 2@/
=Dz +
) Dt 1T G0 + 29
and

5 (1-a/2)
~ 20+t2
a, =0 (z 0 )

+
0T a2y + z0-12)

Here, ®(-) denotes the cumulative distribution function of the standard normal and z'®
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Figure 3.4: OTC curves of n = 10 different STED image sections of Tom20 and
MICOS. Exemplary STED image sections are displayed in Figure 3.3.

the a percentile point of the standard normal. Further, 2, is defined as

. #{m*<m}]
20 =

B

with ®~!(-) being the quantile function of the standard normal. Let OT Cy;, be the i-th
jackknife value, i.e, the mean over the n — 1 observations leaving out the i-th, and
orC = % iy OT C; the mean jackknife value. Then, & is given by

3
%, (0TC(, - OTC)

a=

N
6 (2;;1 (0TC,, - OTCy) )

As mentioned we have n = 10 STED images of Tom20 and MICOS. All OTC curves
are displayed in Figure 3.4. It is clearly visible that there are two curves which have
a completely different shape compared to the rest. We generate for each of the above
described methods B = 1000 bootstrap replications and set @ = 0.05. The three
different pointwise confidence bands are depicted in Figure 3.5. We observe that the
confidence bands generated by the bootstrap-r method are not range preserving and
hence, drastically influenced by the two outliers. Furthermore, the percentile method

gives smooth confidence bands compared to the BC, method. These two methods yield
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Figure 3.5: Pointwise bootstrap confidence bands for mean OTC curve. Confidence
bands (CBs) generated from B = 1000 bootstrap replications, @ = 0.05. Displayed
are the mean OTC curve (black solid line), the bootstrap-# CBs (red dashed lines), the
bootstrap percentile CBs (blue dotted lines) and the BC, CBs (green dash dotted lines).

range preserving confidence bands. As the BC, method provides accurate coverage
probability in contrast to the percentile method (Efron and Tibshirani, 1994), we suggest

to use this method to evaluate the mean OTC curves statistically.

3.3 Results for different data applications

In this section, we analyze data sets with different characteristics by our OTC method.
We begin with an analysis of confocal and STED data. Next, as a proof of concept and
to validate our method we use data where the spatial proximity is known. Moreover, we
investigate whether OTC curves are robust against background and last we evaluate if
better results are achievable with the application of a 3D STED PSF compared to the
application of a 2D STED PSF. For all data sets we use the BC, method described in

Section 3.2 to derive pointwise confidence bands for the mean OTC curves.

3.3.1 Comparison of OTC and conventional colocalization methods
on STED and confocal data

To compare the performance of OTC with conventional colocalization coefficient
(Manders’ and Perason’s) we utilize confocal and STED images recorded on immunola-
beled human cells. We label the cells for a protein in the mitochondrial outer membrane

(Tom20) and one in the mitochondrial inner membrane (Mic60) (Figure 3.6(a)). A
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simple overlay of the two confocal images reveals many white areas, i.e., areas where
both signals are superimposed, suggesting that the labeled mitochondrial proteins are
colocalized at this level of resolution. As expected, in the overlay of the STED images,
however, only a few white dots remain, due to the higher resolution of around 40 nm.
This dependence of resolution and colocalization as seen by visual inspection of the
images, renders a quantitative determination of colocalization of STED image data
challenging. We manually select sections from the image data sets as well as relied on
the random selection mechanism described in Subsection 3.1.1. The manually selected
sections contain mitochondria and are chosen based on structural preservation and
signal to noise ratio. As the random selection mechanism singles out image regions
containing fluorescence signals, the manually selected sections have a large overlap with
the randomly selected sections (Suppl. Fig. A.1 and A.2). Both data sets are analyzed
by Manders’ M1/M2 and the two versions of Pearson’s (usual Pearson’s correlation
and a thresholded version) (Figure 3.6(b)). For the thresholded Pearson’s correlation
coefficient the background of the images is first removed by setting all pixel intensities
below a predetermined quantile to zero. This quantile is derived by iteratively setting
all intensities above a given quantile to zero until the remaining pixel intensities are
no longer correlated. We first determine on the manually selected sections the amount
of colocalization with the three conventional colocalization methods and compare the
findings for the confocal and STED data sets recorded on corresponding regions. The
mean of Manders” M1 over 10 different manually selected image sections of the confocal
data is 0.94 and the mean value of M2 is 0.9. This suggest that Mic60 and Tom20 are
almost perfectly colocalized. The averaged Pearson’s correlation coefficient is 0.73
and Pearson’s correlation with threshold is 0.72 on average. The Manders’ analysis
of the same STED sections yields an amount of colocalization of 0.78 in M1 and 0.77
in M2. This value is considerably smaller than the amount of colocalization in the
confocal data. The difference is even more drastic for the Pearson’s methods showing
a coefficient of 0.39 on the STED data. Hence, compared to the confocal images we
move from the highly colocalized regime to a regime with almost no colocalization as
the coeflicients based on pixel intensity correlation can only detect the actual signal
overlap. However, the two proteins are still in close proximity compared at the cellular
scale. The considerably smaller values in the analysis of the STED data illustrate that
the conventional colocalization methods which are based on pixel-intensity correlation
are not well-suited for colocalization analysis of nanoscopy data sets. The analysis of
the randomly chosen data sets yields comparable results (an average over 100 different
randomly selected sections was analyzed). Together, the analysis reveals that the

conventional colocalization methods report very different amounts of colocalization
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when applied on diffraction limited or super-resolved data sets. Next, we analyze the
data sets with our OTC method (Figure 3.6(c)). As described in Section 3.1, OTC is
a curve that increases from zero to one. Over the range of thresholds ¢ in the interval
[0,2000] we find a maximal difference between the average OTC curves over 10
manually selected sections of 0.12 at a threshold of 105 nm. For the OTC analysis of
100 randomly selected sections we find a difference of 0.11 at a threshold of 90 nm.
Hence, in contrast to the pixel intensity correlation based methods, the OTC analysis
reveals only a slight difference between the manually and the randomly selected sections.
In the zoomed region (inset Figure 3.6(c)) the OTC curves are displayed for thresholds
t between 30 nm and 240 nm, which represents the characteristic range between the
obtained resolution in the STED images and the resolution of the confocal images and
hence, is the most interesting regime. Therefore, we will restrict the evaluation of the
OTC curves to the range between 30 nm and 240 nm in all following analysis. Over
this entire regime we find a higher amount of colocalization in the confocal recordings
than in the STED images. The higher value in the confocal images is due to the blurring
caused by diffraction as there are more pixels that contain mass and hence the transport
takes place on smaller scales. Contrary to the established colocalization methods OTC
can quantify spatial proximity even if fluorophores are detected in different pixels.
Additionally, we display the 95% pointwise confidence band of the mean OTC curves
for the manually selected image sections as well as for the randomly selected image
sections. Both pointwise confidence bands are generated by the BC, method (see
Section 3.2) based on B = 1000 bootstrap replications. Interestingly, the pointwise
confidence bands for the manually selected image section show that we can not find a
statistically significant difference between the OTC curves of the confocal and the STED
data. In contrast, for the randomly selected image sections we deduce a significant
difference (@ = 0.05) on each individual spatial scale. To sum up, the conventional
colocalization coefficients are not well suited for the analysis of nanoscopy data sets.
Furthermore, OTC analysis reveals also a difference in the degree of colocalization of
confocal data compared to STED data. This is due to the fact that the blurring in the

confocal images leads to transport on smaller scales compared to the STED images.

3.3.2 Proof of concept on real STED data

To evaluate the OTC analysis for the quantification of colocalization in STED data, we
recorded dual-color STED images from yeast mitochondria labeled for the mitochondrial
protein Tom40 paired with the mitochondrial proteins Tom20, Cbp3 and Mrpl4 (Figure
3.7(a)) whose sub-mitochondrial distributions were previously investigated by cryo-

electron microscopy, generating a ground truth data set (Stoldt et al., 2018). From
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(a) Exemplary confocal and STED nanoscopy images of Tom20 and Mic60 in adult human dermal
fibroblasts (HDFa) (Scale bar, 500 nm).
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(b) Colocalization analysis of Tom20/Mic60 in HDFa cells using the Manders’ and Pearson’s correlation
coefficients. Bars represent the mean (over 10 manually selected sections and 100 randomly selected
sections), error bars are given in black.

1.00 -

0.75 -

0.50 -

0.25 -

Optimal Transport Colocalization

0.00 -

manually selected image sections

50 100 150 200 250

' |
0 500

1000 1500 2000
threshold in nm

Optimal Transport Colocalization

1.00 -

0.75 -

0.50 -

0.25 -

0.00 -

randomly selected image sections

500 1000 1500 2000
threshold in nm

o-

microscopy type

—— Confocal
images

——— STED
images

(c) OTC analysis of Tom20/Mic60 in HDFa Cells. 95% pointwise CBs based on B = 1000 bootstrap
replications are depiced as colored areas.

Figure 3.6: Conventional methods for colocalization analysis versus OTC analysis
of STED and confocal data. In (b) and (c) the left part displays the analysis of
manually selected sections and the right the analysis of the randomly selected sections.
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this data set it is known that Tom40 and Tom20 have the highest spatial proximity,
whereas Tom40 and Mrpl4 have the least proximity and Tom40 and Cbp3 are at an
intermediate proximity range. In addition, as a control experiment, which represents
highest empirically colocalization, we labeled Tom40 with two different markers. An
analysis with the conventional methods was performed on manually and randomly
selected image sections of the STED data. As we found again comparable results for the
manually selected and the randomly selected sections, we will only describe the findings
for the manually selected image sections. We found that the conventional colocalization
coeflicients report that Tom40/Tom40 have a higher degree of colocalization (M1: 0.9,
M2: 0.96, Pearson’s and Pearson’s with threshold: 0.82) than the other three pairs
(Figure 3.7(b)). It seems to be especially difficult to distinguish between the range
of proximity of the pairs Tom40/Cbp3 and Tom40/Mrpl4. The M1 coefficient is 0.51
and 0.57, respectively. M2 yields colocalization degrees of 0.64 and 0.71. Hence,
from Manders’ colocalization coefficient we would deduce the wrong ordering of
the proximity behavior. The two versions of Pearson’s correlation are also not able
to distinguish between the proximity of these two protein pairs. All conventional
methods find a slightly higher amount of colocalization of Tom40/Tom20 compared
to Tom40/Cbp3 and Tom40/Mrpl4 (M1: 0.71, M2: 0.79, Pearson’s: 0.49, Pearson’s
with threshold: 0.48), which corresponds to the ground truth. In contrast, the OTC
analysis on the same data sets reveals a difference between all four labeled pairs; the
order of spatial proximity detected by the mean OTC curves matches the ground truth
(Figure 3.7(c)). However, also the mean OTC curves show that the difference between
Tom40/Mrpl4 and Tom40/Cbp3 is only marginal (in a range between 0.01 and 0.09).
The difference increases for thresholds larger than 150 nm. Comparing the OTC analysis
of the manually selected and the randomly selected image sections we find that the
randomly selected sections give a better representation over the whole regime. We can
deduce from these mean OTC curves that the difference in the degree of colocalization
for the pair Tom40/Tom40 compared to the three other pairs is much larger (difference
to mean OTC curve of Tom40/Tom20 in range between 0.06 and 0.23). The differences
between the mean OTC curves of Tom40/Tom20 and Tom40/Cbp3 are between 0.03
and 0.07 and for Tom40/Cbp3 and Tom40/Mrpl4 between 0.007 and 0.055. Especially
for the small scales (¢t € [30, 75]) the degree of colocalization of Tom40/Mrpl4 is almost
not distinguishable from the degree of colocalization of Tom40/Cbp3. In Supplementary
Figure A.3 we display the mean OTC curves together with the 95% pointwise confidence
bands generated by the BC, method based on B = 1000 bootstrap replications. As the
sample size n = 10 for the manually selected image sections is quite small, the pointwise

confidence bands are rather large and hence, there is no significant difference between
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the mean OTC curves considering all at once. However, there is a significant difference
(a = 0.05) between the mean OTC curve of Tom40/Tom40 and Tom40/Mrpl4 on each
individual spatial scale. In contrast, for the randomly selected image sections there are
several pointwise significant differences. The mean OTC curve of Tom40/Tom40 is
at a significance level of 95% at each individual ¢ € {30,435, ...,240} higher than the
colocalization of all other protein pairs. Furthermore, the degree of colocalization of
Tom40/Tom20 is also for each fixed ¢ significantly higher than the one of Tom40/Mrpl4.
In line with the findings of the mean curves there is no significant difference between
Tom40/Mrpl4 and Tom40/Cbp3. In conclusion, the mean OTC curves represent the
known spatial proximity correctly. However, especially in the case of manually selected

sections the differences found are not significant.

3.3.3 Robustness against background

A common challenge of immunofluorescence microscopy is an unspecific background
signal, which often complicates the analysis of the images. We labelled adult human
dermal fibroblasts (HDFa) with antibodies against the mitochondrial proteins Tom20
and Mic60 or with antibodies against Tom20, Mic60, and Mic27. The antibody against
Mic27 binds to the Mic60 interacting protein Mic27, and, in addition to unspecific
structures in the cells. As a result, the cells labeled with the Mic27 antibody show a
stronger background signal (Figure 3.8(a)). We ask the question if OTC can be used
also to analyze such noisy data sets. Manually as well as randomly selected sections
from the noisy data sets and the data sets that have a low background are analyzed with
OTC (Figure 3.8(b)). Additionally, we display the 95% pointwise confidence bands for
each curve which is generated by the BC, method with B = 1000 bootstrap replications.
For the manually selected section we find that the colocalization in the recordings with
high background is a little higher than in the recordings with low background (maximal
difference: 0.12). In contrast, for the randomly selected sections there is almost no
difference (maximal difference: 0.02). From the pointwise confidence bands we can
deduce that there is no significant difference in the low and high background setting
at each individual spatial scale. Where Figure 3.7(b) already indicates a slightly better
performance of OTC with randomly selected sections, we find a big evidence that the
random selection mechanism performs better in the case of noisy data. The robustness
of OTC against background is in line with the robustness of the conventional methods
(see Suppl. Fig. A.4).
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(a) Exemplary STED nanoscopy images of protein pairs with a known decrease of colocalization (Scale
bar, 500 nm).
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(c) OTC analysis of the data sets represented in (a).

Figure 3.7: OTC analysis of protein pairs with known varying proximities to each
other in yeast mitochondria. In (b) and (c) the left part displays the analysis of
manually selected sections and the right the analysis of the randomly selected sections.
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(a) Exemplary STED nanoscopy images of Tom20 and Mic60 (low background) or Tom20 and Mic60
plus Mic27 (high background) (Scale bar, 500nm).
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(b) OTC analysis of the data sets represented in (a). Left: Analysis of manually picked image slices. Right:
Analysis of randomly selected image slices. 95% pointwise confidence bands based on B = 1000 bootstrap
replications are depicted as colored areas.

Figure 3.8: OTC offers a robust colocalization analysis even under suboptimal
conditions.

3.3.4 OTC analysis of images generated with 2D and 3D STED

techniques

So far, we have analyzed STED images with a xy resolution of about 40 nm, as this
method gives the highest optical resolution. Here, we compare OTC analysis of data
sets generated with 2D and 3D STED techniques. We imaged human cells labeled for
the inner membrane proteins Mic60 and a beta subunit of the F Fo-ATP synthase (ATP
beta) with a STED microscope providing an almost uniform 3D resolution of ~80 nm
in all room directions and in the 2D mode providing ~40 nm lateral resolution and
~500 nm axial resolution (Figure 3.9(a)). Mic60 is enriched at the cristae junctions,
whereas the ATP beta is primarily localized in the cristae membrane. Therefore, Mic60
is localized at the rim of the tubular mitochondria, whereas the ATP beta is preferentially
distributed in the organelle’s interior. As 2D STED inherently makes a 2D projection of
the mitochondrion, this might lead to erroneous high colocalization values. Contrary to
visual impression of the 2D and 3D STED images, the colocalization between the 2D
STED images should be higher than the colocalization between the 3D STED images.
We analyzed manually and randomly selected sections from both data sets with OTC.

Again, we also display the 95% pointwise confidence bands for all curves based on
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B = 1000 bootstrap replications (Figure 3.9(b)). For the manually selected sections
we find a small difference (~0.05) between the colocalization in the 2D and the 3D
images for thresholds smaller than 175 nm. For thresholds between 175 nm and 250
nm we cannot deduce a difference. Here, the OTC analysis with randomly selected
sections performs better as the difference in the colocalization between the 2D and 3D
STED images is clearly visible. The difference between the curves ranges from 0.04 to
0.15. The pointwise confidence bands for the manually selected sections show that this
difference is not significant. In contrast, the found difference for the randomly selected
sections is significant (&« = 5%) on each individual ¢ € {30, 45, ..., 240}. To sum up, the
usage of the 3D STED PSF enhances the OTC colocalization analysis in this setting
where proteins in a relatively thick organelle are imaged. On the contrary, the usage of
the 3D PSF does not improve the colocalization analysis with conventional methods
(see Suppl. Fig. A.5).

(a) Exemplary STED nanoscopy images of ATP beta and Mic60. A 2D STED PSF (superior resolution
along the X and Y axes but no improvement along the Z axis) was utilized to generate the images shown
on the left side. A 3D STED PSF (isotropic resolution improvement) was applied to generate the images
shown on the right side (Scale bar, 500nm).
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(b) OTC analysis of the data sets represented in (a). Analysis of manually picked image sections (left) and
analysis of randomly selected image sections (right). 95% pointwise confidence bands based on B = 1000
bootstrap replications are depicted as colored areas.

Figure 3.9: The application of a 3D STED PSF enhances colocalization analysis.
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3.4 Discussion

As nanoscopy provides much higher spatial resolution compared to conventional light
microscopy the areas with high intensity overlap are drastically reduced. Therefore,
pixel intensity correlation based colocalization coefficients, which mainly measure the
actual signal overlap, yield only small values and are not well suited for detailed and
meaningful analysis of nanoscopy data. In contrast, OTC analysis provides a curve
which displays the amount of relative proximity in terms of the minimal effort to match
two given protein distributions as a function of spatial distance. This is especially useful
for STED data because the raw data is given by pixel images as the recording depends
on pixel-scanning steps. This renders OTC analysis also a useful tool for other scanning-
based nanoscopy methods, like for example RESOLFT. We speculate that OTC analysis
performs also well on preprocessed data from coordinate-stochastic nanoscopy. If one
wants to apply one of the object-based methods developed for colocalization analysis of
coordinate-stochastic super-resolution data on STED data, one first needs to estimate
the locations of the proteins from the raw data. This introduces a statistical error. If
one applies, e.g. k-nearest neighbors directly on the pixels this does not incorporate the
pixel intensities. OTC takes care of the intensities as it matches intensity distributions
in an optimal way. Furthermore, for a chosen k the k-nearest neighbor method takes
only one scale of magnitude k into account, whereas the OTC is evaluated over all
spatial scales and is able to match corresponding pixels across scales (see Figure
3.2(c)). Bearing in mind the challenges of colocalization analysis in super-resolution
light microscopy it seems to be prudent to reassess the concept of colocalization for
nanoscopy in general. Whereas in diffraction limited light microscopy colocalization
is seen as a spatial correlation of pixel intensities, it seems to be more appropriate to
speak of relative spatial proximities of protein distributions when it comes to nanoscopy
data sets. Additionally, OTC analysis offers the possibility to set distance thresholds
depending on a priori biological knowledge. Therefore, the solution of the optimal

transport problem in the form of OTC analysis represents a promising new approach.

Recalling the results from the proof of concept section and the robustness section
we can deduce that OTC is able to distinguish the degree of colocalization for very
similar protein pairs (see Figure 3.6) and that this method is robust against background
(see Figure 3.8). In contrast to conventional methods (see Suppl. Figure A.5), the
performance of OTC analysis is even enhanced by the application of a 3D STED PSF
(see Figure 3.9) and therefore enables users to utilize the full potential of modern 3D
nanoscopy methods like 3D STED.

OTC can be calculated fully automated. The automated selection of image sections for
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OTC performed even better than the manual selection. Figures 3.6 - 3.9 demonstrate
strong robustness of the concept. We selected image sections of 128 x 128 pixels, which
takes a few seconds on a standard laptop with the shielding algorithm from Schmitzer
(2016) implemented in the transport package (Schuhmacher et al., 2017). Our random
selection scheme overcomes the computational burden to evaluate the optimal transport
problem on the full image as it selects randomly parts of the image of a computable

size.



CHAPTER 4

Discussion and outlook

This thesis considered two different topics related to optimal transport.

First, we derived limit laws for the empirical optimal transport distance on countable
spaces X. The empirical Wasserstein distance W,(£,,8,,) is the plug in estimate of
the empirical measures generated by i.i.d. data X;,...,X, ~rand Yy,...,Y, ~ s
independent of the X;’s. Limit results were derived in the one-sample case as well as in
the two-sample case. In both cases we were able to give results under the assumption
of equality of measures, i.e., 7 = s and for different underlying measures, i.e., r # s.
We found a necessary and sufficient condition on the underlying measures that has
to hold for these distributional limits if the diameter of the ground space is not finite.
This condition was extensively discussed. Further, we found that the scaling rate
under equality of measures is not the same as the scaling rate for different underlying
measures.

All derived limit distributions are given implicitly via a maximization problem. We
were able to calculate this maximum explicitly for X being a tree in the case that the
underlying measures are the same. This explicit limit was used to upper bound the
limiting distribution on general spaces. Simulation studies investigated the accuracy of
this upper bound.

Second, we proposed a method based on optimal transport - OTC - to measure
colocalization in super-resolution images. For the OTC method we presented methods
to evaluate these curves statistically and validated correctness of the results deduced by
the OTC curves by a proof of concept on STED data of proteins with known proximity.
We further investigated the robustness of OTC against background and the benefits of
using a 3D STED PSF instead of an 2D PSF.

In the following we discuss further possible research questions that could be investi-

gated.
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Distributional limits in higher dimensions Distributional limits for the empirical
Wasserstein distance for general continuous probability measures in higher dimensions
under equality of measures are still an open research question. We already observed
different scaling rates under equality of measures and under different underlying
measures. This finding is in line with the findings of Ajtai et al. (1984), who get
arate of \/rTg(n) for the uniform measure on the unit square in R? and a sample from
this measure, which shows the intrinsic difficulty of this problem. Another point that
suggests, that this problem is quite hard to solve is the fact that already on countable
spaces a careful calibration of the norm was needed to get both, differentiability and

weak convergence.

Distributional limits for the optimal transport plan Another interesting area would
be to derive limit laws for the empirical optimal transport plan on finite and countable
spaces. These results would give access to confidence statements for each entry in the
optimal transport plan and hence, we would be able to derive simultaneous confidence
bands for the OTC curves. To investigate this in more detail, recall, the definition of
OTCin (3.1)

N
OTC() = Y Uil - x;ll < 1w,
i,j=1
where w* is the optimal solution, i.e., optimal transport plan, of (1.9) with the Euclidean
distance and p = 2. OTC can be seen as an operator from R¥*V to the cadlag space
DI0, dypax] (Billingsley, 2013) on [0, dypax], Where dya = maxi< jey llx; — x| is the

maximal distance between any two pixels in the images. More precisely, we can write

N
OTC: RN = DI0,dpuls - w o ) Ty jcywi

ij=1
The operator OTC is linear and Lipschitz continuous with constant at most one.
Therefore, we would be able to derive distributional limit results for the empirical

counterpart of OT C by the continuous mapping theorem if limit results for the empirical

optimal transport plan are known.

Wasserstein barycenter Wasserstein barycenters, i.e., the Fréchet mean in the Was-
serstein space, are a widely used tool for the analysis of complex data set. For this
reason, deriving limit results for empirical Wasserstein barycenters is an interesting area
of research to use the barycenters in any statistical application. The barycenter problem
on finite spaces can also be written as the optimal solution of a linear program. So one

hopes to be able to apply similar techniques as in the case of distributional limits for the
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optimal transport plan.

Quantization The upper bound of the limiting distribution by the explicit results for
the trees falls into the field of quantization. Going deeper into this research direction,
we could ask for theoretical bounds to evaluate the accuracy of this upper bound to

complement the results from the simulation study.
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Discussion and outlook




CHAPTER A

Appendix

A.1 Supplementary figures to Chapter 3

Supplementary Fig. A.1: Example for manually selected image sections.
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Appendix

Supplementary Fig. A.2:

Example for randomly selected image sections.
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Supplementary Fig. A.3: Mean OTC curves from Figure 3.7 together with 95%
pointwise CBs based on B = 1000 bootstrap replications.
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Supplementary Fig. A.4: Conventional colocalization analysis of the data with low
and high background from Figure 3.8.
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