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0. Abstract 

Intuitive statistical reasoning is the capacity to draw intuitive probabilistic inferences based on an 

understanding of the relations between populations, sampling processes and resulting samples. This 

capacity is fundamental to our daily lives and one of the hallmarks of human thinking. We constantly use 

sample observations to draw general conclusions about the world, use these generalizations to predict 

what will happen next and to make rational decisions under uncertainty. Historically, statistical reasoning 

was thought to develop late in ontogeny, to be biased by general-purpose heuristics throughout 

adulthood, and to be restricted to certain situations and specific types of information. In the last decade, 

however, evidence has accumulated from developmental research showing that even pre-verbal infants 

can reason from populations of items to randomly drawn samples and vice versa. Moreover, infants can 

flexibly integrate knowledge from different cognitive domains (such as physical or psychological 

knowledge) into their statistical inferences. This indicates that neither language nor mathematical 

education are prerequisites for intuitive statistical abilities. Beyond that, recent comparative research 

suggests that basic forms of such capacities are not uniquely human: Rakoczy et al. (2014) presented 

nonhuman great apes with two populations with different proportions of preferred to non-preferred food 

items. Apes were able to infer which population was more likely to lead to a preferred food item as 

randomly drawn sample. Hence, just like human infants, great apes can reason from population to sample, 

giving a first hint that human statistical abilities may be based on an evolutionary ancient capacity.  

The aim of the present dissertation is to explore the evolutionary roots of intuitive statistics more 

systematically and comprehensively by expanding on the initial findings of Rakoczy et al. (2014). I 

examined three questions regarding the i) generality and flexibility of nonhuman great apes´ statistical 

capacities, ii) their cognitive structures and limits, as well as iii) their interaction with knowledge from 

other cognitive domains. To address these questions, I conducted three studies applying variants of the 

paradigm established by Rakoczy et al. (2014). 

In the first study, zoo-living great apes (Pan troglodytes, Pan paniscus, Pongo abelii, Gorilla gorilla) 

were required to infer from samples to populations of food items: Apes were presented with two covered 

populations and witnessed representative multi-item samples being drawn from these populations. 

Subsequently, subjects could choose which population they wanted to receive as a reward. I found that 

apes´ statistical abilities in this direction were more restricted than vice versa. However, these limitations 

were potentially due to accessory task demands rather than limitations in statistical reasoning. The second 

study was designed to gain deeper insights into the cognitive structure of intuitive statistics in 
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chimpanzees and humans. More specifically, I tested sanctuary-living chimpanzees and human adults in a 

task requiring inferences from population to sample and I systematically varied the magnitude of 

difference between the populations´ ratios (the ratio of ratios, ROR). I discovered that the statistical 

abilities of both chimpanzees and human adults varied as a function of the ROR and thus followed Weber´s 

law. This suggests that intuitive statistics are based on the analogue magnitude system, an evolutionary 

ancient cognitive mechanism common to many aspects of quantitative cognition. The third study 

investigated whether chimpanzees consider knowledge about others´ mental states when drawing 

statistical inferences. I tested sanctuary-living chimpanzees in a task that required subjects to infer which 

of two populations was more likely to lead to a desired outcome for the subject. I manipulated whether 

the experimenters had preferences to draw certain food types or acted neutrally and whether they had 

visual access to the populations while sampling or drew blindly. Chimpanzees chose based on proportional 

information alone when they had no information about experimenters’ preferences and (to a lesser 

extent) when experimenters had preferences for certain food types but drew blindly. By contrast, when 

biased experimenters had visual access, subjects ignored statistical information and instead chose based 

on experimenters’ preferences. Consistent with recent findings on pre-verbal infants, apes seem to have 

a random sampling assumption that can be overridden under the appropriate circumstances and they are 

able to use information about others´ mental states to judge whether this is necessary. 

Taken together, the findings of the present dissertation indicate that nonhuman great apes 

possess intuitive statistical capacities on a par with those of human infants. Therefore, intuitive statistics 

antedate language and mathematical thinking not only ontogenetically, but also phylogenetically. This 

suggests that humans´ statistical abilities are founded on an evolutionary ancient capacity shared with 

our closest living relatives. 
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1. General introduction 

“Could there be in a normal man an intuition of probability just as fundamental and 

just as frequently used as, say, the intuition of whole numbers?”   

(Piaget & Inhelder, 1975, xiii) 

Some parts of life are consistent and entirely predictable. If I push my glass over the edge of the table, it 

will fall to the ground. If I go out without an umbrella while it rains, I will get wet. However, not all events 

happening around us follow such straightforward causal relations. In fact, virtually any situation involves 

some uncertain component. The glass will fall down when I push it, but will it break? I will get wet in case 

it rains, but what are the chances that the weather will change today? Our life is full of situations which 

require us to deal with variable, random, and only partly predictable features. We need to make 

judgments under uncertainty in the simplest of tasks, such as deciding whether to take an umbrella or 

not, and in more complex processes, for example when deciding whether to try a new migraine treatment 

or whether to invest in an insurance against storm damage. How are humans able to make such judgments 

and decisions?  

The presumably optimal way to make decisions under uncertainty is to make probabilistic 

estimations. In many cases we can rely on our past experiences, perhaps updated with current 

information, to infer the most likely outcome of events. For example, before you call your friend, you may 

think about past times you tried to call her at this particular time and rapidly compare the proportion of 

times you reached her with the proportion of times she did not answer. This first estimation might be 

updated when you remember that she told you about a business meeting, resulting in low chances that 

she will answer her phone right now. In other cases, we are required to compute probabilities of events 

we have not experienced before by directly observing and judging proportional information. For instance, 

before you decide in which of two restaurants you go during your city trip, you may have a look at their 

ratings on the internet. If restaurant 1 has 100 positive ratings, but 200 bad ones, you may infer that 

restaurant 2, with just 20 positive, but only a single negative rating, will probably serve better food. 

How do these probabilistic computations work? Do we have some cognitive mechanism sensitive 

to probabilistic input, allowing us to draw statistical inferences and to make rational predictions? As the 

above-mentioned statement taken from Piaget and Inhelder´s 1975 book exemplifies, the idea of an 

intuitive statistical inference mechanism has been fascinating researchers from various fields over many 

decades. However, despite the ubiquity of situations requiring statistical inferences, until today 



1. General introduction 

 
4 

 

psychological and cognitive research accumulated evidence showing that humans, children as well as 

adults, are surprisingly bad in tasks requiring explicit statistical inferences. This led to the conclusion that 

the ability to reason about probabilities develops late in human ontogeny and remains error-prone and 

tainted by heuristics and biases throughout adulthood.   

It is only very recent that the establishment of non-verbal procedures allowed the development 

of appropriate experiments for pre- and non-verbal creatures, revealing astonishing results. Even pre-

verbal infants have an intuitive sense of probability. They seem to understand the relation between 

populations (of events or objects), sampling processes (e.g. random, intentional, or otherwise 

determined) and resulting samples (individual events or objects) and are able to draw intuitive inferences 

regarding statistical matters. These findings indicate that humans in fact do possess a powerful domain-

general statistical inference mechanism, which is independent of language and mathematical education 

and probably allows humans to rapidly learn about their environment from birth onwards.  

These new insights raise a fundamental question concerning the phylogenetic origins of our 

intuitive statistical inference mechanism: Are we dealing with a uniquely human capacity, perhaps 

accounting for our unprecedented cognitive flexibility? Or do we share it with other animals, most notably 

our closest living relatives, the nonhuman great apes1? Comparative research investigating quantitative 

abilities found some striking similarities in basic numerical cognition of humans and nonhuman primates, 

which might give a first hint that great apes, too, possess the prerequisites for intuitive statistics. Even 

more importantly, recent research found that great apes are sensitive towards probabilistic information 

and can draw intuitive inferences from population to sample in much the same way as human infants do. 

The aim of the present dissertation is to shed more light on the evolutionary roots of intuitive 

statistics by investigating this ability in great apes. In particular, I sought to get insights into the cognitive 

structure of intuitive statistics and, from a comparative point of view, to explore the commonalities and 

differences between great apes and humans. I was especially interested in three broad questions: First, 

how flexible are great apes´ statistical reasoning abilities - are they, like in human infants, bi-directional, 

i.e. from population to sample as much as from sample to population? Second, what are the cognitive 

structures and limits of intuitive statistics - are they the same in humans and in nonhuman great apes? 

                                                           
1 In the following I will use the terms “great apes” and “apes” as synonyms to refer to the nonhuman great ape 
species. 
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And lastly, to which degree can nonhuman great apes integrate intuitive statistics with other types of 

information, a feature indicative of a domain-general inference mechanism? 

In what follows, I will first introduce the most influential approaches to human statistical 

reasoning, as well as recent advances in developmental research (Section 2). Thereafter, I will provide a 

review of basic arithmetic abilities in nonhuman primates and their cognitive foundations (Section 3). 

Then, I will discuss the current body of research investigating probabilistic reasoning in nonhuman animals 

(Section 4) which will lay the foundation for the research questions of the present work (Section 5). 

Subsequently, I will present the three studies conducted in the course of this dissertation (Section 6), 

followed by a general discussion of the main findings in light of the evolutionary roots of intuitive statistics 

(Section 7). 
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2. Are humans intuitive statisticians? 

The study of intuitive statistics, the capacity to draw intuitive probabilistic inferences based on an 

understanding of the relations between populations, sampling processes, and samples, has a long history 

in psychology. As long as this history of research has been, as diverse became the theories trying to explain 

the scope, functioning, and limits of statistical inferences. While Peterson and Beach (1967) have titled 

“Man as intuitive statistician”, less than a decade later, Kahneman and Tversky´s seminal work concluded 

that “in making predictions and judgments under uncertainty, people do not appear to follow the calculus 

of chance or the statistical theory of prediction” (Kahneman & Tversky, 1973, p. 237). Yet another 

approach to human statistical reasoning stated that “the mind is an intuitive statistician of the frequentist 

school” (Gigerenzer, 1991, p. 9) and hence at least “some of our inductive reasoning mechanisms do 

embody aspects of calculus of probability” (Cosmides & Tooby, 1996, p. 3). The modern Bayesian 

approach to human statistical reasoning, on the contrary, views “inductive learning as a species of 

computational problems and the human mind as a natural computer” (Tenenbaum, Kemp, Griffiths, & 

Goodman, 2011, p. 1279). It was only relatively recently that developmental research revealed empirical 

evidence that humans indeed are intuitive statisticians from very early on: by the age of six months, 

humans already possess “the key prerequisite abilities for an inductive inference mechanism, based on 

the principles of rational Bayesian inference” (Denison & Xu, 2012, p. 51). 

In the following I will first provide an overview over the most prominent theories of human 

statistical abilities- the heuristics and biases approach, the frequentist approach, and the Bayesian 

approach. Subsequently, I will review recent developmental work focusing on pre-verbal infants and 

discuss its implications for the various theories on human statistical reasoning. 

 

2.1. The heuristics and biases approach 

Research on how heuristics and biases shape human decision making has a long history in the social 

sciences. Even though others have worked on this topic already half a century earlier (e.g. Lippmann, 

1922), with their seminal review “Judgment under uncertainty: Heuristics and biases” Amos Tversky and 

Daniel Kahneman (1974) became the luminaries of a steadily growing research discipline with tremendous 

impact on diverse fields such as law, medicine, economics, and management. This impact can be 

recognized by the fact that Kahneman was awarded the 2002 Nobel Prize in Economic Science. To this 
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day, their idea of intuitive probability judgment as suboptimal and rather irrational process that is heavily 

influenced by general-purpose heuristics is still widely esteemed.  

In general, the idea of the heuristics and biases program is that, in order to assess probabilities 

and to make predictions, humans employ several types of heuristics (i.e. strategies, that ignore parts of 

the information), which reduce the complexity of probabilistic tasks to simpler judgmental operations. 

These mental shortcuts are quite efficient and extremely useful in everyday life, since they provide quick 

and effortless alternatives to slow and effortful statistical computations. In some cases, however, they 

can lead to systematic biases and errors. In the following I will give an overview about the two most 

popular types of heuristics employed in probabilistic tasks and the errors and biases they can cause. This 

overview will not be exhaustive, since it mainly focuses on the seminal work of Tversky and Kahneman. 

An overview about additional types of heuristics and biases can be found, e.g. in a review by Gigerenzer 

and Gaissmaier (2011).  

 

2.1.1. Representativeness 

The perhaps most famous type of heuristics is the representativeness heuristic, which is, according to 

Tversky and Kahneman (1974), used in tasks requiring inferences from population to sample and vice 

versa. In such tasks, people are usually asked to estimate the probability that a certain sample was drawn 

from or belongs to a particular population, or to judge the likelihood that a particular population will 

produce a certain sample. The representative heuristic enables humans to assess such probabilities by a 

simple rule of thumb: The more sample and population resemble and therefore are representative of each 

other, the higher the probability that the sample originated from the population. While this mental 

shortcut is most likely sufficient for many probabilistic problems, it disregards several key factors that 

should affect optimal judgments of probability, such as the base-rate probability and the sample size, and 

therefore can lead to systematic errors. 

One such error is the conjunction fallacy, caused by a non-compliance of “perhaps the simplest 

and the most basic qualitative law of probability”, the conjunction rule (Tversky & Kahneman, 1983, p. 

293). The conjunction rule states that a conjunction cannot be more probable than each of its 

constituents. In other words, the probability of an event than includes two uncertain factors, cannot be 

higher than the probability of each of the two factors separately. The conjunction fallacy has classically 

been illustrated by the “Linda problem” (Lippmann, 1922). In this paradigm, participants are given a 
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character description of a fictive person (Linda) before they are asked to guess which of several 

occupations and/or avocations Linda has. When Linda is described with features stereotypical for 

academics and political activists, participants usually judge the likelihood that Linda is a bank teller and a 

feminist to be higher than Linda just being a bank teller (e.g. Tversky & Kahneman, 1983). This is 

presumably due to her personality description resembling the stereotypical description of a feminist, 

thereby seducing people to ignore the conjunction rule in favor of the representative heuristic. The 

conjunction fallacy has been and still is widely studied with humans of different age classes, varying levels 

of education, and in a wide range of contexts see, e.g. (see, e.g. Bonini, Tentori, & Osherson, 2004; 

Davidson, 1995; Fabre, Caverni, & Jungermann, 1995; Fantino, Kulik, Stolarz-fantino, & Wright, 1997; Fisk, 

2005; Stanovich & West, 1998; Wells, 1985; Yates & Carlson, 1986). However, also a variety of alternative 

explanations have been offered. For example, it has been proposed that participants tested in the “Linda 

paradigm” may have misunderstood the word “and”, or relatedly, that they interpreted the single 

statement to be exclusive of the other (e.g. that “Linda is a bank teller” excludes the possibility that Linda 

also is a feminist) and so correctly choose their conjunction (i.e. Linda is both a bank teller and a feminist 

(Chase, 1998; Dulany & Hilton, 1991; Gigerenzer, 1996; Hertwig & Gigerenzer, 1999; Macdonald & 

Gilhooly, 1990; Politzer & Noveck, 1991). Alternatively, participants may have assumed that the 

information provided by the experimenters must be relevant and therefore concluded that their answer 

should appreciate this relevant information (Chase, Hertwig, & Gigerenzer, 1998). While a range of studies 

have partly ruled out these explanations (see, e.g. Costello, 2009 for a review) the debate on how strong 

conjunction fallacy effects are in real life scenarios and under which exact circumstances they occur, is 

still ongoing (see, e.g. Charness, Karni, & Levin, 2010; Hertwig, Benz, & Krauss, 2008; Tentori & Crupi, 

2012). 

A similarly common fallacy presumably caused by the representativeness heuristic is base-rate 

neglect. This fallacy describes the phenomenon that humans often rely more on individuating 

information, i.e. information about a particular case, such as a personality description, instead of essential 

base-rate information to estimate probabilities. Kahneman and Tversky (1973), for instance, asked adults 

to judge whether a hypothetical person, allegedly sampled at random from a group of professionals, was 

rather an engineer or rather a lawyer, based on two pieces of information: A description of the base-rates 

of lawyers and engineers in the group (e.g. “70% of professionals are lawyers, 30% are engineers”) and a 

brief personality description of the person in question (e.g. “he likes working on home carpentry 

projects”). Participants mainly judged based on the personality descriptions, widely ignoring the base-rate 
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probabilities. Hence, again people chose based on the degree to which the person in question resembled 

the classic stereotype of either lawyers or engineers. Interestingly, participants even neglected base-rate 

information when the provided personality description was completely irrelevant for the categorization. 

They only considered base-rates accurately when no information about personality traits was provided.  

Similar findings were obtained in studies replicating Kahneman and Tversky´s original study (1973), both 

in adults (e.g. Davidson & Hirtle, 1990; Ginosar & Trope, 1980; Manis, Dovalina, Avis, & Cardoze, 1980; 

Nisbett & Borgida, 1975; Pennycook, Fugelsang, & Koehler, 2012) and in children (e.g. Davidson, 1995; 

Jacobs & Potenza, 1991). Interestingly, base-rate neglect seems to be particularly apparent in social 

problems, compared to object domain problems, perhaps accounting for the emergence and durability of 

stereotypes (Jacobs & Potenza, 1991). Some studies demonstrated, however, that people can be 

sensitized to base-rate information under certain conditions (see, e.g. Erev, Shimonowitch, Schurr, & 

Hertwig, 2008 for discussion). 

The representativeness heuristic can also lead to a general misconception of chance as a “self-

correcting process”. This misconception is the basis of recency effects, which describe the common, but 

wrong impression that a random event is more or less likely to occur, depending on whether it has or has 

not occurred in a while (Tversky & Kahneman, 1971). The negative recency effect (also known as gambler´s 

fallacy) is best illustrated in the following statement: “After observing a long run of red on the roulette 

wheel, for example, most people will erroneously believe that black is now due, presumably because the 

occurrence of black will result in a more representative sequence than the occurrence of an additional 

red” (Tversky & Kahneman, 1974, p. 1125). Conversely, people also exhibit positive recency effects (also 

known as hot hand fallacy), for example when they believe in having a lucky streak, and thus think an 

event is more likely to occur, because it has happened several times in a row (e.g. Gilovich, Vallone, & 

Tversky, 1985). Both types of fallacies can be observed in children and adults. Yet, the positive recency 

effect seems to decrease with age, whereas no such effect was found for the negative recency effect 

(Chiesi & Primi, 2009). The somewhat curious finding that the representative heuristic can lead to positive 

and negative recency effects (thus, the exact same data can cause an individual to expect two contrasting 

events) might be due to differences in people´s prior experiences (e.g. Ayton & Fischer, 2004). 

Other important shortcomings of human intuitive statistics presumably induced by the 

representative heuristic are insensitivity to sample size (people judge based on whether or not the 

sampling proportion is representative of the population´s proportion, largely ignoring the size and thereby 

the meaningfulness of the sample; e.g. Kahneman & Tversky, 1972; Nisbett & Ross, 1980) and 
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misconceptions of regression (people do not consider regression to the mean and are surprised to see, 

e.g. an average performance after an outstanding performance in an event involving chance (Kahneman 

& Tversky, 1973)). 

2.1.2. Availability  

Another type of heuristic that is, according to Tversky & Kahneman (1974), frequently applied to judge 

the likelihood of an event, the numerosity of a class, or the frequency of co-occurrence of events, is the 

availability heuristic. This judgmental heuristic is based on the fact that “instances of large classes are 

usually recalled better and faster than instances of less frequent classes” (Tversky & Kahneman, 1974, p. 

1127). Thus, people tend to assess the probability of an event by the ease with which occurrences of such 

an event can be remembered or imagined. For example, to assess the probability that a woman of a 

certain age class develops breast cancer, one may recall such instances within one´s own circle of 

acquaintances. As with the representative heuristic, the availability heuristic is probably a useful and 

efficient shortcut in many judgmental situations, but at the same time it is easily affected by factors other 

than frequencies and probabilities and therefore leads to predictable biases. 

One such bias is due to the fact that the availability heuristic is strongly influenced by factors 

which do not reflect the actual probability of an event, but which alter the ease by which it is recalled. For 

example, events that are particularly salient, familiar, or recent are more easily recalled than others, 

irrespective of whether they are objectively likely to happen or not (Tversky & Kahneman, 1974). One may 

tend, for instance, to overestimate the objective risk of a middle-aged woman to be diagnosed with breast 

cancer, after one´s own sister was tested positive. Other factors like the imaginability of events (Galbraith 

& Underwood, 1973), or the perceived strength of association between two events (Chapman & 

Chapman, 1969) have similar effects. 

Relatedly to various two-system theories of reasoning (e.g. Evans, 2008), the heuristics and biases 

program argues that intuitive judgments occupy a position “between the automatic parallel operations of 

perception, and the controlled serial operations of reasoning” (Kahneman & Frederick, 2002, p. 2). More 

specifically, the cognitive basis of probabilistic heuristics such as representativeness is supposedly the 

intuitive System 1, which guides quick, automatic, and associative operations. In contrast, System 2 is 

thought to be slow, self-aware, and controlled. In the heuristics and biases view, System 2 is monitoring 

the intuitive judgments of System 1 and has the power to override and correct them (see e.g. Kahneman 

& Frederick, 2002 for a review). Biases and fallacies are committed when System 2 fails to correct the 

flawed intuitions of System 1, for example due to time pressure or cognitive load (e.g. Finucane, Alhakami, 
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Slovic, & Johnson, 2000; Gilbert, 1989; Bodenhausen, 1990). The consequent conclusion of Tversky and 

Kahneman (1971, p. 31) was that intuitions (which are the source of heuristics) should always be regarded 

“with proper suspicion”.   

In sum, the heuristics and biases program has discovered extremely diverse and ubiquitous biases 

and errors that humans regularly commit when making decisions under uncertainty or when assessing the 

probability of an event: Humans do not sufficiently account for sample size, disregard the base-rate 

probability, ignore the conjunction rule, overestimate the prevalence of events that are recalled easily, 

and do not anticipate regression to the mean, just to name some of them. Hence, this line of research 

suggests that human intuitive statistical reasoning is fundamentally flawed, biased, and error prone. This 

view has not remained unchallenged. In particular, the interpretation of heuristics as error-prone 

intuitions and as source of irrationality has evoked considerable criticism. Gerd Gigerenzer, for instance, 

famously argued that heuristics, statistics and logic are each suited and adaptive for a particular type of 

problem (see, e.g. Gigerenzer & Gaissmaier, 2011 for a review): In real world scenarios, where parts of 

the relevant information are usually unknown, heuristics often depict the better option compared to 

statistical models, which require knowledge of all the relevant alternatives, their consequences, and 

probabilities (Simon, 1979). That this is at least partly true was demonstrated in empirical examples, 

where formalized heuristics led to better predictions than standard statistical methods which had the 

same ore more information, in diverse areas such as business, medical and legal decision making (see 

Gigerenzer & Gaissmaier, 2011 for a review). Does this mean humans are not as irrational as the heuristics 

and biases program indicated? A different approach on human statistical reasoning abilities argues that it 

all depends on the presentation format of the task. This important approach, the frequentist view, will be 

introduced in the next section.  

 

2.2. The frequentist approach 

Soon after the publication of Tversky and Kahneman´s seminal work, a new, alternative theory about 

human statistical reasoning arose with, in many regards, contrasting point of views. One essential aim of 

this new movement was to answer the following puzzle resulting from the heuristics and biases work: “If 

making accurate judgments under uncertainty is an important adaptive problem, why would natural 

selection have designed a mind that uses error-prone heuristics rather than an accurate calculus of 

probability?” (Cosmides & Tooby, 1996, p. 11). 
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The frequentist hypothesis (Cosmides & Tooby, 1996; Gigerenzer & Hoffrage, 1995) states that 

“some of our inductive reasoning mechanisms do embody aspects of calculus of probability, but they are 

designed to take frequency information as input and produce frequency information as output” (Cosmides 

& Tooby, 1996, p. 3). More specifically, frequentists argue that humans and other animals regularly need 

to make accurate decisions under uncertainty in order to increase their chances of survival. Our ancestors, 

however, did not have access to explicit, i.e. symbolic forms of probabilistic information. Instead, they 

could only use their own experiences in form of encountered frequencies as database for probabilistic 

inferences. It makes thus sense, from an evolutionary point of view, that humans (and possibly other 

animals) evolved cognitive mechanisms that use exactly this observable information format as in- and 

output. Hence, frequentists concluded that humans have the capacity of inductive reasoning (i.e. to draw 

general conclusions from sample observations), as long as information is presented in frequency format 

(e.g. 1 out of 10 instances instead of 10%) and a frequency can be given as output (see Cosmides & Tooby, 

1996). 

This theory has two important implications: 1. Many of the findings of the heuristics and biases 

program might be explained by the fact that those tasks did not facilitate the representation of 

probabilities as frequencies. 2. Humans should not be able to reason about single-event probabilities. The 

latter can be explained as follows: Frequentists interpret probability as the relative frequency of an event 

defined over a specific reference class. A single-event, however, does not have a relative frequency - it 

either occurs or not. For example, there is no sense in stating that “tomorrow it will snow 30%” - either it 

will snow or not snow. Hence, according to frequentists, in realistic scenarios, single-case probabilities are 

meaningless. Moreover, a single-event does not have a single reference class. Instead, it can have an 

infinite number of reference classes. Cosmides and Tooby (1996) illustrated this with the following 

example: The relative frequency with which a woman aged between 35 and 40 gets breast cancer is 4 out 

of 100. What is the probability that Mrs. X, who is 49, and whose mother had breast cancer, will be 

diagnosed positive next year? According to Cosmides and Tooby it is completely meaningless to say the 

risk is “4%”, because Mrs X could belong to an indefinitely large number of references classes (e.g. smoker, 

living a stressful life, mother of three, etc.) and the relative frequency of breast cancer may differ for each 

of them. Conversely, if one would figure in all possibly relevant characteristics, the number of reference 

classes would be limited, but then these classes would contain such a limited number of individuals that, 

due to an increased “error term”, the relative frequency derived from these classes would again be 

completely meaningless. Therefore, Cosmides and Tooby (1996) conclude, “one cannot be a frequentist 
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and accept single-event probabilities”. From an evolutionary point of view, as explained above, 

frequentists further argue that the human mind could not have adapted to detect single-event 

probabilities, because the necessary input format (i.e. probability expressed as numerical value) was only 

invented in modern times and could therefore not have been favored by natural selection. 

Several studies aimed to test the predictions following from the frequentist hypotheses. For 

example, empirical tests have examined whether, as claimed by e.g. Gigerenzer (1991, p. 22), the 

conjunction fallacy and other “so-called cognitive illusions” disappear when the problem is phrased in 

frequentist way. While in some studies the rate of conjunction fallacies decreased, or the effect vanished 

completely (e.g. Fiedler, 1988; Hertwig & Gigerenzer, 1999), in others it remained stable when 

information was presented in form of frequencies (Kahneman & Tversky, 1996; Tentori, Bonini, & 

Osherson, 2004; Wedell & Moro, 2008). Even the trial of an adversarial collaboration project between a 

frequentist and one of the founders of the heuristics and biases program (Mellers, Hertwig, & Kahneman, 

2001) did not end the controversy: Frequency formats did not reduce conjunction fallacies in the “Linda 

task”, they, however, did so in a related task (“James task”). Other studies tested the influence of 

frequency formats on probabilistic reasoning in children. Zhu and Gigerenzer (2006), for example, found 

evidence that 9-to-12-year-old children could not reason correctly about probabilities when information 

was presented in terms of probabilities. When the same information was presented as natural 

frequencies, however, the proportion of children´s correct probability estimates increased. A more recent 

study aimed to replicate these findings (Pighin, Tentori, & Girotto, 2017) and could not find any evidence 

for natural frequency format being more easily processed or more likely to elucidate correct inferences 

than chance format. Hence, it is still debated whether and under which conditions frequency information 

truly facilitates statistical reasoning and decreases the rate of judgmental errors. It seems that the impact 

of frequency formats may interact with other factors, such as the experimental design (Kahneman & 

Tversky, 1996) and the transparency of the logical relation between the conjunct and the conjunction 

(Kahneman & Tversky, 1996; Mellers et al., 2001; Sloman, Over, Slovak, & Stibel, 2003; Wedell & Moro, 

2008), making it difficult to draw unambiguous conclusions (also see McDowell & Jacobs, 2017 for a meta-

analysis of the effect of frequency formats). 

In sum, while challenging the results of the heuristics and biases approach, the frequentist 

approach also considers human probabilistic abilities as severely constrained to limited contexts. 

Frequentists argue that humans do not possess the ability to reason generally (e.g. about single-events), 

because it is impossible that evolution would have favored the selection of such general-purpose 
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reasoning mechanisms. Instead, the frequentist view states that humans possess an evolutionary ancient 

mechanism to reason about observed frequencies only. It is undisputed that humans, under certain 

conditions, can make use of observed frequencies to make rational judgments (Cosmides & Tooby, 1996; 

Gigerenzer & Hoffrage, 1995). The frequentist approach could, however, not convincingly demonstrate 

either that humans are reliably good intuitive statisticians as long as observed frequencies are available, 

nor that they are completely unable to draw inductive inferences when previous experience is not 

available. In parallel to the growing competition between the heuristics and biases advocates on the one 

side, and frequentists advocates on the other side, a third, yet again different view on human statistical 

abilities emerged: The Bayesian approach. 

 

2.3. The Bayesian approach  

Bayes´ theorem was named after Thomas Bayes, a Presbyterian minister and mathematician (1702-1761) 

and provides a method of determining conditional probabilities based on observations. One central 

difference between Bayesians and frequentists is their very definition of probability. While frequentists 

argue that probability is objectively defined over a specific reference class and refers to the relative 

frequency with which an event occurs, for Bayesians probability refers to a subjective degree of 

confidence. Conclusively, for Bayesians it is possible to assess the probability of a single-event by 

expressing one`s confidence that it will or will not occur. Referring to the example above, for frequentists 

there is no point in stating that “tomorrow it will snow 30%”. For Bayesians, however, this statement 

corresponds to a certain degree of belief, namely, our quite confident intuition that there will not be any 

snow tomorrow. The interpretation of subjective believes as degrees of probabilities of future events has 

the inevitable consequence that the Bayesian understanding of probability is intrinsically subjective, 

which leads frequentists to the conclusion that the Bayesian interpretation of probability is “useless for 

scientific purposes” (Fisher, 1951, p. 7). The contrasting views on probability per se are connected to more 

far reaching and general philosophical questions regarding the nature of the human mind (see, e.g. 

Carnap, 1945; Gigerenzer, 1994; von Plato, 1994). While it is clearly beyond the scope of this dissertation 

to discuss and take a side on these issues, I will briefly introduce the basic idea of the Bayesian approach 

within this section and discuss its implications for the discussion on human statistical abilities. 

As already mentioned, one central assumption of the Bayesian framework is that degrees of belief 

(e.g. that a certain hypothesis is true), can be expressed as probabilities, i.e. as real numbers between 0 
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and 1 (0 would mean the hypothesis is entirely false, 1 that it is completely true). To compute degrees of 

belief as probabilities, one needs two components: The prior probability and the likelihood. The prior 

probability reflects the degree of belief in a specific hypothesis prior to (or independent of) the newly 

observed data. The likelihood depicts the probability with which one would expect to observe the current 

data if the hypothesis in question was true. Combined, prior probability and likelihood yield the posterior 

probability, which is the updated prior probability conditional on the observed data. Bayes´ rule, i.e. the 

corresponding mathematical equation, ensures that the posterior probability of all hypothesis under 

consideration for explaining the observed data sum up to 1, with the most plausible hypothesis yielding 

the highest value (see, e.g. Perfors, Tenenbaum, Griffiths, & Xu, 2011 for a review and more detailed 

explanation of Bayes rule). 

Consider the following practical example (taken from Tenenbaum et al., 2011, p. 1280): Imagine 

we observe John coughing (newly observed data), and we consider three competing hypotheses as 

explanation: h1= John has a cold; h2= John has lung cancer; h3= John has heartburn. The prior probability, 

i.e. our belief that John had any of these diseases before we observed him coughing, favors h1 and h3, 

because cold and heartburn are far more common diseases than lung cancer (i.e. in this case the prior 

probability equals the base-rate of the diseases). The likelihood, i.e. the probability that there is a causal 

link between the observed coughing and any of the explanations, favors h1 and h2, because only colds 

and lung cancer cause coughing, but not heartburn. Since h1 is the only hypothesis which scores high in 

both prior probability and likelihood, following Bayes´s rule, h1 is therefore weighted as the most plausible 

hypothesis. Hence, our intuition which told us from the beginning of this example that John´s coughing is 

probably caused by a cold, can be explained as Bayesian inference. 

Over the last decades, Bayesian computational models have been used to explain various 

cognitive processes, ranging from aspects of basic, unconscious processing, such as perception (Yuille & 

Kersten, 2006), memory (Shiffrin & Steyvers, 1987; Steyvers, Griffiths, & Dennis, 2006), and sensorimotor 

systems (Körding & Wolpert, 2004), to aspects of higher level cognition such as diagnostic and conditional 

reasoning (Krynski & Tenenbaum, 2007) and predictions about the future of everyday events (Griffiths & 

Tenenbaum, 2006). More recently, Bayesian computational models have also been used to explain the 

tremendous learning efficiency of the developing mind of a child. For example, Xu and Tenenbaum 

(2007a) presented a Bayesian model of word learning, trying to explain how human learners can make 

meaningful generalization from limited examples of a new word. When confronted with a novel word 

with reference to an object, a child faces the problem that the word could refer to different levels of 
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categorization of this object. For instance, when it hears the new word “fep” in reference to a picture of 

a Labrador, the word could refer to a certain breed of dog, to all kinds of dogs, to animals in general, or 

even to all living things. Hence, the child has to decide which hypothesis about possible extensions of the 

label “fep” is best. If given only one example of a “fep”, it should not have a strong preference for any of 

the hypotheses, though the more specific ones should be slightly favored. If given several examples of 

“fep”, and they were all Labradors, it would be a very surprising coincidence if “fep” in fact referred to a 

more general category, such as all animals. When Xu and Tenenbaum (2007a) confronted human adults 

and children with a similar word learning task, they reacted just as predicted by the model: When they 

were given just one example of a “fep”, they showed graded generalizations from lower level to higher 

level matches, i.e. from Labradors are “feps” to all living beings are “feps”. When they were given three 

examples, by contrast, both adults and children made much sharper generalizations which were restricted 

to the lowest, most specialized level, i.e. the “Labradors are feps” level. Thus, meaningful generalizations 

from limited examples of a novel word´s referents possibly work through rational inferences which 

integrate prior knowledge about plausible word meanings with the statistical structure of the observed 

examples (Xu & Tenenbaum, 2007a; also see Xu & Tenenbaum, 2007b). In other studies, experimenters 

varied the evidence children saw about a causal system as well as the prior probability of several 

hypotheses about this particular structure, and they found that children typically chose the hypotheses 

with the greatest posterior probability in Bayesian terms (e.g. Bonawitz, van Schijndel, Friel, & Schulz, 

2012; Bonawitz, Fischer, & Schulz, 2011; Gopnik, Sobel, Schulz, & Glymour, 2001; Sobel, Tenenbaum, & 

Gopnik, 2004).  

One of the most crucial questions regarding the Bayesian approach to human inductive reasoning 

is how the prior probability is established and, even more far reaching, where our abstract background 

knowledge, allowing us to have priors and likelihoods, comes from in the first place. Is such abstract 

knowledge innate, for example in the form of innate concepts and core knowledge systems (e.g. Carey, 

2009; Spelke, 1994)? Or is it acquired via associative learning mechanisms (e.g. Elman et al., 1996; Smith, 

2001)? The Bayesian framework offers an “in between” explanation: Most likely there are some innate 

constraints, such as the whole object constraint (i.e. the fact that children learning words intuitively apply 

them to whole objects rather than parts (Markman, 1990)), and core systems of object representation, 

physics, psychology, and biology (e.g. Carey, 2009; Carey & Spelke, 1996; Spelke & Kinzler, 2007). In 

addition, there is probably also some higher-level abstract knowledge, learned by rational inferences itself 
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(e.g. Chater & Oaksford, 2008; Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; Tenenbaum et al., 

2011). 

One example of how such learning of inductive constraints (i.e. higher level abstract knowledge) 

could take place is the following scenario (taken from Goodman, 1955): Imagine there were several bags 

of colored marbles. We cannot see the content of the bags, but by drawing several samples from all of 

them we discover that each bag contains only one particular color (e.g. bag 1 only blue, bag 2 only red, 

etc.). If we now draw one marble from another bag in this population, and it is purple, it seems reasonable 

to conclude that subsequent draws from this bag will lead to purple marbles, too. The assumption that 

each bag is uniform in color is a learned inductive constraint, an “overhypothesis” that adds a piece to our 

abstract knowledge and enables subsequent generalizations. The learning of overhypotheses can also be 

modeled: The hierarchical Bayesian model (HBM) does not only choose among certain hypotheses, it also 

makes higher-order generalizations about these hypotheses. The top level of knowledge in an HBM is pre-

determined (simulating abstract core-knowledge), and every level beneath can be learned and gets 

increasingly specific. Several HBMs have been computed to describe how category learning could work 

(e.g. Griffiths, Sanborn, Canini, & Navarro, 2008; Kemp, Perfors, & Tenenbaum, 2007; Navarro, 2006; 

Sanborn, Chater, & Heller, 2009). In one study (Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson, 

2002) children were presented with novel concepts and labels and rapidly learned the “overhypothesis” 

that not only chairs are organized by shape, but general categories of solid artefacts are, too. An HBM 

presented with the same data was able to make the same generalizations (Kemp et al., 2007; see Perfors 

et al., 2011 for a review of studies using HBMs). 

Does this mean that the human mind is in fact a Bayesian statistical inference engine? How does 

this go together with all the empirically demonstrated limitations of human statistical reasoning 

previously described in this chapter? First of all, the Bayesian approach acknowledges that probability 

judgments, especially those requiring explicit manipulations of numerical values, can be influenced by 

heuristics and biased away from Bayesian norms (e.g. Tenenbaum et al., 2011). Second, even more 

importantly, the Bayesian approach is trying to give a rational framework of how human cognition in 

general and inductive inference in particular could work. The fact that in several cases the results of 

Bayesian models match those of actual human probabilistic computation gives reason to hypothesize that 

human statistical abilities might not be as limited and flawed as suggested by both heuristics and biases 

as well as frequentist approaches (e.g. Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Griffiths & 

Tenenbaum, 2006, 2009; Xu & Tenenbaum, 2007a, 2007b). The Bayesian approach provides a good 
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explanatory account of the ancient “inductive problem”, i.e. the question how developing humans come 

to understand so much about the world from such sparse data by gradually and rationally revising their 

beliefs about the world in the light of new evidence.  

But do these ideas truly reflect reality? Do young children, perhaps even before the onset of 

language, already possess and use statistical abilities? Are they able to draw statistical inferences without 

relying on general-purpose heuristics? Can they use statistical information to make rational predictions 

under uncertainty, also regarding single-events? Moreover, is their statistical inference mechanism 

domain general and can hence flexibly integrate various types of core knowledge, a capacity that would 

be necessary to learn overhypotheses and to accumulate higher-level abstract knowledge? In the 

following section I will review empirical developmental studies investigating these fundamental statistical 

abilities in human infants. 

 

2.4. The ontogeny of intuitive statistical reasoning 

Among the first psychologists to investigate the development of intuitive statistics were Jean Piaget and 

Bärbel Inhelder (1975). In their classic book “The origin of the idea of chance in children” they described 

a series of studies that have been conducted with children between 4 and 12 years of age. Their general 

conclusion was that probabilistic reasoning develops in three developmental stages. The first stage is the 

“intuition of rarity, but not of random mixture” (p. 97) at around age 4. Children of this age did recognize 

when an event was unlikely, but they could not explain why. For example, 4-year-olds expressed surprise 

when only items of the minority type were drawn from a population, but they did not seem to have a 

grasp of how specific proportions affect the outcome of random draws; at least they were not able to 

verbalize such an understanding. This only started around age 6, but even then, it remained inconsistent. 

Reaching a reliable understanding of the relation between a population´s proportion and randomly drawn 

samples is the characteristic of the second stage, called “chance and probabilities” (p. 103). This stage 

applies to children at around age 7. At this age, tested children could immediately explain why it was 

unlikely to randomly draw an item of the minority type of a population. They, however, did not yet realize 

that probability of an event can be expressed as a fraction of this event and the sum of the other events. 

At around age 12, children reach the last stage, “quantifications of probability” (p. 106). Tested children 

of this age had acquired an advanced understanding of probability. They could, for example, explain how 

multiple draws or varying ratios influence probabilities.  



2. Are humans intuitive statisticians? 

 
19 

 

Thus, according to Piaget and Inhelder (1975), the development of statistical intuition is rather 

slow, and a true understanding of the relation between samples and populations does only emerge 

between seven and twelve years of age. However, as with many of Piaget´s studies, they relied heavily on 

verbal abilities, leaving uncertainty as to whether younger children´s failure reflects true limitations of 

probabilistic understanding, or rather simply constitutes a lack of ability to understand the task or the 

question, or a lack of ability to verbally express their thoughts. Indeed, over the last 60 years, more and 

more studies accumulated evidence that, when verbal demands are reduced, children reach Piaget and 

Inhelder´s stage 2 and 3 much earlier than originally assumed (e.g. Acredolo, O’Connor, Banks, & Horobin, 

1989; Goldberg, 1966; Reyna & Brainerd, 1994; Yost, Siegel, & Andrews, 1962). In more recent years, new 

measures were established that entirely got rid of the tasks´ language component, allowing to test even 

younger children for their statistical abilities. In the following I will review these studies and their 

remarkable results. I will mainly focus on research on pre- or barely verbal infants, since those findings 

are most informative with regard to exploring a potentially innate inference mechanism which does not 

rely solely on experienced events and works without language or any form of formal education. I will only 

briefly mention work on older children where reasonable. 

 

2.4.1. Reasoning from population to sample and assessing single-event probabilities 

The majority of studies testing intuitive statistical inferences in pre-verbal infants use the violation of 

expectation (VOE) looking time paradigm. This paradigm uses the fact that infants look longer at scenes 

that violate their expectations, i.e. which they find surprising or unlikely. Accordingly, infants´ looking 

time, when compared between different statistically more or less likely scenes, can be used as dependent 

measure in order to assess infants´ intuitive understanding of statistical regularities. One of the first 

studies investigating intuitive statistics in infants used the VOE looking time paradigm to test 12-month-

old infants for their ability to reason from population to sample (Teglas, Girotto, Gonzalez, & Bonatti, 

2007). In this study, infants were first familiarized with a scene of four bouncing objects in a lottery 

machine: Three of them were yellow, one was blue. Subsequently, after a short occlusion phase, infants 

watched one of the objects exiting the lottery machine: In some trials it was one of the yellow objects, in 

others it was the blue object. Infants looked longer at the unlikely outcome of a minority object exiting 

the lottery machine, suggesting that at 12 months of age, infants already have an intuition about single-

event probability. To exclude the possibility that infants simply reacted on the basis of a perceptual 

preference for attending to the singleton, the authors conducted a control experiment, in which a barrier 
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was placed in the lottery machine. This barrier separated both types of objects in a way that the single 

blue ball was below the barrier, close to the exit, whereas the three yellow balls were located above the 

barrier, and therefore were prevented from exiting the lottery machine. Now infants´ looking times 

showed the reverse pattern, indicating that they were not surprised to see the minority item exiting when 

it was the only possible outcome (also see Teglas, Ibanez-Lillo, Costa, & Bonatti, 2015 for similar results). 

Within the same study, Teglas and colleagues (2007) tested pre-school children in a different task, 

requiring probabilistic inferences about another type of single-event. More specifically, the children´s task 

was to press a button when they saw a ball exiting a box. 3- and 5-year-olds acted more quickly when the 

ball exited from a side with three openings, compared to the opposite side with only one opening, 

suggesting that they had already intuitively shifted their attention towards the 3-hole-side. This indicates 

that they anticipated the more likely outcome. In accordance with Piaget´s and Inhelder´s (1975) findings, 

however, the 3-year-old children were unable to verbally express a judgment as to which side the ball was 

more likely to exit. In a later study (Teglas & Bonatti, 2016) the authors adjusted this paradigm for 12-

month-old infants and recorded both looking time at either of the two outcomes as well as eye 

movements during a short occlusion phase prior to the exiting-event. The authors reported that infants 

looked longer at the unlikely event of the ball exiting on the 1-hole-side, indicating (posthoc) surprise. 

Interestingly, during the occlusion phase right before the ball exited, infants already moved their eyes 

towards the side with 3 holes, indicating that they also anticipated the ball to exit from there and hence 

that they constructed a forward representation of possible future events. Probabilistic intuition, 

therefore, seems to allow infants to prepare themselves for future events. 

Xu and Garcia (2008) used the VOE looking time paradigm in combination with a live-

demonstration to test 8-month-old infants in a task requiring inferences from population to sample. In 

this study, an experimenter showed the infants an open box containing a population of red and white 

Ping-Pong balls. For half of the infants, the population´s distribution of red to white balls was 70:5, for the 

other half it was 5:70. Subsequently, the box was covered and the experimenter drew, apparently 

randomly, a multi-item sample from it. In alternating trials, she removed either a 4:1 red to white or white 

to red sample. Similar as in the study by Teglas and colleagues (2007), infants looked longer at the scene 

in trials, in which the sample did not match the population´s distribution, i.e. when the mostly red sample 

was drawn from the mostly white population or vice versa. Control experiments ruled out that infants 

reacted to simple perceptual mismatches: When the experimenter removed the sample not from the box, 

but from her pocket, and thus the sample did not have a sampling relationship with the population 
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anymore, infants did not look longer at either of the outcomes. This indicates that infants in the original 

experiment were looking longer at the unlikely sample because it was improbable given the population´s 

distribution, and not just because of perceptual differences. 

These studies (Teglas & Bonatti, 2016; Teglas et al., 2007, 2015; Xu & Garcia, 2008) demonstrated 

that at least by the age of eight months, infants can intuitively draw implicit inferences from populations 

to samples and have an intuition about single-event probabilities. The conclusions of these looking time 

studies have also been validated in studies applying an active-choice paradigm (modelled after a study by  

Feigenson, Carey, and Hauser, 2002). In one of them (Denison & Xu, 2010a) 12-to-14-month-old infants 

were presented with two transparent jars containing mixtures of pink (preferred) and black (non-

preferred) lollipops. One consisted of 40 pink and 10 black ones, the other one of 10 pink and 40 black 

ones. The experimenter showed both populations to the infant before she randomly drew one lollipop 

out of each of the two jars (in a way that the infant could not see what was drawn) and placed the samples 

each in an opaque cup. Subsequently, the infant was encouraged to approach whichever cup she wanted. 

Infants chose the cup containing the sample drawn from the 40:10 (pink to black) population, indicating 

that they expected the random sample to be of the population´s majority type.  

An alternative explanation for these results is that infants simply approached the sample drawn 

from the population with more desired objects, without necessarily considering their proportion. A similar 

absolute quantity heuristic could also explain the results of the previously described VOE looking time 

experiments. A later study of the same authors (Denison & Xu, 2014), therefore repeated the active-choice 

task with 10-to-12-month-old infants, but this time included a condition in which absolute and relative 

frequencies of preferred items were disentangled. More specifically, in this condition the population with 

the more favorable ratio of preferred to non-preferred items contained absolutely fewer preferred items 

(16:4 pink to black) than the other (24:96). Hence, if infants had used an absolute quantity heuristic, they 

should have approached the latter population, even though this population was less likely to lead to a 

pink lollipop as randomly drawn sample. Infants in this condition approached the sample drawn from the 

16:4 population, indicating that they did use the proportions of lollipop types to guide their action. 

Similarly, another control condition ruled out the possibility that infants used an avoidance heuristic based 

on a comparison of absolute numbers of non-preferred lollipops. In this condition, both populations 

contained three types of objects: the previously used pink and black lollipops, plus neutral (i.e. 

intermediately preferred) green lollipops. One population consisted of a mixture of 8 pink, 8 black and 64 

green lollipops, the other consisted of 8 pink, 12 black and 2 neutral lollipops. Infants intuitively preferred 
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the sample drawn from the latter population, indicating that they did not simply avoid non-preferred 

items, but instead compared the populations´ proportions in order to increase their chances of receiving 

a preferred item as randomly drawn sample2.  

Interestingly, however, a study with older children (Girotto, Fontanari, Gonzalez, Vallortigara, & 

Blaye, 2016) failed to find evidence for similar capacities in children aged between 3 and 4 years. These 

curious findings may be a first hint that the ability to reason about single-events develops in a non-linear 

fashion. They may, instead, also be explained by inhibitory control deficits in children aged between 3 and 

4, which might have caused them to intuitively react towards absolute quantities of preferred items, 

instead of reasoning about proportions. For the infants in Denison and Xu´s studies (2010a; 2014), by 

contrast, these inhibitory control deficits may have had less severe consequences, since they were actively 

hindered from immediately approaching one of the jars by their parents. In any case, more research with 

different age classes is necessary to further investigate the developmental trajectory of the ability to 

reason about single-event probabilities involving inferences from population to sample.  

The results of the described infant studies have two important implications: First, humans seem 

to possess the skill to use proportional information in order to reason from population to sample much 

earlier than previously assumed (Piaget and Inhelder, 1975), and this ability appears to be completely 

independent of the onset of verbal skills or any sort of mathematical education. Second, they revealed 

that the ability to reason about single-event probability was present in infants who had never experienced 

such events before. They therefore provide counterevidence to the frequentist position stating that 

humans can understand probabilities only as collections of experienced events (e.g. Cosmides & Tooby, 

1996; Gigerenzer & Hoffrage, 1995; see section 2.2. for discussion of the frequentist view). True statistical 

inferences, however, imply a genuine understanding of the relationship between populations and 

samples, i.e. a statistical inference mechanism should be able to draw inferences both from population to 

sample, as well as from sample to population.  

 

                                                           
2 One could argue, however, that infants did not act optimally in this condition. Their chosen population was more 
likely to lead to a preferred type of lollipop than the other population. However, the likelihood for a non-preferred 
lollipop was even higher. Hence, the most likely outcome was a non-preferred lollipop for the population chosen 
by the infants, and a neutral lollipop for the neglected one. 
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2.4.2. Reasoning from sample to population 

Infants´ ability to reason from sample to population has, to my knowledge, so far only been assessed using 

VOE looking time paradigms. In one study (Xu & Garcia, 2008), 8-month-old infants were presented with 

an opaque box, and watched an experimenter randomly drawing multi-item-samples from it. On 

alternating trials, she either removed 4 white and 1 red Ping-Pong balls from the box, or 1 white and 4 red 

Ping-Pong balls. Subsequently, she removed the box´s cover and revealed the contained population, 

which was a mostly white mixture for half of the infants, and a mostly red mixture for the other half. 

Infants reliably looked longer at the unexpected outcome, i.e. the population being mostly red and the 

sample being mostly white or vice versa. Therefore, when confronted with a multi-item sample, infants 

seemed to reason about the likely composition of the respective population. Again, control conditions 

ruled out that infants´ looking times were simply due to the perceptual mismatch between sample and 

population in the crucial condition. Another study used a slightly modified version of this task to test even 

younger infants (Denison, Reed, & Xu, 2013), and found that 6-month-olds, but not 4.5-month-olds 

succeeded. The authors suspected that the 4.5-month-olds´ failure was due to an inability to attend to 

the important parts of the scene, i.e. to the sampling event, which forestalled them from making accurate 

generalizations. Thus, it remains an open question, whether infants younger than 6 months would exhibit 

statistical reasoning abilities in an experiment with reduced task demands. 

 While the results of these two studies (Denison et al., 2013; Xu & Garcia, 2008) suggest that pre-

verbal infants can generalize from sample observations, they, in contrast to studies investigating the 

reverse ability, did not include controls for absolute quantity heuristics. More specifically, it is possible, 

for instance, that infants simply attended to the absolute number of, e.g. red balls, and their looking times 

were guided by a “more is more likely” rule. Future studies, therefore, should test conditions in which 

absolute and relative frequencies are disentangled to examine whether infants truly use proportional 

information, rather than absolute quantity heuristics, in order to reason from sample to population. 

Another alternative explanation for infants´ behavior could be that they were following a general-purpose 

heuristic known from research on adult statistical reasoning capacities: representativeness. In all but one 

of the described studies investigating reasoning capacities from population to sample and vice versa, 

infants could have used a mental shortcut like “the more a sample and a population resemble, the higher 

the probability that they have a sampling-relationship”. The sole exception is the study by Teglas and 

colleagues (2007): Here, infants looked longer at a sample that did resemble the population but was 

impossible due to a physical barrier separating it from the opening of the container. However, it is feasible 
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that infants in this particular condition considered the container as two separate sub-containers, each 

filled with a separate population. If viewed this way, infants could have applied the representativeness 

heuristic: “The sample should resemble the population located in the sub-container with an opening”.     

 In sum, developmental research has shown that pre-verbal infants are capable of making 

probabilistic inferences from population to sample and vice versa, and they seem to have an intuition 

about the probabilities of never experienced single-events. However, alternative explanations, in 

particular the application of a representative heuristic, could account for these findings. In case infants 

did rely on such mental shortcut, they should, like adults, exhibit predictable biases and errors. In the 

following section I will review studies which addressed this concern, and which extended the investigation 

of intuitive statistical reasoning by exploring the question whether infants can integrate knowledge from 

different cognitive domains into their statistical inferences.  

 

2.4.3. Integration of intuitive statistics with knowledge from other cognitive domains  

As described above, the Bayesian approach suggests that statistical inferences are likely to be part of a 

central learning mechanism, allowing an individual to draw inductive inferences and thereby to rapidly 

acquire new knowledge. A prerequisite for such an inductive learning mechanism is to be domain-general. 

Hence, an individual has to be able to not only consider proportional information, but also to flexibly take 

into account various types of domain knowledge in order to draw correct inferences. One central question 

arising from the previously described findings is, therefore, whether pre-verbal infants are able to 

integrate domain knowledge into their statistical inferences in order to judge whether an event is truly 

random and therefore probabilistic, or whether it is non-random and the outcome will be determined or 

influenced by other factors. 

 

2.4.3.1. Integration of physical information 

Research on the development of physical knowledge and reasoning has produced ample evidence that 

very young infants already possess a basic understanding of physical properties and regularities of objects. 

In accordance with the core principle of persistence (i.e. objects continue to exist as they are, both in 

space and in time (Baillargeon, 2008)) they, for instance, expect objects to follow rules of cohesion, 

boundedness, continuity and solidity (Aguiar & Baillargeon, 1999; Baillargeon, Spelke, & Wasserman, 
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1985; Newcombe, Huttenlocher, & Learmonth, 1999; Spelke, Breinlinger, Macomber, & Jacobson, 1992). 

The following studies examined whether infants can combine and integrate naïve physics with intuitive 

statistics in order to predict and judge the outcome of events. 

The above described study using the lottery machine paradigm (Teglas et al., 2007) is one example 

for a situation in which infants flexibly decided whether the outcome will be probabilistic and therefore 

based on the proportions of the two object types, or whether it will be determined by a physical 

constraint, namely a barrier separating the two object types. In this study, infants seemingly applied their 

knowledge about solidity in order to judge whether the event will be random or not. These findings, 

however, left open the question whether infants are truly able to integrate statistical and physical 

information, or whether they are only able to flexibly decide which source of knowledge will determine 

the outcome. In a slightly modified version of the same paradigm, Teglas and colleagues (2011) tested 12-

month-old infants for their ability to integrate spatiotemporal information in statistical inference. Again, 

the lottery machine contained a population of three yellow and one blue object, all of them bouncing in 

random patterns. In contrast to the previous study, this time the authors varied both the spatial 

arrangement of the objects right before the occlusion phase (i.e. either the single blue object or one of 

the three yellow objects was close to the opening), as well as the duration of occlusion (between 0.04 and 

2 seconds). Infants´ looking times were of graded nature: When the occlusion phase was short, infants 

seemed to judge the situation based on the spatial arrangement prior occlusion, i.e. they expected that 

object to exit, which was in closest proximity to the opening, regardless of whether it was of the minority 

or majority type. When occlusion lasted long, infants disregarded the spatial arrangement prior occlusion, 

and instead expected one of the majority objects to exit. When occlusion duration was intermediate, 

infants´ looking times reflected both the object proportions and their distance from the opening. Hence, 

infants integrated information about the ratio of objects, their physical arrangement and occlusion time 

to judge the outcome of an event. The authors computed a Bayesian model to assess the response of an 

ideal observer and found that infants´ looking time pattern was consistent with that of an ideal observer 

embodying abstract principles of object motion (also see Lawson & Rakison, 2013, for another example in 

which 12-month-old, but not 8-month-old infants seemed to integrate spatial information into their 

statistical inferences to predict the outcome of an event, suggesting that this ability develops at some 

point between 8 and 12 months). 

Using a similar paradigm as in Xu and Garcia´ s (2008) study, Denison and Xu (2010b) tested 11-

month-old infants for their capacity to integrate knowledge about a cohesion constraint into their 
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statistical inferences. More specifically, infants were first familiarized to the fact that one type of objects- 

green balls- were immobile (and therefore could not be sampled) due to a piece of Velcro attached to 

them. Subsequently, infants watched an experimenter drawing either four yellow and one red ball or one 

red and four yellow balls from an occluded box. When the experimenter revealed the content of the box- 

a population of balls with a 5:4:1 green to red to yellow ratio- infants looked longer at the 4:1 yellow to 

red sample compared to the 1:4 sample. This suggests that infants applied the cohesion constraint of 

green balls and computed probabilities over the remaining sets of objects. Importantly, when a different 

group of infants was presented with the exact same scene, but without the prior demonstration of 

immobility of green balls, they looked equally long at both samples, indicating that both violated their 

expectations since neither of the samples reflected the populations´ proportions. Using the same 

experimental setup, infants in a later study (Denison, Trikutam, & Xu, 2014) were either again familiarized 

with a deterministic physical constraint (all green balls are immobile), or with a probabilistic constraint 

(most, but not all green balls are immobile). The samples drawn from the population were either 4:1 green 

to red balls, or 1:4 green to red balls. When familiarized with the probabilistic constraint, infants looked 

longer at the sample that reflected the proportional composition of the population (4:1), but was unlikely 

because of the physical constraint. When the constraint was deterministic, i.e. one type of objects was 

completely immobile, infants looked equally long at both matching and non-matching samples, indicating 

that they found both samples equally unlikely, because both contained the immobile green balls. 

Therefore, infants were able to integrate a stochastic physical constraint rule into their probabilistic 

inferences, using the cohesion constraint of green balls to adjust the base-rate of balls available for 

sampling in their statistical computations.  

Results of these three studies (Denison et al., 2014; Denison & Xu, 2010b; Teglas et al., 2011) 

clearly demonstrated that infants flexibly considered their knowledge about naïve physics to compute 

rational statistical inferences. At the same time they provided evidence that infants did not use a mental 

shortcut to make these inferences, such as the representativeness heuristic: In Denison and Xu´s study, 

for instance, infants did apparently not expect the sample to resemble the population it came from (and 

thus be representative of it). They instead, just like an ideal Bayesian observer, used the physical 

constraint to adjust the base-rate of balls in the population (i.e. the prior probability), and were thus able 

to fully integrate probabilistic inference with physical reasoning to compute a posterior probability.  

The previously described study (Teglas & Bonatti, 2016) involving a ball bouncing in a box with 

one exit on one side, and three exits on the opposite side, also found infants´ looking time to be both 
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modulated by probabilistic (exit on the 1-hole side was possible, but unlikely) and deterministic 

components (exit on the 3-hole side was impossible due to a physical barrier). More specifically, infants 

looked longer at the scene when the ball exited at the 1-hole side compared to the 3-hole side when both 

events would have been possible, and they showed the reverse pattern when the ball exited the 3-hole 

side despite the fact that a physical barrier blocked those exits. The infants´ anticipatory looking behavior, 

however, indicated that they only anticipated the outcome when it was the most probable one, but not 

when it was the only possible one. The authors interpreted these curious findings as follows: Infants may 

anticipate events by programming their behavior, but they only do so when they can expect a gain in 

knowledge. By contrast, when they already know what the next step will be, e.g. when a ball can physically 

only exit via one way, they find no reason in programming their behavior ahead of time, because they 

already possess core knowledge of object solidity (e.g. Spelke et al., 1992). When interpreted this way, 

the results of this study suggest that in their first year of life, infants already know how to allocate their 

cognitive resources skillfully. More research is necessary to further explore this hypothesis.    

Together, the discussed studies (Denison & Xu, 2010b; Denison et al. 2014; Lawson & Rakison, 

2013; Teglas & Bonatti, 2016; Teglas et al., 2007, 2011) indicate that, at least by the age of 11 months, 

infants are capable of making statistical inferences that require the integration of naïve physics in order 

to compute a posterior probability.  

 

2.4.3.2. Integration of psychological information 

Results paralleling those just described for the physical domain were also found for the social domain: Xu 

and Denison (2009) presented 11-month-old infants with a task similar to the one used by Xu and Garcia 

(2008): Infants watched an experimenter drawing samples (in alternating trials either five white balls or 

five red balls) from an opaque population of Ping-Pong balls, and, as soon as the population´s content 

(mostly red balls) was revealed, the infants´ looking time at the scene was measured. In this study, infants 

were assigned to one of three conditions: In the random sampling condition, the experimenter drew 

samples randomly. Here, infants looked longer at the sample that did not match the population´s 

distribution (i.e. the white sample), replicating previous results (Xu & Garcia, 2008). In the other two 

conditions, infants first saw a short demonstration phase. In this demonstration, the experimenter 

explicitly expressed a preference for one type of balls (e.g. white), by picking only white balls from a 50/50 

set. Subsequently, in the test phase, she drew the sample from the opaque box. The difference between 
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the two conditions was that in the test phase of the non-random sampling condition, the experimenter 

looked into the box while sampling, whereas in the blindfold condition she drew blindly. Infants in the 

non-random condition looked longer at the sample containing only red balls, presumably because this 

sample was incongruent with the experimenter´s goal. In the blindfolded condition, by contrast, infants 

looked longer at the only white sample, apparently realizing that, although the experimenter expressed a 

preference for white balls, she could not act according to her preference because of her lack of visual 

access. Hence, infants´ expectation of a random sampling event was overridden when a biased 

experimenter drew with eyes open, but not when she drew with eyes closed. These results suggest that 

infants flexibly considered intuitive psychological knowledge to judge the sampling conditions and drew 

according statistical inferences.    

Infants´ sensitivity to sampling conditions was further demonstrated in a study with 15-month-

old infants (Gweon, Tenenbaum, & Schulz, 2010). Here, infants were presented with a transparent box 

containing a large population of rubber balls in either a 4:1 (group 1) or 1:4 blue to yellow ratio (group 2). 

In both groups, infants witnessed the experimenter removing three blue balls from the population and 

demonstrating that all of them squeaked when squashed. Subsequently, the infant was handed over a 

yellow ball. Infants who saw the 4:1 blue to yellow population were more persistent in trying to make the 

yellow ball squeak, compared to those infants who saw the 1:4 population. Hence, infants in the latter 

condition seemingly inferred that the sample containing three (blue) minority objects was more likely to 

have been removed intentionally in order to demonstrate their special squeaking property, and 

accordingly generalized the squeaking property to blue balls only. In the 4:1 condition, by contrast, the 

three blue objects were of the majority type, and were therefore more likely to have been drawn 

randomly. Therefore, infants had less reason to assume that the yellow balls would not squeak, too and 

therefore generalized the squeaking ability to the population as a whole. Impressively, when the 

experimenter only drew a single squeaking blue ball out of either of the populations before handing over 

a yellow one to the infant, the infants showed no difference in persistence to making the yellow ball 

squeak. This suggests that they intuitively knew that, while drawing three blue balls in a row out of a 

mostly yellow population is quite unlikely, drawing a single blue ball is certainly possible and does not give 

any reason to assume a non-random drawing event. Conclusively, infants already seem to possess some 

intuitive appreciation of sample sizes.  

A recent study further demonstrated that infants can use statistical information to infer an agent´s 

preferences (Wellman, Kushnir, Xu, & Brink, 2016). First, in a demonstration phase, 10-month-old infants 
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viewed an experimenter sampling five blue balls from a visible population consisting of either 80% blue 

balls (majority condition) or 20% blue balls (minority condition). Subsequently, in a new test scenery, the 

infants saw the same experimenter positioned between two transparent bowls: one containing only blue 

balls, the other containing only red balls. Infants in the minority condition looked longer at the scene when 

the experimenter picked a ball from the red bowl, seemingly violating their expectation that this person 

has a preference for blue balls and should act accordingly. Infants did not do so in the majority condition, 

indicating that they did not infer a preference from the initial demonstration event, since it was in 

accordance with the random sampling assumption. Importantly, the authors tested a third experiment, 

which was similar to the minority condition, but this time the experimenter sampled the five blue balls 

using a scoop. Thereby she unambiguously demonstrated that this unlikely event happened 

unintentionally. Accordingly, infants in this condition did not look differentially in test trials where the 

experimenter sampled blue or red balls. Hence, infants did not simply react to a difference in the 

experimenter´s behavior in the test compared to the demonstration phase; they instead apparently 

inferred a causal intentional state from a statistical pattern. (For similar findings with 20-month-old 

infants, toddlers and preschool children see Kushnir, Xu, & Wellman, 2010; Ma & Xu, 2011). 

Together, these three studies demonstrated that already at 10-11 months, infants use information 

about others´ intentions in order to judge whether drawing is random or not. Vice versa, they are also 

able to use a violation of the random sampling assumption to draw conclusions about others´ intentions 

and preferences. Thus, infants can flexible integrate knowledge about naïve psychology with statistical 

information in order to draw meaningful conclusions about the social world and form correct predictions 

about others´ actions. 

 

2.5. Conclusions 

Despite a long history of research demonstrating the limitations and weaknesses of humans´ probabilistic 

abilities, more recent developmental work revealed that even pre-verbal infants possess basic intuitive 

statistical skills and have a sophisticated understanding of the relationship of samples and populations: 

When seeing a population and a sampling process, infants draw conclusions about the resulting sample. 

When watching a sampling process yielding a sample, infants reason about the population the sample was 

drawn from. Finally, when infants are confronted with a population and see the resulting sample, they 

draw inferences about the sampling process (see Figure 1 for a schematic illustration of the triad between 
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populations, sampling processes, and samples). Moreover, pre-verbal infants can reason about never 

experienced single-event probabilities in accordance with Bayes rule. This indicates that they possess an 

intuitive sense of probability which they apply in uncertain situations, and this sense works without any 

informative past experience. Infants do not only show implicit signs of surprise when confronted with 

unlikely events, they also anticipate probabilistic outcomes and use their intuitive sense of probability to 

guide their actions. Furthermore, infants can integrate substantive domain-knowledge into a domain-

general probabilistic inference mechanism and can reason both about psychological and about physical 

variables when making statistical inferences. Relatedly, infants seem to have a random sampling 

assumption; if this random sampling assumption is violated, infants adapt their expectations accordingly. 

 

 

Figure 1 Schematic overview depicting the three possible directions of statistical inferences and evidence for their occurrence 
in human infants. 

 

Apart from the discussed literature on infants´ intuitive statistical inferences, there is also a great 

deal of research suggesting that infants and young children are extremely sensitive to statistical 

regularities in their environment and make use of statistical input in the context of, for example, word 

and scene segmentation (Kirkham, Slemmer, & Johnson, 2002; Saffran, Aslin, & Newport, 1996), language 

learning  (Lany & Saffran, 2010; Xu & Tenenbaum, 2007a, 2007b) and causal reasoning (Kushnir & Gopnik, 
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2005, 2007; Schulz, Bonawitz, & Griffiths, 2007). Together, these findings suggest that infants are 

equipped with an efficient and powerful domain-general statistical inference mechanism from very early 

on that guides their learning and helps them acquire their rapidly growing knowledge about the world. 

Contrasting previous research on adults, infants´ inferences do not seem to be guided by simple heuristics, 

neither are they based on simple mechanisms detecting observed frequencies of events. This indicates 

that, in sharp contrast to hypotheses derived from both the frequentist and the heuristics and biases 

approaches, at least in their most basic and naïve form, human intuitive statistics are a sophisticated and 

well-functioning tool kit adapted to draw general conclusions from sparse data and to use these 

generalizations to predict the outcome of events. Importantly, this form of intuitive statistics seems to be 

completely unrelated to language- children younger than 4 years correctly anticipate the most likely 

outcomes, use these anticipations to guide their actions and are surprised when they do not come true- 

but they are unable to verbally express these intuitions. One might even speculate that accurate implicit 

naïve statistical inferences may be overridden by mental shortcuts later in development, perhaps with the 

onset of language and symbolic knowledge, as well as with formal mathematical education (see Cesana-

Arlotti, Téglás, & Bonatti, 2012; Denison & Xu, 2012 for discussion of similar hypotheses). However, also 

for human adults, a slowly growing body of research suggests that statistical reasoning may not be as 

irrational as previously thought (e.g. Chater & Oaksford, 2008; Griffiths & Tenenbaum, 2006; Tenenbaum 

et al., 2011). 

The finding that humans seem to have an innate statistical inference mechanism, which works 

independently of language and education raises a crucial question: Is such an inference mechanism 

uniquely human, perhaps accounting for our unprecedented higher-level cognitive abilities and flexibility? 

Or is it part of our evolutionary heritage and we may share it with other animals, most notably our closest 

living relatives, the nonhuman great apes? In the following section I will review research indicating that 

great apes possess the basic prerequisite for statistical reasoning abilities, namely a sense for quantitative 

and numerical information.  
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3. The evolutionary origins of quantitative abilities 

“Our Western societies, ever since Euclid and Pythagoras, have placed mathematics 

at the pinnacle of human achievements. We view it as a supreme skill that either 

requires painful education or comes as an innate gift. In many a philosopher´s mind, 

the human ability for mathematics derives from our competence for language, so 

that it is unconceivable that an animal without language can count, much less 

calculate with numbers” 

(Stanislas Dehaene, 1997, p.28) 

Numerical information is omnipresent in the world and numbers are an integral part for even the simplest 

tasks in our daily life. We use numbers to quantify and measure objects and magnitudes, such as the 

amount of flour in a cake recipe or the distance from one city to the other. Numbers help us to rank and 

order things, like a grade in school or our place in a line. And finally, numbers allow us to understand and 

interact with the world in extremely sophisticated ways. For example, higher mathematics allows us to 

construct impressive architectural structures, to create and program artificial intelligence and to build 

statistical models to predict future events or to understand the basic processes that govern the inner 

workings of the universe.  

As Dehaene´s (1997) above statement demonstrates, for a long time in human history numerical 

abilities have been viewed as uniquely human and closely linked to language and education (see e.g. 

Descartes & Lafleur, 1960; Kant, 1781; Ross, 1908). And in fact, the largest part of our sophisticated 

number skills relies on our exact symbolic number system, which is culturally learned and which enables 

us to represent numbers precisely via counting and number words (Dehaene, 1992). However, in the 

middle of the last century, early ethologists found first evidence for basic quantitative abilities in rats, 

birds, and monkeys. One of the earliest successful projects leading to, at that time, surprising results was 

led by a famous ethologist, Otto Koehler, and showed that a trained raven (Corvus corax) could 

differentiate containers depicting five points from containers depicting other numbers, even when shape, 

size and location of the points was varied (Koehler, 1943). Roughly a decade later, Hicks (1956) used a 

similar paradigm to test rhesus macaques (Macaca mulatta). He found that monkeys could discriminate 

cards depicting three objects from distractor cards that had up to six objects painted on them and, just as 

for the raven, performance held even when different types of stimuli and different spatial arrangements 

were used, demonstrating a concept of “Threeness” in monkeys. Using an extended operant conditioning 
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task, (Mechner, 1958) trained rats (Rattus norvegicus) to press one of two levers a fixed number of times 

before switching to the second one to receive a food reward. The animals learned to press the first lever, 

e.g. four times in a row before switching. This also worked with higher numbers up to 16. A follow-up 

study revealed that rats were really using numerical rather than temporal parameters to estimate the 

required amount of presses (Mechner & Guevrekian, 1962). However, the rats´ counting always remained 

rather imprecise; even after a considerable amount of training, rats trained on the number 4 still at times 

pressed the lever three, five or six times in some trials (less than four times was rare, due to a penalty that 

rats received for early switching). For rats trained on number 16, responses even ranged from twelve to 

twenty-four (Mechner, 1958). Later studies demonstrated that animals could also use numerical 

information presented in different modalities: Church (1984) trained rats to press the first of two levers 

when they heard an auditory sequence of two tones or a visual sequence of two light flashes, and the 

second one when they heard four tones or saw four light flashes, respectively. To get insights in whether 

these two pieces of knowledge were coded separately from each other in the rats´ brains or rather 

encoded as a more abstract numerical rule, the rats were next presented with mixtures of auditory and 

visual stimuli. Intriguingly, subjects intuitively generalized their knowledge across modalities and pressed, 

e.g. the second lever after hearing two tones and seeing two light flashes. These four studies were among 

the first to convincingly demonstrate a “concept of number” in nonhuman animals, which seems to be 

independent of modality and showed that animals might even be capable of simple arithmetic operations. 

In addition, they already gave some insights into the cognitive representation of quantity and its 

signatures.  

Until today, the assessment of animal numerical and quantitative abilities has become 

extraordinarily broad and we now know that basic quantity assessments are relevant for basically all 

species of animals ranging from insects (e.g. honeybees (Apis mellifera; Dacke & Srinivasan, 2008; Pahl, 

Si, & Zhang, 2013)) and fish (e.g. mosquitofish (Gambusia holbrooki; Agrillo, Dadda, Serena, & Bisazza, 

2008; Agrillo, Piffer, & Bisazza, 2011; Dadda, Piffer, Agrillo, & Bisazza, 2009); anglefish (Pterophyllum 

scalare; Gómez-Laplaza & Gerlai, 2011a, 2011b, 2013), guppies (Poecilia reticulata; Piffer, Agrillo, & Hyde, 

2012)) over amphibians (salamanders (Plethodon shermani; Krusche, Uller, & Dicke, 2010; Plethodon 

cinerus; Uller, Jaeger, Guidry, & Martin, 2003), frogs (Bombina orientalis; Stancher, Rugani, Regolin, & 

Vallortigara, 2015) and birds (e.g. pigeons (Columba livia; Emmerton, 1998), robins (Petroica longipes; 

Garland, Low, & Burns, 2012), chicks (Gallus gallus domesticus; Rugani, Regolin, & Vallortigara, 2008), grey 

parrots (Psittacus erithacus; Pepperberg, 2006)) to various species of mammals (e.g. bears (Ursus 
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americanus; Vonk & Beran, 2012), dolphins (Tursiops truncatus; Jaakkola, Fellner, Erb, Rodriguez, & 

Guarino, 2005; Kilian, Yaman, Fersen, & Güntürkün, 2003), horses (Equus caballus; Uller & Lewis, 2009), 

elephants (Elephas maximus; Perdue, Talbot, Stone, & Beran, 2012). 

This widespread emergence of quantitative abilities across the animal kingdom reflects the clear 

evolutionary advantages such capacities bring in diverse areas of an animal´s life. Numerous studies using 

field observations and experiments confirmed the adaptive value of quantitative competences in a variety 

of different contexts. The perhaps most obvious advantage of the ability to compare quantities concerns 

foraging decisions: Being able to discriminate and select the larger of two amounts of food will maximize 

food intake and thereby directly increase survival rates (e.g. Stephens & Krebs, 1986). Not surprisingly, 

there are studies showing that wild animals intuitively select the larger of two amounts of food (e.g. wild 

robins, Petroica australis; Hunt, Low, & Burns, 2008). But quantitative abilities can also be applied in social 

contexts, for example to assess chances of winning a fight with conspecifics. Playback-experiments 

demonstrated that a variety of social species appear to be sensitive to the number of calls of individuals: 

For instance, chimpanzees (Wilson, Britton, & Franks, 2002), lions (Panthera leo; McComb, Packer, & 

Pusey, 1994), hyenas (Crocuta crocuta; Benson-Amram, Heinen, Dryer, & Holekamp, 2011), wild dogs 

(Canis lupus familiaris; Bonanni, Natoli, Cafazzo, & Valsecchi, 2011), and howler monkeys (Aloutta pigra; 

Kitchen, 2004) seem to be able to assess the quantity of opponents in intergroup conflicts, and are more 

likely to engage in social confrontations when their own group outnumbers that of their opponents. In 

the context of successful mating, bank voles (Myodes glareolus) adjust their reproductive strategy to the 

level of sperm competition, i.e. the more other males are present the more sperm is produced by each of 

them (Lemaître et al., 2011). Lastly, numerical abilities are probably highly beneficial in the context of 

anti-predator strategies. For example, redshanks (Tringa tetanus) are less likely to be predated when they 

are part of a larger flock, suggesting that individuals which are able to select the larger social group have 

a clear fitness advantage (Cresswell, 1994). Relatedly, different species of fish were shown to be able to 

place themselves into the larger of two present shoals to achieve greater safety (Agrillo et al., 2008; 

Gómez-Laplaza & Gerlai, 2011b, 2011b). 

While all these examples highlight the fitness benefits quantitative abilities may bring, they are 

unable to control for the use of non-numerical cues, that is, individuals may (and most likely do) use 

information that is confounded with number (such as area, duration, volume, intensity of smell, etc.), but 

not on number per se to make decisions (also see section 3.3.1.2. for further discussion of this topic). To 

get deeper insights into the extent and foundation of nonhuman numerical abilities, it is therefore 
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essential to consider laboratory experiments carefully controlling for various types of confounding 

information.  

In the following, I will review some of the most important studies regarding quantitative cognition in 

nonhuman primates. First, I will discuss research focusing on the cardinal aspect of number, i.e. the ability 

of great apes and monkeys to estimate and judge absolute and relative quantities. Second, I will 

summarize studies investigating whether and how nonhuman primates can perform basic operations on 

their quantity representations, namely addition and subtraction, and whether they can represent 

quantities as proportions. Lastly, I will discuss what we know about the cognitive mechanisms and 

neurobiological foundation of numerical abilities. Considering the impressive breadth of the field, the aim 

of this chapter is not to be an exhaustive literature overview. Rather, I selected some of the most 

important studies that are worth to be mentioned with regard to the topic of this dissertation. Due to this 

criterion, I forwent to include research focusing on the ordinal aspect of number, that is “the ability to 

place objects in a series on the basis of some quantitative property (e.g. from short to tall) and, perhaps, 

to identify certain places in the series (e.g. the third place, including such things as placing group mates in 

dominance hierarchies)” (Tomasello & Call, 1997, p. 137) Also, I did not include literature demonstrating 

counting-like abilities in animals. For more exhaustive literature reviews see, e.g. Beran (2017) or Kadosh 

and Dowker (2015).3  

 

3.1. Estimating and comparing quantities 

The capacity of animals to estimate and judge quantities can be either assessed as absolute or as relative 

quantity judgments. Studies investigating absolute quantity judgments usually train the animal to choose 

stimuli containing a certain quantity of items over stimuli depicting any other quantity. The above-

mentioned study by Hicks (1956) is an early example for such research. Importantly, the author controlled 

for the use of other non-numerical features like spatial configuration or surface area and could therefore 

convincingly conclude that the monkeys were able to judge the numerousness of objects. Until today, 

similar matching-to-sample tasks have been conducted with a variety of species, among them orangutans 

                                                           
3I will use the following nomenclature: The terms quantity and amount refer to any numerical or non-numerical 
magnitude. In many studies subjects could rely on either of the two, therefore I will use the terms quantity and 
amount as synonyms in such cases. The terms numerousness and numerosity, by contrast, only refer to discrete, 
i.e. countable quantities, and not to continuous magnitudes. Both will be used here as synonyms, neither of those 
is meant to imply an underlying concept of number.    
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(Vonk, 2014) and rhesus macaques (Jordan & Brannon, 2006). Their findings demonstrated that monkeys 

and apes used numerical information to match the sample, and they did so not only with visually 

presented stimuli, but also with auditory stimuli: when monkeys heard a certain number of vocalizations 

they preferentially and intuitively looked at a video depicting the number of conspecifics that matched 

the number of vocalizations (Jordan, Brannon, Logothetis, & Ghazanfar, 2005). Similarly, they also chose 

a matching number of arbitrary items on a computer screen after hearing a certain number of sounds 

(Jordan, MacLean, & Brannon, 2008). Hence, nonhuman primates seem to be able to extract and match 

numerical information from different modalities. Another famous study demonstrated a chimpanzee´s 

capacity to use Arabic numerals to correctly label absolute quantities of items (Matsuzawa, 1985). In this 

study, language-trained4 chimpanzee Ai was taught to associate Arabic numerals with the according 

number of objects. She could correctly label the number of any type of objects up to numbers of six 

(similarly, African grey parrot Alex could verbally label the number of up to six objects (Pepperberg, 1987)). 

These and other studies demonstrated that nonhuman primates do have some understanding of absolute 

cardinality. 

The perhaps most frequently assessed numerical capacity in nonhuman animals is relative 

quantity judgment, which usually involves choosing sets of objects based on a more-than or less-than rule. 

As mentioned above, a large variety of species has demonstrated the ability to spontaneously choose the 

larger of two quantities of food (e.g. Hunt et al., 2008; Krusche et al., 2010; Perdue et al., 2012). 

Chimpanzee Lana, for example, was allowed to choose which of two quantities of cereals she wanted to 

receive (Dooley & Gill, 1977). Lana chose the larger of the two quantities when each set consisted of up 

to ten pieces. Her performance declined, however, when the magnitude of difference between the two 

quantities was small and the set sizes were close to the upper limit of ten pieces. Call (2000) tested three 

orangutans for their ability to select the larger of two sets of food (between one and six items each) when 

both sets could only be viewed one after the other. More specifically, the first quantity was presented in 

a container, and only after a lid was placed on this container, the second container holding the second 

quantity was shown and likewise covered with a lid. Only then were apes allowed to choose between the 

two covered containers. Apes successfully chose the one holding the larger amount of food, suggesting 

that they did not just use a perceptual mechanism to make their decision, but rather used some sort of 

mental representation. Adding on this finding, another study (Beran, 2001) investigated two chimpanzees´ 

                                                           
4 The term “language-trained” refers to individuals, who were trained to communicate with humans via sign 
language, lexigrams or labelled plastic chips.   
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ability to select the larger of two quantities when each item was presented separately, one at a time. 

More precisely, each food item was shown to the ape and then placed into one of two opaque containers. 

Only after both containers were fully baited (between one and nine items each), the chimpanzee was 

allowed to choose between them. Hence, subjects had to mentally keep track of the total quantity in each 

set. Again, they successfully chose the larger of the two quantities, suggesting that apes mentally 

represented each quantity, even though they were never entirely visible at once. Just as in previous 

studies, chimpanzees´ performance was strongly ratio dependent, with decreasing performance the 

smaller the relative difference between quantities was. Similar results were found for other great ape 

species: Hanus and Call (2007) demonstrated that bonobos, gorillas, orangutans, and chimpanzees chose 

the larger of two amounts of food, regardless of whether the two sets were presented simultaneously or 

sequentially (quantities 1 to 10). Again, the ratio between the two quantities reliably predicted the apes´ 

performance.  

Apes are not only able to use visual, but also auditory information to judge quantities: Beran 

(2012) presented chimpanzees with an occluded version of the item-by-item task (Beran, 2001). Here, 

chimpanzees only heard individual items falling into different containers instead of seeing them and hence 

were prevented from visually tracking the amount of food. Again, subjects were able to pick the container 

holding the larger amount of food, provided that the ratio between quantities was large enough. 

Importantly, chimpanzees even succeeded with comparisons between a fully visible set and a sequentially 

presented auditory set, demonstrating that they did not use the duration of presentation as cue for the 

amount of food. These studies involving sequential presentation of food items (Beran, 2001, 2012; Call, 

2000; Hanus & Call, 2007) demonstrated that great apes were truly using an enumerative process, rather 

than a simple perceptual mechanism that provides parallel apprehension of quantity (“subitizing”, see 

Mandler & Shebo, 1982).  

Similar studies have been conducted with different monkey species and lemurs (capuchin 

monkeys (Cebus apella; Addessi, Crescimbene, & Visalberghi, 2008; Beran, Evans, Leighty, Harris, & Rice, 

2008; Evans, Beran, Harris, & Rice, 2009; vanMarle, Aw, McCrink, & Santos, 2006), baboons (Papio anubis; 

Barnard et al., 2013), lemurs (Eulemur mongoz: Lewis, Jaffe, & Brannon, 2005)) and found that they, like 

apes, chose the larger of two food quantities, regardless of whether they were presented simultaneously 

or sequentially, and all found a ratio dependent performance. These and other findings outside the 

primate order (e.g. Abramson, Hernández-Lloreda, Call, & Colmenares, 2013; Dadda et al., 2009; Garland 

et al., 2012; Hunt et al., 2008; Perdue et al., 2012) indicate that the capacity to form and compare 
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representations of food quantities developed very early in animal evolution, long before the emergence 

of human and nonhuman great apes.  

Choosing the larger of two quantities of food seems to be an intuitive capacity, but are nonhuman 

primates also able to indicate the smaller of two quantities? Boysen and Berntson (1995) addressed this 

question with two laboratory-trained chimpanzees, Sheba and Sarah. In the test, both chimpanzees were 

allowed to choose between two quantities of candy. The crucial difference to previous studies was that 

the selected quantity was given to the other individual, and they were left with the one they had not 

indicated. Interestingly, both subjects had massive difficulties to learn to select the smaller of two food 

quantities in order to receive the larger one. However, Sheba had previously learned to associate 

quantities with Arabic numerals. When she was given the same task with Arabic numerals instead of food 

items, she suddenly did select the smaller Arabic numeral to receive the larger food reward (also see 

Boysen, Berntson, & Hannah, 1996). This study demonstrated one of the disadvantages of using food 

items as stimuli: Food is a very salient stimulus and, while it is clearly advantageous to induce intuitive 

responses that do not require any training, it may at the same time mask some of apes´ and monkeys´ 

competences because nonhuman primates have difficulties to inhibit their natural tendency to reach 

towards the larger food amount. Another study testing Old world monkeys (olive baboons and long-tailed 

macaques, Macaca fascicularis) in a quantity comparison task confirmed this presumption and found that 

the monkeys´ performance was enhanced in conditions in which inedible objects, instead of food items, 

were used (Schmitt & Fischer, 2011). Another disadvantage of using food items as stimuli is that the 

animals´ judgments in these studies were most likely not purely numerical. Instead, individuals probably 

used a combination of different kinds of information, among them number, surface area, duration of 

stimulus presentation (in the case of sequentially presented food items) etc. to judge the relative quantity 

of food items. However, there are also studies demonstrating animals´ abilities to discriminate quantities 

of arbitrary objects, while controlling for other stimulus dimensions. For example, Thomas and Chase 

(1980) found that squirrel monkeys (Saimiri sciureus) could be trained to discriminate cards displaying 

arrays of two to nine dots. The monkeys learned to always choose the card depicting the smaller of two 

numerosities, while he controlled for spatial arrangement, area and brightness. A more recent study 

(Beran, 2007) tested rhesus macaques with a computerized version of the item-by-item task (Beran, 

2001). Monkeys saw animations of items being sequentially dropped into two opaque containers and then 

reliably chose the digital container holding the larger quantity. Importantly, in contrast to previous non-

computerized studies, here the author controlled for non-numerical cues such as duration and surface 
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area. Even more convincingly, another touchscreen study (Cantlon & Brannon, 2007a) showed that 

monkeys did in fact pay more attention to numerical information than to other properties of items. More 

specifically, monkeys were tested in a matching-to-sample task with more than one correct answer, i.e. 

the sample could either be matched in terms of its numerosity or in terms of a non-numerical property 

such as color, surface area or shape (e.g. two stars could be matched either with two squares or with four 

stars). Monkeys based their choice intuitively and consistently on numerical values, suggesting that they 

spontaneously and routinely represent numerical properties of their environment (but see Clearfield & 

Mix, 1999 for a study finding contrasting results with human infants).  

In sum, studies on absolute and relative quantity judgments found evidence that nonhuman 

primates cannot only represent and discriminate quantities (i.e. magnitudes), they can also represent 

purely numerical information, when non-numerical cues are controlled for and they can extract numerical 

information from different modalities. Furthermore, there are also studies showing that monkeys and 

apes are capable of size judgments (Schmitt, Kröger, Zinner, Call, & Fischer, 2013; Menzel, 1961, Menzel 

& Davenport, 1962), judgments of other continuous quantities such as liquids (Beran, 2010; vanMarle et 

al., 2006), and they have some understanding of conservation of quantity (Call & Rochat, 1996; Muncer, 

1983; Suda & Call, 2004, 2005). For the purpose of this dissertation these studies are less relevant than 

other sections of numerical cognition, therefore I will not go into further detail (please refer to, e.g. Beran, 

2017 for a review).   

 

3.2. Arithmetic operations 

According to Gallistel and Gelman (1992, 2000) a true concept of number involves the ability to perform 

operations or procedures on numbers. In the following I will review studies investigating whether great 

apes and monkeys are capable to sum and subtract quantities and whether they can represent quantities 

as proportions or fractions. 

 

3.2.1. Summation and subtraction 

One of the earliest and most impressive examples for arithmetic abilities in a nonhuman animal is that of 

home-raised chimpanzee Sheba (Boysen & Berntson, 1989). Sheba not only learned to use Arabic 

numerals to label sets of any kinds of objects. She was also able to label summed sets of objects which 
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were distributed across different locations. More specifically, Sheba´s task was to move among three 

“foraging” sites, in two of which a small number of food items was hidden. After she had observed the 

food at each location, she was asked to return to a home base and pick the card with the Arabic numeral 

that was equal to the sum of the food items she had seen. Sheba was able to give the correct numeral 

label for the total number of items (for sums of up to four items), even though she had never seen them 

all at once. Moreover, she also passed the task when, instead of food items, she found Arabic numerals 

at each side.  

Since this early research, a variety of different methodologies have been applied to study 

nonhuman primates´ ability to sum and subtract quantities. One type of studies used the violation of 

expectation looking time paradigm, which was originally developed to investigate human infants´ capacity 

for basic arithmetic operations (Wynn, 1992). In a study by Hauser, MacNeilage, and Ware (1996), for 

example, free ranging rhesus macaques saw certain quantities of food items, e.g. two eggplants, on a 

stage. Then, the experimenter blocked the subjects view with a screen and visibly added or removed, e.g. 

one eggplant to or from the stage. Subsequently the screen was removed and the subject saw the 

outcome. Results showed that monkeys looked longer at impossible outcomes, e.g. 2-1=2, compared to 

possible outcomes, e.g. 2-1=1 (also see Hauser & Carey, 2003). In a similar study (Flombaum, Junge, & 

Hauser, 2005) rhesus macaques also looked longer at impossible addition and subtraction outcomes when 

they contained larger quantities (e.g. 4+4=4 vs. 4+4=8). Thus, monkeys seem to be able to track the total 

number of objects behind a screen when subsets of items are added or removed.  

Another type of studies used more explicit choice tasks to investigate great apes´ ability to 

perform basic arithmetic operations. For instance, two language-trained chimpanzees were presented 

with two sets of chocolate and were allowed to choose which of the sets they wanted to consume 

(Rumbaugh, Savage-Rumbaugh, & Pate, 1988; Rumbaugh, Savage-Rumbaugh, & Hegel, 1987). Subjects 

chose the larger quantity of chocolates, even when each of the two sets was split in a pair of food wells. 

For instance, they preferred a 4+3 pair over a 5+1 pair, indicating that they compared the total quantity 

instead of choosing the set containing the largest subset. Importantly, however, in this study numerical 

information was confounded with spatial volume (as often in studies using food items as stimuli), hence 

it remains an open question whether subjects truly added individual numbers, or whether they rather 

compared the total volume of food items in both sets. More recent studies controlled for such perceptual 

cues by presenting items sequentially, without the subject ever seeing the two sets to be compared in 

their entity. For example, in the previously described study (Beran, 2001), chimpanzees watched while 
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one to six food items were placed in each of two opaque containers. Subsequently, another one to six 

food items were added to each of the two containers. Chimpanzees reliably chose the cup holding the 

larger quantity of food, even when each quantity was presented in three subsets (e.g. 2+2+3 vs. 3+4+1), 

or when one item was removed from one of the sets before the chimpanzee made her choice. A similar 

study found comparable results for orangutans (Anderson, Stoinski, Bloomsmith, & Maple, 2007; also see 

Anderson et al. (2005) for a study on gorillas).  

A different approach to investigate nonhuman primate arithmetic without using food items as 

stimuli is applying touchscreen setups. For example, Cantlon and Brannon (2007b) tested rhesus 

macaques and humans in the same matching-to-sample task: Subjects were shown a sample image and, 

after a short delay, a second sample image. Subsequently, they were offered a choice between two arrays, 

one of which was the sum of the two sample arrays. Both humans and monkeys succeeded in this task, 

even though non-numerical cues like cumulative surface are were controlled for. And, interestingly, 

performance of monkeys and humans followed very similar patterns: Both showed a ratio-dependent 

performance, i.e. increasing accuracy with larger, compared to smaller relative differences between 

quantities.  

 

3.2.2. Understanding proportions 

Another interesting arithmetic operation that has attracted less attention in comparative research 

compared to summation and subtraction is understanding proportions. Humans frequently make use of 

proportional information in various everyday situations, for example to calculate the discount price of a 

dress during summer sales or when we mix a cocktail using 1/3 alcohol and 2/3 juice. Despite the fact that 

developmental research has shown that children have difficulties to learn the meaning of proportional 

information (e.g. Hartnett & Gelman, 1998; Siegler, Fazio, Bailey, & Zhou, 2013) comparative research has 

produced some evidence that nonhuman primates have a basic understanding of proportions. 

One of the most famous examples in this field stems from an early study with language-trained 

chimpanzee Sarah demonstrating an understanding of abstract number concepts (Woodruff & Premack, 

1981). In a matching-to-sample task, Sarah was first trained, among two available objects, to select the 

one that was physically identical to a third one. Once the ape had mastered this simple task, she was 

tested in more abstract versions, with the two choice stimuli being physically different from the sample 

stimulus, but one of them depicting the same fraction. For instance, the sample was a glass half-filled with 
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liquid, and the subject could choose between half an apple and three-quarters of an apple. The 

chimpanzee matched the half apple to the half-filled glass and did the same with other pairings of the 

fractions 1/2, 3/4, and 1/4, independent of the type of the stimuli to be paired. The authors also tested 

four younger non-language-trained chimpanzees, all of which failed in the abstract version of the task, 

suggesting that language training may have facilitated Sarah´s learning of magnitude relations.  

A general understanding of proportions, though, does not depend on language. Vallentin and 

Nieder (2008) tested rhesus monkeys and human adults in spatial proportion discrimination task. In a 

delayed matching-to-sample paradigm, proportions were presented as two horizontal bars. The relation 

of the length of the two bars specified one of four proportions: 1:4, 2:4, 3:4 or 4:4. Monkeys learned to 

discriminate these proportions at a precision comparable to that shown by human participants. Moreover, 

monkeys could transfer the learned discrimination rule to new stimuli with novel ratios (3:8 and 5:8), 

demonstrating an abstract understanding of proportionality. Another study tested rhesus macaques in a 

task in which proportions were specified as numbers of items (Drucker, Rossa, & Brannon, 2016). Monkeys 

were trained in a touchscreen setup to choose one of two arrays, namely the one with a greater ratio of 

positive to negative stimuli, in order to receive a reward. After the training, subjects were able to transfer 

this proportional rule to new stimuli, regardless of the absolute number of stimuli in each array. 

Importantly, the authors controlled for the use of non-numerical cues, such as surface area. Moreover, 

both accuracy and reaction time were modulated by the ratio between ratios: The higher the ratio 

between the two proportions, the faster and better was the monkeys´ response. Very similar results have 

been found in a study testing human infants in a looking time paradigm (McCrink & Wynn, 2007). After 

habituating them with multiple examples of a single ratio, infants were able to discriminate between new 

examples of this ratio and novel ratios. Again, performance was ratio-dependent; infants responded more 

accurately, the higher the ratio between ratios was, regardless of the absolute number of stimuli within 

the arrays. 

The striking similarity of human and nonhuman performance patterns in this and other non-verbal 

quantity-related tasks, clearly suggest not only that quantitative abilities are an evolutionary ancient 

capacity, but also that they seem to share the same cognitive foundation in humans and nonhuman 

primates. 
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3.3. The cognitive foundation of quantitative abilities 

As the previous parts of this chapter demonstrated, nonhuman primates share with humans the capacity 

to represent numerical information from different modalities and are even able to perform mathematical 

operations on these representations. This raises a fundamental question: What is the cognitive foundation 

of these capacities? Two candidate mechanisms have been proposed and are frequently assessed in 

comparative studies: The analogue magnitude system (or approximate number system, see section 

3.3.1.2.) and the object file system. In the following I will explain the two and discuss the evidence we 

have to date for each of them. 

 

3.3.1. Analogue magnitude system 

3.3.1.1. Signatures and empirical evidence 

Many of the previously described studies investigating quantitative abilities in a variety of different 

species and contexts revealed striking and stable parallels in the performance of human and nonhuman 

subjects: Performance in quantitative tasks is generally not exact, but approximate, with increasing 

inaccuracy the larger the quantity to be represented. Recall the initially mentioned experiment on rats 

(Mechner, 1958). The rats learned to press a lever a fixed number of times, but their quantity assessment 

was imprecise: When trained on number four, responses ranged from three to six; when trained on 16, 

the rats pressed the lever between twelve and 24 times (note that subjects tended to over- rather than 

underestimate the number of presses because underestimations were punished). The apparently 

increasingly imprecise representation leads to characteristic signatures in quantity discrimination tasks: 

Performance generally improves, the larger the ratio between the two quantities to be discriminated. For 

example, when humans and rhesus monkeys were tested in the same matching-to-sample touchscreen 

task, both their accuracy and their reaction time were likewise modulated by the ratio of the two 

quantities to be compared (Cantlon & Brannon, 2007b), with increasing performance and faster responses 

the larger the relative difference was. Similar ratio dependent performances were found in a wide range 

of studies requiring subjects to compare quantities (e.g. Beran 2001, 2012; Dooley and Gill, 1977; Hanus 

& Call, 2007; Perdue et al., 2012) or proportions (e.g. Drucker et al. 2016; McCrink & Wynn, 2007). These 

conserved signatures of quantity representations have been traced back to a common cognitive 

mechanism- the analogue magnitude system.  
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The analogue magnitude system represents number (and also other magnitudes like duration or 

space) by a mental magnitude that is roughly proportional to and thus a direct analogue of the number 

of items in the set being enumerated (see, e.g. Carey, 2009; Dehaene, 1997). It thus enables individuals 

to estimate and compare arbitrarily large quantities, but only in an approximate way (e.g. Nieder & 

Dehaene, 2009). Its accuracy follows Weber´s Law: Discriminability of two sets varies as a function of the 

ratio of the set sizes to be compared, independently of their absolute numerosity (e.g. Cantlon & Brannon, 

2006, 2007b). For example, if a subject can discriminate 2 from 4 objects, it is also able to discriminate 10 

from 20 or 500 from 1000. This fundamental characteristic yields specific signatures that can be used to 

identify the involvement of this system in cognitive tasks. The fact that these signatures have been found 

in a large variety of species, ranging from fish (Buckingham, Wong, & Rosenthal, 2007) and birds (Ain, 

Giret, Grand, Kreutzer, & Bovet, 2009; Rugani, Cavazzana, Vallortigara, & Regolin, 2013) to monkeys 

(Barnard et al., 2013; Cantlon & Brannon, 2007b), and great apes (Beran, 2004; Call, 2000; Hanus & Call, 

2007), clearly suggests that the analogue magnitude system is an evolutionary ancient mechanism (see 

Beran, 2017 for a review).  

In humans, the analogue magnitude system is present from birth (Izard et al. 2009) and its 

accuracy seems to improve over development (Halberda & Feigenson, 2008; Halberda, Ly, Wilmer, 

Naiman, & Germine, 2012; Libertus & Brannon, 2010; Odic, Libertus, Feigenson, & Halberda, 2013; Xu & 

Spelke, 2000). One open question that is still debated for both human and nonhuman species is whether 

the scaling that occurs in quantitative representation through the analogue magnitude system is linear, 

with increasing variability for larger magnitudes (e.g. Brannon, Wusthoff, Gallistel, & Gibbon, 2001; 

Gibbon & Church, 1981; Whalen, Gallistel, & Gelman, 1999), or whether it is logarithmic, with a 

logarithmic compression of the mental number line which is used for numerical representations (e.g. 

Dehaene, 2003; Roberts, 2006; also see Cantlon, Cordes, Libertus, & Brannon, 2009 and Dehaene, Izard, 

Spelke, & Pica, 2008 for discussion). 

 

3.3.1.2. Analogue magnitude vs. approximate number system 

While there is general consensus about the existence of the analogue magnitude system and its 

involvement in quantitative judgments (see, e.g. Carey, 2009 for a review), there are still some highly 

debated issues regarding its exact nature. One central question is whether this system is restricted to 

numerosity alone and can therefore be described as an approximate number system (ANS) in the more 
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narrow sense. Alternatively, it could be a system with broader reach, representing all kinds of discrete 

and continuous magnitudes. This is related to the broader debate of whether numerical cognition is a 

quintessential cognitive domain with a specialized cognitive mechanism or whether the analogue 

magnitude system is part of a broad domain in which all quantitative dimensions share computational 

mechanisms (see, e.g. Cantlon, Platt, & Brannon, 2009; Lourenco, 2015 for reviews).  

In virtually every naturally occurring situation numerical information is confounded with at least 

one continuous factor. For example, the longest line at the supermarket counter is usually also the one in 

which most people stand. Similarly, the bowl containing the larger number of cherries, is most likely the 

fuller one. Relatedly, the group of chimpanzees numbering the most members will also be the loudest 

one. So, does it, from an evolutionary perspective, even make sense to develop distinct cognitive systems 

for numerical and non-numerical magnitudes? Also, numerical and non-numerical magnitudes such as 

duration and surface area share some structural similarities, namely their analogue format. This leads to 

approximate representations with signatures obeying Weber´s law, as cognitive research on humans has 

demonstrated. For instance, human adults exhibit very similar, ratio-dependent signatures when 

discriminating durations, distances or physical sizes, all following Weber´s law (e.g. Droit-Volet, Clément, 

& Fayol, 2008; Fias, Lammertyn, Reynvoet, Dupont, & Orban, 2003; Henmon, 1906). On the individual 

level, performance in numerical discrimination tasks seems to be correlated with performance in tasks 

requiring a discrimination of, e.g. surface area or line length, even when controlling for other factors, such 

as verbal competence (DeWind & Brannon, 2012; Lambrechts, Walsh, & Wassenhove, 2013; Lourenco & 

Bonny, 2014; Lourenco, Bonny, Fernandez, & Rao, 2012; but see Gilmore, Attridge, & Inglis, 2011). Similar 

as human adults, pre-verbal infants have been found to have the same discrimination thresholds for 

numerical and non-numerical magnitudes such as length of a line, spatial extent, and duration of a tone 

(Brannon, Lutz, & Cordes, 2006; Brannon, Suanda, & Libertus, 2007; de Hevia & Spelke, 2010; vanMarle & 

Wynn, 2006). The developmental trajectories of such continuous and discrete magnitude discrimination 

abilities seem to run parallel, with similar and simultaneous improvements of accuracy for, e.g. numerical 

values and duration (Bonny & Lourenco, 2013; Droit-Volet et al., 2008; Holloway & Ansari, 2008). 

Furthermore, some studies showed that pre-verbal infants generalize regularities across magnitudes (e.g. 

de Hevia, Izard, Coubart, Spelke, & Streri, 2014; de Hevia & Spelke, 2010; Izard, Sann, Spelke, & Streri, 

2009; Srinivasan & Carey, 2010). For example, infants intuitively transferred an ordering rule from 

numerical values to line lengths: Infants who were familiarized with ascending numerosities, looked 

longer at descending compared to ascending line lengths and vice versa (de Hevia & Spelke, 2010). 
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Similarly, infants associated larger temporal durations to larger spatial extent (Srinivasan & Carey, 2010). 

All these factors speak in favor of an at least “partially overlapping” system for the processing of discrete 

and continuous quantities.   

On the other hand, there are some studies finding contrary results, both regarding the 

developmental trajectory of numerical and non-numerical abilities, and regarding generalizations across 

magnitudes. Odic and colleagues (2013), for example, found that children´s acuity to discriminate surface 

areas improved with age, but was consistently higher than their number acuity, suggesting a potential 

difference in the underlying mechanisms that encode and/or represent approximate area and 

approximate number. DeWind and Brannon (2012) found that college students´ ability to judge relative 

numerosities of items clearly improved after having received some training trials. However, this 

numerosity training did not influence students´ ability to discriminate non-numerical magnitudes, such as 

line lengths, suggesting that numerosity and line length are represented in distinct systems. Hence, while 

it is undisputed that continuous and distinct quantities share some properties, most notably their 

analogue format, it remains still unclear whether and to which degree representations of both types of 

magnitude overlap.  

In sum, nonhuman primates share with humans a sense of number and can extract discrete 

numerical information independently from continuous quantities (e.g., Beran, 2007; Cantlon & Brannon, 

2007a). It remains uncertain, however, whether there is a distinct cognitive mechanism supporting only 

numerical judgments (i.e. an approximate number system), or whether the cognitive foundation of 

numerical judgments is the same, or at least overlapping with that for quantitative judgments involving 

other types of magnitudes (i.e. an analogue magnitude system). Due to this ambiguity I will use the more 

general term analogue magnitude system throughout this dissertation. 

 

3.3.1.3. Relation of “primitive” system and formal mathematics 

Another profound question that is still under debate is how this “primitive” evolutionary ancient system 

is related to human formal mathematical abilities (also section 3.4. for a neurobiological approach to this 

question). One hypothesis is that individual differences in higher mathematics are, at least in part, 

grounded in individual differences in the accuracy of the analogue magnitude system. A variety of studies 

found support for this hypothesis (Bugden & Ansari, 2011; Halberda, Mazzocco, & Feigenson, 2008; 

Holloway & Ansari, 2009; Libertus, Odic, & Halberda, 2012; but see Libertus, Feigenson, & Halberda, 
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2013b; Smedt, Noël, Gilmore, & Ansari, 2013). For example, Halberda and colleagues (2008) assessed the 

individual performance of adolescents in approximate numerical discrimination tasks and found a 

surprisingly large variation in accuracy of the analogue magnitude system. Interestingly, individual 

accuracy was correlated with symbolic mathematical performance repeatedly measured in early 

childhood: Children who scored well in a “test of early mathematical ability” (TEMA) while still in 

kindergarten were found to have a higher accuracy of the analogue magnitude system as a teenager, even 

when other factors (e.g. working memory) were controlled for. Similarly, vanMarle, Chu, Li, and Geary 

(2014) found that the accuracy of the analogue magnitude system was correlated with performance in 

tasks measuring symbolic quantitative knowledge in preschoolers. These and other studies suggest that 

early (and probably inherent) accuracy of the analogue magnitude system is predictive for later 

mathematical achievement, which supports the hypothesis that human formal mathematics are based on 

an evolutionary ancient system. 

 

3.3.2. Object file system 

Some studies investigating quantitative abilities in nonverbal tasks reported performance patterns and 

limitations that do not fit the signatures of the analogue magnitude system. More specifically, in some 

cases subjects were able to discriminate small quantities in an exact and ratio-independent manner. For 

instance, Hauser, Carey, and Hauser (2000) tested rhesus macaques in a quantity discrimination task with 

sequentially presented food items. The monkeys could easily discriminate two small quantities from each 

other (e.g. two versus three), but they failed to reliably discriminate small sets from large sets (e.g. three 

versus eight), even though the latter should be easier to be discriminated with regard to Weber´s law. As 

explanation for these finding it was proposed that humans and nonhuman species possess a second 

system for numerical representation: The object file system supports exact representation and 

discrimination of small sets (usually up to four items). This system represents objects in separate “files”, 

which hold information about their identity and features, and the number of files can be accessed to 

generate quantitative information about the array as a whole (e.g. Feigenson et al., 2002; Uller, Carey, 

Huntley-Fenner, & Klatt, 1999). The system´s limitation to small set sizes is probably due to attentional 

and working memory limits, since only a small number of “files” can simultaneously be kept in short-term 

or working memory. The ability to precisely and rapidly represent small numbers of items has been 

revealed in some studies with human adults (e.g. Choo & Franconeri, 2014; Dehaene & Cohen, 1994; 

Kaufman, Lord, Reese, & Volkmann, 1949; Mandler & Shebo, 1982; Trick & Pylyshyn, 1994), human 
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children (e.g. Feigenson & Carey, 2005; Xu, 2003) and also some nonhuman animals, including fish (Piffer 

et. al, 2012), birds (Garland et al., 2012), monkeys (Barner, Wood, Hauser, & Carey, 2008; Hauser et al., 

2000), and apes (Murofushi, 1997; Tomonaga & Matsuzawa, 2002). However, there are several studies in 

which less or no support for an object file system could be found, both in humans (adults: Balakrishnan 

and Ashby, 1991, 1992; children: Cantlon, Safford, and Brannon, 2010; Cordes and Brannon, 2009), and in 

nonhuman species (e.g. great apes: Hanus and Call, 2007; monkeys: Barnard et al., 2013; Beran, 2007; 

Cantlon and Brannon, 2006). Importantly, the presentation format (sequential vs. simultaneous) does not 

seem to influence which type of signatures are found: Hauser et al. (2000) and Beran (2007) both tested 

rhesus macaques with sequentially presented quantities, and, while Hauser and colleagues found 

limitations in accordance with the object file system (i.e. absolute set size restricted performance), Beran 

found typical analogue magnitude system limitations (i.e. relative difference restricted performance). 

Hence, while the existence of the analogue magnitude system and its role for quantitative cognition is 

well established in a large variety of species, it remains an open question whether and under which 

circumstances an object file system is applied in quantitative tasks, as well. 

 

3.4. Neurobiology of quantitative cognition 

3.4.1. Neural substrate of numerical cognition: IPS and PFC 

A different approach to explore commonalities and differences of human and nonhuman numerical 

cognition is to identify and compare the neural basis of numerical competences. Neuroimaging techniques 

as well as electrophysiological measures have led to the conclusion that numerical processing involves 

similar neural substrates in humans and in nonhuman primates (see, e.g. Cantlon, 2015 for a review). 

More specifically, both in humans and in nonhuman primates two areas in the brain have been 

predominantly linked to numerical cognition: The intraparietal sulcus (IPS) within the parietal lobe, and 

the prefrontal cortex (PFC; see, e.g. Butterworth, 1999; Cantlon, 2015; Nieder, 2005; Nieder & Dehaene, 

2009 for reviews). 

For example, Nieder and Miller (2004) trained rhesus macaques to perform a visual numerosity 

judgment task. Electrophysiological measures showed that the proportion of numerosity-selective 

neurons was highest within the intraparietal sulcus (IPS). A subsequent study (Nieder, Diester, & 

Tudusciuc, 2006) found that, depending on whether quantities were presented simultaneously or 

sequentially, distinct populations of neurons along the IPS were activated. The final result of the 
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quantification process, however, was always coded by a third population of neurons in the IPS, suggesting 

that the final cardinality of a quantity is stored independently of the presentation format. 

Interestingly, neurons within and around the IPS do not only represent numerosities, but also non-

numerical magnitudes, such as physical size and duration (see, e.g. Cantlon et al., 2009; Kadosh, 

Lammertyn, & Izard, 2008), supporting the hypothesis that processing of discrete and continuous 

quantities share the same cognitive mechanism (see section 3.3.1.2.). 

 

3.4.2. “Supramodal” and ratio dependent numerical tuning 

Individual neurons, both in the IPS and in the PFC, seem to be “tuned” to certain numerical values: these 

neurons respond preferentially and at highest rates when a certain numerical value is presented. 

Importantly, this numerical selectivity is modality independent. For example, Nieder (2012) trained 

monkeys to discriminate the number of tones and light flashes while the neuronal activity in the IPS and 

PFC was recorded. Results revealed that populations of neurons within both regions were active during 

visual and auditory presentation of stimuli. Moreover, it could be shown that single neurons within the 

IPS and PFC are “supramodal”, i.e. they respond to a certain numerical value regardless of the modality in 

which this numerical value is presented. However, the response of numerosity-selective neurons is 

imprecise: While they fire at highest rates in response to their “preferred” numerical value, they also fire 

in response to adjacent numerosities, and the fire rate decreases with greater numerical distance from 

the preferred value (the distance effect; Nieder, Freedman, & Miller, 2002; Nieder & Miller, 2003, 2004). 

Interestingly, neurons tuned to larger numerical values seem to respond less accurately than those tuned 

to smaller numbers (the magnitude effect; Nieder & Merten, 2007). Consequently, representing and 

processing larger quantities is noisier, and therefore less accurate than processing of smaller quantities. 

In combination, the distance and magnitude effect depict a neural version of Weber´s law and are 

therefore likely to be the cause for the ratio dependent analogue representation of number (see, e.g. 

Nieder, 2012). Similar findings have been reported for humans: Functional magnetic resonance imaging 

(fMRI), for example, enabled the detection of ratio-dependent neural responses in the IPS of human adults 

(Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004) and children (Cantlon, Brannon, Carter, & Pelphrey, 2006; 

Cantlon et al., 2009). Likewise, ratio-dependent numerical tuning was observed in pre-verbal infants using 

electroencephalogram recordings (EEG; Hyde & Spelke, 2011; Libertus, Pruitt, Woldorff, & Brannon, 

2009). The IPS and the PFC, therefore, represent analogue numerical values both in humans and 

nonhuman primates, and exhibit ratio effects in their neural signatures. 
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Interestingly, the neuronal coding schema of proportional information (i.e. ratios of quantities) is 

highly reminiscent of that of absolute quantity both in humans and in nonhuman primates (see Jacob, 

Vallentin, & Nieder, 2012 for a review). More specifically, the same regions that process absolute 

quantities (the IPS and the PFC), also encode ratios of quantities (Jacob & Nieder, 2009; Vallentin & Nieder, 

2008, 2010). Within these two cortical regions, single neurons were found to be tuned to certain ratios 

and their response rate decreased the further the distance from this preferred proportion was  (Jacob & 

Nieder, 2009; Vallentin & Nieder, 2008, 2010). Hence, also proportional information seems to be 

represented in an analogue, approximate way, confirming findings of behavioral studies (Drucker et al., 

2016; McCrink & Wynn, 2007). 

The most obvious difference between human and nonhuman numerical cognition is that most 

human mathematical abilities ground in a symbolic number concept. As outlined above, comparative 

research has shown that nonhuman primates are, to a certain extent, able to associate Arabic numerals 

with the corresponding cardinal values (e.g. Boysen & Berntson, 1995; Matsuzawa, 1985). Intriguingly, 

neuroimaging techniques revealed that the neural substrate of symbolic representation of number is, at 

least partially, overlapping with that of analogue numerical processing, both in humans (see e.g. Cantlon, 

2015; Dehaene et al, 2003 for reviews) and in nonhuman primates (Diester & Nieder, 2007). For example, 

in rhesus macaques trained to associate Arabic numerals with quantities, specific neurons in the PFC 

responded selectively, regardless of whether the numerical value was presented as analogue quantity or 

as Arabic numeral (Diester & Nieder, 2007). This suggests that human symbolic number concepts and 

sophisticated mathematical skills may have derived from evolutionary ancient, analogue structures (see, 

e.g. Cantlon, 2015 for discussion). 

In sum, the neuronal basis of numerical cognition in nonhuman primates is very similar to that of 

humans and mainly involves two areas in the brain: the IPS and the PFC. The characteristic signatures of 

the analogue magnitude system are grounded in the ratio-dependent numerical selectivity of neurons in 

these areas. This evolutionary ancient neural substrate is most likely the foundation of the human 

symbolic number system.  

 

3.5. Conclusions 

Comparative research revealed fundamental commonalities in basic quantitative cognitive abilities of 

humans and nonhuman primates. Just like humans, great apes and monkeys (as well as many other 
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species) are able to represent and compare numerosities and other types of magnitudes. Moreover, they 

can represent proportions and perform simple arithmetic operations like summation and subtraction. To 

a limited extend, nonhuman primates are even able to associate Arabic numerals with the appropriate 

quantities. Quantity representations are subject to specific signatures following Weber´s law, which are 

caused by their analogue representation format. These characteristic signatures are grounded in the ratio-

dependent selectivity of neurons in the IPS and PFC and can therefore also be verified on a physiological 

level. While the existence of an analogue magnitude system is well documented and undisputed, the role 

of an object file system, limited to small set sizes, is still highly debated. Similarly unclear is whether the 

analogue magnitude system supports all sorts of magnitude representations, or whether humans and 

nonhuman primates have a distinct system specifically for (discrete) numerical input. It is likely that the 

analogue magnitude system is the foundation of human advanced quantitative cognitive abilities, on 

which the later acquired symbolic number system is based. Therefore, one can conclude that “Human´s 

explicit knowledge of symbolic number and geometry may be our unique, abstract cognitive ability (…), 

but it clearly depends, in part, on a system that is widely shared by other animals” (Vallortigara, 2015, p. 

59). 

These findings have important implications for the possibility of finding statistical reasoning capacities 

in nonhuman species: A prerequisite for intuitive statistics is the ability to represent quantities, and in 

particular proportions of quantities. Moreover, one needs to be able to operate on these mental 

representations in order to form probabilistic computations. The here reviewed research showed that 

great apes and monkeys do possess these basic prerequisite abilities. Moreover, humans and other 

primates share a cognitive mechanism for these basic quantitative abilities, as well as its neuronal 

foundation. Together with the discovery that intuitive statistical capacities are present in pre-verbal 

infants, and are therefore independent of language, these findings give a crucial hint that nonhuman 

primates might be capable of basic intuitive statistics, as well. In the following chapter I will discuss 

whether nonhuman primates´ abilities (and potentially those of other animals) extend from representing 

absolute and relative quantities to representing and operating on probabilities. 
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4. Probabilistic reasoning in nonhuman animals 

Do nonhuman primates´ abilities extend from representing absolute and relative quantities to 

representing and operating on probabilities? Are great apes, like human infants, intuitive statisticians, i.e. 

able to reason from population to sample and vice versa, even in contexts they have never experienced 

before? In the following section I will summarize findings from biological and psychological research which 

gave first hints that also nonhuman species might be capable of basic forms of statistical inferences. In 

particular, I will focus on studies investigating decision-making processes and risk-taking strategies, mainly 

in foraging contexts. Subsequently, I will review first direct evidence for intuitive statistical capacities in 

nonhuman primates and discuss their implications for the general aim of tracing the evolutionary roots of 

intuitive statistics. 

 

4.1. Decision-making under uncertainty and risk evaluation 

4.1.1. Ecological relevance 

Similar as for humans, most problems faced by animals throughout their lifetime- foraging for food, 

finding mates, avoiding predators- require them to make decisions under uncertainty. This uncertainty 

can either occur because parts of the information are completely unavailable or ambiguous (e.g. when 

deciding to seek out a never visited foraging area), or because the occurrence of an event follows a 

probabilistic pattern (e.g. when deciding between two trees with different probabilities of yielding ripe 

fruit at this time of the year). Quite often these decisions have highly relevant consequences for the 

animal- either by directly influencing its own survival rate (e.g. in the context of foraging decisions), or by 

influencing its reproductive success (e.g. in the context of mate choice). Considering these direct fitness 

consequences, it is reasonable to assume that natural selection has favored mechanisms to cope with 

uncertainty. In general, there are three considerable (and not mutually exclusive) possibilities how an 

animal can make reasonable decisions under uncertainty: First, it can be optimally adapted to its 

environment and be equipped with innate decision rules which allow to use certain environmental cues 

in order to produce a certain behavior. For example, even plant seeds possess mechanisms to detect and 

combine different sensory cues, and only germinate when a photoperiod follows after a long period of 

winter coldness, because then chances are high that spring has arrived, and not just a warm weather front 

in autumn (Bradbeer, 1988). Second, an animal can be equipped with some form of behavioral flexibility 
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and an ability to learn from past experiences, and it is able to recall these learned contingencies in future 

situations. For example, a long-lived animal might have experienced that a certain tree is very likely to be 

fruiting during a particular time of the year, while the fruit of other trees tends to be ripe a little later. 

Hence, certain environmental cues in combination with the according physiological state (hunger) will 

evoke the memory of the fruiting tree and lead the animal to decide to visit this location. A third possibility 

is that an animal possesses a domain general inference mechanism, allowing for rational decisions in not 

previously encountered events by estimating probabilities. 

A great deal of research suggests that most animal species possess at least option 1, often in 

combination with option 2, and thus have an “adaptive toolbox” of simple rules of thumb and 

experienced-based strategies to rapidly make decisions under uncertainty in specific environmental 

contexts (see, e.g. Gigerenzer, 2008; Gigerenzer, Todd, & ABC Research Group, 1999; Hammerstein & 

Stevens, 2012; also see Staddon, 1988 for a description of animal learning as Bayesian inference). This 

adaptive toolbox even allows to make “Bayesian like” decisions: Updating prior, perhaps innate 

“knowledge” with new experiences to optimally adjust behavior to current situations can lead to “close 

to optimal” decision making. Relatedly to the Bayesian approach to human statistical inferences, the 

“Bayesian decision theory” aims to investigate how animals integrate prior information and observations 

in accordance with Bayes´ theorem and whether they make decisions that are optimal given the 

appropriate posterior probability. To date, Bayesian computational models have been used to explain 

various cognitive processes of animals from simple sensorimotor reactions to more complex behaviors 

like foraging decisions (e.g. Biernaskie, Walker, & Gegear, 2009), mate choice (e.g. Collins, McNamara, & 

Ramsey, 2006) and collective behavior (e.g. shoaling; Pérez-Escudero & Polavieja, 2011). Some studies 

compared empirical observations of animal behavior with predictions derived from different types of 

decision-making models. One study, for example, investigated reproductive decision-making in the 

peacock wrasse (Symphodus tinaca; Luttbeg & Warner, 1999). During spawning, the female decides each 

day whether to leave her eggs with one of the abundant non-nesting males, or whether to invest time to 

find a rare nesting male, who will protect the fertilized eggs against predators. Hence, females have to 

estimate the probability of finding a nesting male each day. Luttbeg and Warner (1999) compared the 

behavior of the females with three types of decision models: One used a fixed search time, after which a 

non-nesting male was chosen, another one used fixed estimates of the probability of finding a mate that 

changed over the season, and a third one- the Bayesian model- assumed that females update the 

probability of finding a nesting male based on a prior distribution of nesting males (i.e. the probability 
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distribution of successfully finding a nesting male each day). The prior was initially uninformative (because 

of a lack of experience), but through daily updating based on relative frequencies of successes, it became 

more informative each day. The wrasse´s behavior was best predicted by the Bayesian model, and this 

model also resulted in highest fitness benefits compared to the other models. Other studies 

experimentally manipulated the information animals were given in order to compute prior probabilities, 

and then compared observed and predicted behavior. For example, Lima (1984) examined patch 

exploitation of downy woodpeckers (Picoides pubescens). The birds were presented with one of three 

environments. All of them contained artificial patches with 24 potential hiding locations each. Half of the 

patches were completely empty; the other half were provisioned with food in varying proportions of full 

to empty hiding locations. In one environment, all hiding locations in provisioned patches were filled with 

food. In a second environment, provisioned patches were only half full (i.e. 12 out of the 24 hiding 

locations were filled), and in the third environment they were 1/4 full. The author aimed to investigate 

the birds´ ability to estimate that a patch was empty. The Bayesian model predicted that in environment 

1, birds should infer that all hiding locations of a patch are empty after finding a single empty sample. In 

environment 2, by contrast, a bird should switch to a new patch after finding three empty hiding locations. 

In environment 3, finally, the optimal decision maker should sample six empty hiding locations before 

deciding that the whole patch is empty. The birds´ behavior matched these predictions (despite 

considerable variance between and within individuals), suggesting that the birds learned the prior 

distribution of patch types and combined this prior information with current sample information in order 

to estimate the quality of current patches. Similar results were found for starlings (Sturnus vulgaris; Lima, 

1985). 

These and other studies (e.g testing bumblebees (Biernaskie et al., 2009) and fish (Pérez-Escudero 

& Polavieja, 2011)) suggest that various animal species often behave in a manner consistent with Bayesian 

models that assume individuals combine prior knowledge (i.e. either innate “knowledge” or previously 

learned knowledge of certain environments) with new sample information to update their estimates of 

environmental resources (see McNamara, Green, & Olsson, 2006; Valone, 2006 for reviews). This, in turn, 

indicates that many species are adapted to make reasonable decisions under uncertainty within a specific 

context. However, even though these behaviors exhibit a certain flexibility, it is plausible that animals do 

in fact not “compute” posterior probabilities as basis for their decisions, rather they probably use different 

rules of thumb/heuristics that can be flexibly adjusted depending on the current input.  
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What about option 3? Is it even necessary to have a domain-general statistical inference 

mechanism, if the “adaptive toolbox” apparently leads to good enough solutions in uncertain situations? 

In comparison to innate decision rules and learning mechanisms, intuitive statistical abilities bring some 

clear advantages: First, they are highly flexible without necessarily relying on past experiences, and hence 

give individuals an advantage in new situations in a changing environment requiring rational inferences. 

This, in turn, may open up new ecological niches, which are inaccessible for less flexible individuals. 

Second, as previously elucidated, intuitive statistical inference mechanisms do not only help individuals 

to assess event probabilities, they also constitute promising candidate mechanisms for rapidly acquiring 

knowledge about the world from limited sample observations. Individuals who have a genuine 

understanding of their physical and social environment will be able to adapt their behavior more flexibly 

and rationally than individuals whose knowledge is restricted to innate and directly experienced events. 

More generally speaking, being able to generalize from limited examples and to use the generalizations 

to make rational decisions in uncertain situations brings clear fitness benefits in a variety of contexts, 

especially for long-lived species living in changing environments. 

 

4.1.2. Empirical evidence for sensitivity to probability 

4.1.2.1. Sensitivity to probabilistic reinforcement and temporal patterns 

As described above, nonhuman primates possess basic numerical abilities and can represent quantities 

and operate on these representations in ways comparable to humans´ non-symbolic number capacities. 

Quantitative processing, especially the ability to represent proportions, probably plays a crucial role in 

statistical inferences. But do nonhuman quantitative skills extend from representing proportions to 

representing probabilities? 

Many behavioral studies found that various animal species exhibit a certain sensitivity to 

probabilistic reward patterns. For example, bees (Real, 1991), cockroaches (Longo, 1964), fish (Behrend 

& Bitterman, 1961), birds (Bullock & Bitterman, 1962; Graf, Bullock, & Bitterman, 1964), rats (Wodinsky, 

Bitterman, & Candland, 1958) and monkeys (Meyer, 1960; Wilson, Oscar Jr, & Bitterman, 1964) all seem 

to be able to adjust their expectations and actions in response to proportional differences in reward 

distribution. For example, when presented with two stimuli, one was rewarded in, e.g. 70% of trials, the 

other in 30% of trials, the African mouthbreeder (Tilapia macrocephala) learned over time to prefer the 

stimulus with a higher probability of being rewarded (Behrend & Bitterman, 1961). Importantly, in these 
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studies absolute and relative frequencies of reinforcement were usually confounded. Hence, it is not 

possible to state whether subjects learned to estimate the probability for each stimulus to lead to a 

reward, or rather just learned to pick the stimulus which was rewarded more often. Moreover, the training 

for these studies usually took several weeks, impeding any conclusion about intuitive abilities. 

Interestingly, in these probability-learning paradigms, many species (including humans under certain 

conditions (see Vulkan, 2002 for a review)) did not maximize their outcome by developing a clear 

preference for the proportion-wise more favorable option; instead, they “matched” the probabilities, i.e. 

when one option delivered food in 70% of trials, the other in 30% of trials, some species would choose 

the latter in roughly 30% of trials, instead of sticking with the former throughout the test (e.g. Behrend & 

Bitterman, 1961; Bullock & Bitterman, 1962; Longo, 1964). These findings may suggest that those species 

are unable to use probabilistic information in order to maximize their gains and instead rely on suboptimal 

decision rules like “win-stay, lose-shift”-strategies. However, it is likely that animals´ suboptimal behavior 

in these studies was due to methodological issues. For example, in the studies on fish (Behrend & 

Bitterman, 1961) and pigeons (Bullock & Bitterman, 1962), subjects were trained with a “guided-choice” 

paradigm. Thus, when picking the stimulus which was not reinforced in that particular trial, this stimulus 

was removed, and fish were “forced” to pick the other one. This procedure might have facilitated the 

usage of low-level choice heuristics. Studies using different procedures found evidence for maximizing, 

instead of matching strategies, for example in rats (Wodinsky et al., 1958) and monkeys (Meyer, 1960; 

Wilson, 1960; also see Shanks, Tunney, & McCarthy, 2002 for a study reporting how methodological 

changes can lead to optimal decisions in humans).   

More recent studies investigated animals´ ability to choose the optimal aiming point in a 

probabilistic timing-task. For example, in one study (Balci, Freestone, & Gallistel, 2009) mice and humans 

had to anticipate at which of two locations a reward would appear. In some trials the reward appeared 

with a short latency at one location, in other trials it appeared after a longer latency at the other location. 

Subjects´ task was to integrate two factors of uncertainty: The exogenously varied probability that a given 

trial was either a short or a long trial, and the endogenously variable estimate of elapsed duration. More 

specifically, subjects began each trial waiting in front of the short-latency location. When they estimated 

that the short-latency time had passed without a reward being delivered, they switched to the long-

latency location. Switching too soon or too late resulted in a loss of the reward. Both mice and humans 

accurately assessed both types of uncertainty to compute the optimal target latency for a switch. These 
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findings suggest that when probabilities are directly experienced, both species seem to be able to consider 

probabilistic information in the context of temporal decision making. 

In sum, many species are able to learn to adjust to a stochastic environment and seem to be 

sensitive to probabilistic reinforcement and temporal patterns. However, all of the described studies 

required extensive training, and often confounded absolute and relative frequencies of reward 

distribution. Hence, from these studies alone it remains an open question whether animals other than 

humans can truly use probabilistic (rather than absolute frequency) information in intuitive setups to 

make rational decisions. 

 

4.1.2.2. Probability-sensitive risk-taking strategies of nonhuman primates 

Nonhuman primates´ intuitive sensitivity to differences in probabilities of finding food has been 

demonstrated in studies investigating risk-taking strategies (e.g. Haun, Nawroth, & Call, 2011; Pelé, 

Broihanne, Thierry, Call, & Dufour, 2014; Petrillo, Ventricelli, Ponsi, & Addessi, 2015; Proctor, Williamson, 

Latzman, Waal, & Brosnan, 2014). In one study (Haun et al., 2011), for example, apes (chimpanzees, 

bonobos, orangutans and gorillas) were allowed to choose between two options: One was a food item of 

medium value (a small banana piece) and depicted the safe option. The other was a high value food item 

(a large piece of banana), but it was hidden underneath one of several cups. When apes chose this risky 

option, they could point to one of the cups and received the reward only if it was the one concealing the 

food. The authors varied the number of cups (between one and four), resulting in different probabilities 

of finding the food in the risky option, as well as the size of the safe option reward. Individuals of all tested 

species chose the safe option more often with decreasing probability of success in the risky option. 

Equivalent results were found for capuchin monkeys (Sapajus spp.; Petrillo et al., 2015). Another study 

investigated nonhuman primates´ willingness to exchange a fixed medium value food item in order to 

gamble for a better one: Orangutans, capuchin monkeys and long-tailed macaques were presented with 

one medium sized piece of cookie and a tray of six cups, each containing a piece of cookie that was either 

larger, smaller or of the same size as the individual piece. After the subject had seen the content of the 

cups, it was handed the individual piece of cookie. Then it had the opportunity to give it back to the 

experimenter to receive the content of one randomly chosen cup. The chances of gaining or losing by 

exchanging the medium sized cookie piece were manipulated via different combinations of rewards in the 

cups (e.g. four larger pieces and two smaller pieces in one condition; one larger piece, three medium and 



4. Probabilistic reasoning in nonhuman animals 

 
58 

 

two smaller pieces in another). The decisions of individuals of all three species to keep their initial piece 

of cookie or to gamble for more were affected by the probability of winning in each trial: The higher the 

chances of winning a larger piece of cookie, the higher the likelihood that subjects traded their initial 

piece. Conclusively, when deciding between safe and risky options, nonhuman primates seem to consider 

the probability of success. However, other studies demonstrated that, just as for humans, also various 

other factors influence apes´ and monkeys´ risk taking strategies. Among these factors are social context 

(apes become more risk-prone after competitive events; Rosati & Hare, 2012; for similar findings in 

humans see, e.g. Ermer, Cosmides, & Tooby, 2008), framing (i.e. whether an option is presented as 

potential gain or potential loss; Krupenye, Rosati, & Hare, 2015; Lakshminarayanan, Chen, & Santos, 2011; 

for similar findings in humans see, e.g. Tversky & Kahneman, 1981), the frequency of losses or wins in 

previous trials (e.g. Pelé et al., 2014; for similar findings in humans see, e.g. Ayton & Fischer, 2004), and 

general species specific innate tendencies (e.g. chimpanzees seem to be more risk-prone than bonobos, 

potentially tracing back to differences in feeding ecology; Haun et al., 2011; Heilbronner, Rosati, Stevens, 

Hare, & Hauser, 2008; Rosati & Hare, 2013).  

In sum, in studies investigating risk-taking strategies, subjects usually choose between one option 

that is stable but less preferred and one option that is variable but potentially more attractive and the 

main rationale is to examine which factors influence the subject´s decision and to compare these factors 

among humans and nonhuman species. Obviously, the objective probability of winning is one factor 

determining whether subjects choose the uncertain or the stable option, suggesting that nonhuman 

primates have some intuitive sense of probability guiding their choices. But can nonhuman species also 

discriminate between two uncertain options, i.e. options that both vary in their probability of yielding a 

reward and choose the option depicting the higher probability of leading to a preferred outcome? Does 

great apes´ intuitive sense for probability extend to intuitive statistical abilities, i.e. to the capacity to use 

sample information in order to draw conclusions about a population and vice versa? 

 

4.2. Intuitive statistics in nonhuman primates 

One recent study investigated chimpanzees´ capacity to discriminate two options that differed in their 

relative likelihood of finding a food reward: Hanus and Call (2014) presented chimpanzees with two trays, 

each holding one to six cups. The subjects witnessed that some of the cups were baited with food (up to 

four), then they were shuffled. Hence, subjects knew how many cups were baited on each tray, but not 



4. Probabilistic reasoning in nonhuman animals 

 
59 

 

which ones. Subsequently chimpanzees could pick one of the cups (from either of the two trays), and 

received the food reward in case it was hidden underneath that cup. From the first trial onwards, the 

apes´ choice depended on the ratio of food to cups on each tray and thus on the likelihood of finding food. 

Importantly, chimpanzees did not simply choose the tray where more food items were hidden. Instead, 

they took into account the ratio of food to cups on each tray. The higher the discrepancy between the 

two trays´ food/cup ratios, the easier it was for the subjects to choose the tray depicting the higher 

probability of finding hidden food. Interestingly, apes´ performance depended on the magnitude of 

difference between the two trays even in conditions where one of them constituted a 100% likelihood of 

finding food. For example, chimpanzees performed better in a condition in which a 1/2 (food to cup) ratio 

was contrasted with a 1/4 ratio, compared to a condition where a 2/2 ratio was contrasted with a 4/6 

ratio. This suggests that the ratio between ratios, more than the magnitude of difference within the single 

ratios, was decisive for apes´ ability to discriminate probabilities. However, chimpanzees´ success in this 

study could be explained with an absolute quantity heuristic, not regarding the amount of food items 

available, but regarding the number of cups on each tray. In particular, the tray depicting the more 

favorable food/cup ratio always held the smaller number of cups. The authors added a control condition 

in which they excluded simple associative learning explanations (subjects did not preferentially choose 

the tray with fewer cups when the food was visibly removed from all cups). Nevertheless, it cannot be 

excluded that, as soon as there was any food to be found, chimpanzees at least partially relied on a mental 

shortcut such as “fewer cups= higher likelihood of finding food”. Nevertheless, this study was among the 

first to suggest that nonhuman great apes might be able to reason about single-event probabilities and 

discriminate between two options depicting different probabilities of leading to a food reward. 

At the starting time of the current dissertation, there was only a single study examining whether 

great apes are capable of intuitive statistics in ways similar to human infants. Rakoczy and colleagues 

(2014) modelled a paradigm after those used in infant studies (Denison & Xu, 2010a), to investigate 

whether apes are capable of the most basic form of intuitive statistics: the ability to reason from a 

population to randomly drawn samples. In a series of seven experiments, chimpanzees, gorillas, 

orangutans and bonobos were presented with two transparent buckets containing mixtures of preferred 

and non-preferred food items (banana pellets and carrot pieces) in specific ratios. Subsequently, the 

experimenter randomly drew one sample each in a way that the subject could not see what was drawn. 

Then the subject was given a choice between the two covered samples. In order to receive a preferred 

food item, apes thus had to discriminate between the two populations with regard to their proportions 
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of preferred to non-preferred food items, and form according expectations about the probability of 

sampling a preferred food item from each of them. Apes across conditions were able to infer which of the 

two populations was more likely to lead to a pellet as a sample, and this was apparent from the very first 

trial onwards. Moreover, they chose correctly even when absolute and relative frequencies were 

disentangled, i.e. when the population with the more favorable ratio of pellets to carrots contained 

absolutely fewer pellets than the other one. Additional control experiments ruled out alternative 

explanations such as “clever Hans” phenomena or usage of olfactory cues. One alternative explanation 

that could not be ruled out is that that apes may have applied an avoidance heuristic based on the 

absolute quantity of carrots. More specifically, subjects could have succeeded in all conditions by choosing 

the sample drawn from the population with fewer carrot pieces. Even though this alternative explanation 

could not be directly excluded in this study (whereas it was addressed in an infant study; see Denison & 

Xu, 2014), the performance patterns across experiments make it seem unlikely that apes actually relied 

on this mental shortcut: Subjects did not perform better in experiments in which the magnitude of 

difference between the absolute quantity of carrots was larger, compared to conditions in which it was 

smaller. Therefore, this study was the first to suggest that nonhuman great apes, just like human infants, 

can reason from population to sample based on proportional information. This indicates that a basic form 

of intuitive statistics is not uniquely human, but shared with our closest living relatives, the great apes.  

 

4.3. Conclusions and open questions 

Great apes and monkeys do not only share with humans the capacity to approximately represent absolute 

and relative quantities. They also possess a sensitivity towards probabilistic information, which seems to 

aid nonhuman primates in the context of decision-making and risk evaluation. Furthermore, first evidence 

demonstrated that nonhuman great apes are able to reason about never before experienced single-

events and to draw intuitive inferences from population to randomly drawn samples much like human 

infants. These important findings are a first hint that great apes might possess intuitive statistical 

reasoning capacities comparable to those recently found in human infants. At the same time, these 

findings raise a range of fundamental questions: First, how flexible are apes´ intuitive statistics? True 

intuitive statistical competences require bi-directional inferences, i.e. from population to sample as much 

as from sample to population. Do great apes´ statistical abilities show the same flexibility as has been 

shown for human infants? Second, what are the cognitive structures and limits of intuitive statistics? And 
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are these the same both in humans and in great apes? One possibility is that intuitive statistics builds on 

the same, evolutionary ancient cognitive process as many other aspects of numerical cognition: the 

analogue magnitude system. If that was the case, characteristic signature limits should be found both in 

apes and in humans. Lastly, are great apes - like human infants - able to integrate intuitive statistical 

inferences with knowledge from other cognitive domains? Do they understand that under some 

circumstances drawing can be non-random? In the present dissertation I sought to illuminate these 

profound questions. 
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5. Aim of dissertation  

The overall aim of this dissertation was to shed light on the evolutionary roots of intuitive statistics by 

exploring such capacities in humans´ closest living relatives, the great apes. Finding comparable abilities 

in nonhuman primates as have been found for human infants would give us important insights in both the 

phylogenetic origins of humans´ cognitive capacities, as well as in the cognitive architecture of great apes. 

Previous research demonstrated that nonhuman great apes seem to share with humans the fundamental 

capacity to draw statistical inferences from populations to randomly drawn samples, providing reasons to 

hypothesize that intuitive statistics might not be a uniquely human capacity. In the present dissertation, I 

sought to investigate the structure of intuitive statistical abilities in great apes more comprehensively and 

systematically, and, from a comparative point of view, to explore the commonalities and differences 

between great apes and humans. In a series of three studies I used variants of a previously established 

paradigm to address three distinct but related questions regarding the flexibility of great apes´ intuitive 

statistical abilities, their cognitive foundations and interaction with other cognitive domains.  

The rationale of Study 1 was to examine whether great apes are able to reason statistically from 

multi-item samples to populations of food items. Research with human infants has documented flexible 

intuitive inferences both from population to sample (e.g. Denison & Xu, 2010a) and vice versa (Denison 

et al., 2013; Xu & Garcia, 2008). Although the findings of Rakoczy et al. (2014) raised the possibility that 

apes and human infants may operate with the same cognitive capacities for intuitive statistics, it remains 

an open question whether apes’ intuitive statistics reveal the same kinds of flexibility and generality as 

those found in human infants. In particular, does apes´ ability to form expectations about samples 

randomly drawn from populations (inference population → sample; Rakoczy et al., 2014) extend to the 

ability to reason from a given sample to the corresponding population (inference sample → population)?  

The main aim of Study 2 was to explore the cognitive structures and limits of intuitive statistics in 

apes and human adults. Previous research has demonstrated that apes, much like human infants, can 

draw statistical inferences from population to sample. To date it remains unclear which cognitive 

mechanism underlies and enables this capacity and whether it is the same in both species. One possibility 

is that intuitive statistics builds upon the same foundation as other quantitative abilities, the analogue 

magnitude system (see section 3.3.1. for further explanation). If that was the case, one would expect the 

characteristic performance patterns and signatures both in humans and in nonhuman great apes. Much 

like the discrimination of absolute set sizes varies as a function of the ratio of the set sizes, I expected that 

the accuracy of intuitive statistics would vary as a function of the ratio of ratios between sets. As a second 
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goal, I sought to replicate and validate previous findings on intuitive statistics in great apes by testing 

completely naïve individuals who were raised and housed in a different environment than the previously 

tested population. Lastly, I designed this study to comprehensively rule out alternative explanations based 

on absolute quantity heuristics that had not been sufficiently addressed in previous work (Rakoczy et al., 

2014).  

In Study 3, the guiding question was whether intuitive statistics is cognitively integrated with the 

processing of other types of information in great apes. Recent work in developmental psychology has 

demonstrated flexible integration of processing statistical information with other types of information, 

most notably physical and psychological information (e.g. Denison et al., 2014; Teglas et al., 2011; Xu & 

Denison, 2009). To investigate whether apes consider information about psychological states of 

experimenters (their preferences and visual access) when drawing statistical inferences, I combined the 

methodology used by Rakoczy et al (2014) and Xu and Denison (2009). More specifically, I varied whether 

the sampling experimenters had preferences to draw certain types of food or were neutral and whether 

they had visual access to the population or sampled blindly. If chimpanzees, like human infants, were able 

to consider the experimenters´ mental states in the context of statistical reasoning, we would expect them 

to adjust their choices depending on whether drawing is random (and therefore the outcome is 

determined by the proportional composition of the population), or non-random (and therefore the 

outcome is determined by the experimenters´ intentions). 
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6. Summary of empirical findings 

In the following section I will summarize the main findings of the three studies I conducted in the course 

of this dissertation: (1) Eckert, Rakoczy and Call (2017) – Are great apes able to reason from multi-item 

samples to populations of food items?; (2) Eckert, Call, Hermes, Herrmann and Rakoczy  (2018) – Intuitive 

statistical inferences in chimpanzees and humans follow Weber's Law; (3) Eckert, Rakoczy, Call, Herrmann 

and Hanus (2018) –  Chimpanzees consider humans´ psychological states when drawing statistical 

inferences. For further details regarding subjects, design, procedure, analysis, and results, please refer to 

the original manuscripts (Appendices A, B, and C). 

 

6.1. Eckert, Rakoczy, and Call (2017) 

Previous work has shown that great apes are able to draw statistical inferences from population to sample 

(Rakoczy et al., 2014). The aim of this study was to investigate whether apes possess similar capacities in 

the other direction: From sample to population. To address this question, I tested 26 zoo-housed great 

apes (ten chimpanzees, six bonobos, six orangutans, and four gorillas) in a task that combined the 

methodology of Rakoczy et al. (2014) and Xu & Garcia (2008). More specifically, I confronted apes with 

two covered containers holding populations of food items that differed in their proportion of preferred 

to neutral food. In two experiments, the apes witnessed the experimenter drawing a multi-item sample 

from each population. The distribution within the samples reflected the distribution of the respective 

populations. Based on the observation of these representative samples, the apes were given the choice 

between the two covered populations. Hence, to receive the more favorable population, they were 

required to use the proportional information provided by the samples. In Experiment 1 apes were 

confronted with two populations (24:6 vs. 6:24) and witnessed the samples 4:1 versus 1:4 being drawn 

from these. Two control conditions were designed to rule out alternative explanations: In order to test 

whether the information provided by the samples alone was sufficient for the apes to infer about the 

distribution within the populations, apes did not see the available populations beforehand in Control 1. 

In Control 2, the samples were not re-inserted into the populations after the drawing process. This 

manipulation tested whether apes’ success in the previous conditions might have reflected a tendency to 

choose the population where the more favorable sample was inserted, without necessarily having to 

reason about the drawing process. In Experiment 2, apes were tested in two further test conditions in 

which absolute and relative frequencies of preferred food items within samples were disentangled: In the 
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2:1 versus 4:8 Test, the absolute number of preferred food items was lower in the sample drawn from the 

more favorable population and therefore misleading. In the 4:1 versus 4:8 Test condition, the absolute 

number of preferred food items was the same in both samples and therefore inconclusive. Hence, to 

receive the more favorable population in Experiment 2, apes had to take into account proportions, rather 

than absolute numbers of preferred food items. 

Results showed that apes seemed to make inferences from samples to populations and thus chose 

the population from which the more favorable (4:1) sample was drawn in Experiment 1, irrespective of 

whether they knew the composition of the available populations beforehand or not (Control 1) and 

whether samples were replaced after drawing or not (Control 2). The results of Control 2 are especially 

revealing, as they rule out the possibility of a simple heuristic: “choose the container where the more 

attractive sample was inserted”. Instead, apes apparently considered the drawing process and reasoned 

about the population as a whole from the first trial onwards. This implies that apes possess similar kinds 

of capacities as human infants (Denison et al. 2013; Xu & Garcia 2008).  

However, based on Experiment 1 alone it was impossible to rule out that apes used alternative 

strategies based on the absolute number of preferred food items. The aim of Experiment 2, therefore, 

was to investigate whether great apes can successfully reason from samples to populations when 

prevented from relying on absolute quantities. Apes performed at chance level both when the sample 

drawn from the more favorable population contained fewer preferred food items than the other one, and 

when both samples contained the same number of preferred food items. Conclusively, apes did not rely 

on inferences from samples to populations in this experiment. There are at least two interpretations for 

these findings. One interpretation is that apes’ failure in Experiment 2 reflects true limitations of their 

cognitive competences and therefore suggests that nonhuman primates’ statistical abilities could be 

unidirectional. This would question whether apes have a true understanding of drawing processes and 

the relation between populations and samples. A different and perhaps more plausible interpretation for 

the negative findings of Experiment 2 is that they may merely reflect performance limitations imposed by 

the task's accessory cognitive demands. Such demands could be, e.g. the memory component and 

problems with inhibitory control (i.e. problems to inhibit choosing the population where absolutely more 

preferred food items were drawn from). An additional crucial factor that potentially masked apes´ 

competences is that the magnitude of difference between samples in the critical “disentangling” 

conditions was relatively small, perhaps even beyond the signature limits of apes´ capacities.  
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Thus, while the present study demonstrated that apes, like human infants (Denison et al., 2013; 

Xu & Garcia, 2008), could reason from sample to population when absolute and relative frequencies were 

confounded, it remains unclear whether they did so based on proportional information or rather by means 

of general-purpose heuristics.  

6.2. Eckert, Call, Hermes, Herrmann, and Rakoczy (2018) 

Nonhuman great apes share with humans the fundamental ability to draw statistical inferences from 

population to sample (Rakoczy et al., 2014) and (to a certain extent) vice versa (Eckert et al., 2017). Yet, it 

still remains an open question what the cognitive foundations of intuitive statistics are and whether they 

are the same in humans and their closest living relatives. We5 hypothesized that intuitive statistics builds 

on the same foundation as other quantitative abilities: the analogue magnitude system. As described 

above (see section 3.3.1.), the analogue magnitude system is an evolutionary ancient cognitive 

mechanism which enables estimating and comparing the numerosity of arbitrary large quantities in a fast 

but only approximate way, with signatures following Weber´s Law (e.g. Nieder & Dehaene, 2009). 

Developmental and comparative research have demonstrated that tracking and comparing ratios - a 

prerequisite capacity for statistical reasoning - is subject to the same signatures as tracking absolute 

frequencies (Drucker et al., 2016; McCrink & Wynn, 2007; Vallentin & Nieder, 2008), strengthening the 

hypothesis that intuitive statistics may be based on the analogue magnitude system, as well. However, 

there is also evidence suggesting that absolute set sizes, rather than ratios, influence human infants´ 

performance in intuitive statistical reasoning tasks (Teglas et al., 2015), indicating that the analogue 

magnitude system may not be the primary cognitive mechanism enabling intuitive statistics. 

The aim of the present study was to investigate the cognitive foundation of intuitive statistics in 

chimpanzees and humans by testing its signatures. If intuitive statistics was based on the same 

evolutionary ancient analogue magnitude system, characteristic performance patterns and signatures- 

following Weber´s law- would be expected in both species. I tested 24 sanctuary-living chimpanzees in a 

previously established paradigm (Rakoczy et al., 2014) which required them to reason from populations 

of food items with different ratios of preferred and non-preferred items to randomly drawn samples. In a 

series of eight test conditions, the ratio between the two ratios to be discriminated (ROR) was 

systematically varied ranging from 1 (same proportions in both populations) to 16 (high magnitude of 

                                                           
5 Whenever I use the terms “we” or “us” in this or the following sections, I refer to the co-authors of the respective 
publication. 
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difference between populations). Control conditions ruled out the usage of simple choice heuristics. One 

hundred and forty-four human adults were tested in a computerized version of the same task.  

The main result was that both chimpanzee and human performance varied as a function of the 

log(ROR) and thus followed Weber´s law. This suggests that intuitive statistical reasoning relies on the 

same evolutionary ancient cognitive mechanism that is used for comparing absolute quantities, namely 

the analogue magnitude system. Intriguingly, and although methods for both species were somewhat 

different (e.g. live demonstration for chimpanzees versus computer setup for humans) chimpanzees and 

humans displayed the same approximate limit: While our model predicted above chance level 

performance for ratios that differed by a factor of 4, it predicted failure for those that differed by a factor 

≤2, thereby further strengthening the view that both species may operate with the same cognitive 

mechanism for intuitive statistics. In addition, our results replicated previous findings on statistical 

reasoning in great apes with a new population of chimpanzees with a different housing and rearing 

background, suggesting that intuitive statistics is in fact a common capacity in chimpanzees. Lastly, this 

was the first study on intuitive statistics in great apes controlling for absolute number heuristics both 

regarding preferred and non-preferred items as well as total amount, providing further evidence for true 

intuitive statistical reasoning in chimpanzees. 

6.3. Eckert, Rakoczy, Call, Herrmann, and Hanus (2018) 

One important characteristic of human statistical reasoning is its functional integration with knowledge 

from other cognitive domains from early infancy onwards (Denison et al., 2010b; 2014; Teglas et al. 2007, 

2011; Xu & Denison, 2009; see section 2.4.3.). For example, infants understand that a physical constraint 

can turn a sampling process into a non-random event (Denison et al., 2014; Teglas et al., 2007, 2011). 

Similarly, infants consider knowledge about the mental state of an experimenter (her preferences and 

visual access) when drawing statistical inferences and appreciate that an intentionally drawn sample does 

not necessarily reflect the population´s proportions (Xu & Denison, 2009). To date, nothing is known about 

such cross-domain integration in any nonhuman animal, leaving some uncertainty about the origins of 

human statistical abilities.  

The aim of this study was to investigate whether chimpanzees consider knowledge about the 

experimenters´ mental states (their preferences and visual access) when drawing statistical inferences. I 

tested 21 sanctuary-living chimpanzees in a previously established paradigm (Eckert, Call, et al., 2018; 

Rakoczy et al., 2014) that required subjects to infer which of two mixed populations of preferred and non-
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preferred food items was more likely to lead to a desired outcome for the subject. In a series of three 

experiments I manipulated whether experimenters had preferences to draw certain objects or acted 

neutrally and whether they had visual access to the population while sampling or drew blindly. 

Results suggested that chimpanzees, without any prior information, assumed random sampling 

and expected the sample to reflect the population´s distribution. Accordingly, in this experiment they 

chose the sample drawn from the proportion wise more favorable population. If the apes, however, had 

reason to assume that the experimenters were biased, subjects´ choice reflected these biases; the severity 

of this influence was dependent on whether the experimenters had visual access to the population or not. 

More specifically, when biased experimenters had visual access to the populations while sampling, 

chimpanzees chose the sample drawn by the experimenter who had the same preference as they 

themselves, regardless of the proportional composition of the populations. When the same biased 

experimenters drew blindly, by contrast, subjects disregarded the experimenters´ preferences and chose 

based on the populations´ proportions. Importantly, chimpanzees drew inferences about the 

experimenter and the sampling process from the given statistical information even without being 

differentially rewarded: when samples were unambiguously non-representative of a populations´ 

distribution and the experimenter looked into the population while sampling, subjects seemed to infer 

that the sampling person must have a preference for one of the food types and act accordingly in the test 

condition.  

While previous studies have shown that chimpanzees can reason probabilistically from population 

to sample (Eckert, Call et al., 2018; Rakoczy et al., 2014) and are sensitive to what others (both conspecifics 

(e.g. Hare, Call, Agnetta, & Tomasello, 2000) and human experimenters (e.g. Melis, Call, & Tomasello, 

2006)) can and cannot see, this study is the first to suggest that chimpanzees are able to flexibly combine 

these two sources of information to make rational decisions under uncertainty. Our results resemble 

findings on human infants: Just as the chimpanzees in our study, 11-month-old infants were shown to be 

sensitive to whether a sample was drawn randomly from a population or not on the basis of information 

about the drawing agent’s psychological states (her preference and visual access; Xu & Denison, 2009). 

Similar to our apes, infants were also able to use statistical information (in particular a violation of 

likelihoods), to draw conclusions about the sampling agent and the sampling process (Gweon et al., 2012; 

Wellman et al., 2016). Our study therefore gives further reason to assume that human statistical reasoning 

might be based on a cognitive mechanism that is utilized from early infancy onwards and shared with our 

closest living relatives. 
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7. General discussion 

7.1. Main findings in a comparative framework 

7.1.1. Generality and flexibility of intuitive statistics in great apes and human infants 

The findings of the present dissertation (Eckert, Call, et al., 2018; Eckert, Rakoczy, et al., 2018) 

comprehensively replicate and confirm previous research (Rakoczy et al., 2014) in suggesting that great 

apes can draw inferences from populations to randomly drawn samples in similar ways as human infants 

(e.g. Denison & Xu, 2010a, 2014; Teglas et al., 2007, 2015; Xu & Garcia, 2008). Both infants and apes 

succeeded in active-choice tasks (apes: Eckert, Call, et al., 2018; Eckert, Rakoczy, et al., 2018; Rakoczy et 

al., 2014; infants: Denison & Xu, 2010a, 2014), whereas infants have additionally been tested in VOE 

looking time paradigms (Teglas et al., 2007, 2015; Xu & Garcia, 2008). Importantly, control conditions 

ruled out that subjects were relying on simple heuristics based on the absolute quantity of preferred items 

(apes: Eckert, Call, et al., 2018; Rakoczy et al., 2014; infants: Denison & Xu, 2014), the absolute quantity 

of non-preferred items (i.e. an avoidance heuristic; apes: Eckert, Call, et al., 2018; infants: Denison & Xu, 

2014), or a representativeness heuristic (apes: Eckert, Rakoczy, et al., 2018; infants: Teglas et al., 2007; Xu 

& Denison, 2009). Instead, both human and nonhuman subjects reasoned about the proportional 

composition of the populations in order to assess which of them was more likely to lead to a preferred 

outcome. Hence, great apes can intuitively draw statistical inferences from population to sample in 

situations they have never experienced before. Importantly, these findings seem to reflect a general 

capacity in great apes: While a first study (Rakoczy et al., 2014) tested great apes who were born in 

captivity, mainly mother-reared, and zoo-housed, two of the present studies (Eckert, Call, et al., 2018; 

Eckert, Rakoczy, et al., 2018) tested chimpanzees who were born in the wild, mainly human-reared, and 

sanctuary-housed. Despite these different housing and rearing backgrounds, apes exhibited very similar 

performance patterns, indicating that the capacity to draw statistical inferences from population to 

sample is in fact a common capacity in chimpanzees (and other great ape species), and not dependent on 

certain prior experiences. Therefore, the present dissertation confirms the finding that great apes possess 

the capacity to draw intuitive inferences from population to sample on similar levels as human infants by 

the age of ten months6. 

                                                           
6 Infants as young as eight months succeeded in looking-time paradigms requiring inferences from population to 
sample (Xu & Garcia, 2008). The youngest infants successfully tested in an active-choice paradigm- comparable to 
that used for great apes- were ten months old (Denison & Xu, 2014). 
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Developmental research found that infants also possess the ability to draw inferences in the other 

direction: from sample to population (Denison et al., 2012; Xu & Garcia, 2008). The main aim of the first 

study of this dissertation (Eckert et al., 2017) was to investigate whether great apes´ statistical abilities 

exhibit a similar flexibility and generality. Our findings showed that, just like infants, individuals of all 

tested great ape species were able to use the information provided by the samples to identify the 

favorable population. This worked even when they did not see the populations beforehand, and, 

importantly, also when samples were discarded after drawing, i.e. when apes could not just track that 

population in which the more favorable sample was inserted. However, apes failed to choose the 

favorable population when absolute and relative frequencies were disentangled, i.e. when the sample 

drawn from the favorable population contained absolutely fewer or the same number of preferred food 

items that the other sample. At first glance, this may lead to the conclusion that great apes´ intuitive 

statistical abilities are more restricted than those found in human infants. However, a closer consideration 

of the testing paradigms and procedures reveals some important differences between studies on infants 

and great apes.  

First, infants were never tested in conditions in which absolute and relative frequencies were 

disentangled. In both developmental studies (Denison et al., 2012; Xu & Garcia, 2008), infants could have 

either reacted based on a proportional rule (e.g. “it is surprising to see a sample with more red than yellow 

balls being drawn from a population containing more yellow than red balls”) or on an absolute quantity 

rule (e.g. “it is surprising to see a sample containing only a few red balls being drawn from a population 

containing so many red balls”). The authors ruled out simple perceptual explanations to establish that 

infants were truly reacting towards the sampling relation between population and sample and not on the 

basis of a perceptual mismatch between the two sets. However, it is unclear whether infants would have 

succeeded in an appropriate control condition for absolute quantity heuristics. A second crucial difference 

between the present study and developmental studies was that, so far, infants have only been tested in 

looking time paradigms, while apes were tested in an active-choice paradigm. There is some evidence that 

findings of studies using the VOE looking time paradigm dissociate from findings of studies using active-

choice measures (e.g. Ahmed & Ruffman, 1998; Balci et al., 2009; Shinskey & Munakata, 2005). This is 

probably due to the fact that an individual that is able to perceive something is not necessarily able to act 

accordingly. Therefore, it remains an open question whether infants would be able to reason from sample 

to population in an active-choice paradigm. The different paradigms led to further, more far reaching 

discrepancies: While infants looked at neutral scenes of distinctly colored Ping-Pong balls, apes reasoned 
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about food items. It is known from previous work (Boysen & Berntson, 1995; Ebel & Call, 2018; Schmitt & 

Fischer, 2011) that using food items as stimuli can add an additional level of difficulty to a task for 

nonhuman primates. In the “disentangled” conditions of the present study, this might have been 

especially challenging for the apes, since they had to inhibit the intuitive response to reach for the side 

where more preferred food items were drawn from. Since our aim in the present study was to investigate 

an intuitive capacity which is present without any prior training, we opted for using an active-choice 

paradigm involving food items as stimuli over arbitrary stimuli. Future studies, however, may try to use 

more implicit measures, such as eye-tracking, in order to achieve greater comparability between human 

and nonhuman studies. The application of such implicit measures would also eliminate another 

extraneous task demand faced by the apes in Eckert et al.´s (2017) study - the memory component: While 

infants could directly compare the samples and populations (Denison et al., 2012; Xu & Garcia, 2008), 

apes had to memorize which sample came from which population when making their decision, thereby 

adding yet another level of complexity to the task. A recent study confirmed that indeed both inhibitory 

control problems as well as memory demands severely limit apes´ performance in tasks involving 

inferences from samples to populations (Eckert et al., unpublished), giving further reason to assume that 

apes´ competences may have been masked in Eckert et al.´s (2017) study. Lastly, an important and 

perhaps determining factor limiting the apes´ performance in the crucial disentangling conditions was the 

small magnitude of difference between the samples´ ratios, which may have been well below the apes´ 

signature limits for intuitive statistical reasoning (see 7.1.2. for further discussion of signatures of intuitive 

statistics). For infants, looking times were compared between a 4:1 and a 1:4 sample (ratio of ratios, 

ROR=16), whereas apes had to compare a 2:1 and a 4:8 sample (ROR=4), depicting a four times smaller 

difference.  

In sum, the work of the present dissertation confirmed and added on previous findings 

demonstrating that great apes share with human infants the intuitive capacity to draw inferences from 

population to sample. This capacity does not seem to be biased by heuristics and is independent of rearing 

and housing background. The evidence for commonalities in the reverse ability (drawing inferences from 

sample to population) still remains ambiguous. In order to draw meaningful conclusions, future studies 

will have to explore great apes´ abilities in tasks eliminating extraneous factors such as inhibitory control 

and working memory demands as well as insufficient magnitudes of differences between the samples´ 

proportions. Moreover, prospective research should test infants´ abilities in active-choice paradigms in 

which absolute and relative frequencies are disentangled. 
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7.1.2. Cognitive foundation of intuitive statistics in great apes and humans 

The present dissertation revealed some fundamental commonalities in intuitive statistical capacities of 

nonhuman great apes and humans. Eckert, Call, et al. (2018) additionally demonstrated that both 

chimpanzees and humans may operate with the same cognitive mechanism when drawing statistical 

inferences: the analogue magnitude system. When presented with a task requiring inferences from 

population to sample, the performance of both chimpanzees and human adults was, in accordance with 

Weber´s Law, strongly dependent on the ROR, the relative difference between the two proportions to be 

discriminated. Equivalent results have been obtained in the context of absolute quantity discrimination, 

where (human and nonhuman) performance was a function of the ratio between the quantities to be 

discriminated (e.g. Beran, 2001; Beran, 2012;  Cantlon & Brannon, 2007b; Hanus & Call, 2007; Izard et al., 

2009), and in the context of ratio discrimination where performance varied as a function of the ratio 

between ratios (Drucker et al., 2015; McCrink & Wynn, 2007; Vallentin and Nieder, 2008). Also, recent 

work found similar ratio dependence in chimpanzees´ performance in the context of probabilistic 

reasoning: Hanus and Call (2014) showed that chimpanzees´ capacity to discriminate two options which 

differed in their relative likelihood of finding a food reward was dependent on the relative difference 

between the two probabilities. Hence, together with previous studies, the findings of Eckert, Call, et al. 

(2018) suggests that all these abilities - discriminating absolute quantities, discriminating ratios and 

reasoning about ratios in order to assess probabilities - may share a cognitive mechanism in humans and 

in nonhuman great apes, namely the analogue magnitude system. 

Interestingly, also the approximate limit of this capacity was similar for both chimpanzees and 

humans: While our statistical model predicted above chance level performance for ratios that differed by 

a factor of 4, it predicted failure for those that differed by a factor ≤2. Given that this is the first study 

addressing this topic and considering the small sample size, these results should, however, be treated 

with caution. Nonetheless, the rather high threshold may suggest that, in comparison to simple quantity 

discrimination tasks, the statistical operation adds some error to the representation. Human adults, for 

instance, are able to discriminate absolute set sizes that differ by a factor of 1.15 (e.g. Barth, Kanwisher, 

& Spelke, 2003; Pica, Lemer, Izard, & Dehaene, 2004) compared to 6-month-old infants who can 

discriminate ratios >1.5 (Lipton & Spelke, 2003; Xu & Spelke, 2000). Not many studies documented the 

threshold for absolute quantity discrimination in nonhuman primates. Reported limits range from values 

as low as 0.9 for great apes (Hanus and Call, 2007) to 1.25 for rhesus macaques (Brannon & Terrace, 2000). 

The finding of a higher threshold for ratio discrimination within the realms of statistical inferences relative 



7. General discussion 

 
73 

 

to basic quantity discrimination is consistent with the idea that additive error is to be expected when an 

organism represents and operates over multiple amounts (see, e.g. Barth et al., 2006 and McCrink & 

Wynn, 2007 for discussion of this hypothesis). 

One interesting question arising from the data of Eckert, Call, et al. (2018) concerns the more 

specific nature of the representation in both species. For humans, the relation between performance and 

ROR was clearly logarithmic. For chimpanzees, by contrast, it could be equally well described as 

logarithmic or linear relationship. This is related to the debate on whether the scaling that occurs in 

quantitative representation through the analogue magnitude system is generally linear, with increasing 

variability for larger magnitudes (e.g. Brannon et al., 2001; Gibbon & Church, 1981; Whalen et al., 1999), 

or whether it is logarithmic, with a logarithmic compression of the mental number line which is used for 

numerical representations (e.g. Dehaene, 2003; Roberts, 2006, also see Cantlon et al., 2009; Dehaene et 

al., 2008 for discussion). In the case of the present study, the finding that chimpanzees´, but not humans´, 

performance could have been described as a linear function might be explained by differences in accuracy: 

While human performance rapidly increased with higher RORs and reached a plateau at a ROR of 8, ape 

performance was still far from ceiling even at the highest tested ROR (16). Hence, it is possible that one 

would only find a clearly logarithmic curve for chimpanzees when including even higher RORs which are 

even easier to be discriminated. The supposition that great ape intuitive statistics might, despite a similar 

threshold, be less accurate than human intuitive statistics resembles findings on absolute quantity 

discrimination, where humans showed higher accuracy compared to other primates (e.g. Cantlon & 

Brannon, 2007b). Future studies should test chimpanzees with a wider range of RORs to investigate 

whether (and at what point) they, like humans, also reach a maximum performance plateau. Additionally, 

it will be interesting to test human children and infants in order to explore the developmental trajectory 

of the signatures of intuitive statistical abilities. 

 

7.1.3. Integration of intuitive statistics with knowledge from other cognitive domains in great apes 

and human infants 

Eckert, Rakoczy, et al. (2018) showed that chimpanzees do have a random sampling assumption and 

recognize when this assumption is violated by a biased experimenter who has visual access to the 

population while sampling (but not when she is drawing blindly). Very similar findings were obtained in a 

developmental study using the VOE looking time paradigm with 11-month-old infants (Denison & Xu, 
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2009). More specifically, infants looked longer at a sampling scene when the sample did not match the 

explicitly expressed preferences of an experimenter, but they only did so when she was looking into the 

bucket while sampling, and not when she was blindfolded. Chimpanzees in Eckert, Rakoczy, et al. (2018), 

furthermore, were able to use a violation of statistical likelihoods as indication for biased sampling: When 

an experimenter drew only peanuts out of a population containing mainly carrots, chimpanzees inferred 

that the experimenter must have drawn intentionally. They did not draw similar conclusions when she 

drew the same samples out of a population containing mainly peanuts. Again, very similar results were 

found in a developmental study applying the VOE looking time paradigm with 10-month-old infants 

(Wellman et al., 2016). Hence, both chimpanzees and human infants possess the ability to use information 

from the social domain to judge whether a drawing process is random or non-random and intuitively draw 

appropriate rational inferences. The fact that chimpanzees and human infants were able to infer an 

experimenter´s intention based on samples being non-representative of a population´s distribution also 

sheds more light on apes´ and infants´ genuine understanding of the relationship between populations, 

sampling processes and samples. More specifically, if subjects were not able to reason from population 

to sample and vice versa (as results obtained by Eckert et al., 2017 may suggest; see section 7.1.1.), they 

shouldn´t have been able to draw conclusions that were based on both the identity of a population and 

the sample. Finding that chimpanzees, as well as infants, could assess the consistency between sample 

and population gives further reason to assume that they are in fact capable to draw inferences from 

sample to population.  

Developmental research is already one step ahead and found equivalent abilities for the physical 

domain: Infants seem to understand that, for instance, a cohesion-constraint or a physical barrier can 

prevent some objects from being drawn, resulting in a non-random event (Denison & Xu, 2010b; Denison 

et al., 2014; Lawson & Rakison, 2013; Teglas & Bonatti, 2016; Teglas et al., 2007, 2011). Moreover, infants 

are truly able to integrate two sources of information to compute event probabilities, instead of just 

flexibly deciding which of them is relevant in a particular case. For example, infants showed graded looking 

times, depending on the interaction of a temporal component, a spatial component and a proportional 

component (Teglas et al., 2011). To date there are no published studies testing for such abilities in great 

apes. However, preliminary work (Eckert et al., unpublished) cautiously suggests that chimpanzees might 

not be able to integrate information about spatial composition into their statistical inferences. 
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In conclusion, the present dissertation points out important commonalities between chimpanzees 

and human infants in their capacity to consider psychological information when drawing statistical 

inferences. Similar capacities in the physical domain, however, are yet to be shown in great apes. 

 

7.1.4. Summary of comparison of great apes´ and infants´ statistical abilities 

Great apes and human infants share the capacity to draw flexible inferences from population to sample. 

For great apes, however, inferences in the other direction might be limited: While they succeeded in 

conditions in which absolute and relative frequencies were confounded, they failed in conditions in which 

they were disentangled. Human infants, by contrast, were shown to be able to discriminate between likely 

and unlikely events requiring inferences from sample to population in VOE looking time paradigms. 

However, it remains unclear whether infants would be similarly competent in an active-choice task 

including crucial controls for absolute versus relative frequencies. Hence, while the capacity to draw 

intuitive inferences from population to sample is well established, the reverse ability still needs more 

exploration both in great apes and in infants. Much like human infants, great apes also take the sampling 

process into account when drawing inferences from population to sample and consider information of 

the social domain in order to judge whether a sample will reflect the population´s distribution. Relatedly, 

when confronted with samples which are non-representative of the population, chimpanzees (as well as 

infants) are able to draw conclusions about a biased sampling process. The cognitive foundation of these 

abilities is most likely an evolutionary ancient cognitive mechanism, the analogue magnitude system. All 

in all, the three studies together with previous data (Rakoczy et al., 2014) show that great apes possess 

similar intuitive statistical abilities as human infants (see Figure 2 for a schematic overview depicting great 

apes´ and infants´ intuitive statistical abilities). 
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Figure 2 Schematic overview depicting the three possible directions of statistical inferences and evidence for their occurrence 
in human infants and nonhuman great apes.  

 

The introduction of this dissertation was opened with a quote of Piaget and Inhelder, highlighting 

the long history of research on humans´ capacity to reason about probabilities: “Could there be in a 

normal man an intuition of probability just as fundamental and just as frequently used as, say, the intuition 

of whole numbers?” (Piaget & Inhelder, 1975, xiii). Piaget and Inhelder partly answered this question with 

the conclusion that “there are still two perfectly normal psychological states in which the understanding 

of chance and probability seem more or less absent: the primitive mind and the mind of a small child” 

(Piaget and Inhelder, 1975, xiv). The work of the present dissertation in combination with recent 

developmental research as well as work on pre-literate and pre-numerate indigenous Mayan groups 

(Fontanari, Gonzalez, Vallortigara, & Girotto, 2014) provide evidence that this conclusion was premature. 

In the contrary, both great apes and human infants (as well as pre-literate indigenous tribes) possess an 

intuitive statistical inference device, which does not rely on past experiences and does not seem to be 
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biased by heuristics. Hence, the capacity of intuitive statistics clearly antedates mathematical education 

and even language both phylogenetically and ontogenetically.  

 

7.2. Implications and conclusions 

7.2.1. Implications for the evolutionary origins of intuitive statistics 

The finding that great apes and human infants share fundamental commonalities in their intuitive 

statistical capacities sheds some light on the evolutionary origins of this type of reasoning. According to 

genetic analysis, the family of the great apes (Hominidae) emerged around 14 million years ago (Hara, 

Imanishi, & Satta, 2012) and comprises humans, chimpanzees and bonobos, two species of gorillas and 

three species of orangutans (Groves, 2005; Nater et al., 2017). Chimpanzees and bonobos are humans´ 

closest living relatives and most likely split from the shared lineage with humans only around 5 to 7 million 

years ago (Adachi & Hasegawa, 1995; Glazko & Nei, 2003; Hara et al., 2012)7. The work of the present 

dissertation suggests that chimpanzees (and most likely other great ape species: Rakoczy et al., 2014) 

share with humans a cognitive mechanism for basic intuitive statistical inferences. Thus, this mechanism 

most likely emerged before the divergence of humans and chimpanzees, i.e. at least 5 million years ago, 

or perhaps even earlier in evolutionary history.  

Interestingly, recent studies tested both New world and Old world monkey species in tasks 

requiring inferences from populations of food items to randomly drawn samples, comparable to those 

conducted with great apes (Eckert, Call, et al., 2018; Rakoczy et al., 2014). Placi et al. (submitted) found 

that long-tailed macaques, at the group level, succeeded only in conditions in which they could rely on a 

quantity heuristic dealing with the absolute number of preferred food items (e.g. 64:16 vs. 16:64 preferred 

to non-preferred food items). When absolute and relative frequencies were disentangled (48:12 vs. 

12:192), the monkeys failed the task, suggesting that they were not able to draw statistical inferences 

based on proportional information. Capuchin monkeys, by contrast, succeeded even in a crucial condition 

in which absolute and relative frequencies were disentangled (Tecwyn, Denison, Messer, & Buchsbaum, 

2016). However, their performance in a non-preferred food avoidance control was not significantly 

                                                           
7 Please note that these dates are still debated. Most likely, speciation was a lengthy process including periods of 
hybridization (e.g. Patterson, Richter, Gnerre, Lander, & Reich, 2006), making it difficult to determine exact dates.  
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different from chance level8 (whereas chimpanzees were successful in a comparable condition in Eckert, 

Call, et al., 2018), leaving some uncertainty as to whether their success in other conditions may trace back 

to the usage of an avoidance heuristic. Therefore, to date there is no unambiguous evidence for the 

presence of intuitive statistical abilities in monkeys equivalent to those of great apes and human infants. 

Although much more research is needed, this may suggest that statistical reasoning emerged rather late 

in primate evolution, perhaps only in the ape lineage.  

However, very recent research on two bird species points out that analogue abilities may have 

evolved in more distantly related animal classes. One study (Clements, Gray, Gross, & Pepperberg, 2018) 

presented language-trained grey parrot Griffin with a set of four objects, consisting of a 3:1 ratio of two 

item types (e.g. corks and keys). The experimenter placed the objects in an opaque container. 

Subsequently, she randomly drew one item in a way that the subject could not see what was drawn, and 

then asked the subject about the hidden object´s identity. The parrot vocally responded in roughly 75% 

of trials that the object was of the majority type, thereby matching the proportional distribution of items. 

While this study demonstrated a certain sensitivity to probabilistic patterns, it is important to note that 

the procedure differed from those applied in primate studies in several ways: First, training for this study 

(not including the language training), lasted several months. The grey parrot was trained in several steps 

until he reached criterion as indication of his understanding of the drawing-procedure. Relatedly, the 

testing phase (for a single ratio) lasted 96 trials; it is, therefore, controversial whether the parrot exhibited 

an intuitive capacity or rather a stepwise trained response. Furthermore, during these 96 test trials the 

parrot was rewarded when he guessed the drawn object correctly, resulting in a probabilistic reward 

pattern reflecting the population´s distribution. This resembles early studies where sensitivity to 

probabilistic reward patterns was found in various species ranging from bees (Real, 1991), cockroaches 

(Longo, 1964), and fish (Behrend & Bitterman, 1961), to rats (Wodinsky et al., 1958) and monkeys  (Meyer, 

1960; Wilson, 1960). Similar as the grey parrot in Clements et al. (2018), many other species exhibited 

“probability matching” instead of maximizing their outcome (e.g. picking a 70% rewarded stimulus in 

roughly 70% of trials, instead of 100%; e.g. Behrend & Bitterman, 1961; Bullock & Bitterman, 1962; Longo, 

1964). Hence, the study design of Clements et al. (2018) leaves some uncertainty as to whether grey 

                                                           
8 The authors reported that the monkeys´ performance in the avoidance control was marginally significant (P=0.063). 
However, results only reached marginal significance after the data of all those subjects, who showed a side bias in 
this condition, were removed. Since exhibiting a side bias can be a valid strategy for subjects who do not understand 
the task, removing the data of those individuals leads to an exclusion of unsuccessful subjects, and therefore to a 
systematic bias towards (non-representative) positive results.  
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parrots can truly use proportional information within a population to draw intuitive inferences about 

randomly drawn samples, or whether they simply possess a certain sensitivity towards probabilistic 

reward patterns. Another recent study showed that pigeons are sensitive to probabilistic reward patterns, 

independent of the absolute quantity of rewards (Roberts, MacDonald, & Lo, 2018). More specifically, 

pigeons learned that each of two individually presented keys would lead to the delivery of a food reward 

in a certain proportion of trials when pecked on. When subjects had the choice between the two keys, 

they strongly preferred a 75% rewarded key over a 25% rewarded key and thus showed clear signs of 

maximizing as opposed to suboptimal probability matching. Importantly, they even preferred the 

proportionally favorable key when the total number of rewards obtained on both keys was equated. 

Hence, pigeons are able to extract proportional information from past experiences in order to adapt their 

behavior in the most beneficial way. 

Although the studies conducted with birds so far are not directly comparable with those 

conducted with human infants and nonhuman primates, they do suggest that birds, too, have a sense of 

probability. To date, it remains an open question whether this sense of probability is a product of an 

intuitive statistical inference mechanism, and whether birds, like primates, are able to intuitively grasp 

the relation between populations and samples without relying on past experiences. However, considering 

that the analogue magnitude system, which might be the foundation of intuitive statistics, is present in a 

wide range of species and that the ability to draw intuitive statistical inferences most likely brings 

significant fitness benefits, the idea that intuitive statistics may have emerged several times during 

evolution in a convergent manner does not seem too far-fetched.  

In sum, even though much more research is needed to draw valid conclusions, the evidence to 

date suggests that intuitive statistics might have evolved in the last common ancestor of humans and 

nonhuman great apes. An analogue capacity may have evolved independently in other species, as 

suggested by recent studies on two bird species (Clements et al., 2018; Roberts et al., 2018). 

 

7.2.2. Implications for the cognitive architecture of great apes 

The present dissertation´s findings give important insights into the workings and architecture of the mind 

of great apes. Chimpanzees and other species of great apes are evidently able to intuitively reason about 

statistical events they have never experienced before. Hence, they do not only possess a simple frequency 

detection mechanism, as suggested by the frequentist approach for human probabilistic reasoning 
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(Cosmides & Tooby, 1996; Gigerenzer & Hoffrage, 1995) and as has been found in various animal species 

(e.g. Behrend & Bitterman, 1961; Bullock & Bitterman, 1962; Graf et al., 1964; Longo, 1964; Luttbeg & 

Warner, 1999; Meyer, 1960; Real, 1991; Staddon, 1988; Wilson, 1960; Wodinsky et al. 1958). Moreover, 

great apes´ statistical abilities do not seem to be a product of heuristics or perceptual biases; they truly 

considered proportional information instead of absolute quantities (Eckert, Call, et al., 2018; Eckert, 

Rakoczy, et al., 2018; Rakoczy et al., 2014), and they did not follow the two most common heuristics 

described for humans: representativeness (Tversky and Kahneman, 1972) and availability (Tversky & 

Kahneman, 1974). More specifically, apes only expected the sample to resemble the population´s 

distribution when appropriate (when drawing was non-random, chimpanzees inferred that the sample 

instead should reflect the experimenter´s intentions; Eckert, Rakoczy, et al., 2018), contrasting predictions 

derived from the representative heuristic. Furthermore, they were able to spontaneously adjust their 

inferences to the current situation independent of their most recent experience, contrasting predictions 

derived from the availability heuristic. For example, when a biased experimenter suddenly drew blindly, 

chimpanzees intuitively ignored the events of the experience phase (where they learned about the 

experimenter´s biases) and chose based on the populations´ proportions from the first trial onwards 

(Eckert, Rakoczy, et al., 2018). Apes hence behaved like optimal reasoners: they were able to decide which 

of multiple cues of a scene were relevant in a particular situation and weighed their influence on the 

outcome of the current event. They adapted these evaluations dynamically: small changes in a developing 

situation (e.g. the presence of a screen as indication for blind drawing) appropriately changed the relative 

importance of other relevant cues (e.g. knowledge about experimenters´ biases). Our research also 

demonstrate that chimpanzees seem to have a basic grasp of randomness (Eckert, Rakoczy, et al., 2018). 

This finding is especially intriguing, since traditionally a full understanding of chance and randomness was 

called into question even for human adults (e.g. Gilovich et al., 1985; Kahneman & Tversky, 1972; Tversky 

& Kahneman, 1993). 

One crucial indication of the present findings is that chimpanzees´ ability to flexibly consider 

knowledge from the social domain (Eckert, Rakoczy, et al., 2018) might be a first hint that apes´ statistical 

inference mechanism may be domain-general. If that was truly the case, great apes, just like human 

infants, possessed a powerful tool allowing them to rapidly acquire knowledge about their environment 

by drawing general conclusions from sparse data and to use these generalizations to predict the outcome 

of events in a variety of different contexts. This hypothesis is especially relevant in the light of more 

general debates about commonalities and differences in the cognitive architecture of humans and 
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nonhuman primates. Many prominent theories in comparative cognitive science postulate that one of the 

crucial differences between human and nonhuman cognition is based on the uniquely human forms of 

domain-general, flexible and systematic integration of different types of information (e.g. Carey, 2009; 

Penn, Holyoak, & Povinelli, 2008; Spelke, 2003; Tomasello & Call, 1997). The results obtained in the course 

of this dissertation cautiously suggest that great apes may actually be able to flexibly integrate different 

types of information to draw domain-general inferences, which would clearly contrast these theories. 

Future research will need to further explore this idea by investigating, e.g., whether great apes can 

integrate different (e.g. physical) information types in order to draw rational inferences.   

Although the present dissertation highlights the flexibility of great apes´ intuitive statistics, at the 

same time, it falls short in unambiguously determining the generality of great apes´ abilities, in particular 

apes´ ability to reason from sample to population based on proportional information (Eckert et al., 2017). 

These limitations may rather be due to methodological short-comings than to restrictions in apes´ 

statistical abilities (see 6.1. and 7.1.1. for discussion). Nevertheless, in order to be able to draw any valid 

conclusions about a potential domain-general statistical inference mechanism, prospective research will 

have to further explore great apes´ capacity to draw inferences from sample to population in studies 

eliminating these extraneous task demands.  

 

7.2.3. Implications for the debate on humans´ statistical reasoning (in-)abilities  

A considerable part of the introduction of this thesis was devoted to research demonstrating the 

incapacity of human adults to draw rational statistical inferences (see sections 2.1. and 2.2.). The heuristics 

and biases program demonstrated that humans thoughtlessly rely on a small number of general-purpose 

heuristics leading to systematic errors and biases such as base-rate neglect, conjunction fallacy, recency 

effects, and an inability to account for sample size (Kahneman & Tversky, 1973, 1974; Tversky and 

Kahneman, 1971, 1972, 1983). The frequentist approach, on the other side, granted humans the ability to 

reason statistically, but only in very limited contexts, namely only as long as they can rely on frequencies 

of past experiences (e.g. Cosmides & Tooby, 1996; Gigerenzer & Hoffrage, 1995). How does this fit the 

findings that pre-verbal infants possess an intuitive statistical inference mechanism? And, even more 

astonishingly, with the findings of the present dissertation demonstrating that even nonhuman great apes 

can intuitively reason from population to sample in quite sophisticated ways, without relying on either 

past experiences or heuristics? As Alison Gopnik (2014) phrased this apparent paradox: “Why are grown-

ups often so stupid about probabilities when even babies and chimps can be so smart?”. 
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As described above (see section 2.1.), the heuristics and biases program argued that probabilistic 

reasoning is a product of two distinct cognitive systems, in accordance with the widely held dual process 

account (Evans, 2003, 2008). According to this dual process account, the automatic, nonverbal and 

evolutionary ancient System 1 quickly responds to situations and easily leads to flawed and biased 

intuitions. In case they are not corrected by the more controlled and self-aware, verbal and explicit System 

2 (for instance because of time pressure or cognitive load (e.g. Finucane et al, 2000; Gilbert, 1989; 

Bodenhausen, 1990)), humans´ judgments are biased and errors are committed (see e.g. Kahneman & 

Frederick, 2002 for a review). However, per definition, neither pre-verbal human infants nor nonhuman 

primates possess a System 2; consequently, their probability assessments should entirely be attributed to 

the unreliable and biased System 1. Nevertheless, their statistical inferences are not driven by simple 

general-purpose heuristics nor do they commit systematic errors as has been found in human adults, 

thereby giving counter evidence for the dual system theory proposed to account for this type of reasoning. 

Tversky and Kahneman (1971) argued that intuitions (which are the source of heuristics) should always 

be regarded “with proper suspicion” (p. 31). Does the evidence accumulated by developmental and 

comparative research suggest that intuitions can, in fact, be more rational than explicit and controlled 

judgments? 

The apparently inconsistent findings from human adults on the one side and human infants and 

great apes on the other side, are probably, at least partly, caused by the different task formats usually 

applied for verbal and non-verbal creatures. The described developmental studies as well as our 

comparative studies involved, naturally, an experience-based format. Hence, infants and apes directly 

observed the situation they were required to make inferences about. In contrast, most of the previously 

described studies testing human adults used a descriptive format. More specifically, adults are usually 

confronted with text-based information involving explicit numerical information (e.g. percentages or 

fractions). It is possible that such description-based formats are masking human adults´ intuitive abilities 

in probabilistic reasoning tasks, whereas experience-based formats would facilitate them (see Schulze & 

Hertwig, unpublished, for a similar hypothesis). Eckert, Call, et al. (2018), for example, showed that human 

adults unambiguously succeed when confronted with an experience-based task comparable to that given 

to both great apes and human infants, supporting the hypothesis that task-format determines 

performance in statistical reasoning tasks. Moreover, developmental research has shown that young 

children regularly succeed in intuitive statistical tasks but fail as soon as there is a language component 

involved, e.g. when they are asked to verbally justify their judgments (e.g. Piaget & Inhelder, 1975; Teglas 
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et al., 2007). This suggests that the mechanism enabling intuitive statistics is completely independent of 

language, and thus might not be applied in tasks using a description-based format. In accordance with this 

hypothesis, there already is some evidence indicating that experience-based and description-based tasks 

can induce systematically different choices in adults as well as children (e.g. Barron & Erev, 2003; Camilleri 

& Newell, 2013; Hertwig & Erev, 2009). This “description-experience-gap” (Hertwig & Erev, 2009) is 

probably enhanced by the fact that text-based, symbolic probabilistic information (such as 30% or 1/3) 

require a true and exact understanding of fractions, a capacity that engages our symbolic number system. 

Hence, such kinds of inferences rely on a culturally and formally learned system (which is by definition not 

intuitive), in contrast to directly observed or experienced events, which apparently engage the 

evolutionary ancient analogue magnitude system instead. Therefore, if tested in the same, intuitive 

paradigms as infants and nonhuman primates, human adults would probably excel at least at similar, if 

not higher levels. 

However, this does not seem to be the full story. Recent research presented young children as 

well as adults with variants of the “lawyer-engineer problem” (Kahneman & Tversky, 1973; see section 

2.1.1.) to investigate the development of the representativeness heuristics (Gualtieri & Denison, 2018). 

Even though the paradigm was exactly the same for both children and adults (an experimental session 

was presented on a computer and narrated live by an experimenter, who then asked questions), results 

were different for the different age classes. More specifically, 4-year-olds produced responses that were 

closer to the base-rates, and hence more accurate than those of 5- to 6-year-old children and adults, who 

readily ignored base-rate information (6-year-olds and adults did so even more often than 5-year-olds). 

Thus, in comparison to older children and adults, young children seem to be less prone to neglect base-

rates in favor of individuating information, suggesting that the representative heuristic only emerges later 

in human ontogeny. These findings are consistent with other studies demonstrating that younger children 

engage in less biased reasoning and pay more attention to current evidence than to prior assumptions 

and preconceptions (e.g. Lucas, Bridgers, Griffiths, & Gopnik, 2014). Hence, it is likely that general-purpose 

heuristics (and the accompanying biases and errors) may only develop with increasing experience and 

accumulation of factual knowledge. This, in turn, is consistent with the idea that, in fact, such heuristics 

are efficient and often effective tools, allowing humans to rapidly make judgments, especially in real world 

scenarios where parts of the relevant information are usually unknown (see, e.g. Gigerenzer & Gaissmaier, 

2011 for a review). Following this hypothesis, it is unlikely that either infants or great apes engage in 
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general-purpose-heuristics such as representativeness. It will be of great interest for future research to 

address this hypothesis. 

Taken together, the apparent discrepancy between human adult statistical abilities on the one 

side, and those of human infants and great apes on the other side are probably due to two (perhaps 

interacting) main factors: First, the description-based task format mostly applied in studies testing adults 

probably engages the symbolic number system instead of the intuitive analogue magnitude system which 

is applied by infants and great apes. Second, humans seem to generate mental-shortcuts as time-saving 

alternatives to statistical computations over the course of development. While such heuristics are usually 

efficient and sufficient in real-world scenarios, they can lead to the systematic biases and errors frequently 

observed in specific task designs. 

In conclusion, recent developmental and comparative research, including the work of the present 

dissertation, suggests that humans possess an intuitive, evolutionary ancient non-symbolic statistical 

reasoning device, allowing us to draw statistical inferences from population to sample and vice versa. This 

system seems to be present from birth, and it is shared with our closest living relatives, the nonhuman 

great apes. Its signatures follow Weber´s law - hence, its probability estimates are not exact, but only 

approximate. From an evolutionary perspective, such an approximate statistical inference mechanism is 

probably sufficient for survival: For example, it is enough to have a rough intuition which of several 

foraging sites is more likely to have a sufficient amount of food and less likely to be invaded by predators 

- it is not necessary to know exactly how much more or less likely. Our modern society, however, needs 

to solve statistical problems in an “as close to exact as possible” way. For instance, coming back to the 

example mentioned in the introduction, before a new migraine treatment is being approved, it has to be 

investigated at exactly which rate it alleviates the symptoms and how likely potential side effects will 

occur. Similarly, in order to be able to draw any conclusion from the empirical data presented in this 

dissertation, I had to analyze them in a normative way, allowing us to determine exactly how likely it is 

that they were generated by a random process. Such higher-level statistical inferences are not intuitive at 

all, they require extensive training and would not be possible without our symbolic number system. 

Hence, much like “human´s explicit knowledge of symbolic number and geometry may be our unique, 

abstract cognitive ability (…), but it clearly depends, in part, on a system that is widely shared by other 

animals” (Vallortigara 2015, p. 59), also formal (i.e. symbolic) statistical reasoning may be our unique, 

abstract cognitive ability, but it is most likely, at least in part, based on an intuitive system that is shared 

with our closest living relatives. 
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7.3. Outlook 

The current dissertation demonstrated that chimpanzees and other nonhuman great apes possess a 

cognitive mechanism for intuitive statistics comparable to that of human infants, which enables them to 

reason from population to sample and, to a certain extent, vice versa. These findings present important 

steps towards a better understanding of the evolutionary origins of intuitive statistics. At the same time, 

these new insights leave open and raise exciting new questions about the cognitive underpinnings of 

intuitive statistics that need to be systematically addressed. Some of these questions tackle the more 

detailed nature of great apes´ statistical abilities, others the phylogenetic distribution of such abilities, 

and yet others the cognitive structure and development of intuitive statistics in general. 

 

7.3.1. Open questions concerning the nature of great apes´ statistical abilities 

We are only beginning to understand the statistical abilities of nonhuman primates and, accordingly, there 

is a wide variety of unanswered research questions to be addressed, some of which I will list in this section. 

One important open question which could not be fully answered within this dissertation concerns great 

apes´ reasoning capacities from sample to population. True statistical inferences involve a genuine 

understanding of the relation between populations, sampling processes and resulting samples (see Figure 

2). To date, it remains unclear whether great apes can truly reason from sample to population based on 

proportional information (Eckert et al., 2017), even though some of our work points in that direction 

(Eckert, Rakoczy, et al., 2018). In fact, even for human infants, the existing studies testing for such abilities 

(Denison et al. 2012; Xu & Garcia, 2008) leave open some important questions: Are infants able to reason 

from sample to population in an active-choice paradigm? And do they succeed even when absolute and 

relative frequencies are disentangled? The ability to reason statistically from sample to population is 

particularly important, since it allows an individual to draw general rules from limited observations, and 

hence depicts a likely candidate mechanism for inductive learning. Prospective research, therefore, should 

develop a more comparable paradigm for great apes and infants, carefully disentangling absolute and 

relative frequencies, and reducing extraneous task demands such as working memory load, inhibitory 

control demands and small magnitudes of differences between ratios, to more comprehensively explore 

both great apes´ and human infants´ abilities to reason statistically from sample to population.  

A second set of questions raised by the previous findings is whether great apes, like human 

infants, can integrate different kinds of information into their statistical inferences. Eckert, Rakoczy, et al. 
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(2018) showed that apes do have a random sampling assumption and that they recognize when this 

random sampling assumption is violated by experimenters who draw samples in an intentional way. These 

findings suggest that apes, just like human infants, flexibly combine knowledge from different cognitive 

domains with statistical input. At the same time, they raise a number of questions: First, how flexible and 

general are these capacities? Can apes use information other than social context information to judge 

whether the random sampling assumption is fulfilled? Developmental research has shown that infants 

can use a variety of different types of information when making inferences about the outcome of events 

(e.g. about different physical constraints (e.g. Denison & Xu, 2010; Teglas et al., 2007), or spatiotemporal 

information (Teglas et al., 2011)). For apes, so far only one study (Eckert et al., unpublished) has 

investigated whether apes can combine statistical and physical information (a physical barrier separating 

two types of food). Results showed that apes did understand that the physical constraint influenced the 

outcome of the sampling event. However, when physical and proportional information were in conflict, 

apes had difficulties understanding that the physical constraint determined the outcome regardless of the 

proportional composition of the population (e.g. that a population consisting of mainly peanuts was 

impossible to yield a peanut sample when all of them were stuck behind a barrier). It is possible, though, 

that these findings were due to the rather complicated task setup rather than reflecting true limitations 

in chimpanzees´ abilities. It, therefore, remains an open question whether great apes can use information 

about physical circumstances in combination with distributional information to predict the outcome of 

events in a more straightforward task setup. Second, are chimpanzees able to update statistical inferences 

in light of new evidence to compute a posterior probability? Girotto and Gonzales (2008) showed that 

from age 5, children´s decisions under uncertainty are sensitive to posterior information: Children were 

confronted with a population of chips; half of them were squares, the others were round. While all round 

chips were blue, most, but not all, squares were red. When the experimenter drew one item and asked 

which color it had, children correctly stated that it was probably blue. When, however, the experimenter 

informed them that he had drawn a square, children revised their prediction and answered that the 

sample was probably red. Hence, children were able to integrate prior probability with additional 

information to compute a posterior probability. Pre-literate Mayan adults succeeded in a similar version 

of this task, despite their lack of any sort of formal education (Fontanari et al., 2014). To my knowledge, 

there are no studies testing whether pre- or non-verbal individuals can update their statistical inferences 

in light of new evidence. It will be an exciting avenue of research to investigate whether apes and human 

infants are capable of such advanced intuitive statistical abilities.  



7. General discussion 

 
87 

 

A third set of questions concerns great apes´ ability to apply statistical capacities in more natural 

situations. The current dissertation demonstrated that apes have sophisticated intuitive statistical 

reasoning abilities, seemingly on a par with those of human infants. However, to date all studies utilized 

a very similar paradigm that required subjects to use proportional information within a population of food 

items to predict the outcome of a human´s drawing process (or vice versa). It remains an open question 

whether and how apes actually use this statistical tool kit outside the much used and rather unnatural 

“bucket paradigm”. Chimpanzees live in complex social groups characterized by both agonistic and 

mutualistic relationships: While chimpanzees are generally a competitive species (e.g. Hare, 2001; Muller 

& Mitani, 2005), they are also able to successfully cooperate with their group mates in order to achieve 

mutual gains (see, e.g. Mitani, 2009; Schmelz & Call, 2016 for reviews). Being able to infer and predict the 

behavior of other individuals can therefore be highly beneficial, both in order to outperform others, and 

in order to affiliate with the most reliable partners in cooperative events. A variety of studies have 

demonstrated that chimpanzees have flexible social cognitive abilities and share with humans the capacity 

to attribute (at least some) mental states to others (for a review see, e.g. Call & Tomasello, 2008). 

Furthermore, chimpanzees were shown to use these “mind reading” abilities to judge the behavior of 

others, both in cooperative (e.g. Yamamoto, Humle, & Tanaka, 2012) and in competitive situations (e.g. 

Kaminski, Call, & Tomasello, 2008; Schmelz, Call, & Tomasello, 2011, 2013). I hypothesize that, to make 

these judgments, apes apply their statistical inference mechanism: using frequency information as input 

and integrating it with other types of information, statistical reasoning may be a powerful tool to compute 

event probabilities and to draw domain-general inferences. In the context of competition, chimpanzees 

may use proportional information to infer habits and preferences of others and use this information to 

avoid conflict. Support for this idea comes from the findings of this dissertation: Eckert, Call, et al. (2018) 

showed that chimpanzees inferred humans´ choice biases from a violation of statistical likelihoods in the 

standard bucket paradigm. It thus seems plausible that apes would also use such statistically acquired 

knowledge in competitive situations. In the context of cooperation and collaboration, apes may use 

proportional information to assess the competence or reliability of conspecifics. Melis, Hare, and 

Tomasello (2006) found that chimpanzees recruited the more effective of two partners for a collaborative 

task on the basis of their prior experience with each of them. It will be an intriguing question to investigate 

whether apes use the proportion of previous successes/failures rather than the absolute number of 

successes to make their decision. Developmental research has shown that human children may use 

intuitive statistical reasoning for social learning (Pasquini, Corriveau, Koenig, & Harris, 2007): Children 

chose who to trust based on previous accuracy of informants; while initially this selective trust seems to 
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work in all-or-nothing-fashion, children from age 4 tracked the relative frequency of errors and used this 

proportion of failures to successes to predict future accuracy of informants. Prospective research will need 

to explore whether chimpanzees and other great apes perform on the level of human infants and hence 

if their reliance on conspecifics also works in all-or-nothing-fashion, or whether they, like older children, 

track the relative frequency of errors in order to predict future success. 

Another interesting avenue for future research on great apes´ intuitive statistics addresses the 

relationship between randomness and fairness. For humans, randomness is a very useful concept and an 

indispensable basis for fair play: Randomly shuffling cards, for example, ensures equal chances for all 

players to get a good hand. This procedure is indisputably fair, even if it may result in unevenly distributed 

winning cards. Eckert, Rakoczy, et al. (2018) showed that chimpanzees can discriminate random from non-

random drawing, giving a first hint that great apes may, too, have an understanding of randomness. Do 

great apes also consider randomness, in contrast to intention, as basis of “fairness”? This question is 

particularly exciting in light of the debate on whether or not nonhuman primates have a sense of fairness 

regarding the distribution of food items among conspecifics (e.g. Bräuer, Call, & Tomasello, 2006, 2009; 

Brosnan & Waal, 2003, 2014; Engelmann, Clift, Herrmann, & Tomasello, 2017; Wynne, 2004). One way to 

further inform this debate is to investigate whether apes react differently in response to uneven reward 

distribution depending on whether a human drew and distributed the rewards intentionally or randomly. 

 

7.3.2. Open questions concerning the phylogenetic distribution of statistical abilities 

The current dissertation only scratches the surface of explaining the evolutionary roots of intuitive 

statistics. While the research so far unequivocally demonstrates that statistical reasoning abilities 

emerged before the separation of humans and chimpanzees (and most likely other nonhuman great apes), 

it remains unclear whether similar capacities exist outside the great ape lineage. As described above, so 

far there is no unambiguous evidence for statistical reasoning abilities in monkeys (Placi et al., submitted; 

Tecwyn, et al., 2016). However, considering that the analogue magnitude system, which seems to be the 

foundation of intuitive statistics (Eckert, Call, et al.; 2018), is present in a wide range of species and taking 

into account that these abilities most likely bring clear fitness benefits, it is reasonable to assume that 

statistical abilities may have emerged several times independently during animal evolution. 

To understand the evolutionary roots of intuitive statistics it is therefore essential to consider the 

possibility of convergent evolution and test cognitively flexible species outside the primate lineage. 
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Finding analogue traits in distantly related species will give us important insights in both the ecological 

pressures and the cognitive prerequisites that facilitated and enabled the evolution of intuitive statistics. 

As described above (see section 7.2.2.), two recent studies found evidence for sensitivity to probabilistic 

reward patterns based on proportional information in pigeons and a grey parrot (Clements et al., 2018; 

Roberts et al., 2018). These findings strengthen the hypothesis that intuitive statistical reasoning abilities 

may have evolved independently inside and outside the primate order. To investigate this hypothesis 

more systematically and comprehensively, a larger number of individuals should be tested in an intuitive 

task which allows to directly compare with primates´ performance.  

 

7.3.3. Open questions concerning the cognitive structure and development of intuitive statistical 

abilities 

Eckert, Call, et al. (2018) demonstrated that the analogue magnitude system most likely underlies intuitive 

statistical reasoning abilities both in chimpanzees and human adults. This finding raises a couple of 

questions concerning the exact nature of this mechanism:  

First, does this mechanism compute probabilities over individual objects, i.e. discrete quantities, 

or rather over continuous magnitudes such as surface area or volume? In the studies conducted in the 

course of this dissertation, subjects could have reasoned about proportions of discrete quantities (e.g. a 

population of 40 peanuts vs. 10 carrot pieces depicts an 80% chance of drawing a peanut as a random 

sample) or about proportions of continuous quantities (e.g. the total volume of a bucket is filled 80% with 

peanuts and 20% with carrots, so chances of drawing a peanut are likewise 80%). Similarly, infants in the 

previously described studies (e.g. Denison & Xu, 2010a, 2014) might have reasoned about, e.g. the relative 

frequencies of red and white Ping-Pong balls, or about the proportion of the colors red and white. 

Theoretically, both options are conceivable: As mentioned above, many studies investigating quantitative 

abilities in nonhuman primates (and likewise in infants) controlled for various continuous dimensions such 

as surface area or duration and found that great apes and monkeys indeed do possess the ability to 

represent discrete numerical information (e.g., Beran, 2007; Cantlon & Brannon, 2007a; Thomas et al., 

1980). Similarly, they are also able to reason about continuous quantities, such as amounts of liquids (see, 

e.g. Beran, 2010; Call & Rochat, 1996; Muncer, 1983; Suda & Call, 2004, 2005). Both types of 

representations are most likely mediated by an analogue magnitude system (see, e.g. Cantlon et al., 2009 

and Lourenco, 2015 for reviews), signatures of which were also found in tasks requiring intuitive statistical 
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inferences (Eckert, Call, et al., 2018; for details on the debate on whether there is a separate approximate 

number system which is supporting only discrete numerical judgments, see section 3.3.1.2.). For human 

children, research found some evidence that proportional reasoning seems to be easier when dealing with 

continuous compared to discrete quantities (Boyer, Levine, & Huttenlocher, 2008; Jeong, Levine, & 

Huttenlocher, 2007; Spinillo & Bryant, 1999), giving a first hint that intuitive statistics might primarily be 

computed over continuous magnitudes. Future studies should test both human infants and great apes in 

a statistical inference task disentangling continuous and discrete quantities to further inform this debate. 

 A second set of questions regarding the cognitive structure of intuitive statistics concerns its 

developmental trajectory as well as its relation to formal (i.e. symbolic) statistical reasoning. For humans, 

research already shed some light on the developmental pathway of numerical abilities regarding absolute 

set sizes and found some interesting patterns. First, there seem to be large individual differences in the 

accuracy of the analogue magnitude system (Halberda, Mazzocco, & Feigenson, 2008), which appear to 

be consistent over development (Starr, Libertus, & Brannon, 2013). In fact, early inter-individual 

differences in accuracy even seem to be predictive of later explicit mathematical achievement (Feigenson 

et al., 2013; Libertus, Feigenson, & Halberda, 2013b; Mazzocco, Feigenson, & Halberda, 2011; but see 

Gilmore et al., 2011; Libertus et al., 2013a). Moreover, the system´s accuracy seems to increase during 

childhood, with lowest precision levels in infancy which improve over the course of development until 

adulthood (Halberda & Feigenson, 2008; Pica et al., 2004; Xu & Spelke, 2000). These findings raise the 

question whether the development of statistical abilities follows similar patterns. More specifically, do we 

find better accuracy in statistical reasoning tasks in older compared to younger individuals? And are early 

inter-individual differences in accuracy predictive of later formal statistical reasoning? As described 

earlier, there already is some evidence contrasting these predictions. One study (Girotto et al., 2016), for 

example, found that 3- to 4-year-old children failed in intuitive statistical tasks, in which pre-verbal infants 

repeatedly succeeded (Denison & Xu, 2010a, 2014), even when verbal demands were reduced. This may 

be a first hint that, in contrast to abilities dealing with absolute quantities, intuitive statistics develop in a 

non-linear way. Future research will have to examine whether the older children’s failure in this study was 

truly due to cognitive limitations, or rather due to performance limitations caused by extraneous task 

demands. Another hint pointing towards a nonlinear development of intuitive statistics comes from a 

study demonstrating that 4-year-old children formed more rational inferences (considering base-rate 

information), compared to older children and adults (Gualtieri & Denison, 2018). To my knowledge, there 

are no studies investigating the developmental trajectory of any quantitative ability in nonhuman great 
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apes. Moreover, all apes tested in intuitive statistical tasks, so far, were adults or adolescents. In order to 

shed more light on the developmental trajectory of intuitive statistics, ideally, one would need to conduct 

longitudinal studies with both humans and great apes, using the same active-choice paradigm at certain 

time points throughout life stages starting in infancy with continuous tests until adulthood.   

 In conclusion, the present dissertation depicts an important first step in investigating the 

evolutionary roots of intuitive statistics. It demonstrates that exploring such capacities in nonhuman great 

apes has enormous potential for gaining insights both into the origins of human statistical reasoning, as 

well as into the cognitive architecture of our closest living relatives. I am sanguine that this work will serve 

as a stepping stone to stimulate more research in this promising new field of comparative cognition. 
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