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Abstract

Cardiovascular diseases are diseases of the heart and blood vessels constituting
a major cause of death and disability worldwide. Cardiovascular drug develop-
ment aims to deliver efficacious drugs to address the public health burden of car-
diovascular diseases. However, the high costs associated with cardiovascular drug
development, for example due to long-running clinical trials, sometimes including
thousands of patients, place a high burden on the development of new efficacious
treatments for cardiovascular diseases. Proposals for improving the efficiency of car-
diovascular drug development include better disease characterization, more defined
target populations, and the use of adaptive clinical trial designs. This dissertation
focuses on adaptive clinical trial designs for cardiovascular research.

Adaptive clinical trial designs, commonly referred to as adaptive designs, are
clinical trial designs with a preplanned modification of design aspects, under some
constraints such as preserving integrity and validity of the trials, based on interim
data of the ongoing trial. Design aspects which are commonly modified include the
sample size, number of doses or treatments, or endpoints. Adaptive designs offer
flexibility compared to traditional clinical trials with a fixed design to accommo-
date newly gained information. However, with the flexibility comes an increased
statistical complexity, as adaptive designs require an increased effort to control the
probability that the clinical trial declares efficacy of an inefficacious treatment, that
is the type I error rate, and to plan the number of patients required such that an
efficacious treatment is detected with a high statistical power.

The focus of this dissertation is on two types of adaptive designs: group sequen-
tial designs and designs with a nuisance parameter based sample size re-estimation.
In group sequential designs, the efficacy of a treatment is tested repeatedly during
the conduct of the trial and the trial is stopped early if efficacy of the treatment can
be shown with statistical significance. Thus, an efficacious treatment can be detected
early in clinical trials with a group sequential design. In designs with a nuisance
parameter based sample size re-estimation, the final sample size is adjusted using
estimates of the potentially several nuisance parameters based on interim data. Nui-
sance parameters are for example the outcome variance in trials with continuous
outcomes and the overall event rate in trials with count outcomes. The nuisance pa-
rameter based sample size re-estimation aims to assure that a clinical trial achieves
the target power independently of the initially planned sample size.

The first objective of this dissertation is to study group sequential designs with
recurrent events, motivated by clinical trials with patients suffering from chronic
heart failure. In clinical trials with patients suffering from chronic heart failure, a
common clinical relevant recurrent event outcome is the number of heart failure
hospitalizations, which can also be part of a composite endpoint in combination
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with cardiovascular death. To model heart failure hospitalizations and the respec-
tive composite, a negative binomial model and a more robust semiparametric model
have been proposed in the literature. However, group sequential designs have not
been studied for these models. Therefore, I propose statistical methods for planning
and analyzing group sequential designs for negative binomial models and more
robust semiparametric models and study their asymptotic properties. Moreover,
I show that the proposed planning and analysis methods result in an appropriate
power and type I error rate, respectively, for parameter combinations common in
clinical trials with patients suffering from chronic heart failure. I put a particular
focus on the longitudinal nature of the recurrent events, i.e., a single subject can ex-
perience new events throughout the trial, and its consequential on the group sequen-
tial designs. The longitudinal natures of the outcomes distinguishes group sequen-
tial designs with recurrent events from group sequential designs for other common
models, such a continuous, binary, or survival data.

A second objective of this dissertation is to study nuisance parameter based sam-
ple size re-estimation in three-arm trials with normal outcomes; an investigation
motivated by clinical trials with patients suffering from hypertension. A common
endpoint in these trials modeled as normally distributed is the change of blood
pressure between the baseline measurement and the end of the trial. I show that
the ideas for nuisance parameter based sample size re-estimation in two-arm trials
can be adapted to three-arm trials and highlight that the corresponding approaches
do not result in the desired target power. Furthermore, I modify one of the sample
size re-estimation procedures such that it results in appropriately powered three-
arm clinical trials.

The third objective of this dissertation is to study incorporating prior informa-
tion on the variance into the nuisance parameter based sample size re-estimation
in two-arm trials with normal outcomes. This objective, too, is motivated by clini-
cal trials with patients suffering from hypertension. I propose several ad hoc rules
for incorporating prior information into the sample size re-estimation and by means
of Monte Carlo simulation studies I show that the incorporation of prior informa-
tion can reduce the variability of the final sample size when no prior-data conflict is
present. However, I illustrate that in the presence of a prior-data conflict, the designs
with a sample size re-estimation incorporating prior information do not convey the
target power. I also highlight that common approaches of robustifying the prior
information cannot completely mitigate the negative effects of a prior-data conflict
without also nullifying the benefits of incorporating prior information on the nui-
sance parameter into the sample size re-estimation.
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1 Introduction

1.1 Clinical trials in cardiovascular drug development

Cardiovascular disease (CVD) is a collective term for diseases of the heart and blood
vessels which includes, among others, coronary artery disease, cerebrovascular dis-
ease, congenital heart disease, and rheumatic heart disease [1]. Cardiovascular dis-
eases are the “leading causes of death and disability in the world” [1, p. 3] with
an estimated 17.7 million cardiovascular deaths in 2015, which corresponds to 31%
of all deaths worldwide [2]. Moreover, the number of cardiovascular deaths is ex-
pected to keep rising to about 24 million by the year 2030 [3]. Even though the
burden of cardiovascular diseases on the public health is well recognized, there are
concerns within the cardiovascular research community about the decreasing chance
of successful clinical trials and a slowdown of investment and interest in developing
drugs for cardiovascular diseases [4, 5]. As one reason for unsuccessful clinical tri-
als in cardiovascular drug development, Jackson et al. [5] name the unspecific target
population used in the clinical trials; unspecific in the sense that the target popu-
lation suffers from various cardiovascular diseases. The slowdown of investment
in cardiovascular drug development is attributed to the high costs associated with
cardiovascular drug development [5, 6]. The high costs are due to the logistical and
regulatory requirements as well as the large number of patients required in cardio-
vascular clinical trials. Reasons for the large number of patients required are the
generally small probability for the occurrence of informative events, such as stroke
and heart failure, in clinical trials and that the clinical trial participants are often
already receiving treatment and thus the experimental drug will only lead to incre-
mental improvements [5]. Both Jackson et al. [5] and Fordyce et al. [6] made several
proposals to overcome the difficulties of current drug development for cardiovas-
cular diseases, and among the proposed solutions are the application of adaptive
clinical trial designs and the use of genetic markers to identify subpopulations. In
the following, I provide a general introduction to adaptive clinical trial designs.

1.2 Adaptive clinical trial designs

Important design aspects of a randomized controlled trial include, but are not lim-
ited to, the doses of the experimental treatment, the primary efficacy variable, the
sample size, the eligibility criteria, and the type of the control (active or placebo) [7,
Chapter 3]. Historically, the main design aspects of a clinical trial were not altered
during the course of the trial. However, if during the trial it becomes evident that
vital design aspects were based on incorrect assumptions, the continued conduct
of the trial may be unethical. For example, a clinical trial is conducted unethically
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when patients are exposed unnecessarily to evidently ineffective treatments. An in-
correctly planned trial can also have limited scientific merit because, for instance,
the primary efficacy variable is inappropriate to measure the treatment effect or the
sample size is too small to detect an existing clinically relevant treatment effect with
sufficient statistical power. The risk of improperly conducting a clinical trial due to
incorrect assumptions in the planning phase can be mitigated by modifying the clini-
cal trial design during the course of the trial based on the accruing data. Clinical trial
designs preplanned with the option to modify the design aspects based on interim
data are called adaptive clinical trial designs or adaptive designs in short. Examples for
adaptive designs include group sequential designs, sample size re-estimation de-
signs, drop-the-loser designs, adaptive dose finding designs, enrichment designs,
and adaptive seamless phase II/III trial designs. While each of the mentioned adap-
tive designs have benefits compared to non-adaptive designs, the individual goals
of the designs differ. For instance, a sample size re-estimation design aims to as-
sure that an existing treatment effect is detected with the desired statistical power
by adjusting the final sample size based on interim data. A group sequential design
allows for the early discontinuation of a clinical trial for reasons of efficacy or futility
based on interim data. For a more comprehensive list and a detailed discussion of
the mentioned adaptive designs, we refer to Chow and Chang [8] and Kairalla et al.
[9].

Adaptive designs are discussed from the regulatory perspective by the Food and
Drug Administration (FDA) [10] and by the European Medicines Agency (EMA)
[11]. In their draft guidance document, the FDA defines a clinical trial with an adap-
tive design as a trial “that includes a prospectively planned opportunity for modi-
fication of one or more specified aspects of the study design and hypotheses based
on analysis of data (usually interim data) from patients in the study [...]” [10, Sec-
tion III.A.]. Most importantly from a statistical point of view, the FDA guidance
document [10] requires that the type I error rate is controlled and that the bias in
estimating the treatment effect is minimized. Moreover, in the FDA guidance docu-
ment, adaptive designs are separated into well understood and less well understood
designs. A clinical trial design is characterized as well understood if the drug de-
velopment community generally agrees that this design improves the efficiency of a
trial while maintaining the trials validity with respect to biases and interpretability.
Well understood adaptations include but are not limited to blinded adaptations (i.e.,
adaptations in which the treatment indicators are not revealed), group sequential
methods, and futility stopping. Less well understood adaptations include sample
size adaptations based on effect estimates, endpoint selection based on treatment
effect estimates, and adaptations in non-inferiority trials. In its reflection paper
on adaptive clinical trial designs, the EMA defined an adaptive design as a design
whose “[...] statistical methodology allows the modification of a design element [...]
at an interim analysis with full control of the type I error.” Thus, the EMA already
includes the requirement for type I error rate control in its definition of adaptive de-
signs. Furthermore, the EMA reflection paper also highlights the importance of an
awareness concerning biases in adaptive designs and the need for confidence inter-
vals which achieve the target coverage probability. Additionally, the EMA reflection
paper provides a detailed discussion of selected adaptive designs. In conclusion, the
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main concern of regulatory agencies about statistical properties of adaptive designs
is the type I error rate control, the reduction of the treatment effect estimate bias, and
the coverage probability of confidence intervals.

The perspective of statisticians working in the pharmaceutical industry on adap-
tive clinical trial designs was highlighted in two major publications from two dif-
ferent expert groups. The first publication was based on a workshop sponsored
by the Statisticians in the Pharmaceutical Industry (PSI) [12]. Phillips and Keene [12]
summarize the points made during the workshop for a number of adaptive designs,
which included sample size re-estimation designs, designs that drop or add treat-
ment arms, and designs that change one or more of the following: the primary end-
point, the patient population, the objectives, and the statistical methodology. The
second major publication is the executive summary of a white paper from an expert
group of the Pharmaceutical Research and Manufacturers of America (PhRMA) [13]. In
the executive summary, Gallo et al. [13] list the statistical, logistical, and procedural
issues of adaptive designs and discuss the benefits of adaptive dose finding trials,
seamless phase II/III designs, and sample size re-estimation designs. To summa-
rize, these two publications highlight an agreement among statisticians working in
the pharmaceutical industry about the general benefits of adaptive clinical trial de-
signs and also emphasize the importance of type I error control, bias reduction, and
the desire to maintain blinding in adaptive designs.

The general regulatory acceptance of blinded clinical trial adaptation warrants a
more in-depth discussion of such designs. These are adaptations in which the treat-
ment indicator of the patients remains masked. The most common blinded adapta-
tion is a blinded sample size review in which the sample size is re-estimated based
on a blind estimate of the nuisance parameter [14]. Blinded sample size re-estimation
methods have been studied for various designs and endpoints, including normally
distributed outcomes where the outcome variance is the nuisance parameter [15], bi-
nary data where the overall response rate is the nuisance parameter [16], and count
data where the overall event rate is the nuisance parameter [17]. Further possible
blinded adaptations are the adjustment of the study duration in clinical trials with
time-to-event data based on the overall number of events and, as mentioned in the
ICH guideline E9 [18], the adaptation of data transformations and the change of the
parametric or nonparametric analysis method. Aside from its regulatory acceptance
and desired statistical properties, such as type I error rate control, blinded adapta-
tions do not necessarily require an independent data monitoring committee (DMC)
[19].

Extensive literature exists on the statistical considerations for various adaptive
clinical trial designs. For instance, Bauer et al. [20] do not only review the method-
ological work for a number of adaptive designs, but also give a recapitulation of the
history of adaptive designs, summarize the industry and regulatory perspectives,
discuss several clinical trial applications, and list software available for adaptive
designs. An in-depth review of adaptive tests for adaptive designs with a single
hypothesis and for designs with multiple hypotheses in the context of planning and
analyzing a confirmatory clinical trial was published by Bretz et al. [21]. Bauer and
Einfalt [22] and Hatfield et al. [23] quantify the instances of practical applications of
adaptive designs in clinical trials.
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1.3 Research questions

In the research for this dissertation, I developed adaptive designs and with this I
contributed to one of the measures recommended for improving clinical trials in
cardiovascular drug development [5, 6]. The focus of my research was on devel-
oping two types of adaptive designs, namely group sequential designs and blinded
sample size re-estimation designs, since both belong to classes of designs which (a)
are accepted by the FDA [10, Chapter V] and (b) are the most commonly applied
[5, 23]. In detail, I developed group sequential designs for recurrent events, blinded
sample size re-estimation designs for three-arm trials with normal outcomes, and
designs in which prior information on a nuisance parameter is incorporated into the
nuisance parameter based sample size re-estimation. The three designs are consid-
ered separately from each other, as they each deal with different aspects of clinical
trials in cardiovascular drug development. In the following, I outline in detail my
motivation for researching the aforementioned three adaptive designs.

1.3.1 Group sequential designs for recurrent events

An event is characterized as recurrent when it can be observed repeatedly for a sin-
gle subject. For example, for patients suffering from chronic heart failure, recurrent
heart failure hospitalizations, often as part of a composite endpoint with cardio-
vascular death, are modeled as recurrent events. In general, recurrent events and
their analyses are becoming increasingly important in clinical trials in cardiovascu-
lar drug development as the focus shifts away from analyzing only the time to the
first event of a subject to analyzing all events of a subject [24, 25]. In group sequen-
tial designs the efficacy and the futility of a treatment are assessed through interim
analyses while the trial is ongoing. As cardiovascular clinical trials are often con-
ducted over the course of many years [6], group sequential designs in the cardiovas-
cular drug development have the potential to accelerate patient access to treatments
and stop trials early if the studied treatment is futile. An example of an ongoing
cardiovascular clinical trial with a primary endpoint modeled as a recurrent event
and with an interim analysis is the Paragon-HF trial (ClinicalTrials.gov identifier:
NCT01920711) [26]. The Paragon-HF trial includes patients suffering from chronic
heart failure and the primary endpoint is the composite of cardiovascular death and
recurrent heart failure hospitalizations [26]. Rogers et al. [27] compared several mod-
els for analyzing recurrent events in clinical trials in chronic heart failure and among
the models are the negative binomial model and the Andersen-Gill model with a ro-
bust variance estimator (also known as the Lin-Wei-Yang-Ying (LWYY) model [28]).
Moreover, in the Paragon-HF trial, the primary analysis is planned to be conducted
using the LWYY model [26]. Therefore, I developed group sequential designs for the
negative binomial and the LWYY models.

Group sequential designs for recurrent events are distinct from group sequential
designs with other outcomes, for instance normal outcomes or time-to-event out-
comes, in that one subject can contribute new events to multiple interim analyses.
As a consequence, it is not guaranteed that the standard property of group sequen-
tial designs holds for group sequential designs with recurrent events. The standard
property of group sequential designs is that the joint distribution of the test statistics
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from different interim analyses has the canonical form [29]. The canonical form is
of interest as a property for the test statistics in group sequential designs because
the majority of theoretical considerations for group sequential designs rely on the
canonical joint distribution. Aside from that, standard statistical software and stan-
dard group sequential software packages generally only provide support for designs
with the canonical joint distribution property. Group sequential designs for recur-
rent events have already been studied for some nonparametric and semiparametric
models [30–32] and for these models the joint distribution of the statistics does not
have the canonical form. Prior to my research, group sequential designs for the neg-
ative binomial model and the LWYY model had not been studied constituting a lack
of knowledge about group sequential designs for practically relevant recurrent event
models. Thus, my work closed this gap.

The goal of my research was to develop group sequential designs for the negative
binomial and the LWYY models, and to assess their performance with respect to type
I error rate control and power. In particular, I focused on characterizing the joint
distribution of the test statistics from different interim analyses and on studying
how this joint distribution relates to the canonical joint distribution, the standard
approach in group sequential designs.

1.3.2 Blinded sample size re-estimation in three-arm trials

Hypertension is recognized as a risk factor for cardiovascular diseases [33]. Ac-
cording to the Committee for Medicinal Products for Human Use (CHMP) [34], a
recommended endpoint for clinical trials in the field of hypertension is the change
in diastolic blood pressure in the weeks after the baseline measurement; an end-
point generally modeled as normally distributed. For this indication, Krum et al.
[35] and Elliott et al. [36] published multi-arm trials. The trial published by Krum
et al. [35] includes several arms with doses from the experimental treatment as well
as an active control and a placebo control. The trial published by Elliott et al. [36] is a
three-arm trial comparing two active treatments and a combination of them against
each other.

The sample size of a clinical trial is generally planned such that a clinically rele-
vant treatment effect is detected with a prespecified power. The sample size required
to achieve a prespecified power depends, among other variables, on the outcome
variance. Thus, when planning the sample size of a clinical trial with normal out-
comes, assumptions on the outcome variance have to be made. These assumptions
are often made based on prior information. For instance, prior information can be
available from earlier trials in the same drug development program or from trials
with a patient population and an outcome measure similar to the ones of the future
trial. However, prior information is not always available or reliable and incorrectly
made assumptions on the variance during the sample size planning of a clinical trial
can result in an inadequate sample size and therefore in an over- or underpowered
clinical trial. Blinded sample size re-estimation adjusts the final sample size mid-
trial based on a blinded estimation of the outcome variance and as such aims to
ensure that the desired power of the clinical trial is attained irrespectively of the ini-
tially assumed variance. While blinded sample size re-estimation has been studied
in detail for two-arm trials with normal outcomes [15, 37, 38], blinded sample size
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re-estimation for multi-arm trials received very little attention despite its practical
relevance. A notable exception is the work by Kieser and Friede [39], who studied
an F-test for the equality of means instead of a pairwise comparison scenario, the
latter being the more common in clinical trials. Therefore, I developed a blinded
sample size re-estimation procedure for a multi-arm trial design that achieves the
target power. As the multi-arm trial design, I considered a three-arm trial design
with an arm for an experimental treatment, one arm for an active control, and one
arm for a placebo control. This design is known as the ‘gold standard’ design [40].

1.3.3 Incorporating prior information into the sample size re-estimation

As outlined in Chapter 1.3.2, when planning the sample size of a clinical trial, prior
information on the outcome variance is regularly available and used to inform the
choice of the sample size. Schmidli, Neuenschwander, and Friede [41] formalized
incorporating prior information on the variance into the sample size planning of a
clinical trial based on meta-analytic-predictive (MAP) priors in the case of normally
distributed outcomes. A MAP prior is a prior on a parameter of a future trial which
is obtained through a meta-analysis of historical data [42]. When the initial sam-
ple size of a clinical trial is planned utilizing prior information, it seems desirable
to coherently incorporate prior information also into the sample size re-estimation.
However, literature on incorporating prior information on the nuisance parameter
into the sample size re-estimation is very sparse. Gould [43] considered incorporat-
ing prior information on the overall response rate into the sample size re-estimation
in a binomial trial but did not assess the operating characteristics of such a proce-
dure. More recently, Hartley [44] studied incorporating prior information on both
the nuisance parameter and the effect into the sample size re-estimation for nor-
mal outcomes. To the best of my knowledge, the concept of incorporating prior
information on the nuisance parameter into the nuisance parameter based sample
size re-estimation is studied in detail for the first time as part of this dissertation.
I focused on two-arm clinical trials with a normally distributed endpoint that are
planned and analyzed using the frequentist Student’s t-test. In these trials, the out-
come variance is the nuisance parameter and in I assumed that the prior information
on the variance is available through a MAP prior. The goal of my research in this area
was to identify different methods of incorporating prior information on the outcome
variance into the sample size re-estimation and then to compare the operating char-
acteristics of the resulting re-estimation procedures. The operating characteristics of
interest are the power, the final sample size distribution, and the type I error rate.
During my research, I put particular emphasis on the robustness of the sample size
re-estimation procedures concerning prior-data conflicts, which did not receive any
attention in the existing literature [43, 44]. A prior-data conflict is given when the
outcome variance observed in the clinical trial does not match the prior information.

A cardiovascular drug development scenario for which incorporating prior in-
formation into the sample size planning of a new clinical trial is plausible are clini-
cal trials assessing the efficacy of interventions for blood pressure control in patients
with hypertension. For example, Glynn et al. [45] summarized the published tri-
als about interventions – such as self-monitoring, education of patients or health
care provider, improvement of delivery of care, etc. – for blood pressure control in
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a meta-analysis. Due to the large amount of available information in this setting,
clinical trials studying interventions for blood pressure control in patients with hy-
pertension provide a plausible example for the incorporation of prior information
into the sample size re-estimation.

1.4 Outline

In this dissertation I addresses the research questions outlined in Chapter 1.3. The
results of my research were published or accepted for publication as research arti-
cles in peer-reviewed journals [46–49]. In Chapter 2, I present a summary of the
published results. Chapter 2 is split into three parts with each part dedicated to my
research addressing one of the research questions outlined in Chapter 1.3. In Chap-
ter 3, I critically discuss the proposed statistical models and clinical trial designs,
and provide an outlook into future research concerning adaptive designs for clinical
trials in the cardiovascular drug development.
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2 Proposed adaptive designs for
cardiovascular drug development

2.1 Group sequential designs for recurrent events

The results of my research on group sequential designs for recurrent events were
published in [48, 49]. The following summary of the main results is split into two
parts. In the first part, group sequential designs for recurrent events modeled by a
negative binomial distribution are presented and in the second part, group sequen-
tial designs for recurrent events modeled by the LWYY model are discussed. Before,
I recapitulate the basic statistical concepts for group sequential designs, confer Jen-
nison and Turnbull [29, Chapter 3], and introduce the relevant notation.

The focus is on group sequential designs for two-arm randomized controlled
clinical trials assessing the efficacy of an experimental treatment in comparison with
a control. Let the parameter θ be the efficacy parameter which is defined such that
smaller values correspond to a more efficacious treatment. Then, in clinical trials
with a group sequential design, the efficacy of the experimental treatment is assessed
while the trial is ongoing during data looks by testing of the statistical hypotheses

H0 : θ ≥ 0 versus H1 : θ < 0.

In group sequential testing, generally the same test statistic as in the corresponding
fixed sample design is applied. However, to ensure that the type I error rate α is
controlled even when the null hypothesis is tested repeatedly, the critical values for
the test decision at the data looks in a group sequential design are different than in
the corresponding fixed sample design. Let k = 1, . . . , K be the variable indexing the
data looks and let Tk be the test statistic for testing the null hypothesis H0 at data
look k defined such that H0 is rejected if Tk is smaller than or equal to a critical value
ck. Then, to calculate the critical values ck (k = 1, . . . , K), the joint distribution of the
test statistics T1, . . . , TK must be known. The basic principal of the general statistical
methodology for group sequential designs is based on that the test statistics follow
the canonical joint distribution under the null hypothesis H0 . In detail, the sequence
T1, . . . , TK of test statistics follows the canonical joint distribution if it is multivariate
normally distributed with

E[Tk] = θ
√
Ik, k = 1, . . . , K,

Cov (Tk1 , Tk2) =
√
Ik1 /Ik2 , 1 ≤ k1 ≤ k2 ≤ K.

Here, Ik (k = 1, . . . , K) are the information levels. There are various approaches to
determine the critical values for the test decision at a data look. I focused on the
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error spending approach [29, Chapter 7], which I outline next for the calculation
of efficacy boundaries when no mandatory futility boundaries are set. The error
spending approach allocates the global type I error rate α to the K data looks by
means of an error spending function. An error spending function f : [0, ∞) → [0, 1]
is a non-decreasing function with f (0) = 0 and f (t) = α for t ≥ 1 and the type I
error rate to be spent at data look k = 1, . . . , K is defined by

π1 = f (ν1),
πk = f (νk)− f (νk−1), k = 2, . . . , K. (2.1)

Here, νk with ν1 < . . . < νK is an increasing measure of the clinical trial’s progress
which is zero at the beginning of the trial and one at the time of the last planned
data look. Common definitions for νk are based on the calendar time, the observed
information level, or the number of observed events. Then, the critical value ck for
the test decision at data look k is defined through πk. The critical value c1 at the first
data look is simply the π1-quantile qπ1 of a standard normal distribution. The critical
values for the subsequent data looks k = 2, . . . , K are calculated by solving equation

πk = PH0 (T1 > c1, . . . , Tk−1 > ck−1, Tk ≤ ck) (2.2)

under the assumption of a canonical joint distribution for the sequence T1, . . . , Tk.
Since the critical values are calculated under the null hypothesis, that is θ = 0, the
expected value of the canonical joint distribution is set to zero when solving (2.2).
A group sequential testing procedure with the critical values determined as defined
above through the error spending approach results in a global type I error rate of α.
In other words, the probability to wrongfully reject the null hypothesis at one of the
data looks is equal to α.

It is worthwhile to reflect on the role of the canonical joint distribution in group
sequential testing. When a sequence of test statistics in a group sequential design
follows the canonical joint distribution, the covariance between the test statistics can
be determined easily. Moreover, for the canonical joint distribution, the probability
in (2.2) has a computational complexity which is linear in k instead of exponential
in k as it is common for k-dimensional integrals, confer Jennison and Turnbull [29,
Chapter 19.2]. Group sequential designs can of course also be conducted with test
statistics not following the canonical joint distribution. In these cases, the critical
values are again determined by solving (2.2), but using the actual distribution of
the sequence of test statistics instead of a canonical joint distribution. Since most
practically relevant statistical models, such as models with normal outcomes, binary
outcomes as well as parametric survival models and the Cox proportional hazards
model, fulfill the canonical joint distribution, the critical value calculation for de-
signs without canonical joint distribution is generally not part of standard software
packages.

I conclude the introduction into group sequential designs with outlining the de-
termination of the maximum information required in a group sequential design to
achieve the desired power. The maximum information Imax is the information level
at which the last data look is performed when the trial is not stopped at an earlier
data look, i.e., IK = Imax. As before, the focus is on designs without futility bound-
aries. For a group sequential design with a maximum of K data looks and a sequence
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c1, . . . , cK of critical values, the power for a parameter θ∗ < 0 is given by

Power = 1−Pθ∗ (T1 > c1, . . . , TK > cK) . (2.3)

For planning purposes, the information fractions wk = Ik/Imax with I1 < I2 <
. . . < Imax , at which the k-th data look is performed, are prespecified. With the
prespecified information fractions, the expected values and the covariances of the
test statistics can be written as

E[Tk] = θ∗wkImax, k = 1, . . . , K,

Cov (Tk1 , Tk2) =
√

wk1 /wk2Imax, 1 ≤ k1 ≤ k2 ≤ K.

Thus, the only remaining unknown variable is the maximum information, which is
then determined by solving (2.3) for a given power. Based on the maximum infor-
mation, other designs parameters such as the sample size, the calendar time of the
data looks, or the individual follow-up time in trials with time-to-event and recur-
rent event endpoints can be determined.

2.1.1 Group sequential designs for negative binomial outcomes

An extended version of the following discourse on group sequential designs for neg-
ative binomial outcomes was published by Mütze et al. [48]. Let j = 1, . . . , ni index
the subjects in treatment group i = 1, 2. Moreover, let tijk be the time since ran-
domization of a subject at data look k and let Yijk be the number of events a subject
experiences between randomization and data look k. The time since randomization
is also known as exposure time. To model the recurrent event for a subject, I assume
that each subject has a subject specific event rate λij > 0 and that conditional on this
event rate, the events of a subject arise from a homogeneous Poisson process. From
this it follows that, conditional on the rate λij, the number of events Yijk follows a
Poisson distribution with mean tijkλij, i.e., Yijk|λij ∼ Pois(tijkλij). Then, I modeled
the between-patient heterogeneity of the event rates through a Gamma distribution
by assuming that the rates λij are independent Gamma distributed,

λij ∼ Γ
(

1
φ

,
1

φµi

)
.

Thus, the accumulated number of events Yijk at each data look follows a negative bi-
nomial distribution with mean tijkµi and shape parameter φ, i.e., Yijk ∼ NB

(
tijkµi, φ

)
.

The negative binomial distribution NB (µ, φ) is parameterized such that the expected
value is equal to µ and the variance is equal to µ(1 + µφ). The statistical hypothesis
testing problem for the efficacy assessment is given by

H0 :
µ1

µ2
≥ 1 versus H1 :

µ1

µ2
< 1.

Let βi = log(µi) denote the log-rate and let β̂ik be the maximum likelihood estimator
of the log-rate obtained with the data available at data look k = 1, . . . , K. Then, the
null hypothesis H0 can be tested in a group sequential design with negative binomial
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outcomes at the data looks k = 1, . . . , K through the sequence of Wald statistics
T1, . . . , TK with

Tk =
(

β̂1k − β̂2k
)√
Îk, k = 1, . . . , K.

Here, Îk is the maximum likelihood estimator for the information level Ik, which is
defined through the Fisher information I(k)βi

of the log-rates βi (i = 1, 2) at data look
k, i.e.,

Ik =
1

1
I(k)β1

+ 1
I(k)β2

, (2.4)

I(k)βi
=

ni

∑
j=1

tijk exp(βi)

1 + φtijk exp(βi)
.

To define the critical values, the joint distribution of the sequence of test statistics has
to be determined. Scharfstein, Tsiatis, and Robins [50] proved that asymptotically
the sequence of Wald statistics in a parametric group sequential model converges to
the canonical joint distribution. As shown by Mütze et al. [48], the results of Scharf-
stein, Tsiatis, and Robins [50] can be applied for the negative binomial model even
though the negative binomial data in the current model are of longitudinal nature.
The negative binomial outcomes are of longitudinal nature in this model because the
outcomes of a subject are accumulated over time and as such a subject can experi-
ence new events after a data look and, therefore, have a different number of events
for different data looks. Since the results of Scharfstein, Tsiatis, and Robins [50] can
be applied, the sequence of Wald statistics T1, . . . , TK in the negative binomial model
follows asymptotically the canonical joint distribution and the critical values can be
calculated by solving (2.2). The information level (2.4) and thus the covariance of
the canonical joint distribution for negative binomial outcomes depends on the un-
known log-rates and the shape parameter. Therefore, the critical values cannot be
calculated prior to the trial, but at each data look, the respective critical value is cal-
culated based on the estimated covariance. Mütze et al. [48] discussed in detail that
the resulting group sequential procedure controls the type I error rate asymptoti-
cally.

The maximum information for group sequential designs with negative binomial
outcomes can be determined as outlined above by solving (2.3). The sample size
and the study duration can be planned by equating the maximum information with
the information level (2.4) and solving the resulting equation in the sample size and
the study duration. To that end, a shape parameter φ, log-rates β1 and β2, and the
accrual process have to be assumed.

The canonical joint distribution only holds asymptotically for the sequence of
Wald statistics in group sequential designs with negative binomial outcomes. There-
fore, I studied the finite sample size operating characteristics, in particular the type I
error rate, of the proposed group sequential procedure by means of Monte Carlo
simulation studies. The choice of the parameters for the simulation study of the
type I error rate was motivated by the results for the endpoint ‘heart failure hospi-
talizations’ in the CHARM-Preserved trial published by Yusuf et al. [51]. The pa-
rameters are listed in Table 2.1. It is worth noting that a uniform recruitment within
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TABLE 2.1: Parameters considered in the simulation study of the type I error rate in group
sequential designs with negative binomial outcomes.

Parameter Value

One-sided significance level α 0.025
Shape parameter φ 2, 3, 4, 5
Data looks K 2, 3, 5
Individual follow-up [years] 2.75–4
Recruitment period [years] 1.25
Study duration [years] 4
Maximum sample sizes n1 = n2 800, 1100, 1400, 1700
Annualized rates µ1 = µ2 0.08, 0.1, 0.12, 0.14

the recruitment period of 1.25 years is assumed for the simulations and that once
a subject is randomized, the subject is followed up until the study ends after four
years. Thus, the individual follow-up times vary between 2.75 and 4 years. In the
simulation study, the k-th data look is performed at the calendar time at which the
information level kImax/K (k = 1, . . . , K) is attained under the assumed parame-
ter vector (µ1, µ2, φ, n1, K) and the described uniform recruitment. The type I error
rate is allocated through the Pocock-type error spending function and the O’Brien-
Fleming-type error spending function [52]. In comparison, the Pocock-type error
spending function results in larger type I error rate spending during data looks early
in the trial, while the O’Brien-Fleming-type error spending function spends more
during data looks later in the trial. The simulated type I error rates of the proposed
group sequential procedure for negative binomial outcomes are presented in Figure
2.1. Each simulated type I error rate is based on 50 000 Monte Carlo replications.
Figure 2.1 shows no practically relevant deviation of the type I error rate from the
target level α = 0.025. The number of simulated type I error rates outside of the error
boundaries, depicted as grey lines, corresponds to what is expected for boundaries
defined through two times the simulation error. A simulation study of the power
of the proposed group sequential design, which is not reported here, showed that
the general method for calculating the maximum information for a group sequen-
tial design through solving (2.3) leads to appropriately powered clinical trials with
negative binomial outcomes.

In a simulation study of the type I error rate for additional parameter combi-
nations with smaller sample sizes of fewer than 300 subjects per treatment arm, I
showed that the proposed group sequential procedure for negative binomial out-
comes can have an inflated type I error rate. Therefore, I proposed two modified
group sequential procedures for negative binomial outcomes, which have an im-
proved type I error rate control compared to the initial procedure. In the following,
I explain the main idea of the two modified procedures. For the first procedure,
the Wald statistic for the hypothesis test as well as the distribution used to calcu-
late the critical values when solving (2.2) are modified. The modified Wald statistic
uses a variance estimator obtained under the null hypothesis H0, i.e., the informa-
tion level estimator Îk for the test statistic is calculated with parameter estimators
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FIGURE 2.1: Simulated type I error rates of the Wald test for negative binomial outcomes in
group sequential designs with O’Brien-Fleming-type and Pocock-type error spending func-
tions. The black line depicts the planned one-sided type I error rate of α = 0.025. The
horizontal grey lines mark α± 2SE with SE the simulation error at a simulated type I error
rate of 0.025.

obtained from maximizing the likelihood function over the parameter space of the
null hypothesis H0. Moreover, when solving (2.2) to determine the critical values
for the data looks, a multivariate t-distribution was considered instead of a multi-
variate normal distribution. The expected value and the structure of the covariance
matrix for the multivariate t-distribution are chosen identical to the canonical joint
distribution. The degrees of freedom of the multivariate t-distribution were chosen
in a conservative manner as the number of subjects recruited at the first data look.
The resulting group sequential procedure with the two modifications clearly im-
proves type I error rate control compared to the initial group sequential procedure
for negative binomial outcomes when the sample size is small. The second modified
procedure is based on the permutation distribution of the Wald statistics, which it-
self is not modified compared to the initial group sequential procedure. Let ck be the
critical value at data look k calculated under the assumption of the canonical joint
distribution through solving (2.2) and let Tk be the Wald statistic at data look k. Fur-
thermore, let F(·) be the permutation distribution of the Wald statistic at data look k,
i.e., the cumulative distribution function obtained when calculating the Wald statis-
tic for every permutation of the data vector at data look k. Then, the initial group
sequential procedure is modified by using the transformed critical value F−1(Φ(ck))
with Φ(·) the cumulative distribution function of a standard normal distribution.
This modified procedure also results in an improved type I error rate control com-
pared to the initial group sequential procedure. However, both modified group se-
quential procedures still result in some type I error rate inflation when the sample
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size is smaller than 100 subjects per treatment arm and, additionally, the overdisper-
sion is large. However, the type I error rate inflation of the modified procedures is
considerably smaller than the inflation for the initial group sequential procedure for
negative binomial outcomes when the sample sizes are small.

In summary, I outlined the theoretical justification that the canonical joint dis-
tribution holds asymptotically for the sequence of Wald statistics in group sequen-
tial designs for negative binomial outcomes. Based on this asymptotic property, I
proposed a group sequential procedure for negative binomial outcomes which cal-
culates the critical values based on the canonical joint distribution. By means of
Monte Carlo simulation studies, I exemplified that the proposed group sequential
procedure controls the type I error rate for parameter combinations which are typi-
cal for the number of heart failure hospitalizations in clinical trials in chronic heart
failure. Moreover, I showed that the proposed group sequential procedure exhibits
some type I error rate inflation for small sample sizes and subsequently modified
the initial group sequential procedure to achieve a better type I error rate control
for small sample sizes. In conclusion, the proposed group sequential procedure for
negative binomial outcomes or one of the recommended modifications control the
type I error rate sufficiently for being applied in a wide range of practical situations,
in particular in clinical trials with patients suffering from chronic heart failure.

For planning group sequential designs with negative binomial outcomes, I im-
plemented the R package gscounts, which is available at the Comprehensive R Ar-
chive Network (CRAN) [53].

2.1.2 Group sequential designs with the LWYY model

In the following, I summarize the results of my research concerning group sequential
designs with the LWYY model which were published by Mütze et al. [49]. Let rij
be the randomization time of subject j in treatment group i and let cij denote its
censoring time. Two time scales are distinguished: the study time s, that is the time
since randomization, and the calendar time t, that is time since the start of the trial.
Distinguishing the two time scales is important because the treatments are compared
on the study time scale, for instance event rates are compared based on the time
since randomization. However, when planning the timing of data looks in group
sequential designs the calendar time and the closely connected information time are
relevant. The subject specific increment dNij(s) is equal to one if and only if the
subject has an event at the study time s. Otherwise, the increment function is equal
to zero. For each subject, the indicator function Yij(s, t) is defined such that it is one
if and only if a subject is at risk for experiencing an event at a given study time s and
calendar time t, i.e.,

Yij(s, t) =

{
1 if rij + s ≤ min(t, cij)

0 otherwise
.

In other words, the indication function Yij(s, t) provides a connection between the
calendar time and a subjects study time. Let the treatment indicator xi be zero for
group i = 1, x1 = 0, and one for group i = 2, x2 = 1. Lin et al. [28] proposed a robust
semiparametric model for recurrent events which in the case of no covariates other
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than the treatment is given by

E
[
dNij(s)|Yij(s, t) = 1, xi

]
= exp(xiβ)dµ0(s).

Here, µ0(s) is an unknown nonnegative continuous function. I refer to this model
as the LWYY model. With the assumption that smaller mean rates for the recurrent
event process correspond to a more efficacious treatment, superiority of treatment
i = 2 over treatment i = 1 can be formulated as the statistical hypothesis testing
problem

H0 : β ≥ 0 versus H1 : β < 0.

Next, I outline the basics for statistical interference in the LWYY model. For more
details, I refer to Lin et al. [28]. The parameter β is estimated based on the partial
likelihood score function, which is given by

U(t, β) =
2

∑
i=1

ni

∑
j=1

t∫
0

Yij(s, t)Wi(s, t, β)dNij(s)

with

Wi(s, t, β) = xi −
∑n2

j=1 Y2j(s, t) exp(β)

∑n1
j=1 Y1j(s, t) + ∑n2

j=1 Y2j(s, t) exp(β)
.

Then, let β̂(t) be the parameter estimator for β at a given calendar time t, which is
obtained by solving equation U(t, β) = 0 in β. Estimator β̂(t) is not to be confused
with an estimator of a time varying effect. Here, the parameter β does not depend
on the calendar time and by writing the estimator as a function of calendar time t,
it is highlighted, that the estimator β̂(t) for β is determined at calendar time t. Let
β0 be the true parameter. The parameter estimator β̂(t) is asymptotically normally
distributed in the sense that

√
n
(

β̂(t)− β0
) D∼ N (0,

B(t, β0)

A(t, β0)2

)
with

B(t, β0) = n−1E
[
U(t, β0)

2] ,

A(t, β0) = n−1E

[
−∂U

∂β
(t, β0)

]
.

Based on the asymptotic variance of the parameter estimator, the information level
I(t, β0) at calendar time t is defined by

I(t, β0) = n
A(t, β0)2

B(t, β0)
.

The terms A(t, β0) and B(t, β0) can be estimated consistently and, while I do not
provide any details about the estimators in this summary, I denote the consistent
estimators by Â(t) and B̂(t), respectively. Therefore, Î(t) = nÂ(t)2/B̂(t) is a con-
sistent estimator for the information level I(t, β0) at calendar time t. Based on the
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mentioned properties of the parameter estimator and the information level estima-
tor, the Wald statistic

T(t) = β̂(t)
√
Î(t)

is asymptotically standard normally distributed under the null hypothesis, that is for
β0 = 0, at calendar time t. Thus, an asymptotic level α test for the null hypothesis
H0 can be defined based on the Wald statistic. Therefore, in my research of group
sequential designs for the LWYY model, I focused on group sequential testing using
the Wald statistic T(t).

Next, I outline the joint distribution of the test statistics from different data looks
required to define a group sequential procedure for the LWYY model. Let K be the
maximum number of data looks performed at calendar times t1 < . . . < tK through
the Wald statistics T(t1), . . . , T(tK). As outlined by Mütze et al. [49] based on results
of Lin et al. [28], the joint distribution of the Wald statistics is a multivariate normal
distribution with the pairwise covariances

Cov (T(tl), T(tm)) =
B(tl , tm, β0)√
B(tl , β0)B(tm, β0)

, tl < tm, with (2.5)

B(tl , tm, β0) = n−1E [U(tl , β0)U(tm, β0)] .

The expected value of the limiting multivariate normal distribution is zero under
the null hypothesis H0 : β = 0. The covariance structure (2.5) is different from the
covariance structure of the canonical joint distribution. In other words, the canonical
joint distribution does not hold for group sequential designs with the LWYY model.
An asymptotically consistent group sequential procedure for the LWYY model, that
is a procedures which maintains a global type I error rate α asymptotically, must
calculate the critical values by solving (2.2) under the assumption of a multivariate
normal distribution with covariance structure (2.5). Since the covariance matrix is
not known, it has to be estimated consistently at every data look to calculate the
critical values. For details about estimating the covariances and about calculating
the critical values based on the estimated covariance, I refer to Mütze et al. [49].

After I had proposed a consistent group sequential procedure for the LWYY
model, two questions arose. The first question was whether the consistent group
sequential procedure for the LWYY model controls the type I error rate for finite
sample sizes and practically relevant parameter combinations. The second question
was how the type I error rate of the group sequential procedure which assumes the
canonical joint distribution is affected by the violation of the canonical joint distri-
bution assumption in the LWYY model. This procedure is referred to as canonical
group sequential procedure and, more precisely, it calculates the critical values based
on the canonical joint distribution with the covariance Cov(T(tl), T(tm)) estimated

through
√
Î(tl)/Î(tm) for tl < tm. The type I error rates of the two group sequential

procedures were determined by means of Monte Carlo simulations. The setup and
results of the Monte Carlo simulation studies are summarized next. In the simula-
tions, the events were generated using a negative binomial process. From a practical
perspective, recurrent events generated with a negative binomial process can for



18 Chapter 2. Proposed adaptive designs for cardiovascular drug development

TABLE 2.2: Parameters in the simulation study of the type I error rate for the group sequen-
tial procedures with the LWYY model.

Parameter Value

One-sided significance level α 0.025
Maximum sample sizes n1 = n2 2300
Shape parameter φ 5.2
Maximum number of data looks K 2
Study duration [months] 55
Recruitment period [months] 29
Individual follow-up [months] 26–55
Annualized rate λ0 0.15
Effect size β under H0 0

example represent heart failure hospitalizations in clinical trials with subjects suf-
fering from chronic heart failure. The parameter choices for the simulation study
were motivated by the settings considered when planning the Paragon-HF trial [26].
The parameters are listed in Table 2.2. In detail, a uniform deterministic recruitment
during the recruitment period of 29 months was assumed and once subjects entered
the trial, they were followed up until the trial ended after a calendar time of 55
months. Thus, the individual follow-up times varied between 26 and 55 months. As
error spending functions, the Pocock-type error spending function and the O’Brien-
Fleming-type error spending function were considered. The type I error rate α was
spent by means of the calendar time, i.e., α was allocated according to (2.1) with
νk = tk/tmax, where tmax = 55 months the calendar time of the final data look. Here,
the focus was on a maximum number of K = 2 data looks with the calendar time
of the first data look varied, i.e., t1 = 6, . . . , 50 months, and the second data look
performed at t2 = tmax. The simulated type I error rates, based on 500 000 Monte
Carlo replications, are presented in Figure 2.2. Figure 2.2 shows that the canonical
group sequential procedure controls the type I error rate, except for early data looks
with an O’Brien-Fleming-type error spending function. Moreover, the consistent
group sequential procedure slightly inflates the type I error rate by about 0.0005 for
considered practically relevant scenarios. In simulation results not reported here,
I showed that the canonical group sequential procedure becomes conservative for
large sample sizes, while the type I error rate of the consistent procedure converges
to the target type I error rate, as expected. Furthermore, the difference between the
two group sequential procedures increases when the number of data looks increases;
the consistent procedure becomes more liberal and the canonical procedure becomes
slightly conservative. For more detailed results, confer Mütze et al. [49].

The negative binomial process was chosen as a recurrent event generating pro-
cess to simulate recurrent heart failure hospitalizations in clinical trials in chronic
heart failure. Another common endpoint in clinical trials in chronic heart failure is
the composite of recurrent heart failure hospitalizations and cardiovascular death.
Events for this composite endpoint can be simulated by means of a parametric joint
Gamma frailty model with a Poisson process for the hospitalizations, exponentially
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FIGURE 2.2: Simulated type I error rate versus the calendar time t1 of the first data look for
the two group sequential procedures. The maximum sample sizes are n1 = n2 = 2300. The
grey lines mark the area of two times the simulation error around the target type I error rate
α = 0.025.

distributed death times, and a Gamma distributed frailty term to link the processes.
A simulation study with events generated by the joint Gamma frailty model showed
that for this event process, both group sequential procedures for the LWYY model
control the type I error rate. Additionally, the difference in the type I error rate be-
tween the procedures is smaller than in the case of events from a negative binomial
process.

Concerning the planning of group sequential designs with the LWYY model, I
proposed to calculate the maximum information based on the canonical joint distri-
bution by solving (2.3). Through a Monte Carlo simulation study, I illustrated this
approach results in designs achieving the target power for both group sequential
procedures for the LWYY model, see Mütze et al. [49] for details.

Summarizing, in my research of group sequential designs for the LWYY model, I
outlined that the sequence of Wald statistics in the LWYY model does not follow
the canonical joint distribution and I illustrated that a consistent group sequen-
tial procedure can be defined based on a consistent estimator for the covariance
Cov(T(tl), T(tm)) between Wald statistics from different data looks. Through a Mon-
te Carlo simulation study, I highlighted that the proposed consistent group sequen-
tial procedure in the LWYY model can result in small type I error rate inflation for
scenarios motived by clinical trials in chronic heart failure. Additionally, I demon-
strated that the canonical group sequential procedure in the LWYY model is robust
against deviations from the canonical joint distribution and that, overall, it results
in a slightly better type I error rate control than the consistent group sequential pro-
cedure for practically relevant scenarios. Last but not least, I pointed out that the
maximum information in group sequential designs with the LWYY model can be
planned based on the canonical joint distribution.
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In conclusion, my research provides the justification to apply the canonical group
sequential procedure, which is implemented in the most common software pack-
ages, to the LWYY model when analyzing clinical trials with patients suffering from
chronic heart failure and still control the type I error rate even though this model
technically does not fulfill the canonical joint distribution. For scenarios in which
an asymptotic type I error rate control is of practical importance, I proposed the
consistent group sequential procedure.

2.2 Blinded sample size re-estimation in three-arm trials

Next, I summarize my results on blinded sample size re-estimation in three-arm tri-
als with normal outcomes, which address the research question outlined in Chapter
1.3.2. The detailed results were published in [46]. I start with introducing the statis-
tical model. Then, I recapitulate the basic idea for blinded sample size re-estimation
based on an estimate of the nuisance parameter and present the proposed blinded
sample size re-estimation procedure for three-arm clinical trials with the ‘gold stan-
dard’ design. Following this, I highlight the key performance aspects of the pro-
posed blinded sample size re-estimation procedure.

The ‘gold standard’ designs for three-arm clinical trials includes one arm for the
experimental treatment (E), one arm for the active control, which I refer to as the ref-
erence (R), and one arm for the placebo control (P). Here, the outcomes are modeled
as normally distributed random variables with identical variance but varying means
across the arms, i.e.,

Xki ∼ N
(
µk, σ2) , i = 1, . . . , nk, k = E, R, P.

Let the total sample size be n = nE + nR + nP and the proportion of the sample
size allocated to treatment arm k = E, R, P is denoted by wk = nk/n. I considered
the setting in which a clinical trial is successful if superiority of the experimental
treatment and the reference compared to placebo, respectively, can be proven and
if non-inferiority of the experimental treatment compared to the reference can be
shown. Under the assumption that smaller values of the means µk (k = E, R, P)
represent a more efficacious treatment and with the non-inferiority margin δER >
0, the assessment of non-inferiority of the experimental treatment compared to the
reference can be formulated as the statistical hypothesis testing problem

HER
0 : µE ≥ µR + δER versus HER

1 : µE < µR + δER.

The superiority of the experimental treatment over placebo and the superiority of the
reference over placebo can be expressed as the statistical hypothesis testing problems

HEP
0 : µE ≥ µP versus HEP

1 : µE < µP,

HRP
0 : µR ≥ µP versus HRP

1 : µR < µP.

The three-arm trial is successful if all three hypotheses can be rejected. This results
in the intersection-union testing problem

H0 : HER
0 ∪ HEP

0 ∪ HRP
0 versus H1 : HER

1 ∩ HEP
1 ∩ HRP

1 .
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As proven by Berger [54], testing each of the three local hypotheses HER
0 , HEP

0 , and
HRP

0 with a level α test and rejecting the global hypothesis H0 when each of the local
hypotheses are rejected, results in a test for the global hypothesis H0, which controls
the type I error rate α. This test procedure is in general conservative. In my research,
I focused on Student’s t-test as a level α test for the local hypotheses. Stucke and
Kieser [55] showed that the power of this test procedure for the global hypothesis can
be approximated by the cumulative distribution function of a three-dimensional nor-
mal distribution. Let B(n, σ2) denote this power approximation as a function of the
total sample size n and the variance σ2. The power also depends on other parame-
ters such as the target type I error rate α, the sample size allocation (wE, wR, wP), and
the mean differences in the alternative, i.e., δ∗ij = µi−µj, (i, j) = (E, R), (R, P), (E, P).
However, for the sake of readability, not all parameters affecting the power are listed
as arguments of the function B(·, ·). Thus, for prespecified mean differences in the
alternative hypothesis, sample size allocation, and variance σ2, the sample size for
a three-arm trial in the ‘gold standard’ design required to obtain a power of at least
1− β when testing the global hypothesis H0 is the smallest n solving the inequality
B(n, σ2) ≥ 1− β, i.e.,

n = min
{

n ∈N : B(n, σ2) ≥ 1− β
}

. (2.6)

The variance assumed in the sample size calculation is generally a guesstimate
and a failure to accurately specify the variance during the sample size planning will
lead to under- or overpowered clinical trials. Clinical trial designs with a nuisance
parameter based sample size re-estimation counteract an inaccurately specified sam-
ple size by adjusting the final sample size mid-trial based on an estimate of the vari-
ance obtained with data from an internal pilot study. Let the current clinical trial
include an internal pilot study of total sample size n1 and the interim variance esti-
mator σ̂2

1 estimates σ2 with the data from the internal pilot study. Then, the sample
size is re-estimated by solving (2.6) with the interim variance estimator σ̂2

1 plugged
in for the variance parameter σ2. In mathematical terms, the re-estimated sample
size is defined by

n̂reest = min
{

n ∈N : B(n, σ̂2
1 ) ≥ 1− β

}
.

If the re-estimated sample size is smaller than the internal pilot study sample size
n1, the internal pilot study sample size n1 is also the final sample size. Unless stated
otherwise, the term sample size re-estimation refers to the adjustment of the final sam-
ple size based on a variance estimate and blinded sample size re-estimation implies that
the treatment allocation of subjects from the internal pilot study is unknown when
estimating the variance. Next, I present the proposed procedure for blinded sample
size re-estimation in three-arm trials with the ‘gold standard’ design. Let the sam-
ple Y1, . . . , Yn1 denote the blinded results from an internal pilot study of size n1. A
crucial part of my development of blinded sample size re-estimation procedures for
three-arm trials was researching blinded estimators for the variance. When devel-
oping said blinded sample size re-estimation procedure, I considered the following
blinded variance estimators.
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Blinded one-sample variance estimator According to Friede and Kieser [15], the
one-sample variance estimator is the recommended estimator for blinded sam-
ple size re-estimation in two-arm trials with normal data. The one-sample vari-
ance estimator estimates the outcome variance by the sample variance of the
blinded data, that is

σ̂2
OS =

1
n1 − 1

n1

∑
i=1

(Yi − Ȳ)2 .

Blinded adjusted one-sample variance The blinded one-sample variance estimator
is generally biased. The blinded adjusted one-sample variance is a version
of the one-sample variance estimator, which is adjusted such that it is un-
biased under the planning alternative. With Bias(σ̂2

OS, σ2|H1) the bias of the
one-sample variance estimator under the planning alternative, the blinded ad-
justed one-sample variance is defined by

σ̂2
OSU = σ̂2

OS − Bias(σ̂2
OS, σ2|H1).

Blinded variance estimator by Xing and Ganju [56] Xing and Ganju [56] showed
that the outcome variance can be estimated unbiased and blinded in a ran-
domized block design. In a design with b1 balanced blocks of length m from
the internal pilot study, an unbiased blind estimator for the nuisance param-
eter σ2 is given by the sample variance of the sum Tk of the observations in
block k, i.e.,

σ̂2
XG =

1
n1 −m

b1

∑
k=1

(Tk − T̄)2 .

Here, T̄ denotes the mean of the block sums.

With each of the blinded variance estimators, I defined a blinded sample size re-
estimation procedure for three-arm trials with the ‘gold standard’ designs and nor-
mal outcomes and then assessed their operating characteristics. Operating charac-
teristics of interest are the power, the sample size distribution, and the type I error
rate. The comparison is performed through Monte Carlo simulation studies. In the
following, I present the main results concerning the power comparison of the sam-
ple size re-estimation procedures. The results presented here are for the parameters
listed in Table 2.3. This choice of parameter combination is motivated by the clincal
trial in hypertension published by Krum et al. [35]. Mütze and Friede [46] referred
to this parameter combination as Scenario 1. During the simulation study, the size
of the internal pilot study is varied between n1 = 30 and the fixed designs’ sample
size which is n1 = 528 for the sample size allocation nE : nR : nP = 1 : 1 : 1 and
n1 = 434 for the sample size allocation nE : nR : nP = 3 : 3 : 1. The power of the
three blinded sample size re-estimation procedures for the parameters listed in Table
2.3 is presented in Figure 2.3. Figure 2.3 shows that the none of the blinded sample
size re-estimation procedures meets the target power for all considered internal pilot
study sizes. The sample size re-estimation procedure based on the one-sample vari-
ance estimator results in a power larger than the target power 1− β = 0.8, except
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TABLE 2.3: Scenarios for the Monte Carlo simulation study of the sample size re-estimation
procedures’ operating characteristics.

Parameter Value

One-sided significance level α 0.025
Target power 1− β 0.8
Non-inferiority margin δER δER = 0.3
Means µE, µR under the alternative H1 µE = µR = 0
Mean µP under the alternative H1 µP = 0.6
Standard deviation σ under the alternative H1 σ = 1
Sample size allocation nE : nR : nP 1:1:1, 3:3:1

for small internal pilot study sizes of n1 = 30 or smaller and an unbalanced sample
size. Re-estimating the sample size with the Xing-Ganju variance estimator results
in underpowered clinical trials unless the internal pilot study is almost as big as
the corresponding clinical trial with a fixed design. Sample size re-estimation based
on the adjusted one-sample variance underpowers the clinical trial for internal pilot
studies smaller than about n1 = 150 subjects and meets the target power otherwise.
However, it is important to note that the adjusted one-sample variance uses informa-
tion about the alternative, which is unknown in practice, when estimating the vari-
ance and as such uses more information than the one-sample variance and the Xing-
Ganju variance estimator. The results presented in Figure 2.3 are unexpected in the
sense that the blinded sample size re-estimation based on the one-sample variance,
which is the recommended method for sample size re-estimation in two-arm trials
with normal outcomes and results in the target power in these designs, overpow-
ers three-arm clinical trials with the ‘gold standard’ design and normal outcomes.
Moreover, as I presented in the published manuscript [46], the Xing-Ganju variance
estimator results in a higher variability of the final sample size compared to the one-
sample variance and its adjusted version. One of the main regulatory requirements
about adaptive designs is the control of the type I error rate. All three blinded sample
size re-estimation procedures result in a small type I error rate inflation of Student’s
t-test for the non-inferiority hypothesis HER

0 . The type I error rate of Student’s t-test
when testing the superiority hypotheses HEP

0 and HRP
0 is only inflated for the sample

size re-estimation based on the Xing-Ganju variance estimator. However, since the
global hypothesis H0 is tested through the intersection-union test procedure, which
is conservative, the type I error rate of the test procedure is controlled in the design
with blinded sample size re-estimation even though the type I error rates of the local
tests might be slightly inflated.

As Figure 2.3 highlights, none of the proposed blinded sample size re-estimation
procedures meets the target power across all of the considered internal pilot study
sample sizes. Therefore, to obtain a procedure which meets the target power in-
dependently of the internal pilot study sample size, I suggested a modification of
the sample size re-estimation procedure based on the Xing-Ganju variance estima-
tor. The idea of the modification is to multiply the re-estimated sample size n̂ with
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FIGURE 2.3: Simulated power of the ‘gold standard’ design with blinded sample size re-
estimation procedure based on the one-sample variance estimator (OS), the adjusted one-
sample variance (adj. OS), and the Xing-Ganju variance estimator (Xing-Ganju). The grey
line depicts the target power 1− β.

a factor ζ, which is determined such that the inflated sample size ζn̂ results in the
target power. In the following, I outline the proposed modification. Let B(n, σ2)
be the power approximation and I denote the corresponding sample size (2.6) as a
function of the outcome variable σ2, that is n(σ2). Furthermore, let fσ̂2

XG
(·) denote

to the probability density function of the Xing-Ganju variance estimator. The Xing-
Ganju variance estimator based on the results from the internal pilot study follows
a stretched χ2-distribution [46], i.e.,

σ̂2
XG ∼

mσ2

n1 −m
χ2

b1−1.

Then, the power of the intersection-union test procedure for the hypothesis H0 in a
three-arm trial with a blinded sample size re-estimation can be approximated by

Power ≈
∫ ∞

0
B
(
ñ (x) , σ2) fσ̂2(x)dx

with the final sample size function ñ (x) = max{n(x), n1}. The inflation factor ζ is
defined as the positive number which solves∫ ∞

0
B
(
ñζ (x) , σ2) fσ̂2

XG
(x)dx = 1− β

with ñζ (x) = max{ζ · n(x), n1}. Since the distribution of the Xing-Ganju variance
estimator depends on the variance σ2, the internal pilot study size n1, and the length
m of the randomized blocks, all three parameters have to be specified when calculat-
ing the inflation factor. While the length of the randomized blocks and the internal
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pilot study size are generally known, the variance is unknown. However, I showed
that the variation of the inflation factor across different values for σ2 is negligible as
long as the variance σ2 is chosen large enough that the resulting fixed design sample
size exceeds the internal pilot study sample size n1. As a consequence, the choice
of σ2 for calculating the inflation factor does not matter as long as it is sufficiently
large. I assessed the operating characteristics of the modified blinded sample size
re-estimation based on the Xing-Ganju variance estimator in a simulation study and
showed that the modified procedure results in clinical trials which meet the target
power for the considered range of internal pilot study sample sizes [46, Section 5].
However, the inflation factor further increases the variability of the final sample size.
I also proved that the sample size re-estimation based on the Xing-Ganju variance
estimator and its modified version do not result in a biased effect estimate at the end
of the trial [46, Section 6]. Last but not least, it is worth highlighting that the pre-
sented approach for modifying the sample size re-estimation procedure cannot be
easily transferred to the one-sample variance estimator or its adjusted version since
the resulting inflation factor is not constant in the variance σ2.

In conclusion, I showed that blinded sample size re-estimation procedures in
three-arm trials can be defined analogously to the sample size re-estimation proce-
dures in two-arm trials. Furthermore, I illustrated that these blinded sample size
re-estimation procedures in three-arm trials do not convey the target power for sce-
narios motivated by a clinical trial in hypertension. Finally, I modified the blinded
sample size re-estimation procedure based on the Xing-Ganju variance estimator
such that the modified procedure yields the target power.

2.3 Incorporating prior information into the sample size re-
estimation

In Chapter 1.3.3, I described the need for studying incorporating prior information
on the variance into the nuisance parameter based sample size re-estimation. The
detailed results of my research on this topic were published by Mütze, Schmidli,
and Friede [47] and in the following, I summarize my main findings. I start by
defining the statistical model and then I present an approach for incorporating prior
information into the sample size re-estimation and discuss the procedure’s operating
characteristics.

I focused on two-arm, parallel group superiority trials with normal outcomes.
The treatment group is indexed with i = T and the control group is indexed with
i = C. The groups contain j = 1, . . . , ni subjects, the total sample size is n = nT + nC,
and the randomization ratio is denoted by k = nC/nT. Conditional on the mean µi
and the variance σ2, the outcome of the jth patient in group i = T, C is modeled as
the normally distributed random variable

Xij|µi, σ2 ∼ N
(
µi, σ2) .

The random variables are modeled as independent and larger values of the means
µi (i = T, C) are better. Then, the statistical hypothesis testing problem to assess the



26 Chapter 2. Proposed adaptive designs for cardiovascular drug development

superiority of the treatment over the control is defined by

H0 : µT ≤ µC versus H1 : µT > µC.

The null hypothesis H0 is tested through a one-sided Student’s t-test with a pooled
variance estimation and a quantile of a t-distribution with n− 2 degrees of freedom
as a critical value. The statistical power B(n, σ2, δ, k) of Student’s t-test for testing
the null hypothesis H0 against the alternative hypothesis H1 is a function of the
total sample size n, the outcome variance σ2, the mean difference δ = µT − µC, the
randomization ratio k as well as the significance level α. Then, the sample size n
required to test the null hypothesis H0 with a target power of 1− β for a given mean
difference δ∗ > 0 is the smallest sample size n which solves the inequality

B(n, σ2, δ∗, k) ≥ 1− β (2.7)

for a prespecified variance σ2 and a prespecified allocation ratio k.
In the present design, the nuisance parameter based sample size re-estimation

can be facilitated as outlined in Chapter 2.2 by estimating the variance σ2 based
on data from the internal pilot study and then recalculating the final sample size
by solving (2.7) with the interim variance estimator σ̂2

1 plugged in for the variance
parameter. In mathematical terms, the re-estimated sample size is defined by

n̂reest = min
{

n ∈N : B(n, σ̂2
1 , δ∗, k) ≥ 1− β

}
.

Next, I explain the proposed procedure for incorporating prior information into
the sample size re-estimation. I assume that prior information on the variance σ2

is available through an MAP prior, that is a prior distribution for the variance σ2

obtained through a meta-analysis of sample variances from historical clinical trials.
More specifically, prior information about the variance is formulated in terms of an
inverse Gamma distribution

σ2 ∼ InvGamma(a, b)

with shape parameter a > 0 and scale parameter b > 0. For an inverse Gamma prior
distribution, twice the shape parameter, 2a, can be interpreted as the prior effective
sample size (ESS). The effective sample size quantifies the ‘amount of information’
contained in the prior distribution [57, 58]. For our setting of frequentist planning
and analysis of a clinical trial with an MAP prior on the variance, Schmidli, Neuen-
schwander, and Friede [41] proposed to incorporate prior information into the sam-
ple size planning by solving inequality (2.7) with a single value for the variance
parameter obtained from its prior distribution. Examples for single values from the
prior distribution are the prior mean, the prior median, or a quantile.

I first assumed that the data from the internal pilot study is unblinded because
for the unblinded data it is easier to identify the root cause when the re-estimation
procedure does not convey the target power. However, it is important to note that
blinded sample size re-estimation is recommended from a statistical and a regula-
tory perspective [10, 11, 15]. To incorporate prior information on the sample variance
into the sample size re-estimation, I proposed to update the prior distribution of the
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variance using the data from the internal pilot study. Then, the sample size is recal-
culated by solving inequality (2.7) using a posterior Bayes estimator as the variance
in the power formula. Obvious choices for posterior Bayes estimators are the poste-
rior mean and the posterior median. Thus, the crucial step when incorporating prior
information into the sample size re-estimation, and therefore explained in more de-
tail in the following, is updating the prior information. Let p(µT, µC, σ2) be the prior
density for the parameter vector (µT, µC, σ2). In my research, I assumed that the
prior distributions of the parameters µT, µC, and σ2 are stochastically independent
and that the mean’ priors are improper and uniform, i.e.,

p(µT) ∝ 1,
p(µC) ∝ 1,

p(µT, µC, σ2) = p(µT)p(µC)p(σ2).

As mentioned above, the variance σ2 has an inverse Gamma distribution as a prior
which is a conjugate prior. Therefore, the posterior distribution of the variance after
the internal pilot study also follows an inverse Gamma distribution, i.e.,

σ2∣∣σ̂2
1,pool ∼ InvGamma

(
a +

n1 − 2
2

, b +
n1 − 2

2
σ̂2

1,pool

)
.

Here, σ̂2
1,pool is the pooled sample variance calculated from the unblinded internal

pilot study data and n1 is the total sample size in the internal pilot study. Then, the
sample size is re-estimated by calculating a posterior estimator σ̂2

1,Bayes and plugging
it into the power formula when calculating the sample size by solving (2.7). Thus,
the re-estimated sample size is given by

n̂Bayes = min
{

n ∈N : B(n, σ̂2
1,Bayes, δ∗, k) ≥ 1− β

}
.

In the following, I summarize the operating characteristics of the proposed sam-
ple size re-estimation procedure incorporating prior information and compare the
procedure’s performance to the standard unblinded sample size re-estimation pro-
cedure based on the pooled sample size, which does not utilize prior information.
Here, the focus is on the posterior mean σ̂2

1,mean as the posterior estimator for the
sample size re-estimation. The considered operating characteristics are the power,
the final sample size distribution, and the type I error rate. The operating charac-
teristics are obtained through Monte Carlo simulations. When simulating the power
and the final sample size distribution, a one-sided significance level of α = 0.025 and
a target power of 1− β = 0.8 are assumed. The data are simulated with the mean
difference δ∗ = 0.5, which is identical to the mean difference used for calculating
the sample size during the sample size re-estimation. The outcome variance is set
to σ2 = 1 and both study arms are equally sized, that is k = 1. In a fixed sample
design, this parameter combination requires a total sample size of n = 128. In the
simulation study, the internal pilot study sample size is varied between n1 = 10 and
n1 = 100. The simulation scenarios are listed in Table 2.4. The simulation study is
conceptually split into two parts. In the first part, the prior distribution is chosen
such that no prior-data conflict exists and in the second part, the prior distribution
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TABLE 2.4: Scenarios for the Monte Carlo simulation study of the power and the final sample
size distribution.

Parameter Value

One-sided significance level α 0.025
Target power 1− β 0.8
Margin δ∗ under the alternative H1 0.5
True variance σ2 1
Internal pilot study size n1 10, 20, . . . , 100
Sample size ratio k 1

is defined such that a prior-data conflict is present. Here, the absence of a prior-data
conflict is interpreted such that the outcome variance σ2 = 1 is identical to the ex-
pected value of the prior distribution pσ2(·). Thus, in the first part, the parameters
of the inverse Gamma prior of the variance are chosen such that the prior’s expected
value is one and such that the prior has an effective sample size of ESS = 25. The
results of the simulation study for the case of no prior-data conflict are presented in
Figure 2.4. Figure 2.4 highlights that incorporating prior information into the sam-
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FIGURE 2.4: Simulated power and final sample size distribution against the internal pilot
study sample size for sample size re-estimation procedures with and without prior infor-
mation when no prior-data conflict is present. The prior effective sample size is equal to
ESS = 25.

ple size re-estimation is advantageous when no prior-data conflict exists: the sample
size re-estimation procedure incorporating prior information has a power closer to
the target power than the re-estimation procedure based on the pooled sample vari-
ance, which does not incorporate prior information. Moreover, the incorporation of
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prior information reduces the variability of the final sample size. Further simulation
results reported by Mütze, Schmidli, and Friede [47] show that the benefits of in-
corporating prior information increase with the prior effective sample size and that
the type I error rate of the re-estimation procedure incorporating prior information
is inflated but converges to the target level α = 0.025 with increasing prior effective
sample size.

In the simulation study presented above, I assumed an ideal situation in the
sense that the mean of the prior distribution for the variance is identical to the true
outcome variance. In practice, discrepancies between the prior mean and the true
outcome variance can occur and depending on the magnitude of such discrepan-
cies, a prior-data conflict can be present. What constitutes a prior-data conflict is not
uniquely defined. A prior-data conflict can be said to be present if the 95% prob-
ability interval of the prior-predictive distribution does not contain the observed
variance. Therefore, I also studied the performance of the sample size re-estimation
procedures when a prior-data conflict is present. To that end, a prior distribution
pσ2(·) for the variance with an expected value of σ2

mean = 0.49 and a true outcome
variance of σ2 = 1 are assumed. The other parameters are defined as listed in Table
2.4. In particular, the prior distribution of the variance is again an inverse Gamma
distribution with parameters chosen such that the prior effective sample size is equal
to ESS = 25 and that the expected value is equal to σ2

mean = 0.49. The probability
that this inverse Gamma prior distribution exceeds the value of the true variance
σ2 = 1 is equal to 0.84%. The corresponding simulation results are presented in
Figure 2.5. Figure 2.5 shows that the sample size re-estimation procedure incorpo-
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FIGURE 2.5: Simulated power and final sample size distribution against the internal pilot
study sample size for sample size re-estimation procedures with and without prior infor-
mation when a prior-data conflict is present. The prior effective sample size is equal to
ESS = 25.

rating prior information results in underpowered clinical trials in the presence of a
prior-data conflict when the prior mean is smaller than the true variance. The larger
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the internal pilot study, the closer is the power of the design with a sample size re-
estimation incorporating prior information to the target power. However, even large
internal pilot study sizes of close to n1 = 100 subjects cannot completely discount
the negative effects of a prior-data conflict on the power. Further simulation results
presented in [47] show that the underpowering due to a prior-data conflict increases
as the prior effective sample size increases. It is worth emphasizing that the under-
powering is due to modeling a prior-data conflict with a prior mean smaller than
the outcome variance. If the prior mean is larger than the true outcome variance,
the design with a sample size re-estimation incorporating prior information will be
overpowered.

Schmidli et al. [42] suggested to make MAP priors more robust against prior-data
conflicts by mixing the initial MAP prior pMAP(·) with a vague prior pV(·). With
wR ∈ (0, 1) a mixture probability, the robustified MAP prior prMAP(·) is defined by

prMAP(x) = wR pV(x) + (1− wR)pMAP(x).

I studied whether incorporating a robust MAP prior into the sample size re-estima-
tion results in a re-estimation procedure which maintains the benefits of incorporat-
ing prior information while simultaneously being robust against prior-data conflicts.
For that, I considered an inverse Gamma distribution with shape parameter a = 2
and rate parameter b = 1 as the vague prior pV(·). Results reported in [47] show
that to fully mitigate any negative effects of a prior-data conflict on the power when
incorporating prior information into the sample size re-estimation using the prior
above, the MAP prior must be almost completely discounted, i.e., wR must be close
to one. However, even for smaller weights of wR ≈ 0.3, the power-reducing effect
of a prior-data conflict is already weakened considerably. Moreover, the larger the
weight wR, the smaller the benefits of incorporating prior information concerning a
reduced variability of the re-estimated sample size.

As part of my research, I also studied incorporating prior information into the
blinded sample size re-estimation [46, Section 6]. The performance of the proposed
blinded procedures are qualitatively the same as the unblinded procedures, i.e., the
blinded procedures meet the target power when there is no prior-data conflict but
they yield over- or underpowered clinical trials in the presence of a prior-data con-
flict.

Summarizing, I proposed an ad-hoc approach for incorporating prior informa-
tion about the outcome variance into the sample size re-estimation. The proposed
idea is to update the prior information using data from an internal pilot study and
then to re-estimate the sample size by plugging in a Bayes estimator obtained from
the posterior into the fixed design sample size calculation. I showed that this ad-
hoc approach improves the performance of the sample size re-estimation procedure
in comparison to procedures which do not utilize prior information. However, I
also showed that the proposed procedure is not robust against prior-data conflicts,
but that some robustness can be obtained by robustifying the MAP prior for the
sample size re-estimation. In conclusion, incorporating prior information into the
sample size re-estimation can be advantageous compared to the traditional sample
size re-estimation, but the benefits have to be carefully weighted against the risks on
a case-to-case basis.
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An implementation of the statistical methodology for incorporating prior infor-
mation on the variance into the nuisance parameter based sample size re-estimation
is provided through the R package varmap, which is available on GitHub [59].
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3 Discussion

Jackson et al. [5] advised the development of adaptive clinical trial designs to im-
prove the cardiovascular drug development process. In this dissertation, I proposed
group sequential designs for clinical trials with subjects suffering from chronic heart
failure and designs with nuisance parameter based sample size re-estimation for
clinical trials with subjects suffering from hypertension. The main advantages of the
studied group sequential designs are that efficacious treatments can be identified
earlier than in a fixed sample design, which can shorten the trial duration by up to
several years due to the generally long follow-up times in clinical trials in chronic
heart failure. A shortened trial proving efficacy accelerates patients’ access to the
new treatment presuming the treatment’s safety. The benefit of the proposed sam-
ple size re-estimation for three-arm trials with the ‘gold standard’ design is that it
assures that the trial is appropriately powered even though the nuisance parameter
might have been misspecified during the planning phase of the clinical trial. My
research on sample size re-estimation incorporating prior information on the vari-
ance showed that ad hoc approaches for incorporating the prior information can be
beneficial in reducing the variability of the final sample size. However, in the pres-
ence of a prior-data conflict, incorporating prior information into the sample size
re-estimation results in designs that do not meet the target power.

My research about group sequential designs for recurrent events [48, 49] focused
on constructing the efficacy boundaries for the different data looks, planning the
maximum information, and assessing the type I error rate and the power of the pro-
posed group sequential procedures. There are practically relevant aspects of the
proposed group sequential designs for recurrent events which have not been studied
yet, for instance, monitoring group sequential designs with recurrent events. When
the calendar time of the data looks is to be set based on the number of observed
events or the observed information level, these properties have to be monitored
throughout the conduct of the trial. Ideally, monitoring procedures do not require
knowledge of the treatment indicator in order that the monitoring can be conducted
by the trial statistician, who generally is blinded, i.e., has no knowledge of the treat-
ment indicator. Recently, Friede, Häring, and Schmidli [60] studied blinded contin-
uous information monitoring for two-arm trials with negative binomial outcomes.
The proposed blinded continuous information monitoring could also be applied to
group sequential designs with negative binomial outcomes. A blinded monitoring
of the number of observed events is straight forward in that only the number of ob-
served events has to be counted. No matter which monitoring procedure is used to
select the calendar times of the data looks, it is important to study how the moni-
toring affects the type I error rate and the power of the group sequential design. In
addition to monitoring the information level and the number of observed events of
a clinical trial, it is also of practical interest to predict the information level and the



34 Chapter 3. Discussion

number of observed events for a future calendar time, for instance to forecast the
timing of the next data looks. A general approach for predicting the information
level at a future calendar time using resampling techniques, which can be applied to
recurrent events, was established by Scharfstein and Tsiatis [61].

As part of this dissertation, group sequential designs were studied for recurrent
events modeled by the LWYY model. This choice of recurrent event model was
motivated by the ongoing Paragon-HF trial [26], which includes a planned primary
analysis of the composite of heart failure hospitalizations and cardiovascular death
with the LWYY model. The LWYY model assumes that the censoring process is
independent of the event generating process; a property referred to as independent
censoring. If the sampling model violates the independent censoring assumption,
the rate ratio estimator can be biased and control of the type I error rate is no longer
guaranteed from a theoretical perspective. As a death results in censoring, heart
failure hospitalizations and cardiovascular death must be assumed to be dependent,
statistical models that explicitly account for the presence of a terminal event such as
death can also be of practical interest. For instance, Mao and Lin [62] extended the
LWYY model to account for the dependence of the censoring process and the event
process. Not only are there multiple potential statistical methods, there is also an
ongoing discussion on what represents appropriate effect measures and endpoints.
The LWYY model and the negative binomial model measure efficacy through the
rate ratio. Other possible effect measures can be based on the mean number of cu-
mulative events, which can be analyzed with the nonparametric model proposed by
Ghosh and Lin [63]. To improve the interpretability of the composite of heart failure
hospitalizations and cardiovascular death, it has been discussed to weight the differ-
ent parts of the composite endpoint, see Rauch et al. [64]. The extension of the LWYY
model by Mao and Lin [62] also allows for different weights of the composite of heart
failure hospitalizations and cardiovascular death and as such allows the analysis of
the event rate ratio of a weighted composite endpoint. Pocock et al. [65] proposed
the win ratio approach for analyzing the composite of heart failure hospitalizations
and cardiovascular death. The win ratio approach does not define the treatment ef-
fect based on recurrent event rates. Instead, to calculate the win ratio, the subjects’
outcomes are compared between the two groups in a pairwise manner concerning a
prespecified order of the possible outcomes of the composite endpoint. Each com-
parison does have a winner and a loser, or the comparison is tied. Then, the win ratio
is the number of winners in the treatment group compared to the number of losers in
the treatment group. Therefore, depending on which primary analysis method will
be considered in future clinical trials in chronic heart failure, further development of
adaptive designs are required, since, to the best of my knowledge, adaptive designs
have not been studied for any of the mentioned alternative analyses.

The proposed rule for selecting the final sample size when incorporating prior
information on a nuisance parameter into the sample size re-estimation is an ad hoc
adaptation of the frequentist rule for selecting the final sample size in a the nuisance
parameter based sample size re-estimation. From a practical perspective, such a rule
makes sense as it is easy to implement and thus would be the first choice when try-
ing to incorporate prior information into the sample size re-estimation. I showed
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that this ad hoc rule can result in under- or overpowered clinical trials when a prior-
data conflict is present [47]. From a practical perspective, this makes the ad hoc
rule undesirable as it increases the risk of conducting an unsuccessful clinical trial
or a too large trial thereby defeating its purpose. However, the fact that the ad hoc
rule can result in under- or overpowered clinical trials does not exclude the pos-
sibility that better rules for selecting the final sample size in a design with sample
size re-estimation incorporating prior information exist. For instance, a decision
theoretic approach for selecting the final sample size could results in a sample size
re-estimation procedure incorporating prior information with more desirable char-
acteristics. The concept of using decision theory to determine the sample size is not
new, see Parmigiani and Inoue [66], and it has also been considered in the drug de-
velopment context by Stallard [67], who presented a decision theoretic approach for
calculating the sample size of a phase II clinical trial.
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