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Abstract

Higher-order animals exhibit the remarkable ability to dynamically adapt to a changing
environment. On the neuronal level, they have to form mental representations of specific
stimuli, so-called memories. Furthermore, they abstract and arrange multiple context-
related memories into a corresponding network that can also be adapted by changes
in the environment. Such adaptive networks of interconnected memories are termed
schemata and construct the mental representation guiding behavior. Considering two
interconnected memories within a schema, we can define three different forms of func-
tional organizations of memories dependent on the ability of the memories to either ex-
cite or inhibit each other: Two memories can either mutually excite each other, i.e. form
an association, mutually inhibit each other i.e. form a discrimination or build up an asym-
metric organization, where one memory excites and the other inhibits its interconnected
memory, i.e. form a sequence. In order to adapt schema to external stimuli, all of these
functional organizations must emerge from the same underlying neuronal mechanism.
Experimental, computational and theoretical studies have shown that the underlying neu-
ronal mechanism forming memory representations is activity-dependent synaptic plastic-
ity. This mechanism leads to the formation of strongly interconnected groups of neurons,
so-called cell assemblies, which decode memories. However, whether the same synap-
tic plasticity mechanism can account for the formation of large networks of memories is
still unknown. In this thesis, we derive a theoretical model of interacting neuronal pop-
ulations that enables to analytically study different synaptic plasticity mechanisms with
respect to their ability to form all three functional organizations of memories. Two specific
excitatory synaptic plasticity mechanisms, correlation-based and homeostatic plasticity,
have already successfully been used to form individual cell assemblies in neuronal net-
works. Nevertheless, our analysis reveals that these two plasticity mechanisms are not
sufficient to implement all different forms of functional memory organizations such that
further mechanisms are necessary. In this thesis, three distinct strategies are proposed
that enable the formation of diverse networks of memories. The first approach is to add
a further excitatory synaptic plasticity mechanism based on the causality of neuronal fir-
ing, in particular, calculating the difference of pre- and postsynaptic neuronal activities.
The second strategy is to allow for inhomogeneities in the time scale of the homeostatic
synaptic plasticity mechanism, serving the consolidation of individual memories. The
third solution is accomplished by inhibitory synaptic plasticity in addition to correlation-
based and homeostatic excitatory synaptic plasticity. However, these three distinct imple-
mentations of synaptic plasticity mechanisms are capable to enable the input-dependent
formation of all three functional organizations of memories. Therefore, implementing
these strategies yield complex adaptive networks of memories, hence, enabling behavior.
Finally, we strongly advocate that these synaptic plasticity mechanism can be used in an
dynamically input-dependent manner to compute any algorithm that is complete with re-
spect to structured program theory. Thus, the synaptic plasticity mechanisms proposed
in this thesis could be extremely useful for technical and computational applications.
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1
Introducঞon

In cognitive science, memory is understood as a record of events leading to experience.
This experience, in turn, can lead to a change of behavior, which is defined as learning
(Lieberman 2004; Hasselhorn and Gold 2013; Richter and Yang 2009) and provides an es-
sential ability for the survival of living beings. In this framework, the changes in behavior
are due to learning and adapting the corresponding mental representations and relations
of memories in the human brain. Many biological experiments provide evidence that
the underlying physical mechanism of learning is activity-dependent synaptic plasticity.
This mechanism induces changes of the synaptic weights (strength of the connections) be-
tween neurons (Hebb 1949; Martin et al. 2000). Consequently, synaptic plasticity leads
to the formation of strongly interconnected groups of neurons called cell assemblies (CAs).
CAs are hypothesized to represent memory items in neuronal systems (Kandel et al. 2013;
Palm et al. 2014; Pulvermüller et al. 2014; Buzsaki 2010). These relations between synaptic
plasticity, cell assemblies, learning, and memory are summarized in the synaptic-plasticity-
and-memory (SPM) hypothesis (Martin et al. 2000; Hebb 1949; Dayan and Abbott 2001;
Eichenbaum 2012). In particular, the storage of a memory is associated with the creation
of a cell assembly (CA) whilst the recall of a memory is linked to the activation of a CA by
an external cue (Gagné 1965; Braitenberg 1978; Palm 1981; Wickelgren 1999; Kandel et al.
2013). As known from everyday life, the brain is able to store and recall single isolated
memories. Furthermore, the brain can dynamically connect such memories with each
other to perform complex cognitive strategies (e.g., problem solving), which are depen-
dent on the specific learning situation. A cortical network of such functionally connected
memories, that allow for context specific behavior, is described by a schema (Head and
Holmes 1911; Piaget 1926; Bartlett 1932; Ghosh and Gilboa 2014). Among the multiple dif-
ferent cognitive structures, schema accounts for many of its properties, hence represents a
generic cognitive structure (Head and Holmes 1911; Bartlett 1932; Rumelhart 1980; Cooper
et al. 1995; Shea et al. 2008; Kumaran et al. 2009).

Although, it is well known that synaptic plasticity enables the formation of single mem-
ory representations (MRs) in neuronal networks (Garagnani et al. 2009; Tetzlaff et al. 2013;
Litwin-Kumar and Doiron 2014; Zenke et al. 2015) the underlying principles of the self-
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Introduction

organization of memories into a network of memories resulting in cognitive strategies
are still unknown. Since synaptic plasticity is the underlying mechanism of learning and
memory in neuronal systems, this work is based on the hypothesis that complex cognitive
strategies, dependent on the interaction and connection of numerous memories, are generated and
performed based on the dynamics of synaptic plasticity.

In order to prove this hypothesis, in Chapter 2, we provide an overview of the relevant
experimental results and theoretical concepts that describe synaptic plasticity and the for-
mation of single MRs in brain tissue. Although complex strategies require a multitude
of connected memories, the smallest functional entity is that of two connected memories
(Preston and Eichenbaum 2013; Ghosh and Gilboa 2014). Hence, in this thesis, we start by
analyzing the brain’s neuronal principles for the self-organization of two interconnected
memories. For this, we study adaptive recurrent neuronal network models sensitive to en-
vironmental learning stimuli. Independent of the underlying neuronal principles guiding
learning (i.e. synaptic plasticity), we derive in Chapter 3 a method that enables an analytic
evaluation of the FO of two interconnected memories in a population model formalism.
For this method, the dimensionality of the neuronal network is reduced by considering the
mean equilibrium states of the neuronal populations. Here, each population represents
the neuronal correlate of the specific environmental input, i.e. cell assembly (CA) or mem-
ory representation (MR). Considering two interconnected memories within a schema, we
define three different forms of FOs of memories dependent on the ability of the memories
to either excite or inhibit each other: Two memories can either mutually excite each other,
i.e. form an association (asc), mutually inhibit each other, i.e. form a discrimination (disc),
or form an asymmetric organization, where one memory excites and the other inhibits
its interconnected memory, i.e. form a sequence (seq). These distinctions for the different
forms of two functionally organized memories is based on the relation of excitatory and
inhibitory synaptic weight strengths. Importantly, our derived mathematical framework
is the first theoretical method that enables a comprehensive study on diverse neuronal
and synaptic mechanisms to form diverse FOs of two interconnected memories.

Using the analytic method derived in Chapter 3 to describe the FOs of two interconnected
memories, namely association (asc), discrimination (disc), and sequence (seq), in Chapter 4,
we analyze the essential underlying synaptic plasticity mechanisms enabling the forma-
tion of all different types of FOs. Our results indicate that plain correlation-based synaptic
plasticity is not sufficient to organize two interconnected memories in all different forms
of FOs. Moreover, based on theoretical studies on the formation of individual MRs in
neuronal networks (Tetzlaff et al. 2013; Litwin-Kumar and Doiron 2014; Zenke et al. 2015;
Tetzlaff et al. 2015; Chenkov et al. 2017) which showed that correlation-based synaptic
plasticity leads to long-term potentiation (LTP) is the main underlying mechanism and is
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likely to be balanced by homeostatic mechanisms (Turrigiano et al. 1998; Dayan and Ab-
bott 2001; Tetzlaff et al. 2011; Zenke et al. 2013), we add homeostatic plasticity. This also
fails to organize two interconnected memories is all different forms of FOs. In particular,
the formation of discriminated memories mainly challenges synaptic plasticity. Therefore,
we further augment the adaptive model by additional synaptic plasticity mechanisms.
Hereby, our generically valid theoretical investigations reveal that a further mechanism
in synaptic plasticity has to either describe long-term depression (LTD), or, alternatively,
to consider local differences in the synaptic plasticity mechanisms to enable all different
forms of functionally organized memories. We underpin these theoretically proposed
strategies by specific formulations for synaptic learning rules determining the dynam-
ics of the adaptive neuronal population model. Specifically, we derive a learning rule
for rate-coded neurons. This rule describes activity-dependent LTP, dependent on the
correlation of pre- and postsynaptic neurons, and LTD, dependent on the difference in
firing rates of pre- and postsynaptic neurons. This learning rule leads to stable synap-
tic weight dynamics. The stability of synaptic weight dynamics enables us to map the
synaptic weight-dependent constraints for the different FOs of two interconnected mem-
ories onto the two-dimensional average activity phase space of the respective memories.
Hence, we derived a method to analyze the system of two interconnected memories on
its so-called synaptic learning rule-specific characteristic activity phase space (χAPS) (first
introduced in Fig. 4.1 Aii, p. 63). This method reduces the analysis of two interconnected
memories towards the two-dimensional χAPS of the neuronal populations. By means
of the synaptic learning rule specific χAPS we validate that the synaptic learning rules
considering LTP and LTD are able to arrange the system of two interconnected memories
in all different FOs, dependent on the average activity levels of the memories involved.
Alternatively, we provide another approach that account for all different types of FOs of
two interconnected memories. For this, we consider local differences in the neuronal net-
work dynamics by neuronal processes that describe memory consolidation or enable local
inhibitory synaptic plasticity to occur.

Finally, in Chapter 5, we discuss the different approaches to describe activity-dependent
synaptic plasticity in the context of two interacting memories. By means of the synaptic
learning rule specificχAPSs, we interpolate the extracted principles on the self-organization
of two functionally connected memories to the self-organization of multiple connected
memories enabling cognitive strategies. Hence, we can conclude that a synaptic learn-
ing rule describing LTP and LTD will allow for more diverse schemata of functionally
connected memories than the approach enabling local differences in the synaptic weight
dynamics. Thus, we validate our hypothesis that activity-dependent synaptic plasticity
reliably generates and performs complex cognitive strategies.

3



Introduction

Our work strongly suggest that networks of self-organized memories are capable to form
the three basic computational structures, such as sequence, selection and iteration. Hence,
we conclude with the claim that such self-organized networks of memories can compute
any algorithm that is complete with respect to structured program theory (Böhm and Ja-
copini 1966; Byrne and Huyck 2010).
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To be able to study the relationship between a mental process
and specific brain regions, we must first identify the compo-
nents of the mental process that we are attempting to explain.

Eric R. Kandel

2
Experimental and Theoreঞcal Background

Our research question states that complex cognitive functions underlie synaptic plastic-
ity on the neuronal level. Thus, in this Chapter, we provide an overview of the relevant
experimental results and theoretical concepts describing learning and memory based on
synaptic plasticity.

ſ.ž The Brain and Behavior

The brain is an information processing machine. It is sensitive to sensory information
from the environment, as well as the brain’s internal state. By comparing the sensory
stimuli with the previously stored mental representations it produces behavior.

The first attempts to bring together biological and psychological concepts of behavior are
found in the theory of phrenology, proposed by Gall (1818). Without adequate evidence,
Gall came up with the simplisitc view of specific brain regions of the cerebral cortex that
are correlated towards specific characteristics of individual’s personality. Therefore, Gall
divided the cerebral cortex into 35 distinct cerebral organs, each corresponding to a spe-
cific mental function. With this approach, phrenologists viewed the cortex as a mosaic
of functionally specific areas (Kandel et al. 2013). About a century later, studies by Brod-
mann (1909), based upon the severely limited approach of phrenology, distinguished 52
anatomically and functionally distinct areas in the cerebral cortex. By this, Brodmann
established the school of cortical localization (Kandel et al. 2013).

5



Experimental and Theoretical Background

Figure 2.1: Visualization of neurons in brain tissue. (A) Nerve cells that interconnect form a
neuronal network. (B) A single cell of the granular layer of the cerebellum (Figures
taken from Golgi 1906).

An opposing view on the relation of the functionality of the brain and human behavior
was given by the so-called, aggregate-field view (Flourens 1842). This view considers every
mental function is homogeneously embedded within the entire cerebral cortex. By this,
any part of the cerebral cortex is crucial for each behavioral function and, along this line,
no single brain region is solely responsible for any specific behavior (Kandel et al. 2013).

Even though the principle of locally distinct functional regions, tenously proposed by
phreologists, was redeemed by the aggregate-field view, it gained support by major scien-
tific achievements. Therefore, the evolving concept of localization of brain functions become
a cornerstone of modern brain science (Kandel et al. 2013).

ſ.ž.ž The Brain’s Structure and Funcঞon

First steps in unraveling the brain’s structure were made by Waldeyer (1891). He stated
that the nervous system is composed by assemblies of anatomically distinct cellular nerve
units and called them neurons. His work provides the basis for an emerging central neu-
roscientific concept, so-called neuron doctrine, where neurons are thought to be the basic
structural and functional signaling units of the nervous system (Shepherd 1991; Dierig
1994; Yuste 2015). This assumption gained support by the work of Golgi. In 1906, Golgi
published a technique to stain neurons in brain tissue. By this, he revealed the basic
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2.1 The Brain and Behavior

anatomical structure of neurons: the cell body, branching dendrites and a long cable-
like axon as shown in Fig. 2.1 B (Golgi 1906; see Fig. 2.2 A for a schematic of a neuron).
Based on this technique, Ramón y Cajal (1906) was able to stain individual neurons and
observed physical discontinuities between single neurons. Hence, he confirmed that the
nervous system is not a continuous tissue – appropriate to the aggregate-field view – but
rather a network of interconnected, individual cells (Kandel et al. 2013; Yuste 2015). A
schematic view on interconnected neurons and their components is given in Fig. 2.2 A.

Concurrently, the neuron doctrine was broadend towards a neuronal network concept al-
ready proposed by Exner (1894). Exner stated that neurons interconnect at their dendritic
and axonal branches, thereby, forming a network-like architecture out of several neurons
(Dierig 1994). At the same time, based on the idea that mental functions require a cellular
control element, Schleich (1894) stated that the nervous system is not only composed of
neurons but also of glial cells. Moreover, he proposed that both cell types are stongly as-
sociated and functionally interlinked with each other. Thus, he concludes that the brain’s
function depends on the activity of neurons as well as glial cells. However, glia cells are
thought to mainly provide support and protection for neurons in their function of infor-
mation transmission and storage (Jessen and Mirsky 1980). Furthermore, Schleich (1894)
proposed that the information flow between connected neurons is transmitted via an in-
ternal gap, called synaptic cleft (Fig. 2.2 A). The existence of such structures were proven
and visualized by the introduction of electron microscopy (Porter et al. 1945) decades later
(Dierig 1994).

ſ.ž.ſ Neuronal Mechanisms of Informaঞon Processing

To understand how information is encoded and integrated across the brain is an impor-
tant issue. As already mentioned, the brain is made up of neuronal networks that allow
communication between neurons that act as information channels. Neurons are highly
specialized for receiving input signal, processing signal information and transmitting the
signal towards interconnected target cells. By this, single neurons are the basic units of
information processing. A connection between two neurons, called synapse (Fig. 2.2 B), is
made when the presynaptic neuron’s terminal, located in its axon, adheres to any location
of the postsynaptic dendrite, a tree-like extension that arise from the neuronal cell body
(Stuart et al. 1997). The presynaptic’s specific information, that is transmitted to the post-
synaptic neuron, is encoded by the so-called action potentials (APs) or spikes. Whereby, a
single AP is generated in an all-or-none fashion at the neuron’s axon hillock. Whenever
the presynaptic’s potential is depolarized enough to reach a threshold value, an AP is
emitted in a stereotypical form of a sharp electric depolarization of the cell. Those APs
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Figure 2.2: Structure of a neuron and its signaling pathways at synapses. (A) Structure of a
neuron. Details see main text (Figure taken from Kandel et al. 2013). (B) Signaling
pathways from a pre- to a postsynaptic neuron at a chemical synapse. Details see main
text (Figure taken from Korte and Schmitz 2016).

are transmitted along the neuron’s axon to its terminals, so-called axon terminals. Such
axon terminals form the presynaptic part of the synapse (see Fig. 2.2).

There are two different types of synapses connecting the presynaptic with the postsynap-
tic nerve cell. Both neurons are interconnected via either an electrical or chemical synapse.
At electrical synapses, the presynaptic signal is directly transmitted towards the postsy-
naptic cell. Here, specific ion channels, so-called gap junctions, connect the cytoplasm
of both neurons. Hence, a presynaptic electrical depolarization leading to electrical cur-
rents, is directly transmitted via the gap junctions towards the postsynaptic cell (Bennett
and Zukin 2004). The more complex signal transmission at chemical synapses converts
the presynaptic electrical signal into a chemical signal within the synaptic cleft that again
elicit an electrical postsynaptic potential. Here, the arriving action potentials at the presy-
naptic side of the synapse opens voltage-sensitive calcium channels (VSCC), nested in the
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presynaptic neuron’s membrane. Due to the intra- and intercellular electrochemical gra-
dient, this opening of calcium (Ca2+) channels causes a Ca2+ influx into the presynaptic
neuron that triggers the fusion of vesicles with the presynaptic membrane. The vesicels
contain molecules so-called neurotransmitters. Due to the fusion of the vesicles with the
membrane, the neurotransmitters are released into the synaptic cleft and further diffuse to
the postsynaptic membrane. There, the released molecules bind neurotransmitter-specific
receptors. These receptors are coupled to ion channels that are nested in the postsynap-
tic membrane. This binding causes the ion channels to open (or close) and, thus, cause
different types of ions to flow into or out of the postsynaptic cell (Fig. 2.2 B). Thereby,
the chemical signal is translated into an electrical one, as the postsynaptic membrane po-
tential is altered. The specific evoked signal is called postsynaptic potential (PSP) (Dayan
and Abbott 2001; Trappenberg 2010; Kandel et al. 2013). The evoked voltage amplitude
or slope, of the postsynaptic neuron’s response to a presynaptic action potential is corre-
lated to synapse specific parameters and defined as the synaptic strength, synaptic efficacy
or synaptic weight (Dayan and Abbott 2001). Those factors are, for instance, the number of
available neurotransmitters, the probability of transmitter release, or the number of post-
synaptic ion channels with their receptors so-called postsynaptic density (PSD) (Markram
et al. 1998; Senn et al. 2001).

Each neuron contains and releases its specific type of neurotransmitters at every axonal
terminal, commonly known as Dale’s principle (Whittaker 1983). This principle allows for
a two-type classification of neurons. Thus, neurons that contain neurotransmitters that
trigger a posivite response of the postsynaptic cell are called excitatory neurons, whereas
neurons that contain neurotransmitter leading to a negative response of the postsynaptic
cell are called inhibitory neurons (Markram et al. 2015). Along this line excitatory and in-
hibitory synapses are distinguished. At inhibitory synapses, the opening or closing of ion
channels hyperpolarize (decrease) the postsynaptic potential towards its resting potential
evoking an inhibitory postsynaptic potential (IPSP). GABAergic (gamma-aminobutyric acid)
ion channels are common for those inhibitory synapses (Kubota et al. 2016). In contrast,
the types of neurotransmitters involved in excitatory synapses trigger a depolarization
(increase) of the postsynaptic membran potential, so-called excitatory postsynaptic potential
(EPSP). Glutamatergic channels that bound specific types of receptors (e.g. α-amino-3-
hydroxy-5-mehtyl-4-isoxazolepropionic acid (AMPA) or N-methyl D-aspartate (NMDA)
receptors) are common for excitatory synapses (Chua et al. 2010). The regular form of
synaptic transmission at excitatory synapses is mediated by AMPA receptors. An open-
ing of AMPA-gated ion channels triggered by glutamate binding leads to an influx of
positively charged sodium (Na+) ions into the postsynaptic neuron. Hence, this influx
evokes a depolarization of the postsynaptic cell. In the same way, glutamate also oper-
ates on NMDA-gated ion channels. However, NMDA-gated ion channels are addition-
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ally blocked under resting membrane conditions by magnesium (Mg2+) ions. Hence, an
opening of NMDA-gated ion channels further require a sufficient strong level of depo-
larization that cause the Mg2+ ions to diffuse out of the ion channel. Thus, the opening
of NMDA-gated ion channels requires the binding of neurotransmitters as well as a suf-
ficiently strong level of depolarization. Such a required level of depolarization typically
comes from back-propagating action potentials in the postsynaptic cell. Due to the depen-
dency on pre- and postsynaptic quantities on the opening of NMDA-gated ion channels,
NMDA receptors act as a molecular switch, a real molecular coincidence detector for pre-
and postsynaptic firing (Korte and Schmitz 2016). In addition to the Na+ influx into the
postsynaptic cell from the AMPA-gated ion channels, NMDA-gated ion channels lead to
a Ca2+ influx. Such Ca2+ influx has important relevance in further signal cascades in the
postsynaptic cell, influencing, for instance, the AMPA receptor activation through kinases
and phosphatases (detailed pathways are shown in Fig. 2.2 B; Lisman et al. 2002; Korte
and Schmitz 2016).

In the broader context of behavior such discrete events of transmitting single spikes across
neurons are not sufficient for explaining mental functions. Due to the homogeneous shape
of each single action potential, it is known that the information is not stored within the
transmission of individual action potentials between neurons. It is rather assumed that
the information is encoded by the number of emitted spikes or precise temporal signal-
ing patterns of neurons. This particular characteristic of the brain and local circuits is
abstracted by the term neural coding (Richmond et al. 1987; Shinomoto et al. 2009). There-
fore, the frequency at which a neuron emits single action potentials, i.e. number of spikes
per second [

spikes
s ] or Hertz [Hz], is defined as the neuronal firing rate or neuronal activity.

ſ.ž.ƀ Cell Assemblies as Funcঞonal Units of the Brain

Beyond the scope of encoding and transmission of information between single neurons,
Lorente de Nó and Hebb attributed higher cognitive brain functions to the encoding and
transmission of information on the level of interconnected neurons forming networks of
neurons. Lorente de Nó (1934) observed that specific patterns of neuronal activity can
last for up to half a second after the removal of the stimulus which originally evoked the
activity. This prolonged neuronal activity is called functional reverberation (Lorente de Nó
1934; Lorente de Nó 1949). Hebb (1949) explained this phenomenon with specific groups
of neurons, termed cell assemblies (CAs), the functional units of the brain. He proposed
that neurons are recurrently connected with each other building strongly. interconnected
groups of neurons Therefore, Hebb speculated that the connections between neurons can
be altered in their strength due to an activity-dependent learning rule for synaptic plasticity.
This rule describes a strengthening of the synapses, if the pre- and postsynaptic neurons
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show causally correlated coincident activity. Whereas a synapse gets weakened in its
strength, if pre- and postsynaptic activity show noncoincident activity. Thus, this form
of Hebbian synaptic plasticity links neurons into CAs by strong synaptic connections, if
they exhibit causally correlated neuronal activity (Korte and Schmitz 2016). Decades later,
Shatz (1992) condenses the underlying principle for synaptic plasticity dependent on the
correlated activity in pre- and postsynaptic neurons towards: ”What fires togehter, wires
together”. Hence, strongly interconnected neurons within cortical circuits allow for the
self-sustaining reverberating activity observed by Lorente de Nó (Yuste 2015; Sejnowski
1999). Hebb (1949) attributed to CAs the ability to encode input stimuli by their ability to
learn patterns of activity; and therefore, to store the respective memory into the strength
of their interconnected neurons. Herewith, Hebbian CAs are thought to represent the
neuronal correlate of memory, as their specific activity pattern can get reactivated even if
the original learning stimulus is only partially applied. This phenomena is called pattern
completion Holtmaat and Caroni 2016. Hence, Hebbian CAs represent the fundamental
building blocks of the brain’s memory system. Furthermore, Hebb suggested that the
activation of CAs can be transmitted towards other CAs of the cortex and activate them, if
they are properly connected. This principle of sequence of activations between distinct CAs
is associated to the process underlying thinking. Hence, it is responsible for the encoding
of specific behaviors (Yuste 2015; Sejnowski 1999; Holtmaat and Caroni 2016).

Hereby, Hebb established a theory that connects the psychological concept of behavior, in
particular learning and memory, with the underlying neuronal mechanisms of synaptic
plasticity. With this theory, the description of higher cognitive brain functions is extended
from a cellular approach, described by the neuron doctrine, towards a precise mapping of
neuronal circuits and their circuit-specific communication, summarized by the neuronal
circuit doctrine (Kandel et al. 2013). Thus, neuronal networks are thought to be responsible
for cognitive capabilities (Kandel et al. 2013; Palm et al. 2014; Pulvermüller et al. 2014;
Trappenberg 2010).

ſ.ž.Ɓ Learning and Memory Underlie Synapঞc Plasঞcity

The Hebbian principle of relating the psychological fact of a memory to specific traces
in the neural system (Josselyn et al. 2015) is summarized in the Synaptic-Plasticity-and-
Memory Hypothesis (Dayan and Abbott 2001; Eichenbaum 2012; Martin et al. 2000). This
hypothesis states that information is dynamically and interactively stored in stimulus-
specific neuronal networks by particular patterns of synaptic strength called memory traces
or engrams (Josselyn et al. 2015). Here, the basic dynamic mechanism underlying learn-
ing and memory is determined by activity-dependent synaptic plasticity experimentally

11



Experimental and Theoretical Background

observed in many different brain regions, including hippocampus, neocortex and cere-
bellum (Dayan and Abbott 2001). However, the memory trace can be stored in different
forms. Hence, either the engram is consolidated for a lifetime, and thus, being stable over
time; or can get destabilized by memory recall, termed long-term memory (LTM) (Korte and
Schmitz 2016). Here, the underlying form of plasticity leading to LTM, called long-term
plasticity (Wood et al. 2012), that last more than 20-30[min], is opposed to short-term plastic-
ity (Zucker and Regehr 2002), that lasts only hundreds of milliseconds. Hence, short-term
plasticity is considered to be responsible for working memory rather than for LTM.

There are different forms of synaptic plasticity acting on different time scales. They are
based on different molecular and biophysical properties, such as molecular coincidence
detectors or dynamics of electrical signaling mechanisms in dendrites and spines (Korte
and Schmitz 2016). However, a neuron, neuronal type, or brain region is not restricted to
a specific form of synaptic plasticity. Moreover, the synapses of a single neuron underlie
different plasticity mechanisms. The induction of the concrete synaptic plasticity mecha-
nism is mainly dependent on the specific zone of a neuron, i.e. , synapse’s localization on
a dendritic tree in relation to the soma (Korte and Schmitz 2016). In the following, we will
introduce important experimentally observed forms of synaptic plasticity with their un-
derlying molecular and electrical mechanisms as well as their functional role for synaptic
plasticity.

Long-term Potenঞaঞon

The first experimental confirmation that synapses can change their strength, i.e., that they
are plastic, was observed by Bliss and Lømo (1973) under in-vivo conditions at a hip-
pocampal pathway. Bliss and Lømo could arouse a long-lasting strengthening in the elec-
trophysiological response properties of artificially stimulated neurons. This increase in
synaptic strength that lasts for at least one hour is now called long-term potentiation (LTP)
(Bliss and Lømo 1973). The changes in synaptic strength leading to LTP can operate on
different time scales. Changes that occur within 1-3 h are called early LTP (E-LTP) and
are independent of protein-synthesis, and thus, gene expression. Whereas changes that
last longer than 3 h depend on changes in gene expression, thus, in changes on transcrip-
tion and translation of plasticity-related proteins. Those changes are defined as late LTP
(L-LTP) (Bliss and Collingridge 1993; Frey 1997; Kandel 2001).

For the induction of LTP at a synapse, the respective PSP has to surpass a certain thresh-
old resulting into sufficient Ca2+ influx via NMDA-gated ion channels (Fig. 2.3 left). Such
an increase in postsynaptic cytosolic calcium concentration causes an increase of AMPA
receptor gated ion channel exocytosis into the postsynaptic membrane. This process is
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Figure 2.3: Basic cellular processes resulting in LTP or LTD. The basic cellular processes that
occur at the postsynaptic cell under baseline conditions (top), LTP (left), or LTD (right).
Details see main text (Figure taken from Korte and Schmitz 2016).

stabilized by Ca2+-mediated processes including protein kinases (e.g., CaMKII). Further-
more, the recycling of recently used AMPA receptor gated ion channels towards reusable
ion channels within the postsynaptic cell and their fusion back to the postsynaptic mem-
brane is mediated by the cytosolic G protein Rab11a (Huganir and Nicoll 2013). The in-
creased number of AMPA receptor gated ion channels within the postsynaptic cell mem-
brane causes a stronger depolarization of the PSP as compared to baseline level. This,
in turn, leads to Ca2+-ion influx that causes the postsynaptic cell membrane to incorpo-
rate more AMPA receptor gated ion channels. Thus, LTP process ultimately describes a
positive-feedback loop (Abbott and Nelson 2000).

LTP exhibits three key features. The first feature is input specificity (Engert and Bonhoef-
fer 1997), meaning that the synapses that undergo LTP have to be specifically activated
or, at least, they have to be located in close vicinity of activated neurons. This constrain
excludes inactive synapses for LTP (Engert and Bonhoeffer 1997; Wigström et al. 1986).
Furthermore, as previously stated, to induce LTP, the PSP has to surpass an intensity
threshold that is required to open NMDA-gated ion channels. This required level of de-
polarization can not be caused by individual presynaptic action potentials. Hence, the
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second LTP feature is based on cooperativity of afferent fibers (Kitajima and Hara 1991).
If a stimulus is applied in high-frequencies onto a neuron, the respective evoked postsy-
naptic depolarization is constructed by two mechanisms. On the one hand, by the col-
lective depolarizations originating from different synapses within a close spacial vicinity
(heterosynaptic information), and on the other hand, by the temporally integrated depo-
larizations at single synapses within a short time-window (homosynaptic information)
(Bloodgood et al. 2009; Govindarajan et al. 2006). These two key features contribute to
the third feature of LTP, called associativity. This mechanism describes the ability of weak
synapses to get potentiated, if they concur with strong synapses in close spacial vicinity.
Here, the depolarization of such strong synapses supports the particular postsynaptic po-
tential to further increase, and by this, helps to reach a sufficient level of depolarization
for LTP to occur (Kitajima and Hara 1991).

Long-term Depression

A counterpart to LTP is the process named long-term depression (LTD). This process was
first described by Dudek and Bear (1992) and Mulkey and Malenka (1992). LTD estab-
lishes necessary differences in strength between synapses and further prevents excessive
synaptic activity caused by LTP (Korte and Schmitz 2016). Similar to LTP also LTD is a
self-enforcing positive-feedback loop. In contrast to LTP, low postsynaptic cytosolic Ca2+-
concentration triggering the endocytosis of AMPA receptor gated ion channels describes
a positive-feedback loop that destabilizes neuronal activity.

Since LTP is induced by strong stimulation of the synapse causing the PSP to surpass a cer-
tain threshold, LTD is already induced at a lower level of PSP aroused by low-frequency
stimulations leading to a moderate Ca2+ influx into the postsynaptic cell through NMDA-
gated ion channels (Mulkey and Malenka 1992). This modest calcium influx activates
postsynaptic cytosolic phosphatases such as calcineurin (PP2B), or protein phosphatases
1 (PP1) that guide the endocytosis of AMPA receptor gated ion channels into the post-
synaptic cell. Subsequently, these ion channels are stored in endosomes or are further
degraded (Lee et al. 2000; Song and Huganir 2002).

Another mechanism that mediates LTD is based on the activation of metabotropic gluta-
mate receptors (mGluR) (Bashir et al. 1993; Huber et al. 2000); however, the underlying
mechanisms are not completely understood. So far, it is confirmed that mGluR bind to
G proteins, that results in a decreased frequency of the PSP, rather than to ion channels,
that results into a decreased amplitude of the PSP. Thus, this form of LTD seems to be
dependent on presynaptic mechanisms (Atwood et al. 2014).
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It is confirmed that both forms of LTD mechanisms rely on different signaling mechanisms.
However, the NMDA gated form of LTD is only reported in juvenile brain states (Korte and
Schmitz 2016), thus, attributed to refining the young neuronal network by pruning less
important synapses during late phases of the development. Whereas, the mGluR gated
form of LTD is still observed in adult brain states (Huber et al. 2000), hence it is attributed
to the balance of synaptic weights in the adult hippocampus (Korte and Schmitz 2016).

Spike-ঞming Dependent Plasঞcity

As the impact of LTP and LTD are described by dynamic processes such as the amount
of transmitters and level of postsynaptic depolarization, spike-timing dependent plasticity
(STDP) confirms the Hebbian postulated dependency on causally correlated neuronal ac-
tivity of discrete pre- and postsynaptic firing (Korte and Schmitz 2016). The order and
precise spike-timing of pre- and postsynaptic neurons is crucial for STDP and related to
the opening of NMDA gated ion channels. Furthermore, STDP is related to LTP and LTD
as it governs the induction of synaptic plasticity and defines its sign and magnitude (Feld-
man 2012; Korte and Schmitz 2016).

Markram et al. (1997) experimentally observed STDP in different brain areas by pairing ex-
periments with whole-cell voltage recordings, where pre- and postsynaptic spikes where
precisely triggered in time (Markram et al. 1997; Feldman 2012). With these experiments
Markram et al. (1997) suggested that AP initated at the soma are back-propagated into the
dendrite and, by this, serve to modify synaptic strength. Such an AP that runs backwards
from the soma to the dendritic compartements is termed back-propagating action potential
(bAP). In detail, if a presynaptic spike preceds the postsynaptic bAP within a narrow
time window of 5-15 ms, the intertwined synapse get strengthened leading to LTP. Such
a stimulation paradigm mimics the presynaptic contributes to the firing of the postsynap-
tic neuron, and consequently both spikes become causally correlated. In contrast, when
a postsynaptic spike shortly precedes a presynaptic spike leads to LTD. This particular
form of synaptic plasticity, dependent on causal (inducing LTP) and noncausal (inducing
LTD) relation of pre- and postsynaptic activity is called Hebbian STDP (Abbott and Nelson
2000; Markram et al. 1997; Feldman 2012; Korte and Schmitz 2016).

The underlying biophysical mechanism yielding Hebbian STDP is similar to that con-
tributing to LTP, as it depends on the activity-dependent increase in cytosolic Ca2+ con-
centration (Malinow and Malenka 2002; Huganir and Nicoll 2013; Korte and Schmitz
2016). Here, the biophysical mechanisms determined by bAPs contributes to the post-
synaptic level of Ca2+ concentration within the postsynaptic nerve cell. The bAP opens
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VSCCs in the postsynaptic dendrites and, by this, contributes to a higher level of depo-
larization. A sufficiently high concentration of postsynaptic Ca2+-ions can be received in
two ways: (i) by the opening of NMDA gated ion channels and VSCC enhanced by bAPs
and/or (ii) by the activation of mGluR mediated by another coincidence detector named
phospholipase C (PLC) resulting in a release of cytosolic Ca2+-ions from cellular stores in
combination with an bAP-dependent opening of VSCC (Koester and Sakmann 1998; Korte
and Schmitz 2016; Hashimotodani et al. 2005).

Thus, the dependency of precise pre- and postsynaptic firing reflects the influence on
the coincidence detectors such as NMDA receptors and PLC, as well as on the electri-
cal dynamics gated by AMPA receptors and bAP, on the overall postsynaptic cytosolic
Ca2+ concentration inducing plasticity (Korte and Schmitz 2016). However, bAPs, that
function as postsynaptic spikes, show one major difference to APs, that function as presy-
naptic spikes. The difference is that the amplitude of depolarization caused by bAP de-
creases with distance to the soma and disappears completely in distal parts of the den-
drites (Spruston 2008). Therefore, the influence of STDP is highly dependent on the lo-
calization of synapses on the dendritic tree, i.e., distance of synapses to the postsynaptic
soma and seems to affect mostly proximal synapses (Froemke et al. 2005).

In addition to the cellular importance of STDP on single synapses, it might also be influ-
ential on the competition between convergent inputs (Abbott and Nelson 2000) and es-
tablishing temporal sequences (Rao and Sejnowski 2001), by this, being instrumental for
sensory perception and to the development of sensory systems (Song and Abbott 2001;
Korte and Schmitz 2016). Furthermore, the opposite case, so-called Anti-Hebbian STDP,
has been observed by Feldman (2012). In this case, within a narrow time window, a pre-
ceding presynaptic (postsynaptic) spike before a postsynaptic (presynaptic) spike leads
to LTD (LTP) (Feldman 2012).

Homeostaঞc Plasঞcity

As already mentioned, synaptic plasticity, through LTP and LTD, has strong destabilizing
effects. Such effects can drive plastic synapses into diverging synaptic weight dynamics
by evoking a positive-feedback loop. Cannon (1932) proposed a mechanism, termed home-
ostasis, that counterbalances such diverging dynamics in complex physiological systems
and, by this, enforces stability. Here, homeostasis is thought to maintain the consistency
of the internal state, in particular stabilize neuronal activity by an interplay of additional
mechanisms (Cannon 1932; Turrigiano and Nelson 2004). The coexistence of stability and
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adaptability in the network structure of a neuronal systems is mandatory to appropri-
ately react on changes in the environment, and therefore, for the generation of behavior
(Turrigiano 2012).

Although the functional role of homeostatic mechanisms serving as a regulatory mecha-
nism is generally accepted, the underlying molecular dynamics and pathways are under
intense investigation and still puzzling (Turrigiano 2012). However, different mechanisms
that could generate stability in neuronal network activity, pooled by the term homeostatic
synaptic plasticity, have been asserted. Those mechanisms are activity-dependent regula-
tion of intrinsic neuronal firing (Marder and Prinz 2003; Zhang and Linden 2003), home-
ostatic regulation of intrinsic excitability (Marder and Goaillard 2006; Turrigiano 2011),
adjustemts in the synaptic weights (Turrigiano and Nelson 2004) or the amount of excita-
tory synapses of a neuron (Kirov et al. 1999; Wierenga et al. 2006), balance of excitation
and inhibition within neuronal networks (Maffei et al. 2004; Gonzalez-Islas and Wenner
2006), and metaplastic mechanisms regulating the induction of LTP and LTD (Bienenstock
et al. 1982).

Turrigiano et al. (1998) observed one such regulatory mechanism, that prevents synaptic
plasticity to induce hyper- or hypoactive neurons, by regulating the overall excitability of
a neural circuit. This mechanism is called synaptic scaling (Turrigiano et al. 1998) and is the
best understood type of homeostatic synaptic plasticity (Turrigiano 2012). The regulatory
process selectively causes a cell to autonomously up-scale or down-scale the PSD depending
on a reduced or elevated network activity, respectively. Here, synaptic scaling regulates
the trafficking of AMPA receptor gated ion channels dependent on the postsynaptic cy-
tosolic Ca2+ concentration in the opposite direction as, that described for LTP and LTD.
Up scaling is induced by, for instance, a drop in postsynaptic calcium influx. The re-
sulting biophysical mechanisms, yet not well understood, enhance the accumulation of
postsynaptic AMPA receptors counteracting the reduced Ca2+ influx and maintaining a
certain level of cytosolic Ca2+ concentration. This process results in a strengthening of the
synaptic weight. Down scaling occurs in response to an enhanced calcium concentration
in the postsynaptic cell and causes biophysical mechanisms that reduce the AMPA recep-
tor accumulation in the postsynaptic membrane weakening the specific synaptic strength.
This form of homeostatic synaptic plasticity promotes stablity in the network activity by
strengthening or weakening the synaptic weight in the right direction to stabilize firing
(Turrigiano et al. 1998; Turrigiano 2012; Abbott and Nelson 2000).
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Inhibitory Plasঞcity

Heretofore, we have only considered activity-dependent synaptic plasticity acting on ex-
citatory synapses, responsible for learning and memory. Although this form of synaptic
plasticity constitutes the main focus for the study of synaptic plasticity, the field of in-
hibitory synaptic plasticity has recently gained more attention (Vogels et al. 2013). As exci-
tatory synaptic plasticity, long-term activity-dependent inhibitory synaptic plasticity also
provides refinement and sensitivity to neuronal circuits as well as experience-dependent
learning and memory (Woodin and Maffei 2011; Vogels et al. 2013; Castillo et al. 2011).
Therefore, inhibitory synaptic plasticity at GABAergic synapses regulates neuronal ex-
citability and the impact of excitatory synapses (Woodin and Maffei 2011; Rozov et al.
2017; Castillo et al. 2011).

There are plenty of observed biophysical expression mechanisms mediated by changes in
the GABAergic circuitry that guide inhibitory synaptic plasticity in two ways: is by chang-
ing properties in the presynaptic GABA release, or the postsynaptic number, sensitivity,
and/or , responsiveness of GABAA receptors (Gaiarsa et al. 2002; McBain 2009). Thus,
this form of plasticity depends on pre- and postsynaptic characteristics. For a review
on the underlying biophysical mechanisms involved in the different forms of inhibitory
synaptic plasticity see Castillo et al. (2011) and/or Rozov et al. (2017). Withal it is reported
that excessive neuronal activity may trigger plasticity at GABAergic synapses (Castillo et
al. 2011). Furthermore, there are some properties inhibitory and excitatory synaptic plas-
ticity have in common. One joint characteristic is the associativity of inhibitory synaptic
plasticity. This characteristic only modifies synapses with coincident activities of the en-
closing pre- and postsynaptic neurons (Castillo et al. 2011). Another common character-
istic is their homeostatic regulation that has emerged as an important mechanism for the
control of the excitability and stability of neuronal circuits (Kilman et al. 2002; Woodin
and Maffei 2011). Although, the induction of inhibitory synaptic plasticity slightly differs
from that for excitatory synapses, both plasticity mechanisms interact with each other and
can occur simultaneously (Castillo et al. 2011).

ſ.ž.Ƃ Schemata: The Building Blocks of Cogniঞon

In the previous section we presented how a specific piece of knowledge (i.e. memory) is
decoded in the brain by a specific group of neurons (i.e. Hebbian CAs) that are strongly
interconnected due to activity-dependent synaptic plasticity processes. Those memory
representations (MRs) can be recalled, i.e. activated, by recall stimuli similar to the initial
learning stimulus. However, it is well known that the encoding and recall of individual
isolated memories is not sufficient to describe behavior, in particular cognitive abilities
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(McKenzie and Eichenbaum 2011; Preston and Eichenbaum 2013). In this Section, we
will outline the psychological view on the brain’s main principles that allow for complex
behavior.

James (1890) described the brain’s ability to classify memories that helps to integrate new
memories to the existing knowledge. Moreover, this ability leads to an organized mental
representation of memories. Therefore, he suggested the discriminaton of memories that
enables to distinguish different individual memories from another. Furthermore, James
proposed that an association of memories decodes the coherence of several qualities of the
individual memories. In the early 20th century, cognitive psychologists stated that a re-
sponse, i.e. behavior, to a specific environmental stimulation arises from a comparison
of that particular stimulus to the prior knowledge. Such phenomena can be represented
by a cognitive structure that links and relates multiple representations of a phenomenon,
termed schema (Head and Holmes 1911; Piaget 1926; Bartlett 1932). This schema is acti-
vated by new information and consequently, alters the individual’s interpretation on the
current situation (Piaget 1926). Bartlett (1932) specified that any incoming stimulus to
an individual has to directly activate a specific portion of the organized setting of past re-
sponses, i.e. schema, which is most relevant in the current situation. He further examined
that schemata are constantly developing and demonstrated their implication on memory
retrieval processes (Ghosh and Gilboa 2014; McKenzie and Eichenbaum 2011; Preston and
Eichenbaum 2013).

More recent advocates of relating schemas with behavior are, for instance, Rumelhart
(1980) and Cooper et al. (1995) who acknowledged schemata being responsible for se-
quences of action. Rumelhart (1980) viewed schemata as knowledge structures with in-
herent meta knowledge about its utility and usage. Furthermore, Cooper et al. (1995)
proposed that each schema has its inherent aim and tools to achieve a goal (Rumelhart
1980; Cooper et al. 1995; Ghosh and Gilboa 2014). Today such schemata, that serves to
guide context-specific behavior by their inherent characteristic of embedded response op-
tions, are called action schemata (Rumelhart and Ortony 1976; Goodman 1980; Humphreys
and Forde 1998; Cooper et al. 1995). In contrast, there is also the category of schemata
that only account for knowledge structures and do not account for behavior (Preston and
Eichenbaum 2013).

As briefly outlined, there exists several ambiguities for the definition and description of a
schema. However, Ghosh and Gilboa (2014) reviewed the psychological and educational
literature on memory neuroscience and proposed a general approach to describe a schema
as a cortical memory network that allow for the encoding (Head and Holmes 1911; Piaget
1926; Bartlett 1932; Carmichael et al. 1932; Bransford and Johnson 1972; Rumelhart 1980;
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Anderson 1984; Tse et al. 2007; Preston and Eichenbaum 2013; Kesteren et al. 2013) and re-
trieval (Bartlett 1932; Anderson and Pichert 1978; Rumelhart 1980; Anderson 1984; Arkes
and Freedman 1984) of memory as well as the elaboration of context-specific patterns of
behavior (Head and Holmes 1911; Bartlett 1932; Rumelhart 1980; Cooper et al. 1995; Shea
et al. 2008; Kumaran et al. 2009).

Furthermore, Ghosh and Gilboa identified four necessary schema features that are central
to the functionality of a schema. First, a schema constitutes an associative network structure
that is composed of units (i.e. elements, events, variables, schema nodes) and their inter-
relationships (Fig. 2.4 gray networks). Please note that, the links (straight lines) between
units (circles) are often considered to be more crucial for behavior than the units (Rumel-
hart 1980). Second, one schema is based on multiple episodes of one phenomenon and, by
this, decodes their similarities (Fig. 2.4 colored networks). This feature implies the third
feature, the lack of unit details (Fig. 2.4 gray networks with same thickness for all lines).
Herein, single units of a schema represent distributions of real events rather than their
clear definition; thereby, schemata is able to tolerate deviations from standard or reality.
This feature further accounts for the generality and flexibility of schemata to organize
new information. And last, schemata are adaptive, accounting for learning of specific be-
havior. Thus, schemata can be altered to be consistent with the external reality by two
processes called assimilation and accommodation, cued by recalling previously stored in-
formation and learning new information (Fig. 2.4 green network and dotted green lines
in the adapted schema) (Ghosh and Gilboa 2014; Preston and Eichenbaum 2013). These
two processes of assimilation and accommodation were introduced and defined in the
early 20th century. Piaget (1929) proposed that new memories are assimilated into exist-
ing schema in either two ways: If the new memory is consistent with an activated schema
by a stimulus, the particular new memory gets incorporated into the specific activated
structure of prior knowledge without challenging the existing relationships within the
schema. Whereas, if the new memory is inconsistent with already existing schema, this
memory undergoes modification until it fits the schema and subsequently gets assimi-
lated to it (Piaget 1929; Preston and Eichenbaum 2013). In addition, Bartlett (1932) pro-
posed that an existing schema undergoes modifications to accommodate new, conflicting
memory. Moreover, new information that conflicts with existing schemata could also lead
to the development of new schema (Preston and Eichenbaum 2013).

Ghosh and Gilboa (2014) further described four features to which schemata are sensitive.
First, schemata that contain event-based information are likely to exhibit chronological re-
lationships that can guide behavior. Second, schemata that store more complex informa-
tion exhibit a hierarchical organization of memory that is enabled by specific connectivity
among the units belonging to a schema. This hierarchical organization further allows
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Figure 2.4: Necessary features of schema structure. Gray networks in the figure represent the
schema as a latent neurocognitive structure of strongly interconnected nodes that
could potentially be re-activated together. Colorful networks are either novel episodes
or specific instantiations of the schema during a particular context of experience. The
schema’s associative network structure (feature 1) is depicted through circles, which rep-
resent schema units, and lines connecting those circles, which represent their associa-
tions. Differences in line connections and thickness indicate variability across episodes.
The schema’s basis on multiple events (feature 2) is illustrated through episodes i-k. Each
episode differs in specificity, but all conform to the same general structure, which can
be extracted as the schema. The schema’s lack of unit detail (feature 3) is indicated by
the normal distribution curve within each schema unit, which has the potential to take
different values. For specific episodes or schema instantiations i-k, each unit takes a
particular value on that curve. Lastly, the schema’s adaptability (feature 4) is indicatd by
the inclusion of new information from episode l as green dotted lines in the adapted
schema (Figure and Caption taken from Ghosh and Gilboa 2014).

for the formation of sub-schemata; and thus, for top-down and bottom-up activation of
cognitive structures. Closely linked to the hierarchical organization is the third feature,
cross-connectivity, where different schemata share same overlapping units allowing the
schemata to communicate or compete with each other. Lastly, schemata can have embed-
ded response options, and by this, account for behavior.
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There is experimental evidence for the existence of schemata and their specific features.
Tse et al. (2007) underpinned the adaptability and development of schemata by paired-
associative experiments with rats. In those experiments, the animals initially learned a
specific set of food-location associations. After the learning phase, the rats were able to
incorporate new associations within the same learning environment more rapidly than
in a different environment. Thus, Tse et al. (2007) showed that new information can get
assimilated to an existing schema that fits to the particular memory. Furthermore, Bunsey
and Eichenbaum (1996) and Zeithamova et al. (2012) did experiments on the transitive in-
ference paradigm where animals, which have learned multiple stimulus associations, such
as A is associated with B and B is associated with C, are able to infer that A is associated
with C. This ability to express knowledge of the relation between indirectly linked ele-
ments underpins the existence of an integrated organization of memory, hence, schemas
(Preston and Eichenbaum 2013).

In summary, it is theoretically proposed and experimentally underpinned that behavior
arises from the formation and interaction of the above described schemata. However,
their formation is still not well understood. At present, there are several models describ-
ing the process of assimilating new information into pre-existing schemata. However, this
process dependents on the communication of the cortex with other brain areas, such as
the hippocampus or the brain area responsible for working memory. Hereby, the activity
of the hippocampus is crucial for the maintenance and consolidation of most recent in-
formation (Scoville and Milner 1957; Smith and Squire 2009; McKenzie and Eichenbaum
2011). Whilst, the activation of cortical areas are most relevant for maintaining and re-
calling more remote memories (Haist et al. 2001; Douville et al. 2005; Bayley et al. 2006;
McKenzie and Eichenbaum 2011). Different models that explain the communications of
such brain areas and their different roles in memory consolidation are reviewed in McKen-
zie and Eichenbaum (2011) and called cortical linkage, semantic transformation and schema
modification.

ſ.ſ Computaঞonal Models of Learning and Memory

The field of Computational Neurosciene has revealed a vast number of mathematical mod-
els describing learning and memory acting on different levels of biophysical complexity,
ranging from detailed molecule dynamics to collective network dynamics. These differ-
ent levels of biological accuracy arise from the focus of study and its underlying scientific
questions. As outlined in the previous Sections, within the context of behavior, detailed
molecule or transmitter dynamics, or higher-level dynamics of discrete events, such as
single APs, are not sufficient to understand the generation of cognitive brain functions.
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2.2 Computational Models of Learning and Memory

In contrast, the number of emitted action potentials or precise temporal signaling pat-
terns of neurons are thought to be crucial for transmitting information responsible for
behavior (Richmond et al. 1987; Shinomoto et al. 2009). In order to address our specific
scientific question on the principles underlying synaptic plasticity allowing for diverse
mental organizations of memories, we focus on rate-coded nested in a recurrent neuronal
network with its inherent modular organization for transforming sensory inputs, which
is required for cognitive brain functions (Trappenberg 2010; Kandel et al. 2013; Palm et al.
2014; Pulvermüller et al. 2014). Thus, in this Section, we will outline some experimen-
tally inspired approaches to mathematically model the biological dynamics of activity-
dependent synaptic plasticity in neuronal networks of point neurons.

ſ.ſ.ž Neuron and Network Model

The state of an individual neuron i is generated by all incoming activities Fi from the in-
terconnected neurons j pointed onto that particular neuron via either the synapse specific
excitatory ωi,j or inhibitory synaptic weight ω−

i,j (Dayan and Abbott 2001). These afferent
input stimulations are integrated towards a combined input current ϕi that determines a
specific intrinsic membrane potential ui = fu(ϕi), defined as the difference between the elec-
tric potential within and outside a nerve cell. The membrane potential, in turn, defines
the neuron’s output rate, the neuronal firing rate or neuronal activity Fi = fF (ui). Such
a transformation of the membrane potential into a neuronal firing rate can be modeled
by different activation functions fF , such as a linear, step, threshold-linear, sigmoidal or
radial-basis mapping (Trappenberg 2010).

In network theory (Papo et al. 2015), the brain or specific brain areas are interpreted as
a network of nerve cells forming a massively parallel system by their links, via synapses,
composed out of feed-forward and feedback connections in between the neurons. Such a
network is called recurrent neuronal network and can change its connectivity pcon. In general,
the connections between excitatory neurons are plastic, according to activity-dependent
synaptic plasticity, while the inhibitory synapses are kept constant (Papo et al. 2015).

ſ.ſ.ſ Models of Acঞvity-dependent Synapঞc Plasঞcity

Mathematical models of synaptic plasticity describe how specific factors drive the changes
in efficacy of synapses (ωi,j), often formulated as ordinary differential equation (ODE). Those
models aim to describe how the biophysical quantities, such as neuronal firing rates, pre-
cise spike timing or specific Ca2+-concentration, influence changes in synaptic strength
(Clopath 2015). Here, we focus on mathematical models of long-term plasticity rules
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based on pre- (Fj) and postsynaptic neuronal firing rates (Fi) of the following form
dωi,j

dt = ω̇i,j = f(Fj , Fi, ωi,j).

In line with Hebb’s principle – “Who fires together wires together” (Hebb 1949; Shatz
1996), these models change the synaptic strength ωi,j proportional to the correlation of
the pre- (Fj) and postsynaptic firing rates (Fi) of the enclosing neurons ω̇i,j = µFjFi, with
µ being the learning rate. Since the neuronal firing rates only take positive values, such a
formulation of synaptic plasticity exclusively increments the synaptic weight every time
the learning rule is updated. Thus, Hebb’s principle accounts for LTP without bound and
does not include any processes leading to LTD (Dayan and Abbott 2001; Gerstner and
Kistler 2002; Choe 2015).

This shortcoming lead to the formulation of covariance rules of the form of
ω̇i,j = µ(Fi − θi)(Fj − θj) (Sejnowski 1977). Here, the synaptic weights change relative
to a mean, alternatively baseline or threshold value, for the pre- θj and/or postsynaptic
firing θi. This model enables LTD, if neuronal activity falls below the threshold value
(Stent 1973; Choe 2015). However such a regulation of the synaptic dynamics by assum-
ing thresholds in the firing rates does not prevent unbounded synaptic weight dynamics
(Dayan and Abbott 2001).

Further approaches to overcome this problem and simultaneously accounting for LTP and
LTD are made by introducing either adaptive thresholds for the firing rates, implementing
hard or soft bounds for the synaptic weights, or adding a synaptic weight normalization
(Choe 2015; Clopath 2015; Gerstner et al. 2014; Dayan and Abbott 2001). The experimen-
tally motivated BCM-rule (Bienenstock et al. 1982) introduces a nonlinear postsynaptic-
activity dependent LTD in form of ω̇i,j = µFjFi(Fi − θi). Here, θi is a sliding threshold
modeled by threshold adaptation rule depending on the average output rate ⟨Fi⟩ and
acting as a homeostatic mechanism (Dayan and Abbott 2001; Gerstner and Kistler 2002;
Clopath 2015; Choe 2015). Moreover, Oja’s model (Oja 1982) ω̇i,j = µFi(Fj − Fiωi,j) with
a multiplicative synaptic weight normalization further implies competition between the
synapses connected onto the same postsynaptic neuron i and performs principle compo-
nent analysis (Amari 1977; Oja 1982; Gerstner et al. 2014; Clopath 2015; Choe 2015). The
weight normalization in Oja’s model is based on the constant sum of squared weights
(
∑

j ω
2
i,j = 1) (Miller and MacKay 1994), hence, describes a non-local principle.

Tetzlaff et al. (2011) combined both approaches, i.e., homeostatic plasticity and synaptic
weight dependent regulation of the synaptic weight change, with the Hebbian formu-
lation of synaptic plasticity resulting in ω̇i,j = µFjFi − γ(Fi − FT)ωn

i,j (n ∈ N), called
learning rule on Synaptic Plasticity and Synaptic Scaling (SPaSS), with γ being the learning
rate of the homeostatic mechanism. Here, the homeostasis describes the experimentally
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observed form of synaptic scaling by Turrigiano et al. (1998), where the synaptic weights
are scaled up or down when the postsynaptic activity is below or above the target fir-
ing rate FT (Turrigiano et al. 1998; Turrigiano and Nelson 2004; Tetzlaff et al. 2011). This
particular mathematical implementation of synaptic scaling is also able to stabilize other
forms of synaptic plasticity rules, such as the BCM-rule, for at least a quadratic weight
dependency n ≥ 2 (Tetzlaff et al. 2011).

ſ.ſ.ƀ Models Describing Hebbian Cell Assemblies in Neuronal Networks

The above described SPaSS learning rule in a firing rate formalism reliably models the self-
organized memory allocation (Auth et al. 2018), formation and consolidation of memories
in recurrent neuronal networks (Tetzlaff et al. 2013; Tetzlaff et al. 2015). However, there
are further approaches to form and retrieve memories, those models are based on more
complex and computational expensive, as well as analytically not feasible, spiking neural
network models (Litwin-Kumar and Doiron 2014; Zenke et al. 2015). For example, the
model proposed by Litwin-Kumar and Doiron (2014) that combines a multitude of dif-
ferent plasticity mechanisms, such as spike-timing plasticity, synaptic normalization, as
well as inhibitory spike-timing plasticity, to allow for the formation and consolidation of
Hebbian cell assemblies (CAs) (Litwin-Kumar and Doiron 2014). Another model proposed
by Zenke et al. (2015) comprises short-term plasticity, LTP and LTD, homeostatic plastic-
ity, as well as, transmitter-induced plasticity and consolidation, to allow for the formation
and retrieval of memories (Zenke et al. 2015).

Thus, due to the high abstraction level of the SPaSS learning rule (Tetzlaff et al. 2011; Tet-
zlaff et al. 2013) describing the synaptic dynamics in a firing rate formulation, this par-
ticular plasticity paradigm will be the starting point for the investigation in this thesis to
examine the basic principles of synaptic plasticity responsible for the formation of diverse
memory interactions.
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Wie ist es möglich, dass die Mathematik, letztendlich doch
ein Produkt menschlichen Denkens unabhängig von der
Erfahrung, den wirklichen Gegebenheiten so wunderbar
entspricht?

Albert Einstein

3
Mathemaঞcal Formalism on the Interacঞon of

Memories

In the previous Chapter (Sec. 2.1.5, p. 18), we have introduced the brain’s principle to or-
ganize individual memories into a web of knowledge a so-called schema (Fig. 2.4, p. 21),
which structures knowledge and allows for complex behavior. For modeling the dynam-
ics of a schema, in Sec. 3.1, we set about to introduce the used recurrent neuronal network
and neuron model (Fig. 3.1 A). Using this recurrent neuronal network model, in Sec. 3.2,
we describe the dynamics of npop ∈ N individual and interconnected neuronal popula-
tions (Fig. 3.1 B). Here, we make three major assumptions for the population model: (i) all
neuronal populations contain the same number of neurons, (ii) all neurons of a neuronal
population receive input from the same subset of neurons of the input layer, (iii) each
population-specific subset of the input layer contains as many neurons as the popula-
tions of the neuronal network. Two such neuronal populations (npop = 2) construct the
smallest motif within the structure of a schema being its primary building block. Hence,
using this generic neuronal population model, we restrict our numerical simulations and
analysis on two anatomically interconnected memories (npop = 2). Hereby, our main
objective is to classify all different forms of so-called functional organizations (FOs) of two
such connected memories. We define those different forms of FOs based on the effect of
a recalled memory to either excite or inhibit the interconnected memory, in accordance
with the definitions propsed by Byrne and Huyck (2010):
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Figure 3.1: Procedure to analytically investigate the input-dependent functional organization
of interconnected memories. (A) The used recurrent neuronal network (blue section)
consists of recurrently connected neurons (blue circles). Here the individual neurons
of the network are interconnected via plastic excitatory synapses (straight blue lines)
and constant inhibitory synapses (not shown). Each neuron of the network receives
neuron-specific external inputs from the input layer (red section) via constant excita-
tory synapses (red lines; example for the input stimulation of one neuron). (B) De-
scription of npop = 2 individual neuronal populations nested in the recurrent neu-
ronal network. All remaining neurons that are not part of a single neuronal popula-
tion (p1: black; p2: yellow) of the network are combined to a background population
(pB: blue). These background neurons serve as control neurons. All neurons belong-
ing to the same neuronal population receive a population-specific input stimulation.
(C) Analytical description of the neuronal populations at equilibrium by means of fixed
point analysis. Here, the input stimulation onto each neuronal population originating
from the background neurons (pB) is combined with the input layer.

Definition 1 On the order of two interconnected memories, we define the FO of those as an

• association (asc), if both memories excite each other,

• sequence (seq), if one memory excites and the other memory inhibits its interconnected mem-
ory, and

• discrimination (disc), if both memories inhibit each other

due to an appropriate recall stimulus.

For an evaluation of the dynamic FOs of memories underlying activity-dependent synap-
tic plasticity, we continue to explain how single neuronal populations decode specific
environmental input stimuli. Here, the corresponding numerical analysis on the FOs
of memories is computationally expensive and, furthermore, a corresponding synaptic-
weight dependent analysis is not feasible. Therefore, by means of fixed point analysis, in
Sec. 3.3 we provide an abstract low-dimensional population model at equilibrium state.
With this reduced population model, the learning outcome (i.e. encoded by the synaptic
weights) for a given input stimulation can be analytically calculated. Thus, this approach
enables an analytic investigation on the FO of two interconnected memories on the respec-
tive synaptic weight space (npop = 2, Fig. 3.1 C). Therefore, in the Sections from Sec. 3.1 to
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Sec. 3.3, we guide the reader step-by-step from the initial high dimensional neuronal net-
work description considering individual neuronal activity and synaptic weight dynam-
ics to the abstract low-dimensional description of interacting memories in a population
model at equilibrium. Readers who are rather interested in the results on the underly-
ing synaptic plasticity mechanisms can quickly skim the Sections from Sec. 3.1 to Sec. 3.3
and proceed in more detail with Sec. 3.4. For an evaluation on the interaction of two
anatomically interconnected neuronal populations, in Sec. 3.4, we provide definitions of
memory representation (MR) and the functional organization (FO) dependent on the coupling
strength (i.e. synaptic weights) of the individual populations. Finally, we validate our de-
rived method for the analysis of interconnected neuronal populations at equilibrium. For
this, we compare the analytic results with those originating from the full network simula-
tions for an exemplary synaptic plasticity rule.

The presented method and the corresponding conclusions in this Chapter have been pub-
lished in the following article:

J. Herpich and C. Tetzlaff (2018). “Principles Underlying the Input-Dependent Formation
and Organization of Memories”. In: bioRxiv. A similar manuscript is currently under
revision in Network Neuroscience.

ƀ.ž Recurrent Neuronal Network Model

We consider a recurrent neuronal network model consisting of a set N of n rate-coded
point neurons (N := Nn = {1, . . . , n}, Fig. 3.1 A, blue dots). All neurons of the net-
work layer N are excitatory and inhibitory connected with global (i.e. network wide)
connection probabilities p+con and p−con, respectively. Note, in our analysis, we assume
p+con = p−con =: pcon. By this, the state of the network is defined by:

• the activities Fi ∈ F := M(n× 1|R+) of all neurons i of the network (i ∈ N ),

• the excitatory synaptic weights ωi,j ∈ W := M(n×n|R+) connecting the presynaptic
neuron j with the postsynaptic neuron i, as well as,

• all inhibitory synaptic weights ω−
i,j ∈ W− := M(n× n|R+).

Note that the excitatory connections are plastic while the inhibitory connections are con-
stant and globally set to ω−

i,j := θ ∈ R+ throughout this thesis. Only in Sec. 4.4.2 we
introduce inhibitory synaptic plasticity.
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ƀ.ž.ž Environmental Input Sঞmulaঞon

In addition to the network input, each neuron i ∈ N receives input from nex
i ∈ N dif-

ferent neurons (Fig. 3.1 A, red dots) of a neuron-i-specific subset Ei of the external input
layer E (Fig. 3.1 A, red section; red lines indicate the neuron-i-specific input for one par-
ticular neuron i). The activities F ex

k of all input neurons k ∈ Ei, that are interconnected
to neuron i of the recurrent network, are summarized by Fex

i := M(nex
i × 1|R+). Hence,

the whole input stimulation of the neuronal network layer with n neurons is given by
Fex := (Fex

1 , . . . , Fex
n ) = M(nex

i × n|R+). The specific input activities F ex
k ∈ Fex of these

input neurons k are transmitted via excitatory synapses to the postsynaptic neuron i with
global constant strength ωex := ωi,k, ωi,k ∈ Wex

i := M(1× nex
i |R+).

ƀ.ž.ſ Neuron Model

Each rate-coded point-neuron i ∈ N of the network integrates all incoming neuronal ac-
tivities Fj ∈ F via the interconnected excitatory (ωi,j ∈ W; Fig. 3.1 A, blue connections)
and inhibitory (ω−

i,j ∈ W−; not shown) synapses, as well as, all incoming neuronal ac-
tivities F ex

k ∈ Fex
i via the interconnected neuron-i-specific external synapses (ωi,k ∈ Wex

i ;
Fig. 3.1 A, red lines) to its neuron-specific input current (ϕi):

ϕi(Fex
i ,F,W,W−,Wex

i ) =
∑

j∈N+
i

ωi,jFj

︸ ︷︷ ︸
network excitation

−
∑

j∈N−
i

ω−
i,jFj

︸ ︷︷ ︸
network inhibition

+
∑
k∈Ei

ωexF ex
k︸ ︷︷ ︸

external excitation

, [ϕ] = 1pA.

(3.1)
Here, N+

i , N−
i ∈ N are the sets of indices for the excitatory and inhibitory presynaptic

neurons j connected to the postsynaptic neuron i and Ei is the neuron-i-specific input
layer, defined above. Although Dale’s principle states that any neuron can have either
excitatory or inhibitory connections, but not both at the same time, we merge both distinct
neuronal sets for the excitatory and inhibitory neurons towards one neuronal population
generalized by N . This approach does not violates Dale’s principle, it is just one technical
simplification of the used model. Hereby, all excitatory neurons are interconnected to
the inhibitory population, which, in turn, inhibits the excitatory population. Due to the
constant inhibitory synaptic weights (θ) and constant external excitatory synaptic weights
(ωex) the neuron specific input is simplified to:

ϕi(Fex
i ,F,W) =

∑
j∈N

(ωi,j − θ)Fj +ωex

∑
k∈Ei

F ex
k

 . (3.2)
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This neuron i specific current drives the leaky membrane potential (ui) of the respective neu-
ron and is described by the following ordinary differential equation (ODE):

τu̇i = −ui + Rϕi(Fex
i ,F,W), τ,R ∈ R+, [u] = 1mV, (3.3)

with τ ([τ] = 1 s) being the time constant of the membrane potential set to τ = 1 s and
R = 0.1nW, ([R] = 1nW) being the the membrane resistance. The neuron-specific mem-
brane potential ui is non-linearly mapped to a neural firing rate (Fi) by a sigmoidal transfer
function:

Fi =
Fmax

1 + exp (β[ϵ− ui(Fex
i ,F,W)])

, Fmax,β, ϵ ∈ R+, [F ] = 1Hz, (3.4)

with global parameters of the neuronal network of the maximal firing rate Fmax = 100Hz,
the steepness β ([β] = 1 1/mV) and the inflexion point ϵ ([ϵ] = 1mV) of the sigmoid. Thus,
the firing rate of each neuron i varies in between 0Hz and Fmax (F = M(n × 1|[0,Fmax])).
This sigmoidal transfer function approximates the characteristics of the neuronal activ-
ity: The neuronal acticity function only yields positive values (Gerstner et al. 2014) and
convergences to a maximal firing rate Fmax evoked by the refractory period for signal trans-
mission in form of action potentials (APs). By combining Eq. (3.3) and Eq. (3.4), we simplify
the description of the neuronal dynamics to one ODE for the neuronal firing rate:

τḞi = fF (Fex
i ,F,W) :=

(Fmax − Fi)Fi

Fmax

[
log
(

Fmax

Fi
− 1

)
+ β[Rϕi(Fex

i ,F,W)− ϵ]

]
. (3.5)

As the dynamics of the neuronal firing rate (Fi) of all neurons i of the network underlie
the same global rule (Eq. 3.5), we summarize the whole activity dynamics of the neuronal
network to:

fFn(Fex,F,W) :=


fF (Fex

1 ,F,W)
...

fF (Fex
n ,F,W)

 (3.6)

with Fex := (Fex
1 , . . . , Fex

n ).

ƀ.ž.ƀ Excitatory Synapঞc Plasঞcity

In contrast to all inhibitory synaptic weights (ω−
i,j ∈ W−), all excitatory synaptic weights

(ωi,j ∈ W) in the recurrent neuronal network connecting the presynaptic neuron j with
the postsynaptic neuron i undergo synaptic plasticity. There are multiple plasticity mech-
anisms and modeling approaches describing learning, introduced in Sec. 2.2.2. We will
focus on their application in the next Chapter (Chapter 4) of this thesis. So far we only
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specify that we consider activity-dependent learning rules for modeling synaptic plastic-
ity only considering local state variables, thus the pre- and postsynaptic activities (Fj , Fi)
and the synaptic weight (ωi,j) itself. Thus, we express the plastic excitatory synaptic
weight by the following initial value problem:

fω(Fj , Fi, ωi,j) := τωω̇i,j with ωi,j(t = 0) ∈ R+, [ω] = 1pC, (3.7)

with τω being the time constant for the synaptic weight dynamics. Again, as the dynamics
of the excitatory synaptic weights (ωi,j) for all synapses of the network underlie the same
global rule (Eq. 3.7), we summarize the whole excitatory synaptic weight dynamics of the
neuronal network to:

fWn(F,W) :=


fω(F1, F1, ω1,1) . . . fω(Fn, F1, ω1,n)

... . . . ...
fω(F1, Fn, ωn,1) . . . fω(Fn, Fn, ωn,n)

 . (3.8)

ƀ.ſ Interacঞon of Memories in a Neuronal Populaঞon Model

In the following Section, we will derive a model of interacting neuronal populations
(Fig. 3.1 B and Fig. 3.2 A for a more detailed description) nested in the recurrent neu-
ronal network as introduced in the previous Section (Sec. 3.1). For this, we transfer the
high dimensional recurrent network model defined by its single neuronal activity- and
synaptic weight-dynamics to a low dimensional neuronal population model described by
the dynamics of the average neuronal population’s activity, as well as, the intra- and inter-
population’s synaptic weights.

To describe the dynamics of npop ∈ N interacting neuronal populations within the recur-
rent network N , we will consider a set P of npop distinct subsets of neurons
P := {Pp1 , . . . ,Ppnpop}. Note we refer to the population r as a whole by pr whilst we
refer to all neurons of the population r by Ppr ⊂ N .

The specific subset of neurons Ppr ⊂ N belonging to the respective neuronal population r

is selected by the population-r-specific subset of the external input layer Er ⊂ E . Here,
all neurons i, j of the specific neuronal population r receive input from the same input
neurons k of the input layer E . Thus, it holds Ei = Ej =: Er for the population-r-specific
input set. Consequently, each neuron k ∈ Er of the population-r-specific input layer has
an excitatory connection towards all neurons i ∈ Ppr of the neuronal population r with
constant synaptic weight strength ωex.
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Figure 3.2: The interaction of two neuronal populations in a recurrent neuronal network. (A) In
a recurrent networkN (blue section), two neuronal populations (Pp1 : black; Pp2 : yellow)
receive population-specific external inputs of average amplitudes ⟨F ex

p1
⟩t and ⟨F ex

p2
⟩t,

respectively. All remaining neurons that are not part of a specific neuronal popula-
tion (Pp1 : black; Pp2 : yellow) of the network are combined to a background population
(PpB : blue). These background neurons serve as control neurons receiving noisy ex-
ternal inputs ⟨F ex

pB
⟩t. Each population r ∈ {1, 2,B} is described by its mean activity

⟨Fpr ⟩ and its mean intra-population-synaptic weight ⟨ωprpr ⟩ which changes over time.
Furthermore, the mean inter-population-synaptic weights connecting two populations
r, s are given by ⟨ωprps

⟩ (s ∈ {1, 2,B}\r). (B) Numerical simulation of the complete
n + n2-dimensional network dynamics (gray lines, Sec. 3.1) for three interconnected
neuronal populations 1, 2 and B in a normalized network model (see Appendix) for
full connectivity (pcon = 1) and a population-specific input of F̃ex = (0.9, 0.75, 0.25)

T

(see Sec. 3.2.1 for details on the input stimulation). Colored lines indicate the mean
activity and synaptic weight dynamics of the different neuronal populations 1 (black),
2 (yellow), B (blue) (Sec. 3.2.2). The long-term-representation (LTR) of the applied
population-specific input stimulation is evaluated for the second half of stimulation
time t ∈ [55, 100]τ̃ω (indicated by green bars, Sec. 3.3.1). For the applied learning rule
see Sec. 4.2.2 (SPaSS-learning rule) and for the input paradigm see Sec. 3.2.1. (C) Same
input paradigm as in (B) for different network connectivities pcon ∈ [0, 1]. Solid line:
LTR of the neuronal population’s activities; Colored area: variance of the LTR of single
neuronal activities of the respective neuronal population. Used parameters for (B) and
(C) see Tab. 3.1; (adapted from Herpich and Tetzlaff 2018).

In our model of npop different interacting neuronal populations r ∈ {1, . . . , npop}, we
make two assumptions to simplify the network structure and connectivity.
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Assumption 1 All neuronal populations consist of the same amount of neurons nP ∈ N and the
neuronal sets of each two neuronal populations r and s do not overlap (Ppr ∩ Pps = ∅).

Assumption 2 We set the number nex
i of afferent input neurons projecting to a neuronal popula-

tion r equal to the size of the neuronal population nex
i = nP =: nex

P to consider the same order of
magnitude for the input population as for the neuronal populations within the network.

The remaining neurons of the network, which are not part of any neuronal population
pr ∈ P , are unified to the neuronal set PpB := N\P and defined as background neurons.
We refer to this neuronal population by pB with size nB := |PpB |= n − npopnP . With
this approch, we reduce the high-dimensional neuronal network model to the interaction
of npop + 1 different neuronal populations nested in a recurrent neuronal network (see
Fig. 3.2 A for npop = 2 interconnected neuronal populations).

ƀ.ſ.ž Environmental Sঞmulaঞon of the Neuronal Populaঞons

Each neuronal simulation starts with a tuning phase (Fig. 3.2 Bi), where all neurons of
the network receive noisy input F ex

k ∼ N (0.25, 0.02) from nex
P different neurons k of the

input layer E . Along with the onset of the environmental input stimulation (t = 10 τω), all
neurons i ∈ Ppr belonging to a particular neuronal population r ∈ {1, . . . , npop} receive
their neuronal population specific input stimulation:

Assumption 3 As the input stimulation of a neuronal population r represents a specific envi-
ronmental piece of information, we assume that the firing rate of all population-r-specific input
neurons k ∈ Er fluctuate around a mean value over time, described by ⟨F ex

pr ⟩t.

With this mean population-r-specific input paradigm ⟨F ex
pr ⟩t over time, the activities of all

neurons k of the population-r-specific external input layer Er are modeled by an Ornstein-
Uhlenbeck process, respectively:

Ḟ ex
k = δ(⟨F ex

pr ⟩t − F ex
k )︸ ︷︷ ︸

drift

+ σζ︸︷︷︸
diffusion

, ζ ∼ N (0, 1) with F ex
k (t = 0) = ⟨F ex

pr ⟩t (3.9)

with the drift term scaled by δ = 0.025 and with a normal distributed diffusion term with
constant σ = 0.0125. All neurons k of the external input layer that are connected to the
background neurons i ∈ PpB continue to fire at the noise level F ex

k ∼ N (0.25, 0.02) similar
to the tuning phase.
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Table 3.1: Used parameters for the numerical simulations in Fig. 3.2 - Fig. 3.4 and Fig. 3.6.

Network model Neuron model Synaptic plasticity & Other
parameter value parameter value parameter value

n 100 neurons τ 1 s τω 60s

nP 10 neurons R 0.1nΩ FT 5 Hz

nB n− 2nP Fmax 100 Hz ωmax 97.33pC

nex
P nP nϵ 20 neurons δ 2.5Hz

ω̃ex 1[ωmax] β 0.00035 1
mV σ 1.25Hz

θ̃ 0.5[ωmax] ∆t 0.01s

Thus, given npop + 1 different neuronal populations P = {Pp1 , . . . ,Ppnpop
,PpB}, the pa-

rameter space of the input is defined by the different mean neuronal population-r-specific
inputs over time:

Fex :=
(
⟨F ex

p1 ⟩t, . . . , ⟨F
ex
pnpop

⟩t, ⟨F ex
pB⟩t

)T
. (3.10)

One exemplary simulation for a fully connected network (p+con = p−con = pcon = 1) with
2 + 1 interacting neuronal populations P = {Pp1 ,Pp2 ,PpB} is shown in Fig. 3.2 B (gray
curves). For the simulation we used the normalized neuronal network model (see Ap-
pendix). Here, we drive the neuronal network with an input stimulation (Fig. 3.2 Bi) spec-
ified by the population-specific input paradigm

F̃
ex

=
(
⟨F̃ ex

p1 ⟩t, ⟨F̃
ex
p2 ⟩t, ⟨F̃

ex
pB⟩t

)T
= (0.9, 0.75, 0.25)T.

For the simulation, we numerically solve the ordinary differential equations (ODEs) of the
normalized model for all individual neuronal activity (Fig. 3.2 Bii) and synaptic weight
dynamics (Fig. 3.2 Biii,iv) with the Euler method (∆t = 0.01s). Note, for reasons of clarity
in the upcoming Sections, we only plotted the intra- (Fig. 3.2 Biii) and inter-population
synaptic weights (Fig. 3.2 Biv) of both neuronal populations 1 and 2 and excluded the
intra- and inter-population synaptic weights related with the population on the back-
ground neurons (grey lines indicate the single neuronal and synaptic dynamics). All used
parameters for the numercial simulation are collected in Tab. 3.1.
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ƀ.ſ.ſ Dynamics of the Neuronal Populaঞons

To describe the time evolution of the different neuronal populations r and s within the
recurrent neuronal network for a specific input stimulation Fex, we calculate the time-
dependent mean state variables of this system of interconnected neuronal populations.
Note, the mean state variables are taken over all neuronal activity and synaptic weight
variables of one population not over time:

• the mean neuronal population activities FP(t) given by:

FP(t) :=


⟨Fp1⟩(t)

...
⟨Fpnpop ⟩(t)
⟨FpB⟩(t)

with ⟨Fpr⟩(t) := 1
nP

∑
i∈Ppr

Fi(t),

• the mean intra-population synaptic weights Wintra(t) given by:

Wintra(t) :=


⟨ωp1,p1⟩(t)

...
⟨ωpnpop ,pnpop ⟩(t)
⟨ωpB,pB⟩(t)

with ⟨ωpr,pr⟩(t) := n−2
P
∑

j∈Ppr

∑
i∈Ppr

ωi,j(t), and

• the mean inter-population synaptic weight Winter(t) given by:

Winter(t) :=



− ⟨ωp1,p2⟩(t) . . . ⟨ωp1,pnpop ⟩(t) ⟨ωp1,pB⟩(t)
⟨ωp2,p1⟩(t) − . . . ⟨ωp2,pnpop ⟩(t) ⟨ωp2,pB⟩(t)

... . . . ...
...

⟨ωpnpop ,p1⟩(t) . . . − ⟨ωpnpop ,pB⟩(t)
⟨ωpB,p1⟩(t) . . . ⟨ωpB,pnpop ⟩(t) −


with ⟨ωpr,ps⟩(t) := n−2

P
∑

j∈Pps

∑
i∈Ppr

ωi,j(t).

These mean state variables correspond to the colored curves (Pp1 : black, Pp2 : yellow,
PpB : blue) in the example shown in Fig. 3.2 B.

ƀ.ſ.ƀ Dimensionality of the Neuronal Populaঞon Model

With this description of the mean state variables of npop + 1 interacting neuronal popula-
tions, we reduce the state space of the neuronal network model from (n+n2)-dimensions
with n dimensions for the neuronal activity space F and n2 dimensions for the neuronal
excitatory synaptic weight space W to ((npop + 1) + (npop + 1)2)-dimensions for the state
space of the mean neuronal population model. Here, the mean neuronal population’s
activity space FP , as well as the mean intra-population excitatory synaptic weights Wintra
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3.3 Interaction of Memories in a Population Model at Equilibrium

space each consists of npop+1-dimensions. The mean inter-population excitatory synaptic
weight space Winter consists of (n2

pop + npop)-dimensions. These mean state variables for
the neuronal population’s activities and synaptic weights are depicted in the specific ex-
ample (Fig. 3.2 B) for the interaction of 2+1 different neuronal populations by the colored
curves (black: neuronal population 1, yellow: neuronal population 2, blue: background
neurons B).

ƀ.ſ.Ɓ Long-term Representaঞon of Sঞmulaঞon

As the neuronal populations are designed to represent specific environmental stimuli, we
consider the long-term representation (LTR) of the stimulus in the population-specific state
variables to analyze how a specific input paradigm is encoded within the neuronal net-
work. The LTR is determined within a time window tw of the input stimulation when
the system’s state variables have reached stable representations. Here, all neuronal and
synaptic state variables fluctuate around mean values. These mean values determine the
LTR of the specific input stimulation. In our neuronal network simulations (exemplary
simulation shown in Fig. 3.2 B), we extract the LTR as the system’s mean state variables
over the specific time window of tw = [55, 100]τ̃ω, for the second half of stimulation time
(indicated by green bars in Fig. 3.2 B). Here, we indicate the LTR of the system’s state
variables in the population model formalism by ⟨Fpr⟩LTR for the neuronal population’s
mean activity and ⟨ωpr,ps⟩LTR for the mean excitatory synaptic weights connecting neu-
ronal population s towards neuronal population r.

ƀ.ƀ Interacঞon of Memories in a Populaঞon Model at Equilibrium

In Fig. 3.2 B, we have exemplary shown how a specific input stimulation is mentally
encoded by the synaptic weights in the population model formalism. These synaptic
weights, at stable state, fluctuate around mean values, which, are defined as the long-
term representation (LTR) for the respective input stimulation. In this Section, by means of
fixed point analysis, we derive a method to analytically determine the state variables for
the LTR for a given input stimulation (Fig. 3.1 C) without simulating the whole neuronal
activity and synaptic weight dynamics.

The here derived population model at equilibrium holds for specific neuronal systems with
the following inherent condition: When the environmental input stimulation Fex is con-
stantly applied onto the network over time, specific learning rules fω lead the system into
an equilibrium state E(Fex, fω), indicating the LTR of the respective input stimulation.
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Condition 1 Given a specific external input stimulation Fex and a specific excitatory synaptic
learning rule fω driving the dynamics of a neuronal population model, the system evolves into
a equilibrium state E(Fex, fω) if and only if fFn(Fex,F∗,W∗) = 0 and fWn(F∗,W∗) = 0 being
the zero matrix. Whereby, F∗ := M(n × 1|[0,Fmax]) pools the fixed activities F ∗

i of all neurons
i ∈ N of the network and W∗ := M(n× n|R+) summarizes all fixed excitatory synaptic weights
ω∗
i,j of the neuronal network. Throughout this thesis, we refer to the stable state by the following

formalism:
E(Fex, fω) := {F∗(Fex, fω), W∗(Fex, fω)} . (3.11)

In this thesis equilibrium and fixed point are synonyms.

Note, the state variables representing the numerically obtained long-term representation
(LTR) for a given input stimulation are described by the notation of ⟨◦⟩LTR. Whereas the
state variables representing the analytically determined system’s equilibrium state is de-
scribed by the notation of ◦∗. To clearly distinct numerically and analytically calculated
LTRs, in the following, we consequently make use of ⟨Fi⟩LTR, ⟨ωi,j⟩LTR for the simulation
and F ∗

i , ω∗
i,j for the analysis. However, both notations describe the stable state of the

system for a given input paradigm.

ƀ.ƀ.ž Populaঞons at Equilibrium

For all neuronal populations r, s ∈ {1, . . . , npop} of the network, we describe the average
neuronal population’s state variables at equilibrium as:

• the fixed average neuronal population’s activities
F := (Fp1 , . . . ,FpB)

T with Fpr := 1
nP

∑
i∈Ppr

F ∗
i ,

• the fixed average intra-population’s excitatory synaptic weights
wintra := (wp1,p1 , . . . ,wpB,pB)

T with wpr,pr := n−2
P
∑

i∈Ppr

∑
j∈Ppr

ω∗
i,j , and

• the fixed average inter-population’s excitatory synaptic weights

winter :=
(
wp1,p2 , . . . ,wpnpop ,pB

)T
with wpr,ps := n−2

P
∑

i∈Ppr

∑
j∈Pps

ω∗
i,j .

Using these state variables in the population formalism of npop + 1-dimensions, we re-
duce the equilibrium state, previously defined on the individual fixed neuronal activities
F∗(Fex, fω) and fixed synaptic weights W∗(Fex, fω) (compare Eq. (3.11) with the following
Eq. (3.12)):

E(Fex, fω) = {F(F∗(Fex, fω)), wintra(W∗(Fex, fω)), winter(W∗(Fex, fω))} . (3.12)
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To enable a fixed point analysis of the population model to determine its LTR for a given
input stimulation, the applied learning rule fω has to have a specific property:

Condition 2 The fixed excitatory synaptic weights ω∗
i,j can explicitly be calculated only from the

fixed pre- F ∗
j and postsynaptic neuronal activities F ∗

i and by a function f∗
ω(F

∗
j , F

∗
i ). We refer to

this function as the fixed point function of the synaptic learning rule fω.

For the exemplary network simulation in Fig. 3.2 B, we note that for all neurons i ∈ Ppr of a
given neuronal population r the LTR of the single neuronal activities (gray lines) fluctuate
around the LTR of the average neuronal population’s activity (colored lines) with small
variance. In Fig. 3.2 C, we plotted the average population’s activities (solid lines) and the
variance of the respective single neuronal activities for different network connectivities
pcon. Thus, we see that for the whole parameter space of pcon ∈ [0, 1] the variance of the
individual neuronal activities compared to the population average is very small. Given
such small deviations of the single neuronal dynamics, we can make a further assumption
on the equilibrium state E(Fex, fω) of the population model:

Assumption 4 Due to the same environmental input stimulation ⟨F ex
pr ⟩t onto all neurons i ∈ Ppr

of a neuronal population r, we assume that the variance of each fixed neuronal activity to the fixed
average population’s activity is negligibly small. Thus, it holds

F ∗
i = Fpr + σ2

Fi
with variance σ2

Fi
≈ 0. (3.13)

Corollary 1 The fixed activity of each neuron i of a neuronal population r approaches the fixed
average activity of the respective neuronal population

F ∗
i ≈ Fpr . (3.14)

At this point, we are able to analytically calculate the LTR for the population model, inde-
pendent on the individual fixed neuronal activities F∗(Fex, fω) and fixed synaptic weights
W∗(Fex, fω) (compare Eq. (3.12) with the following Eq. (3.15)):

Theorem 2 Let fω(Fj , Fi, ωi,j) be the learning rule of the neuronal system and f∗
ω(F

∗
j , F

∗
i ) its

fixed point function. The equilibrium state of the neuronal population model is clearly defined by
the input paradigm Fex, the fixed average neuronal population’s activities F and the learning rule
on the excitatory synaptic weights fω with its fixed point function f∗

ω:

E(Fex, fω, f
∗
ω) = {F(Fex, fω), wintra(F(Fex, fω), f

∗
ω), winter(F(Fex, fω), f

∗
ω)}. (3.15)
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Proof. The fixed average synaptic weights of the population at equilibrium are given by:

wpr,ps = n−2
P

∑
i∈Ppr

∑
j∈Pps

f∗
ω(F

∗
j , F

∗
i ).

The assumption that all neurons i of a neuronal population Ppr approximate the fixed
average neuronal population’s activity F ∗

i ≈ Fpr (Eq. 3.14) yields an expression of the
fixed average synaptic weight independent of the single neuronal dynamics:

wpr,ps = n−2
P

∑
i∈Ppr

∑
j∈Pps

f∗
ω(Fps ,Fpr) = f∗

ω(Fps ,Fpr).

Thus, given the fixed neuronal population’s activities at equilibrium

F =
(
Fp1 , . . . ,FpnpopFpB

)T
, the respective fixed neuronal population’s intra- and inter-

synaptic weights are given by:

wpr,pr = f∗
ωi,j

(Fpr ,Fpr) and wpr,ps = f∗
ωi,j

(Fps ,Fpr).

ƀ.ƀ.ſ Calculaঞon of the Fixed Neuronal Populaঞon’s Acঞviঞes.

Up to this point, for any input stimulation Fex and synaptic learning rule fω, we still have to
observe the corresponding average neuronal population’s activities

F =
(
Fp1 , . . . ,Fpnpop ,FpB

)T
at stable state to calculate the equilibrium state of the pop-

ulation model (Eq. 3.15). In the following, we derive a method that combines the external
input stimulation Fex with the input originating from the background population pB to-

wards a new system’s input paradigm I =
(
Ip1 , . . . , Ipnpop

)T
. On the new I-input-space,

we are then able to numerically determine the respective average neuronal population’s

activities F =
(
Fp1 , . . . ,Fpnpop

)T
at equilibrium, without simulation the whole system’s

dynamics over time. For this, we set about to specify Qpr the average fixed input onto a
neuronal population r at equilibrium in a population formalism.
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Corollary 3 The average fixed input onto a neuronal population r at equilibrium is given
by:

Qpr(Fex,F, f∗
ω) :=nPω

ex⟨F ex
pr ⟩t (3.16)

+ pcon

(
nB(f

∗
ω(FpB ,Fpr)− θ)FpB + nP

(∑
s

(f∗
ω(Fps ,Fpr)− θ)Fps

))

only dependent on the environmental input stimulation Fex, the fixed average neuronal population’s
activities F and the fixed point function of the synaptic learning rule f∗

ω.

Proof. The average input onto a neuronal population r at equilibrium is given by:

Qpr := n−1
P

∑
i∈Ppr

ϕi(Fex
i ,F∗,W∗)

(Eq. 3.2)
= n−1

P

∑
i∈Ppr

ωex

∑
k∈Ei

F ex
k

+
∑
j∈N

(
ω∗
i,j − θ

)
F ∗
j

 .

When we pool the presynaptic neuron’s affiliation to its respective neuronal population
s ∈ {1, . . . ,npop}, background neurons B and the population-r-specific external input
population Er, this equation becomes

Qpr = n−1
P

∑
i∈Ppr

ωex

∑
k∈Er

⟨F ex
pr ⟩t

+
∑
j∈PB

(
ω∗
i,j − θ

)
F ∗
j +

∑
s

 ∑
j∈Pps

(
ω∗
i,j − θ

)
F ∗
j


= nPω

ex⟨F ex
pr ⟩t + pcon

(
nB (wpr,pB − θ)FpB + nP

(∑
s

(wpr,ps − θ)Fps

))

independent of individual neuronal inputs. Furthermore, with Theorem 2 the average
input onto neuronal population r at equilibrium is only dependent on the neuronal pop-
ulation’s activities and the environmental population specific input stimulation:

Qpr = nPω
ex⟨F ex

pr ⟩t + pcon

(
nB(f

∗
ω(FpB ,Fpr)− θ)FpB + nP

(∑
s

(f∗
ω(Fps ,Fpr)− θ)Fps

))
.

As briefly outlined, we now combine the average input onto each neuronal population pr

originating from the background population pB at equilibrium with the constant average
input originating from the external input layer Er. In doing so and relative to the size nP of
the neuronal population-r-specific external input layer Er, the combined input parameter
Ipr , of the population model is given by:

Ipr := ωex⟨F ex
pr ⟩t + pcon

nB
nP

(f∗
ω(FpB ,Fpr)− θ)FpB . (3.17)
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Figure 3.3: Abstraction to a low-dimensional population model of two interacting memories at
equilibrium. (A) Calculation of the fixed average neuronal population’s activities at
equilibrium for the exemplary network simulation (Fig. 3.2 B; for used parameters see
see Tab. 3.1). Here, the intersection of the nullclines describes the average neuronal
population activities at equilibrium (black: Ḟ1 = 0, yellow: Ḟ2 = 0). Grey arrows
indicate the flow field for the activities. (B) The abstraction of the neuronal network
model yields a low-dimensional population model described by the mean long-term
activities (Fp). These in turn clearly define the corresponding mean long-term synaptic
weights (wpr,ps

). Here, the input (red) combines inputs from the former described back-
ground neurons and external inputs given in the neuronal population model Fig. 3.2 A
(adapted from Herpich and Tetzlaff 2018).

With this approach, we combine the input parameter set for the population model formal-
ism from Fex (Eq. 3.10) with the input originating form the background population pB at
equilibrium towards the new input parameter set at equilibrium

I :=
(
Ip1 , . . . , Ipnpop

)T
. This formalism further reduces the equation on the average fixed

input onto a neuronal population r at equilibrium (Eq. 3.16) towards:

Qpr(Ipr ,F, f
∗
ω) = nP

[
Ipr + pcon

(∑
s

(f∗
ω(Fps ,Fpr)− θ)Fps

)]
. (3.18)

Furthermore, the equilibrium state of the population model is now clearly defined by the
input stimulation I and the fixed point function f∗

ω for the excitatory synaptic weights:

Theorem 4 Let fω(Fj , Fi, ωi,j) be the learning rule of the neuronal system and f∗
ω(F

∗
j , F

∗
i ) its

fixed point function. The equilibrium state of the neuronal population model is clearly defined
by the input paradigm I, the fixed average neuronal population’s activities F and the fixed point
function f∗

ω of the learning rule for the excitatory synaptic weights:

E(I, f∗
ω) = {F(I, f∗

ω), wintra(F(I, f
∗
ω), f

∗
ω), winter(F(I, f

∗
ω), f

∗
ω)}. (3.19)

Proof. This plain F-activity and f∗
ω-learning rule dependent expression of the average in-

put current Qpr onto a neuronal population r at stable state (Eq. 3.18), allows us to numer-

42



3.3 Interaction of Memories in a Population Model at Equilibrium

Figure 3.4: Full-network simulation and analysis of two interconnected memories 1 and 2.
(Ai) LTR of the average neuronal population 1 activity within the applied ⟨F̃ ex

p1
⟩ −

⟨F̃ ex
p2
⟩−input space. (Aii,iii) Conversion of the input space of the neuronal simulation

towards the population model at equilibrium. Aiv Analytically calculated fixed aver-
age activity of population 1 with the given input parameters I = (Ip1

, Ip2
)
T. (B) Mean

error of the numerically simulated and analytically calculated mean activity of popu-
lation 1 over the whole normalized ⟨F̃ ex

p1
⟩ − ⟨F̃ ex

p2
⟩−input space. For used parameters

see Tab. 3.1.

ically determine the population’s activities at equilibrium F for a specific input paradigm
I. By means of the ordinary differential equation (ODE) for the neuronal activity (Eq. 3.5),
we specify the nullcline for the neuronal population r’s average activity:

Ḟpr :=
(Fmax − Fpr)Fpr

Fmax

(
log
(

Fmax

Fpr

− 1

)
+ β(RQpr(Ipr ,F, f

∗
ω)− ϵ)

)
!
= 0.

And, second, we calculate the intersection of the npop different nullclines:

F(I, f∗
ω) =


Fp1(Ip1 ,F, f

∗
ω)

...
Fpnpop (Ipnpop ,F, f

∗
ω)

 with Ḟpr(Ipr ,F, f
∗
ω)

!
= 0 for all r ∈ {1, . . . ,npop}

that determines the system’s equilibrium state (see Fig. 3.3 A; red circle indicates the in-
tersection of both nullclines (black and yellow curve)).

ƀ.ƀ.ƀ The Populaঞon Model Reliably Predicts the Equilibrium State

In the following, we validate our derived population model at equilibrium for the example
of two interacting populations (Fig. 3.3 B) to directly calculate the neuronal population’s
fixed average activities. We compare the results for the LTR from the neuronal network
simulation (Fig. 3.1 B, Fig. 3.2 B) for the whole normalized ⟨F̃ ex

p1 ⟩−⟨F̃ ex
p2 ⟩−input space (see

Appendix) with the predicted fixed population’s activities at equilibrium state (Fig. 3.1 C,
Fig. 3.3 A).

43



Mathematical Formalism on the Interaction of Memories

Thus, we simulate the whole activity- and synaptic weight-dynamics for two intercon-
nected neuronal populations 1 and 2 nested in a fully connected network (pcon = 1) and
extract the LTR of the respective neuronal population’s state variables for the whole nor-
malized ⟨F̃ ex

p1 ⟩ − ⟨F̃ ex
p2 ⟩−input space. To make a comparison of the numerical simulation

and analytic calculation feasible, we need to calculate Ipr for the simulations. For this,
we adapt the parameters of Eq. (3.17) for the combined input onto a neuronal population
and replace the state variables at fixed point FB and wpr,pB with the obtained LTR of the
numerical simulation ⟨F̃B⟩LTR and ⟨ω̃pr,pB⟩LTR at stable state, respectively:

Ipr := ωex⟨F ex
pr ⟩t + pcon

nB
nP

(⟨ωpr,pB⟩LTR − θ)⟨FB⟩LTR. (3.20)

Applying this function Eq. (3.20) for the exemplary neuronal network simulation in
Fig. 3.2 B where we use a normalized population-specific input of

F̃ex =
(
⟨F̃ ex

p1 ⟩t, ⟨F̃
ex
p2 ⟩t, ⟨F̃

ex
pB⟩t

)T
= (0.9, 0.75, 0.25)T corresponds to the new input stimu-

lation of I = (Ip1 , Ip2)
T = (0.76, 0.63)T for the population model at equilibrium, shown

in Fig. 3.3 A.

In Fig. 3.4 Ai the LTR for the activity ⟨F̃p1⟩LTR of neuronal population 1 within the whole
normalized ⟨F̃ ex

p1 ⟩ − ⟨F̃ ex
p2 ⟩−input space is shown. Using the state variables for the LTR

of the neuronal population’s activities (⟨F̃p1⟩LTR, ⟨F̃p2⟩LTR, ⟨F̃pB⟩LTR) and synaptic weights
(⟨ω̃pBpr⟩LTR) and by means of Eq. (3.20), we calculated the converted input parameter Ip1
and Ip2 for the population specific input stimulation at equilibrium (Fig. 3.4 Aii,iii), re-
spectively. Using these input parameters I and Corollary 4, we analytically calculated the
fixed average activity of population 1 at equilibrium state Fp1 as described (Fig. 3.4 Aiv).
To compare the numerical (Fig. 3.4 Ai) with the analytical results for the average activ-
ity of neuronal population 1 (Fig. 3.4 Aiv) for the whole normalized ⟨F̃ ex

p1 ⟩ − ⟨F̃ ex
p2 ⟩−input

space yields a mean error defined by

mean error =
⟨ ∑

i∈⟨F̃ ex
p1

⟩

∑
j∈⟨F̃ ex

p2
⟩

1

2

(
|⟨F̃p1⟩LTR − Fp1 |+ |⟨F̃p2⟩LTR − Fp2 |

)⟩
, (3.21)

of mean error = 0.005Fmax = 0.5Hz. In Fig. 3.4 B, we did the same analysis as in Fig. 3.4 A
for different network connectivities pcon ∈ [0, 1]. The mean error globally stays at low
values with mean error < 0.01Fmax = 1Hz. Thus, we conclude that our analytic model for
the direct calculation of the system’s equilibrium state matches the numerical results very
well and, which, supports our population model at equilibrium, derived in this Section.
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ƀ.ƀ.Ɓ Dimensionality of the Populaঞon Model at Equilibrium

With this description of the fixed average state variables of npop interacting populations,
we reduce the state space of the neuronal network model towardsnpop-dimensions, clearly
defined by the npop different fixed population’s activities F. In Fig. 3.3 A, the vector field
and the corresponding calculation of the fixed average neuronal population’s activities of
the corresponding simulation in Fig. 3.2 B is shown. Here, the former population specific
input parameter F̃ex = (0.9, 0.75, 0.25)T is converted towards the respective input param-
eter I = (0.76, 0.63)T of the population model at equilibrium according to (Eq. 3.20). The
stable state of the neuronal population’s activities is determined by the intersection of
both nullclines Ḟp1 = 0 and Ḟp2 = 0 emphasized by the red circle.

ƀ.Ɓ DeCniঞon of Funcঞonal Organizaঞon of Memories

To classify the system’s ability to build up different functionally organized memories
based on synaptic plasticity, as they are proposed to appear for the formation of schemata
(Sec. 2.1.5, Fig. 2.4, Def. 1), we consider the long-term representation (LTR) of the neuronal
population model representing the respective stimuli. For learning rules fω, that lead the
system into an equilibrium state, the LTR of the environmental stimuli are given by the
state variablesF, wintra andwinter of this equilibrium state (see previous Section Sec. 3.3.2).
The smallest functional entity of a set P = {1, . . . ,npop} of npop interacting memories in
the cognitive structure of schemata is the functional organization (FO) of two such intercon-
nected memories r and s. Thus, in the following we focus on the constraints for memory
representation (MR) and different forms of FO of two interconnected neuronal populations
r and s. Note, for general validity, we define MR and the FO of neuronal populations in
the general notation of the LTR resulting from the numerical simulation (⟨◦⟩LTR) that also
holds for the analytic population model at equilibrium.

ƀ.Ɓ.ž Memory Representaঞon

To determine whether a neuronal population is a proper memory representation of a cer-
tain input, we introduce a binary classification of the average recurrent intra-population
excitatory synaptic weight in relation to the constant average inhibition inherent of the
neuronal system in the LTR. Therefore, we classify whether the mean intra-population
synaptic weight of neuronal population r ⟨ωpr,pr⟩LTR is weaker or stronger than the aver-
age inhibitory synaptic weight θ. As long as the recurrent excitatory synaptic weight of
a neuronal population r is weaker than the constant mean inhibitory synaptic weight θ
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Mathematical Formalism on the Interaction of Memories

Figure 3.5: Definition of memory representation and functional organizations of two intercon-
nected neuronal populations on the respective synaptic weight space. (A) Definition
of the MR for two interconnected neuronal populations dependent on the binary rela-
tion of the average recurrent synaptic weights (⟨ωpr,pr ⟩LTR) to the inhibitory synaptic
weight strength (θ) inherent to the network. (B) Definition of different forms of FOs,
such as association (asc), sequence (seq) and discrimination (disc), based on the aver-
age excitatory synaptic weights (⟨ωps,pr

⟩LTR) connecting neuronal population r towards
neuronal population s, again, dependent on their binary relation to the constant inhi-
bition of the network (θ). Details see main text (adapted from Herpich and Tetzlaff
2018).

(Fig. 3.5 A, gray; Tab. 3.2 first column above horizontal line), an external input provided
to the population will cause the activity of this particular population to decrease. Thus,
in those cases we refer this neuronal population to be in a no-memory state (nm), that con-
sequently, does not serve as MR. By contrast, a neuronal population is said to encode a
memory trace, if the recurrent excitatory synaptic weight gets stronger than the constant
inhibitory synaptic weight strength (Fig. 3.5 A, white space; Tab. 3.2 first column below
horizontal line). Here, when recalling the memory by an external input cue, the neuronal
population will respond with an increased activity level and, therefore, serves as a MR.

Definition 2 Let the neuronal population r encode an environmental stimulus. This neuronal
population is said to be a memory representation (MR), if the LTR of its average recurrent excitatory
synaptic weight (⟨ωpr,pr⟩LTR) is above the neural system’s inherent level of inhibition (θ):

⟨ωpr,pr⟩LTR > θ. (3.22)

The condition implied by Def. 2 corresponds to the white synaptic weight space in Fig. 3.5 A
for two interconnected populations r, s.
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3.4 Definition of Functional Organization of Memories

ƀ.Ɓ.ſ Funcঞonal Organizaঞon of Memories

In the following, we define the long-term relation ⟨ωps,pr⟩LTR connecting neuronal popula-
tion r with neuronal population s. We do this in a similar manner as for the MR based on
the relation of excitation and inhibition between the corresponding neuronal populations
(Fig. 3.5 B; Tab. 3.2 column 2 & 3). If the LTR of the average excitatory synaptic weight
⟨ωps,pr⟩LTR is larger than the average inhibitory synaptic strength θ, an increased level of
activity in the former population r triggers an increased activation in the latter popula-
tion s. In this case, we refer to ⟨ωps,pr⟩LTR being an excitatory connection. In the opposite
case (⟨ωps,pr⟩LTR < θ), we refer to an inhibitory connection. Note that the LTRs of the inter
memory connections can be different for both directions ⟨ωps,pr⟩LTR and ⟨ωpr,ps⟩LTR. Thus,
there are four different combinations for the binary states of the two connections possible,
defining the range of four different forms of FO. These FOs are discrimination (disc, blue),
sequence (seq:sr green and seq:rs yellow) and association (asc, red). The definition of se-
quences introduces a sequential order of both two interconnected memories regarding the
direction of the excitatory conduction of an external input stimulus.

Definition 3 Let two neuronal populations r and s encode memory items (⟨ωpr,ps⟩LTR > θ,
⟨ωps,pr⟩LTR > θ). The different forms of FO of two interconnected memory items are defined based
on the binary conditions of either excitatory or inhibitory inter-memory connection
(⟨ωpr,ps⟩LTR ≷ θ, ⟨ωps,pr⟩LTR ≷ θ) of the two memories:

disc Both connections ⟨ωpr,ps⟩LTR and ⟨ωps,pr⟩LTR are inhibitory (Fig. 3.5 B, blue synaptic weight
space).

seq One connection is inhibitory while the reverse connection is excitatory. Regarding the se-
quential order, we define a sequence from memory s to memory r (seq:rs) as the sequence with
an excitatory conduction of a recall stimulus from memory s towards memory r (Fig. 3.5 B,
green and yellow synaptic weight space).

asc Both connections ⟨ωpr,ps⟩LTR and ⟨ωps,pr⟩LTR are excitatory (Fig. 3.5 B, red synaptic weight
space).

ƀ.Ɓ.ƀ Comparison of the Simulated with the Analyঞcally Predicted Funcঞonal
Organizaঞon of Memories

From the full-network simulation of two interconnected neuronal populations 1 and 2
(Fig. 3.4 A), we extract the corresponding LTRs of the intra- and inter-population synaptic
weights in Fig. 3.6 A,B. In panel Aiii and Panel Biii, we plotted the resulting classification
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Table 3.2: Synaptic weight-dependent definition of memory representation (MR) and differ-
ent forms of functional organization of two interconnected neuronal populations
r, s ∈ {1, 2}. The different FOs are defined based on the LTR of the average intra pop-
ulation’s excitatory synaptic weights ⟨ωprpr

⟩LTR and inter population’s synaptic weight
⟨ωprps

⟩LTR in relation to the average inhibitory synaptic weights θ (adapted from Her-
pich and Tetzlaff 2018).

MR Functional Organization

⟨ωpr,pr⟩LTR ⟨ωpr,ps⟩LTR ⟨ωps,pr⟩LTR definition abbreviation color

< θ - - none nm gray

> θ < θ < θ discrimination disc blue

< θ > θ sequence sr seq:sr green

> θ < θ sequence rs seq:rs yellow

> θ > θ association asc red

in accordance with the definitions on MR and FO. These results are further mapped onto
the applied ⟨F̃ ex

p1 ⟩LTR − ⟨F̃ ex
p2 ⟩LTR− input space (Fig. 3.6 Ci). For comparison with the ana-

lytically predicted FOs (Fig. 3.6 D), we map this space to the Ip1 − Ip2−input space of the
population model at equilibrium (Fig. 3.6 Cii) by means of Eq. (3.20). When we compare
the FO resulting of the numerical simulation (Fig. 3.6 Cii) and analytically predicted forms
of FOs (Fig. 3.6 D), we find a good match which again highlight the applicability of our
analytic approach to calculate the system’s state variables at equilibrium in a population-
model formalism.

ƀ.Ƃ Conclusion

In this Chapter, we have derived a mathematical framework to investigate the ability of
adaptive neural networks to form different functional organizations (FOs) of interconnected
memory representations (MRs) in a dynamic and input-dependent manner. Those struc-
tures are likely to occur in schemata, the networks of knowledge in the human brain re-
sponsible for basic cognitive functions. Multiple studies that precede this thesis only con-
sider the FO of sequences, such as temporal or motor sequences or dynamic phase tran-
sitions (Griniasty et al. 1993; Abbott and Blum 1996; Leibold and Kempter 2006; Herrera-
Aguilar et al. 2012; Tully et al. 2016; Chenkov et al. 2017). In contrast, in this thesis, we
consider all possible combinations of two interconnected MRs, defined as association (asc),
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3.5 Conclusion

Figure 3.6: Complete analysis for the population model nested in a neuronal network (A-C)
and analyzed by the mathematical framework at equilibrium (D). (A) LTRs for the
intra-population synaptic weights within the applied ⟨F ex

p1
⟩LTR −⟨F ex

p2
⟩LTR−input space

classified accoring to the contraints on MRs in the synaptic weight space. (B) Same
as in (A) for the synaptic weight connecting both neuronal population with a classifi-
cation on the constraints of FO in (Biii). (C) Mapping of the result in (Aiii, Biii) onto
the the applied ⟨F ex

p1
⟩LTR − ⟨F ex

p2
⟩LTR−input space (Ci) with transfer to the input space

at equilibrium (Cii) by means of (Eq. 3.20). (D) Analytically predicted MRs and FOs
resulting of the population model at equilibrium. For used parameters see Tab. 3.1
(adapted from Herpich and Tetzlaff 2018).

sequence (seq) and discrimination (disc). Those structures represent the primary building
blocks of interconnected memories present in schemata and we summarize these different
forms of relations by the term FOs.

An analysis of those FOs of interconnected MRs embedded in a recurrent neuronal net-
work is made feasible by introducing a population formalism. This approach enables us
to reduce the high-dimensional neuronal network problem to a low dimensional prob-
lem using average synaptic weights and activities of the neuronal populations involved
(Fig. 3.2). With this level of description, we are able to determine analytically whether a
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neuronal population will either excite or inhibit an interconnected neuronal population
at a given input. Since two interconnected memories can either excite or inhibit each
other reciprocally or, alternatively, form an excitatory connection in one direction while
the reverse connection is an inhibitory connection, this classification defines the different
form of FOs of interconnected MRs. Finally, by considering the long-term equilibrium
states of the excitatory synaptic weights of the population model, we further reduce the
system in its complexity. On this reduced model of interconnected neuronal populations
at equilibrium, we are able to map the resulting long-term representations (LTRs) onto the
two-dimensional activity-space of two interconnected neural populations (Fig. 3.3). This
is a sufficient description to solve the complex problem of input-dependent and plastic
memory interactions in a recurrent neuronal network (Fig. 3.4, Fig. 3.6).

Next, we will use this generic analytic framework to investigate the effect of diverse activity-
dependent synaptic learning rules on the formation and interaction between MRs in the
next Chapter.
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Man finde Dinge in seinem Gedächtnis vor, welche man
manchmal durch Überlegungen in die richtige Reihenfolge
bringen könne.

attributed to Carl Friedrich Gauß

in ’Die Vermessung der Welt’ (Daniel Kehlmann)

4
Implicaঞon of Memory Interacঞons on

Synapঞc Plasঞcity

In this Section we analyze the ability of different synaptic plasticity mechanisms to reliably
describe the formation and storage of memories and their dynamical organization into
a web of knowledge, which is essential for the generation of complex behaviors. The
primary building blocks of such a web of knowledge are the different forms of functional
organization (FO) of two interconnected memories (Sec. 3.4, p. 45). Therefore, here we
consider such interaction of two neuronal populations r = 1 and s = 2 in the derived
population model at equilibrium (Sec. 3.3, p. 37, Fig. 3.3). In the previous Chapter, we
referred to each individual populations r and s of the neuronal network with the specific
notation of pr and ps, respectively. In this Chapter, for better readability, we drop the p

and directly refer to each individual population by r, s ∈ {1, 2}.

Ɓ.ž Correlaঞon-based Plasঞcity

The underlying neuronal correlate of learning for all plastic excitatory synapses (ωi,j)
within the recurrent layer N of rate coded neurons is proposed to be Hebbian like (Hebb
1949), as introduced in Sec. 2.2.2:

fω(Fj , Fi, ωi,j) = τωω̇i,j = C(Fi, Fj), (4.1)
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Implication of Memory Interactions on Synaptic Plasticity

with neural activities of the pre- (Fj) and postsynaptic (Fi) neuron and τω being the time
scale of synaptic plasticity. To enable an analysis of different learning rules on synap-
tic plasticity, we make several assumptions on the specific formulation of Hebbian like
plasticity at stable state (◦∗):

Assumption 5 The correlation-based plasticity mechanism C at equilibrium state is assumed to
be:

• positive (abbr. C:p); for all x∗, y∗ ∈ R+:

C(x∗, y∗) ∈ R+, (4.2)

• monotonous (abbr. C:m); for all x∗1 > x∗2 ∈ R+ and y∗1 > y∗2 ∈ R+:

C(x∗1, y
∗) > C(x∗2, y

∗) and C(x∗, y∗1) > C(x∗, y∗2), (4.3)

• symmetric (abbr. C:s); for all x∗, y∗ ∈ R+:

C(x∗, y∗) = C(y∗, x∗), (4.4)

• independent (abbr. C:i); for all x∗, y∗ ∈ R+:

C(x∗, y∗) = Ĉ(x∗)Ĉ(y∗) (4.5)

with a function Ĉ : R+ → R+.

Example 1 The prototype of the Hebbian learning mechanism:

C : R+ × R+ → R+, (Fj , Fi) 7→ FjFi (4.6)

describes the AND condition for joint activity of the pre- and postsynaptic neurons (Dayan and
Abbott 2001; Gerstner and Kistler 2002; Choe 2015). Furthermore, this prototype fulfills each
single assumption (C:p, C:m, C:s, C:i) introduced above.

The mathematical formulation of plain correlation-based Hebbian learning rules (generic
formulation (Eq. 4.1), specific example (Eq. 4.6)) describe a positive feedback loop and,
thus, leads to diverging synaptic weight dynamics. Hence, plain Hebbian learning rules
are insufficient to describe the stable long-term representation (LTR) of environmental input
stimulations (Dayan and Abbott 2001; Gerstner and Kistler 2002; Choe 2015).
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4.2 Correlation-based Plasticity and Homeostasis

Ɓ.ſ Correlaঞon-based Plasঞcity and Homeostasis

Previous studies counteract on the divergence of synaptic weights by introducing a sta-
bilizing homeostatic mechanism H in addition to the Hebbian learning mechanism C.
Consequently, these rules are suitable models for synaptic plasticity in a biological realis-
tic manner (Bienenstock et al. 1982; Oja 1982; Dayan and Abbott 2001; Gerstner and Kistler
2002; Tetzlaff et al. 2013; Tetzlaff et al. 2015). Thereby, a subset of these different synaptic
learning rules introduce a direct weight-dependency of the homeostatic dynamics that is
driven by the postsynaptic neuronal activity (Oja 1982; Tetzlaff et al. 2013).

Definition 4 The combination of the Hebbian learning C rule with a postsynaptic activity-
dependent homeostatic mechanism H proportional to the synaptic weight:

fω(Fj , Fi, ωi,j) = τωω̇i,j = C(Fj , Fi)− γH(Fi)ω
n
i,j , n ∈ N, (4.7)

with γ being the time scale of the homeostatic mechanism and n ∈ N the exponential dependency
on the synaptic weight. This is a learning rule leading to stable synaptic weight dynamics (Tetzlaff
et al. 2013; Tetzlaff et al. 2015).

For the analysis on the reduced population model at equilibrium, we make one assump-
tion on the homeostatic plasticity mechanisms at stable state.

Assumption 6 The postsynaptic activity-dependent synaptic scaling mechanism H is assumed
to be monotonous at equilibrium (H:m); for all x∗ > y∗ ∈ R+ it holds

H(x∗) > H(y∗). (4.8)

Such learning rules on correlation-based and homeostatic synaptic plasticity are biologi-
cally motivated. Some examples based on a Hebbian learning mechanism for the
correlation-based plasticity mechanism as stated in Eq. (4.6), are given in the following
examples.

Example 2 Oja’s rule (Oja 1982), defined by a quadratic postsynaptic activity-dependent home-
ostatic mechanism:

H : R+ → R+, Fi 7→ F 2
i ,

depends linearly on the synaptic weight (n = 1) yielding the specific learning rule:

τωω̇i,j = FjFi − γF 2
i ωi,j . (4.9)
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Example 3 The learning rule on Synaptic Plasticity and Synaptic Scaling (SPaSS) (Tetzlaff et
al. 2011; Tetzlaff et al. 2012) with a biologically motivated homeostatic mechanism, called synaptic
scaling (Turrigiano et al. 1998; Turrigiano and Nelson 2004), depends on the postsynaptic activity
in relation to a specific target firing rate FT ∈ R+:

H : R+ → R, Fi 7→ Fi − FT.

Moreover, the synaptic scaling mechanism is dependent on the synaptic weight in second power
(n = 2). Hence, the synaptic learning rule is given by the following mathematical formulation:

τωω̇i,j = FjFi − γ
(
Fi − FT

)
ω2
i,j . (4.10)

Both examples (Example 2 & Example 3) hold Assumption 6 at equilibrium. Please note
that previous studies indicate that the SPaSS-learning rule with its combination of the spe-
cific plasticity mechanisms of Hebbian learning and synaptic scaling normalized to the
synaptic weight yield the reliable formation of individual memory representations (MRs)
(Tetzlaff et al. 2013; Tetzlaff et al. 2015). Thus, the SPaSS-learning rule seems to be a suit-
able learning rule to analyze its dynamics in the interaction of distinct MRs and, conse-
quently, its abilities to form different forms of functional organizations (FOs) of intercon-
nected memories. For an analysis of such learning rules fω on the introduced population
model at equilibrium (Sec. 3.3, p. 37), we have to specify the corresponding fixed point func-
tion f∗

ω:

Corollary 5 Let fω be a synaptic learning rule on correlation-based plasticity in combination with
a synaptic-weight dependent homeostatic mechanism. The respective fixed point function is given
by:

f∗
ω(F

∗
j , F

∗
i ) = ω∗

i,j(F
∗
j , F

∗
i ) =

n

√
C(F ∗

j , F
∗
i )

γH(F ∗
i )

. (4.11)

Proof. Due to the weight dependency of the homeostatic mechanism, the fixed point func-
tion f∗

ω of the applied learning rule (Eq. 4.7) can be calculated by setting the ordinary
differential equation (ODE) of the learning rule equal to zero and solve it to ωi,j .

The existence of such a fixed point function f∗
ω for the plastic synaptic weights in combi-

nation with Theorem 4 (p. 42) allows us to express the system’s equilibrium state E(I, f∗
ω)

for a given input paradigm I = (I1, I2)
T only dependent on the neuronal population’s

fixed activities F = (F1,F2)
T. By this, we analyze the conditions for MR and the different

forms of FO on the neuronal population’s F1 − F2−activity space at fixed point.
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Ɓ.ſ.ž Memory Representaঞon and Funcঞonal Organizaঞon in Acঞvity-Space

In the following, we analyze learning rules on correlation-based synaptic plasticity in
combination with a homeostatic mechanism in regard to their ability to build up mem-
ory representation (MR) of given stimuli I and, simultaneously, form the different types
of functional organization (FO) of two interconnected neuronal populations. As we have
seen, synaptic learning rules based on correlation-based plasticity in combination with a
weight dependent homeostatic mechanism exhibit a fixed point function f∗

ω (Eq. 4.11) on
the synaptic weights. Thus, for our analysis, we consider the system’s equilibrium state
E(I, f∗

ω) indicating the long-term representation (LTR) for a given input.

Necessary Condiঞons on the Di@erent Forms of Funcঞonal Organizaঞon

Using the fixed point function f∗
ω (Eq. 4.11), we can express the conditions for MR for each

neuronal population r ∈ {1, 2} and the FO of two interconnected memories by the differ-
ent activity-dependent plasticity mechanisms C and H . The condition on MR (Eq. 3.22,
Fig. 3.5 A, p. 46) yields for each neuronal population r the following expression on the
involved plasticity mechanisms:

wr,r
MR
> θ ⇔ n

√
C(Fr,Fr)

γH(Fr)

MR
> θ. (4.12)

In the same way, the long-term average synaptic weights connecting neuronal popula-
tion s with neuronal population r can be expressed by their activity-dependent plasticity
mechanisms C and H . Here, we consider the binary states of such connections being an
excitatory (>) or inhibitory connection (<; Fig. 3.5 B, p. 46):

wr,s

exc
≷
inh

θ ⇔ n

√
C(Fs,Fr)

γH(Fr)

exc
≷
inh

θ. (4.13)

Theorem 6 Let θ be the constant inhibitory synaptic weight level within the neuronal network.
The constraints on the MR for the interconnected neuronal population 1 and 2 and their differ-
ent forms of functional organizations (FOs) (FO ∈ {asc, seq:21, seq:12, disc}; Tab. 3.2) can be
combined into two ordered sets on the plasticity mechanisms C and H of the applied learning rule:

γH(F1)θ
n


MR
< C(F1,F1)
inh
≷
exc

C(F2,F1)
; γH(F2)θ

n


MR
< C(F2,F2)
inh
≷
exc

C(F1,F2)

 7→ FO. (4.14)
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Proof. The constraints on the memory representation (MR1 & MR2) are given by:

w11 =
n

√
C(F1,F1)

γH(F1)
> θ ⇔ C(F1,F1) > γH(F1)θ

n (MR1)

and

w22 =
n

√
C(F2,F2)

γH(F2)
> θ ⇔ C(F2,F2) > γH(F2)θ

n. (MR2)

Whereas the constraints on the excitatory (>) or inhibitory (<) connections in between
both memories (R12 & R21) are given by:

w12 =
n

√
C(F2,F1)

γH(F1)

exc
≷
inh

θ ⇔ C(F2,F1)
exc
≷
inh

γH(F1)θ
n (R12)

and

w21 =
n

√
C(F1,F2)

γH(F2)

exc
≷
inh

θ ⇔ C(F1,F2)
exc
≷
inh

γH(F2)θ
n. (R21)

Due to the postsynaptic activity-dependent scaling term H , the conditions (MR1) and
(R12) yield an estimation on the homeostatic mechanism γH(F1)θ

n. This estimation com-
prises the first ordered set of the plasticity mechanisms in (Eq. 4.14). In the same way, the
conditions (MR2) and (R21) yield the second ordered set of the plasticity mechanisms.

SuLcient Condiঞons on the Di@erent Forms of Funcঞonal Organizaঞon

The conditions for the formation of an association (asc) of two interconnected populations
result from the condition on the MR of the population with the lower level of activity and
the condition for an excitatory relation in the direction from the population with the lower
activity level towards the population with the higher activity level:

Corollary 7 Let Fmin := min(F1,F2) be the lower activity level and Fmax := max(F1,F2) be the
higher activity level of two interconnected neuronal populations 1 and 2. An association (asc) of
both neuronal populations is defined by the sufficient condition:[

γH(Fmin)θ
n

MR
< C(Fmin,Fmin); γH(Fmax)θ

n
exc
< C(Fmin,Fmax)

]
7→ asc. (4.15)

Proof. The specific conditions for an asc are given by the bidirectional excitatory connec-
tions of both memories:γH(F1)θ

n


MR
< C(F1,F1)
exc
< C(F2,F1)

; γH(F2)θ
n


MR
< C(F2,F2)
exc
< C(F1,F2)

 7→ asc.
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4.2 Correlation-based Plasticity and Homeostasis

Case 1: F1 < F2. According to the premises on the MR of the population 1 with the lower
level of activity, γH(F1)θ

n
MR
< C(F1,F1). Due to the order-preserving property of the Heb-

bian plasticity mechanism (C:m, Eq. 4.3), this MR implies the condition on the excitatory
relation for the connection from memory 2 to memory 1 (R12):

γH(F1)θ
n

MR
< C(F1,F1)

C:m
< C(F2,F1). This implication reduces both estimations on the

homeostatic mechanism dependent on the fixed average activity of neuronal population 1

to one estimation:γH(F1)θ
n

MR
< C(F1,F1) ; γH(F2)θ

n


MR
< C(F2,F2)
exc
< C(F1,F2)

 7→ asc.

Equivalent, the second premises on the excitatory relation in the direction from the pop-
ulation 1 with the lower activity level towards the population 2 with the higher activity
level (R21) γH(F2)θ

n
exc
< C(F1,F2) implies the condition on the MR of population 2 with

the higher activity level: γH(F2)θ
n

exc
< C(F1,F2)

C:m
< C(F2,F2). Hence, the second ordered

set of plasticity mechanisms defining the asc is reduced towards one estimation:[
γH(F1)θ

n
MR
< C(F1,F1) ; γH(F2)θ

n
exc
< C(F1,F2)

]
7→ asc.

Case 2: F1 > F2. Equivalent to case 1, we get[
γH(F1)θ

n
exc
< C(F2,F1) ; γH(F2)θ

n
MR
< C(F2,F2)

]
7→ asc.

Case 3: F1 = F2. This special case reduces the problem to consider the condition for MR
for both populations[

γH(F1)θ
n

MR
< C(F1,F1) ; γH(F2)θ

n
MR
< C(F2,F2)

]
7→ asc,

as these conditions imply an excitatory connection in both directions (R21 and R12), re-
spectively. This expression is in accordance with (Eq. 4.15).

Corollary 8 The sufficient conditions for the formation of a sequence from memory s to memory
r (seq:rs) are given by:γH(Fr)θ

n


MR
< C(Fr,Fr)
exc
< C(Fs,Fr)

inh
< γH(Fs)θ

n
MR
< C(Fs,Fs)

 7→ seq:rs (4.16)

57



Implication of Memory Interactions on Synaptic Plasticity

Proof. The two ordered sets on the plasticity mechanisms for the conditions of an seq:rs
are given byγH(Fr)θ

n


MR
< C(Fr,Fr)
exc
< C(Fs,Fr)

; C(Fr,Fs)
inh
< γH(Fs)θ

n
MR
< C(Fs,Fs)

 7→ seq:rs.

Due to the symmetric characteristic of the Hebbian learning mechanism, it holds
C(Fs,Fr)

C:s
= C(Fr,Fs). Hence, both ordered sets of plasticity mechanisms can be com-

bined towards one ordered set of the following form:γH(Fr)θ
n


MR
< C(Fr,Fr)
exc
< C(Fs,Fr)

C:s
= C(Fr,Fs)

inh
< γH(Fs)θ

n
MR
< C(Fs,Fs)

 7→ seq:rs

Corollary 9 All learning rules based on correlation-based Hebbian plasticity in combination with
postsynaptic activity-dependent homeostatic mechanism can not describe the functional organiza-
tion of discrimination of two interconnected memories.

Proof. The two ordered sets of the plasticity mechanisms describing the discrimination
(disc) of two interconnected memories are defined by the bidirectional inhibitory connec-
tions of both memories:[

C(F1,F1)
MR
> γH(F1)θ

n
inh
> C(F2,F1) ; C(F2,F2)

MR
> γH(F2)θ

n
inh
> C(F1,F2)

]
7→ disc.

When we neglect the condition on the postsynaptic activity-dependent scaling condition,
this set of orders is reduced to:[

C(F1,F1)
MR & inh

> C(F2,F1) ; C(F2,F2)
MR & inh

> C(F1,F2)

]
7→ disc

and, using the monotonous characteristic of the Hebbian learning mechanism (C:m), ex-
pressed to a contradiction:[

F1 > F2 ; F1 < F2

]
7→ disc ⇒⇐; contradiction.

Thus, we conclude that such learning rules on synaptic plasticity in combination with a
homeostatic mechanism are only able to reliably form associated memories or memories
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4.2 Correlation-based Plasticity and Homeostasis

that are connected in a sequential order. In the next Section, we validate this conclusion
given the example of the SPaSS-learning rule.

Ɓ.ſ.ſ Example: Learning Rule on Synapঞc Plasঞcity and Synapঞc Scaling

As already stated, the learning rule on Synaptic Plasticity and Synaptic Scaling (SPaSS) re-
liably builds up memory representations (MRs) of environmental stimuli. Thus, here we
analyze this learning rule in regard to its abilities to build up different functional orga-
nizations (FOs) of two interconnected neuronal populations r, s ∈ {1, 2} dependent on
the environmental and sensory input stimulation in a fully connected neuronal network
(pcon = 1). To further reduce complexity of the parameter space, we do the analysis on
the state-space for the respective normalized neuronal network model (see Appendix for
details):

input F̃ex :=
(
⟨F̃ ex

1 ⟩t, ⟨F̃ ex
2 ⟩t, ⟨F̃ ex

B ⟩t
)T

(4.17)

activity τ
˙̃Fi = (1− F̃i)F̃i

[
log
(
F̃−1
i − 1

)
+ β(Rϕi − ϵ)

]
, (4.18)

with ϕi = Fmaxωmax

 ∑
r∈{P1,P2,PB}

∑
j∈Pr

(ω̃i,j − θ̃)F̃j + ω̃ex
∑
k∈Er

F̃ ex
k

 , (4.19)

syn. weight τ̃ω ˙̃ωi,j = F̃jF̃i − γ̃(F̃i − F̃T
)ω̃2

i,j , (4.20)

with τ̃ω =
τω(

Fmax
√

Fmaxγ(1− F̃T
)

) , γ̃ =
1

1− F̃T . (4.21)

By this, we map the whole activity and synaptic weight dynamics to a state space normal-
ized to the maximal firing rate and maximal synaptic weight, respectively. Furthermore,
the normalized time scale γ̃ for the synaptic scaling mechanism is express by the normal-
ized target firing rate F̃T, thus, reduces the number of free parameters. Note, x̃ indicates
the normalized variable x.

The results presented in this Section (Sec. 4.2.2) have been published in the following
article:

J. Herpich and C. Tetzlaff (2018). “Principles Underlying the Input-Dependent Formation
and Organization of Memories”. In: bioRxiv. A similar manuscript is currently under
revision in Network Neuroscience.
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Acঞvity-dependent Constraints of Memory Representaঞon and Funcঞonal Organizaঞon

In this Section, we map the general synaptic weight-dependent conditions for memory
representation (MR) and functional organization (FO) of two interconnected memories (The-
orem 6, p. 55) onto the respective activity-dependent conditions underlying the specific
SPaSS-learning rule. Therefore, we map the conditions on MR, as well as the condition
for an excitatory or inhibitory relation between two interconnected neuronal populations,
defining the different forms of FOs to the average population activities (Fig. 4.1). For this,
we specify the activity-dependent fixed point function of the applied normalized SPaSS-
learning rule (Eq. 4.20) for the excitatory synaptic weights:

f∗
ω = ω∗

i,j =
n

√√√√C(F̃ ∗
j , F̃

∗
i )

γ̃H(F̃ ∗
i )

=
2

√√√√ F̃ ∗
j F̃

∗
i (1− F̃T

)

F̃ ∗
i − F̃T . (4.22)

This SPaSS-learning rule specific fixed point function with its specific plasticity-mechanism
dependent condition on MR (Eq. 4.12) yields two distinct activity-regimes for the neuronal
population r ∈ {1, 2} to become a MR (Herpich and Tetzlaff 2018):

wr,r
MR
> θ̃

Theorem 2⇔ 2

√√√√FrFr(1− F̃T
)

Fr − F̃T > θ̃ ⇔ Fr ≷
θ̃2 ± θ̃

√
D

2(1− F̃T
)

(4.23)

with D = θ̃2 − 4F̃T
(1− F̃T

). Here, we see that the quadratic synaptic weight dependency
(n = 2) yield two distinct open intervals Flow, Fhigh (Fig. 4.1 Ai, white regimes) for the
activity of population r. This corresponds to a sufficiently strong recurrent excitability
conditioned on the synaptic weight-dependent definition for MR:

Flow :=
(

F̃T
,F
)

with F :=
θ̃2 − θ̃

√
D

2(1− F̃T
)
, (4.24)

and

Fhigh :=
(
F, 1
)

with F :=
θ̃2 + θ̃

√
D

2(1− F̃T
)
. (4.25)

Note the open interval Flow for the activity of a population reveals a lower bound defined
by the target activity F̃T of the synaptic scaling mechanism, since all activities below this
particular target firing rate lead to unbounded growth in the synaptic weights (Eq. 4.20).
Consequently, a neuronal population at equilibrium can not reach activity levels below
this target firing rate (Fig. 4.1 Ai, hatched regime; Eq. 4.22). Since the two distinct ac-
tivity regimes Flow and Fhigh do not overlap, the enclosed activity regime F < Fr < F
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4.2 Correlation-based Plasticity and Homeostasis

corresponds to the no-memory state (nm) (nm := [F,F], Fig. 4.1 Ai, grey regime) with size
|nm|= θ̃

√
D/(1− F̃T

), where no proper memory representation can be formed (equivalent
to wrr ≤ θ̃). For the definition of different forms of FOs of two interconnected neuronal
populations 1 and 2, the restricted F1−F2−activity phase space, enabling the formation of
two memory representations, is constructed by four distinct regimes (Fig. 4.1 Aii; activity
space that is not grayed out). These four distinct regimes emerge from all possible combi-
nations of Flow and Fhigh in both dimensions of F1 and F2 for each neuronal population,
respectively. Furthermore, these activity regimes are separated by the no memory phase
(nm, Fig. 4.1 Aii, gray regimes) (Herpich and Tetzlaff 2018).

To describe the different forms of FOs of two interconnected populations, we first specify
the activity-dependent conditions for an excitatory and inhibitory connection in between
two populations (Eq. 4.13) by means of the fixed point function (Eq. 4.22) of the applied
SPaSS-learning rule. In doing so, the condition for an inhibitory relation wrs < θ̃ becomes

Fs <
θ̃2

1− F̃T

(
1− F̃T

Fr

)
(4.26)

and the condition for an excitatory relation wrs > θ̃ becomes

Fs >
θ̃2

1− F̃T

(
1− F̃T

Fr

)
. (4.27)

To clearly differentiate an excitatory-dominated connection from an inhibitory-dominated
connection, we define a the marginal case that separates the two distinct cases, given by:

Srs :=Fs =
θ̃2

1− F̃T

(
1− F̃T

Fr

)
. (4.28)

Consequently, for two interconnected neuronal populations with their inherent directed
connections (R21 & R12), we get two such separatrixes, respectively:

S21 := F1 =
θ̃2

1− F̃T

(
1− F̃T

F2

)
, S12 := F2 =

θ̃2

1− F̃T

(
1− F̃T

F1

)
. (4.29)

Whereby, S21 maps the synaptic weight dependent condition w21 = θ̃ (Fig. 3.5 B, red
vertical line) into the F1 − F2−activity-space (Fig. 4.1 Aii, red curve) while S12 maps the
synaptic weight dependent condition w12 = θ̃ (Fig. 3.5 B, black horizontal line) onto the
F1 − F2−activity-space (Fig. 4.1 Aii, black curve).

By means of those two separatrixes (Eq. 4.29), the activity-dependent conditions, that spec-
ify the different forms of FOs, can be obtained by the specific combination of excitatory
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Implication of Memory Interactions on Synaptic Plasticity

and inhibitory relations for the two directed connections in between both populations:

Association. When both populations have activities above the respective separatrix
F1 > S21 and F2 > S12, each corresponding to an excitatory relation, both memories
are organized in an associational entity (Fig. 4.1 Aii, red phase).

Sequence. When the activity level of one population is above the respective separatrix
(i.e. excitatory relation) and the activity level of the other population is below the respec-
tive separatrix (i.e. inhibitory relation), the system is in a sequence state. Hereby, the
sequence with specific direction from memory 1 to memory 2 is formed when the activity
F1 is above the corresponding separatrix S21 while the activity F2 stays below separatrix
S12 (Fig. 4.1 Aii, green, seq:21) and vice versa for a sequence from memory 2 to memory 1

(yellow, seq:12).

Discrimination. When both populations have activities below the respective separatrix
F1 < S21 and F2 < S12, each corresponding to an inhibitory relation, both memories are
organized into an discriminatory functional organization (Fig. 4.1 A ii, blue regime). Note
that the contradiction for the constraints on MRs and the functional discriminated mem-
ories already proofed in Corollary 9 is graphically shown (Herpich and Tetzlaff 2018).

In the following, we refer to this synaptic learning rule-specific mapping of the synaptic
weight-dependent conditions for the different forms of FOs of two interconnected pop-
ulations to the respective categorized F1 − F2−activity phase (Fig. 4.1,Aii) by the term
characteristic activity phase space (χAPS).

Funcঞonal Organizaঞons in Acঞvity-space

To avoid the computational expensive calculation of the LTR resulting from the whole neu-
ronal network simulation, we directly make use of the population model at equilibrium as
described in Sec. 3.3.2. Thereby, to examine the resulting FO for a given input paradigm
I = (I1, I2)

T (Eq. 3.20), we only need to calculate the synaptic learning rule-dependent
average population’s activities F(I, f∗

ω) = (F1(I1,F, f
∗
ω),F2(I2,F, f

∗
ω))

T in the fixed point
(Theorem 4, p. 42). By this, we reduce the high-dimensional mathematical problem in
the neuronal activity- and synaptic-weight-space of the neuronal network model towards
a two-dimensional problem in the population’s F1 − F2−activity space in the population
model at equilibrium (Herpich and Tetzlaff 2018).

One exemplary calculation for a specific input stimulation of I = (0.95, 0.4)T is shown in
Fig. 4.1 Bi. Here, the intersection (green dot) of the black thick curve (i.e. fixed average ac-
tivity of population 1) and yellow thick curve (i.e. fixed average activity of population 2)
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4.2 Correlation-based Plasticity and Homeostasis

Figure 4.1: Memory representation and functional organizations of two interconnected neu-
ronal populations in activity-space. (Ai) Mapping of the synaptic weight-dependent
condition on MR for population r onto its respective activity-dependent condition
(blue curve in white area). (Aii) Conditions for the different FOs of two interconnected
memories mapped onto the F1−F2−activity space of the respective populations 1 and
2. (B i) Given this reduced 2-dimensional F1 −F2−activity space one can calculate the
equilibrium state of the population activities F1, F2. The Equilibrium is determined by
the intersection of both fixed point functions given an specific input stimulation I1, I2
and further compare the resulting fixed point with the constraints on the FO of inter-
connected MRs (Aii), we obtain the respective FO. (Bii) Same as in (Bi) for the whole
I1 − I2−input space with Ir ∈ [0, 1]Fmax, respectively. Used parameters: θ̃ = 0.5,
F̃T = 0.05, nϵ = 20 (adapted from Herpich and Tetzlaff 2018).

indicates the system’s stable state and, by this, the respective FO in relation to the char-
acteristic activity phase space (χAPS). To determine the FO (Fig. 4.1 Bi), the stable state
(green dot) has to be compared to the activity regimes leading to MRs (white activity
phase), as well as the separatrixes S21 (thin red curve) and S12 (thin black curve), sepa-
rating the activity regimes, leading to an excitatory or inhibitory connection linking both
populations, as described above. For this particular example, the specific input stimula-
tionI = (0.95, 0.4)T leads to the formation of a sequence 21, with an excitatory connection
from memory 1 to memory 2 (Herpich and Tetzlaff 2018).

For a comprehensive analysis, we do the above described procedure for the whole
I1 − I2−input space (Fig. 4.1 Bii). The results, mapped onto the applied input space, are
shown in Fig. 3.6 D (p. 49). With this analysis, we validate the hypothesis that synaptic
plasticity in combination with a postsynaptic activity-dependent synaptic scaling mecha-
nism leads to the formation of associations and sequences in both directions but lacks the
formation of discrimination. This shortcoming is already graphically underpinned by the
characteristic F1 − F2-activity phase space (χAPS, Fig. 4.1 Aii), where the activity phase,
leading to the discrimination of interconnected memories, is completely overlayed by the
activity space resulting in insufficient strong representations of the given environmental
input stimulation (nm-state, gray activity space). In addition to functionally connected
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MRs, there is a broad input regime that leads to no proper MRs in either one or both
populations (Fig. 4.1 B ii, gray dots) (Herpich and Tetzlaff 2018).

Thus, we see that the synaptic learning rule-specific characteristic activity phase space
(χAPS) (Fig. 4.1 Aii), provides sufficient insights to qualitatively assess the system’s ability
to build up different FOs of interconnected memories. Consequently, an evaluation of
the system’s fixed point is not required anymore, but, nevertheless, contributes to a full
analysis (Herpich and Tetzlaff 2018).

Synapঞc Plasঞcity Dominated Acঞvity-input Mapping

A closer look onto the input space for the numerical simulations (Fig. 3.6) and analytical
calculations (Fig. 4.1) indicates that for very low external input stimulations
⟨F̃ ex

r ⟩LTR ∈ [0, 0.15] (r ∈ {1, 2} for the numerical simulation (Fig. 3.6 C) and Ir ∈ [0, 0.2] for
the reduced population model (Fig. 3.6 D)) the system already associates both neuronal
populations. Such an intrinsic association of the population model is in contradiction to
the synaptic-plasticity-and-memory (SPM) hypothesis (Hebb 1949; Martin et al. 2000) since
higher rates of neuronal activity should cause stronger correlation-based plasticity mech-
anisms, responsible for learning (Herpich and Tetzlaff 2018).

This inadequacy of the here investigated SPaSS-learning rule results from the quadratic
weight-dependency of synaptic scaling that yields a so-called up-scaling effect of the synap-
tic dynamics. This effect can be seen in Fig. 4.1 Ai, where the fixed point function for the
average recurrent population’s synaptic weight (Eq. 4.22) shows a global minimum. By
means of curve sketching, we determine this local minumum for the specific activity level
of Fr = Fmin = 2 F̃T. Consequently, all activities below Fmin (i.e. low average population
activities, Fr ∈ (F̃T

,Fmin)) are dominated by synaptic scaling and yield higher recurrent
synaptic weight values than for Fr = Fmin. The same effect holds for the average synaptic
weights connecting the different populations (not shown graphically), that finally leads
to such an intrinsic association of both populations. Note, this effect of up-scaling has al-
ready made an impact in the activity-dependent constraint on MR where we obtained two
distinct regimes Flow (Eq. 4.24) and Fhigh (Eq. 4.25) leading to MR (Herpich and Tetzlaff
2018).

Synaptic scaling is experimentally observed (Turrigiano and Nelson 2004) and theoreti-
cally implemented (Tetzlaff et al. 2013) to stabilize and regulate the synaptic weight dy-
namics, acting as a homeostatic mechanism. However, the mathematical implementation
by a quadratic synaptic weight behavior lead to biologically and theoretically implausi-
ble up-scaling effects. In principal, an increase in the population’s activity should result
in an increase of the respective synaptic weights. In other words, all up-scaling effects
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4.2 Correlation-based Plasticity and Homeostasis

Figure 4.2: Synaptic plasticity dominated functional organization of two interconnected mem-
ories. (A, B) The regime ASP, in which synaptic plasticity dominates the synaptic
dynamics, depends on the target firing rate F̃T of the SPaSS-learning rule (A) and in-
flexion point ϵ̃ = nϵũ

max of the neuronal activity function (B). (A) The area of the
F1−F2−activity phase space (A i, blue space) leading to synaptic plasticity dominated
FOs decreases with increasing target firing rate F̃T (A ii). (B) The inflexion point (mea-
sured in nϵ) determines the activity-input mapping such that for the same input differ-
ent activities and, thus, different FOs are realized. If the inflexion point equals nϵ

opt,
Fr ≈ Fmin. (B i): I1 = I2 = 0. (B ii): I1 = I2 = 1. (B iii) The value of nϵ

opt (blue)
depends on the target firing rate F̃T. The grey area specifies all nϵ that yield to the
no-memory state. (C - E) One example of synaptic plasticity dominated formation of
FOs. Used parameters: F̃T

= 0.05, θ̃ = 0.5, nϵ = 12. (C) Although the system implies
regimes of scaling-dominated synaptic dynamics (hatched area; i), the activity-input
mapping excludes that the system can reach these by external inputs (ii). (D) The result-
ing I1−I2−input phase space, color-coded according to the respective FOs, shows that
associations can only be formed for stronger inputs (compare to Fig. 3.6 Ciii). (E) The
sum of both population activities (F1 + F2) for a fixed input I2 shows for some cases
the existence of two equilibrium states encoding associations (pink). (E i): I2 = 0.1.
(E ii): I2 = 0.37 (adapted from Herpich and Tetzlaff 2018).

should be avoided by the computational model. Hereinafter, the dynamics of the pop-
ulation model should operate in the remaining activity space of Fr ∈ [Fmin, 1]. Conse-
quently, the correlation-based synaptic plasticity dominated and biologically plausible
activity regime (Asp) of two interconnected populations is given by the

[Fmin, 1]× [Fmin, 1]− activity space (4.30)

(Fig. 4.2 Ai, blue space, ASP = (1− 2 F̃T
)2). The size of this synaptic plasticity dominated
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activity phase space (Asp) depends on the synaptic scaling specific target firing rate F̃T

(Fig. 4.2 Aii) and vanishes for target activities larger than 0.5. Thus, we restrict the param-
eter space for the target activity level to F̃T ∈ (0, 0.5) (Herpich and Tetzlaff 2018).

In order to avoid long-term neuronal activities being within the scaling-dominated ac-
tivity regime Fr ∈ (F̃T

,Fmin), we investigate the characteristics underlying the mapping
of the input stimulation (I) onto the neuronal population’s activities (F). However, the
sigmoidal transfer function, that maps the neuronal membrane potential to a neuronal
activity (Eq. 3.4), is mainly determined by the global parameter of the inflexion point
ϵ. This parameter represents the critical membrane potential of a neuron corresponding
to the strongest increase its neuronal activity. Thus, in the following, we derive an ap-
propriate choice for this membrane potential-related parameter ϵ on the more detailed
level of single neuron dynamics. Therefore, we consider one presynaptic neuron j con-
nected via a synapse with maximal strength (ωij = ωmax) a postsynaptic neuron i. Us-
ing this two-neuron set up, we define the maximal evokable membrane potential (umax)
within the postsynaptic neuron i by assuming maximal pre- and postsynaptic firing rates
(Fj = Fi = Fmax). By means of the ODE for the leaky membrane potential (Eq. 3.3), we
can calculate the maximal network (

∑
k∈Ei F

ex
k = 0) evoked membrane potential, given

by umax := RFmax(ωmax − θ). With this neuron specific quality of umax, we can interpret
the inflexion point ϵ for the activity function of a particular neuron in units of nϵ. The
parameter nϵ represents the number of maximally activated (Fj = Fmax) and maximally
interconnected (ωij = ωmax) presynaptic neurons j. With this approach, we express the
inflexion point as a linear function of the number of interconnected neurons ϵ = nϵumax.
Please note, the system analyzed in Fig. 4.1 has the specific parameter of nϵ = 20 defining
the inflexion point and F̃T

= 0.05 defining the target activity level for the synaptic scaling
mechanism (Herpich and Tetzlaff 2018).

Using the interpretation of the global parameter for the inflexion point ϵ, we now analyze
the intrinsic activity dynamics (i.e. no external inputs, I1 = I2 = 0; i.e. intrinsic state) of
one population r described by the population model at equilibrium (Fig. 4.2 B i). By chang-
ing the specific parameter nϵ determining the inflexion point of the neurons, we calculate
the resulting intrinsic population’s activity Fr as well as the corresponding FO with the
interconnected population, indicated by the colored dots. The results show that the two
interconnected populations either form an association (Fig. 4.2 Bi, red dot: association) or
they are in the no memory state (Fig. 4.2 Bi, gray dot: nm-state), intrinsically. The asso-
ciation occurs in two distinct regimes: In the regime of nϵ < 9, the neurons are too easy
to excite underpinned by high intrinsic activity levels above the global minimum Fmin,
partially reaching the maximum activity level. For nϵ > 16, the intrinsic activity level of
the neuronal population is suppressed to levels below Fmin. Hence, a scaling-induced FO
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of an association is formed. Moreover, there is a parameter regime 9 ≤ nϵ ≤ 16, where
the system intrinsically is in the nm-state. In particular, for 9 ≤ nϵ ≤ 12 the intrinsic activ-
ity level is within the biological realistic activity regime Asp above Flow. This parameter
regime prevents an input-independent association of two interconnected neuronal pop-
ulations. Hence, to drive the computational model towards this desired activity regime
9 ≤ nϵ ≤ 16, we assign the parameter regime of 9 ≤ nϵ ≤ 12 leading to biological realistic
dynamics. In particular, activity levels nearby the local minimum Fmin are generated by
the specific parameter value of nopt

ϵ = 12 (Herpich and Tetzlaff 2018).

For a comprehensive model of interacting populations, it is not only important to consider
a biological realistic intrinsic state, but also to make sure that the model fullfils all desired
requirements. In our specific case, it is desired that the model is able to reach each single
distinct F1−F2−activity phase spaces corresponding to a specific FO, such as association
(red), discrimination (blue) and sequence (green and yellow). In this sense, we do the
same analysis as for the intrinsic state (Fig. 4.2 B i), now considering maximal external
input stimulation I1 = I2 = 1 (Fig. 4.2 B ii). By this, we specify the parameter range for
nϵ that enables the neuronal population to exhibit a sufficient strong activity level that, at
least, corresponds to an association of two interconnected populations. For the restricted
parameter range of nϵ ∈ [0, 12], a population r reaches its maximal firing rate of Fr = 1;
therefore it allows a broad range of the desired activity phase space (Fr ∈ [Fmin − 1]) to
be covered with changing input stimulation Ir ∈ [0, 1]. In contrast, for the parameter
range nϵ > 24 a single population’s activity stays far from the maximal firing rate, in
particular, for nϵ > 27 such populations are not able to build up proper MRs, although
they are maximally stimulated. Thus, combining both analysis (Fig. 4.2 Bi,ii) an optimal
choice for the parameter nopt

ϵ defining the inflexion point of the neuronal activity function
is nopt

ϵ = 12 (Herpich and Tetzlaff 2018).

However, this analysis on the population’s intrinsic and maximal evoked activity is done
for the specific target firing rate of F̃T

= 0.05 of the synaptic scaling mechanism. As we
can see in Fig. 4.2 A, an optimal choice of nopt

ϵ also depends on the specific choice for the
target firing rate F̃T. Thus, in Fig. 4.2 Biii, we provide the analysis shown in Fig. 4.2 Bi,ii
for different values of the target activities F̃T. The gray shaded area corresponds to the pa-
rameter that yields an intrinsic nm-state of the populations (Herpich and Tetzlaff 2018).

In the following (Fig. 4.2 C-E), we will consider nϵ = 12 and F̃T
= 0.05. These parameter

values ensure that the population system is intrinsically in the nm-state and, in addition,
that for each single input, the resulting FO of interconnected populations is due to a dom-
inating correlation-based synaptic plasticity mechanism. For clarity, the activity regime
yielding scaling-dominated learning (hatched area in Fig. 4.2 C i) is theoretically possi-
ble; however, the adapted activity-input mapping now assures that this regime cannot be
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reached for given external inputs (Fig. 4.2 C ii and D). An analysis of this adapted sys-
tem (Fig. 4.2 C ii and D) shows that low inputs I1, I2 lead to a nm-state (gray), while in
a small input regime sequences are formed (yellow and green). For sequences, the exci-
tatory connection between both populations is from the population receiving a stronger
input to the population receiving the weaker input stimulation. If both inputs are strong,
an association between the MRs is being build (red). Note that there is a small bimodal
regime with two long-term equilibrium states both being an association (pink; see two
exemplary cross sections in Fig. 4.2 E) (Herpich and Tetzlaff 2018).

Monotonous Acঞvity Funcঞon Preserves the Topology of Funcঞonal Organizaঞon

The specific topology of the already described characteristic F1 − F2−activity phase
(χAPS, Fig. 4.2 Ci), separating the distinct activity spaces leading to MR, as well as differ-
ent FOs of two interconnected populations, is preserved within the I1 − I2−input-space
(Fig. 4.2 D). This is due to the monotonously increasing sigmoidal-shaped transfer func-
tion of the neuronal membrane potential to a neuronal firing rate (Eq. 3.4). In Fig. 4.2 E, we
exemplary show the F−I−curve, where we sum the neuronal activities of both neuronal
populations (F1 + F2). Here, the environmental input stimulation I1 on neuronal popu-
lation 1 changes while the input stimulation on neuronal population 2 is kept constant to
I2 = 0.1 (Fig. 4.2 Ei) and I2 = 0.37 (Fig. 4.2 Eii), corresponding to the horizontal dashed
red lines in Fig. 4.2 D, respectively. In contrast to the monotonous increase of the sum
of both neuronal firing rates in Fig. 4.2 Ei, the sum bifurcates in two distinct fixed point
regimes in Fig. 4.2 Eii for a stronger environmental input stimulation on neuronal popu-
lation 2. However, this does not change the topology of the FOs within the I1−I2−input
space.

Consequently, input frequencies I, that are slightly higher than the input frequencies
leading to the no nm-state (Fig. 4.2 D, gray), drive the system into a sequential entity
(green and yellow). For even stronger environmental input frequencies, the system gets
organized into an associational entity.

Parameter-dependency of Funcঞonal Organizaঞons

In the previous Sections, we have analyzed one specific set of global parameters of the
population model. These are F̃T

= 0.05 for the target activity of the scaling mechanism
and θ̃ = 0.5 for the average level of inhibition inherent of the neuronal network. In the
following, we will analyze which kind of FOs can be formed with different parameters
acting on the synaptic weights (Herpich and Tetzlaff 2018).
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Figure 4.3: Quantification of the system ability to form different FOs dependent on the parame-
ters F̃T and θ̃. (A) The measure S (i; green) indicates whether sequences can be formed
(S > 0), while the measure D (ii; blue) specifies the existence of no-memory states
(D > 0). (iii) Both measures together separate the F̃T − θ̃−parameter phase space into
three distinct regimes. Please see main text for details. (B) For a constant target ac-
tivity (F̃T

= 0.05), we show several examples of resulting functional organizations for
different values of inhibition θ̃ (asterisks in (A)) in activity- (top row) and input-space
(bottom) (adapted from Herpich and Tetzlaff 2018).

In general, the no-memory state (nm) implies that neuronal populations can exist which
do not encode information (or have ”forgotten” this information); hence, this state has
a strong influence on the overall system properties. As already derived, the size of this
state is given by |nm|= θ̃

√
D/(1 − F̃T

) with D = θ̃2 − 4F̃T
(1 − F̃T

). As θ̃ is larger than
zero, the discriminant D, determined by F̃T and θ̃, defines whether the nm-state can
exist in a given system (Fig. 4.3). Thus, the F̃T-θ̃-dependency of D (Fig. 4.3 Aii) deter-
mines the potential of the system to form sufficient MRs of interconnected populations.
Thus, the F̃T-θ̃-parameter-space corresponding to D < 0 will globally exhibit sufficiently
strong MRs of both populations, thus excludes the nm-state. Whereas, in the remaining
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F̃T-θ̃-parameter-space the nm-state can still occur dependent on the input stimulation.
One exemplary limit case for this categorization is given in Fig. 4.3 Biii for θ̃ = 0.5 (Her-
pich and Tetzlaff 2018).

In addition, the relation of the activity levels to the separatrices S21 and S12 (Eq. 4.29)
define which kind of FO is present. However, the separatrices have to reach the synap-
tic plasticity dominated activity-regime (Asp; Fr ∈

(
Fmin, 1

)
) to enable the formation of

sequences (seq:12: F1 < S21, F2 > S12; seq:21: F1 > S21, F2 < S12) and discrimination
(disc: F1 < S21, F2 < S12). This necessary condition can be obtained by comparing the
χAPSs for two different sets of parameters: In Fig. 4.3 Bii, no sequence is made up in the
biologic realistic activity regime Asp, whereas in Fig. 4.3 Biii the separatrices reach the re-
stricted activity regime Asp. S12 (S21) monotonously increase with F1 (F2), the maximum
difference S between the lower activity level (Fmin) of the synaptic plasticity dominated
dynamics and the separatrix is given for F1 = 1 (F2 = 1) such that

S = S12[F1 = 1]− Fmin = θ̃2 − 2 F̃T
. (4.31)

Thus, as soon as the measure S (Eq. 4.31) takes on positive values, the separatrices reaches
Asp (Herpich and Tetzlaff 2018).

The overall potential of the system to form diverse FOs is determined by combining both
categorizations D and S of the F̃T-θ̃-parameter-space (Fig. 4.3 Aiii). This leads to three
functionally different system configurations: For D < 0, S < 0, the system can only form
associations (regime I in Fig. 4.3 Aiii, Bi,ii). If D ≤ 0, S > 0, the system can form either as-
sociations or sequences (seq:12 as well as seq:21; regime II in Fig. 4.3 Aiii, Biii). And if D > 0,
S > 0, associations, sequences, and the nm- state can be formed and reached by the sys-
tem (regime III in Fig. 4.3 Aiii, Biv,v). Thus, this analysis shows that with larger average
inhibitory weight θ̃ and smaller target activity level F̃T the system receives a larger reper-
toire of FOs. Once more, this analysis also shows that the FO of discrimination cannot be
formed in a long-term manner. Although for large values of inhibition both separatrices
intersect (see, for instance, Fig. 4.3 Bv), both activity levels could be simultaneously be-
low their corresponding separatrix (blue), the resulting area of discrimination cannot be
reached by any inputs I since in all these cases the neuronal populations cannot serve as
MRs (gray activity phase) (Herpich and Tetzlaff 2018).
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Ɓ.ſ.ƀ The Discriminaঞon of Memories Challenges Synapঞc Plasঞcity

In the first part of this Section (Sec. 4.2.1), we have analyzed a general form of synaptic
learning rules pooling all rules, that are based on correlation-based synaptic plasticity in
combination with any activity-dependent homeostatic mechanism, by means of the de-
rived population model at equilibrium (Chapter 3). By this, we focused on the ability of
such generic formulations of learning rules to form all possible forms of FOs of intercon-
nected MRs. From our theoretical considerations we conclude that such synaptic learning
rules are able to form the FO of association and sequences of interconnected memories.
Furthermore, we have proofed that these learning rules are not sufficient to distinguish
the two different processes of memory formation their discrimination (Herpich and Tet-
zlaff 2018).

This shortcoming is due to the correlation-based formulation of synaptic plasticity in com-
bination with a postsynaptic activity-dependent homeostatic mechanism. This combi-
nation of plasticity mechanisms mathematically couples the condition of MR with the
condition of FO of interconnected memories (Theorem 6). In particular, the monotonous
characteristic of the correlation-based plasticity mechanism excludes the formation of dis-
criminated memories. Here, even the correlation-independent dynamics caused by the
postsynaptic activity dependent homeostatic mechanism are not sufficient to decouple
these conditions. However, such a homeostatic mechanism enables the formation of se-
quences. Thus, we can assign an additional functional role on the level of memory interac-
tion of enabling sequential orders in between MRs to the homeostatic mechanism besides
their inherent functions on the neuronal level of synaptic stabilization (Tetzlaff et al. 2011;
Zenke et al. 2013; Zenke et al. 2017) and homeostatic regulation (Abbott and Nelson 2000;
Turrigiano and Nelson 2004) of neuronal activities (Herpich and Tetzlaff 2018).

With this general approach to investigate the abilities of synaptic learning rules to form
different FOs of memories, we can generalize that all synaptic learning rules, which are
composed of correlation-based plasticity and a postsynaptic activity-dependent homeo-
static term, for instance, Oja’s rule (Oja 1982) or BCM rule (Bienenstock et al. 1982) are
only able to form associations and sequences of memories (Herpich and Tetzlaff 2018).

In the second part (Sec. 4.2.2), we have underpinned these theoretical predictions with
an extensive analysis of the specific learning rule on Synaptic Plasticity and Synaptic Scaling
(SPaSS)-learning rule (Tetzlaff et al. 2011; Tetzlaff et al. 2012). For such learning rules it
was already shown that they are sufficient to form individual MRs (Tetzlaff et al. 2013;
Tetzlaff et al. 2015). Our analysis, confirmed that a neuronal system with correlation-
based synaptic plasticity in combination with postsynaptic activity-dependent synaptic
scaling mechanism is able to form associations and sequences but is not able to form two
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inhibitory relations in between two memory representations which are weaker than the
average inhibition, i.e. discrimination, as predicted in the first part.

In addition to the association and sequential order of MRs, a discrimination of MRs is a
functionally very important ability for a neuronal system (James 1890), in particular for
the construction of schemata (Preston and Eichenbaum 2013). This feature of discriminat-
ing environmental input stimulations is, for instance, necessary for the development of
new schemata, if new information of the environment conflicts with the prior knowledge
that is stored in the existing schemata (Preston and Eichenbaum 2013). Furthermore, an
anatomical connection of memories, as it is the case in our model, does not necessarily
imply a functional connection. Therefore, we are challenged to decouple the condition
for MRs and FOs of anatomically connected neuronal populations to overcome the lack
of discriminatory FOs of memories (Herpich and Tetzlaff 2018).

Thus, in the next Section (Sec. 4.3), we will introduce an additional plasticity mechanism
on the underlying synaptic dynamics of the network and derive its specific properties
that, besides the formation of associations and sequences, allow for the discrimination of
MRs.
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Ɓ.ƀ Correlaঞon-and-Causality-based Plasঞcity and Homeostasis

Our previous analysis on learning rules based on the correlation of pre- and postsynaptic
activities combined with a homeostatic mechanism has shown that those learning rules
do not reliably describe the formation of all different forms of functional organization (FO)
of interconnected memories. In particular, the formation of discriminated memories is
excluded by this category of synaptic learning rules, as the conditions on memory rep-
resentation (MR) and FO are inevitable coupled via the postsynaptic-activity dependent
homeostatic mechanism (Theorem 6, p. 55).

The generic approach to mathematically formulate the experimentally observed long-term
potentiation (LTP) (Bliss and Lømo 1973; Bliss and Collingridge 1993) by the plain corre-
lation of pre- and postsynaptic activity levels, i.e. C(Fj , Fi) = FjFi (Dayan and Abbott
2001; Gerstner and Kistler 2002; Choe 2015), does not account for the plasticity mecha-
nism of long-term depression (LTD) (Dudek and Bear 1992), also experimentally observed.
The mechanisms of synaptic plasticity guiding LTP (LTD), i.e. an increase (decrease) of
AMPA and NMDA-receptors within the postsynaptic membrane (i.e. change in postsynap-
tic density (PSD)) causing an enhanced (decreased) excitability of the postsynaptic neuron,
have already been described in Sec. 2.1.4. However, both mechanisms are mediated by
specific levels of pre- and postsynaptic cytosolic Ca2+-concentrations guiding the presy-
naptic release of neurotransmitters (proportional to the presynaptic firing rate) and the
size of the postsynaptic density (proportional to the pre- and postsynaptic firing rate), re-
spectively. There is experimental evidence (Mulkey and Malenka 1992) showing that the
different forms of synaptic plasticity are initiated by distinct activity levels of pre- (Fj) and
postsynaptic firing (Fi) affecting the respective Ca2+-concentrations. In particular, it was
shown that high neuronal activities cause LTP, whereas, low neuronal activities induce
the process of LTD.

Furthermore, the mathematical model describing correlation-based synaptic plasticity
C(Fj , Fi) = FjFi, (Dayan and Abbott 2001; Gerstner and Kistler 2002; Choe 2015) fails
to describe specific cases, explained in the following. When there is a high presynaptic
transmitter release (proportional to presynaptic firing) but a small PSD, the impact of the
presynaptic neurotransmitters is too small to evoke a sufficient strong depolarization of
the postsynaptic cell. This is not captured in the mathematical model that only depends
on the plain correlation of pre- and postsynaptic firing rates. The same restriction on
plasticity holds in the opposite case for a low amount of presynaptic transmitter release
combined with a high postsynaptic density. In both cases, the neurons may be anatom-
ically but not causally connected. Thus, modeling synaptic plasticity by a dominating
correlation-based mechanism of pre- and postsynaptic firing can not describe compre-
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hensively the complexity of synaptic plasticity mechanisms of the enclosing synapses. In
particular, the experimentally observed distinction in different levels of pre- and post-
synaptic activity being responsible for the initiation of opposing synaptic plasticity ef-
fects, such as LTP and LTD, is not present in the used correlation-based synaptic plasticity
mechanism of rate coded neurons. When we further take into account the mechanisms of
spike-timing dependent plasticity (STDP) (Markram et al. 1997; Feldman 2012), we recognize
that the mathematical formulation of correlation-based plasticity of rate coded neurons
(C(Fj , Fi) = FjFi) does not account for such STDP mechanism. This level of descrip-
tion fails to describe that correlated spike-times of pre- and postsynaptic neurons have
to be within a given time window to successfully induce LTP (Dayan and Abbott 2001),
whereas uncorrelated spike events either in the pre- or postsynaptic neuron would trig-
ger LTD. In other words, the generic approach to describe synaptic plasticity based on
the correlation of pre- and postsynaptic firing levels, previously described, does not take
into account the failure of presynaptic firing to evoke the respective postsynaptic firing
(non-causality) for the enclosed synapse. Thus, when synaptic plasticity is mainly defined
by the correlation of pre- and postsynaptic firing, it only describes LTP. However, there is
no measure for connected but causally uncorrelated neurons, in particular a measure for
non-correlated pre- and postsynaptic firing that would result in a decrease of the synaptic
efficacy (i.e. LTD). Nevertheless, such a mechanism is mandatory for learning and mem-
ory, because these processes require both activity-dependent synaptic potentiation and
depression (Song et al. 2000).

To overcome this inability of the mathematical formulation for synaptic plasticity, in this
Section we will introduce another plasticity mechanism that shall account for such LTD in
addition to the previously analyzed learning rule Eq. (4.7) in Sec. 4.2.1. Thus, the resulting
augmented model for synaptic plasticity shall be able to decouple the two distinct processes of
memory formation and their FO of interconnected memories also enabling discrimination
(disc). To investigate the emerging new properties of this augmented model, here we
analyze if and under which specific conditions the combination of the different plasticity
mechanisms involved are able to describe all different forms of FO.

Definition 5 Synaptic learning rules that are based on the combination of correlation-based Heb-
bian learning C(Fi, Fj) and postsynaptic activity-dependent synaptic scaling H(Fj) and further
augmented by a mechanism R(Fi, Fj) being a measure for the non-causality of the pre- and post-
synaptic neuronal activities:

fω(Fj , Fi, ωi,j) = τωω̇i,j = C(Fj , Fi)− νR(Fj , Fi)− γH(Fi)ω
n
i,j (4.32)

with ν being the time scale of the causality-based plasticity mechanismR, are summarized as learn-
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ing rules on Correlation-and-Causality-based Synaptic Plasticity in combination with a
Homeostatic mechanism.

Corollary 10 Let fω be a synaptic learning rule on correlation-and-causality-based plasticity in
combination with a synaptic-weight dependent homeostatic mechanism. The respective fixed point
function is given by:

f∗
ω(F

∗
j , F

∗
i ) = ω∗

i,j(F
∗
j , F

∗
i ) =

n

√
C(F ∗

j , F
∗
i )− νR(F ∗

j , F
∗
i )

γH(F ∗
i )

. (4.33)

Proof. Equivalent to Eq. 4.11 (p. 54).

Ɓ.ƀ.ž Memory Representaঞon and Funcঞonal Organizaঞon in Acঞvity-space

In the following, we show that Correlation-and-Causality-based Synaptic Plasticity decou-
ples the two processed of MR and the FO of interconnected memories. In particular, this
learning rule enables the discrimination of memories while the formation of sequences
and associations are still possible events. Also here, by means of the fixed point function
on the excitatory synaptic weights (Eq. 4.33), we do the analysis on the reduced popula-
tion model at equilibrium state introduced in Chapter 3.

For our analysis, we first make several assumptions on the here introduced causality-
based plasticity mechanism R(Fi, Fj). In addition to the measure C of pre- and post-
synaptic correlation, the causality-based plasticity mechanism is introduced to describe
the non-causality (i.e. independence) on the pre- and postsynaptic firing, as described
above. Thus, we do not assume R being independent as the correlation-based plasticity
mechanism C (C:i, Eq. 4.5, p. 52).

Moreover, when the pre- and postsynaptic neurons fire at the same activity level, we ex-
pect them to have an optimal configuration for the transmission of information. In other
words, we assume interconnected neurons with the same activity level to be causally con-
nected at a maximum value. In addition, based on the underlying pre- and postsynaptic
requirements to maintain an information flow at one synapse, we suppose the causality-
based plasticity mechanism to be symmetric.
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Assumption 7 At equilibrium state, we assume the causality-based plasticity mechanism R to
be:

• minimal for fixed equal pre- and postsynaptic firing rates (R:0), as we assume that intercon-
nected neurons with similar firing rates bring along the highest level of causality; Thus, it
holds:

R(x∗, x∗) = min
∀x∗,y∗∈R+

R(x∗, y∗) =: Rmin. (4.34)

• symmetric (R:s); For all x∗, y∗ ∈ R+ it holds:

R(x∗, y∗) = R(y∗, x∗). (4.35)

Necessary Condiঞons on the Di@erent Forms of Funcঞonal Organizaঞon

By means of the fixed point function f∗
ω (Eq. 4.33), we can express the synaptic plasticity

dependent conditions for the MR of two interconnected memories and their FO equivalent
to the analysis in Sec. 4.2.1 of the previous plasticity model.

Theorem 11 Let θ be the constant inhibitory synaptic weight level within the network. The con-
straints on the MR for the interconnected neuronal population 1 and 2 and their different forms of
FO can be combined into two ordered sets on the involved plasticity mechanisms C, R, H of the
applied learning rule:



γH(F1)θ
n


(MR)
< C(F1,F1)− νRmin

inh
≷
exc

C(F2,F1)− νR(F2,F1)

γH(F2)θ
n


(MR)
< C(F2,F2)− νRmin

inh
≷
exc

C(F1,F2)− νR(F1,F2)


7→ FO = {asc, seq:21, seq:12, disc}. (4.36)

Proof. Equivalent to (Eq. 4.14).

Theorem 12 The necessary condition for the discrimination to occur is given by:

νR(F1,F2) > min
(
Ĉ(F1), Ĉ(F2)

) ∣∣∣Ĉ(F1)− Ĉ(F2)
∣∣∣+Rmin. (4.37)

76



4.3 Correlation-and-Causality-based Plasticity and Homeostasis

Proof. The two ordered sets of the plasticity mechanisms (Eq. 4.36) describing the discrim-
ination (disc) of two interconnected memories is defined by the bidirectional inhibitory
inter-memory relation of neuronal populations:[

C(F1,F1)− νRmin > γH(F1)θ
n > C(F2,F1)− νR(F2,F1)

C(F2,F2)− νRmin > γH(F2)θ
n > C(F1,F2)− νR(F1,F2)

]
7→ disc.

When we neglect the condition on the postsynaptic activity-dependent scaling mecha-
nism, the chain of relations of the plasticity mechanism describing the discrimination of
two memories is reduced to the following necessary condition:[

C(F1,F1)− νRmin > C(F2,F1)− νR(F2,F1)

C(F2,F2)− νRmin > C(F1,F2)− νR(F1,F2)

]
7→ disc.

Due to the symmetric property of the Correlation- and Causality-based plasticity mecha-
nism (C:s, R:s) both sets of equations can be combined towards one set of equationsνR(F1,F2) >

C(F2,F1)− C(F1,F1) + νRmin

C(F1,F2)− C(F2,F2) + νRmin

 7→ disc.

Here, due to the monotonous characteristic of the Hebbian learning mechanism C (4.3)
and a case differentiation for F1 > F2 and F1 < F2 we can split this conditions into two
distinct cases:

νR(F1,F2) >

C(F2,F1)− C(F1,F1) + νRmin, for F1 < F2

C(F1,F2)− C(F2,F2) + νRmin, for F1 > F2

(4.5,4.4)
=

Ĉ(F1)
(
Ĉ(F2)− Ĉ(F1)

)
+ νRmin, for F1 > F2

Ĉ(F2)
(
Ĉ(F1)− Ĉ(F2)

)
+ νRmin, for F1 > F2

=min
(
Ĉ(F1), Ĉ(F2)

) ∣∣∣Ĉ(F1)− Ĉ(F2)
∣∣∣+ νRmin.

This indicates that such a learning rule, considering the causality of pre- and postsynaptic
firing in addition to its correlation, enables a decoupling of the two distinct processes of
MR and their formation of different forms of FOs allowing the formation of discriminated
memories.
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Ɓ.ƀ.ſ Example: Learning Rule on Synapঞc Plasঞcity and Synapঞc Scaling
Augmented by Causality

In this Section, we propose a specific learning rule that considers the introduced causality-
based plasticity mechanism and, furthermore, fullfils the requirements derived in Theo-
rem 12. This specific example is an extension of the already investigated learning rule on
Synaptic Plasticity and Synaptic Scaling (SPaSS) by a causality based plasticity mechanism
of the following form:

R : (R+,R+) → R+, (FjFi) 7→
√
FjFi∆F +Rmin, Rmin ∈ R (4.38)

with Rmin = 0 and ∆F := |Fj − Fi| describing the difference in pre- and postsynaptic
firing.

Thus, we refer to the here proposed learning rule by augmented learning rule on Synaptic
Plasticity and Synaptic Scaling by Causality (aSPaSS). This aSPaSS learning rule given by

τωω̇i,j = FjFi − ν
√

FjFi∆F − γ
(
Fi − FT

)
ω2
i,j (4.39)

consists of the prototype of Hebbian learning mechanism C (Eq. 4.6), a causality-based
plasticity mechanism R (Eq. 4.38) proportionally dependent to the difference in pre- and
postsynaptic firing, and a quadratic (n = 2) synaptic weight dependency for the homeo-
static mechanism H . For the analysis of this specific example we use its respective nor-
malized model (see Appendix for more detail):

input F̃ex :=
(
⟨F̃ ex

1 ⟩t, ⟨F̃ ex
2 ⟩t, ⟨F̃ ex

B ⟩t
)T

(4.40)

activity τ
˙̃Fi = (1− F̃i)F̃i

[
log
(
F̃−1
i − 1

)
+ β(Rϕi − ϵ)

]
, (4.41)

with ϕi = Fmaxωmax

 ∑
r∈{P1,P2,PB}

∑
j∈Pr

(ω̃i,j − θ̃)F̃j + ω̃ex
∑
k∈Er

F̃ ex
k

 , (4.42)

syn. weight τ̃ω ˙̃ωi,j = F̃jF̃i − ν̃

√
F̃jF̃i|F̃j − F̃i| − γ̃(F̃i − F̃T

)ω̃2
i,j , (4.43)

with τ̃ω =
τω(

Fmax
√

Fmaxγ(1− F̃T
)

) , ν̃ =
ν

Fmax2 , γ̃ =
1

1− F̃T . (4.44)

Acঞvity-dependent Constraints of Memory Representaঞon and Funcঞonal Organizaঞon

In the following, we map the general synaptic-weight dependent conditions for MR and
FO of two interconnected memories towards the respective conditions for the specific nor-
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malized aSPaSS-learning rule in the F1 − F2−activity space. Therefore, we set about to
calculate its specific normalized fixed point function:

f∗
ω = ω∗

i,j =

√√√√C(F̃ ∗
j , F̃

∗
i )− ν̃R(F̃ ∗

j , F̃
∗
i )

γ̃H(F̃ ∗
i )

=

√√√√√(F̃ ∗
j F̃

∗
i − ν̃

√
F̃ ∗
j F̃

∗
i ∆F̃ )(1− F̃T

)

F̃ ∗
i − F̃T . (4.45)

As already derived, the long-term representation (LTR) of an environmental input stimulus
Ir is decoded by the average activity of the respective neuronal population
(wrr = f∗

ω(Fr,Fr)) at equilibrium state. Therefore, the causality-based plasticity mech-
anism R vanishes for the condition on MR of a neuronal population r, as it holds ∆F =

0 and Rmin = 0 for the applied learning rule. Thus, for the specific learning rule on
aSPaSS (Eq. 4.39) the same Fr-activity dependent condition for MR holds as in the previ-
ous analyzed SPaSS-learning rule (Eq. 4.23, Fig. 4.1 Ai).

As derived in the previous Section, the causality-based plasticity mechanism of the spe-
cific aSPaSS-learning rule starts to make an impact for distinct activity levels of both neu-
ronal populations F1 ̸= F2 by construction. By this, the corresponding fixed point func-
tion for the excitatory synaptic weights (Eq. 4.45) can not be expressed by a closed form
for either the fixed presynaptic F̃ ∗

j nor the fixed postsynaptic firing rate F̃ ∗
i . In particu-

lar, we can not provide a closed form for the separatrixes S21(F2), S12(F1) dividing an
excitatory from an inhibitory relation (R21, R12) of both populations within the F1 − F2-
activity space, determining the characteristic activity phase space (χAPS). Thus, we can
not express the synaptic weight-dependent conditions on different forms of FO of two
interconnected memories 1 and 2 by conditions on their respective activities F1 and F2, as
we did for the SPaSS-learning rule. Instead, we can do the analysis based on the respective
synaptic weight dependent-conditions, explained in the following.

Funcঞonal Organizaঞon in Acঞvity-space

Even though we can not specify the activity-dependent conditions for the different forms
of FO of two interconnected neuronal population in the F1 − F2−activity-space analyti-
cally, we can do the analysis based on the respective synaptic weight dependent-conditions.
Therefore, for each possible F = (F1,F2)

T-activity tuple of the population’s activities at
equilibrium state, we can calculate the respective fixed average synaptic weights of the
population model by means of the fixed point function for the excitatory synaptic weights
wr,r = f∗

ω(Fr,Fr) and ws,r = f∗
ω(Fr,Fs) (Fig. 4.4 A). Finally, we classify these synap-

tic weights (wintra, winter) in the population formalism at equilibrium according to the
synaptic weight-dependent constraints on MR and FO of two interconnected populations
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Figure 4.4: Analysis of the specific aSPaSS-learning rule on its abilities to describe all different
forms of FO of two interconnected memories. (A) Calculation of the respective synap-
tic weights at equilibrium in the F1 − F2−activity space. Used parameters: F̃T

= 0.05,
θ̃ = 0.5, ν̃ = 0.8. (B) Classification of the synaptic weights at equilibrium obtained
in (A) according to the synaptic weight-dependent constraints on MR and FO yielding
the characteristic activity space. (C) Characteristic activity phase spaces for different
time scales ν̃ on the causality-based plasticity mechanism.

(Fig. 3.5, p. 46). Hence, we obtain the F1 − F2−characteristic activity phase space (χAPS)
(Fig. 4.4 B). Thus, we show that this specific aSPaSS-learning rule reveals the formation of
all different forms of FO of two interconnected memories (Fig. 4.4 B). Note that for ν̃ = 0,
the learning rule describes the former SPaSS-learning rule, which only exhibits association
and sequences of memories (compare to Fig. 4.4 Ci, ν̃ = 0). With an increasing time-scale
ν̃ for the causality-based plasticity mechanism, the activity space leading to a discrimi-
nation of two interconnected memories (blue phase space) emerges and increases at the
border of the no-memory state (nm)-state (grey phase space) in the Fhigh − Fhigh−activity
space (Fig. 4.4 C).

Ɓ.ƀ.ƀ Long-term Depression is Mandatory for the Funcঞonal Organizaঞon of
Memories

In this Section, we have augmented the previously discussed synaptic learning rule de-
scribing LTP, by an additional plasticity mechanism describing LTD, based on a measure
for causality of pre- and postsynaptic firing.

Besides the mathematical motivation for such an additional plasticity mechanism, out-
lined at the beginning of this Section, there is a multitude of studies indicating the ex-
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istance of those additional factors influencing synaptic plasticity. For instance, neuro-
modulatory transmitters, such as acetylcholine, noradrenaline, serotonin, and dopamine,
can serves as third factor (Frémaux and Gerstner 2016; Gu 2002). The here presented
mechanism may abstract those molecular mechanisms of such additional factors yield-
ing, together with correlation-based and homeostatic plasticity, all different forms of FOs
of interconnected memories. For instance, the mathematical implementation of spike-
timing-dependent triggered LTD (Bi and Poo 1998; Rossum et al. 2000); in contrast to the
here presented firing rate-dependent LTD (Bienenstock et al. 1982; Sjöström et al. 2001;
Malenka and Bear 2004)) could comprehensively describe uncorrelated spike trains and,
by this, decouple the condition for MR the discrimination condition. Thus, the STDP (Ger-
stner et al. 1996; Bi and Poo 1998; Markram et al. 2011) mechanism leading to LTP could be
a measure for the probability that the pre- and postsynaptic neurons fire correlated spikes
during a small time window (Dayan and Abbott 2001) described in the rate-model by the
correlation-based plasticity mechanism. Whereas LTD triggered by uncorrelated spike
pairs could be described in the here introduced causality-base plasticity mechanisms in
the rate-model by the difference between the pre- and postsynaptic firing rates.

With these assumptions on the causality-based plasticity mechanism, we conclude that
the difference in pre- and postsynaptic firing is a sufficient measure for the non-causality
of neural firing rates. Furthermore, we have validated this basic principle for an exem-
plary learning rule. This example reliably decouples the formation of MR and FO of in-
terconnected neuronal populations and enables the formation of all different forms of FOs,
such as association, sequence and discrimination.
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Ɓ.Ɓ Local Characterisঞcs for Di@erent Plasঞcity Mechanisms

For generality, in our previous investigations on the ability of adaptive neuronal systems
to form all different types of FO of interconnected memories, we considered a homoge-
neous recurrent neuronal network. In particular, we applied a globally constant param-
eter set for all individual neurons and synapses of the whole neuronal network. In the
upcoming Section, we allow local differences for the individual parameter sets of the un-
derlying neuronal and synaptic dynamics of the network.

The discrimination of two interconnected memories r, s ∈ {1, 2} turned out to be the
key problem of correlation-based synaptic plasticity mechanism C(Fj , Fi) in combina-
tion with a synaptic weight and postsynaptic activity-dependent homeostatic mechanism
H(Fi)ω

n
i,j . Without any local differences in the homeostatic mechanism and inhibitory

synaptic weight strength θ for all synapses of the network, we have seen in Theorem 6
(p. 55) that the constraints on MR and FO can be expressed by an estimation of the in-
volved plasticity mechanism on the postsynaptic activity-dependent homoestatic mecha-
nism H and global inhibitory synaptic weight strength θ. Thus, the underlying reason for
this shortcoming of discriminated MRs is the strong coupling of the constraints for the
conditions of MR and discrimination of interconnected memories. This conditions are
described by the following, already derived (Corollary 9, p. 58), chain of relations:

C(F1,F1)
MR
> γH(F1)θ

n
R12: inh
> C(F2,F1)

C(F2,F2)
MR
> γH(F2)θ

n
R21: inh
> C(F1,F2)

 7→ disc (4.46)

in combination with the monotonous characteristic of the correlation-based plasticity
mechanism (C:m, Eq. 4.3, p. 52). Thus, in the following, we focus on strategies that de-
couple these chain of relations, and, hence, enable such adaptive systems to build up
discriminated memory representations.

Ɓ.Ɓ.ž Local Characterisঞcs of the Homeostaঞc Mechanism

In order to decouple the chain of relations for the discrimination of two interconnected
memories (Eq. 4.46), we introduce local differences for the inter- and intra-neuronal pop-
ulation’s dynamics of the postsynaptic activity-dependent homeostatic mechanism H in
two different ways. First, we introduce a generic solution on the level of interacting plastic-
ity mechanisms of correlation-based plasticity in combination with a homeostatic mecha-
nism. Then, secondly, a SPaSS-learning rule specific solution is included.
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4.4 Local Characteristics for Different Plasticity Mechanisms

Enhanced Correlaঞon-based Plasঞcity within Neuronal Populaঞons

To facilitate the discrimination of interconnected memories, here we introduce a damping
constant (η) for the homeostatic mechanism only for the synapses within the neuronal
populations r ∈ {1, 2} (Fig. 4.5 A):

τωω̇i,j = FjFi + ηγH(Fi)ω
n
i,j , ∀i, j ∈ Ppr , η ∈ (0, 1) ∈ R. (4.47)

This approach has the advantage that synapses within one neuronal population underlie
a stronger influence of the correlation-based plasticity mechanism compared to the inter-
population synapses connecting both neuronal populations. Such an assumption can be
based on the homogeneous input stimulation onto all neurons of a network resulting in a
causally correlation of the respective pre- and postsynaptic neurons.

At equilibrium, this approach decouples the previous coupled chain of relations for the
plasticity mechanisms, describing a discrimination of interconnected memories:

C(F1,F1)
(MR)
> ηγH(F1)θ

n, γH(F1)θ
n

(R12)
> C(F2,F1)

C(F2,F2)
(MR)
> ηγH(F2)θ

n, γH(F2)θ
n

(R21)
> C(F1,F2)

 7→ disc. (4.48)

While the relations R12 and R21 of both neuronal populations are in an inhibitory state
for both directions (Fig. 4.5 Ai, blue phase space), the average fixed synapses within the
neuronal populations can already increase the population specific constraints on MRs
(Fig. 4.5 Ai, decoupled grey phase space from blue phase space) and, by this, yield an
activity phase space for discriminated memory representations. This corresponds to low
environmental I1−I2−input stimulations that lead to discriminated memories (Fig. 4.5 Bi,
blue phase space). Furthermore, the characteristic F1 − F2−activity phase space (χAPS),
describing the system’s ability to form the different types of FOs of two interconnected
memories, follows the usual pattern as obtained for a globally homogeneous parameter
set (compare with Fig. 4.2 D, p. 65). Here, due to the facilitation of MR, the input phase
space leading to sequences is enlarged along with a shrinked I1 − I2−input phase space
leading to the nm-state of the system.

Disঞnct Neuronal Target Acঞviঞes

Given the SPaSS-learning rule, we consider local differences for the neuronal target ac-
tivity level FT (the synaptic scaling dependent parameter). Here, we assume a binary,
distance-dependent target firing rate for the scaling mechanism (Fig. 4.5 B). Therefore,
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Implication of Memory Interactions on Synaptic Plasticity

Figure 4.5: Different modeling approaches to ensure all possible forms of functional organi-
zations of two interconnected populations. (A) Temporal specification, introducing
a damping constant ζ for the homeostatic mechanisms of the learning rule for all
synapses within a neuronal population leading to a stronger impact of the Hebbian
correlation-based plasticity mechanism of the learning rule. (B) Spatial specification,
introducing a higher target activity level for all synapses within one neuronal popula-
tion (F̃T

P ) as compared to the target activity level of synapses connected to other neu-
ronal population F̃T. Used parameters: (A) η = 0.8, (B) F̃T

P = 0.065, (A & B) F̃T
= 0.05,

θ̃ = 0.5, nϵ = 12.

for synapses building connections to neurons that are closely located to the presynaptic
neuron (i.e. neurons that belong to one neuronal population), we assume them to have
a higher target firing rate (FT

P ) than compared to far off neurons (i.e. neurons belonging
to different populations, FT). Thus, the learning rule for all neurons i, j belonging to the
same neuronal population r changes according to:

τωω̇i,j = FiFj − γ(Fi − FT
P)ω

2
i,j , ∀i, j ∈ Ppr , (4.49)

with FT
P denoting the target firing rate for all neurons belonging to a neuronal popula-

tion r ∈ {1, 2}. Whereby, the learning rule for synapses connecting neurons of distinct
populations still follows the former formulation of

τωω̇i,j = FiFj − γ(Fi − FT)ω2
i,j , ∀i ∈ Ppr and ∀j ∈ Pps . (4.50)

Thus, when we assume a higher target firing rate for the synaptic scaling mechanism
for all synapses within one neuronal population compared for synapses in between both
neuronal populations (F̃T

< F̃T
P ), the system is able to build up MRs of interconnected

populations while the synaptic weights linking the populations in both directions still
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4.4 Local Characteristics for Different Plasticity Mechanisms

may build up inhibitory relations. Hence, enabling the FO of discrimination as shown in
Fig. 4.5 Bi, where the blue and grey activity phases are decoupled.

This approach, again, facilitates the Hebbian learning term at equilibrium for synapses
within the neuronal populations compared the the synapses connecting both populations.
Thus, the formation of a discriminatory FO in between two competing memories is en-
abled.

Ɓ.Ɓ.ſ Local Inhibitory Synapঞc Plasঞcity

Heretofore, we have only considered excitatory synaptic plasticity while the inhibition
of the network has been set to a constant value of θ. However, the inhibitory synaptic
plasticity (Castillo et al. 2011) is experimentally observed and described. Thus, in this Sec-
tion, we introduce an additional synaptic learning rule acting on the weights of inhibitory
synapses ω−

j,i.

This approach and the corresponding results have been published in the following arti-
cle:

J. Herpich and C. Tetzlaff (2018). “Principles Underlying the Input-Dependent Formation
and Organization of Memories”. In: bioRxiv. A similar manuscript is currently under
revision in Network Neuroscience.

Similar to excitatory synaptic plasticity, here we introduce a correlation-based inhibitory
plasticity mechanism depending on the correlation of pre- and postsynaptic firing. More-
over, we augment the inhibitory synaptic plasticity rule by two additional constrains. The
first constraint is given by a threshold in the pre- and postsynaptic firing rates, defining a
minimum activity level θF, for inhibitory synaptic plasticity to occur

ω̇−
j,i ∝ FiFjH(

∑
F − θF),

∑
F := Fj + Fi, (4.51)

with ω−
j,i being the strength of the inhibitory synapse connecting the presynaptic neuron

i with the postsynaptic neuron j. H(x) (H(x ≥ 0) = 1, H(x < 0) = 0 ) is the heaviside step
function to monitor the here introduced constraint on the sum of pre- and postsynaptic
activity levels (

∑
F ) exceeding the defined threshold level (θF). The second constraint for

inhibitory synaptic plasticity to occur depends on the causality of pre- and postsynaptic
firing rates:

ω̇−
j,i ∝ FiFjH(δF −∆F ), ∆F := |Fi − Fj |. (4.52)

Here, the underlying principle is the same as for the excitatory synaptic plasticity in the
augmented learning rule being proportional to the difference in pre- and postsynaptic
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firing (∆F , Sec. 4.3.2, p. 78). To allow a certain tolerance range for such a variation in the
pre- and postsynaptic firing rates, we further introduce a threshold δF on the difference
in pre- and postsynaptic firing. This is monitored by the heaviside step function H(x). We
combine these constraints Eq. (4.51) and Eq. (4.52) in a specific way in order to drive the
inhibitory synaptic weights to converge either to

• an up-state (θu), if the sum of pre- and postsynaptic firing stays below its threshold
(
∑

F < θF) and/or the difference in pre- and postsynaptic neuronal activities is
larger than the respective tolerance range (∆F > δF), or

• a down-state (θd), if the sum of pre- and postsynaptic firing is larger than its thresh-
old (

∑
F > θF) and the difference in the pre- and postsynaptic neuronal activities

stays within its tolerance range (∆F < δF)

at equilibrium state. These constraints lead to the following learning rule for inhibitory
synaptic plasticity:

ω̇−
j,i =ρFiFj((θu − ωj,i)H′[H(∆F − δF) +H(θF −

∑
F )] (4.53)

+ (θd − ωj,i)H(δF −∆F )H(
∑

F − θF)),

with ρ being the learning rate for the inhibitory synaptic plasticity andH′ an adjusted heav-
iside function (H′(0) = 0) to account for the and/or condition for the constraints driving
the inhibitory synaptic weights towards the up-state (Herpich and Tetzlaff 2018).

An exemplary network simulation for this type of inhibitory synaptic plasticity together
with plastic excitatory synapses governed by the already described SPaSS-learning rule is
shown in Fig. 4.6 with a specific input stimulation of F̃ex = (0.85, 0.7, 0.05)T of the normal-
ized network model (see Appendix). For the stimulation phase (t > 10τ̃ω), all neurons of
the neuronal populations exhibit a sufficient strong activity level of∑

F > θF = 20Hz = 0.2Fmax and the variance of the activities of all neurons within
one population is smaller than the specific tolerance range of δF = 5Hz = 0.05Fmax

(Fig. 4.6 B). Thus, the inhibitory synaptic weight level for all synapses within one popula-
tion converge to the down-state (θd = 0.5ωmax, Fig. 4.6 C, red curves). Whereas for inter-
population synapses the difference in pre- and postsynaptic firing increases the tolarance
range δF. Hence, the respective inter-population inhibitory synaptic weights converge to
the upstate θu = 0.8ωmax (Fig. 4.6 D, red curves). Therefore, this specific example shows
the dynamic formation of two discriminated memories. The synaptic weights within each
population are stronger than the inhibitory synaptic strength (Fig. 4.6 C, black and yellow
curves in relation to the red curves) and the synaptic weights connecting both populations
stay below the inhibitory synaptic strength (Fig. 4.6 D, black and yellow curves in relation
to the red curves).
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Figure 4.6: An exemplary inhibitory plasticity rule enables the dynamic formation of discrim-
inated memories. The development of the input-driven dynamics of the complete
neural network underlying SPaSS-learning rule for the excitatory synaptic weight in
combination with plastic inhibitory synaptic weights (red lines). Stimulation protocol
same as in Fig. 3.2 B for F̃ex = (0.85, 0.7, 0.05)

T. Used parameters: ρ = 1, δF̃ = 0.05,
θ̃F = 0.2, θ̃d = 0.5, θ̃u = 0.8 (adapted from Herpich and Tetzlaff 2018).

Funcঞonal Organizaঞon in Acঞvity-space

For our analysis of the system’s abilities to build up different FOs with plastic excitatory
and inhibitory synaptic weights, we apply the SPaSS-learning rule and assume two dis-
tinct inhibitory weight levels θu and θd at equilibrium. To decouple the condition on MR
and FO, the inhibition within the neuronal population has to converge to the downstate
(θd) while the inhibition for the inter-population synaptic weight has to converge to the
upstate (θu) to spawn a discriminatory FO of two interconnected memories. For those
cases, we introduce an inhibitory synaptic weight strength (θP = θd) within the neuronal
populations. This synaptic weight strength is different to the inhibitory synaptic weight
strength for all other connections (θ = θu, Fig. 4.7 A). In other words, the parameter θ is
different for the discrimination condition as for the memory condition (which is now θP )
(Herpich and Tetzlaff 2018).

To quantify the system’s potential to form two MRs that are functionally discriminated, we
calculate the size of the characteristic activity phase space (Adisc) leading to discriminated
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Figure 4.7: Considering different levels of inhibition level for connections within the neuronal
populations compared to all others enables the formation of two discriminated
memory representations. (A) We consider a different average inhibitory synaptic
weight within the neuronal populations (θ̃p) compared to all others (θ̃). (B) Left: To
quantify the effect of different inhibition levels, we calculate the area of discrimina-
tion states (Adisc; blue) not being ”covered” by the no-memory states (grey) in the F1-
F2-activity space. Right: Adisc dependency on different relations between θ̃P and θ̃.
(C) Given a lower level of inhibition within the populations than otherwise provides
the neural system the ability to form all FOs as indicated here by two examples (aster-
isked in (B)). (i) θ̃ = 0.8, θ̃P = 0.7; (ii) θ̃ = 0.8, θ̃P = 0.5 (adapted from Herpich and
Tetzlaff 2018).

MRs (Fig. 4.7 B, left, occuring blue phase space). Apparently, as long as the inhibition
within the populations takes on higher values than for the inter-population connections
(θP > θ, Fig. 4.7 B; right, parameter space above the solid black line), the system is not
able to build up discriminated MRs. When, the inhibition within the populations takes on
lower values than for the inter-population connections (θP > θFig. 4.7 B; right, parameter
space below the solid), the discrimination of two memories becomes possible within the
F1 − F2−activity space. In addition to the discrimination of interconnected populations,
all remaining forms of FOs, such as association and sequences, are maintained. Thus, all
different types of FOs of interconnected populations can be obtained in the characteris-
tic activity phase space. Two examples of characteristic activity phase space (χAPS) for
different parameter sets are shown in Fig. 4.7 C (Herpich and Tetzlaff 2018).

Although, we predefined different levels of inhibition to enable an analysis of the popula-
tion model at equilibrium, the self-organized neuronal network model can dynamically es-
tablish these different levels of inhibition at equilibrium by considering inhibitory synap-
tic plasticity (Eq. 4.53), as exemplary shown in Fig. 4.6 (Herpich and Tetzlaff 2018).
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Ɓ.Ɓ.ƀ Local Characterisঞcs for Plasঞcity Enable the Funcঞonal Organizaঞon of
Memories

In general, our analysis indicates that a self-organized neural network can form all types
of FOs for interconnected neuronal populations if the interaction of excitatory correlation-
based plasticity and homeostasis are complemented by adaptive local constraints.

First, we have shown that local characteristics for the excitatory synaptic learning rule, in
particular local constraints on the homeostatic mechanisms, enable the discrimination be-
tween memory representations while all other FOs of interconnected MRs are still enabled.
The introduced constraints on the local characteristics are restricted to those neurons that
receive specific environmental input stimulation. Since the collective stimulation of all
neurons belonging to a population implies a higher level of causally correlated neural
firing, such local mechanisms could serve as a measure for causally correlated pre- and
postsynaptic firing of single neurons. Such local mechanisms serve in a way to facilitate
the recurrency within those collectively stimulated neurons. This issue was already stud-
ied in the previous Section (Sec. 4.3).

Second, by introducing local variations in the level of inhibition, we have shown that these
variations serve as a factor to enable a dynamic neuronal network to exhibit the whole
range in functionally connected MRs. This is possible given the condition that the av-
erage inhibitory synaptic strength within a neuronal population has to be weaker than
all other inhibitory synaptic weights of the remaining network. This is in contrast to the
general understandig on the mode of operation for inhibition, which is considered to bal-
ance strong excitation within interconnected groups of neurons (Vogels et al. 2011; Litwin-
Kumar and Doiron 2014). Nevertheless, such local differences in the balance of inhibition
and excitation vanish when we broaden the view on the whole neuronal network and its
whole balance of excitation and inhibition (Vreeswijk and Sompolinsky 1998; Denève and
Machens 2016).
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Discussion, Conclusions and Prospects

Ƃ.ž Schema and Synapঞc Plasঞcity for Cogniঞve Strategies

Human behavior arises due to the brain’s ability to exhibit a multitude of specific cognitive
structures. For a review and comparison on the different cognitive structues see Ghosh
and Gilboa (2014). Those structures are, for example, narratives (Mar 2004), scripts (Schank
and Abelson 1977), plans (Schank and Abelson 1977), concepts and categories (Collins and
Quillian 1969; Patterson et al. 2007), event gists (Thorndyke 1977; Nadel et al. 2000; Winocur
and Moscovitch 2011), statistical regularities (Durrant et al. 2011; Posner and Keele 1968;
Tobia et al. 2012) and schemata (Head and Holmes 1911; Piaget 1926; Bartlett 1932). These
cognitive structues are differentiated due to their inherent features. Hereby, the concept
of schema allows for cognitive structures and combines all features attributed to the spe-
cific knowledge structures listed above (Ghosh and Gilboa 2014). Thus, in this thesis, we
focused on the concept of schemata. Evidently, a schema describes the brain’s variety and
diversity of ways to store knowledge and exhibit complex behavior in a generic way. The
concept of schema was psychologically proposed (Piaget 1926; Bartlett 1932) and experi-
mentally underpinned by biological and behavioral experiments (Tse et al. 2007; Tse et al.
2011; Wang et al. 2012; Preston and Eichenbaum 2013). Inherent properties of schemata
include the behaviorally most important feature of elaborating context-specific behavior
(Head and Holmes 1911; Bartlett 1932; Rumelhart 1980; Cooper et al. 1995; Shea et al. 2008;
Kumaran et al. 2009) and the encoding and retrieval of memory (Head and Holmes 1911;
Piaget 1926; Bartlett 1932; Carmichael et al. 1932; Bransford and Johnson 1972; Ander-
son and Pichert 1978; Rumelhart 1980; Anderson 1984; Arkes and Freedman 1984; Tse
et al. 2007; Preston and Eichenbaum 2013; Kesteren et al. 2013). The synaptic-plasticity-
and-memory (SPM) hypothesis (Martin et al. 2000; Hebb 1949; Dayan and Abbott 2001;
Eichenbaum 2012) relates the psychological concept of memory to the neuronal correlate
of synaptic plasticity, affecting the coupling strength of individual neurons. Thus, in this
thesis, we evaluate the hypothesis that complex cognitive strategies, dependent on the interac-
tion and connection of numerous memories, are generated and performed based on the dynamics of
synaptic plasticity.
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Ƃ.ſ The Primary Building Blocks of a Schema

In order to evaluate the hypothesis, we restricted our investigation on a network of memo-
ries defining the structure of a schema. Since two related memories constitute the primary
building block of a schema, heretofore, we studied the self-organization of two anatomi-
cally connected memories, memory 1 and memory 2 (indicated by 1 ∼ 2). By this, we
distinguish different types for the functional organization (FO) of these primary building
blocks, based on the ability of one memory to either excite or inhibit the interconnected
memory (Byrne and Huyck 2010): They can either be functionally organized as an associa-
tion (1 ⇔ 2, mutual excitation), sequence (1 ⇒ 2, sequential excitation) or discrimination
(1 − 2, mutual inhibition; see Def. 1, p. 28). Studies by Preston and Eichenbaum (2013)
showed that already two overlapping primary building blocks (1 ∼ 2 and 2 ∼ 3), that
have one memory in common (i.e., memory 2), can describe simple behavior such as the
experimentally observed transitive-inference paradigm. In the study by Preston and Eichen-
baum (2013), rats were trained to associate the memories for each primary building block:
1 ⇔ 2 and 2 ⇔ 3. During interference trials, they were successfully tested on their ability
to infer the relationship between memory 1 and memory 3 (1 ⇔ 3). Thus, the simpli-
fied behavioral model of a schema at minuscule scale composed out of two overlapping
primary building blocks (1 ∼ 2 and 2 ∼ 3) can explain cognitive functions (Preston and
Eichenbaum 2013; Ghosh and Gilboa 2014). These experimental results supports our ap-
proach to analyze two interconnected memories and their ability to form different types
of FOs.

Ƃ.ſ.ž Synapঞc Learning Rules Leading to Stable Dynamics Enable a
Comprehensive Analysis of the Populaঞon Model

The different types of FOs have alrady been investigated by other theoretical studies (Grini-
asty et al. 1993; Abbott and Blum 1996; Leibold and Kempter 2006; Herrera-Aguilar et al.
2012; Tully et al. 2016; Chenkov et al. 2017; Litwin-Kumar and Doiron 2014; Byrne and
Huyck 2010). However, they differ in their research questions compared to the one, ana-
lyzed in this thesis. For instance, studies by (Litwin-Kumar and Doiron 2014) investigate
the association of memories whilst studies by (Chen 2017) consider the discrimination of
memories. Further studies by (Griniasty et al. 1993; Abbott and Blum 1996; Leibold and
Kempter 2006; Herrera-Aguilar et al. 2012; Tully et al. 2016; Chenkov et al. 2017) focus
on the formation of sequences between memories. These studies often aim to generate
temporally extended activity patterns, as needed for motor sequences (Abbott and Blum
1996) by the consecutive replay of memories.
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All these different studies highlight the functional significance of the respective organi-
zation of interconnected memories but use or propose different modeling approaches,
which typically give rise to the investigated FO. On the other hand, the work by Byrne
and Huyck (2010) already demonstrates how a network with all of these FOs of intercon-
nected memories can execute computational algorithms. However, they construct the
network by predefined and suitably connected memories, thereby, neglecting their self-
organization due to environmental input stimulation. Therefore, we here ask how one
neuronal network with a given synaptic plasticity rule can at the same time explain the
input-dependent formation of memory representations (MRs) and give rise to all these dif-
ferent forms of FOs.

To investigate the self-organization of two interconnected memories, we developed a the-
oretical framework that determines the equilibrium state of two interconnected neuronal
populations for given input stimulation (Chapter 3). This approach reduces the dimen-
sion of the adaptive neuronal network model (Sec. 3.1; Fig. 3.2, p. 33) to a low dimensional
population model at equilibrium (Sec. 3.3; Fig. 3.3, p. 42) that enables analytic investigations
on the input-dependent self-organization of two interconnected memories. Remarkably,
the derived reduced model in this thesis matches the learning results of the corresponding
full network simulation (Sec. 3.4.3;Fig. 3.6, p. 49). Using the reduced population model at
equilibrium state, we mapped the definitions for the different types of FO of two intercon-
nected memories on their ability to either excite or inhibit the interconnected memory to
a synaptic weight-dependent definition for the population model (see Sec. 3.4, p. 45).

In Chapter 4, we analyzed the effect of synaptic plasticity mechanisms that determine on
the self-organization of two interconnected memories into their FO. For this, we consider
a general mathematical formulation for the different synaptic plasticity mechanisms. We
show that synaptic learning rules that lead to stable synaptic weight dynamics, i.e., pro-
viding a fixed point function for the synaptic weights, enable a comprehensive analysis
of the FOs. Using this fixed point function, the synaptic weight-based constraints for the
different types of FO are mapped to the low-dimensional F1 − F2−activity space of the
population model (F1: average fixed activity of population 1; F2: average fixed activity
of population 2). We, refer to the corresponding classification of the F1 − F2−activity
space in regard to the different types of FOs of two interconnected memories by the term
characteristic activity phase space (χAPS).

In the following, we discuss the different activity-based synaptic plasticity mechanisms
of rate-coded neurons we have analyzed in Chapter 4. Note, for each synaptic learning
rule on their biological interpretation is already briefly discussed at the end of each cor-
responding Section in Chapter 4.
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Ƃ.ſ.ſ Correlaঞon-based Plasঞcity Accounts For Associaঞve Memory Structures

In Chapter 4, we set about analyzing synaptic learning rules that are based on Hebbian
correlation-based learning in combination with a homeostatic mechanism on their ability
to form diverse FOs of two interconnected memories. This class of learning rules com-
prises for example the learning rule on Synaptic Plasticity and Synaptic Scaling (SPaSS). It has
been shown that the SPaSS-learning rule can account for formation of individual uncon-
nected memories in neuronal networks (Tetzlaff et al. 2011; Tetzlaff et al. 2013; Auth et al.
2018). In this thesis, we extended these results by showing that the generic formulation of
correlation-based Hebbian learning in combination with postsynaptic acticity-dependent
homeostasis enables the formation of association and sequences of two memories (Fig. 4.3,
p. 69). However, we also were able to show that the condition of MR is coupled with the
condition for the different forms of FO via the plasticity mechanisms involved. Our anal-
ysis revealed that this strong interdependence on the plasticity mechanisms excludes the
formation of a discrimination of interconnected memories. Furthermore, we have shown
that sequences of memories only occur due to effects of the homeostatic plasticity mecha-
nism. Since homeostatic plasticity is considered to balance neuronal and synaptic weight
dynamics (Cannon 1932; Turrigiano and Nelson 2004), it is unlikely that a functional struc-
ture, such as sequences of memories only rely on this homeostatic plasticity mechanism.
Hence, we conclude that learning rules comprising correlation-based and homeostatic
plasticity mechanisms mainly account for associative memory structures.

Ƃ.ſ.ƀ Augmentaঞon of Synapঞc Plasঞcity Yield Diverse Funcঞonal
Organizaঞons

As discussed above, synaptic plasticity dependent on the dynamics of correlated activity
account for associative memory structures. This is due to the fact the specific mathemat-
ical formulation of correlation-based synaptic plasticity, analyzed in this thesis, only ac-
counts for long-term potentiation (LTP), i.e. strengthening of the synaptic weights. Thus,
we continued to augment the model on activity-based plasticity mechanisms to reliably
describe the diversity in the formation of functionally organized memories.

Synapঞc Plasঞcity Based on LTP and LTD

At a biological synapse, the mechanism of LTP accounts for an enhanced exocytosis of
ion-channels into the postsynaptic membrane (Fig. 2.3 bottom left, p. 13, Huganir and
Nicoll 2013; Korte and Schmitz 2016) that enable signal transmission between the pre- and
postsynaptic neurons. Hence, an increase of ion-channels in the postsynaptic cell cause
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this postsynaptic neuron to be more sensitive to presynaptic signals. Long-term depression
(LTD), on the other hand, accounts for an enhanced endocytosis of these ion channels
into the postsynapic cell (Fig. 2.3 bottom right, p. 13, Korte and Schmitz 2016), thereby,
decreasing the excitability of the postsynaptic cell. The latter mechanism is not considered
by the mathematical formulation of correlation-based synaptic plasticity. Even though,
this formulation is augmented by a stability-serving homeostatic process, this process
does not imply LTD. Thus, as a first approach, we additionally introduced LTD, that take
those plasticity mechanisms into account that yield a weakening of the synaptic weights
(Sec. 4.3; p. 73).

Although, previous studies already engineered LTD in mathematical models of rate-coded
neurons with synaptic plasticity (Sejnowski 1977; Bienenstock et al. 1982; Oja 1982), a
mathematical formulation of biologically plausible activity-dependent learning rules were
still missing. For example, models proposed by Sejnowski (1977) and Bienenstock et al.
(1982) mathematically implement LTD by means of threshold values for the pre- and/or
prostsynaptic firing. However, these thresholds yielding stable synaptic weight dynamics
were technically derived (Sejnowski 1977; Bienenstock et al. 1982). As another example,
the model propsed by (Oja 1982) does not make use of such arbitrary firing thresholds
but still need to implement biologically questionable non-local synaptic weight normal-
ization enabling stable synaptic weight dynamics. Our theoretical considerations led to
the mathematical formulation of an additional plasticity mechanism accounting for LTD
which is dependent on the difference in pre- and postsynaptic firing rates. Hence, this
formulation differs from the previous models as it is independent of additional threshold
values or biologically implausible mechanisms such as non-local synaptic weight normal-
ization serving for stability. For stability, in our model, we used the experimentally ob-
served homeostatic mechanism of synaptic scaling (Turrigiano et al. 1998; Turrigiano and
Nelson 2004) that has aleady been mathematically implemented for synaptic plasticity
rules by Tetzlaff et al. (2011). Furthermore, our proposed mechanism describing activity-
dependent LTD, dependent on the difference in pre- and postsynaptic firing rates, enables
the system of two interconnected memories to form a discrimination which we show in
theory (Theorem 12, p. 76) and simulation (Sec. 4.3.2, p. 78). We validated our theoretical
proposition that a LTD-term depending on the difference in the pre- and postsynaptic
firing rates of rate-coded neurons is able to form discriminated memories. For this, we an-
alyzed a specific learning rule based on the previously analyzed SPaSS-learning rule with
an additional plasticity mechanism account for LTD (Sec. 4.3.2, p. 78). Evidently, this
analysis showed that an increased impact of the LTD-dependent plasticity mechanism
causes an enlarged activity space leading to the formation of discriminated memories.
Strikingly, also the formation of memories arranged in a sequential order is facilitated by
this additional plasticity mechanism (Fig. 4.4, p. 80).
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Synapঞc Plasঞcity with Local Characterisঞcs

Heretofore, we only considered a homogeneous neuronal network model where all neu-
ronal and synaptic parameters are unchanged for the whole neuronal network. As a sec-
ond approach, we allowed local differences in the neuronal network dynamics enabling
the formation of all FOs in two different ways: local differences in the homeostatic plas-
ticity mechanism (Sec. 4.4.1; Fig. 4.5, p. 84) or inhibitory plasticity with local differences
in the inhibitory synaptic weight dynamics (Sec. 4.4.2; Fig. 4.7, p. 88).

We have already discussed (Sec. 5.2.2) that it is biologically unplausible when the forma-
tion of specific FOs is caused by effects of homeostatic plasticity. However, the here in-
troduced approach on local differences in the homeostatic mechanisms can alternatively
be interpreted as a form of memory consolidation (McGaugh 2000). Memory consolida-
tion describes the process that facilitates memories to become increasingly resistant to
disruption or interference from competing factors over time (Walker and Stickgold 2004).
Our general formulation, by lowering the time constant for the homeostatic plasticity
mechanism γ (Fig. 4.5 A, p. 84) for all neurons belonging to one neuronal population
implies a lower impact of the homeostatic mechanism. This in turn, implies all synapses
within one neuronal population are less regulated and, hence, more autonomously stabi-
lize their neuronal and synaptic dynamics. Thus, we interpreted this approach as a form
of memory consolidation. Furthermore, this form of memory consolidation leads to the
self-organized formation of all FOs of interconnected memories.

Moreover, we proposed an additional solution to enable the neuronal system to build up
all different forms of FOs of two interconnected memories by inhibitory synaptic plastic-
ity (Sec. 4.4.2, Fig. 4.7, p. 88). Although this category of synaptic plasticity is not well
understood, we have shown that lower inhibitory synaptic weights within each popula-
tion compared to the inhibitory synaptic weight level within the remaining network yields
the reliable formation of all different forms of functionally connected memories. Yet inhi-
bition has the functional role to balance strong excitation within interconnected groups of
neurons (Vogels et al. 2011; Litwin-Kumar and Doiron 2014). The approach considering
distinct inhibitory synaptic weight levels within the neuronal populations as compared
to the remaining neurons of the network is in contrast to the general understandig on
the function of inhibition. However, such local differences in the balance of inhibition
and excitation become insignificant when we broaden the view on the whole neuronal
network and its whole balance of excitation and inhibition (Vreeswijk and Sompolinsky
1998; Denève and Machens 2016).
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Ƃ.ſ.Ɓ Conclusion and Future Prospects

In summary, we developed a generic mathematical framework to analyze rate-based synap-
tic plasticity rules with respect to their ability to form different types of functional organi-
zation (FO). Note, the specific SPaSS learning rule is exemplary investigated in this thesis,
but other formulations on rate-based synaptic plasticity rules can also be investigated and
augmented by means of our derived mathematical framework.

At the moment, our analysis is restricted on the learning phase, i.e., the neuronal popula-
tions are continuously stimulated over time by environmental inputs. Thus, there is still
an open question whether the FOs of memories can be maintained after the stimulation of
the system is removed. Our analysis would predict that, as soon as the stimulation ends,
the activities of the neuronal populations decline to their intrinsic states and consequently,
change their respective FO. Thus, it might be possible that the here presented plasticity
mechanisms have to be augmented by further processes stabilizing the memories as well
as their FOs. One such mechanism that accounts for the stabilization of memories is con-
solidation (McGaugh 2000; Walker and Stickgold 2004), which is described above and
experimentally observed.

Informed by our analytic framework, we were able to identify two strategies for augment-
ing the underlying synaptic weight dynamics to enable a system of two interconnected
memories to form all types of FOs. Both augmentations in synaptic plasticity indeed en-
abled the formation of all FOs, thus, are qualitatively equivalent in the system of two
interacting memories. However, it remains questionable, if both strategies are equally
potent to generate functional motifs of more than two memories.

Ƃ.ƀ Comparison of Proposed Synapঞc Learning Rules

Heretofore, we have restricted our investigations on the primary building blocks of schema.
Thereby, we analyzed the ability of two interconnected memories to dynamically build
diverse forms of functional connections (i.e. FO). In the following, we evaluate the differ-
ent synaptic plasticity mechanism, analyzed in this thesis, on their ability to form diverse
forms of schemata. Therefore, we augment a primary building block of schema by one ad-
ditional memory, thus we consider three interconnected memories. In Fig. 5.1, we collect
all 16 different equivalence classes of functional motifs that can be formed by three inter-
connected memories. (Fig. 5.1). To discuss the suitability of the different synaptic learning
rules to form diverse structures of a schema, we ask if the formation of one specific FO be-
tween two memories already affects and determines the formation of the remaining FOs
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Figure 5.1: All equivalence classes for functional structures based on three interconnected mem-
ories. All equivalent combinatorics of functionally ordered memories are abstracted
by their equivalence class, i.e. unordered memories.

in the structure of three interconnected memories. Thus, using this enlarged system of
three interconnected memories, we briefly sketch and discuss the ability of the different
learning rules to form diverse different functional motifs or functional structures. Therefore,
we use the synaptic learning rule specific characteristic activity phase space (χAPS) for
two interconnected memories, discussed in the following. For this, we exemplary deter-
mine one primary building block by restricting the activity of the respective memories and
evaluate the influence of this restriction on the remaining two FOs within this structure
of three interconnected memories. In doing this, we compare the two different synaptic
plasticity mechanisms proposed in this thesis.

Ƃ.ƀ.ž LTP and LTD Account for Diverse Schema Structures

Our results in Sec. 4.3 (p. 73) reveal that synaptic plasticity driven by the processes of
LTP in combination with LTD yield an omnifarious characteristic activity phase space
(χAPS) for the formation of all different forms of FO, such as association, sequence and
discrimination (see Fig. 4.4, p. 80). In Fig. 5.2 we apply a specific augmented learning rule
on Synaptic Plasticity and Synaptic Scaling by Causality (aSPaSS):

τ̃ω ˙̃ωi,j = F̃jF̃i − ν̃

(√
F̃jF̃i|F̃j − F̃i|+Rmin

)
− F̃i − F̃T

1− F̃T ω̃2
i,j (5.1)

defined by the set of parameter of ν̃ = 0.9, Rmin = 0 and F̃T
= 0.05 as already used in

Fig. 4.4 Cv (p. 80). Note, the analysis on the system’s equilibrium state (τ̃ωω̇i,j
!
= 0) is
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independent of the learning rate for synaptic plasticity. Thus, we do not have to specify
the learning rate τ̃ω as it does not affect the resulting FO.

To sketch the ability of this exemplary learning rule to form multifarious functional in-
terconnected memories, we exemplary limit the F1 − F2 − F3−activity phase space for
three interconnected memories and analyze the implications on the resulting functional
structures. For example we start to restrict the average activity level of memory 1 to
F1 ∈ [0.65, 0.8]. This restricted activity level for memory 1 reduces the χAPS for the FOs
with memory 2 (Fig. 5.2 Ai). This exemplary restriction in the activity for memory 1 still
enables the formation of all possible FO, thus, it does not affect the diversity of possible
FOs. The average activity of memory 2 determines the FO between memory 1 and mem-
ory 2 (1 ∼ 2). Equivalently, the restricted activity level for memory 1 reduces the χAPS
for the FO with memory 3 (Fig. 5.2 Aiii) but does not affect the diversity of possible FOs.
Evidently, the χAPS defining the FOs of memory 2 and memory 3 is unaffected by the re-
striction for the activity level of memory 1 (Fig. 5.2 Aii). When the average activity level of
memory 2 is additionally restricted to operate in the activity regime of F2 ∈ [0.625, 0.825]

(Fig. 5.2 B), this defines the FO of memory 1 and memory 2 to be an association (Fig. 5.2 Bi).
Furthermore, the χAPS defining the FOs of memory 2 and memory 3 is reduced. How-
ever, they still can build up all forms of FOs (Fig. 5.2 Bi). Finally, the limitation of the
average activity level for memory 3 to F3 ∈ [0.75, 1.0] determines the FO of memory 2
and memory 3 to either form an association or a sequence from memory 3 to memory 2
(seq:23, Fig. 5.2 Cii) and further the FO of memory 1 and memory 3 to either form an
association or a sequence from memory 3 to memory 1 (seq:13, Fig. 5.2 Ciii). Thus, this
exemplary restriction of the average activity levels for all three memories still accounts for
different functional motifs. One such functional structure is composed out of association
for each single primary building block, where all memories build up associations towards
the interconnected memories (Fig. 5.2 Ei). The second equivalence class of functional mo-
tifs is that of two associations paired with on sequence (Fig. 5.2 Eii). This specific motif
occurs for an association of memory 2 and memory 3 and a sequence from memory 3 to
memory 1 (seq:13). This specific structure is equivalent that the structure determined of
a sequence from memory 3 to memory 2 (seq:23) and an association of memory 1 and
memory 3. The third functional motif is made up by an association and two sequences
each building up an excitatory connection toward the memories that form an association
(Fig. 5.2 Eiii). This particular functional structure is formed by a sequence from memory 3
to memory 2 and from memory 3 to memory 1, respectively.

Alternatively, if the average activity of memory 3 is restricted to F3 ∈ [0.3, 0.55] (Fig. 5.2 D)
corresponds to a different set of functional motifs. However, the FO of memory 1 and
memory 2 is unaffected of this changed activity and still forms an association. When
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Figure 5.2: Motifs of three memories underlying the aSPaSS-learning rule. (A) Average activ-
ity of memory 1 limited to F1 ∈ [0.65, 0.8] restricts the χAPS for its relation to mem-
ory 2 (Ai) and memory 3 (Aiii). The χAPS defining the FOs of memory 2 and 3
is not restricted (Aii). (B) When the average activity of memory 2 is constrained to
F2 ∈ [0.625, 0.825] (Bi,ii), yields an asc of memory 1 and 2 (Bi) and further restricts
theχAPS defining the FOs of memory 2 and 3 (Bii). (C) When the average activity of
memory 3 is constrained to F3 ∈ [0.75, 1.0] (Cii,iii), yields either an asc or seq:23 of
memory 2 and 3 (Cii) and further restricts memory 1 and 3 to an asc or seq:13 (Ciii).
(D) In contrast to (C), the average activity of memory 3 constrained to F3 ∈ [0.3, 0.55]
(Dii,iii) yields either a seq:32 or disc of memory 2 and 3 (Dii) and further restricts mem-
ory 1 and 3 to a seq:31 or disc (Diii). (E) All equivalence classes of three functionally
connected memories formed by the restrictions made in C and D.
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memory 1 and memory 2 exemplary build up a sequence to memory 3, the system builds
up a fourth functional motif with one association and two sequences that emerge from
the association (Fig. 5.2 Eiii). Moreover, a fifth specific functional motif containing an
association, a sequence and a discrimination can be formed. Here, the sequence builds
up an excitatory relation from the memory belonging to an association (asc) towards the
memory belonging to the discrimination (Fig. 5.2 Ev). Thus, the specific functional or-
ganization of a sequence from memory 2 to memory 3 combined with a discrimination
between memory 1 and memory 3 belong to the same equivalence class as the specific
functional organization of a sequence from memory 1 to memory 3 combined with a dis-
crimination between memory 2 and memory 3. Finally, a sixth functional motif of one
association and two discrimination can be formed (Fig. 5.2 Evi).

In summary, these two specific restrictions in the F1 − F2 − F3−activity phase space of
this small web of three interconnected memories (Fig. 5.2 C,D) in combination with the
underlying dynamics for synaptic plasticity (aSPaSS) enables the formation of six out of
nine possible functional motifs (all listed in Fig. 5.1 A-F) that contain at least one asso-
ciation between two memories (Fig. 5.2 E). Even though we have not provided specific
examples for the formation of the three remaining functional motifs (Fig. 5.2 C, Diii, Ei),
we strongly advocate their occurrence for specifically tuned restrictions in the average
three-dimensional F1 − F2 − F3−activity space of the memories involved.

Moreover, when we limit the χAPS for the interaction of memory 1 and memory 2 to
form a discrimination (disc), we expect the same high diversity in the resulting functional
structures of three interconnected memories. On top of this, adjusting the parameter ν̃

for the time constant of LTD, which has a strong impact on the effective structure of the
learning-rule specific χAPS, enlarges the scope of action for different forms of functional
structures (for comparison see Fig. 4.4 C, p. 80).

Ƃ.ƀ.ſ Local Characterisঞcs for Synapঞc Plasঞcity Restricts the Diversity of
Schema Structures

The results presented in Sec. 4.4 (p. 82) reveal that local characteristics in the plasticity
mechanisms can form diverse functionally organized building blocks of schemata. In
particular, we have shown that either local characteristics in the homeostatic mechanism
(Sec. 4.4.1, p. 82) or local inhibitory synaptic plasticity (Sec. 4.4.2, p. 85) enables the forma-
tion of all FOs of two interconnected memories. Both approaches differ in the constraints
on MR but do not affect the constraints on FOs. This becomes obvious from the map-
ping of the constraints for the different forms of FO onto the χAPS. For comparison see
Fig. 4.5 Ai,Bi and Fig. 4.7 Ci,ii. Here, the χAPS exhibit qualitatively equivalent topologies
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for the constraints on the different forms of FO. Thus, for the discussion of this approach it
is sufficient to consider one example. To obtain the results shown in Fig. 5.3, we exemplary
use the approach of local inhibitory synaptic conditions as already used in Fig. 4.7 Cii.

Again, we limit theF1−F2−F3−activity phase space for three interconnected memories in
the same way as we already did in the previous sketch (Fig. 5.2) and deduce its implication
on the resulting functional structures. We note that, strikingly, the variability of functional
structures is drastically reduced to only three different equivalence classes of functional
structures (Fig. 5.3 E). This is due to the nearly quadratically arranged activity spaces for
the different FOs within the respective χAPS. In particular, when two memories build up
an association, this excludes the formation of a discrimination for any of the remaining
two FOs within this set of three interconnected memories. Vice versa, when two memories
build up a disc, this excludes the formation of an association for any of the remaining two
FOs.

Ƃ.ƀ.ƀ Conclusion and Future Prospects

Regarding our brief sketches to form diverse motifs of three functionally connected mem-
ories, evidently, the method to describe synaptic plasticity by mechanisms including LTP
and LTD has less inherent restrictions and yields more diverse structures than the method
of local characteristics in synaptic plasticity mechanisms. Thus, synaptic plasticity de-
scribed by LTP and LTD might be able to form more diverse different networks and, by
this, generate more complex behavior. However, a more elaborated and comprehensive
analysis on the implications of the different synaptic plasticity learning rules to form di-
verse functional structures of three interconnected memories is still to be done.

If a synaptic learning rule is able to form all 16 different equivalence classes of functional
structures of three interconnected memories, theoretically, this learning rule is able to
form diverse different networks of more than three interconnected memories without any
restrictions. Thus, it yields the neuronal correlate for the generation of complex behav-
ior.

Ƃ.Ɓ Outlook: Processing with Memories

At the level of adaptive neuronal networks, we have extracted the essential neuronal prin-
ciples for activity-dependent synaptic plasticity that enable the brain to form diverse func-
tional organization (FO) of interconnected memories. We further discussed their ability to
form diverse functional structures of three interconnected memories. We conclude that
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Figure 5.3: Motifs of three memories underlying the SPaSS-learning rule with local character-
istics. (A) Average activity of memory 1 limited to F1 ∈ [0.65, 0.8] restricts the χAPS
for its relation to memory 2 (Ai) and memory 3 (Aiii). The χAPS defining the FOs of
memory 2 and 3 is not restricted (Aii). (B) When the average activity of memory 2 is
constrained to F2 ∈ [0.625, 0.825] (Bi,ii), yields an asc of memory 1 and 2 (Bi) and fur-
ther restricts theχAPS defining the FOs of memory 2 and 3 (Bii). (C) When the average
activity of memory 3 is constrained to F3 ∈ [0.75, 1.0] (Cii,iii), yields an asc or seq:23
of memory 2 and 3 (Cii) and further restricts memory 1 and 3 to an asc (Ciii). (D) In
contrast to (C), the average activity of memory 3 constrained to F3 ∈ [0.3, 0.55] (Dii,iii)
yields either a seq:32 of memory 2 and 3 (Dii) and further restricts memory 1 and 3 to
a seq:31 (Diii). (E) All equivalence classes of three functionally connected memories
formed by the restrictions made in C and D.

activity-dependent synaptic plasticity that accounts for LTP and LTD might be key prin-
ciples for the human brain’s ability to create complex cognitive structures. Beyond the
scope of human behavior, the possibility to form complex networks of memories in adap-
tive neuronal networks can be used for input-driven computation with memories.
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Structured program theory (Böhm and Jacopini 1966) states that any system, which imple-
ments the three principle computational structures of sequence, selection, and iteration,
is complete as it can execute any procedure which can be written as an algorithm (Böhm
and Jacopini 1966; Byrne and Huyck 2010). The basic idea of structured program theory
(Böhm and Jacopini 1966) is that programs, computers, etc. are usually composed of three
functional types (i.e. , the basic computational structures) representing elementary opera-
tions mutually connected by oriented lines. Thus, the question arises, if and under which
conditions the structured program theorem is also valid for adaptive neuronal networks.
Byrne and Huyck (2010) already showed that five interconnected memories are required
to construct the basic computational structures listed above. However, Byrne and Huyck
(2010) predefined these memories as well as their required FOs to carry out the basic com-
putational structures of sequence, selection, and iteration (Fig. 5.4 A). For instance, the
computational structure of an iteration is composed out of five suitably connected mem-
ories I, II, III, A and B as depicted in Fig. 5.4 A (right panel). Here, as long as memory I
and memory II are externally activated, their collective activity is sufficient to excite their
excitatory interconnected memory A. The evoked excitation of memory A in turn main-
tains the activity of memory I and II due to their excitatory reverse connections. Thus, as
long as no other stimulation is applied onto the system, the circular excitation, i.e. an iter-
ation, of memory I and II with memory A is maintained. However, as soon as the external
stimulation further excites memory III, the collective activity of memory II and III activates
the excitatory interconnected memory B. This memory B has an inhibitory connection to-
wards memory A. Hence the evoked activity of memory B suppresses the excitation of
memory A and, by this, shuts down the iterative cycle described above (Byrne and Huyck
2010).

Our work strongly suggests that adaptive neuronal networks are able to learn such basic
computational structures (Fig. 5.4 A), dependent on the external input stimulation, by suit-
ably combining a specific set of functional structures (collected in Fig. 5.1). For instance,
the iteration of memories can be composed out of three overlapping functional structures
of three memories as depicted in Fig. 5.4 B. Note, memory II, A and B respectively belong
to two functional structures that overlap. The first functional structure, containing mem-
ory I, II and A, is composed out of two associations and one discrimination (compare to
Fig. 5.1 B). The second functional structure, containing memory II, A and B, is composed
out of one association, secquence and discrimination (compare to Fig. 5.1 Ei). Finally, the
third functional structure, containing memory II, III and B, is composed out of two sec-
quences and one discrimination (compare to Fig. 5.1 Jii).

To test this hypothesis, one has to take into account the here derived input principles
resulting either from the two population system forming diverse FOs (condensed in the
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Figure 5.4: Composition of the basic computational structures out of a network of memories.
(A) Schematic of the basic computational structures (sequence, selection, iteration),
consisting of predefined and suitably connected memories (circles; arrows: excitatory
connections; bars: inhibitory connections). (B) Construction of the basic computa-
tional tasks composed of the input driven basic functional structures of schemata.

respective synaptic learning rule dependent χAPS) or from the three population system
forming different functional structures of schemata and transfer these principles to the
wiring of up to five interconnected memories (Fig. 5.4 B). When all basic computational
structures of sequence, selection and iteration can also be established in the population
model or in the more detailed recurrent neuronal network model, one can conclude that
adaptive neuronal networks are complete with respect to structured program theory. In
particular, this indicates that a neuronal network can perform any algorithm by succes-
sively sequencing different basic computational tasks in a specific order. To test this, one
can exemplary implement some task-based algorithms in the adaptive neuronal network
which can be solved by different cognitive strategies. For instance, one such task is to
write out as many of the permutations of the numbers 1, 2, 3, and 4 as possible. There
are at least two strategies: (1) holding initial digits constant and changing digits on the
right, or (2) rotating the preceding permutation (Leskow and Smock 1970). Therefore,
one can start implementing these algorithms in the reduced population model and ex-
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tract all required input patterns leading to the respective algorithm. Subsequently, one
can implement those input patterns in a full network simulation and analyze the estab-
lished structures. Thereby, it can be shown that, indeed, memory-based adaptive neural
networks can compute programs and, thus, perform complex cognitive strategies.
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Appendices

Normalized Neuronal Network Model

In the following, to reduce complexity, we normalize the neuronal the neuronal network
model according to the maximal firing rate Fmax and the maximal synaptic weight ωmax. The
maximal firing rate is already defined as a system’s parameter and set to Fmax = 100Hz.
Thus, we only have to calculate the maximal synaptic weight ωmax. Therefore, we set the
pre- and postsynaptic neuronal activities to the maximal activity level of (Fj = Fi = Fmax)
and, by this, calculate the respective fixed synaptic weight of the applied learning rule
(τωω̇i,j(Fmax,Fmax)

!
= 0) and define it as the maximal synaptic weight. For the specific

learning rules of SPaSS and aSPaSS this maximal synaptic weight is given by:

0 = FmaxFmax − γ
(

Fmax − FT
)
(ωmax)2 ⇒ ωmax :=

Fmax√
γ(Fmax − FT)

. (A.1)

By this, the normalized activities F̃i of all neurons i ∈ N are given by F̃i := Fi/Fmax and
the synaptic weights normalized to the maximal excitatory synaptic weight are given by
ω̃i,j := ωi,j/ω

max, θ̃ := θ/ωmax and ω̃ex := ωex/ωmax. In a same procedure, we normalize
the external input stimulation (Eq. 3.10) to

F̃ex :=
(
⟨F̃ ex

1 ⟩t, ⟨F̃ ex
2 ⟩t, ⟨F̃ ex

B ⟩t
)T

. (A.2)

This normalized model maps the neuronal activity F̃i and the excitatory synaptic weight
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ω̃i,j to a state space of [0, 1] ∈ R, respectively:

activity τ
˙̃Fi = (1− F̃i)F̃i

[
log
(
F̃−1
i − 1

)
+ β(Rϕi − ϵ)

]
, (A.3)

with ϕi = Fmaxωmax

 ∑
r∈{P1,P2,PB}

∑
j∈Pr

(ω̃i,j − θ̃)F̃j + ω̃ex
∑
k∈Er

F̃ ex
k

 ,

(A.4)

synaptic weight τ̃ω ˙̃ωi,j = F̃jF̃i − ν̃

√
F̃jF̃i|F̃j − F̃i| − γ̃(F̃i − F̃T

)ω̃2
i,j , (A.5)

with τ̃ω =
τω(

Fmax
√

Fmaxγ(1− F̃T
)

) , ν̃ =
ν

Fmax2 , γ̃ =
1

1− F̃T . (A.6)

Note, the specific normalized model for the SPaSS-learning rule is defined by the normal-
ized equation for the synaptic weight (Eq. A.5) with ν̃ = 0, excluding the causality-based
plasticity mechanism.
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