
BOLVEDERE: A SCALABLE NETWORK FLOW
THREAT ANALYSIS SYSTEM

Submitted in fulfilment

of the requirements of the degree of

DOCTOR OF PHILOSOPHY OF SCIENCE

of Rhodes University

Alan Herbert

Grahamstown, South Africa

December 2017

Abstract

Since the advent of the Internet, and its public availability in the late 90’s, there have been significant advancements
to network technologies and thus a significant increase of the bandwidth available to network users, both human
and automated. Although this growth is of great value to network users, it has led to an increase in malicious
network-based activities and it is theorized that, as more services become available on the Internet, the volume of
such activities will continue to grow. Because of this, there is a need to monitor, comprehend, discern, understand
and (where needed) respond to events on networks worldwide. Although this line of thought is simple in its
reasoning, undertaking such a task is no small feat.

Full packet analysis is a method of network surveillance that seeks out specific characteristics within network
traffic that may tell of malicious activity or anomalies in regular network usage. It is carried out within firewalls
and implemented through packet classification. In the context of the networks that make up the Internet, this
form of packet analysis has become infeasible, as the volume of traffic introduced onto these networks every day
is so large that there are simply not enough processing resources to perform such a task on every packet in real
time. One could combat this problem by performing post-incident forensics; archiving packets and processing
them later. However, as one cannot process all incoming packets, the archive will eventually run out of space.
Full packet analysis is also hindered by the fact that some existing, commonly-used solutions are designed around
a single host and single thread of execution, an outdated approach that is far slower than necessary on current
computing technology.

This research explores the conceptual design and implementation of a scalable network traffic analysis system
named Bolvedere. Analysis performed by Bolvedere simply asks whether the existence of a connection, coupled
with its associated metadata, is enough to conclude something meaningful about that connection. This idea draws
away from the traditional processing of every single byte in every single packet monitored on a network link (Deep
Packet Inspection) through the concept of working with connection flows.

Bolvedere performs its work by leveraging the NetFlow version 9 and IPFIX protocols, but is not limited to these.
It is implemented using a modular approach that allows for either complete execution of the system on a single
host or the horizontal scaling out of subsystems on multiple hosts. The use of multiple hosts is achieved through
the implementation of Zero Message Queue (ZMQ). This allows for Bolvedre to horizontally scale out, which
results in an increase in processing resources and thus an increase in analysis throughput. This is due to ease of
interprocess communications provided by ZMQ.

Many underlying mechanisms in Bolvedere have been automated. This is intended to make the system more user-
friendly, as the user need only tell Bolvedere what information they wish to analyse, and the system will then
rebuild itself in order to achieve this required task. Bolvedere has also been hardware-accelerated through the use
of Field-Programmable Gate Array (FPGA) technologies, which more than doubled the total throughput of the
system.

Acknowledgements

I would like to acknowledge and extend thanks to a number of individuals who gave me support and guidance
throughout the duration of this research. Firstly, I would like to give thanks to my supervisor, Professor Barry
Irwin. His guidance and support has been key to my successes in this research.

I would like to also extend thanks to my family for their continuous support and care for my general well-being.
I pass my gratitude on to my wife, Sindisiwe Herbert, who stood by me throughout this research. Her language
contributions helped me to create a more well-rounded document. Praise must also be given to Donna Stevens in
this regard who acted as my primary language proofreader throughout this document.

I would like to thank the Computer Science department at Rhodes University for providing me access to the
equipment and space required to carry out this research.

This work was undertaken in the Distributed Multimedia Centre of Excellence at Rhodes University, with financial
support from Telkom SA, THRIP, Coriant, Easttel and Bright Ideas 39. The author acknowledge that opinions,
findings and conclusions or recommendations expressed here are those of the author and that none of the above
mentioned sponsors accept liability whatsoever in this regard.

Finally, I wish to acknowledge the support of the Council for Scientific and Industrial Research and the Armaments
Corporation of South Africa for the financial support for this research.

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Goals . 3

1.3 Scope and Limitations . 4

1.4 Document Conventions . 5

1.5 Document Structure . 6

2 Literature Review 9

2.1 Ethernet . 10

2.1.1 Network Link Speeds . 10

2.2 Internet Protocol . 11

2.2.1 Routing . 12

2.2.2 IPv4 . 13

2.3 NetFlow . 15

2.3.1 NetFlow Version 9 Template Records at a Lower Level 17

2.4 Malicious Internet Activity . 20

2.4.1 Brute-Force . 21

i

CONTENTS ii

2.4.2 Port Scanning Techniques . 21

2.4.3 Vulnerability Exploitation . 22

2.4.4 Availability of Attacks . 23

2.4.5 Distributed Denial of Service Attack . 24

2.5 Selected Historic Malware . 26

2.5.1 Blaster Worm . 27

2.5.2 Welchia . 28

2.5.3 Storm Worm . 28

2.5.4 Conficker . 29

2.5.5 SQL Slammer . 30

2.5.6 Mirai (The Future) . 31

2.6 Indicators of Compromise (IOC) . 32

2.7 DDoS Attack Detection Approaches . 33

2.7.1 MULTOPS . 34

2.7.2 Learning through Neural Network using sFlow as Learning Data 34

2.7.3 Attack Classification through Use of NetFlow 35

2.7.4 TOPAZ . 35

2.7.5 Statistical Approach to DDoS Detection 36

2.8 Internet Background Radiation . 37

2.9 Packet Source IP Geolocation and Dealing with Spoofing 38

2.9.1 Use of NetFlow Node Source ID in Packet Spoofing Detection 39

2.10 Botnet Detection . 40

2.10.1 BotHunter . 41

CONTENTS iii

2.11 Attack Detection Through Packet Analysis . 42

2.11.1 Snort . 43

2.11.2 Bro . 45

2.11.3 System for Internet-Level Knowledge 45

2.12 Field-Programmable Gate Array . 46

2.12.1 How It Works . 46

2.13 Summary . 48

3 Technology Evaluation 49

3.1 Architectures . 50

3.1.1 CPU . 51

3.1.2 GPU . 53

3.1.3 FPGA . 55

3.2 Inter-Process Communication (IPC) . 56

3.2.1 Network Sockets . 56

3.2.2 Shared Memory . 58

3.2.3 Threads and Work Queues . 60

3.2.4 Other Forms of Interprocess Communication 61

3.2.5 Zero Message Queue . 61

3.2.6 Rabbit Message Queue (RabbitMQ) . 62

3.2.7 Nanomsg . 63

3.3 Summary . 63

CONTENTS iv

4 Design and Implementation of the Base System 66

4.1 Implementation Goals . 66

4.2 System Design . 67

4.2.1 System Components and Flow of Logic 69

4.2.2 Architecture . 70

4.2.3 Interprocess Communication . 72

4.2.4 Configuration . 73

4.3 Build Time and Run Time Configuration . 74

4.3.1 Build-time Configuration Templates and Configuration 75

4.3.2 Runtime Collector Configuration . 79

4.3.3 NetFlow Template Store and Re-Ordering 81

4.4 Summary . 82

5 Processor Modules 84

5.1 DDoS Detection Through Use of Neural Networks 85

5.1.1 Data Representation and Training . 87

5.1.2 Supporting Neural Network Feeder Program 90

5.2 Fourier Analysis . 92

5.2.1 Implementation . 98

5.3 Port Scan Detection . 101

5.3.1 Implementation and Configuration . 102

5.4 Sudden Port Bandwidth Use Change Detection 105

5.4.1 Implementation . 106

CONTENTS v

5.4.2 Configuration . 109

5.5 Reputation Analysis System . 110

5.5.1 Implementation . 111

5.5.2 Configuration . 113

5.6 Source IP Address Anomaly Detection . 113

5.6.1 Implementation and Configuration . 114

5.7 Malware NetFlow Fingerprinting . 115

5.7.1 Implementation . 116

5.8 Summary . 118

6 Testing 119

6.1 The Base Bolvedere System Work . 120

6.1.1 Environment . 121

6.1.2 Collector Testing . 122

6.1.3 Publisher Testing . 123

6.1.4 Base Subsystem Testing . 124

6.1.5 Collector Subsystem Results . 124

6.1.6 Publisher Subsystem Results . 125

6.1.7 Base Subsystem Results . 127

6.2 Neural Network Based DDoS Detection . 129

6.2.1 Environment . 129

6.2.2 Effectiveness Test . 131

6.2.3 Time to Train versus Effectiveness Test 132

CONTENTS vi

6.2.4 Effectiveness Results . 134

6.2.5 Time to Train versus Effectiveness Results 136

6.3 Fourier Analysis . 137

6.3.1 Environment . 137

6.3.2 Packet Based versus NetFlow Data Record Based FFT Effectiveness . . 138

6.3.3 Packet Count versus Byte Count Analysis Effectiveness 139

6.3.4 Packet Based versus NetFlow Based FFT Effectiveness Results 139

6.3.5 Packet Count versus Byte Count Analysis Effectiveness Results 143

6.3.6 CUDA Performance on Varying GPUs 146

6.4 Reputation Analysis System . 147

6.4.1 Environment . 147

6.4.2 Runtime Malicious Activity Collection 148

6.4.3 Reputation Storage Results . 149

6.5 Port Scan Detection . 150

6.5.1 Environment . 150

6.5.2 Port Scan Detection . 151

6.5.3 Port Scan Detection Results . 152

6.6 Sudden Port Bandwidth Use Change . 153

6.6.1 Environment . 154

6.6.2 Sudden Port Bandwidth Use Change Results 154

6.7 Source IP Address Anomaly Detection . 155

6.7.1 Environment . 156

6.7.2 Controlled Generation of Source IP Spoofing 156

CONTENTS vii

6.7.3 Controlled Generation of Source IP Spoofing Results 156

6.8 Malware NetFlow Fingerprinting . 157

6.8.1 Environment . 158

6.8.2 NetFlow Logs and Rules Generated . 159

6.8.3 Results . 161

6.8.4 Rule Sets Generated . 162

6.8.5 Automated Module in Action . 162

6.9 Summary . 164

7 Real-World Application 167

7.1 Dataset . 168

7.1.1 The Network . 169

7.2 Completeness Testing of Bolvedere . 172

7.2.1 Distribution . 172

7.2.2 Correctness . 173

7.3 Maximal Throughput . 174

7.4 Mirai’s Effect . 176

7.5 DDoS Detection . 177

7.5.1 Mitigating Neural Network Error . 183

7.6 Port Scan Detection . 184

7.7 Sudden Port Bandwidth Change . 189

7.8 Source IP Anomaly . 192

7.9 Vulnerability Fingerprint Detection . 195

7.10 Fourier Analysis . 198

7.11 Summary . 199

CONTENTS viii

8 Hardware Acceleration 201

8.1 Design and Implementation . 202

8.2 Network Link Speed versus FPGA Clock Speed 203

8.2.1 Keeping State While Streaming . 206

8.3 Very High-Level Hardware Functional Block Overview 207

8.4 Receiving Network Traffic . 209

8.5 Transmitting Network Traffic . 209

8.6 Packet Discernment and Future-Proofing . 210

8.7 NetFlow Template and Data Record Processing 211

8.8 A Simple Functional Example at Runtime . 212

8.9 Summary . 212

9 Hardware Equivalence Testing 215

9.1 Environment . 216

9.2 Correct Filtering and Reordering of NetFlow . 216

9.2.1 Results . 218

9.3 Streaming at Link Speed . 219

9.3.1 Results . 219

9.4 Hardware versus Software Processing Times . 220

9.4.1 Results . 221

9.5 Summary . 221

CONTENTS ix

10 Conclusion 223

10.1 Document Summary . 224

10.2 Key Aspects . 225

10.2.1 Processor Module Development . 225

10.2.2 Modularity, Scalability and Parallelism 226

10.2.3 System Accessibility . 227

10.2.4 Hardware Acceleration . 227

10.3 Evaluation of Research Goals . 228

10.4 Real-World Application . 229

10.5 Research Contribution . 231

10.6 Future Work . 231

References 232

A NetFlow Version 5 Packet Formats 256

B FPGA 6 Input Gate Logic Results 258

C The Process Packet Template 261

D Storm Worm Bait Mail Subjects and Attachment Names 263

E Mirai’s IPv4 Subnetwork Exclusion List 266

F Simple Template File for Bolvedere Publisher 268

G Graphed Statistics for Real-World Dataset 270

H Online Resource Access 273

List of Tables

2.1 Common Network Link Speeds and their Common Names (Nikkel, 2013) . . . 11

2.2 NAND Gate Look-Up Table . 46

3.1 Inter-Process Communication High-Level Overview 63

4.1 Configuration Template Code Symbol Replacement 78

5.1 Packet Count per Time Slice . 96

5.2 Time to Complete Long Scan for Varying Values Between Probes 101

5.3 Reputation System’s Database Table Format . 112

6.1 Time to Train Neural Network and Success Rate According to Size 130

6.2 Neural Network Classifiers . 131

6.3 Size of Each of the DDoS Detection Neural Network’s 3 Hidden Layers 133

6.4 Time to Train Neural Network and Success Rate According to Size 135

6.5 CUDA GPGPU Time Taken to Compute FFT in Seconds 147

6.6 Virtual Network IDs and Malicious Activity by Percentage 149

6.7 Virtual Network Malicious Reputation Scores out of 100 150

6.8 Detection Rate of Each Port Scan Mode . 152

x

LIST OF TABLES xi

6.9 Detection Rate of Each Port Scan Mode . 153

6.10 Error Rate for Initial 25 Data Points . 155

6.11 NetFlow Logs: Successful ms08_067_shell Exploit 160

6.12 NetFlow Logs: Successful ms08_067_vnc Exploit 160

6.13 NetFlow Logs: Successful java_rmi_server Exploit 160

6.14 NetFlow Logs: Successful distcc_exec Exploit 160

6.15 NetFlow Logs: Successful samba_symlink_traversal Exploit 160

6.16 NetFlow Logs: Successful samba_usermap_script Exploit 160

6.17 NetFlow Logs: Successful unreal_ircd_3281_backdoor Exploit 161

6.18 NetFlow Logs: Successful ntp_mon_list Exploit 161

7.1 Network Totals Overview . 168

7.2 Network Averages Overview . 169

7.3 Softflowd’s Recorded IPv4 Template Fields In Order 170

7.4 Network Name and Subnet List . 171

7.5 Minimum Delay Between Processing a NetFlow Records by Module 175

7.6 Neural Network Classifiers . 178

7.7 DDoS Attacks Detected by Real Use Case . 179

7.8 South African Public School Terms . 180

7.9 Detected DDoS Attack’s Top 10 Targets over 17 Months 182

7.10 Top 5 DDoS Detection Months Targeted at IANA “Blackhole Servers” 183

7.11 Unique Port Scanning Hosts Detected by Month 185

7.12 Top 10 External IPs Marked as Port Scanners . 186

LIST OF TABLES xii

7.13 Top 10 Institute IPs Marked as Port Scanned . 188

7.14 Top 10 External IPs Marked as Port Scanners . 189

7.15 Sudden Port Traffic Increase/Decrease Detected in Real Use Case 190

7.16 Top 10 Bandwidth Anomalies Detected by Destination Port for October 2016
(Inbound Connections) . 191

7.17 Top 10 Bandwidth Anomalies Detected by Source Port for October 2016 (Out-
bound Connections) . 191

7.18 Source IP Anomalies Detected by Real Use Case 193

7.19 Top Source IP Anomalies Detected . 194

7.20 Top Source IP Anomalies Detected (Broadcast and LIRs filtered out) 194

7.21 Vulnerability Fingerprints Detected by Real Use Case 195

7.22 Count of Each Vulnerability Fingerprint Detected in Dataset 197

7.23 Breakdown of Top 10 ntp_mon_list Exploit Source IPs 197

9.1 Softflowd’s Recorded IPv4 Template Fields In Order 217

9.2 Kept and Reordered Fields from Hardware Collector 217

9.3 Values of Reordered Fields from Bytes Received 218

B.1 Look-Up Table for Figure 2.11 . 258

List of Figures

1.1 Example Byte Field Figure . 6

2.1 Layers of an Ethernet Frame . 12

2.2 Example Byte Field Figure . 14

2.3 NetFlow Version Timeline . 15

2.4 NetFlow Version 9 Packet Header Format . 17

2.5 NetFlow Version 9 Template FlowSet Format . 19

2.6 NetFlow Version 9 Data FlowSet Format . 20

2.7 MSBlaster Binary Viewed in Hex Viewer . 27

2.8 Network Telescope Traffic Increase at Conficker Start (Irwin, 2011) 37

2.9 Bot Attack Process on Vulnerable System (Gu et al., 2007) 41

2.10 Logic Flow of Pixel Snort . 44

2.11 Example 6 Input Gate Logic . 47

3.1 Application of Amdahl’s Law . 50

3.2 Example Pipeline Stages of Execution . 52

3.3 SISD and SIMD Addition Comparison . 54

3.4 Multi-Host IPC Using Point-to-Point Communications 56

xiii

LIST OF FIGURES xiv

3.5 Single-Host IPC Using Point-to-Point Communications 57

3.6 A Simple Message Queue . 57

3.7 A Host Broadcasting Network Packets to Other Hosts 58

3.8 An Overview of a Processor’s Memory Hierarchy 59

3.9 Simple Workings of a Work Queue . 60

3.10 Two Processes Communicating Through a File on Hard Drive 61

4.1 High-Level System Overview . 69

4.2 Proposed Host Architecture for Each Bolvedere Subsystem 70

4.3 Configuration File Selecting Code to Build Publisher from Template File 75

5.1 Basic Overview of a MLP Class Neuron . 85

5.2 Graph produced by f(x) = tanh(x) . 86

5.3 Representation of a Neural Network . 87

5.4 Example R Representation of Neural Network 89

5.5 Piecewise Function Example (Equation 5.4) . 93

5.6 Piecewise Function Example with Single Points (Equation 5.5) 94

5.7 Example of a Line Made Using Dots . 94

5.8 TShark Dump of Simple Ping . 96

5.9 DFT of Simple Ping Traffic at Sample Rate 100 ms and Intensity on Byte Count 97

5.10 Example Output of FFT Implementation . 100

5.11 Diagram Depicting Standard Deviations: Normal Distribution 108

5.12 Updated High-Level System Overview with Reputation Subsystem 112

6.1 Physical Collector Publisher Testing Environment Overview 121

LIST OF FIGURES xv

6.2 Count of Successfully Processed NetFlow Records 124

6.3 Neural Network Processor Module Environment 129

6.4 Neural Network Detection of Simple SYN Storm DDoS Attack Results 133

6.5 Neural Network Success Rate Compared to Default Configuration Size 134

6.6 Neural Network Training Times Compared to Default Size 135

6.7 FFT of Ping Packet Capture Bucketed by Bytes Received at 100 Hz 140

6.8 FFT of Ping Packet Capture Bucketed by Bytes Received at 10 Hz 140

6.9 FFT of NetFlow Ping Data Records Bucketed by Bytes Received at 100 Hz . . 140

6.10 FFT of NetFlow Ping Data Records Bucketed by Bytes Received at 10 Hz . . . 141

6.11 FFT Captured Noise Bucketed by Bytes Received at 100 Hz 141

6.12 FFT Ping and Noise Bucketed by Bytes Received at 100 Hz 142

6.13 FFT Ping and Noise Bucketed by Bytes Received at 10 Hz 142

6.14 FFT of Ping Packet Capture Bucketed by Packet Count Received at 100 Hz . . 143

6.15 FFT of NetFlow Ping Data Records Bucketed by Packet Count at 100 Hz 143

6.16 FFT of NetFlow Ping Data Records Bucketed by Packet Count at 10 Hz 144

6.17 FFT Captured Noise Bucketed by Packet Count Received at 100 Hz 144

6.18 FFT Ping and Noise Bucketed by Packet Count Received at 100 Hz 145

6.19 FFT Ping and Noise Bucketed by Packet Count Received at 10 Hz 145

6.20 FFT Ping and Large Noise Bucketed by Bytes Received at 100 Hz 146

6.21 Testing Environment Overview . 147

6.22 Port Scan Detection Environment . 151

6.23 Internal to External Network Flow . 156

6.24 Success of Spoofed Network Flow Detection . 157

LIST OF FIGURES xvi

6.25 Virtual Network Overview . 158

6.26 Comparison of Success versus Failure of Network Flow Identifications 164

7.1 Network Overview . 171

7.2 Host Configuration for 17 Month Data Processing 172

7.3 Host Configuration for 17 Month Data Processing with Monitor 174

7.4 DDoS Attacks Detected by Hour in October 2016 179

7.5 DDoS Attacks Detected by Overlaid Days in October 2016 180

7.6 DDoS Attacks Detected in Days 1 to 4 of October 2016 by Hour 181

7.7 Fast Fourier Transform of 24 Hour Period (4th October 2016) 198

8.1 Marked Up High-Level System Overview . 202

8.2 FPGA Product ID: XC3S500E-FGG320D . 203

8.3 High-Level Abstraction of Hardware Functional Blocks and Connections 207

8.4 Double Buffered Transmission Buffers . 209

8.5 Example Filter and Reorder of NetFlow Fields in a Data Record 212

9.1 Physical Configuration of NetFlow Monitored Simple Networks 216

9.2 Time Taken for Sequential Processing of In-Order versus Out-of-Order Net-
Flow Data Records . 221

A.1 NetFlow Version 5 Packet Header Format . 257

A.2 NetFlow Version 5 Record Format . 257

G.1 Number of Gigabytes Transferred per Month . 271

G.2 Number of Packets Transferred per Month . 271

G.3 Number of Flow Records per Month . 272

Abbreviations

The following list contains the various abbreviations and acronyms used in this document.
Citations of research related to these terms can be found in the text body.

ACK ACKnowledgement
AMQP Advanced Message Queueing Protocol
ARP Address Resolution Protocol
AS Autonomous System
ASIC Application Specific Integrated Circuit
BGP Border Gateway Protocol
BPS Bytes Per Second
CERT Computer Emergency Response Teams
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
C&C Command and Control
DDoS Distributed Denial of Service
DFT Discrete Fourier Transform
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
DoS Denial of Service
DPI Deep Packet Inspection
DSP Digital Signal Processing
FFT Fast Fourier Transform
FIFO First In, First Out
FIN FINish
FQDN Fully Qualified Domain Name
FSID Flow Source IDentification
Gbps Gigabits per second
GCC GNU Compiler Collection
GMII Gigabit Media-Independent Interface
GNU GNU’s Not Unix
GPGPU General Purpose Graphical Processing Unit
GPU Graphical Processing Unit
HDL Hardware Description Language
IANA Internet Assigned Numbers Authority
IC Integrated Circuit

LIST OF FIGURES xviii

ICMP Internet Control Message Protocol
IEEE Institute of Electrical and Electronic Engineers
IGP Interior Gateway Protocol
IHL Internet Header Length
IO Input/Output
IOC Indicator Of Compromise
IoT Internet of Things
IP Internet Protocol
IPC Inter-Process Communication
IP Core Intellectual Property Core
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
ISDN Integrated Switch Digital Network
ISP Internet Service Provider
PARC Palo Alto Research Center Incorporated
PC Personal Computer
PCIe Peripheral Component Interconnect express
LAN Local Area Network
LIR Local Internet Registry
LRU Least Recently Used
LTS Long Term Support
LUT Look-Up Table
Mbps Megabits per second
MD5 Message Digest 5
MII Media-Independent Interface
MLP MultiLayer Perceptron
MTU Maximum Transmission Unit
NAT Network Address Translation
NIC Network Interface Controller
NTP Network Time Protocol
N-ISDN Narrowband Integrated Switch Digital Network
OpenCL Open Computing Language
OSPF Open Shortest Path First
PHY PHYsical layer
PoPI Protection of Private Information
POTS Plain Old Telephone Service
PPS Packets Per Second

RabbitMQ Rabbit Message Queue
RAM Random Access Memory
RIP Routing Information Protocol
RISC Reduced Instruction Set Computer
RPC Remote Procedure Call
RST Reset
RTL Register-Transfer Level
SANReN South African National Research Network
SHA Secure Hashing Algorithm
SIMD Single Instruction Multiple Data
SISD Single Instruction Single Data
SMB Server Message Block
SNMP Simple Network Management Protocol
SoC System on Chip
SQL Structured Query Language
SSH Secure SHell
Subnet Subnetwork
SYN SYNchronize
TCP Transmission Control Protocol
ToS Type of Service
TTL Time To Live
URL Uniform Resource Locator
UTC Coordinated Universal Time
VDSL Very high bit-rate Digital Subscriber Line
VHDL Very high speed integrated circuit Hardware Description Language
ZMQ Zero Message Queue

1
Introduction

THE need for network security is constantly increasing. This demand is caused by the
increase in active Internet-capable devices and users, and the increasing integration of
infrastructure (in both the public and the private sectors) with the internet. The services

and information provided by network users are subject to attack by malicious sources, and to
misuse, with the consequence of interrupted services (Furnell et al., 2007).

It cannot be expected that every Internet user be aware of every security flaw or risk that leaves
the user and their devices vulnerable to exploitation. Furthermore, misuse of resources such as
bandwidth or allocated data quotas by users, whether intentional or not, also serves to affect
the quality of service on a network. Because of this, automated systems need to be put in
place in key locations within core networks to monitor transactions that occur on large-scale
networks (Ioannidis et al., 2000; Qin et al., 2012). These large-scale networks, more often than
not, differ in configuration and topology, which adds to the difficulty of threat monitoring within
these networks.

For this reason, application-specific hardware and software need to be designed to suit the
specific network for which they are intended. Alternatively, mechanisms need to be put into
place that can translate occurrences in each network type to a common language. Protocols

1

1.1. PROBLEM STATEMENT 2

that act as such a mechanism and provide a common communication base do exist. One family
of such protocols is NetFlow. NetFlow is implemented by pairing unique identifiers with the
data fields used to transfer data on networks (Claise, 2004). It focuses on the existence of
a connection between endpoints rather than on every detail of the connection, and logs only
the metadata of a network flow. Following this protocol helps to add meaning to a log file,
irrespective of the source of that log.

Failure to properly monitor and mitigate threats results in problems ranging from network slow-
downs (due to bandwidth use by malicious sources) to identity theft (through the collection of
relevant information from databases or directly from users of these large networks). Recent
events include Conficker (Microsoft, 2009), Mirai (Kolias et al., 2017), WannaCry (Mohurle
and Patil, 2017) and Petya (Gordon et al., 2017).

1.1 Problem Statement

Underlying security systems that monitor network traffic and both identify and mitigate threats
are an ever-increasing requirement in modern, large-scale networks. The user protection offered
by such systems is a basic requirement of a secure network. If a network is unable to ensure that
its systems are safe from malicious activity, systems on the network could be exploited and used
within botnets to proxy malicious data or other malicious activities on the Internet (Abu Rajab
et al., 2006). As a whole, this is detrimental to data flow on the Internet, and can lead to the
disruption of secure networks attached to the Internet.

Due to the large volume of network traffic generated on modern networks1, automated security
systems are essential for effective network traffic monitoring. These systems should be able to
provide feedback to concurrent systems in order to better mitigate malicious activities targeted
at the network, or within the network itself. Moreover, developers of these systems must ensure
that the overheads generated by these automated systems are not detrimental to the bandwidth
available within the network.

1Cisco estimates an average of 122 EB per month of data transfer on the Internet (Cisco, 2017).

1.2. RESEARCH GOALS 3

1.2 Research Goals

This research explores five goals: three primary and two secondary.

1. Primary Goals

(a) The use of multiple hosts is a must if this research is to tackle large-scale problems.
These larger problems, in the context of this research, relate to networks that see
growing network throughput, as well as networks with a growing userbase. Com-
pounding these two workloads is the growing amount of bandwidth available to
users on a network as time progresses. This will naturally increase the network traf-
fic produced by existing users, as well as users added in the future. This research in-
tends to design, implement and execute a NetFlow v9 and IPFIX processing frame-
work named Bolvedere. Bolvedere is intended to be able to scale out horizontally
in order to tackle these larger problems through parallel execution.

(b) The overarching goal of this research is an investigation of the benefits of imple-
menting both a NetFlow v9 and IPFIX processing framework. Processing of Net-
Flow records means the discernment and restructuring of a NetFlow record into a
common, predefined form to promote ease of analysis. The results produced by
Bolvedere must also be consistent and reliable, as inconsistencies introduced into
stateful methods of analysis will affect later runtime results. This system should
also mitigate Central Processing Unit (CPU) resource bottlenecks created by Deep
Packet Inspection (DPI) systems through use of its flow-based protocol, as NetFlow
records inherently contain less raw data to process than full packet captures (Doyen
et al., 2013).

(c) Interfacing to external and internal hardware- and software-based processing mod-
ules will be a key element of effective data analysis in this system. There is little
point in processing NetFlow data into a common, usable form if there is no func-
tionality with which to analyse this data. In this case, the system would only serve to
transcribe the data, without doing anything with it. Consequently, analysis processor
modules will be developed for Bolvedere that can run either in parallel or disjointly
from one another and from the NetFlow processing system. A user will be able to
add and remove these modules as needed. The overheads introduced through this
design will be recorded and analysed in order to determine its capability.

1.3. SCOPE AND LIMITATIONS 4

2. Secondary Goals

(a) The system will be tested using both synthetic data (generated according to known
real-world events) and actual data collected from NetFlow collectors on real net-
works. The synthetic testing is useful for gaining a general idea of how a system
will perform in a real-world situation. However, the use of real data is a better
determiner of the system’s performance.

(b) The NetFlow discernment subsystem of this implementation can be optimized through
discerning each record in the NetFlow in parallel with one another. This is possi-
ble because each record is disjointed from any other, as they are self-contained by
definition; any value held by a record does not affect any other record stored in a
NetFlow data packet. For this reason, the final goal of this research is to optimize
Bolvedere through the development and fabrication of a hardware implementation
of the NetFlow discernment subsystem on an FPGA chip.

1.3 Scope and Limitations

The system implemented in this research is simply a generic log processor; at its core, it is a
stream processor of data bytes. This means that it can process any form of data that is logged
with a corresponding template to indicate the content and intended interpretation of each field2.
However, as this research is intended for use in networks and security space, the focus of the
research will remain within this context. Furthermore, as this research is intended to work as
a log processor with accompanying templates for log discernment, NetFlow will be the only
protocol used in this research, and deviation from this in the context of system operation will
not occur.

This research aims to remain within the scope of an easily scalable and accessible NetFlow
processing and analysis system. Consequently, the hardware required to run the system cor-
rectly should be easily acquired and readily available. For this reason, Bolvedere is intended for
execution on the x86 and x64 architectures commonly used by commodity- and server-grade
systems.

As this research aims to develop a new technology from the ground up, the focus of the results
produced may be biased towards the determination of whether the system works correctly and

2A data log is of varying size and is described by its related template, which is defined in a 32 bit structure. The
leading 16 bits of this structure hold the field identification number, and the second 16 bits hold the size in bytes
of the field in the relevant data log. A template can hold as many of these fields as required by the user.

1.4. DOCUMENT CONVENTIONS 5

produces meaningful results. There will be discussions of the results acquired from the analysis
of actual data; however, these will focus on the correct functionality of the system as a whole,
rather than analysing the details of the information presented by these results.

One should also note that, because this system is developed from new beginnings, the aim is to
implement it on a single family operating system. The family chosen for this implementation
was Ubuntu Linux3. In doing so this leaves space for future work in porting this research to
other operating systems.

1.4 Document Conventions

In this text, certain words, segments of text and numbers are represented with different fonts,
typefaces, sizes and formatting. The use of these is completely systematic and is intended to be
consistent throughout this text. They indicate that a piece of text falls under a category other
than regular writing. An example of each of these categories is given below.

Equations:

Mathematical equations are indicated by the use of italics. Major equations are centred
and given equation numbers in the right-hand margin. For example:

f (x)= mx+ c (1.1)

Listings:

Listings are presented in a single-lined block and in a monospaced font. Each line is
numbered to aid ease of reference. All code in a listing is presented as it is found in the original,
and as such follows the complete structure of the coding language used. (Ellipsis is used to
represent text leading into or continuing from a text snippet within a listing.) Listing numbers
are provided for reference as a part of the heading above the listing. An example is given below.

Listing 1.1: Example Code Listing
1 . . .
2 for (in t i = 0; i < 100; i++)
3 {
4 p r i n t f (" Value = %d\n " , i) ; // s imply d i s p l a y i as a s t r i n g
5 }
6 . . .

3https://www.ubuntu.com

1.5. DOCUMENT STRUCTURE 6

Byte Fields:

Byte fields in this text are placed inside of a figure wrapper, using the floating default
style. This means that the byte field follows all behaviours of that of a figure, including heading
style. Byte fields are used to better diagram network packet headers and data structures. An
example is given in Figure 1.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

This is 16 bits wide (0-15) This is also 16 bits wide (16-31)

This is 32 bits wide

We are each wide 8 bits

Figure 1.1: Example Byte Field Figure

Number Formatting:

Numbers in this document are rounded to three significant figures after the decimal point.
The thousands separator used is a comma (,) and decimals are given after a period (.). For
example:

123,456,789.012

Units of measurement relating to a number are separated from the number by a space. For
example:

12,751.662 Mbps

1.5 Document Structure

The remainder of this document adheres to the following structure: Chapter 2 begins with
a literature review. The intention of this literature review is to give the reader a fresh under-
standing of the background material upon which this research is based. As there is hardware
involved in this research, the chapter examines the foundations of how networks work. This
leads into a discussion of common protocols for Ethernet, including NetFlow and how NetFlow
has been used in this project to detect network events. The chapter explores the idea of mali-
cious network events and how these events are categorised, and reviews the methods used to

1.5. DOCUMENT STRUCTURE 7

detect and mitigate iconic network attacks. Finally, Chapter 2 details the history, application
and implementation of FPGAs and ASICs, the hardware used for acceleration of Bolvedere.

Chapter 3 discusses the design and implementation of Bolvedere. It proposes a "structure"
for the logical flow of data through Bolvedere, and describes how the project design intends to
achieve the goals set out in Section 1.2. From this point, the chapter discusses which technolo-
gies or new approaches could be possibly used to achieve the intended functionality of each
part of the system. The chapter closes with a review of all proposed solutions to each of the
subsystems that make up Bolvedere, before drawing its final conclusion as to why the proposed
implementation will yield the best results.

Since Bolvedere as a whole is intended to both initially process NetFlow data records, and
use selectable modules to analyse these processed NetFlow data records, Chapter 5 focusses
on the algorithms implemented within these analysis modules. These modules apply anomaly
detection through geolocation, neural networks as well as mathematical transforms in order to
pick out specific events within a network. Each module is discussed in detail: the algorithm
used, how it is implemented, technologies used and how and where it is executed.

Testing then occurs in Chapter 6. This testing is broken up into sections based on each sub-
system of Bolvedere, and then each analysis module that uses processed NetFlow data records
from Bolvedere’s NetFlow processing subsystems. As each analysis module is a system in it-
self, depending on the complexity of the module, further testing of the module’s subsystems
may occur as subsections within Chapter 6.

Bolvedere’s relevance to today’s physical networks is then explored through real-world data
analysis in Chapter 7. This chapter takes blinded NetFlow data records4 and streams them
through Bolvedere at near real-time5 in order to test Bolvedere’s capability in real-world situa-
tions. The results gathered in this chapter are due to Bolvedere receiving NetFlow data records
from NetFlow sources on real-world physical networks.

In Chapter 8, optimisations are made to Bolvedere’s collector subsystem in the form of cus-
tom hardware, designed and implemented from the ground up using FPGAs. This chapter
describes the hardware in terms of functional components, and goes on to show how each of
these functional components interacts with the others to achieve the equivalent input-to-output
relationship of the software implementation of the Bolvedere collector subsystem. This leads

4The IP addresses associated with hosts in the NetFlow logs are re-assigned so as to blind access to private
information in terms of any individual activities on a network (Section 7.1.1).

5Real-time is not possible in the context of the NetFlow protocol, as data records at NetFlow sources are held
for a period of time and amalgamated before being passed to a NetFlow sink for processing.

1.5. DOCUMENT STRUCTURE 8

into Chapter 9, which shows that the hardware and software implementations are function-
ally equivalent. Chapter 9 also draws out statistics to quantify the performance enhancement
provided by the dedicated custom hardware solution.

Finally, this document concludes in Chapter 10 by tying the results achieved by this imple-
mentation (in the contexts of both testing and application in data analysis) back to the goals set
out at the start of this research. The success of this research is examined, leading into a final
discussion on the future development and progress of Bolvedere.

2
Literature Review

THIS chapter gives the reader access to the background knowledge required to better
understand this research. As this research delves into implementing some of itself
on hardware, this literature review begins at the bottom of the network stack with an

explanation of Ethernet in Section 2.1. This section leads onto a common protocol built on top
of Ethernet in Section 2.2 known as the Internet Protocol (IP). Once IP is defined, this chapter
looks towards understanding the NetFlow protocol which is built on top of IP in Section 2.3.
Some history on these protocols as well as how each of them work and where they are used will
be covered in these sections.

The idea of a network event, and more specifically malicious network events, is outlined and
then discussed in Section 2.4. This section touches on different kinds of malicious network
activity as well as the methods used in performing these attacks. This section then leads into
Section 2.5 which discusses some well known malware that makes use of previously discussed
methods in order to penetrate systems. The effects of and further distribution of these malware
are each discussed in further detail in the relevant subsections and indicators of compromise are
addressed directly in Section 2.6.

Methods in defending against these malicious network events is then targeted for discussion in

9

2.1. ETHERNET 10

Section 2.7. This section focusses on Distributed Denial of Service (DDoS) attacks, what they
are and how one can best mitigate them. There is much research into detection of this network
event and the most common forms can be found in this section and Section 2.8. The theme
of defence is continued in Section 2.9 with detection of spoofed source packets based on the
IP protocol. This method discusses the use of geolocation based on the source IP address of a
packet, the known physical location of the monitoring node and LIRs.

A short introduction to what a botnet is and what it can do is given in Section 2.10 before
discussing an implementation of a botnet detection engine. Leading on from this Section 2.11
discusses well know platforms for detection of network events; be it malicious or not. These
applications include Bro (Paxson, 1999) and Snort (Roesch, 1999) and discuss how they process
network traffic into events and how these can be used to mitigate network attacks.

As noted prior in Section 1.2, this research focuses on the development of some of its subsys-
tems in dedicated hardware. This however is used as optimization after the system was proven
to initially work and so the section that discusses such matters regarding the FPGA’s implemen-
tation of certain subsystems in this research is left until last. Section 2.12 details what an FPGA
is, how it works and how it can later be used in development and fabrication of ASICs. The
closing subsections of this section discusses different fabrication processes used in development
of ASICs and their advantages and disadvantages.

2.1 Ethernet

The ALOHAnet (Abramson, 1985) inspired development of Ethernet was performed at Xerox
Palo Alto Research Center Incorporated (PARC) between the years of 1973 and 1974 by Robert
Metcalfe, David Boggs, Chuck Thacker and Butler Lampson. This standard was published on
September 30th, 1980 as “The Ethernet, A Local Area Network. Data Link Layer and Physical
Layer Specifications”. The standard for Ethernet II was published two years later in November
1982 (Digital Equipment Corporation, Intel Corporation and Xerox Corporation, 1982). Formal
standardization efforts that occurred at the same time resulted in the publication of Institute of
Electrical and Electronic Engineers (IEEE) 802.3 on June 23, 1983 (Healey, 1983).

2.1.1 Network Link Speeds

Network link speed refers to the speed at which data can be transmitted over a network link.
More precisely, it is the rate in which bits can be changed on a link between two end-points such

2.2. INTERNET PROTOCOL 11

Table 2.1: Common Network Link Speeds and their Common Names (Nikkel, 2013)

Network Link Speed Common Name

300 bps - 56.7 kbps Analogue POTS Modem

64 kbps - 128 kbps N-ISDN

1.5 Mbps - 52 Mbps VDSL

10 Mbps Ethernet 10Base-x

100 Mbps Fast Ethernet 100Base-x

1 Gbps Gigabit Ethernet 1000Base-x

10 Gbps 10 Gigabit Ethernet LAN

that the receiving end-point receives all transmitted bits. These link speeds are also synchro-
nized between two end-points. This makes sense as if one end-point was presenting bits to the
link at a different rate to what the receiving end-point is reading the link at, data loss or repeated
data would arrive at the destination end-point. Common link speeds with their common link
names can be referred to in Table 2.1.

Issues in this link speed synchronisation occur when one considers clock drift (Welch and
Lynch, 1988). This is the occurrence of slight variation in period lengths of two or more clocks
rated at the same frequency. This means that over time the two clocks will fall out of sync.
These slight variations in period length are mainly due to physical imperfections in the clocks
and heat. This is overcome in networks through a voting process to determine which entity on
the link has a “good” clock. It is assumed that a “good” clock would be contained within a
certain confidence level and “bad” clocks would fall out of this confidence interval. With this in
mind, clocks that do not fall within a set confidence level are excluded from the voting process.
Once the best clock has been voted on, all network devices on the link synchronise to that clock
in order to mitigate the issue of clock drift (Mills, 1985).

2.2 Internet Protocol

1974 saw the IEEE publish a paper entitled “A Protocol for Packet Network Intercommuni-
cation” authored by Vint Cerf and Bob Kahn Cerf and Kahn (2005). The paper described a
protocol that was intended to solve the issue of resource sharing using packet switching among
network nodes. At first the entire protocol was a monolithic structure named the Transmission
Control Program but later was broken down into two modular protocols namely the Transmis-
sion Control Protocol (TCP) and IP.

2.2. INTERNET PROTOCOL 12

Data

UDP
Header

UDP
Data

IP Header IP Data

Frame
Header

Frame Data
Frame
Footer

Layer Name

Application

Transport

Internet

Link

Figure 2.1: Layers of an Ethernet Frame

The specification for Internet Protocol version 4 (IPv4) is dominantly used in current networks
and is defined by RFC 791 (Postel, 1981a). This protocol describes headers and fields that are
available for use on modern devices that are IPv4 compliant. IPv4 is also used to transport
datagrams within the Internet and typically follows the TCP/IP Five Layer Model to transfer
data between applications (Kozierok, 2005), an overview of this can be referred to in Figure
2.1.

2.2.1 Routing

In its simplest form, to route a packet means to move a packet from a source host to a destination
host through a network (Leighton et al., 1994). What is required to route a packet through a
network may very depending on the network and its physical infrastructure. There may be a
direct connection to the destined host from the source host, or the packet may need to undergo
a series of transfers between routers, hubs and even load balancing systems1.

There are three primary methods of routing. The first method is interior gateway routing through
link states. This method keeps connection and session state to determine the link in which a
packet is forwarded within an Autonomous System (AS). The second method is interior gateway
routing through use of path vectors or distance vectors, which is based on weights. These
weights are defined by the volume of traffic on a link compared to the traffic it can handle
and the distance between source and destination hosts. This method also serves to route packets

1System in place to distribute client requests among multiple servers.

2.2. INTERNET PROTOCOL 13

within an AS. The last method is named the exterior gateway protocol and makes use of tree-like
topologies to determine the route which a packet takes between ASs (Mills, 1984).

Border Gateway Protocol (BGP) makes use of path vectors to best determine the path of a
packet. This protocol works within an AS between nodes referred to as peers. The paths these
peers use to transfer packets within the AS is determined by predefined routes as manually
configured by the system administrator (Rekhter et al., 2006).

Interior Gateway Protocol (IGP) is used for exchanging routes and other routing data between
gateways inside an AS. This protocol can be broken into two major categories, these being
distance-vector routing and link-state routing. Routing Information Protocol (RIP) falls into
the former category of exchanging routing information between gateways and makes use of
distance values in order to determine the best link for a packet to be forwarded on. This works
in such a way that each node within the AS, usually a router, advertises the distance values that
it calculates to other nodes and receives their calculated distance values. From here each node
updates its routing tables and then reiterates the initial step. This continues until distance values
between nodes settle and converge (Malkin, 1998).

To touch on the latter IGP category, one can look to the Open Shortest Path First (OSPF) proto-
col. This protocol relies on a core node within the network which holds all routing paths within
the entire AS. In larger subdivided systems it holds routing paths common to that subdivision.
This protocol also makes use of link costs which are used in decision making when it comes to
forwarding a packet on a link. These costs can be drawn from a number of factors, from the
distance of the link, to the reliability and throughput of the considered link (Moy, 1998; Coltun
et al., 2008).

Although these protocols were put in place to route packets, this is not their only purpose. These
protocols serve to prevent loops from forming within the routing tables of a network. These
protocols also attempt to optimize routes within a network to reduce the time which a packet
takes to route from source host to destination host. This also reduces the number of packets
within a network at any given time and thus allows for more effective packets in a network for
routing (Mills, 1984).

2.2.2 IPv4

This version of IP is well known for its widespread use. This protocol fits in at the Internet
layer of network frame and fields within its header can be viewed in Figure 2.2. A description
of each header can be found in RFC 791 (Postel, 1981a).

2.2. INTERNET PROTOCOL 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version IHL ToS Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

Figure 2.2: Example Byte Field Figure

A major limiting factor of IPv4 is the fact that its source and destination address length is only
32-bits long. This means that there are only 232 available2 available addresses. This is less
than 1 for every human on Earth before automated systems are even considered. At the time
of defining the IPv4 standard the thought of more than 4 billion network capable devices, let
alone a network of more than 4 billion devices seemed implausible and so a 32-bit address space
seemed more than ample for the needs of the world (Postel, 1981a), this however was not the
case as most IPv4 addresses had been allocated by 2014 (Huston, 2014)

There are however methods to counteract IPv4 address space exhaustion and prolong the in-
evitable complete exhaustion of IPv4. The most common method is to create a Network Ad-
dress Translated (NAT) network (Egevang and Francis, 1994). This method works through the
creation of an internal and external network with a host (referred to as “NAT Host”) sitting be-
tween the two. This NAT Host holds 2 IPs, one for the internal network and one for the external
network. This NAT Host serves to translate IP addresses from the internal network and make
requests to an external network on behalf of the clients found on the internal network using
its own external network IP address; this is performed by use of a NAT table and is typically
performed by a commodity network router (Cisco, 2015). Internal clients find this host using
the NAT Host’s internal network IP address, this IP address is commonly referred to as a default
gateway.

A working example for this form of implementation would be best described by its use in the
Internet. When one joins the Internet it can simply be assigned one IP address for use (typically
assigned to one’s router) and have the device which this address is assigned to then treat the
Internet as an external network and then create its own internal network through implementing
a NAT.

This benefits the Internet by allowing multiple devices to transmit traffic to it and have systems
on the Internet transmit back to these NATed devices through the use of a single IP address.

2commonly referred to as around 4 billion.

2.3. NETFLOW 15

1996

V er.1

1998

V er.5

c2001

V er.8

2003

V er.9

2007

V er.10 (IPFIX)

Figure 2.3: NetFlow Version Timeline

This helps to save IP addresses assigned to devices on the Internet, thus combating IP address
exhaustion on the Internet.

2.3 NetFlow

The NetFlow protocol is best described as a means of logging network flows that pass through
a flow monitoring device in a communication pair’s route. A flow is defined by a connection
and communication between a host and any other host, multicast group, or broadcast domain in
the form of a sequence of packets (Kerr and Bruins, 1996). A flow monitor using the NetFlow
protocol can collect information out of these network flows and store them in data fields for
transmission to a logging host for analysis and/or storage (Claise, 2004). As NetFlow was
initially introduced by Cisco in 1996 (Kerr and Bruins, 1996), there have been multiple versions
of NetFlow with wide-spread support over multiple firewall and routing devices.

The need to update the NetFlow protocol over the years arose from multiple factors. First, the
addition of Internet Protocol version 6 (IPv6) (Deering, 1998) that was brought about by the
IP address exhaustion (Huston, 2014) of the IPv4 space required amendments to be added to
the NetFlow protocol; this addition in itself obsoleted NetFlow version 1 due to its exclusive
support of IPv4. Furthermore, the need for better use of network resources grew as the amount
of traffic passing through flow monitor points increased. Finally, the requirement to adapt these
records to one’s needs gave way to overhauling the NetFlow protocol to allow users the ability
to break out of the predefined logging fields determined by older versions of NetFlow. This
overhaul allowed users to define templates containing fields that they required in any order they
specified that could then be used to discern data records at a later point (Claise, 2004). This
also allowed users to log any protocols defined at a later stage through allocating a user defined
template ID to support the new protocol through defining what the new fields are in the NetFlow
sink nodes.

To give background on updates that have occurred since the original NetFlow standard one can
first observe the additions introduced by NetFlow version 5. This version included the addition

2.3. NETFLOW 16

of new record fields and this furthered the standardisation to NetFlow (See Appendix A for
a feel as to what a NetFlow record contains) by including logging of subnet masks and AS
numbers (Huston, 2006a). Version 8’s two main updates were the ability to aggregate data
records that were defined in version 5 (Huston, 2006b) and also the ability to custom define
extra fields of the user’s choosing at the end of the data record log. More recently, version 9
continued to build on the freedom brought forth by version 8’s custom appended fields through
the addition of the template packet to the NetFlow protocol. This template packet that resulted
in an overhaul of the NetFlow protocol allowed one to fully define the fields to be logged in a
data record and the order in which they are logged from a network flow (Claise, 2004). Figure
2.3 shows a timeline for release dates of NetFlow version standards.

These templates are coupled with template identification numbers that allows for multiple tem-
plates to be used and are defined by the 2 byte long template identification field within the
NetFlow protocol. Although IDs 0 through to 255 are reserved for use by specific flow tem-
plates, template identification numbers 256 through to 65535 are available for public use; a
fairly generous template count. This template count further extends the memory requirements
of these devices and most devices supporting NetFlow version 9 limit the number of templates
that can be stored to count far less than the available 65535. Allowing for templates to define
what should be logged and the order in which it should be done does have drawbacks. These
drawbacks are found in memory and performance as the device receiving and using the template
has to store the received templates for later use in identification of data records and then expend
processing time discerning the related data records (Cisco, 2003a).

JFlow

The Juniper Flow3 is functionally equivalent to NetFlow, and is completely interoperable with
any NetFlow supporting sink (Juniper Networks, 2011). The main distinguishing point is that
where NetFlow is developed by Cisco (Claise, 2004), JFlow is developed by Juniper Flow.

sFlow

Developed by HP4, Sampled Flow differs from NetFlow and JFlow in that it focusses on a
statistical approach to monitoring networks (Phaal et al., 2001). The primary benefit of this
network flow monitoring protocol is its ability to scale through sampling of every N’th packet.

3https://www.juniper.net/us/en/
4http://www.hp.com/

2.3. NETFLOW 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Count

System Uptime

UNIX Seconds (since epoch)

Sequence Number

Source ID

Figure 2.4: NetFlow Version 9 Packet Header Format

This means that a host using sFlow to monitor a network can scale itself to a load it can manage
by adjust the gap between packet samples.

The downside of this is that relatively small network connections, when compared to other
connection activity on the monitored network, can be completely missed. Furthermore, accurate
timestamping of network flows is also traded for this aforementioned scalability, as the end of
a network flow may not fall on an N’th sample (Phaal et al., 2001).

2.3.1 NetFlow Version 9 Template Records at a Lower Level

To understand how NetFlow version 9 works one can simply look at how its packets are built5.
One should note the single pass nature of the NetFlow protocol as this means that no future field
in a NetFlow packet is required to process any field before it. This means that stream processing
can be performed on a NetFlow packet by a network enabled device. Also it should be noted
that the frame, Ethernet, Internet and transport layers are omitted in this explanation as they
only exist to ensure the NetFlow packet arrives at its exported destination.

The first header of every NetFlow version 9 packet is 20 bytes long and always contains the
information in the order shown in Figure 2.4. This header ensures that any NetFlow version
9 collector knows basic information about the NetFlow source node and whether any NetFlow
packets have been missed during collection. To further detail each of these fields one can refer
to the list below:

Version: The NetFlow protocol version implemented in the transmitted NetFlow packet.

Count: The number of records (both templates and data) contained in the transmitted NetFlow
packet.

5The construction of an IPFIX packet is the same as that of a NetFlow version 9 one.

2.3. NETFLOW 18

System Uptime: A count of the number of milliseconds since the NetFlow source node was
started.

UNIX Seconds: Seconds that have elapsed since 0000 UTC 1970 (Unix Epoch).

Sequence Number: A count of all transmitted NetFlow packets by a NetFlow source node.

Source ID: This is the NetFlow exporter’s unique ID number used to identify which NetFlow
exporter the NetFlow packet was sourced from.

The reason for the requirement of at least the information contained in this header is due to
the requirement to know what version of the NetFlow protocol is being used, if any NetFlow
packets had been missed and where the NetFlow packets are being sourced from. The manner
in which a missed packet is detected is simply by comparing the last sequence number received
with the next one, if it is not what is expected according to the last NetFlow packet received,
possible packet loss or corruption could have occurred. Another note is that if one knows where
a NetFlow exporter was placed and what source ID was assigned to it, one could effectively
say what network flow is occurring from that network without the need to look at the source IP
address.

A FlowSet header always follows the NetFlow header and can either contain data records (refer-
ring to Figure 2.5) or template records (referring to Figure 2.66). The total records held within
all FlowSets in a NetFlow packet cannot exceed 30, however these 30 records can be any distri-
bution of data or template records. One must note that each of these FlowSets are rounded to the
fourth byte and thus leads to the requirement of padding at the end of a data record FlowSet. It
is also notable that each FlowSet has the same header containing the FlowSet ID and the length
of the FlowSet.

The template FlowSet header and template data follows the format in Figure 2.5. The FlowSet
ID is used to notify a NetFlow collector of which template to use when discerning NetFlow data
records. In the case that there is a zero in the FlowSet ID, it symbolizes to the NetFlow collector
that this FlowSet contains template data. Each field following this is 2 bytes in length and so is
kept in pairs as to always align on the 4 byte boundary removing the need for padding within
this type of FlowSet. Following a FlowSet header symbolizing that it is carrying template data,
the FlowSet can contain multiple templates. The length in the within the FlowSet header is
intended to notify a NetFlow collector of where the FlowSet ends. Where a template record
ends within the Flowset is handled by its own header.

6Assumes all records are size 2 bytes for display purposes, however these do vary in size.

2.3. NETFLOW 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FlowSet ID = 0 Length

Template ID Field Count

Field 1 Type Field 1 Length

Field 2 Type Field 2 Length
...

Field N Type Field N Length

Template ID Field Count

Field 1 Type Field 1 Length

Field 2 Type Field 2 Length
...

Field N Type Field N Length

Figure 2.5: NetFlow Version 9 Template FlowSet Format

Each template record within the template Flowset contains its own two field header stating what
ID this template will be referred to by incoming data record FlowSets, and the number of fields
within the template record. As stated, each template field is made up of a pair of 2 byte fields.
This means that the field count multiplied by 4 will give the location of the start of the next
template record and, if the FlowSet is correct, the addition of all the template record lengths
multiplied by 4 will equal that of the template length plus 4 for the Flowset header.

To define a field within a template a type and length is required. The type is defined by a
predefined ID number as specified in the NetFlow version 9 and IPFIX protocol documentation.
There is also reserved space for custom types for prototyping or user specific data collection.
The length field is required as some predefined types are of variable length and this information
is required in order to read a data record correctly.

Data record FlowSets cannot be interpreted without the collector having received a template
record FlowSet containing the Template ID specified by the FlowSet header in a data record
FlowSet. This is because the data record FlowSet, other than the FlowSet ID and length fields,
contains no information as to where a record starts, stops, or what each field contains; this
information is trivial to work out with the relevant template.

If the template is not received, the task of skipping over the entire FlowSet is performed through
use of the length field contained in the FlowSet header. If the template is possessed by the
NetFlow collector the length of each data record can be calculated from this point by adding the

2.4. MALICIOUS INTERNET ACTIVITY 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FlowSet ID = Template ID Length

Record 1 - Field 1 value Record 1 - Field 2 value
... Record 1 - Field N value

Record 2 - Field 1 value Record 2 - Field 2 value
... Record 2 - Field N value

...

Record M - Field 1 value Record M - Field 2 value
... Record M - Field N value

Padding

Figure 2.6: NetFlow Version 9 Data FlowSet Format

length of all record length fields. Furthermore the start of every record as well as field within
each record within the data record FlowSet can be calculated using the record’s template.

After every data record in the FlowSet has been processed, padding is used to align the FlowSet
to the 4 byte boundary. A FlowSet may not align on this boundary due to the variance in field
size within records in the data record FlowSet.

2.4 Malicious Internet Activity

A malicious event acted upon something or someone is simply defined as an action with intent
to do harm to that entity. Within the Internet these entities are commonly found to be end-point
hosts. These hosts are typically targeted in order to collect information or prevent other entities
on the Internet from accessing the information or services provided by the host, be it private or
public.

This section begins with a brief summary of what it means to hash a string and then leads into
some methods in which these attacks are performed, whom these targets are, and what these
attacks aim to do. Furthermore, this section looks at some of the more well known attacks and
what their purposes were, as well as some interesting discoveries that came about because of
their implementation on the Internet.

2.4. MALICIOUS INTERNET ACTIVITY 21

2.4.1 Brute-Force

This form of an attack is applicable to multiple forms of attack and is defined by having little
to no intelligence to the attack methodology (Leslie, 2014). The method of this attack simply
tries every combination from start to finish of the input range until a solution is found. As
this attack intends to attempt every combination as input to a system in order to gain access to
information held by the system, this approach is time consuming and thus attempts to leverage
high throughput hardware in order to achieve this task (Paar and Pelzl, 2009). This hardware
includes the Graphical Processing Unit (GPU) through the use of Compute Unified Device
Architecture (CUDA) and Open Computing Language (OpenCL).

2.4.2 Port Scanning Techniques

A port scan is a method of sending specific packets at a target in order to determine which
network ports are open, closed or filtered by a firewall on the target. This information leads
to acquiring knowledge of what services are running on a system. The reason this information
can be collected is that set ports are reserved for a specific service. This information can help a
potential attacker better aim their attack at a service they know is vulnerable or avoid wasting
time on a system they know they can not penetrate (Lyon, 2015).

There are multiple ways of performing a port scan on a host with different goals. Some of these
methods and the data they aim to collect are listed below:

TCP SYN: A simple method of sending a Synchronize (SYN) packet to a port on a host, if
the port is open and waiting connection it will respond with a Synchronize-Acknowledge
(SYN-ACK) packet. If the port is closed it will respond with relevant Internet Control
Message Protocol (ICMP) packet stating that the port is closed. If no response is received
from the SYN request, it is assumed that the port is filtered by a firewall. At this point the
communication is closed by the scanning host as the information required is collected and
the next port is probed.

Connect(): This method is used when the system performing the scan does not have access to
raw sockets in order to send packets out. Instead this scan uses the underlying operating
system’s own TCP network handles in order to send the SYN packet to a target. If the
operating system returns from the function call with success, it means that the port was
open in which the connection attempted to connect to. If the function responds with port

2.4. MALICIOUS INTERNET ACTIVITY 22

closed, the port was indeed closed. If the function responds with a connection timed out, it
is assumed that the port is filtered.

ACK: This scan’s purpose is to determine whether a firewall exists on a target, and in the event
that it does exist, it determines whether the firewall software is stateful or not. It is an
interesting point to raise that this form of scan cannot actually determine whether a port is
open or closed. This characteristic is due to the fact that an Acknowledge (ACK) packet
arriving at an open or closed port warrants the same response, this being a TCP Reset (RST)
packet. The only option left is the event that no response is received, this means that the
port is filtered by a firewall that is most likely stateful.

Window: This scan, like the ACK scan, is implemented by transmitting ACK packets at the
target and determines results using the same method outlined by the ACK scan. The differ-
ence is in a detail in the TCP RST response packet from the target that some target systems
include. This detail is the window size of the packet. When the out of order ACK packet
is received and the RST packet is transmitted back to the scanning host, some systems will
respond with a positive window size if the port is open and a window size of zero if the port
is closed. This detail can be used to determine whether a port on a system is open or closed
on a target system with this vulnerability.

Maimon: Named after its discoverer Uriel Maimon, the scan makes use of the Finish (FIN) and
ACK flags in a TCP packet. This scan technique is used against BSD systems to resolve
whether a port is open or not. It was observed that this packet arriving at a closed port on
a BSD system yields a TCP RST packet to be sent in response where an open port simply
drops the packet and does not respond at all. This can be used to tell whether a port is open
or closed on a BSD host (Zhang et al., 2008).

2.4.3 Vulnerability Exploitation

Humans are not perfect and as hardware and software are developed by people, there are im-
perfections introduced into the systems. These imperfections lead way to unexpected behaviour
that when acted upon leads to results that fall outside of the systems intended operation. These
results can range from simple errors in output to code being remotely uploaded and executed
on the system or system being shut down completely.

Malware such as Blaster Worm (Dougherty et al., 2003), Conficker (Microsoft, 2009) and SQL
Slammer (Shannon and Moore, 2004) use these vulnerabilities to upload and execute them-

2.4. MALICIOUS INTERNET ACTIVITY 23

selves upon remote hosts. These vulnerabilities exploited by these malware include MS03-
026 (Microsoft, 2003b), MS03-039 (Microsoft, 2003c), MS08-067 (Microsoft, 2008) and the
Microsoft SQL Server Resolution Service (Shannon and Moore, 2004). Even though these are
well known vulnerabilities that have long since been fixed, there are still many existing systems
on the Internet that are still vulnerable to these attacks due to improper maintenance of said
systems. These iconic attack methods were chosen to show their age (dating back to January
2003 in the case of Blaster) and further exclaim the neglect shown by system administrators.

2.4.4 Availability of Attacks

The large number of malicious attacks occurring on the Internet on daily basis is due to two
reasons. The first is the ease in which one can perform these attacks. For the most part someone
with little to no knowledge of how a vulnerability is exploited on a network can simply get hold
of existing tools and scripts to run at the press of a button, that all one needs do is point at a
target. The second is that many malicious attacks are automated, be it via botnet (Gu et al.,
2008) or by a malicious preconfigured system.

One of the reasons for the popularity of these attacks is that there is a market for these systems,
botnets and zero day attacks (a vulnerability that is yet to be exploited and is unknown to the
vendor) and these can fetch a high price depending on the capabilities of the exploit. There are
also freely available tools for configuring and performing malicious exploits of systems on a
network (Bilge and Dumitras, 2012) for the purpose of “testing” a network’s security or because
the exploit is no longer deemed current. These exploits are for the most part well known and
fixed and for a target to fall victim to these forms of exploitation is due to their own negligence
in terms of keeping their system up to date. This section will deal with the two common ways
exploits are performed in a legal penetration testing environment.

Metasploit

This software suite is directed at penetration testers to test the security of networks and users
on it (O’Gorman et al., 2011). It houses a wide variety of tools that allow for assessment of
software and systems running on a network as well as the awareness of the users on a network
through features like the generation of phishing campaigns to test users on a network. Coupled
with these features is a database of fully functional exploits that are known to the penetration
testing community. This means that one can install Metasploit, which is free, and launch these

2.4. MALICIOUS INTERNET ACTIVITY 24

attacks on a target host on a network at one’s leisure (Maynor, 2011). This can of course be for
Metasploit’s intended purpose, that being security consciousness, or for malicious reasons.

For this reason, platforms such as Kali Linux7 exist as a dedicated penetration testing operating
system distribution that comes pre-installed with Linux-based software that one would use for
penetration testing of a system (Muniz, 2013). Furthermore, the Metasploit community supports
this Linux distribution and thus regular updating of the distribution and tools on it is freely
available.

Reuse of Code in the Wild

There is a need to understand existing malware on the Internet and because of this collecting
and monitoring the redeployment of malware in a safe environment can yield information that
can be invaluable in combating it (Perdisci et al., 2008). There are multiple methods of cap-
turing malware and the class of software that typically performs this action is referred to as a
“honeypot”; although this is not the only way to capture a piece of malware. A honeypot acts
as a vulnerable system in order to attract malicious attacks (Provos, 2004). Any attacks that are
targeted at the honeypot are then logged and any uploaded data is stored for later review. From
this point one can set up an environment such as a virtual network, or if one has the resources,
a live environment in which to rerun these malware and analyse their characteristics.

Other methods of malware collection range from malware sharing communities to collecting
the remnants of uploaded scripts and programs to a server that may have resulted in a failed
or successful attack. Either way deletion of these malware are a loss to the community trying
to combat these forms of malicious attack and one should attempt to pass on the malware to a
party that has a use for it (preferably not malicious in nature).

2.4.5 Distributed Denial of Service Attack

The goal of a DDoS attack is the same as that of a Denial of Service (DoS) attack, in that they
both aim to bring down a service that exists on a network. The key difference between a DDoS
attack and a DoS attack is that a DDoS attack uses multiple physical source hosts rather than a
singular host. These hosts usually exist within a botnet (Gu et al., 2008). Note that a DoS attack
can appear to be a DDoS attack through the spoofing of multiple IPs, which makes detecting a
DDoS attack difficult.

7https://www.kali.org/

2.4. MALICIOUS INTERNET ACTIVITY 25

Motivators

Motivation for denying a service is varied and at times can have no motive at all. The reason for
the latter is that clients can unknowingly perform a DoS attack, or even inherent structures of a
network lead to the occurrence of DoS; broadcast and multicast storms are examples of this.

In short, multicasting means that a host is sending a packet which will be received by multiple
destination addresses (Deering, 1997). This allows for a reduction in the overheads of broad-
casting a message to multiple clients, as the server no longer has to send copies of the same
packet to each individual host. The problem arises when a request requires additional informa-
tion from a non-existent entity within the network. If the client on the system then broadcasts to
all other clients requesting the location of this service, it can lead to all clients that receive the
broadcasted message to repeat the request to every other clients, in order to locate the missing
service; this logic would eventually snowball and flood the network with these requests (Tseng
et al., 2002).

This effect is hard limited by the bandwidth of the network. Once the network bandwidth limit
is reached, excess packets will be dropped, however the bandwidth will still be saturated. The
problem with this is that no other services on the network can function as expected, as there are
little to no network resources for these services to acquire to perform their communications; the
network is now suffering from DoS.

Reasons for a deliberate DoS attack can be varied. One of these attacks can be launched on a
target service, or set of services, based on nothing more than a way of protesting against what
the service provider stands for or ransoming a network’s bandwidth for money (Halpin, 2012).
On the other hand, there have been cases of DDoS occurring to online stores due to servers
not able to handle the load of all clients at a given time. These mostly occur during special
offers when a flood of customers aim to purchase a product and even though they know that
the provided service is under strain, they continue to attempt to gain access to the site through
repeated requests of the resource in order to get their share of the product (Jensen and Gruschka,
2008).

Perspective

Mirai (Biggs, 2016) and BASHLITE (Gallagher, 2016) are two malware that seek to infect
hosts running a Linux-based OS. Once infected these hosts could be controlled remotely to
perform tasks on behalf of a third-party (in other words these hosts were included in a botnet).

2.5. SELECTED HISTORIC MALWARE 26

This remote control was used to generate more than 620 Gbps of network traffic directed at
the website “Krebs on Security”8 as well as over 1 Tbps at web host OVH9, . This amount of
network traffic was enough to bring these web services offline. More information on the Mirai
malware can be found later in Section 2.5.6.

Prevention

As the types of DDoS attacks vary, one cannot expect one solution to cover all angles of a DDoS
attack, instead one has to rely on multiple defensive measures in order to secure their resources
from such occurrences. These defences include use of firewall ruling, network switch, router
configuration and software-based solutions (Mirkovic and Reiher, 2004). Firewall implemen-
tations exist in both software (Bishop, 2003) and hardware (Cho et al., 2002) and both aim to
provide defence through a rule-based system. These rules can be as broad as blocking all traffic
from a range of IP addresses, to looking for a specific byte in a specific location within a packet
of set protocol.

Some switches and routers come with filtering capabilities that allow for DoS prevention.
This includes rate limiting and traffic shaping. These all deal with the throughput of con-
nections and aim to limit them to allow other connections the opportunity to have their packets
served (Raghavan et al., 2007). Further functionality such as packet inspection and bogon fil-
tering use the data within the packet to decide whether to process a packet or ignore it.

2.5 Selected Historic Malware

This section touches on some of the more common and major malware in existence. This
allows the reader to further understand the reason why malware exists, be it for personal gain or
to make a statement, and the means which software is exploited in order to infect a system. The
information provided here is given to the reader to help better understand how such infections
occur and why it is still possible to infect a host today.

8https://krebsonsecurity.com/
9https://www.ovh.ie/

2.5. SELECTED HISTORIC MALWARE 27

Figure 2.7: MSBlaster Binary Viewed in Hex Viewer

2.5.1 Blaster Worm

This worm that exploits the Remote Procedure Call (RPC) service in systems running Mi-
crosoft Windows XP was first observed on the 11th of August, 2003. More details regard-
ing this exploitation is detailed by the technical documents MS03-026 (Microsoft, 2003b) and
MS03-039 (Microsoft, 2003c). Exploitation of these vulnerabilities typically involves sending
a specific malformed packet to a RPC port numbered 135, 139, 445 or 593 depending on the
system’s configuration. This worm comes in four major variants with as many as twelve more
that existed on the Internet at the peak of this worm’s life cycle.

The specifics of this worm are amusing when one looks into the hand written parts of the code.
Embedded in the code are two strings that only serve the purpose of calling out Bill Gates,
co-founder of Microsoft, and declaring love for a San; be it person or object. These messages
can be referred to in the compiled code’s binary in Figure 2.7.

Other than relaying a message this worm attempts to disable Microsoft’s update servers by
having every machine successfully infected by the Blaster worm to SYN flood port 80 of
the Fully Qualified Domain Name (FQDN) windowsupdate.com; this on a large scale would
lead to a DDoS attack targeted at this FQDN. This worm would also lead to the develop-
ment of the Welchia worm (Section 2.5.2) which would use the same means of infection as
Blaster (Dougherty et al., 2003).

An interesting notes on the side effects of this worm is that infection would cause the RPC
service to crash causing Windows to schedule a reboot. This was often the first sign given by

2.5. SELECTED HISTORIC MALWARE 28

this worm that it may have infected one’s computer (Trend Micro, 2003). This crash however
was not a definite as the later developed Sasser worm also caused the same symptom to occur.

2.5.2 Welchia

Also known as the Nachia worm, this worm was developed as a countermeasure to the Blaster
worm. Welchia would use the same methods of infection as Blaster did to infect a system,
this being the MS03-026 (Microsoft, 2003b) and MS03-039 (Microsoft, 2003c) vulnerabilities
found in Microsoft Windows XP systems. After infection the Welchia worm would download
and then execute code that would search for and disable the Blaster worm’s functionality. This
was achieved by attempting to delete MSBLAST.EXE; the Blaster worm’s binary. Along side
this directive the Welchia worm also attempted to update the OS to the latest version and apply
patches to prevent infection or reinfection of the Blaster worm.

As this worm’s intent was not malicious, given that its goal was to remove a malicious software,
this worm was classified as a helpful worm. At first when this worm was discovered, virus
scanner companies determined this worm as a high priority threat but after realisation of what
its intent was the threat level priority was dropped to low.

This worm first appeared on the Internet on the 18th of August 2003 and was programmed to
self-remove after a 120 days of operation or after the date of the 1st of January 2004. This
means that the worm in theory should no longer exist on the Internet. This worm was stated by
Microsoft to have achieve wide spread success, although there were cases of the worm not being
able to apply updates and patches to prevent reinfection due to lack of connectivity. Microsoft
followed up this worm’s countermeasure with the release of a stand alone Blaster worm removal
kit twelve days after the theoretical end life of the Welchia worm (13th of January 2004) that
would allow one to manually remove the Blaster worm from a system (Brasford, 2004).

2.5.3 Storm Worm

Storm worm goes by many names such as Small Dam, Peacomm and Nuwar and is the reason
for the existence of the Storm botnet. This trojan is typically distributed via executables attached
to an email or download off a remote server that promises access to data or functionality that it
does not. Once executed on a Microsoft OS it proceeds to install itself on the host and turn it
into a zombie on the Storm botnet (Porras et al., 2007).

2.5. SELECTED HISTORIC MALWARE 29

A zombie is simply defined as an Internet enabled system that has been compromised in such a
way that it can have code executed on it remotely without the system’s administrator’s consent.
The most common tasks these zombies perform is spam email, DDoS attacks, click fraud (au-
tomatic clicking of advert links on sites to bring in revenue on pay per click adverts) and site
hosting (Geng and Whinston, 2000).

Storm Worm was first observed on the 19th of January, 2007, and the primary sites of infection
were Europe and the United States, this is most likely due to most of the baiting emails being in
English. The reason for such success in the bait used is due to the interest perked in the subject
lines of the bait emails sent out and believable enough executable files that were attached to
these bait mails that people would then download and run (Symantec, 2007a). One can refer to
these subjects and file names in Appendix D.

Storm Worm’s survivability is due to two key factors, this being a method of Domain Name
System (DNS) name resolution called Fast Flux and the legal allocation of these FQDNs used
to host this botnet. Fast Flux is a technique used in which multiple IPs are associated with
a single domain name and are purposefully set up to have a short life span. The IPs to which
these hosts belong take turns in registering and de-registering themselves with the domain name.
This increases the difficulty in pinpointing an IP as the changing IP obscures the associated
Command and Control (C&C) network traffic. Furthermore, these hosts are usually just infected
hosts in the botnet and serve little more than as a proxy for the botnet’s traffic, thus allowing
for a further line of obfuscation (Nazario and Holz, 2008). On top of this is the fact that most
domain name registers would rather abstain from removal of such domain names due to the fact
that the owners of these domains are legal paying customers. This protects the owner of these
domain names from having their domains taken down or being denied traffic to their rotating
IPs.

2.5.4 Conficker

This computer worm was first discovered in November 2008, infected computers over 190
countries and took over 5 different revisions in its life cycle. The recorded attack vectors used
by this worm, enabling its penetration into systems, was exploitation of the MS08-067 vul-
nerability prevalent in Microsoft Windows 2000, XP and Server 2003 operating systems, and
transfer via removable media through creation of an AutoRun script on the media device (Mi-
crosoft, 2008). The MS08-067 vulnerability attacks netapi32.dll typically through Server Mes-
sage Block (SMB) on port 445 by using a specially crafted packet to cause a buffer overflow

2.5. SELECTED HISTORIC MALWARE 30

and inject and execute code remotely10.

Infection from AutoRun is due to a feature in Windows 2000, XP, Server 2003, Vista and Server
2008 where an autorun.ini file would be searched for on load of the removable media and code
executed according to the script in the autorun.ini file. This means that executable code and
an autorun.ini could be placed onto a removable device by Conficker, and when inserted into
another system, would automatically run and infect that system.

Other methods of infection used by this worm were use of unsecured shared folders on a net-
work and also exploitation of users with weak usernames and passwords. The use of multiple
attack vectors used by Conficker made it difficult to counteract, and infections ranged from
home users through to private sectors and even government.

Originally Conficker did not have any self-preservation methods built into itself. However as
revisions were made to it, so was functionality to help keep it on a system. This functionality
began with blocking DNS lookups of sites that could potentially give a user access to tools or in-
formation to remove Conficker. It also disabled Windows AutoUpdate which prevented installa-
tion of a patch released by Microsoft that fixed the MS08-067 vulnerability. Later functionality
included disabling of Windows Safe Mode, in memory patching of dnsapi.dll to include further
prevention of sites that could potentially remove Conficker from a system and a mechanism that
would terminate anti-virus software when discovered and would rescan every second to check
whether the anti-virus software had rebooted and repeat the process if it had. Each version of
Conficker also included its own updating mechanism which would automatically update itself
to the latest released version of itself further increasing its survivability (Microsoft, 2009).

The goals of Conficker were to gain access to user’s personal information and to grow its botnet
(this being performed through infection of more systems connected to an infected system).
Personal information included banking information, credit card information, passwords and
identity theft in the form of IP addresses.

2.5.5 SQL Slammer

A simple UDP-based worm that in its entirety occupied a total of 376 bytes and exploited a
buffer overflow in Microsoft SQL Server Resolution Service (running on port 1434) in order
to upload and execute its payload. Once running this worm simply starts resending itself at
randomly generated IP addresses. If a random IP happens to be running a vulnerable version of

10http://www.speedguide.net/port.php?port=445

2.5. SELECTED HISTORIC MALWARE 31

Microsoft SQwarlords of draenorL Server, it too will become infected and repeat the process of
the attacker (Shannon and Moore, 2004).

David Litchfield, the discoverer of the Microsoft SQL Server vulnerability and creator of the
original code base for this worm, stated that the code is simple to the point that it doesn’t have
the ability to write to disk (Leyden, 2003). Instead the code sits in memory and executes until
the system or service is rebooted; an action that would deallocate the worm’s memory thus
terminating its process. He further states that even though this would disinfect the system, it is
likely to get reinfected soon after this process is complete as the system would still be vulnerable
to infection.

Once this worm was released onto the Internet it saw an initial infection count of 75,000 systems
within its first ten minutes (Symantec, 2007b). This is due to the method in which the payload
was sent. As mentioned before this worm uses the UDP protocol in order to transport its payload
to a randomly selected target. As UDP is a stateless protocol, the packets can be sent off and
forgotten about as there is no reason to set up a connection and maintain it as is protocol with
TCP connections. This vastly reduces the overheads in transmitting the worm’s payload and
also the supporting code to handle connection management expected by TCP, thus reducing its
size to the aforementioned 376 bytes.

The intention behind this worm was little more than to slow down general system access to
the Internet through a wide-spread DDoS attack that would see the Internet’s bandwidth being
allocated to transmission of this worm to other targets. This was due to the fact that the worm
was set to retransmit its payload as fast as it could. Coupling this with infected systems that
are allocated high bandwidth connections to the Internet, one would see a slow down as the
Internet’s infrastructure is now tasked with processing a vast amount of unnecessary network
traffic.

2.5.6 Mirai (The Future)

The name Mirai is Japanese for “The Future” and is derived from the anime series Mirai Nikki

(Future Diary) (Krebs, 2017). The languages this malware was written in was C 11 and GO 12.
The Mirai botnet, this is the botnet formed from hosts infected by the Mirai malware, was first
discovered in August 2016 (New Jersey Cybersecurity and Communications Integration Cell,
2016).

11https://isocpp.org/
12https://golang.org/

2.6. INDICATORS OF COMPROMISE (IOC) 32

The Mirai malware is simple in operation. It targets a running Linux-based OS using a list
of commonly used usernames and passwords (this list also contains default usernames and
passwords) in order to attempt login into the system. This means that Mirai simply attempts
to gain access to a host that has a poorly chosen login credentials or default credentials. Once
access is gained the malware then installs itself on the host.

What is particularly interesting about this malware is the inclusion of a subnet exclusion table
within the malware itself. This exclusion table contains the subnets that the malware should not
attempt to infect. A full list of these excluded subnets can be found in Listing E.

This exclusion was most likely included to prevent serious legal ramification due to the devices
that this malware intended to infect. The Mirai malware is most interested in infecting devices
that can be classified as part of the Internet of Things (IoT). This includes any Internet accessible
devices such as IP cameras, smart TVs, Internet connected Blu-ray and DVD players (Paganini,
2016). If one of these IP cameras happened to be part of a military installation and confidential
information was gathered from it, this would be a cause for a lot more man power being put into
bringing this malware offline than originally predicted.

The lifespan of a host infected by Mirai malware is until reboot of the system. The malware
itself does not implement any starting mechanisms for itself at the boot time of a host. However
one should note that if the rebooted host has its credentials left unchanged it will most likely be
reinfected soon after reboot has occurred.

Another point on infection of a host by Mirai is that upon initial infection the Mirai malware
attempts to shutdown all other malware running on the host (Herzberg et al., 2016). Further-
more, Mirai attempts to lock down ports 22 (SSH), 23 (telnet) and 80 (HTTP) to prohibit remote
connection to the device and thus prevent remote reboot to clear the device13.

As mentioned prior, the Mirai botnet has been used primarily in DDoS attacks around the world.

2.6 Indicators of Compromise (IOC)

Simply put, an indicators of compromise is an observed event that strongly indicates an intrusion
on a system or host (Gragido, 2012). Some IOC are listed below:

13This is done by stopping all services that utilize these ports, and preventing allocation of services to these
ports (Herzberg et al., 2016).

2.7. DDOS ATTACK DETECTION APPROACHES 33

Differing Hashes: Hash for original file differs from the file on a system (usually performed
through MD5 (Rivest, 1992) or SHA1 (Eastlake 3rd and Jones, 2001) hashing).

File Inspection: If a hash does not exist for the original file, simple inspection for a sequence
instructions known to be used for a malware in a file may indicate malware.

IP Address Inspection: Comparison of incoming and outgoing network traffic to known mali-
cious IPs can strongly indicate an intrusion.

URL Inspection: Comparison of outgoing requests to an Uniform Resource Locator (URL)
known to belong to a malicious entity is a strong indicator of intrusion.

Virus Signature Detection: A task typically performed by virus scanners, detection of a virus
signatures on a system involves file inspection, registry inspection, as well as runtime re-
source (files, network, memory, etc.) request inspection.

Typically IOC leads to easier detection of re-occurrences of malware intrusion with the eventu-
ality of complete prevention mechanisms being put in place. To help speed up the time taken
from a malware first being detected to full system immunity, reporting standards have been put
in place. The Incident Object Description Exchange Format seeks to standardize the format of
an incident report allowing for easier cross system application development to counter system
intrusion (Danyliw et al., 2012).

2.7 DDoS Attack Detection Approaches

A DoS attack can be performed trivially through means of transmitting enough packets at a
target IP address in order to fully saturate its network link. The more systems are involved in
transmitting these packets, the less each needs to send in order to saturate the target’s network
link (Mirkovic and Reiher, 2004). Although there are smarter methods of denying a user access
to a system on a network, such as causing a server to exceed its physical resource limits and
thus disabling its ability to serve any more requests, the form described here through bandwidth
saturation has a very easy-to-spot signature; this being more packets than usual destined to a
network IP.

This form of attack is also easy to record and easy to replicate, and so makes a good starting
point for implementing and testing anomaly detection systems, or to train potential network
security candidates. Although it is difficult to detect whether a DDoS attack has malicious

2.7. DDOS ATTACK DETECTION APPROACHES 34

intent or not without context, the ease of replication makes this form of attack a popular one to
analyse and so there is much research and literature around detection and classification of this
network event.

2.7.1 MULTOPS

MUlti-Level Tree for Online Packet Statistics, or MULTOPS for short, is an application that
uses a tree of nodes to store packet rate statistics at a subnet level of the connections being
made through the node in which MULTOPS in running on. This tree is designed to expand and
contract during the runtime as to only contain the data relevant to detection of a Distributed
Denial of Service attack (Gil and Poletto, 2001), this also makes it memory effective. Although
outdated by today’s means, at the time this research was conducted it was able to process in
excess of 300,000 packets per second on a 700 Mhz Intel Pentium III.

This implementation is intended for application on routers or packet monitoring devices which
have low CPU and memory resources in comparison to that of fully fledged computers. The
device running MULTOPS would then gain the ability to be able to detect fluctuations in band-
width requirements to a destination and terminate the connection. This termination is imple-
mented through simply dropping all subsequent packets from the source that are involved in the
connection destined to the affected destination address.

2.7.2 Learning through Neural Network using sFlow as Learning Data

The approach taken through the combined efforts of Ewha Woman’s University and the Elec-
tronics and Telecomunications Research Institute, both situated in South Korea, show promise
into DDoS attack detection using flow records as training input for a Distributed Denial of Ser-
vice detecting neural network (Rochester et al., 1956). Their work looks into using sFlow14, a
competing standard against NetFlow, to monitor networks’ connections and generate the flow
records for the neural network (Kim et al., 2004).

The research performed by Ewha Woman’s University and the Electronics and Telecomuuni-
cations Research Institute used data records known to be involved with a DDoS attack as well
as data records known to not be involved in a DDoS attack. This was then given to the neural
network in order for it to train and feedback could be given directly from the known results of

14http://www.sflow.org/

2.7. DDOS ATTACK DETECTION APPROACHES 35

the training set. After this, the neural network was used in an attempt to accurately determine
whether unknown sFlow data records were part of a DDoS attack or not. The error rate of this
neural network was rated at 2.898%.

2.7.3 Attack Classification through Use of NetFlow

The Samara State Aerospace University of Russia takes the approach of classifying attacks
through controlled environments and then analysing the flows that are generated from such
attacks. The research started out primarily targeted at the successful consistent detection of
single source IP DoS attacks. Once it was confirmed that detection of a DoS attack could be
performed this research scaled out and reapplied the DoS detection mechanism to detection of
DDoS attacks (Galtsev and Sukhov, 2011).

This research then continued to build on its detection engine to include the ability to detect
port scans which is usually an indicator of a potential attacker looking for a vulnerability in
the services hosted on a system. This research then proposed a locking system that if a DoS,
DDoS or port scan is detected, would then lock out all subsequent traffic from that source until
conditions are met to unlock the IP. These conditions include no inbound traffic for a set period
of time from that source or a drastic change in behavioural patterns that suggest the IP has been
reallocated.

This research has continued to develop the original detection engine to extend into the detection
of known worms such as W32.Blaster (Dougherty et al., 2003) and Red Worm (Microsoft,
2003a) and classification of these worms traffic has been performed. Following these results
they have stated that there is promise in the ability to classify these worms through the use of
NetFlow logs.

2.7.4 TOPAZ

The Traffic flOw and Packet Analysis System, or TOPAZ for short, places its focus on real time
event analysis. Attacks that occur on systems within networks should be detected and mitigated
as fast as possible and this is exactly what this research aims to achieve. The generated flow data
(NetFlow v9 is used in this implementation) is fed directly into a preprocessor that identifies key
attributes from within the NetFlow data records. This key data is then passed on to a separate
system that is dedicated to the running of this research’s detection algorithm that uses these key
attributes to successfully identify and analyse network traffic (Munz and Carle, 2007).

2.7. DDOS ATTACK DETECTION APPROACHES 36

The system is also designed to be smart enough to identify flow data that warrants concern
through its classification engine. This further frees up resources to allow the host system to
respond to a threat quickly at a hardware level. The TOPAZ system also allows for adaptation
by allowing filtering of specific protocols. This allows TOPAZ to target a specific search range
according to what anomalies one is trying to detect. This again speeds up the system as it deals
with less data.

Incoming NetFlow data is divided up into three main categories in order to help speed up
TOPAZ’s filtering algorithms. These categories are listed below:

Short term flows: This category is reserved for flows that have been newly reported; flows that
have been seen for the first time.

Long term flows: This category contains flows that have been seen in records more than once
and consistently appear as records in consecutive NetFlow logs.

Sporadic flows: This category contains flows that have been seen in records more than once
but do not consistently appear as records in consecutive NetFlow logs.

These categories are used against known characteristics of network events that exhibit short
term, long term or sporadic characteristics. This helps filter out what the flow is definitely not,
based on what can be expected in each category, thus further speeding up TOPAZ’s analysis
engine.

2.7.5 Statistical Approach to DDoS Detection

The Boeing Company and Network Associates Laboratories propose the use of statistical anal-
ysis through formulaic algorithms and mathematical modelling to detect malicious attacks on
networks. This is performed through gaining samples of the network under standard working
conditions and storing it for comparison at a later point. This analysis is performed through
observation of timings of each network IP passing through a node that generates the flow data
for analysis (Feinstein et al., 2003).

After the results from standard working conditions are produced, comparisons can be made to
detect behaviours that are not common on the network. At runtime, standard operation of this
system allows for adaptability through aggregation of further network results. This allows for a
running average to better adapt slight changes in the network over its lifetime. This system also
incorporates a time of day detection system that allows for fitting network characteristics based
on a time of day, week, or month to allow for further accuracy and fidelity in attack detection.

2.8. INTERNET BACKGROUND RADIATION 37

Figure 2.8: Network Telescope Traffic Increase at Conficker Start (Irwin, 2011)

Basic testing of this system is through detection of DDoS attacks and loss of connectivity, this
being the other extreme, in order to ensure the system runs as expected. The system achieves
detection of both cases successfully.

2.8 Internet Background Radiation

This name refers to a known network address space that is unallocated which is purposefully
observed to see what traffic is destined to this address space. Because this address space is
unallocated, all traffic that is destined to it is inherently suspicious. Other names for this network
address space used in this way includes black hole, darknet and Internet motion sensor (Harrop
and Armitage, 2005).

Suspicious network traffic that is destined to these network telescopes is mostly attributed to
random port scans, DDoS backscatter and misconfigured systems. These port scans are due to
malware, misconfigured software/hardware, or users with malicious intent scanning ranges of
IPs searching for vulnerable Internet facing IPs. Network traffic can also arrive to this network
space due to legitimate responses to spoofed IP sources (Pang et al., 2004). This is common
when considering seemingly legitimate TCP SYN packets or attempts to access a closed net-
work port on a system; these would both warrant a response to the source IP in the request.

Major malware events have been detected and recorded with this method of Internet observa-
tion. As an example, during the peak of the Conficker Worm Barry Irwin’s research observed
and recorded finger printing techniques used by the Conficker Worm in its attempts to locate

2.9. PACKET SOURCE IP GEOLOCATION AND DEALING WITH SPOOFING 38

new targets on the Internet. His work shows this through depiction of spikes of fingerprinting
network traffic received at his network telescopes at the times of which new versions of the
Conficker Worm were released. The start of the first version of conficker can be observed in
Figure 2.8 at point “Conficker A Start” and the start of Conficker B can also be observed on the
same figure.

Furthermore, he shows the result of a bug that was introduced into the worm in which the most
significant bit of the destination IP address used by the Conficker worm is never set. This is due
to the fact that 32-bit integers were used in the random generation of destination IP addresses
by Conficker. However, the integer was signed thus omitting the highest bit for a sign bit.
This led to the destination IP addresses used by the Conficker Worm to be between 0.0.0.0 and
127.255.255.255 (Irwin, 2011, 2012, 2013).

2.9 Packet Source IP Geolocation and Dealing with Spoofing

IP addresses on the Internet are assigned by blocks called subnets. These subnets are allocated
to LIRs in the world, and thus one can use the source IP address of a network flow in order to
place where a network flow originated from in the world through IP address comparison to these
registries (Housely et al., 2013). This information can be used to regulate network connections
through generation of firewall rules in order to allow, prevent or modify connections to certain
IP addresses (King, 2010).

Blocking of an IP address or range of IP addresses may seem like an appropriate way in which
to mitigate an attack from a known source IP address. However, it is not (Johnson et al., 2007).
Commodity PCs can generate network packets in which all bytes within it are defined by the
user. This is referred to as packet spoofing, and is performed by modification of the IP source
address bytes of a network packet to represent that of an IP address not belonging to that system.
Furthermore, one can randomly generate these address for every packet that system transmits.
This means that one cannot just block an IP address or set of IP addresses and be done with it;
this is a very tedious problem to solve. Spoofing in this manner is typically used in the spectrum
of DoS attacks (Needham, 1993).

There are defensive mechanisms in place for dealing with attacks that use IP address spoofing.
The first and most inconvenient is to change one’s systems static IP address/addresses. If the
malicious system is set to attack a specified IP address, or works on the system of resolve a
FQDN once and then target the given IP address, then this would allow the target to mitigate

2.9. PACKET SOURCE IP GEOLOCATION AND DEALING WITH SPOOFING 39

this form of implemented attack (Douligeris and Mitrokotsa, 2004). This will work until the
attacking system updates the IP in which it is targeting through administration, or by resolving
the target FQDN again.

Simply knowing who should be connecting to a system can be invaluable information to prevent
random IP source address attacks. Creation of a whitelist containing only the subnets and IP
addresses that should have access to your system is a method that can filter out a lot of unwanted
connections. This also makes sense in business planning as there are many businesses that only
do business with a set part of the world (Srivastava and Giffin, 2008). This means that one can
include these subnet whitelists into the business model of one’s company.

Another consideration one should make is for stateless protocols such as ICMP (Postel, 1981b)
or UDP (Postel, 1980). Stateless protocols like this do not require a connection to be set up
beforehand, and thus allows an attacker to generate packets and send them at a target with no
overhead required on the attackers side.

If one does not have a deep understanding of how networks work, such as a small company that
can not afford on-site system administrators, one can employ a third-party company in which
one’s service is relayed through. This third-party company, like CloudFlare (CloudFlare, Inc.,
2016), can provide mitigation of malicious network activity on your behalf in order to keep
one’s services available and secure.

2.9.1 Use of NetFlow Node Source ID in Packet Spoofing Detection

As part of the NetFlow version 9 and IPFIX protocols (Cisco, 2003a), each NetFlow source
node is allocated an ID number. If one were to ensure these IDs were unique and keep a record
of where each node is physically located, one would now have a method of detecting where
certain types of network traffic are sourced from, be it within a private network or a public
network, without the need for an IP address (Cisco, 2003b). This is useful in locating where
a network flow is physically sourced from when considering malicious activity that uses IP
address spoofing as discussed in Section 2.9.

To elaborate with an example, consider a simple DoS attack on a target system. If the DoS attack
was created in such a way that it spoofed traffic with sources from around the world, in order
to prevent communications from the attack one would have to effectively block communication
from the world; not very useful at all. Now if one had access to NetFlow sources from around the
world and knew which NetFlow source ID numbers were allocated to each specific location in

2.10. BOTNET DETECTION 40

which a NetFlow source node was placed, one could use this information to better mitigate this
example attack. From the logs generated from these NetFlow source nodes, one could identify
which flows were destined to their service. Coupling this information with the NetFlow source
ID number which each NetFlow log is received with, and assuming one can detect which logged
flows are associated with the DoS attack, one could tell which locations in the world the attack
is being generated from. From this point one could perform more effective attack mitigation.

2.10 Botnet Detection

In more detail, a botnet is a name given to a set of systems infected by a malware or set of
malware that receives remote commands in order to perform a task which is not authorised by
the owner of the system. Bots within a botnet are usually aimed at completing multi-host tasks
such as DDoS attacks or proxying of traffic through multiple hops.

Infection of a system can occur like any other malware and there is no special method in which
a system can be infected and included in a botnet. One can use methods detailed in Section 2.4
to infect a vulnerable system and execute code that includes the system in a botnet. The affect
it has on the infected system varies depending on the infection/infections. The effects range
from unnoticeable, which allows for a longer infection time, to full system owner lockout,
which usually results in shorter infection time. Some operations an attacker can perform on an
infected system are listed below:

DDoS Source: Use of the infected host as a generator of network traffic for inclusion in a DDoS
attack.

Key Logger: Logging of key strokes on a host to collect information about a user. This
can include usernames, passwords, emails, banking details and any other person informa-
tion (Matalytski, 2006).

Ransomware: Software used to lockout a user from a host and information on it until they have
paid for access rights back to their host and data (O’Gorman and McDonald, 2012).

Spam Bot: Use of a host to send out advertisement material usually in the form of emails (Chi-
ang and Lloyd, 2007).

The affect on networks however is widespread, be it from the point of development or general
runtime of the network. To explain, systems have to be developed to deal with malicious request

2.10. BOTNET DETECTION 41

Figure 2.9: Bot Attack Process on Vulnerable System (Gu et al., 2007)

as well as have maintenance team assigned to the system after it goes live for further errors that
may occur. This stretches the budget and time of the entity that employs and owns the software.
In terms of general network runtime, bandwidth allocated to attacks such as DDoS, or the
requirement for network packets to stay on a network longer while it gets proxied through
multiple hops, decreases the available bandwidth on the network; this affects all users as a
whole.

2.10.1 BotHunter

The perimeter of any system or network is a strategic point in which to implement a protec-
tion system. This location allows for monitoring of any inbound and outbound traffic that
involves the protected system. BotHunter takes advantage of this location to detect and miti-
gate attempted intrusion into the protected system. This is performed through analysis of flows
generated by network traffic that passes through the node on which BotHunter is running (Gu
et al., 2007).

The BotHunter system makes use of the network intrusion detection tool Snort (Roesch, 1999)
to apply a detection rule set to traffic passing through the perimeter based monitoring node.
Snort is a network monitoring system and further information on this system can be referred to
in Subsection 2.11.1. The rule set is based on a five step intrusion model which was discovered
in this research and was found to be used by most exploits in order to penetrate a system. This
process is provided with a step by step visual aid as seen in Figure 2.9.

2.11. ATTACK DETECTION THROUGH PACKET ANALYSIS 42

1. External to internal port scan: This is a port scan from an outside network attempting
to fingerprint a host or multiple hosts on the internal network.

2. External to internal exploit based on scan report: This is an attempt to execute code
remotely via exploitation based on information gained from the external to internal port
scan.

3. Internal to external binary acquisition: This stage is the response to the remotely ex-
ecuted code that gets the now exploited host to request additional files and resources in
order for the exploited host to perform specific tasks that the attacker wishes.

4. Internal to external command and control communications: This stage occurs once
the attacker has fully uploaded all of the malware’s functionality onto the exploited host,
thus letting the exploited host run as a stand alone infected system. At this point the
infected host requests directives from a controlling host in order to achieve the task of the
attacker.

5. Internal to external port scan: In most cases this research found that after a system
was fully infected it would attempt to infect other systems, thus growing the botnet au-
tonomously. The point to note here is that now the port scan comes from the infected host
and thus originates at the internal network.

BotHunter then uses the analysis tools provided by Snort along with the rule sets provided to it
to generate confidence ratings as to the likelihood that an incoming connection from an external
host, or an outgoing connection from an internal host is due to that of inclusion or attempted
inclusion in a botnet. The information then presented to the user on successful detections in-
cludes the victim’s IP, the attacker’s IP and logs for evidence trails leading up to the infection,
or showing that a system is infected.

2.11 Attack Detection Through Packet Analysis

The idea of using the presence and general characteristics of a connection, rather than the in-
formation sent via the connection’s payload, to detect malicious attacks has its advantages and
disadvantages. The most obvious advantage is the increased volume of traffic that can be pro-
cessed, as major parts of a packet can now be ignored. However, this also leads to the greatest
disadvantage, which is that in the event of an attack, one has no means by which to accurately
detect what parts of the system have actually been affected if that information is contained

2.11. ATTACK DETECTION THROUGH PACKET ANALYSIS 43

within the ignored segments of the communication. This disadvantage does come with a re-
prieve as an attacker usually aims at common parts of a system (this being payroll systems,
private information, private electronic property, among other resources).

Other than the requirement for more processing power required to perform full packet analysis
on a connection, one also needs to consider privacy laws. One such law that seeks to protect
users privacy is the Protection of Private Information (PoPI) Act (Korb, 2013). As not all private
information communicated on a network is encrypted, and thus unreadable, full packet analysis
on such a connection could lead to a breach in user privacy. For this reason user privacy must
also be taken into consideration when performing full packet analysis.

The decision to use full packet or partial packet analysis should be weighed up against the
number of attackable underlying systems within the system, and the time taken to check through
these packets versus the quality of service one can provide to clients when full or partial packet
analysis is performed at the time of the security system’s inception.

2.11.1 Snort

Snort is an intrusion-detection system first developed by Martin Roesch, who later founded the
company Sourcefire which is now in charge of Snort’s development. Snort can perform protocol
analysis, content searching and content matching through use of search trees. These services,
coupled with Snort’s event trigger capabilities, allow it to ensure quality-of-service and react to
events such as intrusions or system failures (Roesch, 1999).

Snort is intended to be configured into 1 of 3 main operating modes: packet sniffer, packet log-
ging or network intrusion detection. Packet sniffer and logging modes are similar in that both
read packets from the Network Interface Controller (NIC) and then either display them to con-
sole or write them to disk respectively. In intrusion detection mode, Snort is allowed to perform
specific actions based on what has been detected from connections made through Snort’s host.
Triggers can be attached to these intrusion events and when an intrusion is detected, Snort can
perform tasks to mitigate the damages of the intrusion. These tasks include notifying system
administrators, shutting down connections or just monitoring the link in further detail to allow
for in depth analysis of the attack for later use; be it for recovery or new defensive mechanisms.

Pixel Snort is an implementation of Snort that offloads tasks typically performed on the CPU
to a GPU in order to leverage increased performance from Snort. This implementation of Snort
makes use of the GPU’s stream processor capable functionality in order to perform major parts

2.11. ATTACK DETECTION THROUGH PACKET ANALYSIS 44

Packet
Acquisition

Packet
Decoder

Preprocessors Detection
Engine

Log or
Alert

Fragment
Shader
replaces
String

Matching here

Finished

Output
Plug-ins

Figure 2.10: Logic Flow of Pixel Snort

of string matching that Snort would normally do on the CPU (Jacob and Brodley, 2006). Moti-
vation for this approach was based on the fact that an estimated third of all processing performed
by Snort is string matching, this is noted in Figure 2.10. A further benefit is that while the of-
floaded task is being performed by the GPU, this would free up the CPU to process something
else in parallel, or devote more time to other subsystems of Snort.

Through extensive testing, ranging from testing the processing of expected network traffic to
traffic crafted specifically to cause cache misses at the CPU level, this system was found to yield
up to a 40% improvement over the conventional CPU-based Snort implementation. Results
reflect lower CPU usage, less dropped packets and less time taken to perform a string match on
an incoming packet. However, there are points within testing where GPU performance tends
towards CPU performance. These points are during low load and high load. At low load,
this performance similarity is most likely due to the fact that both of these systems have excess
resources in order to process the given task, and so can both do it in the minimum time required.

When one considers the other end of the spectrum, the case of high load, one can most likely
account the GPU’s performance to that of bottlenecks within the system. The two major bottle-
necks within a system is that the CPU still has to delegate tasks to the GPU, and the memory
bandwidth restriction imposed by the Peripheral Component Interconnect express (PCIe) bus.
Either of these bottlenecks, or combination of both, would result in the GPU not being allowed
to fully saturate its hardware resources and thus a reduction in packets processed would occur.

2.11. ATTACK DETECTION THROUGH PACKET ANALYSIS 45

2.11.2 Bro

Like Snort, Bro can be described as an intrusion-detection system. Bro was originally developed
by Vern Paxson and is licensed under the BSD license. This software can be divided into two
major underlying systems, these being the event engine and policy scripts. The event engine’s
purpose is to analyse or record live traffic and generate neutral events. From here, the policy
scripts take the generated neutral events and analyse them in search of anomalies or specific
characteristics. The Bro scripting language that is used to analyse these neutral events generated
by the event engine is also Turing complete (Paxson, 1999).

The Turing complete nature of this language makes it more powerful. A system is said to be
Turing complete or computationally universal if it has the ability to simulate any single-taped
Turing machine (Hodges, 1983). In other words, the Bro scripting language can be used to
process data and perform tasks of any other Turing complete language such as C++ (Stroustrup,
1986) or Java (Oracle, 2015).

2.11.3 System for Internet-Level Knowledge

The SiLK toolkit is a collection of software for network traffic collection and analysis. This
toolkit developed and are currently maintained by the Computer Emergency Response Teams
(CERT) Network Situational Awareness Team (CERT NetSA) of the Carnegie Mellon Univer-
sity. The majority of these tools are implemented in C, Perl and Python and are compatible
with major UNIX-like (The Open Group, 2012) operating systems such as Linux15, Solaris16,
OpenBSD17, Mac OS X18 and Cygwin19.

These tools base their data collection upon IPFIX, NetFlow version 9 and NetFlow version 5.
The information within these records are then converted into a known space efficient format and
recorded into service-specific binary files. The analysis tools then read in these binary files and
perform analysis on this collected data, in order detect anomalies or specific characteristics of
the network traffic on the recorded network20.

15https://www.linux.com/
16www.oracle.com/Solaris
17http://www.openbsd.org/
18https://www.apple.com/za/osx/
19https://www.cygwin.com/
20https://tools.netsa.cert.org/silk/

2.12. FIELD-PROGRAMMABLE GATE ARRAY 46

Table 2.2: NAND Gate Look-Up Table

Input A Input B Output
0 0 1
0 1 1
1 0 1
1 1 0

2.12 Field-Programmable Gate Array

The FPGA is an Integrated Circuit (IC) used to simulate and help develop ASICs. This simu-
lation is performed through population and linking of fields within the FPGA to simulate basic
logic blocks (such as AND, OR, NAND, XOR, etc) with which one builds up the basic com-
ponents of the described hardware (Francis et al., 1992). The general inputs and outputs of
the described hardware for the most part can be bound to any pin that is marked as an input or
output on the used FPGA’s package. It is only when specific functionality is required, such as
clock input and output pins or differential pairs, that the pin mapping of the described hardware
has to be specifically bound to certain pins within the FPGA package used (Xilinx, 2009).

A language used to describe the data flow and logic which the FPGA simulates is referred
to as a Hardware Description Language (HDL). Of these languages the most commonly used
for development on both Intel FPGAs and Xilinx platforms is VHDL (Computer Society of
the IEEE, 1988). This language was developed for the United States Department of Defence
as a means to record the logic that was being used in their equipment (Doulos, 2014). As
this language was originally developed to document existing ICs, this language can also create
them. This makes VHDL a powerful tool as one can first simulate the hardware’s logic on an
FPGA. Once all errors have been corrected one can then get the described logic fabricated into
an Application Specific Integrated Circuit (ASIC).

This also reduces costs in production significantly, as an FPGA can be reprogrammed multiple
times. Because of this characteristic, it also allows for rapid iteration development and thus
saves on development times, as full fabrication of an ASIC can have up to a 6 month lead time
before fabrication begins (Kuon and Rose, 2007).

2.12.1 How It Works

To further explain the inner workings of an FPGA and how the logic blocks are implemented,
one needs to first understand what a Look-Up Table (LUT) is and how it works. As one may

2.12. FIELD-PROGRAMMABLE GATE ARRAY 47

f

e

d

c

b

a

Output

Figure 2.11: Example 6 Input Gate Logic

derive the functionality from the name, the LUT takes an input to look-up a value within a table.
This looked up value is then presented as an output from the table (National Instruments, 2015);
exactly like a logic table.

The LUT gives the basic building block required to form a logic operation within an FPGA (En-
derton and Enderton, 2001). To elaborate, consider the humble NAND gate represented in Table
2.2. A simple look-up table to implement a NAND gate would to simply take in two single bit
inputs, input A and input B, and produce a single bit output, as represented in Table 2.2. When
input A and input B are presented to the look-up table and its output is enabled, the LUT would
then use these inputs to reference the output value and then produce the output bit on the output
line from LUT.

In a Xilinx Spartan 6 a LUT allows for up to 6 input values, the means in which this is imple-
mented will be discussed in detail later (Xilinx, 2014). Allowing for this number of inputs into
a LUT means that either one can perform larger single logical unit implementations, such as a
XOR with 6 inputs, or represent multiple logic units in a single LUT. For example, the logic
depicted in Figure 2.11 can be represented by a 6 input LUT as shown in Appendix B.

If one wanted to build a functional system which consisted of more than 1 to 5 logic gates
one could look towards combining multiple LUTs within an FPGA in order to achieve this
task. Using the outputs of multiple LUTs’ allows one to build up essential logical units used in
modern computing, such as an adder or even a divider (Parhami, 2009).

It is notable that most of the logic gates used in these aforementioned arithmetic logic only
consists of 2 inputs, so why does one need a 6 input LUT. Allowing for a LUT of this size is
only beneficial to the users experience. The reason for this is that a look-up in a LUT takes time
as the electrons have to propagate through the LUT’s logic, and as one connects more and more
LUTs together, the time needed to perform the logical operation and produce a result increases.
This directly affects the throughput of the logic in the FPGA as the longer it takes to traverse
the logic simulated in the FPGA, the less results can be produced in a given time period. To

2.13. SUMMARY 48

counteract this one can use the method described above of simulating multiple logic gates in a
single LUT in order to reduce the number of LUTs used to produce the logic of a system, thus
reducing time taken and maximizing the systems throughput (Omana et al., 2003).

These connections between LUTs are less simple than stating them as wired together, and this
further adds to slow downs within the device when using multiple LUTs. Each output needs
to be buffered somewhere so it can be used as an input, and this is typically done by a flip-
flop (a single bit of memory). The lesser used memory store used to buffer these LUT outputs
are latches, these are slower and lead to timing problems within the FPGA when searching for
maximal throughput (Embedded Micro, 2015).

2.13 Summary

The topics discussed in this chapter were based on the outline stipulated by this research’s
goals defined in Section 1.2. This chapter started off in Section 2.1 through definition of what
Ethernet is and some details about its workings. As the Internet Protocol is built on top of
Ethernet, it logically followed that this protocol is discussed next in Section 2.2. Section 2.3,
then discusses the NetFlow protocol which is used for all data input into the system proposed
by this research. Understanding of Ethernet, Internet Protocol and NetFlow is a requirement
before design of this system can even begin in Chapter 3.

Sections 2.4 through 2.11 seek a better understanding of what malicious activities exist on the
Internet and how one can approach mitigating such events. These sections start through ex-
plaining what malicious activities are on the Internet by explaining the different classes of these
activities, and what characterizes each. With this understanding the text moves into looking at
well researched malicious attacks, their behaviours and history to deepen the readers knowledge
on this topic. Drawing from this knowledge, prevention methods for the discussed attacks are
brought to light and shown where and how they can be applied to counter these malicious activ-
ities and protect a network. This knowledge is applied in Chapter 5 when this system attempts
to provided new countermeasures to these malicious activities on the Internet.

This chapter finally draws to a close with an introduction to logic gate level circuit design in
Section 2.12. This knowledge is then applied in the hardware acceleration of this research in
Chapter 8.

3
Technology Evaluation

THIS chapter evaluates existing technologies that were considered for use in the imple-
mentation of Bolvedere’s base system. The base system in this implementation is the
part of Bolvedere that processes and distributes NetFlow records for processing. The

system will be expanded on in Chapter 4.

This chapter starts with Section 3.1, which discusses existing hardware architectures, the type
of data each is suited to process, and then relates this ability to NetFlow records directly. Fol-
lowing this, Section 3.2 brings forward methods of inter- and intra-process communication due
to the possible requirement for multiple subsystems to communicate within Bolvedere in or-
der to form the system as a whole. Introduction of inter- and intra-process communication is
also required if scalability is implemented in terms of concurrency, as this will most likely in-
volve communications between the subsystems within Bolvedere. This chapter concludes with
a summary in Section 3.3.

49

3.1. ARCHITECTURES 50

Figure 3.1: Application of Amdahl’s Law

3.1 Architectures

A primary goal defined for this system (detailed in Section 1.2) was scalability; however one
should take care regarding the manner in which one scales a system. Amdahl’s Law shows that
increasing the number of processing nodes within a system is not the most effective method
of increasing the system’s throughput (Amdahl, 2007). Using Amdahl’s formula in Equation
3.1, one can calculate the results for the application of Amdahl’s Law in Figure 3.1. One can
see from these results that even a system that can run 95% of its processes in parallel can only
achieve an approximate 20 times speed-up. In addition to this is the fact that to achieve this 20
times speed up, one would require 4,096 processing nodes.

SpeedU p(P,S)= 1
(1−P)+ P

S
,

where P is the parallelizable percentage
of the system and S is the number of pro-
cessing nodes in the system

(3.1)

The cost-to-performance ratio per processing node at the higher end of this spectrum strongly
serves to call into question the addition of processing nodes (horizontal scale-out) to the system
in order to increase processing speed. For this reason, one must give consideration to selecting
the proper tools for the job before implementing a system, as one should not rely on scalability to
solve performance issues within a poorly optimized system. Instead, one should use scalability
to improve the performance of a well-implemented system, further increasing throughput.

With this in mind, one should consider the best tool for the job, and then scale that implementa-
tion. Choosing this best tool is a problem in itself, and to best solve it, one should consider the
strengths and weaknesses of currently existing architectures.

3.1. ARCHITECTURES 51

3.1.1 CPU

Since mid-2009, AMD and Intel have held over 99% of the global market shares for PC proces-
sor manufacturers (Statista, 2015). The commodity processors that both these companies com-
monly manufacture follow the Single Instruction Single Data (SISD) instruction sets x86 (Intel
Corperation, 2015), x64 (Intel Corperation, 2015) and IA641 (Intel Corperation, 2010). A SISD
instruction set refers to a hardware architecture that performs a single operation upon a single
memory location (Michael, 2004). These instruction sets are also designed around a Reduced
Instruction Set Computer (RISC) architecture in order to keep instruction simple (Kane and
Heinrich, 1992). These simple instructions allow for a relatively small hardware footprint. This
small footprint reduces the time taken for an electron to propagate through the relevant hard-
ware, and so more data can be put through that hardware. This is coupled with the fact that
fewer instructions mean faster instruction decode times, and so more instructions can be fed
into the processing logic.

Optimization through the use of an instruction pipeline also benefits from the use of a SISD-
based instruction set using RISC architecture (Quinn, 2004). As there is only ever one memory
location and one instruction in consideration at a time, coupled with the instructions available
being well-defined and few, it is easier to break down these instructions into common steps
(micro-operations). The hardware to perform these common steps is then allocated to sequential
instructions as the instruction enters the common step.

If one were to consider this form of logic for a single instruction, one would soon note that,
if the instruction was only using a singular part of this common hardware at a time, the rest
of the hardware would remain idle while the single part is operating. However, if one were to
allow the next instruction to use the hardware just released by the previous instruction as the
instruction moved onto the next common step, one could repeat this logic to include multiple
instructions at different stages of execution at one time. This is what is referred to earlier
as pipelining (Murakami et al., 1989). As an example, consider an instruction set where the
instructions share these common features:

1. Decode Instruction

2. Load Data

3. Execute Instruction

4. Store Result
1Itanium family of processors (https://www.intel.com/content/www/us/en/products/processors/itanium.html).

3.1. ARCHITECTURES 52

time

time

4th Instruction

3rd Instruction

2nd Instruction

1st Instruction

Decode

Load Data

Execute

Store Data

W
ai

tin
g

Pi
pe

lin
e

C
om

pl
et

e

Figure 3.2: Example Pipeline Stages of Execution

In this case one can accept four instructions into the CPU at once with a pipeline that involves
these listed stages. This is because the first instruction loaded into the CPU would first be
decoded as to what the instruction should do, and would then need to fetch its relative data.
Instead of letting the decode instruction hardware go idle, one could then let the next instruction
be decoded. To continue this logic, when the first instruction is now being executed on the
loaded data, the second instruction can have its data loaded and a new instruction can begin its
decoding phase. If there are 4 or more instructions to be executed through this pipeline, other
than the initial 3 instructions entering this pipeline, there would not be any idle hardware within
the CPU (Hennessy and Patterson, 2011). This example is diagrammed in Figure 3.2.

One must also note that one cannot compute an instruction if one does not know what it is, or
what data it is working on. For this reason, the use of a pipeline allows the use of hardware
that would otherwise be stalling while waiting for the relevant resources. Another point one
should consider is that this form of hardware further reduces the propagation delays of electrons,
as there is even less hardware for electrons to pass through during a micro-operation (Boyes,
2002). This allows a CPU to yield higher clock speeds without the concern of clock skew2.

Within Bolvedere, the use of a sequential processing device, such as a CPU, should not be

2Clock skew is the phenomenon in which a signal source arrives at different components at different times.
This is more common in larger circuits.

3.1. ARCHITECTURES 53

considered as an architecture for NetFlow record discernment. Although discernment on a CPU
is possible, this operation deals with memory accesses that cannot be determined before the
arrival of NetFlow data and template records. When dealing with incorrect branch prediction,
this introduces overheads, which lead to process stalls (Yeh and Patt, 1991). Consider the typical
lifetime of a NetFlow data packet as it enters a NetFlow processing system: when it first enters
this system, the template identifier has to be fetched from the NetFlow data record. This is a
simple and predictable operation.

From this point the process becomes indeterministic, as one has to look up each field before
reading the data from the NetFlow data packet and processing the data accordingly. This is a
task that cannot be streamlined, as one does not know what NetFlow templates will be received
before the runtime of this system. This makes the optimisation of a NetFlow processor for a
sequential architecture such as a CPU difficult.

The converse to this indeterministic event is when data arrives in a known order. This means
that there will be no overhead in discerning what a certain field is within the received NetFlow
data record, as the data will always arrive in the same form. As this form is known, the data can
just be processed. This concept will be further built upon in Section 4.2.1.

3.1.2 GPU

Graphical Processing Units (GPU) are specifically designed to deal with large datasets using a
Single Instruction Multiple Data (SIMD) instruction set (Cockshott and Renfrew, 2004). The
reason for this is that they are primarily used for graphics processing (as the name suggests),
which entails placement and texturization of objects on a display (Sanford, 2007). Typically,
a graphic object is made of a model or a sprite. These objects often have the same operations
performed on them, be it a transform of the actual model or sprite, a texture placement or
shading. For this reason, having the ability to perform the same operation on multiple objects at
once speeds up the overall throughput of the graphic system (Patterson and Hennessey, 1998).
A high-level side-by-side comparison between a SISD and a SIMD addition instruction can be
referred to in Figure 3.3

To better understand the computational ability of a SIMD instruction set when compared to a
SISD instruction set, consider a room full of cups in 3D space with a singular lighting point.
The cups’ response to the light is to reflect it, making a seemingly smooth and shiny surface.
The math is simply represented by knowledge of the light, where a cup is located, the angle of
the cup’s surface to the light and the position of the camera. Knowing this, one can tell which

3.1. ARCHITECTURES 54

A

+
B

=
C

A1 A2 A3 A4

+
B1 B2 B3 B4

=
C1 C2 C3 C4

Vector

Vector

Result Vector

Value

Value

Result

SISD SIMD

Figure 3.3: SISD and SIMD Addition Comparison

part of the cup reflects light towards the camera and which doesn’t, and can shade the cup’s
surface appropriately from this point. However, doing this same calculation for every cup and
every surface on the cup is repetitive and resource intensive under a SISD architecture.

However, under a SIMD architecture, one can load the location of multiple cups and perform
the same calculation on each, based on the location of the light and the camera in parallel. This
allows one to process repetitive calculations quickly and in a more effective manner, thus taking
less time to complete and increasing the throughput of the system as a whole (Patterson and
Hennessey, 1998).

General Purpose Graphical Processing Unit (GPGPU) refers to a method of using a GPU’s
graphical instruction set for performing more general calculations in parallel (Lee et al., 2009).
One could consider a water simulation as an example for this form of computation. Even though
water simulation has nothing to do with graphics, one can use a GPU’s SIMD architecture when
considering each point within the simulation. One can load every point within the simulation
into a GPU, along with the relevant calculation, and process multiple points at once for the
simulation, as it is a repetitive calculation. This allows one to increase the rate at which the
simulated information is processed, and thus allows for a higher throughput of data within the
simulation. This leads to allowing for a more detailed or larger simulation, as one can now
better deal with a larger collection of data within the simulation.

Although using a GPU in a GPGPU context is extremely effective, GPUs using CUDA do have
a failing point, seen when delving into the inner mechanisms of their architecture. A process
that is compiled into instructions for a GPU is called a kernel and is run in lockstep. Lockstep
is a process by which every core inside a GPU assigned to run a kernel has to be at the same

3.1. ARCHITECTURES 55

stage of execution as every other core running that assigned kernel. This makes programming
conditional statements a difficult task to achieve (Pai et al., 2013). Because of this, GPUs are
programmed to complete many repetitive calculations. These results are then passed to another
system, usually running on attached hardware, to apply conditions to them in a GPGPU context.

In short, GPUs perform well when a set path of logic can be defined; follow steps A to B and
never stray, just yield the results. Because of this logic, designing a system with which a user
can interact becomes very tricky, and quickly turns one away from using GPGPU as the tool for
tasks such as designing and running of a user interface. This is not to say that GPUs are useless
in this regard - GPUs can aid in displaying or performing complex calculations onto user input.

For this reason, a GPU’s best fit is in the domain of heavy, repetitive calculation (and thus
processing), and not in the domain of NetFlow discernment. This is due to the lockstep nature
of GPUs, rendering them not able to support multiple paths of execution concurrently in a single
kernel (Pai et al., 2013; Collingbourne et al., 2013).

3.1.3 FPGA

As discussed in Section 2.12, an FPGA is used to aid design and implementation of ICs through
the emulated hardware environment it provides. This means one can design hardware specifi-
cally to solve a problem, and is referred to as hardware acceleration (Oxford English Dictionary,
2015). The two general paths which hardware acceleration implementation take in order to in-
crease the throughput of a system is to either parallelize the problem, or to create new hardware
logic that is designed specifically to perform the required computation for the problem (Zemcik,
2002).

This versatility allows for the FPGA to be used at any point of this platform; however, an
FPGA would be most important at the point of NetFlow collection. The reason for this is
that NetFlow record discernment requires random access to field orderings as determined by a
NetFlow template (Claise, 2004).

Dedicated hardware in this situation could buffer the entire NetFlow data packet into mem-
ory (Kumar et al., 2002). Once buffered, the use of dedicated hardware allows the program to
look up the template associated with the NetFlow data packet, discern the entire NetFlow packet
according to this matching template, and then place the fields in a known order for a CPU or
GPU to further process. This would remove the indeterministic process from a CPU or GPU,
and allowing for programs to be written for them that can be optimized for a specific data form.

3.2. INTER-PROCESS COMMUNICATION (IPC) 56

Host Host

Process X Process Y
Interface Interface

Port Port

Figure 3.4: Multi-Host IPC Using Point-to-Point Communications

This transformation can be done in parallel within a hardware device designed specifically for
this task. Furthermore, any special operations required for look-ups, comparisons or copying of
data can have specific hardware designed to complete them too.

Using each of these architectures at different stages of this system to solve specific problems
for which each was designed would yield the best implementation of this system. Furthermore,
each technology brought to light in this section can be designed to run at scale, and thus fur-
ther increase performance. One now needs to define the best manner in which each of these
subsystems communicate, to prevent bottle-necking from occurring.

3.2 Inter-Process Communication (IPC)

Systems are usually made up of smaller subsystems or subroutines that run in parallel or in se-
quence with each other and pass information between them in order to achieve a larger goal (Ox-
ford University Press, 2015). These subsystems and subroutines can be as simple as functions
within a program, or other applications running in separate threads, processes or even external
to the physical system (be it hardware- or software-based). The manner in which these threads,
processes and functions communicate is called Inter- and Intra-Process Communication.

This section brings to light some of these methods of concurrency and where they can be best
applied.

3.2.1 Network Sockets

This method of communication makes use of the network and is particularly versatile as it can
be used on an individual system, or to communicate with systems on a connected network. The
most simple form of this communication method is on a point-to-point basis. To achieve this,
one would create a listening server on one end and a connecting client on the other through

3.2. INTER-PROCESS COMMUNICATION (IPC) 57

Host

Process X

Process Y
Interface

Port

Port

Figure 3.5: Single-Host IPC Using Point-to-Point Communications

Sender 1

...

Sender N

Receiver 1

...

Receiver N

Data

Data

Data

Data

Message
Queue

Figure 3.6: A Simple Message Queue

standard application of sockets (Winett, 1971). The client would then attempt to establish a
connection with the server’s listen socket and, if successful, data could then be passed between
the pair. An overview of this is shown in Figure 3.4, where the arrows depict the data flow.

If one wishes to pass data between processes on a single host, one can specify ‘localhost’3

for the address the socket should attempt a connection with (Postel, 1981a; Deering, 1998).
This form of communication is depicted by Figure 3.5. If the process or system one wishes to
connect to is external to the host, then one can specify the IP address in which that host resides.
If both are connected to the same network, connection should occur as expected and data can
be passed.

An improvement on and extrapolation from the basic network socket is shown in Figure 3.6, and
is an interface that builds upon this very same socket called the message queue. This interface

3IPv4 address 127.0.0.1

3.2. INTER-PROCESS COMMUNICATION (IPC) 58

Host 1

Host 3

Host 4

Host 2

Host 5

Figure 3.7: A Host Broadcasting Network Packets to Other Hosts

allows for data to be placed into a queue without the need for immediate action on the placed
data. The data can then be fetched when resources are available to handle the data in question.
What is more, no system that reads and/or writes to the message queue need know of any other
system that reads and/or writes to the message queue. Further, one can dedicate a system to act
as the message queue, thus removing the overhead in maintaining this interface from the system
that processes the data within the message queue (Passint et al., 1996).

The final form of socket communications in this subsection is the use of broadcasting and a
high-level overview of this process is depicted in Figure 3.7. A broadcast is simply the action
of sending out a single message to multiple listeners. In terms of network sockets, one can con-
nect to a broadcast group. From this point, any packets that are sent to the broadcast group are
received by all participants of the group. A number of technologies exist to achieve this func-
tion, such as multicast (Cain, 2006) and geocast (Navas and Imielinski, 1997). This removes
the overhead of sending the same message to each participant of the group individually (Fiat
and Naor, 1994). The use of this concept is discussed further in Section 3.2.5 by detailing ZMQ
(Zero Message Queue), which is built on top of multicast networks (Hintjens, 2013).

3.2.2 Shared Memory

This method of data access allows multiple processes on a singular host to access the same
piece of memory, thus only allowing for intra-host communication. Access to this memory
can be through reads and/or writes, and can occur simultaneously. This method of memory
access helps to prevent data redundancy within a host (Dagum and Enon, 1998). Overheads do
occur in this method of memory access when two or more processes scheduled for physically

3.2. INTER-PROCESS COMMUNICATION (IPC) 59

CPU 1 CPU N

L1 Cache 1 L1 Cache N

L2 Cache 1 L2 Cache N

...

...

...

On-Chip Components

L3 Cache

Memory Controller

Random Access Memory

Off-Chip Components

Figure 3.8: An Overview of a Processor’s Memory Hierarchy

different processor cores try to access the same memory location. This is due to the structure of
a processor (Openstax CNX, 2015).

Typically, a core within a processor has its own cache (or memory). A high-level overview of
this can be seen in Figure 3.8. The data needs to be loaded to a core’s local cache before it
can be processed. At time of writing, there does not exist a commodity processor that allows
separate cores to access another core’s local memory directly. This means that if a modification
is made to the data, it would then get marked as dirty to signify its modification.

In order for another core to continue to work on this data, it would have to wait for the data to
be written out from the core which modified the data’s local cache, to the public cache (memory
that is accessible by all cores). This would then have to be read to the new core’s local cache in
order for it to be processed. This can lead to stalls in the system, as halts occur while waiting
for data to be written to the public cache and read into a different core’s local cache (Zhuravlev
et al., 2010).

Another point to note is that one should implement memory management variables that keep
track of who has access to a set of data, or when a process is intending to write to the dataset
(i.e. to mark a modified data as dirty, as mentioned previously). The reason for this is that
if two processes write at the same time without any form of notification to each other as they
write, they could end up overwriting each other’s results (Hansen, 2013). Consider this simple
example that explains this occurrence. Process X and process Y each take a time T to complete.
If process X reads the data and is processing it when process Y reads the same original dataset
to perform its process that takes time T, it is obvious that process X would complete first and
write its results to the dataset. After this occurs, process Y would complete and write its results

3.2. INTER-PROCESS COMMUNICATION (IPC) 60

Tn T5 T2 T1 T3

Tn T5 T3 T2 T1

Tn T5 T3 T2 T1

...

...

...

Add new work

Work added

Work T1 timestamp expired

T=0

T=0

T=1

Figure 3.9: Simple Workings of a Work Queue

to the same dataset. The problem is that process Y’s results are based on the original dataset
and not process X’s results to the dataset. At this point, process X’s results are completely
discarded, leading to a malformed result.

3.2.3 Threads and Work Queues

A thread belongs to a process and currently makes up the smallest work unit of execution that
can be independently scheduled by an OS (Ramanathan, 2006). As threads run within the same
process, they inherently share all memory within the process. This means that one no longer
has to manage shared memory; however, all the overheads in resource contention still need
to be dealt with within a process. As threads can be managed by the process and not just the
underlying operating system, work flow can be more tightly managed by the process itself (Dice
et al., 2006).

Another motivator for threads is that a process running multiple threads can run its threads
in parallel on a host with a multi-core processor; this helps to further optimize a process. In
short, threads should be considered as a replacement to forked processes making use of shared
memory (Reinders, 2007).

Work queues are built on top of threads, and help in better scheduling work flow within a
process. The basic workings of a work queue can be viewed in Figure 3.9. The simplest use of
a work queue is to assign a function or subroutine within a program that is to be called when
a specified time has passed (Zheng and Thain, 2015). This defined work is then placed in the

3.2. INTER-PROCESS COMMUNICATION (IPC) 61

Process X Process Y

Figure 3.10: Two Processes Communicating Through a File on Hard Drive

scheduler, and when the time in which the work is set to start has passed, the process then wakes
up the work queue handler to spawn a thread on the given work with the specified subroutine.
Further options that can be specified are datasets to be passed to the function which gets called
for the work, and which processor core the work should start on within the host.

3.2.4 Other Forms of Interprocess Communication

Other methods of passing data between processes can be performed through use of a shared re-
source. This resource could be a system such as a database (Silberschatz et al., 1997) or simply
a file that resides on a hard disk. A very simple depiction of this can be seen in Figure 3.10.
Simply putting data into a database to have those contents read later, or performing the same
action with a file on disk, would constitute a viable method of interprocess communication.

One can even go as far as to make use of the Linux kernel to either act as a pass-through, or
to communicate with a kernel module directly using procfs (Oracle, 2007). The Linux procfs
works through creation of file handlers that, when an action is performed upon it (be it read,
write or any other file operations), calls predefined functions to run and process the relevant data
for the command (Wang et al., 2010). For example, if a write is requested, the data being written
to the file actually gets stored in memory, and the whereabouts of this data is then passed to the
defined function so it can locate and process this data. A read expects a result to be returned
which is created by the function paired with the read handler. This result is produced and written
to memory, and the results returned hold the location of these results in memory, and how large
the buffer is that contains them.

3.2.5 Zero Message Queue

The Zero Message Queue4 (ZMQ) library gives access to a distributed networking model that
makes use of sockets and broadcasting to allow for increased concurrency within a system.
ZMQ is also designed for high throughput and low latency scenarios where event response

4http://zeromq.org/

3.2. INTER-PROCESS COMMUNICATION (IPC) 62

turnaround is a key factor in the life cycle of a system. Furthermore, these transmitted messages
ensure atomicity over the entire broadcast group. The ZMQ transport layer can be set to in-
process, inter-process, TCP and multicast modes, depending on whether the communications
are happening within a process or between processes on a single host, or between processes on
separate hosts (Hintjens, 2013).

This library also allows for multiple forms of connection patterns that allow for N-to-M (where
N is a natural number and M is a whole number) connection using topologies such as fan-out,
pub-sub, task distribution and request-reply.

Fan-out: This method evenly distributes the data containing messages to all available clients in
the fan.

Fan-in: This method evenly pulls data containing messages from all available clients in the fan.

Pub-sub: This method has a publisher which produces messages containing data. A subscriber
subscribes to a publisher and from this point receives all messages the publisher publishes.
A publisher can have multiple subscribers and a subscriber may connect to multiple pub-
lishers.

Request-reply: This method is made up of a client and server, and for every request made by
the client to the server, the server expects a response from the client.

This library also allows for an asynchronous Input/Output (IO) model to allow for data to be
handled when resources are available to deal with it (Hintjens, 2013). Importantly, this library
also supports a multitude of programming languages and OSs, allowing one to use the language
and platform that is best suited to process the data at hand.

3.2.6 Rabbit Message Queue (RabbitMQ)

Rabbit Message Queue5 (RabbitMQ), although functionally equivalent to ZMQ6, focuses on
ease of deployment and ease of use. Out of the box, it supports advanced routing scenarios,
load balancing and persistent message queuing (Videla and Williams, 2012). However, this
focus causes restrictions in terms of throughput, as supporting these features causes RabbitMQ’s
headers to be larger, and thus take longer to transmit and interpret. Another factor that adds
latency to RabbitMQ’s protocol is that it heavily relies on the Advanced Message Queueing
Protocol (AMQP) and thus has a centralized server (Vinoski, 2006). This prevents client-to-
client communications, and instead clients need to communicate through a centralized server.

5http://www.rabbitmq.com/
6In terms of ability to broadcast a message

3.3. SUMMARY 63

Table 3.1: Inter-Process Communication High-Level Overview

IPC Strengths Weaknesses
Network Sockets Easy-to-use Slow
Shared Memory Fast Single-host execution

Multi-process Requires memory management
Threads and Fast Single-host execution
Work Queues Requires memory management
ZMQ Easy-to-use Small scale is slow

Multi-language support
Network scalable

RabbitMQ Easy-to-use Small scale is slow
Network scalable Large header size

Nanomsg No dependencies Small scale is slow
Network scalable C implementation only

3.2.7 Nanomsg

Nano Message7 is another option for message queue-based interprocess communication. This
library is based in C, and again features many of the routing scenarios, which it names “scal-
ability protocols”, that both ZMQ and RabbitMQ support. The selling point of this library is
that, as it is implemented completely in C, it has no dependencies at build time or runtime of a
system. Other than this fact, this library is functionally equivalent to ZMQ and RabbitMQ with
respect to Bolvedere.

3.3 Summary

This chapter explored current existing technologies that were considered to form the foundation
on which Bolvedere was built. This chapter began with an evaluation of existing architectures
in Section 3.1. This section brought CPU, GPU and FPGA technology to the forefront, and in
evaluating each, found that the best implementation of this system would be an amalgamation
of these technologies.

It became apparent at this point that, in order to gain the benefits of each architecture, an effec-
tive mechanism for communication between each architecture would be required. Methods of
communication between these subsystems were evaluated in Section 3.2. Continuing from this
point, Chapter 4 designs the Bolvedere system before comparing which technologies explored

7http://nanomsg.org/

3.3. SUMMARY 64

in this chapter are best suited for each subsystem of Bolvedere. A table summarizing each tech-
nologies strengths and weaknesses with respect to Bolvedere’s requirements is found in Table
3.1.

4
Design and Implementation of the Base

System

THIS chapter introduces the implementation of the Bolvedere system. The base sys-
tem is specifically detailed in this chapter, whereas processor module designs, which
specifically deal with the analysis of NetFlow records, are detailed in Chapter 5.

This chapter reasons and produces the fundamental design and implementation of Bolvedere as
a whole. This chapter starts with the foundational flow of logic being reasoned out in Section
4.1. Once the overarching logic flow is produced, Section 4.2 proceededs to design Bolvedere in
greater detail, and implementation decisions are made. Finally, this chapter closes with Section
4.3 defining the manner in which Bolvedere is configured.

4.1 Implementation Goals

This research ultimately aims to produce a scalable distributed NetFlow v9 (Claise, 2004) and
IPFIX (Quittek et al., 2004) (also referred to as NetFlow v10) analysis platform for detection

66

4.2. SYSTEM DESIGN 67

of malicious and unintentional events upon a system from their external network link. The
decision to use NetFlow over sFlow (Phaal et al., 2001) was made due to the accuracy that
NetFlow offers when compared to sFlow, the availability of Cisco hardware, and the support
for reciept of JFlow records (Juniper Networks, 2011). The problem when dealing with NetFlow
v9 records is that what is monitored, as well as the order in which monitored fields are reported,
are unknown until runtime. To solve this problem, the following flow of logic is proposed for
this base system:

1. NetFlow records are received by a collector. For all purposes, this collector will act as a
NetFlow record sink.

2. NetFlow records in the collector are discerned as to whether they are template records, or
data records.

3. If the NetFlow record is a template, the template is stored to be used for later discernment
of data recrods.

4. If the NetFlow record contains data, and the template is held for the data record, the data
is discerned.

5. The discerned data record is now re-ordered into a known format so as to allow optimisa-
tion of all subsequent operations that are executed on CPU and GPU.

6. At this point, the discerned and re-ordered data record is distributed to NetFlow record
processors for analysis.

4.2 System Design

It is clear from the proposed flow of logic for this system that there are three overarching oper-
ations that need to be performed. These are:

1. The collection and discernment of NetFlow records.

2. The distribution of these discerned NetFlow records.

3. The analysis of the NetFlow records.

4.2. SYSTEM DESIGN 68

Collection and discernment of these records is performed by following the NetFlow specifica-
tion (Claise, 2004). Analysis of these discerned records is done on a per analyser basis, and
the operations performed are based on what is being analysed. This leaves only the manner in
which distribution of discerned records to analysers takes place to be considered.

One of the goals of this research, as previously detailed in Section 1.2, is scalability. This
must be taken into consideration when defining how NetFlow records are distributed to analysis
processes. With this goal in mind, the ideal distribution method to analysis processes would be
in the form of one-to-many, which would allow multiple processes to receive the same message.
This would reduce the need to have a collection and discernment mechanism for each process
performing analysis.

Considering the technologies evaluated in in Chapter 3, this form of distribution can be achieved
in several ways. A message queue system, configured to use a publish-subscribe routing sce-
nario (Eugster et al., 2003), would best suit record distribution. The reasons for this are now
discussed.

The first advantage of using a message queue system is that it is a network-based protocol. This
means that messages (in this case the NetFlow records) can be distributed to hosts outside of the
host in which the message queue system is running. This gives an immediate advantage in terms
of scalability when comparison is made to shared memory or file on disk communications. This
also naturally trumps multi-threaded processes (Rumelhart et al., 1987).

Other network technologies, such as socket-based communications and network groups, also
have the ability to distribute data between hosts. Unfortunately, using a direct socket-based
system to distribute a message to multiple hosts requires that system to retransmit a copy of the
message for every receiving host; this is very resource-inefficient. The solution of broadcast
groups is effectively functionally equivalent to the aforesuggested publish-subscribe routing
scenario (Banavar et al., 1999).

At this point one should have noticed that there will be multiple NetFlow record processors
receiving a distributed message from a single publisher to which they are subscribed. The
main point to note is that each analysis processor that is developed will need to interface with
a publisher. The overheads in achieving this task on the developer’s end should be kept to a
minimum. For this reason, a message queue in the publish-subscribe configuration was chosen,
as it would be easier to configure than a broadcast group.

4.2. SYSTEM DESIGN 69

External
Network

Collector 1

Collector N

Publisher 1

Publisher N

HW Module 1

HW Module N

CPU Module 1

CPU Module N

GPGPU Module 1

GPGPU Module N

... ...

...

...

...

Collectors Publishers

Processor
Modules

Figure 4.1: High-Level System Overview

4.2.1 System Components and Flow of Logic

Section 4.2 identified three major operations that need to be performed in Bolvedere; namely
the collection of NetFlow records, distribution of these records, and analysis. Other operations
that were defined in Section 4.1 were that of NetFlow data record discernment performed by
storing template records for later use, and re-ordering of NetFlow data record fields in order to
enable optimization of sequential architecture processors at further points in Bolvedere’s flow
of logic.

The best place for this re-ordering to occur would be at receipt of a data record. Once the
data record is discerned, it should be re-ordered into a known form as required by a sequential
subsystem of Bolvedere. The message queue system in Bolvedere is positioned at a point from
which it can communicate with both analysis processes and the collector. This logically places
this message queue publisher in the middle of the system. For this reason, control of the order
in which NetFlow data records should be put was given to the publisher.

This breaks Bolvedere down into three major components: the collector, publisher, and sub-
scribing processor modules. A high-level overview of Bolvedere, and how logic flows between
each of these components, can be viewed in Figure 4.1. More detailed descriptions of each of
these components follows:

Collector: Receives configuration from publisher as to which NetFlow fields the publisher
wants to receive, as well as the order in which it wants to receive them in. It then collects
NetFlow records containing both templates and data. It is then discerned which NetFlow

4.2. SYSTEM DESIGN 70

External
Network

CPU

FPGA
CPU

CPU

GPU

FPGA

Collectors Publishers
Processor
Modules

Figure 4.2: Proposed Host Architecture for Each Bolvedere Subsystem

template these data records apply to, and the records are re-ordered and filtered into the
form that the publisher’s configuration requested before being passed on to the publisher.

Publisher: The publisher receives its name from its functionality - it publishes processed data
to the back-end containing all processor modules. The publisher is the central point of
the system and knows what it wants to publish. Because of this, it knows what it requires
from the collector in order to produce and create the information which it publishes. Using
this knowledge, the publisher configures the collector, and once data is received from the
collector and filtered by the publisher, the publisher then publishes this information via a
broadcasting method to the back-end where processor modules reside.

Processor Module: This is where all major data and information analysis, processing and
enrichment occurs. A processor module’s role is to listen to information published by
a publisher and perform analysis on it in order to determine something about the flows
being collected by the system. As publishers work in a broadcasting-like method, multiple
processor modules can listen to a single publisher, allowing for parallel computation.

4.2.2 Architecture

Which architecture to use when building each component of Bolvedere is now considered. The
three major architectures considered are listed below:

CPU: High single-data throughput, commonplace as primary data processor in most systems,
well-defined instruction set with relatively small architectural changes from revision to re-
vision.

GPU: High multi-data throughput, not as common as CPUs in systems. With standardization
of CUDA and OpenCL, the instruction sets for these devices see little change to existing
instructions.

4.2. SYSTEM DESIGN 71

FPGA: High parallelism, uncommon, used for design of hardware for solving specific prob-
lems, fast for solutions where no prior hardware processor exists.

Starting with the collector, it was decided for this system to make use of an FPGA; however,
a software-based implementation would initially be created to prove that this subsystem would
work, and for deployment where dedicated FPGA hardware is not available. A CPU-based
software implementation of this system, although not perfect in terms of available instructions,
can get past that barrier with the sheer number of instructions it can perform in the time it takes
an FPGA to do one (Underwood, 2004). CPUs are also commonplace, so this would reduce
costs by not having to create dedicated hardware to achieve the task.

This being said, the use of FPGAs allows for future-proofing of this system. An FPGA design
can be used as the basis to fabricate ASICs that perform the same task as that of the FPGA but
at much higher speeds (Markovic et al., 2007; Kuon and Rose, 2007). This will allow one to
fabricate and use a processing unit designed with hardware support for instructions specifically
designed to perform the job of the collector, and run at speeds equivalent to that of a CPU. It is
clear that this implementation would out-perform a CPU; however, the downside is the barrier
to entry, this being the cost.

The task of the publisher of this system is to configure the collector as to the order of how it
wants to receive data, and then apply simple filters before publishing the data to processors.
As the data is of a known form when received from the collector, it can be worked through
from top to bottom when serializing it for transmission. The platform decided on to achieve the
main processing of this task was the CPU. This is because CPUs work well through data in a
sequential format (Intel Corperation, 2016), which the data received by the publisher from the
collector is.

In the big picture, this means that the CPU never has to look up what a field is before applying
filters. Consider this example to better explain this logic. If one were to apply the following
filter “if not port 80 then don’t publish” to a publisher, the CPU would have to first look up if
the relevant field/s exists1 in the NetFlow log, and then go and fetch it with a specific offset
that has first has to be calculated on a log-by-log basis. This would drastically slow down the
system (Smith, 1985; Zukowski et al., 2006). Having received the data in a known, requested
format from the collector, accessing the data is as simple as using a predefined offset and then
applying the filter.

Processor modules in this system are a bit of a mixed bag. These are subsystems designed
to receive filtered logs of a known format from a publisher or multiple publishers in order to

1In this case both source and destination ports.

4.2. SYSTEM DESIGN 72

process and determine something about the received logs. Depending on what that something
is, the underlying architecture in which the relevant process is best suited for varies. For this
reason, anything goes at this layer of the system. The idea is that the best tool for the job should
be used, and if that requires a simple piece of software or a dedicated piece of hardware, it
should be allowed without question.

4.2.3 Interprocess Communication

As the processor module subsystems within this system use different platforms to achieve their
tasks, they need a common way in which to communicate. Listed below are the communication
methods considered for use in this system:

Network Sockets: Hardware is commonplace in computers, well-supported standard.

Shared Memory: Faster than network sockets, consideration needs to be taken for shared
memory access, cannot distribute shared memory resources to an external host (Dagum and
Enon, 1998).

Threads and Work Queues: Can truly run processes in parallel if host has multiple proces-
sors (Tullsen et al., 1995), similar memory considerations need to be taken as shared mem-
ory, sharing memory is easier to configure as this is implicit, cannot share memory outside
of a process.

Secondary Memory: Slow as disk access has to be performed for most data access, wears out
mechanical parts, good for long-term storage of data.

Zero Message Queue: A message queue implementation that allows for same features as net-
work sockets, handles broadcast groups silently with little to no overhead, supported by
over 30 languages (Hintjens, 2013), is well-defined protocol.

RabbitMQ: A message queue implementation with ease-of-use at its core. Like ZMQ, it sup-
ports handling of broadcast groups with little overhead and support across multiple lan-
guages (Videla and Williams, 2012), response latency for RabbitMQ is typically slower
than ZMQ.

Nanomsg: A message queue implementation that was implemented in C to be able to executed
without relying on any dependencies.

ZMQ was selected for this system as it is network-based, and also allows for acceptable ease-
of-use, with a trade-off for lower overheads in communications. Furthermore, ZMQ is available

4.2. SYSTEM DESIGN 73

and supported across multiple programming languages, as well as being easy enough to imple-
ment on a language that does not support ZMQ, due to its well-defined protocol.

This inter-process communication interface also bridges the gap on data distribution to multiple
processor modules. This is achieved through the built-in support of broadcasting through the
publish-subscribe routing scenario. This allows a single packet to be transmitted and received
by multiple hosts. This means that a single message can be sent by a publisher and received by
all subscribed processor modules executing locally on, or remotely from, the publisher.

4.2.4 Configuration

The primary distributor of this system’s configuration to other subsystems is the publisher. This
decision was made due to the placement and role the publisher plays in this system’s com-
munications path. The publisher is attached to both collector and processor module parts of
Bolvedere, and so can easily communicate the relevant configuration to each. This can be seen
in Figure 4.1. If the subsystem that held the configuration is either a collector or processor
module, there will be extra overhead required in passing this information through the publisher.

This configuration is communicated at the boot of each collector or processor module, and
a publisher’s role with respect to configuration is to simply listen for configuration requests.
Based on this, an outline of the flow of logic for each subsystem is presented below.

The timeline for a publisher is as follows:

1. Compile with use of configuration and template files.

2. At boot, create user interface to report feedback.

3. Attempt to start collector side listen socket.

4. Attempt to start processor side ZMQ publisher socket.

5. Start thread to wait for configuration requests.

6. Start thread to receive re-ordered NetFlow logs.

7. Start thread to publish filtered logs using ZMQ handle.

4.3. BUILD TIME AND RUN TIME CONFIGURATION 74

The timeline for a collector is as follows:

1. Create socket for communication with publisher.

2. Request configuration from publisher as to what NetFlow fields the publisher requires
and the order the publisher requires these fields in.

3. Once a configuration response is received, store this for later use.

4. Create socket to receive NetFlow logs and templates from NetFlow sources.

5. Use appropriate process mechanisms according to type of NetFlow data received defined
by NetFlow standard.

The timeline for a processor module is as follows:

1. Perform steps required to start process in chosen language.

2. Import language-specific ZMQ library.

3. Check what publishers exist on the network.

4. Attempt to subscribe to selected publisher or publishers.

5. Use this ZMQ socket to receive filtered NetFlow logs from the publisher in main process
loop.

6. Process received data.

One should note that, in order for the publisher to know the configuration for each part of the
system, the configuration is generated at compile time of the publisher subsystem. The reason
for this is that the publisher is CPU-based, and receiving a dynamic configuration at runtime
will incur a CPU bottleneck in discernment of the configuration to transmit to collectors and
processor modules.

4.3 Build Time and Run Time Configuration

Ease-of-use, configuration and code re-usability can break or make an application intended for
use by any user base. For this reason, careful consideration had to be taken into account when

4.3. BUILD TIME AND RUN TIME CONFIGURATION 75

ID 1, Code Block 1

ID 2, Code Block 2

...

ID N, Code Block N

ID N-3

ID 2

ID N

Code Block N-3

Code Block 2

Code Block N

Configuration File

Template File Output Code

Figure 4.3: Configuration File Selecting Code to Build Publisher from Template File

decisions were made as to how this system as a whole would be set up and interfaced to. This
section focuses on two major points of this system; the collector being the collector and the
publisher. The system was designed with the intent of the collectors belonging to publishers
that processor modules would in turn subscribe to.

The reason for focus on the collector and publisher (also referred to collectively as the base)
aspect of this system is that processor modules are intended to be third-party, and thus detract
from the core platform of Bolvedere.

4.3.1 Build-time Configuration Templates and Configuration

Configuration for this system was designed with code re-usability in mind, and so makes use
of two reusable files: a template file and a configuration file. A configuration file relies on a
template file, as the configuration file looks up what code needs to be built into the publisher
based on the selected template file for configuration. A template file on the other hand is where
all functional code is stored on a modular basis. This is better represented in Figure 4.3, where
one can view a configuration file being used to fetch requested code from a template file in order
to build the code base for the publisher.

The simplest form of physical configuration is considered in this example, in which a single
collector is directly attached to a single publisher, which then has a single processor module
subscribed to it. At boot time of this system the first subsystem to come online is the publisher,

4.3. BUILD TIME AND RUN TIME CONFIGURATION 76

due to the fact that the publisher knows what it wants to publish, and thus knows what it requires
from a collector in order to publish that data. The next subsystem to come online is the collector,
and it notifies the publisher of this fact.

The publisher then connects to the collector and transmits a configuration as to what information
the publisher wants and the order in which it expects it. Finally, the underlying mechanism
which allows for processor modules to connect is brought online. The functionality of each
subsystem, and the order in which the system boots up into a running state, was seen to be the
most logical and easiest to implement at time of design. Listing 4.1 shows how a template file is
constructed. First of all, any text after a ‘#’ character is treated as a comment and thus ignored
at build time. There are two optional headings that can appear anywhere within this template
file; the INCLUDE_HEADER and GLOBAL_HEADER. The INCLUDE_HEADER allows for one
to include their own C code external to the publisher’s already included headers, thus allowing
one to build up their own tool set and further increase code re-usability. To define a new header,
one adds where the header is located in conformance with the C standards, without the need for
a #include directive.

The GLOBAL_HEADER heading allows one to define persistent global variables within the con-
figuration. All variables that can be declared in C, as well as creation of structs and #defines,
can be declared here. This enables a user to perform simple tasks such as keeping state over
multiple received NetFlow logs, which, without a persistent variable, would not be possible.

These modules defined in the template file are written in C and require a name, the NetFlow
field ID on which the module is intended to work, and the size of this field in the NetFlow
data record. Regarding the pointers “relevant_data” and “zmq_buffer” in the template file,
the “relevant_data” pointer always points to the field specified by the template module in the
received NetFlow log. This is the reason for the specification of the NetFlow field ID and the
fields size with the name of the module, as this allows the publisher builder to discern where
“relevant_data” pointer should point to in memory at build time for run time.

The “zmq_buffer” pointer is far simpler in its workings. It is a user-modifiable pointer to the
publisher’s ZMQ data buffer that it publishes to all subscribed plug-ins. The user can move
this pointer around at will, and write to any location within this buffer. Once every record in a
NetFlow log is processed, this buffer is automatically handed to the ZMQ handler to broadcast
the data in the buffer to all subscribed processor modules.

One can define as many modules as they desire within a template; however, the use of duplicate
names is not allowed. Because of this restriction, it follows that one can only define a single
INCLUDE_HEADER and GLOBAL_HEADER. The use of C in these template files is due to the

77

Listing 4.1: Template File
1 # Any comment s t a r t s with a hash charac t e r
2
3 # This w i l l i n s e r t these C headers a t bu i ld time of the pub l i she r
4 INCLUDE_HEADER
5 {
6 " . . / path / to / l i b r a r y . h "
7 <s t d i o . h>
8 }
9

10 # This w i l l i n s t a n t i a t e g loba l v a r i a b l e s in the pub l i she r a c c e s s i b l e
11 # by a l l s e l e c t e d templates
12 GLOBAL_HEADER
13 {
14 u in t8_ t g e n e r i c _ v a r i a b l e = 0;
15 u in t8_ t * gener i c_char_ar ray ;
16 i n t32_ t gener i c_ re tu rn_va lue = −1;
17 }
18
19 # This i s an example of a module with code
20 # Format : module name , r e l e van t NetFlow f i e l d ID ,
21 # s i z e of NetFlow f i e l d
22 EXAMPLE_MODULE_1, 1 , 4
23 {
24 * zmq_buffer = *(re l evan t_da ta + 0) ; zmq_buffer++;
25 * zmq_buffer = *(re l evan t_da ta + 1) ; zmq_buffer++;
26 * zmq_buffer = *(re l evan t_da ta + 2) ; zmq_buffer++;
27 * zmq_buffer = *(re l evan t_da ta + 3) ; zmq_buffer++;
28 zmq_buffer_len += 4;
29 }
30
31 # This i s another example module
32 EXAMPLE_MODULE_2, 7 , 2
33 {
34 p r i n t f (" Layer 4 Source Port i s %04X\n " ,
35 ntohs (*(u in t16_t *) re l evan t_da ta))
36 }
37
38 . . .

4.3. BUILD TIME AND RUN TIME CONFIGURATION 78

Listing 4.2: Configuration File
1 IPV4_SRC_ADDR # Modules requested to bu i ld pub l i she r in order
2 IPV4_DST_ADDR # tha t w i l l be requested from c o l l e c t o r .
3 L4_SRC_PORT
4 L4_DST_PORT
5 IN_BYTES
6 IN_PKTS

Table 4.1: Configuration Template Code Symbol Replacement

Symbol Name Code Replaced With
INCLUDES Replaced with the modules definitions definitions in

the INCLUDE_HEADER heading.
GLOBALS replaced with the global variables that are defined in

GLOBAL_HEADER.
PROCESS replaced by the code defined in the selected modules

and is placed in the order the configuration file listed
these modules in.

OFFSETS This symbol is used for configuration of the collector
and is further discussed in Section 4.3.2.

fact that C is a well-defined language that compiles to native byte codes on the host system,
allowing for maximal performance. Exactly how this C code is used to build the publisher will
now be discussed. A configuration file would look like the example given in Listing 4.2, and is
nothing more than a list of modules to use within a template file. The order of this file matters,
as it determines the order in which modules defined in the template file should be executed at
the runtime of the publisher.

At build time, a template file and configuration file are passed into the publisher builder. At this
point, the configuration file is read and all modules which the configuration file is intended to
build into the publisher are read. The next step is to check whether each of these listed modules
exist within the template file. If these modules exist, the build process starts.

In Appendix C, one can view the template file in which the module’s C code is loaded at the
points marked between symbols ‘>>>’ and ‘<<<’. What each of these are substituted for can be
found in Table 4.1.

After the C code defined by the template file has been placed into correct points defined in
the C template, compilation can occur. The publisher builder at this point simply compiles the
publisher2. After this has succeeded, the publisher builder terminates. The compiled executable
publisher can be found in the same folder the build command was run in.

2This was performed using GNU (GNU’s Not Unix) Compiler Collection (GCC) (https://gcc.gnu.org/).

4.3. BUILD TIME AND RUN TIME CONFIGURATION 79

Listing 4.3: Configuration Byte Sequence for Collector
1 u in t8_ t conf [] = {0x00 , 0x08 , 0x00 , 0x04 , // IPV4_SRC_ADDR S i z e 4
2 0x00 , 0x0c , 0x00 , 0x04 , // IPV4_DST_PORT S i z e 4
3 0x00 , 0x07 , 0x00 , 0x02 , // L4_SRC_PORT S i z e 2
4 0x00 , 0x0b , 0x00 , 0x02 , // L4_DST_PORT S i z e 2
5 0x00 , 0x02 , 0x00 , 0x04 , // IN_PKTS S i z e 4
6 0x00 , 0x01 , 0x00 , 0x04 // IN_BYTES S i z e 4
7 } ;

4.3.2 Runtime Collector Configuration

As stated in the Section 4.2.1, the collector’s job is to re-order NetFlow logs into the format
that the publisher expects. This is so it can most effectively perform its step in the system’s
process. The reason for this is due to NetFlow version 9 and newer allowing for customisation
of NetFlow logs through the use of templates, as explained in Section 2.3. The collector keeps
track of NetFlow templates and uses these to discern received NetFlow logs, before filtering
and re-ordering them into the format that the publisher requires. The storage mechanism for
templates will be further explained in Section 4.3.3.

The configuration required to achieve the task of re-ordering is received from the publisher,
as the publisher knows what it needs to produce to its subscribers (the processor modules). At
publisher build time, when all known modules have been read from a template file containing the
modules’ codes, as requested by the configuration file, the publisher builder uses the NetFlow
field ID and field size information provided for each module in the template file in order to build
a configuration byte sequence for a collector. Listing 4.3 shows the line of C code produced by
the publisher builder that contains the byte sequence sent to the collector in order to configure
it. As the NetFlow template standard uses 16 bits for the field ID and 16 bits for field size, this
system was designed to hold to this standard itself and uses 16 bits to represent both the field ID
and size respectively. With this in mind, interpretation of the byte sequence follows the form of
first 16 bits NetFlow field, and following 16 bits states the size of the field in bytes. In Listing
4.3, one can see what the ID of the first 16 bits represents, followed by the size represented in
the following 16 bits in the comment at the end of each configuration line.

As 16 bits is equivalent to 2 bytes, and the type uint8_t is equivalent to a single byte within C,
the array in Listing 4.3 can be read in 4 byte blocks. This means that the first 2, bytes when
read in little-endian, represents the NetFlow field ID, and the second 2 bytes of the 4 byte block
represents the field size in little-endian. Where these values are collected can be seen in Listing
4.1 when interpreting a module header as defined in Section 4.3.1. Furthermore, these collected
values are also in order of the module acquisition as defined by the configuration file used. From

4.3. BUILD TIME AND RUN TIME CONFIGURATION 80

the collector’s point of view, this configuration information is all that is required in order to find
any field required by the publisher.

One should note that this configuration buffer shown in Listing 4.3 is built directly from the
configuration file shown in Listing 4.2. As noted before, the order of the template modules
supplied in the configuration file is the same as that in the generated configuration buffer. This
will result in the a collector receiving this configuration passing data fields in this same order to
the publisher.

Missing Data Record Fields

It is worth noting that any NetFlow log received which, once interpreted with the correct Net-
Flow template, is found to not contain a field required by the publisher, is populated with every
bit in the field sent to the publisher set to 1. Although it is not impossible for a required field to
represent correct data as this binary value, it was thought to be highly unlikely, and thus used
in this implementation. When the publisher receives this information from the collector it can
then be dealt with in an appropriate manner as defined by the publisher’s module configuration
for that field.

Runtime Collector Configuration Request

Lastly, the finer details as to where this configuration byte sequence is stored and how the col-
lector signals the publisher in order to receive this byte sequence needs to be addressed. In
Table 4.1, an explaination of “>>>OFFSETS<<<” was given, but its functionality was not di-
rectly explained in Section 4.3.1. This symbol is replaced by the configuration buffer (example
shown in Listing 4.3) at build time and is what is passed to a collector for configuration when
requested.

In order for the collector to receive this configuration byte sequence, the collector has to first
signal the publisher that it is ready to receive the configuration byte sequence. The collector
performs this by sending the message “I’m alive” to the open socket on the publisher in which
the publisher expects to receive collector information. Once this message is received by the
publisher, the publisher responds with a packet containing the configuration byte sequence.
After this, the collector can configure itself and start to transmit the information the publisher
wants to the publisher’s collector socket.

4.3. BUILD TIME AND RUN TIME CONFIGURATION 81

Defining a configuration byte sequence and keeping the collector separate from the publisher,
even though this task of collection is something that can be performed by the publisher, was
intentional. The task of looking for a field within a NetFlow log is disjoint from any other field
search, and is thus easily parallelizable. As such, this is not a task that should be expected
to perform best on a sequential operation architecture host, such as the one the publisher is
expected to execute on, as discussed in Section 3.1.1. Because of this, it was decided to separate
the collector from the publisher in order to replace the collector at a future point for a hardware
platform that is more suited to the task (such as a GPU or ASIC). A well-defined, easy to parse
configuration byte sequence was aimed to aid in ease of replacement of this subsystem.

4.3.3 NetFlow Template Store and Re-Ordering

Although the subject of NetFlow data record re-ordering has already been discussed in Sec-
tions 3.1 and 4.3.2, a more in-depth explanation of this process is detailed here. This process
undergoes 3 major steps:

1. NetFlow template record storage.

2. NetFlow data record discernment.

3. NetFlow data record re-arrangement.

Template storage is already explained in Sections 3.1 and 4.3.2. Briefly, this refers to the process
of storing templates that arrive at the collectors interface that are generated periodically by
NetFlow record sources. Without these templates, interpreting the information of all NetFlow
records sent by that NetFlow source to a collector would yield no meaning, as the collector
would have no way in which to interpret the log. For this reason, templates must have unique
IDs, and received records must state the template ID required to discern the data records.

When a data record is first received, it is simply seen as a NetFlow header followed by a se-
quence of bytes. The template ID is read from the NetFlow record, and the relevant template
is then used to determine what the sequence of bytes means. Once which fields the NetFlow
record contains, and what value is in each field, is known, the collector can move onto the next
step, which is re-ordering.

Re-ordering takes the fields required by the publisher from the discerned NetFlow data record
and builds a new byte sequence of these fields in the order the publisher wants the fields. Any

4.4. SUMMARY 82

fields that the publisher requires that are not in the discerned data record are populated with
every bit set to 1.

This method also helps remove overheads required by the publisher to process headers, as the
NetFlow headers used for data record interpretation are no longer needed, and are thus removed.
This saves 20 bytes on the NetFlow header and 8 bytes per FlowSet. Given that a NetFlow
packet can contain up to 30 records, this is a saving of up to 260 bytes that can be used to carry
other metadata without incurring a bottleneck on the system’s data path.

4.4 Summary

Section 4.1 started this chapter by defining the major operations that needed to be performed in
order to received and process a NetFlow data record. This flow of logic was then built upon in
Section 4.2, which defined major components of Bolvedere and their roles. Architectures for
each component were then decided upon, before defining the manner in which component com-
municated was specified. This chapter then closed with Section 4.3.1 defining how Bolvedere
would be configured and run.

With Bolvedere’s base system specified, this document now details processor modules in Chap-
ter 5. This chapter will detail analysis algorithms used to detect network anomalies from data
received from a Bolvedere publisher.

5
Processor Modules

GIVEN the design completed in the previous chapter, this chapter will focus on algo-
rithms implemented as processor modules for Bolvedere. These processor modules
receive the processed NetFlow data records from the publisher subsystem via ZMQ.

As the application of each of these processor modules can vary widely, each implemented al-
gorithm will be addressed to the theory it is based on, how it was implemented, and what is
expected at the runtime of the module. It must also be noted that this chapter points out the abil-
ity to use the best tool for the job through implementations using best programming language
and hardware.

Section 5.1 starts with a look at the detection of DDoS attacks. The approach taken to detecting
this form of attack in this research is via implementation of a Neural Network using R. Follow-
ing this, Section 5.2 takes a look into the application of Fourier Analysis on NetFlow data when
compared to full packet analysis techniques.

Detection of port scans through examination of NetFlow data records is then targeted in Section
5.3. This utilizes network flow direction and time outs to detect port scans. Section 5.4 deals
with sudden changes in throughput on individual ports on a per IPs basis, how these are detected
and why this type of activity should be of concern.

84

5.1. DDOS DETECTION THROUGH USE OF NEURAL NETWORKS 85

Σ f (x)

Weight 1 × Input 1

Weight 2 × Input 2

...

Weight N-1 × Input N-1

Weight N × Input N

Output

Neuron

Figure 5.1: Basic Overview of a MLP Class Neuron

Section 5.5 then discusses the use of the NetFlow source nodes’ unique IDs to geolocate a
network flow instead of the use of the source IP which could be spoofed. This module is
supported in Section 5.6 which implements anomalous source IP detection by comparing the
source IP of network flows to known subnetworks through an interface on the NetFlow source
node.

The final module is detailed in Section 5.7, which implements a network-based exploit detection
system that uses network fingerprints based on NetFlow data records from controlled malicious
exploits to attempt to further detect reimplementation of these malicious events on a network.

As a note to the reader, this chapter aims to define how processor modules work with respect
to their implementation and configuration. Chapter 6 follows this chapter with testing of these
modules.

5.1 DDoS Detection Through Use of Neural Networks

The R Project (The R Foundation, 2016) as a whole is an environment for statistical computation
used through a well-defined programming language called R1. This language and environment
is used for anything from simple statistical analysis such as the chi-square test (Moore, 1976),
to more complex calculations such as fluid dynamics or rocket flight patterns.

The use of R in this algorithm is for something in-between these diverse goals, this being a
neural network. A neural network tries to mimic the brain’s learning ability through the repre-
sentation of a brain by neurons connected to each other through a weighting system; although
this is not an accurate representation of the brain (Hall et al., 1992). A neuron simply has an
input value, a weighting function for the input, a normalization function for the case of multiple
inputs, and an output derived from these inputs. Figure 5.1 shows a graphical representation

1https://www.r-project.org/about.html

5.1. DDOS DETECTION THROUGH USE OF NEURAL NETWORKS 86

-1

-0.5

 0

 0.5

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

f(
x)

x

tanh(x)

f(x) = tanh(x)

Figure 5.2: Graph produced by f(x) = tanh(x)

of such a neuron taking in weighted inputs that are summed before being used as input to an
activation function.

f (x)= e2x −1
e2x +1

= tanh(x) (5.1)

One such activation function is the Hyperbolic Tangent and is generated by the equation found
in Equation 5.1. This produces the graph found in Figure 5.2. At this point, one should note that
the larger the summed weighted input gets, the closer to the value 1 the output of the neuron
becomes. This normalization function is characterized by its initial steep slope leading into an
asymptote towards the maximal normalized value 1.

Neurons are then arranged into layers which can only communicate to the next layer or subse-
quent layers (Hagan et al., 1996); this ensures signals propagate forward from start to finish.
These layers have specific roles and are classified as follows:

Input Layer: This layer receives the initial input information.

Hidden Layer: This layer receives its input from the input layer and relays its message forward
to the output layer.

Output Layer: This layer receives its input from the hidden layer and outputs a final result out
of its output.

The hidden layer that lies between the input and output layer may in reality consist of multiple
layers. These layers are usually collectively named simply as hidden layer and an incrementing
number. These hidden layers follow the same rules of all layers in which they are only allowed
to connect their output to an input of a subsequent layer. This information can all be referred

5.1. DDOS DETECTION THROUGH USE OF NEURAL NETWORKS 87

Input Layer Hidden Layer Output Layer

1 2 N

Figure 5.3: Representation of a Neural Network

to in Figure 5.3. This form of neural network falls into the MLP class of neural networks and
requires at least 3 layers. This being: 1 input layer, 1 hidden layer, and 1 output layer.

Detection of DoS and DDoS attacks is typically done through use of the packet count and byte
count fields of the NetFlow log. When considering a recurring pattern of byte and packet count
with close average bytes per packet coupled with near maximum bandwidth use on a link, this
is usually a good indication as to a form of DoS attack (Estan et al., 2004; Zhenqi and Xinyu,
2008). This research took the approach of training and then using a neural network in order to
perform detection of DoS and DDoS attacks using these aforementioned characteristics.

5.1.1 Data Representation and Training

Training of a neural network can take a substantial amount of time2 and is due to two factors.
The first is acquisition of a training dataset. This dataset consists of a set of known outputs for
given inputs (Setiono and Liu, 1997). This allows one to pass inputs to a neural network and
judge the accuracy of its results using the known outputs.

The second factor is the time taken to train a neural network, and this is mainly due to how a
neural network learns. A neural network learns through a method called backpropagation. This
is performed during training and after a result’s accuracy is judged through comparison to the
known expected output. Once the accuracy of a result is known, one then works backwards
from the output layer to the input layer, adjusting the weighting of which each neuron applies to

2weeks and even months.

5.1. DDOS DETECTION THROUGH USE OF NEURAL NETWORKS 88

its inputs in order to generate an output (Hecht-Nielsen, 1989). This is done for each neuron on
a per-neuron basis as to the backwards propagation technique selected, and as such takes time3.

The initial problem in neural network training is acquiring this known data used for training
(the training set) which contains both known good results, and known bad results; this is so the
neural networks can learn to tell right from wrong. There are situations where the information
is easy to get hold of, such as the case of facial recognition data. For this one simply needs
pictures of faces and an identifier to say which picture or set of pictures belongs to each person.
Facebook4 implements a feature in which uploaded images are checked for faces and suggested
tagging on of individuals is then given to the user. The recognition and suggestion of these tags
is based on a profile built for a person on previous photos they have been tagged in or uploaded
themselves (Facebook, 2016). Gaining the known data for training a neural network in this case
is relatively straight forward, however for the application of neural networks it is not.

The main issue is discrimination of valid network traffic against traffic that is involved in a
DDoS according legitimate systems’ traffic (Yu et al., 2012). For example, a DDoS attack
utilizing the full packet’s Maximum Transmission Unit5 (MTU) and spoofing a single source
IP may look the same at a glance as another system which also utilizes the full MTU on a
network in order to achieve its task. However, observation of the packet’s Time To Live (TTL)
and flags fields may provide extra insight into the objective of the packet. For this reason expert
knowledge about a network is required before generating a learning set for a neural network,
and a new learning set should be considered for each new network that the neural network will
be applied to.

The next problem is the types of DoS and DDoS attacks (Sections 2.4.5 and 2.7). Depending
on what technique is used, the traffic seen can vary drastically, and coupled with this is the fact
that there are new types of attacks being implemented on a daily basis. This means that not only
does the neural network have to catch up to be able to detect current DoS and DDoS techniques,
it also has to keep current, and so requires continuous training during its application life cycle.
The issue that arises in this context is that the size of a network packet is limited, and when
multiple entities start to occupy the same space they start to get mistaken for each other when
that space starts to become full. This discernment will be the biggest hurdle the neural network
has to face (Zhang et al., 2001).

All is not grim in the discernment of malicious traffic though, as neural networks do have
an inherent feature that can help better indicate the certainty of an attack. The nature of this

3Backpropagation is heavily CPU bound (Hecht-Nielsen, 1989).
4https://www.facebook.com
5Typically 1500 bytes on Ethernet.

5.1. DDOS DETECTION THROUGH USE OF NEURAL NETWORKS 89

0.759160.
56

94
7

−0
.4

15
81

−0.44202

0.99518

0.
54

44
5

−0.0949

−1.3466

1.35792

−0.8604
0.67453

−1.56599

1.47316

−0.58659

0.
50

77
7

2.
21

25
8

0.77272

−0.05357

−0.07421

−0
.7

21
23

0.59266
−0.11558

−0.35454

−1.59828

−1.13528−0
.5

18
89

0.
87

15
9

−0.44344

1.83291

0.
70

88
5

−1.24749

−1.34736

−1.27524

−0.54737
−2.65194

−0.65175

−1
.3

17
35

−2.06552

1.00196

Output

−1.29518
−0.55021

−0.97378

1

−0.34871
−0.50554

−0.90335

0.70004

1

−1.6082
1.2876

0.94163

1

0.68242

1

Error: 0.000002 Steps: 42

Figure 5.4: Example R Representation of Neural Network

weighted system means that results are never represented as a simple yes or no; a ‘1’ or ‘0’ to
speak computer binary. This means that if the neural network is not 100% sure it can output a
value to represent its confidence in its result, however this does mean that human intervention
may be required in finalizing a decision on a set of traffic (Kosko, 1992).

Considering the aforementioned characteristics used in detection of a DoS or DDoS attack, this
being packet count and byte count, NetFlow log fields used for training and later detection of a
DoS or DDoS attack for this neural network needs to be decided on. Another consideration that
has to be made is the dynamic allocation of IPs on networks and the Internet. As the user of an
IP can change, an indefinite suspension of receipt of packets from an IP is not a fair judgement.
This means that a forgetting mechanism based on a time-out, or a window-based system, should
be put in place to mitigate absolute blocking of traffic from an IP.

Another factor that should be considered is what does an ‘IP’ actually mean. As IP addresses
are dynamically allocated6 on the Internet for most home, broadband and wifi consumers, the
question of what does a specific IP actually mean if it does not belong to a known server should
be asked. The short answer to this is: not a whole lot, not enough to be meaningful at least
without other external inputs such as geolocation or time of day. Because of this, it was decided

6Not the case for most servers that exist on the Internet as this would make DNS resolution difficult.

5.1. DDOS DETECTION THROUGH USE OF NEURAL NETWORKS 90

that only the number of unique source IPs seen in the designated time window needs to be
known. This allows the neural network to work in a more general case rather than having to be
reapplied for each network it is deployed on. With this in mind the following fields available
from the NetFlow logs were decided on for the neural networks training and anomaly detection
in a specified time window:

• Number of unique source IPs.

• Number of unique source ports.

• Packet count over all logs.

• Average packet size over all logs.

• Most common protocol.

These fields are grouped based on the destination IP as one needs to consider the target that is
receiving the potential DoS attack. Collection of training data, training and testing is discussed
later in Section 6.2. An R representation of a neural network is represented in Figure 5.4. One
should note that R uses external weighting factors to better weight neurons’ inputs and these
are represented as blue inputs to a layer.

5.1.2 Supporting Neural Network Feeder Program

Once the neural network has been trained it can now be put to work processing filtered NetFlow
logs from the publisher and producing meaningful results. This is done through a feeder pro-
gram programmed in R that uses the rzmq7 library to handle ZMQ sockets. Pseudocode for this
process can be viewed in Algorithm 1. At program start, the program first checks to see if the
neural network exists and is trained. If not, this program undertakes to ask for a training set to
train a new neural network for this processor module before continuing to the next step.

7https://cran.rstudio.com/web/packages/rzmq/

5.1. DDOS DETECTION THROUGH USE OF NEURAL NETWORKS 91

Input: neural network, incoming processed NetFlow logs
Output: classification of NetFlow log’s involvement in a DoS/DDoS attack

if neural network does not exists then
halt;

end
connect to publisher/s using ZMQ;
while halt signal not received do

receive NetFlow log;
store source IP, source port, packet count and byte count;
lookup port-IP pair buffer;
if port-IP record buffer does not exist then

create new port-IP record buffer;
store new record in new buffer;

else
if record buffer contains 5 records then

eject oldest record buffer;
store new record record buffer;

else
store new record in record buffer;

end
end
if record buffer contains 5 records then

send record buffer to neural network for analysis;
output results to user;

end
end

Algorithm 1: Neural Network Feeder Algorithm

After the existence of a valid neural network is confirmed, the next step is to connect to a
publisher using ZMQ. Once connected to a publisher this program enters its main loop which
is to receive logs and store the source IP, source port, packet count and byte count according to
the destination IP which acts as the key. Once the number of logs for a destination IP reaches
the user-defined threshold (the default is 5), the logs are then processed into the expected form
as defined by the training set in Section 5.1.18. The raw form of this data (stored as a table in
R) can be viewed in Listing 5.1.

Once the logs have been formed into information usable by the neural network, these processed
8The reason for this threshold is that having too few logs for a communication pair often yielded false results

in preliminary testing.

5.2. FOURIER ANALYSIS 92

Listing 5.1: Raw Data Passed Into Neural Network
1 unique_ip , unique_sp , pkt_count , protoco l , ave_pkt_sz
2 5 ,5 ,17601 ,17 ,898
3 1 ,3 ,9 ,17 ,74
4 1 ,3 ,11 ,6 ,90
5 5 ,5 ,15024 ,17 ,948
6 5 ,5 ,13144 ,6 ,1054
7 1 ,4 ,9 ,6 ,74
8 1 ,4 ,11 ,6 ,74
9 . . .

logs are then passed to the neural network for processing and a result is returned. These results
are then presented to the user with information about the findings and recommendations on how
the user should act in accordance with these findings.

Once the threshold is reached and a new log for a destination IP is received, this implementation
simply forgets the oldest log, thus allowing for a facilitation of the dynamic nature of IPs on the
Internet.

5.2 Fourier Analysis

The method in which a function is approximated by the infinite sum of simpler trigonometric
functions is known as Fourier analysis, and the Fourier transform of f (x) and its inverse are
represented by Equations 5.2 and 5.3 respectively (Bracewell, 1965).

F(α)=
+∞∫

−∞
f (x)e−2πiαxdx (5.2)

f (x)=
+∞∫

−∞
F(α)e+2πixαdα (5.3)

A common use of Fourier analysis is in audio processing (Smith, 2007). To elaborate, one can
take a known sound wave function and decompose it into its primary components. Using this
one can determine what major contributing frequencies make up the sound wave, and from this
one can determine the musical notes played in order to achieve the sound represented by the
function. This works fine and well for known equations in an analogue environment.

5.2. FOURIER ANALYSIS 93

Figure 5.5: Piecewise Function Example (Equation 5.4)

To better understand how a digital computer represents these analogue functions, one can look
into how functions can be represented. Functions can be represented by a set of rules, and this is
named a piecewise function (Stewart, 2016), an example can be referred to in Figure 5.5 which
is made up from Equation 5.4.

f (x)=
−1 if x < 0

1 if x ≥ 0
(5.4)

These piecewise functions can be made up of as many rules as one requires and these rules
can go as far as to represent a single value at a single dependant value at single independent
location. An example of this is shown in Figure 5.6 which is represented by Equation 5.5.

f (x)=

−1 if x <−1.5

1 if x =−1.5

−1 if −1.5< x < 0

0 if x = 0

1 if x > 0

(5.5)

Now if one were to consider a simple line on a piece of paper, to reproduce this one could pick
up a pen or pencil and continuously press on the paper with the tip and move it around to their
heart’s content, or one could do something a little more in line with how a computer represents

5.2. FOURIER ANALYSIS 94

Figure 5.6: Piecewise Function Example with Single Points (Equation 5.5)

Figure 5.7: Example of a Line Made Using Dots

a line. A computer represents any imagery as a set of points and these points can be represented
as pixels if one were to display them. If one were to take that same pen or pencil and draw
a series of dots close enough together so their sides overlapped by placing each dot’s center
within another dot, one could draw a line in this manner. A working example of this is shown
in Figure 5.7.

This dot representation of a line could be further built upon to show that if one were to make the
distance between each dot infinitesimally small, one would effectively include every point in
the line that the representing function makes up. Furthermore, one can gain the function of this
line in this manner too; this is through the use of the previously explained piecewise function. If
one were to represent every point on the line as its own rule in a piecewise function, one would
make up a function that represented every point of the line, it would be infinitely large and no
one could ever write down every rule, but this piecewise function would work as a substitute to
the actual equation that represents the line.

A computer cannot represent a function with a rule set of this magnitude though; the limita-
tions on memory is the first major drawback among others. A computer can however represent

5.2. FOURIER ANALYSIS 95

enough points from this function in order to reproduce a very good representation of the func-
tion (Roads, 1996). Also, given a set of known outputs to inputs (this being independents with
their resultant dependants), one can trivially reproduce the rule set for that dataset for a piece-
wise function.

The Discrete Fourier Transform (DFT) draws its use from this fact, where one of the binding
rules of a Fourier transform is that it requires a continuous function. A DFT can represent the
same result for that same function with only N known points evenly distributed by space T
on the dependant axis; a representation just like a piecewise function. This resulting accuracy
is however dependant on the size of N

T . Larger values of this result in higher accuracy, as it
means that the point density is higher and therefore the dataset is more likely to contain the
finer characteristics of the represented function.

Proving the equivalence of the Fourier transform to the DFT is performed through generaliza-
tion of the Fourier transform into a sum (Lim, 1990). This generalization can be shown when
one considers f (x)→ f (xk) by letting fk ≡ f (xk), where xk ≡ k∆, with k = 0, ..., N −1. Follow-
ing this logic gives the DFT in Equation 5.6.

F(x)=F [{ fk}N−1
n=0](n) (5.6)

This Equation 5.6 can be written more formally as the DFT equation shown in Equation 5.7 and
its inverse in Equation 5.8.

Fn =
N−1∑
k=0

fke
−2πink

N (5.7)

fk =
1
N

N−1∑
n=0

Fne
2πikn

N (5.8)

Drawing back to earlier text on the use of Fourier analysis to process audio signals, one can
now apply a DFT to an unknown audio signal by using the above method. If a system receiving
an unknown audio signal were to record a sample every T distance apart for a count of N
samples, one could use a DFT to perform Fourier analysis on this signal, as it conforms to
the requirements of a DFT (Chen et al., 2002; Mersereau and Oppenheim, 1974). From this
point one can draw out the audio signals primary components and work out what the major
contributing frequencies are to the audio signal along with other meaning (Marple Jr, 1987).

5.2. FOURIER ANALYSIS 96

Table 5.1: Packet Count per Time Slice

Time (ms) Packet Count
0 - 99 34

100 - 199 2
200 - 299 103
300 - 399 57
400 - 499 93

Figure 5.8: TShark Dump of Simple Ping

DFTs aren’t limited to only audio signal processing and their primary use is listed under Digital
Signal Processing (DSP). Essentially, this means that if a signal’s intensity can be sampled at a
known sample rate and mapped into the time domain, one can apply a Fourier transform to it to
further analyse the signal.

A network packet’s ‘intensity’ can be represented by number of packets or by number of bytes,
however, more complicated ways can be devised. As network packets act in real time, one could
bucket the chosen intensity recording method into time slices. To better explain, one can choose
how large they want a time slice to be and count the number of packets or bytes a network link
receives in that time slice and record it. Repeat the process over a length of time and one will
gain N samples spaced T apart; or N samples at sample rate T. An example of this is shown in
Table 5.1.

A simple applied example would be through analysis of traffic generated by a ICMP-based ping.
Using the Ping network utility (Muuss, 1983) yields the result of transmission of a basic ICMP
ping packet to the specified destination every second. An example TShark dump of this traffic
is shown in Figure 5.8.

Using a sample rate of 100 ms and intensity based on byte count on this traffic, one can now
apply a DFT to it to yield the result shown in Figure 5.9. One can note that the global maximum
of this graph is found at the 1 hz mark. After this harmonics are found at every 1 hz increment
thus serving to emphasise the significance of the 1 hz global maximum. Hertz are determined
simply by how many times something happens a second, and it is known that a ping packet is

5.2. FOURIER ANALYSIS 97

Figure 5.9: DFT of Simple Ping Traffic at Sample Rate 100 ms and Intensity on Byte Count

transmitted once a second. This means that applying a DFT to the data set depicted in Figure
5.8 shows that there is something happening every second, and that something is known to be
the ping packets being transmitted.

One can also compare the use of Fourier analysis of unknown signals to network traffic based
DFTs as well. Like the prediscussed example of receiving and applying a DFT to an unknown
audio signal to get the major components of the signal, one can apply the same methodology
to network based traffic too. From here one can find the major frequencies in a set of network
traffic, however this alone is worthless.

The reason for the worthlessness of this information can be shown when again considering the
unknown audio signal. One can say something about the frequency characteristics of the audio
signal because of prior knowledge to analysis of the DFT of the audio signal. One knows what
a local or global maximum at a given point means (set frequencies make up musical notes).
Before one can say anything meaningful about a DFT of network traffic one needs to know
their network and have either a general knowledge of anomalies that they could look for, or a
database to refer results to in order to detect these anomalies for them. With the right knowledge
base, one could tell a lot from a simple DFT of a day’s data.

5.2. FOURIER ANALYSIS 98

Input: incoming processed NetFlow logs
Output: FFT of data on byte and packet count over varying sized sample sets

if host not CUDA compatible then
halt;

end
get available VRAM;
calculate and store dataset chunking size using available VRAM;
CUDA kernel compilation;
connect to publisher/s using ZMQ;
while halt signal not received do

receive NetFlow log;
fetch byte count and packet count from NetFlow log;
add each count to their respective bucket stores;
if bucket store count larger than calculated dataset chunk size then

break bucket store up into chunks that will fit in VRAM;
else

make the bucket store a single chunk;
end
forall bucket store chunks do

load chunk to VRAM;
run CUDA kernal on chunk;
store chunk results;

end
amalgamate all chunk results on 5 minutes, 1 hour and 24 hours time windows;
generate graphs;
update output window;

end

Algorithm 2: CUDA-Based FFT Calculator

5.2.1 Implementation

The language that is the work horse of this processor module is CUDA (nVidia, 2007). As
mentioned in Section 3.1.2, CUDA is designed to compile for and run on a GPU for use in
GPGPU specific applications. DFTs are one of these GPGPU calculations that see benefits from
being tasked to a GPU. The reason for this is that as explained, GPUs deal well when applying
one instruction to multiple data. A lot of the calculations in a DFT are based on performing the
same calculation multiple times on multiple data, and so the benefits of applying a GPU to this
task are clear.

5.2. FOURIER ANALYSIS 99

There are downsides to the use of CUDA for this task. The main issues of this implementation
is that at the time of development CUDA did not have any libraries to interact with network
interfaces. This is because it was designed to work alongside programs as a co-processor rather
than as the program itself. As this is the case, a parent program was required in order to compile
the CUDA program into a kernel and upload that to the GPU in order to perform its task.
Following this, the parent program would continue to build the data into a format that could
be represented in the aforementioned time domain, and then given to the GPU for processing.
Results would be fetched after the data had been processed by the GPU and used for further
analysis.

The implementation of a DFT used for this implementation was the Fast Fourier Transform(FFT)
which was designed to reduce the time needed to compute a DFT by factorizing the DFT matrix
into a product of sparse factors (Van Loan, 1992). The term sparse in this context refers to the
nature of the DFT matrix in that it is mostly made up of zeroes. This optimization reduced the
computational time required to perform a DFT from O(n2) to O(n logn).

The parent program that runs the GPGPU implementation of the CUDA FFT algorithm was
designed to cater for two use cases. These are listed below:

Live: Allows for use on a live system where data is managed and handed to the GPU by the
parent at a specified sample rate. Data is received through the ZMQ socket, see Algorithm
2.

Playback: Allows a user to give a previously recorded traffic capture to the parent program
which will then process the data according to the specified sample rate and then pass this
data set on to the GPU for calculation. This replaces the ZMQ interface with a read from
file interface. In Algorithm 2 this replaces the functionaility at “receive NetFlow log”.

As previously discussed in Section 5.2, a higher sample rate and sample count leads to better
results when computing a DFT. For this reason the more frequently NetFlow logs are ejected
to the collector that will eventually feed this processor, the more accurate the results will be.
This is due to the nature of NetFlow in that it only logs out a NetFlow packet if the connection
completes (for whatever reason), or a time out occurs in which the log is ejected immediately.
For this reason a low time out is suggested, however one should note that this leads to higher
bandwidth requirements by the NetFlow source.

A concern during this implementation was too much data. If one monitored too many NetFlow
sources, the issue of overlapping frequencies could affect results. For this reason it was decided
that this process would only listen for a single source’s NetFlow logs which is easily discernible

5.2. FOURIER ANALYSIS 100

Figure 5.10: Example Output of FFT Implementation

by the NetFlow source ID. Monitoring multiple NetFlow sources using multiple systems does
not affect the overall performance of this system as the overheads of scaling out is handled
solely by the use of ZMQ as a data distribution platform.

This does not in any way mean that performing DFTs over a larger data set is a not appropriate.
Where Fourier analysis on a single link may help to detect and further analyse specifics of
a segment of one’s network, a DFT of groups of NetFlow sources may help in detection of
anomalies on a larger scale.

Figure 5.10 shows the default output of this processor. Network traffic can be accounted for in
terms of packets and in terms of bytes, both are presented to the user for analysis as both can
tell different stories. This is because multiple packets can fit in 1,000 bytes, however a single
packet could also be a 1,000 bytes.

To keep things simple the display was grouped into a top row based on packet count, and a
bottom row based on byte count. These rows were then split into 3 columns which represented
the time window each graph represented. By default column 1 is a 5 minute time window,
column 2 is an hour time window and column 3 is a 24 hour time window.

To save on processing resources in terms of both CPU and GPU, these DFTs are only rendered
when new relevant data is received from the publisher. This unfortunately leads an unaware OS
to believe the process has halted, and thus it treats the window in its default manner for halted
process. This includes greying out of the window on a Linux system running a Unity desktop

5.3. PORT SCAN DETECTION 101

Table 5.2: Time to Complete Long Scan for Varying Values Between Probes

Time (seconds) Time to Complete Time to Complete (days)
30 8 h 20 min 0.347
60 16 h 40 min 0.694

120 33 h 20 min 1.389
180 50 h 2.083
240 66 h 40 min 2.778
300 83 h 20 min 3.472
600 166 h 40 min 6.944

manager, or on a Windows system, Explorer will notify the user by an overlay that a program
has stopped responding. Waiting for the next set of data from the publisher resolves this.

5.3 Port Scan Detection

The goal of this processor was to develop an algorithm which could detect that a host was being
targeted by any of the port scanning techniques mentioned in Section 2.4.2. This goal was then
extended to attempt detection of port scans performed where probes were a large amount of
time apart. For the purpose of this section these large time gap port scans will be referred to as
long scans. This form of scan is used by attackers to hide their activities as the scan would not
be performed all at once.

One must note that a typical port scan probes the most commonly used 1,000 ports on the
Internet (Abramson, 1985; Lyon, 2009). When considering this number and a delay between
probes of 2 minutes9, this totals 2,000 minutes, or 33 hours and 20 minutes. Referring to Table
5.2 one can find the total time to complete long port scans for varying probe delays.

Having a 10 minute time between probes seems unreasonable but one should note that this only
takes a week. If an attack only has one system in which to perform the task, or wants to keep
as low profile as possible in order not to raise alarms before a vulnerability is even brought to
light, a week or more is viable (Dabbagh et al., 2011).

The viability of this is driven further by the life-cycle of systems on the Internet. If a FQDN is
allocated to a dynamic IP, this is not a problem to a potential attacker because it means one of
two things. Either the administrator of the FQDN is updating the IP belonging to the FQDN in
which a probe would find the targeted server, or the FQDN will point to the wrong IP in which

9A fairly large wait on an active network.

5.3. PORT SCAN DETECTION 102

the server has brought itself offline. Depending on the attacker’s goals, this is either the intent
in which the attacker has achieved their goal, or there is nothing more the attacker can do.

Systems on the Internet also try to obtain the best high availability rating they can. This involves
trying to keep a system online and available to serve users for as much time as possible in a year.
Typically this is performed by identifying single points of failure in a system and making sure
that point does not fail, and in the event that it does, that the system recovers quick enough to
not disturb the user (Piedad and Hawkins, 2001).

For the above reason, an attacker can expect a system to be up for long periods of time. Fur-
thermore, once a system is deployed and is deemed functional it enters its maintenance phase of
its life-cycle causing most functionality will be set. Any updates to the system are most likely
to be running fixes and not major changes to the operations of the system. This means that an
attacker has time in the order of weeks, months and in some cases (like that of the Network
Time Protocol (NTP) server amplification attacks (Czyz et al., 2014)) even years to research
and develop an attack on a specific functionality of a system.

5.3.1 Implementation and Configuration

One of this implementation’s goals was to leverage current technologies to access computing
power available on current systems. These help address problems based on CPU power required
to follow the many connections a network may have, as well as memory limitations allowing this
system to track more data on more connections for longer. The effectiveness of this however,
will depend on the CPU and memory resources of the processor’s host, and as such configura-
tion for the system will be allowed in terms of IP grouping, time window to record and detail of
recording.

The data collected by this processor relies on Python to complete all main computation, and is
designed as a multi-threaded environment. The threads of execution are listed below and will
be detailed later:

Anomaly Detection: Attempts to classify NetFlow logs into malicious and non-malicious con-
nections based on IP pairs in a connection.

Port Cleaner: Keeps port records in order, arranged from newest to oldest, counts unique ports
and ejects old or irrelevant port data.

IP Pair Cleaner: Keeps IP pairs in a connection sane, ensures return data from the target is not
logged, expunges old records.

5.3. PORT SCAN DETECTION 103

Input: port count threshold, record time out, incoming processed NetFlow logs
Output: notification of the existence and IPs involved in possible port scans on a network

connect to publisher/s using ZMQ;
configure port cleaner;
start port cleaner thread;
configure IP pair cleaner;
start IP pair cleaner;
while halt signal not received do

receive NetFlow log;
extract source IP, destination IP and destination port;
extract byte and packet count; generate time stamp;
if have not seen source IP then

create new port record for source IP and add destination port to it;
create new IP pair record using source and destination IP to record connection
direction;

else
if destination port does not exists in port record for source IP then

add port to port record for source IP;
end
if IP pair does not exist for source and destination IP then

create new IP pair record using source and destination IP to record connection
direction;

end
end
using the IP pair and port record list for the source IP, determine whether the NetFlow
log was generated as a response to the destination IP;

if a response then
output “response detected”;

else
if packet count greater than 10 then

Comment: this is more than the packets used by any of the scanning tech-
niques this processor module is attempting to detect

output “packet count exceeds maximum detection threshold”;
else

if unique port count for source IP greater than threshold then
perform further analysis;
output “likelihood of source IP’s involvement in a port scan”;

end
end

end
end

Algorithm 3: Port Scan Detection

5.3. PORT SCAN DETECTION 104

Referring to Algorithm 3, at process start a connection is attempted to the publisher, if this is
successful the two cleaner threads are initiated and the host system is analysed for later use in
thread allocation. Once these have initialized the main loop of execution begins, the anomaly
detector. This process at an abstracted view simply receives published NetFlow logs, appends
the needed data to existing records (or creates them anew) and then performs general anomaly
detection on them. Factors used in detection are listed below:

• The number of ports a source IP has attempted to connect to.

• The number of ports a destination IP has received attempted connections from.

• Which ports are these attempted connections trying to connect to.

• Are the port connections part of the common 1,000 ports scanned.

• Is the log a response to a scan.

• Is a scan made being performed from multiple hosts.

After taking into consideration all these factors, a weighting is given to the received log based
on the previously received logs that are relevant to the connection being analysed. This is then
used in determining whether to report a source IP’s possibility of being involved in a port scan,
or not.

Port and IP cleaners are similar in the way they start execution, but after this point they vary in
what they aim to achieve. Both start by analysing the number of tracked records and the detail
at which these records are tracked. This varies during runtime of this processor. Using this
analysed data along with the collected start time information about the underlying host system
in which this processor runs on, a number of threads are started and a work size is determined
for each thread.

From this point each cleaner gets to work at achieving its own task. The port cleaner at its core
uses the provided system start configuration to determine whether records should be kept and
how they should be kept. This configuration data is given at start time and includes the depth
at which ports should be remembered per IP pair (where an IP pair is made of a source and
destination IP), the number of ports to remember, and what amount of time a port should be
remembered for.

Similarly the IP pair cleaner uses its own configuration to determine how many IP pairs should
be stored and how long these IP pairs should be stored for. It also performs further analysis

5.4. SUDDEN PORT BANDWIDTH USE CHANGE DETECTION 105

into what IP pairs were generated due to responses created by an attempted connection, and
further determines whether these are necessary for storage based on memory limitations of the
underlying host. In the basic case this is performed by searching for an immediate response to
the source IP and port in the IP pair.

Keeping the stored information collected from published logs helps in more effectively and
accurately detecting possible port scans. It also allows for better memory management and the
use of multiple threads that are adjusted to the available resources of the underlying system,
allowing for the application to tailor itself to best use the underlying system’s resources.

Given a configuration time which aims to log data using a large time window, and underlying
hardware that has enough memory and CPU resources in order to successfully achieve the re-
quirements of this configuration, one can effectively use this processor for detection of long
scans. Simple fast-as-possible port scans are also easily detected by this processor, and config-
uration can be set to better utilize system resources for this task as well.

5.4 Sudden Port Bandwidth Use Change Detection

The sudden increases and decreases of activity on a port of a system or a network can be an
indication of anomalous behaviour. For this reason a module was created that keeps track of the
running average of incoming and outgoing traffic on port-IP pairs, and notifies the user when
the behaviour of a pair deviates from the running average. To better explain the use of such a
module, consider these three cases:

1. A port suddenly starts transceiving network traffic.

2. A port suddenly stops transceiving network traffic.

3. A port that has a known transceiving characteristic suddenly deviates from the norm.

In the first case, a port that on average sees no traffic inbound or outbound from it, and is not
used by any process on a system or network in a normal operating environment, should never
deviate from a running average of no traffic. If this occurs due to no premeditated plan, be it
upgrade of software or hardware or a new service installed on the system, this is reason for alarm
and at least investigation of the cause of this anomalous traffic (Walter, 2012). This is much
easier to detect at a per system level when compared to network wide monitoring. The reason

5.4. SUDDEN PORT BANDWIDTH USE CHANGE DETECTION 106

for this is that if a system has a known IP with known processes running on it, the expected
functionality of the system is well known, and thus deviation from this expected functionality
is easy to detect. At a network level things become a bit more complicated. Simply having an
IP reassigned to a different host, or a system leaving the network, would cause sudden changes
in network activity on a particular port and IP.

The second case is typical of a service going offline. If a service is set to run on a specific
port-IP pair and it is reported to have a sudden decrease in traffic transceived from that port-IP
pair, this serves to reason that the service is no longer accessible for some reason. The reason
for the service no longer being accessible falls out of the scope of this module, as this module
is intended to simply notify a user to a change.

The last case given here refers to either a sudden increase or decrease in traffic to a port. An
example of the former can be shown through consideration of a DoS or DDoS attack. If a
system providing a service is known to receive on average 50 Mbps of bidirectional traffic at a
given time of day, and this suddenly increases to the link saturation point, this is a cause for an
alarm, and would be detected by such a proposed module. It is also true that data extraction or
insertion can also exhibit this behaviour when considering data upload or download (Liu et al.,
2009).

If there was a sudden decrease of traffic to and from the service to 5 Mbps, this is a good
indication of service degradation of the medium in which traffic is being transceived on the
given network link (Jaiswal et al., 2004).

This proposed module does little more than notify a user of a change in behaviour of a port-IP
pair on their network, however these changes are usually a good indication of something larger
at play that may otherwise go undetected.

5.4.1 Implementation

The implementation of this module is based on some simple statistics involving the mean of
a dataset and its standard deviations. A standard deviation is a value that when, added and
subtracted from the mean of a set of data, creates a range around the mean in which all data
should fall within, within a normally distributed dataset. The standard deviation is of course
calculated from the dataset in question.

If one takes a single standard deviation and creates a range around the mean with it, this is
known as 1 standard deviation of the mean, and 68.27% of all data in the dataset fall within this

5.4. SUDDEN PORT BANDWIDTH USE CHANGE DETECTION 107

Input: configuration file, record count, incoming processed NetFlow logs
Output: notification as to sudden changes in bandwidth use on ports and IPs within a

network

read in configuration file and extract the subnetwork blocks and ports to monitor;
connect to publisher/s using ZMQ;
while halt signal not received do

receive NetFlow log;
extract source port, destination port, source IP and destination IP;
extract byte count;
if source or destination IP exists in the monitored subnetwork and port is monitored
then

extract direction using source and destination IP;
if record of port-IP pair does not exist then

create a new record store for port-IP pair;
end
using the current record store for the port-IP pair calculate the mean and standard
deviation for that port-IP pair;

use new NetFlow log and compare to mean and standard deviation using byte
count, port, IP and direction;

if new NetFlow log falls outside of 3 standard deviations then
output warning to user;

end
if number of records in port-IP record store is equal to record count then

expunge oldest record from port-IP record store;
end
add new record to port-IP pair record store using byte count, port, IP and direction;

end
end

Algorithm 4: Sudden Port Bandwidth Use Change Detection

range. Using two standard deviations to calculate the range around the mean will yield the range
in which 95.45% of all data can be found. And lastly for this module, 3 standard deviations of
the mean yield a range in which 99.73% of all data points in the dataset lie (Grafarend, 2006).
An image better depicting this text can be referred to in Figure 5.11 and is referred to in statistics
as a Bell Curve.

Using this information one now has a method in which to classify data as being expected,
or normal, by checking if it falls within a number of standard deviations when new data is
presented. Anything that falls outside of this range is known as an outlier. An outlier is simply
a data point that falls outside of the normal distribution range of the dataset determined by

5.4. SUDDEN PORT BANDWIDTH USE CHANGE DETECTION 108

Figure 5.11: Diagram Depicting Standard Deviations: Normal Distribution

the standard deviation. These outliers are anomalous data points that vary from the norm;
something this module is aiming to detect.

Applying this concept to a processor module, one can use this statistical theory to create a
mean for transceived traffic (the average bandwidth consumed by a port-IP pair). One can then
window this dataset in a time domain based on a set of the most recent data points to make
this a running mean (the running average). Using this windowed dataset one can generate the
standard deviation, and using 3 standard deviations of the mean for the dataset one can generate
the range in which 99.73% of the data points should lie. The pseudocode for this processor
module can be viewed in Algorithm 4.

The use of such a method can however become problematic for network traffic that does not
follow a standard distribution, that is traffic that follows random patterns. For this reason addi-
tional functionality has been applied to allow for exclusion of a port-IP pair from monitoring if
it is know to be of such nature. The control limits for the working data set is determined by the
maximal and minimal bandwidth rates available to the host which is monitored.

This information is then used when a new data point arrives, to see whether the data point falls
within 3 standard deviations of the mean or falls outside of it. In the former case the data
point (bandwidth used by the port-IP pair) is seen to be normal and thus expected. In the latter
case the data point is an outlier and therefore anomalous; a cause for alarm. Implementing this
module in this way will allow the module to be able to detect sudden changes from the normal
characteristics of a port-IP pair and notify the user of such an event.

5.4. SUDDEN PORT BANDWIDTH USE CHANGE DETECTION 109

Listing 5.2: Sudden Port Traffic Increase/Decrease Configuration File
1 192.168.0.0/16 # Network b locks to monitor
2 10.42.1.0/24
3 * # Separator
4 80 # Por t s to monitor
5 22
6 23
7 8080
8 443
9 445

10 21
11 25
12 20

5.4.2 Configuration

The downside of this implementation falls to a restriction in memory. One can not monitor
every port on every IP address in the entire range of both10, as at the time of writing there is
simply just not enough memory in any known system. For this reason the approach applied
to this module was to simply specify what subnetworks to monitor, as well as what ports to
monitor for all subnetworks. This implementation also allows for monitoring of a single host,
as defining the configuration of an IP in a /32 block would result in just that IP being monitored.
An example of a configuration file is provided below:

This file is made up of two parts. The first part is which IP subnetworks should be monitored
and the second is a list of all ports that should be monitored on the defined subnetworks. These
two parts are separated by a ‘*’ character. The dataset window sizing parameter is set at the
start of runtime, and cannot be changed without a reboot of the entire module.

One should note that reception of network traffic on every network port and every IP on a
network is highly unlikely. Referring forward to Table 7.4, this table contains the IP blocks
allocated to the monitored real-world network used later in this research. The main point to
draw out of this table is the fact that there are 196 assignable IPs on this network of which not
all are assigned.

10This would result in 2.814749767x1014 unique pairs in the IPv4 space alone. This is a highly unlikely scenario.

5.5. REPUTATION ANALYSIS SYSTEM 110

This means that the maximum number of port-IP pairs that can be stored for this network is
12,845,056. The information stored in a port-IP pair in this processor module is as follows:

• Time stamp

• IP

• Port

• Last 100 byte count records stored for the port-IP pair (default configuration).

Diving into a bit of code one will notice that the size of a Python datetime object is 48 bytes
(refer to Listing ??), the IP is simply a 4 byte integer, the port number is a 2 byte integer, and
finally each of the byte count records are 8 byte integers. This means that a fully populated
port-IP record is a total of 854 bytes in size. Multiplying this through by the total port-IP pairs
that can be stored for this 196 node network (if all IPs are assigned), one would require 10.216
GB. This is an achievable requirement at the time of writing. This being said, as the monitored
network blocks are not fully allocated, the memory requirement for testing in Chapter 7 will be
less than this calculated maximum.

5.5 Reputation Analysis System

Discovering the source of a problem through analysis of data can take time, and this often leads
to delays before mitigation of the problem occurs. Mitigation of an attack can be performed by
stopping the source from continuing to perform its attack at a target, however discovering what
the source is of the attack can take time. This is due to the fact that if packet sources are spoofed
in an attack it can mislead mitigation through use of the source IP11.

In Section 5.6 the NetFlow source ID is used to determine where in the world a NetFlow log is
being generated from, through use of geolocation. If a system were put in place to use the same
NetFlow source ID to also log data about what attacks are common to different NetFlow source
IDs, one can start to profile networks these NetFlow sources reside on (Pennefather and Irwin,
2014). Using this information one can place an attack source at a location of a network without
the need for the source IP address; this increases in usefulness the larger a network gets.

Having this information can lead to a good first guess at where an attack is originating from and
what it is. For example, if there is a DDoS attack in which attackers use spoofed source IPs

11Please note that this work is previously publish as part of Information Security South Africa 2016 (Herbert
and Irwin, 2016a).

5.5. REPUTATION ANALYSIS SYSTEM 111

Input: processor module output
Output: none

open ZMQ pull interface;
notify processor modules of pull interface;
while processor module subscription count greater than 0 do

receive push processor result;
lookup metadata tag as to what the result is;
store result for later use in relevant table;

end

Algorithm 5: Reputation System Data Capture

(Section 2.9), blocking packets from these sources will do nothing more than block off legiti-
mate users of your service (JAVAPIPE, 2017; Argyraki and Cheriton, 2005). However, if one
knows that DDoS attacks that follow a given packet size with spoofed IPs always have Net-
Flow logs generated from a set of NetFlow source IDs, one can begin to mitigate an attack by
starting to block off packets from networks whose traffic passes through these relevant NetFlow
sources12.

Although not the complete solution for system defence, being able to at least work out a most
likely source of attack is a first step that can be quickly concluded from past events while other
systems perform their analysis.

5.5.1 Implementation

As this processor module does not perform analysis itself, it is not intended to be placed with
processor modules of this system. Because of this, this processor will instead be referred to as
the reputation system. This reputation system will be fed information from the results generated
by processor modules and store this information for later use if the need arises. This function-
ality is outlined in Algorithm 5. Its place in this system from a high-level overview can be seen
in Figure 5.12.

There is not much more to the reputation system than an open network socket that takes in
data of a set format and stores it in a database. This data acts as the input to the database and

12The method one intends to perform this traffic blocking is out of the scope of this research.

5.5. REPUTATION ANALYSIS SYSTEM 112

External
Network

Reporter

Collector 1

Collector N

Publisher 1

Publisher N

HW Module 1

HW Module N

CPU Module 1

CPU Module N

GPGPU Module 1

GPGPU Module N

... ...

...

...

...

Collectors Publishers

Processor
Modules

Reputation
System

DB

Figure 5.12: Updated High-Level System Overview with Reputation Subsystem

Table 5.3: Reputation System’s Database Table Format

Field Name Data Type Description
Unique ID Integer Simply a unique identifier for an entry
NetFlow Source ID Integer The NetFlow source ID which the NetFlow log

was generated from
Attack Type Integer The type of anomaly or attack detected by a

processor module
Attack Score Integer The confidence the processor module had towards

the detection of the Attack Type
Metadata Blob Any extra information the processor module wants

to store about the anomaly or attack
Time Stamp Datetime The data and time of when this log was inserted

into the database

these inputs shall now be discussed. It is also noteworthy that the reputation system will receive
packets from multiple processors, and so considerations to code efficiency should be taken into
account.

This processor module is implemented using C and SQL and the combination of these two lan-
guages allows for highly efficient and effective manner of data retrieval and storage. However,
this data has to be meaningful and simple in order to allow for a quick retrieval of results that
are accurate. To achieve this, the fields used to store information about a detected anomaly or
attack from a processor presented in Table 5.3, is accompanied by the database data type of
each field.

These fields give the most concise storage of information produced by processor modules by

5.6. SOURCE IP ADDRESS ANOMALY DETECTION 113

simply storing the results produced. One can use attack types to home in on a set of attacks.
From here one can set a time window to look at, and use confidence levels to further whittle
down the results. After this one can then decide on which parts of a network to focus mitigation
on, based on the returned NetFlow source IDs, which will point to the locations of a network
that the anomaly or attack is originating from.

Lastly it must be noted that the reputation system is not a requirement of the overall system and
does not need to be run at all if a user does not deem it necessary.

5.5.2 Configuration

Configuration of this reputation system within Bolvedere is simply performed through specify-
ing a database in which to use, and then starting the pull interface on the ZMQ handle within this
implementation. After this interface is successfully created, the Bolvedere processor modules
are notified that the reputation system is ready to receive detected malicious network flows. At
this point the reputation system pulls processed records’ results from the processors and couples
the information with the geographic information gathered from referencing the NetFlow source
ID received in the original NetFlow log.

5.6 Source IP Address Anomaly Detection

If a network’s NetFlow sources are correctly configured, each one should have a unique NetFlow
source ID associated with it (Cisco, 2003a). This means that one can tell where a log is being
generated from on a network by simply keeping track of which NetFlow source ID is assigned
to each NetFlow source, and by using this information to find where the log originated from.

This can be used in a simple test to further help detect anomalies on a network regarding spoofed
packet source IPs (Templeton and Levitt, 2003). This algorithm simply watches NetFlow logs
generated from the internal interface to the external interface of a NetFlow source. When a
log is received, a check is performed to determine whether a packet sourced from the NetFlow
source’s internal interface belongs there. This can be done by simply looking up what IP blocks
are assigned behind the internal interface of the NetFlow source and comparing this to the
NetFlow source ID generating the log.

5.6. SOURCE IP ADDRESS ANOMALY DETECTION 114

Input: configuration file, incoming processed NetFlow logs
Output: notification of possible spoofed packets sourced from a monitored network

read in configuration file and extract which subnetwork is sourced from which NetFlow
source’s internal network;

connect to publisher/s using ZMQ;
while halt signal not received do

receive NetFlow log;
extract NetFlow source ID, source IP and interface ID;
if flow is sourced from internal network then

lookup NetFlow source ID’s internal subnetwork block;
if IP source does not belong to NetFlow source ID’s internal subnetwork block
then

output warning to user;
end

end
end

Algorithm 6: Source IP Anomaly Detection

If the source IP is found to not fall into a network block assigned to the internal network that
the NetFlow source is logging, this would mean that the packet with the source IP in question
should not have been transmitted from that internal network. This will allow one to better
manage the validity of networks, keep a physical system structure as to which system belongs
on which network, and help in detection of malicious activities such as attacks using spoofed
IPs.

As an example, consider a network (referred to as the internal network from this point) with
all IPs assigned in the 192.168.42.0/24 subnetwork block, which is connected to an external
network through a firewall system that also acts as a NetFlow source. With such a configuration,
one would expect all packets generated from the internal network and passing out to the external
network through the firewall system to have a source IP within the 192.168.42.0/24 subnetwork
block. If a source IP outside of the assigned subnetwork is observed, one should be alarmed.

5.6.1 Implementation and Configuration

As this algorithm achieves a simple task, the implementation of this processor was kept simple
as one can see in Algorithm 6. In order to run this processor one needs to construct a con-
figuration file that describes which IP blocks belong to which NetFlow source ID. The format

5.7. MALWARE NETFLOW FINGERPRINTING 115

Listing 5.3: Source IP Anomaly Detection Template File
1 # Unique NetFlow ID , Subnet block
2 100 193.151.192.0/19
3 100 146.0 .0 .0/8
4 200 158.72.0.0/16
5 200 146.0 .0 .0/8
6 300 212.2.0.0/19

of this configuration is a list of two elements with one entry per line. An entry consists of a
NetFlow source ID and an IP block. This is then used to build a rule table of what source IPs
should be expected from a NetFlow source based on its NetFlow source ID. An example of this
configuration file is shown in Listing 5.3.

Each NetFlow source ID is configured disjointly to any other, and so any subnetwork that is
common to multiple NetFlow sources is required to be individually configured for that NetFlow
source ID. An example of this can be seen at Lines 3 and 5 in Listing 5.3.

Other than these rules, nothing else is required for storage during runtime of this system. This
is because every log received is treated disjointly as no previous or forthcoming log received
can change the outcome of this form of stateless test. This means that the memory requirement
of this processor module is only what is needed to store its configuration.

To continue detailing the runtime of this processor module, after the configuration script is pro-
cessed, the system then attempts a connection to relevant publishers. All filtered logs received
from these publishers has the configuration rules applied to them, and if a source IP is detected
to not belong to a NetFlow source ID’s assigned network block, the anomaly is reported.

5.7 Malware NetFlow Fingerprinting

One of the questions asked by this research is how much information is enough to be sure
about an event on a network. This module aims to help answer this question through analysis
of NetFlow data records generated by different malicious activities on a network. The data
collected from these known attacks are then stored as fingerprints for use in detection of later
attacks (Yen and Reiter, 2008).

It was also understood that a non-malicious network flow can give the same NetFlow log results,
as NetFlow log generated from a malicious flow. It was decided that dealing with false positives

5.7. MALWARE NETFLOW FINGERPRINTING 116

Input: known fingerprint database, incoming processed NetFlow logs
Output: notification of matched exploitation fingerprint

load fingerprint database;
connect to publisher/s using ZMQ;
while halt signal not received do

receive NetFlow log;
extract NetFlow source IP, destination IP, source Port, destination Port, interface ID,
byte count, packet count and protocol;

Comment: As most fingerprints occur over multiple flows, the running state window
contains a history of the previous 10 (by default) flows for a given source
and destination IP.

if running state window for source and destination IP does not exist then
create new running state window for the source and destination IP;

end
if running state window for source and destination IP’s count is equal to 10 then

remove oldest state item;
end
add new state item to running state window using extracted information;
forall known fingerprints do

compare running state window to current fingerprint;
if match found within set confidence level then

output notification to user;
end

end
end

Algorithm 7: Fingerprint Matching

was better than dealing with false negatives in this system, as the latter case would mean that
a successful attack would go unrecognised. The results of these true and false positives would
both be presented to the user with all related information for the user to discern by one’s self as
this module is intended to notify the user and not take mitigating action13.

5.7.1 Implementation

The major potential bottleneck identified in this module was on the rule set processor. In order
to mitigate this bottleneck the use of a SQL database was decided on as this provides the quick

13Please note that this work is previously publish as part of Information Security South Africa 2016 (Herbert
and Irwin, 2016a).

5.7. MALWARE NETFLOW FINGERPRINTING 117

access to the rule sets used in discerning whether a network flow is malicious or not. There are
many variants of SQL databases which range from a file on disk, as SQLite14 implements, to
entire databases loaded into Random Access Memory (RAM) to achieve maximum throughput,
as MemSQL15 implements. Given that these implementations all share a common language,
one can swap out the back-end of this module according to the needs and/or limitations of the
host system.

The rest of the software which applies the rule set to incoming NetFlow logs of this module was
written in C and a Python-based prototype also exists, the pseudocode for these implementations
can be found in Algorithm 7. An incoming processed NetFlow data record received by this
module would then have key features extracted according to what each fingerprint is looking
for. The most common features are:

• Flow direction

• Source port

• Destination port

• Flow byte count

• Flow packet count

• Protocol

If a set of NetFlow data record matches a fingerprint, a notification of the type of attack de-
tected is raised to the user. As explained before, this can lead to false positives, and this can be
alleviated at configuration time through tweaking of configuration information, as the rules gen-
erated during the fingerprint creation phase also have confidence levels associated with them.
These confidence levels are calculated based on the variance between each field watched during
a known attack. This information is then used to define a range rather than a specific value for
a fingerprint field. The fields which vary the most in these attacks are packet count and byte
count, and so these will typically be represented by the aforementioned range, which can later
be tweaked. Fields such as destination port are usually constant (due to a service always running
on a specific port) and so will see a set figure required to match in the fingerprint.

Finally, it is to note that fingerprints for failed attempts are also stored. A failed malicious
attempt on a system would generate a NetFlow data record that can also be compared against

14https://www.sqlite.org/
15http://www.memsql.com/

5.8. SUMMARY 118

in the database. This requires little overhead if the database is indexed, and allows one to know
what kind of attacks are being used against one’s systems and/or networks in order to better
focus on what is important in their defences.

5.8 Summary

This chapter draws out the scope of the problem that Bolvedere can solve through the use of its
modular design, which varies from simple rule matching to Fourier analysis. If one can take
anything away from this chapter, one should note the varying hardware architectures and soft-
ware languages used throughout this chapter that are completely compatible with Bolvedere’s
collector and publisher.

To summarize this chapter, Section 5.1 starts off by showing the use of neural networks in
DDoS detection using R as its primary language. Some heavier mathematical computation is
then required by the Fourier Analysis module in Section 5.2, and makes use of GPGPU tech-
nologies via CUDA. Port based anomaly detection modules were then designed and developed
in Sections 5.3 and 5.4, both were Python-based and applied simple statistic methods in order
to achieve their respective purposes.

A reputation database was then proposed in in Section 5.5 that would better indicate the source
of a malicious attack on a network, and showcases the use of SQL in a Bolvedere module.
Section 5.6 shows that retaining the geographic information of where a NetFlow source is
implemented, and linking that information up with its unique ID, can be used to better locate
the source of spoofed IP packets exiting an internal network; this module was implemented in
C. This chapter finally closes with Section 5.7 which explains the workings of a basic finger
printing module that makes use of pre-recorded vulnerability exploitations to detect further
occurrences of these attacks. This module again leveraged SQL and C.

Chapters 6 and 7 follow on from this chapter putting the design and implementation of Bolvedere
and its processor modules through proper testing. The testing performed in Chapter 6 ensures
that Bolvedere works properly as a whole in a controlled environment with known inputs and
outputs, whereas Chapter 7 puts Bolvedere to use on a real-world dataset in order to evaluate
its real-world application.

6
Testing

THIS chapter presents results to the reader concerning the validity of output from the
Bolvedere Base system as well as processor modules compatible with Bolvedere. Test-
ing also proves proper functionality of each of these components of Bolvedere. This

chapter begins with Section 6.1 which simply tests whether the NetFlow records arriving at
Bolvedere’s collector and being transmitted from Bolvedere’s publisher are correct and as in-
tended. Following this Section 6.2 through to 6.8 all test the proper functionality and results of
processor modules that perform analysis for Bolvedere on NetFlow data records.

Section 6.2 tests the first processor module, which attempts to perform the well researched
task of DDoS detection through use of NetFlow records. Following this, Section 6.3 attends
to frequency analysis techniques used on traditional full-packet analysis, and applies them to
NetFlow records. In Section 6.4 one can find the results to a processor module that keeps track
of subnet’s reputations based on type of activity based on Flow Source IDentification (FSID).
Sections 6.5 and 6.6 test the ability of the Bolvedere processor modules to detect port scans
and sudden port characteristic changes of hosts on a monitored network. Section 6.7 shows
of Bolvedere processor module’s capability to detect spoofed network traffic. Finally Section
6.8 looks at fingerprinting common system vulnerability exploitations and reapplying these
fingerprints for further detections of repeated exploitations.

119

6.1. THE BASE BOLVEDERE SYSTEM WORK 120

These section’s will be presented in the following format:

• Description of test.

• The relevant testing environment.

• Results obtained.

• Analysis of obtained results.

• Any figures will be set in a floating style.

Hardware used for testing, unless otherwise specified, was an Intel DQ77MK Motherboard with
Intel Core i5-3570K Processor1 at 3.4GHz, 8GB of 1333Mhz RAM and an Intel E10G42BT
X520-T2 10Gigabit Ethernet Card2 for main software bulk mode tests; this level of host was
thought to be well rounded for general testing of this system. The switch used to connect hosts
to each other was a Dell PowerConnect 6248 with a Dell P/N P623D 10Gbase-T expansion
module. Hosts which ran the bot software 3, as well as acted as gateways for other systems on
the created physical environments used in testing, were Foxconn N15235 all-in-one systems.
Other hardware or systems used during testing performed in this chapter will be specified in the
relevant section’s environment. All systems used in testing were running Ubuntu Linux 14.04
LTS 4 and the version of Softflowd used by the gateways, where applicable, was 0.9.9.

6.1 The Base Bolvedere System Work

The base of the Bolvedere system referred to in this section when referring to Figure 4.1 consists
of the collector and publisher. The ability for these two subsystems to fulfil their roles, as well as
communicate with each other consistently in an expected manner, is paramount to the success of
this system. If either of these two components were to fail in any way, this would cause failure
in subsystems further down the logic tree. This will of course lead to mis-identification and
classification of network flows by Bolvedere processor modules. This testing will focus on the
ability of these bases subsystems to receive NetFlow packets, and correctly output processed
NetFlow data records to processor modules. Testing of this base system will address each
subsystem separately and then the entirety of both subsystems.

1http://ark.intel.com/products/65520
2http://www.intel.com/content/www/us/en/network-adapters/gigabit-network-adapters/ethernet-x520-t2.html
3Custom written by the author.
4http://www.ubuntu.com/

6.1. THE BASE BOLVEDERE SYSTEM WORK 121

Host 1

Host 2

Host 3

Host 4

Gateway 1

Gateway 2

Gateway 3

Collector Publisher

A B C

Figure 6.1: Physical Collector Publisher Testing Environment Overview

6.1.1 Environment

The testing of these subsystem was performed using 9 physical hosts that generated live network
flows using IPv4. The configuration of these hosts and direction of network traffic can be seen
in Figure 6.1. Note that this figure has points marked off as A, B and C. These points denote
where monitoring occurred during testing, and will be referred back to later in this section. The
list below helps better describe each component of this environment:

Host #: These are physical hosts set up to access the Internet through their connected Gateway.
Network access is performed through automated bots that simulate Internet browsing.

Gateway #: The Gateways’ role in this environment is two fold. In this environment a Gate-
way gives Hosts access to the Internet for simulated browsing but they also run Soft-
flowd (Miller, 2016) in order to log network flows and export these records to the Collector.

Collector: This is the Bolvedere subsystem that collects NetFlow records, discerns and then
re-orders them into the format requested by the Publisher in order for the Publisher to
optimally process them.

Publisher: This is the Bolvedere subsystem that is in charge of all CPU-based processing
before distribution to processor modules. This includes application of filters and interfacing
to ZMQ.

The 4 host systems in this environment are tasked with generating network flows through their
gateways. These gateways generate NetFlow records according to the NetFlow version 9 pro-
tocol and forward these records to the collector. The collector discerns these records, then
re-orders them into the format required by the publisher before finally passing them onto the
publisher via a socket. The publisher can now optimally apply filters to these re-ordered Net-
Flow records before distributing them to the processor modules.

6.1. THE BASE BOLVEDERE SYSTEM WORK 122

Listing 6.1: Collector Configuration for Functional Testing
1 IPV4_SRC_ADDR
2 IPV4_DST_ADDR
3 L4_SRC_PORT
4 L4_DST_PORT
5 IN_PKTS
6 IN_BYTES
7 FLOW_SOURCE_ID

6.1.2 Collector Testing

Testing of the collector was performed by configuration of the collector to a known re-ordering
and monitoring of input packets to the collector at point A, and output packets at point B (refer
to Figure 6.1). The configuration script in Listing 6.1 denotes which fields from a NetFlow data
record, as well as the order in which the publisher wants these fields. Missing fields are noted
by setting every bit in the re-ordered NetFlow data record’s field to 1.

The names in Listing 6.1 are defined by the user in the template file that is used during build
time as discussed in Section 4.3. This template file is used by the publisher to build its code
base from, and will be discussed in more detail in Section 6.1.3. The names in this configuration
file are also used to identify the types and lengths of fields, based on what is also stated in the
template file for each name. One can refer to Appendix F for a full listing of the template file
used in this section.

Using the configuration produced by Listing 6.1 the collector is expected to behave in the fol-
lowing manner. In the case that the relevant template record to discern a data record set is not
present, the data record set will simply be ignored. If the template record required to discern the
date record set is present, then where the required fields for re-ordering are present, those fields
will be placed in the correct order defined by the given configuration file, and where the fields
are not present in the data record, all the bits in the bytes allocated for that data will be set to 1.

Testing will occur over a 1,000 exported NetFlow packets each containing between 1 and 30
records of varying type (either template or data). The count as to how many template records
and data records will be collected at runtime along with the bytes they contain, and these will be
used to determine the correct results which the collector should produce. Lastly one must note
the format of the NetFlow data records exported by Softflowd to the Bolvedere collector (only
the IPv4 template is considered here due to the network being IPv4-based). The fields and their
order are shown in listing 6.2. One can note that all fields required for re-ordering exist in the
exported data records by Softflowd. Testing for missing data fields will take place in Section
6.1.4 once basic functionality is shown to work here.

6.1. THE BASE BOLVEDERE SYSTEM WORK 123

Listing 6.2: IPv4 Softflowd NetFlow Template Record Format
1 IP Source Address
2 IP Des t ina t i on Address
3 Las t Switched
4 F i r s t Switched
5 Tota l Bytes Trans fe r red
6 Tota l Packets Trans fe r red
7 Input SNMP
8 Output SNMP
9 Layer 4 Source Port

10 Layer 4 Des t ina t i on Port
11 Pro toco l
12 TCP Flags
13 IP Pro toco l Vers ion

6.1.3 Publisher Testing

The packets transmitted from the collector are monitored at point B and received by the pub-
lisher for filtering, and again transmitted via ZMQ and monitored at point C (refer to Figure
6.1). The configuration script used to build this Bolvedere publisher’s internal filters is the
same as the one used in the collector’s testing. This can be referred to again in Listing 6.1.

As discussed in Section 4.3, the template file provided at build time contains the code to be built
into the publisher in order to filter and pass on NetFlow logs to processor modules. Referring
again to Appendix F one can note that the code is written in C, this was also explained in Section
4.3. The actions performed to received logs from the collector, and what is determined to be
pushed to the ZMQ buffer for transmission, is determined here.

In the case of this simple functionality test the filter simply accepts all re-ordered data records
and pushes them into the ZMQ buffer for transmission. It is also worth noting that what is
pushed into the buffer is also printed to terminal by these simple filters. At runtime of this
testing this printed output can be redirected to file for later analysis, and when coupled with the
monitored network traffic produced by the ZMQ handle, more accurate results can be obtained.

Testing will again occur over 1,000 exported NetFlow packets in which each can contain be-
tween 1 and 30 data records. Again, the count as to how many data records will be collected
at runtime along with the bytes they contain, and these will be used to determine the correct
results which the publisher should produce.

One must take note that the publisher will never see a template record, as this is used solely by
the collector to discern data records. The publisher already knows what is arriving at its ingress
interface due to the configuration script at build time.

6.1. THE BASE BOLVEDERE SYSTEM WORK 124

Figure 6.2: Count of Successfully Processed NetFlow Records

6.1.4 Base Subsystem Testing

This test monitors NetFlow records at points A and C when referring to Figure 6.1. Although
this test is not required, as if collector specific testing and publisher specific tests are successful,
then this should be too, the testing of the entirety of the base subsystem for completeness is still
justified. An extension to testing performed in Sections 6.1.2 and 6.1.3 will see the requirement
of the publisher of a NetFlow field not supplied by Softflowd.

For this testing to be successful NetFlow data records received by the collector at point A should
be transmitted via ZMQ at point C, with the missing field’s bits all set to 1 (referring to Figure
6.1). If this test and the tests in Sections 6.1.2 and 6.1.3 are successful, that is not corrupting
or dropping any data, Bolvedere processor modules will be unhampered by this base subsystem
and thus error in processor module results will be due solely to the processor module.

This testing will again occur over 1,000 export NetFlow packets in which each can contain be-
tween 1 and 30 template or data records. These again will be counted as to how many data
records were collected at runtime along with the bytes present in each packet, in order to de-
termine the correct output of the base subsystem for use in denoting the success of the base
system.

6.1.5 Collector Subsystem Results

Referring to Figure 6.2, of the 1,000 NetFlow records that were transmitted by the gateways to
the collector, the collector successfully received all of them. Furthermore, data records were not

6.1. THE BASE BOLVEDERE SYSTEM WORK 125

Listing 6.3: Input NetFlow Data Record to Collector
1 // Header In fo rmat ion and Other NetFlow Records
2 . . .
3 D4 48 64 C9 // Source IP : 212.72.100.201
4 68 10 41 CB // D e s t i n a t i o n IP : 104.16.65.203
5 00 00 13 8E // La s t Switched : 5006
6 00 00 05 7E // F i r s t Swi tched : 1406
7 00 00 30 C3 // To ta l By t e s : 12483
8 00 00 00 70 // To ta l Pa ck e t s : 112
9 00 00 // Inbound SNMP : 0

10 00 01 // Outbound SNMP : 1
11 6D 85 // Source Por t : 28037
12 00 50 // D e s t i n a t i o n Por t : 80
13 06 // P r o t o c o l : TCP
14 00 // TCP F l a g s : None
15 04 // IP P r o t o c o l : IPv4
16 . . .
17 // More NetFlow Records

processed until the correct template record was received. From this point data records received
had all relevant data extracted and re-ordered, and packets being transmitted and monitored at
point B were correct. An example of bytes received by and transmitted from the collector can
be viewed in Listings 6.3 and 6.4 respectively.

One can observe from these listings that all fields required by the publisher were available in
the received NetFlow data record. Furthermore, the transmitted re-ordered data records were
correct in contained data and order. One can note that the flow source ID is not part of the
data record. This field was instead extracted directly from the NetFlow packet header’s source
ID field. Due to the success of these results, the collector was deemed fully functional and
consistent.

6.1.6 Publisher Subsystem Results

One must note before analysing these results that 1,000 re-ordered data records were in question.
This meant that more than 1,000 NetFlow records were received by the collector during as
template records were also transmitted to the collector in order to discern the received data
records.

126

Listing 6.4: Output Re-Ordered NetFlow Data Record from Collector
1 // Header In fo rmat ion and Other Re−Ordered Data Records
2 . . .
3 D4 48 64 C9 // Source IP : 212.72.100.201
4 68 10 41 CB // D e s t i n a t i o n IP : 104.16.65.203
5 6D 85 // Source Por t : 28037
6 00 50 // D e s t i n a t i o n Por t : 80
7 00 00 00 70 // To ta l Pa ck e t s : 112
8 00 00 30 C3 // To ta l By t e s : 12483
9 00 00 00 64 // Flow Source ID : 100

10 . . .
11 // More Re−Ordered Data Records

Listing 6.5: Input Re-Ordered NetFlow Data Record to Publisher
1 // Header In fo rmat ion and Other Re−Ordered Data Records
2 . . .
3 D4 48 64 C8 // Source IP : 212.72.100.200
4 68 1C 13 0B // D e s t i n a t i o n IP : 104.28.19.11
5 34 26 // Source Por t : 13350
6 00 50 // D e s t i n a t i o n Por t : 80
7 00 00 00 2F // To ta l Pa ck e t s : 47
8 00 00 22 49 // To ta l By t e s : 8777
9 00 00 00 64 // Flow Source ID : 100

10 . . .
11 // More Re−Ordered Data Records

6.1. THE BASE BOLVEDERE SYSTEM WORK 127

Listing 6.6: Output Filtered NetFlow Data Record from Publisher
1 // More P r i n t o u t s
2 . . .
3 [Data] IPv4 source address : D44864C8
4 [Data] IPv4 d e s t i n a t i o n address : 681C130B
5 [Data] L4 source por t : 3426
6 [Data] L4 d e s t i n a t i o n por t : 0050
7 [Data] packets communicated : 0000002F
8 [Data] bytes communicated : 00002249
9 [Data] Flow Source ID : 00000064

10 . . .
11 // More P r i n t o u t s

6.1.7 Base Subsystem Results

The final round of testing for Bolvedere’s base subsystem was intended to be targeted at the
special case involving the event that a field does not exist in an exported NetFlow data record.
This test does however act two-fold. The first was explained previously however the second is
to again ensure that data passes through the collector publisher pair as expected, as the entirety
of this system’s implementation rests on these two subsystems working properly.

A note must be made when referring to Figure 6.1 that the 1,000 successful NetFlow records
are data records that made it through the collector and out the publisher. Template records in
this testing were used only by the collector and not seen at all by the publisher.

128

Listing 6.7: Modified Output of Softflowd Sent to Collector
1 // Header In fo rmat ion and Other NetFlow Records
2 . . .
3 D4 48 64 C9 // Source IP : 212.72.100.201
4 CC 4F C5 C8 // D e s t i n a t i o n IP : 204.79.197.200
5 00 00 94 36 // La s t Switched : 37942
6 00 00 86 26 // F i r s t Swi tched : 34342
7 00 01 98 DC // To ta l By t e s : 104668
8 00 00 // Inbound SNMP : 0
9 00 01 // Outbound SNMP : 1

10 31 4C // Source Por t : 12620
11 00 50 // D e s t i n a t i o n Por t : 80
12 06 // P r o t o c o l : TCP
13 00 // TCP F l a g s : None
14 04 // IP P r o t o c o l : IPv4
15 . . .
16 // More NetFlow Records

Listing 6.8: Output of Modified Softflowd Input from Publisher
1 // More P r i n t o u t s
2 . . .
3 [Data] IPv4 source address : D44864C8
4 [Data] IPv4 d e s t i n a t i o n address : 681C130B
5 [Data] L4 source por t : 3426
6 [Data] L4 d e s t i n a t i o n por t : 0050
7 [Data] packets communicated : FFFFFFFF
8 [Data] bytes communicated : 00002249
9 [Data] Flow Source ID : 00000064

10 . . .
11 // More P r i n t o u t s

6.2. NEURAL NETWORK BASED DDOS DETECTION 129

External
Network

Bolvedere
Base

Neural
Network
Processor
Module

Figure 6.3: Neural Network Processor Module Environment

In this testing Softflowd was modified and recompiled from source to omit the packet count
field when generating template and data records to a NetFlow sink. The bytes transmitted from
this modified Softflowd can be referred to in Listing 6.7.

The output shown by Listing 6.8 is the output generated by the base system from the input
of Listing 6.7. The results are as expected in this selected case and every other case during
testing, and can be seen in this selected case by all bytes referring to the packet count (packets
communicated) being set to 0xFF; this is the value of every bit in a byte set to 1.

With these results consistently found throughout all 1,000 data records this test was determined
to be a success and thus the proper functionality of base subsystem is confirmed.

6.2 Neural Network Based DDoS Detection

This section evaluates the effectiveness of this neural network processor module, which attempts
to detect targets of DDoS attacks (Section 5.1). There are two areas to consider when training
a neural network to achieve a task. This is the time taken to train the neural network versus
the effectiveness of the trained neural network, and the actual ability of the neural network to
distinguish between legitimate network flows and those as part of a DDoS attack. Testing in
Section 5.1 described both of these areas.

6.2.1 Environment

The environment used for this testing was the neural network processor module subscribed to
the publisher of a Bolvedere base system, that published filtered data records containing the
fields defined in 5.1. This can be seen in Figure 6.3. These data records were then scrutinised
by the trained neural network in order to detect whether a network flow is part of a DDoS attack
or not. To explain each system shown in Figure 6.3, one can refer to below:

6.2. NEURAL NETWORK BASED DDOS DETECTION 130

Table 6.1: Time to Train Neural Network and Success Rate According to Size

Test IPs Seen Dest. Ports Seen Packets Ave. Bytes Protocol Result
1 1 1 100 100 17 0.992
2 1 1 100 1,000 17 1
3 1 1 10,000 1,000 17 0
4 1 1 3,000 1,000 17 0.002
5 1 1 2,750 100 17 0.371
6 1 1 2,750 1,000 17 0.996
7 1 1 2,750 100 6 0.999
8 1 1 2,750 1,000 6 1.001
9 1 5 2,750 100 17 0.442

10 5 1 2,750 100 17 0.371
11 5 5 2,750 100 17 0.442
12 5 5 5 120 17 1

External Network: This is the external network where NetFlow records are sourced from into
the Bolvedere Base.

Bolvedere Base: This refers to the two subsystems tested previously, the collector and base, in
Section 6.1.

Neural Network Processor Module: This is the subsystem this section is testing that will run
the neural network that attempts to discern whether a network flow is part of a DDoS attack
or not.

The training set used to train the neural network in these tests was synthetically generated from
a multi-host DDoS attack. The style attack had characteristics similar to those found by Haris
et al. (2010). This type of DDoS attack is formally referred to as a SYN Storm attack, and its
characteristics are listed below:

• TCP-based communication with SYN flag raised.

• Short communications (no longer than a burst of 3,000 packets) from multiple IP ad-
dresses (typically more than 10).

• Packet payloads padded out to sizes over 500 bytes.

• Targeted at multiple commonly open TCP ports targeted.

This dataset was then converted into NetFlow records using Softflowd (Miller, 2016) and sorted
by hand as to which data records were involved in the DDoS attack, and which were not. This

6.2. NEURAL NETWORK BASED DDOS DETECTION 131

Table 6.2: Neural Network Classifiers

Classifier Description
Lower packet count Counts below 2,500 cause the resultant to increase even

when the average packet size is low.
Higher average packet size Found to increase the resultant from around 285 bytes

and up.
Most common protocol seen used TCP was noted to act as a deciding factor when edge

cases were presented.
Number of unique ports Has a minor effect on the result, but more unique ports

cause an increase in the result.
Number of unique IPs This had a negligible effect.

data is then given to the neural network for training, and with the known result of each network
flow, it was trained. The training set contained 1,000 network flows known to be part of the
DDoS attack, and 1,000 legitimate network flows known to be legitimate. The neural network
was then trained according to the NetFlow fields defined in Section 5.1.1.

Table 6.1 presents the results of hand crafted inputs to the neural network after training has oc-
curred. These inputs were designed to show the resultant characteristics of this neural network
due to its training, and how its inputs interact with each other to produce a result.

These results presented in Table 6.1 show that there is a strong relation between number of
packets seen and the average size of these packets, as to whether a DDoS attempt is detected or
not. The common protocol5 seen has a “final say” effect when the results produced are uncertain
(this can be seen between tests 5 and 7). Lastly the number of IPs seen seem to have no effect
on the result at all (tests 9 to 11 depict this behaviour). This information will be valuable when
performing analysis on real-world datasets later in Chapter 7 and is summarized in Table 6.2 in
order of most important to the neural network, to least important:

6.2.2 Effectiveness Test

It must be noted that this test was performed after training of the neural network. This test
simply tests the ability of this neural network implementation to detect network flows involved
in a simple SYN Storm style DDoS attack detailed in 6.2.1. The neural network consisted of
3 hidden layers in the configuration of 8 nodes, 24 nodes and 12 nodes. Input node count was
automatically chosen to be 4 after training, as determined best by the R neural network training

5Protocol 6 is TCP and 17 is UDP as per RFC 791 (Postel, 1981a).

6.2. NEURAL NETWORK BASED DDOS DETECTION 132

implementation. A single output node was created to give the confidence level that the data
record representing the network flow was part of the DDoS attack, or not.

Results produced by this implementation are in the form of a confidence level between 0 and
1 that represents how sure the neural network is that the network flow is involved in a DDoS
attack or not. Anything with a confidence level above 0.9 was considered as being part of a
DDoS attack, and any result with a confidence level below 0.1 was considered not.

The data introduced to the neural network for learning and later detection is modelled around
the simple SYN storm DDoS attack style. This form of attack in terms of NetFlow data records
sees connections with low packet counts and packet sizes from multiple hosts. To add accuracy
to the detection of these attacks, the data is preprocessed into packs of the last 5 data records
received for a source IP. This data includes the number of unique source ports used, number of
unique destination ports used, the source IP, average packet size and average number of packets.

6.2.3 Time to Train versus Effectiveness Test

This set of test iterations is used to determine the effectiveness of a neural network’s complexity
versus the time taken to train that neural network. This will allow for optimization according to
one’s needs at a later point, as well as the ability of the resources at hand at the time of training.
An iteration of this test will occur in the following manner:

1. First a percentage of the number of nodes as that of the values used in Section 6.2.2 will
be decided upon.

2. The training of the neural network will then be performed and timed using the same
training set as in Section 6.2.2 a total of 10 times.

3. Lastly the use of data used to test the effectiveness of the generated neural networks will
be the same in each case as, to equally evaluate the performance of each neural network.
Effectiveness will be determined by the number of trained neural networks out of the 10
that can successfully detect at least 80% of the DDoS attack flows that were detected by
the neural network trained in Section 6.2.2.

Configurations that are used in this testing can be referenced in Table 6.3.

133

Table 6.3: Size of Each of the DDoS Detection Neural Network’s 3 Hidden Layers

Percentage Size of Default 1st Layer 2nd Layer 3rd Layer
12.5% 1 3 2
25% 2 6 3
50% 4 12 6

100% 8 24 12
150% 12 36 18
200% 16 48 24

Figure 6.4: Neural Network Detection of Simple SYN Storm DDoS Attack Results

6.2. NEURAL NETWORK BASED DDOS DETECTION 134

Figure 6.5: Neural Network Success Rate Compared to Default Configuration Size

6.2.4 Effectiveness Results

The results of 100,000 iterations of testing can be referred to in Figure 6.4. Of the 100,000
packed NetFlow data records that were given to the neural network, 96,479 were correctly
identified as to be part of, or not part of, a SYN style DDoS attack, where 3,521 were incorrectly
identified. This means that the neural network trained to detect the aforementioned anomaly in
this testing was 96.479% accurate.

These results seem impressive but, due to the sheer number of methods to perform a DDoS
attack, these results that are aimed at a specific type of attack are mild. This method of denial
of service is also aimed only at saturation of the network link in which a server would receive
requests, whereas there are many other mechanisms within a server that can be exploited to
achieve the same effect.

This testing however does serve its purpose in the context of this research. The ability for a
neural network to learn from data produced by Bolvedere and produce correct and meaningful
results was the main point of this testing. With these results, it is proven that such an approach
to more complex neural networks such as a long short term memory neural network (Sak et al.,
2014) or bidirectional recurrent neural network (Schuster and Paliwal, 1997) can be imple-
mented and use Bolvedere as a data source.

135

Figure 6.6: Neural Network Training Times Compared to Default Size

Table 6.4: Time to Train Neural Network and Success Rate According to Size

Percentage Size of Default Time to Train (seconds) Successful Neural Network
12.5% 0.243 10%
25% 0.407 30%
50% 0.672 70%
100% 1.900 100%
150% 2.603 100%
200% 4.327 100%

6.2. NEURAL NETWORK BASED DDOS DETECTION 136

6.2.5 Time to Train versus Effectiveness Results

Each generated neural network’s configuration, and thus size, in comparison to the default con-
figuration used in Section 6.2.2 can be referred to in Table 6.3. Time taken to train each neural
versus its relative effectiveness at DDoS detection when measured against the results in Section
6.2.4, are tabulated in Table 6.4 and graphed in Figure 6.5. Finally, the time taken to train each
sized neural network used in DDoS detection can be referred to in Figure 6.6.

These results are averaged over 10 iterations of training with the same training set used for the
default neural network in Section 6.2.2. After each neural network was trained, they were each
subjected to the same 100,000 packed NetFlow data record testing as was used in the default
neural network, and effectiveness was compared to that of the default neural network.

As is expected, the smaller the neural network’s size, the faster it is to train, as there are less
neurons within the neural network to adjust during backwards propagation. The effectiveness
of the neural network as size varies does not hold any outliers either. Simply when there is not
enough neurons in a neural network to effectively compute the task, accuracy suffers. In the
same vein, a larger neural network will always be able to at least perform the functionality of
one smaller than it of similar design (referring to number of input neurons, number of output
neurons and number of hidden layers).

The time taken to train each of these neural networks as they grow in complexity is fairly linear.
Referring to Figure 6.6 one can see from 50% size through to 200% follows a linear trend. This
is due to the nature of the backwards propagation used in these neural networks. Each neuron
is visited individually and adjusted according to the correctness of the outputs. In the simplest
case, which is used in these neural networks, adding a neuron to the neural network simply
means that that neuron has to also be looked at; in this case that adjustment is disjoint from
other adjustments. This serves the bases for the linear growth in time taken to train a neural
network versus the complexity of the neural network itself.

The problem given to these neural networks, as stated in Section 6.2.4, is fairly simple in terms
of what can be expected in real-world application. In contrast to an all-in-one solution to every
DDoS attack currently in existence, and that will possibly exist, taking just shy of 2 seconds
to solve the task of a SYN style DDoS is negligible. However, the time taken varies on the
size of the neural network, the learning algorithm used, the neural network algorithm used and
the size of the training set. Some training algorithms used to train neural networks can grow
exponentially in time required as more neurons are added. Furthermore, adding the detection of
just one or more type of DDoS attack will require the training set for that type of DDoS. This

6.3. FOURIER ANALYSIS 137

doesn’t even highlight the need to gather the data for the training set and work out how the use
of each training set together affects the ability and accuracy of the neural network’s to detect
each form of attack.

6.3 Fourier Analysis

The Fourier analysis processor modules in this implementation transform time dependent events
into frequency dependent ones in order to see if there are any periodic events happening on a
network. Packets received are placed in time frames, which were called buckets, as to either
how many bytes or packets were received at a given time bucket; each were dealt with disjointly.
Furthermore, it must be noted before further reading of this section that Fourier analysis is
deeply time based. NetFlow’s method of generating data records severely distorts the time
domain in which the data records arrive. For this reason Fourier analysis on both NetFlow data
records, and the actual network traffic the network flows were generated from, is performed to
analyse the effectiveness of NetFlow based Fourier transforms.

6.3.1 Environment

The supporting hardware environment used during the execution of all GPU-based testing in
this section is as follows:

CPU: i5-3570@3.4Ghz

Memory: 32GB DDR3 1600Mhz

Hard Disk: 1TB Western Digital Blue

Network Interface: Intel 82574L Gigabit Network Connection

Implementation of this processor can be set to either real-time Bolvedere processor module
or standalone bulk processor modes. In the former this processor connects to a Bolvedere
publisher and manages calculation times and bucketing of data in real-time. The latter sees this
system taking in an input file containing recorded network flows and performing the required
calculations on this data.

As this processor is intended to detect periodic data within noise, it was decided that the stan-
dalone mode should be used in generating these results (this is fine as the calculation remains

6.3. FOURIER ANALYSIS 138

unchanged). This is due to the noise being random in nature where testing requires consistency
in order to achieve accuracy in results. This allows for generation of a set dataset with known
noise to the tester, and thus expected results can be formulated.

The test set created for these tests consists of the program Ping (Braden, 1989) generating
periodic traffic between two hosts at a frequency of 1 hz on a live network where multiple other
hosts are communicating with each other. These other communications are random and thus
generate noise in our data. This data recorded as both a packet capture file stored as a pcap and
as NetFlow data records.

6.3.2 Packet Based versus NetFlow Data Record Based FFT Effectiveness

This test was aimed at detailing the effectiveness of Fourier analysis on NetFlow data records
when compared to a traditional packet capture technique. Traditionally, packet capture would
occur and data received would be bucketed by how many bytes were received in a given time
slice. These would then become discrete time dependant points of how many bytes were re-
ceived at a given time. After this conversion a FFT can be performed on the data to give a
resultant frequency graph showing periodic behaviour within the packet capture.

For NetFlow data records these tests followed a similar approach. As data records are received
by the NetFlow collector, the amount of bytes that were transferred in the flow is bucketed on
the time the data record was received. This data is then, like the packet capture method, also
represented as discrete time dependant points of how many bytes were received at a given time.
This allows one to perform the same FFT that one would perform on the packet capture data,
on these NetFlow data records.

The logical flow for this test was as follows:

1. Start Ping program on live network with known IPs.

2. Start packet capture.

3. End Packet capture and Ping program.

4. Filter data into 3 sets namely: Noise only, Ping only, and Noise and Ping.

5. Use Softflowd to generate NetFlow records on the packet capture.

6. Using the standalone bulk processing mode of the FFT processor module feed in both the
packet capture data and NetFlow data record based data.

6.3. FOURIER ANALYSIS 139

7. Gather resultant graphs.

Once both results are collected, comparisons will be drawn as to the effectiveness of NetFlow
based Fourier Transforms to that of traditional packet capture based Fourier Transforms.

6.3.3 Packet Count versus Byte Count Analysis Effectiveness

Use of different dependant data that represents like data is important when performing a FFT,
as periodic data is subject to loss due to comparatively high levels of noise. This is due to the
nature in which an FFT operates. An FFT defines the dependant result as a value of how much
of a given frequency is detected. It does this through summing the amplitudes of waves common
to a frequency (this includes harmonics). These frequencies are then compared to other detected
frequencies and the ones that present prominent maxima in the results represent the dominant
frequencies in the input data. If the amplitudes of the periodic data are so small that when a FFT
is performed on the entire data set it causes the summed total of that frequency to be that of the
level of the noise, one will not be able to gain any meaningful information from the resultant
FFT.

In the generation of data for the above byte based tests, as explained in Section 6.3.2, the liberty
was taken to also generate packet count based data too. This could be done, as in both the packet
capture and NetFlow data records generated, this data could be collected. In the packet capture
this was done by simply counting the number of packets that were seen during a time slice, and
in the NetFlow records the data was collected from the field containing the packet count of a
network flow. The same FFT as performed in Section 6.3.2 was performed on this data, and
comparisons were then drawn between these results.

6.3.4 Packet Based versus NetFlow Based FFT Effectiveness Results

The first FFTs performed were on that of the traditional packet capture of just the ping packets
received by the capturing node. Figures 6.7 and 6.8 show the results of the FFTs on this data
at two different bucketing levels, this being at a resolution of 10-2 and 10-1 respectively. These
results are as expected for ping, as the Ping program transmits a ping packet every 1 second and
this data shows a strong presence of the 1 hz frequency, as well as every harmonic frequency 1
hz is part of.

140

Figure 6.7: FFT of Ping Packet Capture Bucketed by Bytes Received at 100 Hz

Figure 6.8: FFT of Ping Packet Capture Bucketed by Bytes Received at 10 Hz

Figure 6.9: FFT of NetFlow Ping Data Records Bucketed by Bytes Received at 100 Hz

6.3. FOURIER ANALYSIS 141

Figure 6.10: FFT of NetFlow Ping Data Records Bucketed by Bytes Received at 10 Hz

Figure 6.11: FFT Captured Noise Bucketed by Bytes Received at 100 Hz

Figures 6.9 and 6.10 represent the second FFTs performed on that of the NetFlow data records
of just the ping packets. The results produced by these graphs show no signs of periodic in-
formation, especially as it is known that the maximum searched for here is at the 1 hz mark,
which it is not in these results. This shortcoming is due to the nature of FFTs mentioned in the
opening paragraph of Section 6.3. Granulating the sample data into less time samples reduces
the effectiveness of the FFT, which is heavily reliant on the time domain. The negative effect
of this is clear when comparing Figures 6.7 and 6.8 to Figures 6.9 and 6.10. Further result from
the NetFlow data yield no interpretable results, however for completeness the packet capture
data will be used to show the effectiveness of Fourier analysis on network traffic.

The FFT of just the noise in the packet capture is given at a resolution of 10-2 in Figure 6.11,
and no zoom was given as the data has no special qualities about it; it is just noise on a live

6.3. FOURIER ANALYSIS 142

Figure 6.12: FFT Ping and Noise Bucketed by Bytes Received at 100 Hz

Figure 6.13: FFT Ping and Noise Bucketed by Bytes Received at 10 Hz

network.

Lastly, Figures 6.12 and 6.13 are FFTs performed on the entire packet capture, containing both
the noise and ping. This is where the strength of Fourier analysis is shown, as one can clearly
pick out that there are dominant frequencies within the data. This of course are the ping packets
being sent by the Ping application, and this fact is backed up by the dominant frequencies of
these graphs, being 1 hz and all harmonics of it, as was shown by Figures 6.7 and 6.8. This is
all information that is lost upon the granulation of the time domain as NetFlow does.

6.3. FOURIER ANALYSIS 143

Figure 6.14: FFT of Ping Packet Capture Bucketed by Packet Count Received at 100 Hz

Figure 6.15: FFT of NetFlow Ping Data Records Bucketed by Packet Count at 100 Hz

6.3.5 Packet Count versus Byte Count Analysis Effectiveness Results

The results depicted by Figure 6.14 show the FFT of the packet capture in Section 6.3.4 bucket
on packet count rather than byte count. Again, one can observe the existence of a dominant
frequency within the data set. This is again 1 hz and all harmonics of 1 hz, as expected by the
transmission of a ping packet every second by Ping.

Again, the results acquired by performing an FFT using NetFlow data records as input data to
the function reveals little meaning, this can be seen in Figures 6.15 and 6.16. Performing the
FFT with packet count as the the dependant variable shows a similar trend to that of data based
on byte count, and further data collected through packet count based data yields no meaningful
data.

144

Figure 6.16: FFT of NetFlow Ping Data Records Bucketed by Packet Count at 10 Hz

Figure 6.17: FFT Captured Noise Bucketed by Packet Count Received at 100 Hz

6.3. FOURIER ANALYSIS 145

Figure 6.18: FFT Ping and Noise Bucketed by Packet Count Received at 100 Hz

Figure 6.19: FFT Ping and Noise Bucketed by Packet Count Received at 10 Hz

The FFT of the packet count bucketed data generated by the noise in the packet capture is
shown in Figure 6.17. Again, this shows no meaningful information as it is just background
noise generated on the live network this packet capture was collected on

Finally, the results of packet count based input data can be compared directly to that of its
byte based counterpart in Figures 6.12 and 6.13. The results of these Figures 6.12 and 6.13
show the exact same dominant frequencies as in the results of the byte based input data in
Figures 6.12 and 6.13. This initially suggests that use of packet count or byte count can be used
interchangeably when performing frequency analysis. However, this is not true.

6.3. FOURIER ANALYSIS 146

Figure 6.20: FFT Ping and Large Noise Bucketed by Bytes Received at 100 Hz

To elaborate this point, consider Figure 6.20. This graph, although fairly meaningless, uses the
exact same data as in Figures 6.12 and 6.13 except that the byte count of each packet that is
identified as noise has been increased to be 20 times larger than before. This increase makes
the noise results large enough to completely dwarf the periodic ping packets, thus resulting in a
result devoid of the dominant periodic frequency that should be in them.

In this case it is possible to use the packet based input to get the frequency graph required to get
this periodic information out of the packet capture. This is possible, as only the size has been
changed in the noise packets in the packet capture, not the number of packets. In the case that
the periodic data in this packet capture increased in byte count, even if more noise packets were
introduced into the data, one would see the tables turn in the results.

A byte based FFT in this case would show the dominant frequencies clearly, as the periodic data
would have a far greater byte count than that of the noise. On the other hand, using packet count
would show the periodic data becoming less distinguishable, as the number of packets related
to the packet count would be drowned out by the increasing count of noise packets.

For this reason the final implementation of this processor module buckets both packet count
and byte count separately, and renders them in parallel in order to mitigate the short falls in
observing only one of the two fields.

6.3.6 CUDA Performance on Varying GPUs

Table 6.5 shows the performance speeds of different nVidia CUDA compliant products when
computing the same FFT work load. A chunk in this table represents 2,500,000 million discrete
points, and the workload can be calculated by referring to the chunk count in the given table.

6.4. REPUTATION ANALYSIS SYSTEM 147

Table 6.5: CUDA GPGPU Time Taken to Compute FFT in Seconds

nVidia Product Name 4 Chunk Load 64 Chunk Load 512 Chunk Load
GTX 1080ti 0.444 4.521 39.834
GTX 750ti 0.576 6.104 58.737
GTX 480 0.561 5.864 57.001
GTX 465 0.591 6.158 59.438

Network 3 Bolvedere

Network 1 Network 2

Bot 1 Bot N

Bot 1 Bot NBot 1 Bot N

Rep. System

Processors

Gateway Gateway

Gateway

Figure 6.21: Testing Environment Overview

6.4 Reputation Analysis System

This subsystem sought to collect findings produced by processor modules running as part of
the Bolvedere system and couple these findings with real-world geographic locations based on
the NetFlow node ID in which the network flows were generated from. As these findings are
intended to be stored for use at a later point, this testing will be broken into two parts. The first
is generation of malicious network activity in which the Bolvedere modules generate findings
for the reputation system to store, and the second being the accuracy of these results that are
stored and how they can be applied.

6.4.1 Environment

These tests were all performed in a virtual environment which allowed the creation of disjoint
networks that could then be connected through common gateways. This was to represent an
Internet like structure of a network with connections between Internet service providers and/or
telecommunication companies. The configuration of this can be referred to in Figure 6.21. To
better explain objects and logic flow in this figure one can refer to the descriptions below:

Bot: This refers to one of two automated systems. The one form of system generates legitimate
network traffic through HTTP (Fielding et al., 2009), ICMP (Postel, 1981b), TCP (Postel,

6.4. REPUTATION ANALYSIS SYSTEM 148

1977) and UDP (Postel, 1980) requests. The second form generates malicious network
activity through the use of Metasploit (Maynor, 2011).

Gateway: These are virtual systems that allow access to other virtual networks within the
virtual environment. These gateways also generate NetFlow logs using Softflowd (Miller,
2016) and thus act as NetFlow source nodes. Each of these Softflowd processes running on
the separate gateways had been recompiled to use a unique source ID.

Bolvedere: This is the NetFlow sink of the virtual environment. All gateways send their Net-
Flow logs to the Bolvedere system which then processes these logs to detect malicious
activity before handing these findings to the reputation system.

Network #: These are reference names of each virtual network in which the bots reside. These
names exist purely for ease of referral in the results text.

6.4.2 Runtime Malicious Activity Collection

The purpose of the initial test is to gather malicious network flows from different networks and
then determine which network the activity originated from using the NetFlow source ID. To
achieve this, each of the three virtual networks was assigned certain malicious tasks in which it
would perform, and how often it should perform each. This would allow for checking accuracy
at a later point as to the reputation score of each network, according to the attacks performed
(i.e., how likely a network was to perform a certain form of malicious network flow). A dis-
tribution of the malicious network tasks performed by each network and NetFlow source ID
number can be referred to in Table 6.6 (time spent performing each task is out of a total of 100).

The results displayed by the reputations system were printed to terminal at the runtime of this
system, and can be referred to in Listing 6.9. The format of the results produced for these
tests displays three key pieces of information, however there is more information stored in the
reputation system’s database which was discussed in Section 5.5.1. The fields shown in this
tests output are described below:

Source ID: NetFlow source node ID number in which the malicious flow record was sourced
from.

Location: Network name that the NetFlow source node ID is recorded as.

Attack Type: The attack type that was detected in the malicious flow by a Bolvedere pro-
cessor module. Results were collected over 1,503 malicious network flows and 11,312

6.4. REPUTATION ANALYSIS SYSTEM 149

Listing 6.9: Terminal Output of Reputation System
1 . . .
2 [Source ID : 100 , Locat ion : Network 1 , At tack Type : ms08_067_shell]
3 [Source ID : 100 , Locat ion : Network 1 , At tack Type : ms08_067_vnc]
4 [Source ID : 100 , Locat ion : Network 1 , At tack Type : ms08_067_shell]
5 [Source ID : 300 , Locat ion : Network 3 , At tack Type : samba_symlink]
6 [Source ID : 200 , Locat ion : Network 2 , At tack Type : unreal_ i rcd_3281]
7 [Source ID : 300 , Locat ion : Network 3 , At tack Type : samba_symlink]
8 [Source ID : 200 , Locat ion : Network 2 , At tack Type : ntp_mon_l i s t]
9 . . .

Table 6.6: Virtual Network IDs and Malicious Activity by Percentage

Name ID ms08_067_vnc ms08_067_shell samba_symlink unreal_ircd_3281 ntp_mon_list
Network 1 100 40 40 10 0 0
Network 2 200 10 10 0 30 50
Network 3 300 0 0 100 0 0

non-malicious network flows. These results, again referring to the snippet in Listing 6.96,
show the attacks that were assigned to the malicious bots are identified by the Bolvedere
processor modules. Furthermore, the reputation system put in place to bind these findings
to a set location also shows correct output for the test inputs provided to the system as a
whole; this being the Bolvedere system and the reputation system.

6.4.3 Reputation Storage Results

The records of the 1,503 malicious network flows that were recorded by the reputation system
in Section 6.4.2 will now be verified through processing of these records in this section. As
the reputation of each network for all known attack findings given to this reputation system are
generated at runtime, this section will simply look at these reputation scores and weigh them up
against the known input used in testing. The higher the score the more likely the network is to
source the respective malicious attack.

The first positive that the results in Table 6.7 reflect is that the networks assigned not to perform
a form of malicious attack in Table 6.6 do not score any points for those attacks. The next point
to notice is that the unreal_ircd_3281 and ntp_mon_list attacks that were only assigned to the
Network 2 networks, score 100 for each of these malicious attacks in the Network 2 reputation.
This is good, as the Network 2 network is the only network that produces these attacks, and so

6The size of the snippet is due to the sheer size of the output.

6.5. PORT SCAN DETECTION 150

Table 6.7: Virtual Network Malicious Reputation Scores out of 100

Name ID ms08_067_vnc ms08_067_shell samba_symlink unreal_ircd_3281 ntp_mon_list
Network 1 100 82.7 79.9 15.8 0 0
Network 2 200 17.3 20.1 0 100 100
Network 3 300 0 0 84.2 0 0

if these attacks occur, Network 2 is the only network that these attacks have been sourced from,
and so is the most likely candidate; hence the 100 point rating towards this network.

Finally, the attacks that were assigned to multiple networks show a distribution of reputation
points between the assigned network in accordance to the ratio assigned to each network. The
error in points is due to the randomness introduced in the malicious bots when choosing which
attack to perform. These results show that the reputation system does correctly store and assign
a reputation based on type of attack to a network location. Furthermore, these results can be
used in order to better point out which network a malicious attack is most likely to be sourced
from, and place that network flow at a known physical location irrespective of the source IP
address.

6.5 Port Scan Detection

The port scan detection processor module is tested in this section. The testing performed in
this section is on data known to contain port scans and data known to not have port scans. This
processor module is simply aimed at being able to perform the equivalent of that of existing full
packet analysis systems, this being detection of known common port scan techniques targeted
at a host, or set of hosts, on a subnet. It must be noted that this processor module only executes
in real-time, and so all results collected are as the NetFlow records are sunk into and distributed
out of Bolvedere’s base subsystem.

6.5.1 Environment

This testing was performed on a physical network containing live hosts behind a gateway host.
The gateway host ran an instance of Softflowd for the entirety of the the port scan traffic gen-
eration, and thus created the NetFlow records containing the logs of that of the port scans. The
port scans generated are known to the tester, and thus success or failure in the results generated
by this processor module are known.

6.5. PORT SCAN DETECTION 151

Host Per-
forming

Port Scan G
at

ew
ay

Subnet
Containing
Scannable

Hosts

Figure 6.22: Port Scan Detection Environment

Referring to Figure 6.22 one can take note of the basic hardware set up of these tests. In these
tests the port scanning technique used is a direct method on the subnet containing the scannable
hosts. The port scanning host generates standard data through browsing of the Internet through
a web browser and other standard network tasks such as acquiring an IP over Dynamic Host
Configuration Protocol (DHCP), as well as performing port scans against single hosts and the
entire subnet space allocated to the scannable hosts. The NetFlow records are generated live by
the gateway running Softflowd, and thus results are generated as a direct result from interaction
by the port scanning host on the network.

Port scans performed by the port scanning host in this testing is performed using Nmap (Lyon,
2015).

6.5.2 Port Scan Detection

For this testing 5 different modes were used to perform port scans when using Nmap, these are
listed below:

sS: SYN Stealth Scan performs its scan by sending TCP SYN packets at the target host/hosts,
the response from the host is then used to classify the openness of the targeted port.

sT: TCP connect() Scan performs its scan by using the underlying operating system’s socket
library’s connect() method to generate SYN packets at the target host/hosts, the response is
then used to classify the openness of the targeted port.

sA: ACK Scan performs its scan by sending TCP ACK packets at the target host/hosts, the
response or lack of response to this packet is used to classify the openness of the target
port.

sW: Window Scan performs its scan in the same manner as the ACK Scan, however it also
checks for a feature in some operating systems in which open ports can respond with a RST
packet. The detection of this feature is done by checking the window field, if the value is
positive it is an open port, and if it is zero it is closed.

6.5. PORT SCAN DETECTION 152

Table 6.8: Detection Rate of Each Port Scan Mode

Scan Mode Target Detection Rate (%)
sS Gateway 91

Subnet 88
Slow Scan 86

sT Gateway 97
Subnet 92

sA Gateway 91
Subnet 93

sW Gateway 92
Subnet 89

sM Gateway 87
Subnet 85

False Positive Gateway 7
Subnet 11

sM: Maimon Scan performs its scan through exploitation of a feature in BSD operating systems,
in that a closed port responds to a FIN/ACK packet with a RST packet, however it ignores
the FIN/ACK packet if the port is open. This means that if no response is received to a
FIN/ACK packet, and the host is running BSD, the port is open.

Each of these modes are used to attack two separate targets, these being the gateway itself and
the entirety of the /24 subnet that is behind the gateway. There is an exception to this regarding
an 11th scan performed using the sS mode where probes are spaced 2 minutes apart. This is to
test the viability of dealing with port scans which occur over extended periods of time to better
hide their signatures.

The detection rate for each of the port scan modes, along with the detection rate of false pos-
itives, will be recorded and taken into account when discussing the results of this testing. A
conclusion as to whether this processor module works in these simple cases will be drawn from
this. These tests are all performed in real-time.

6.5.3 Port Scan Detection Results

Table 6.8 provides a summary of successful detection rates, and also the false positive rate
of this processor module. These results show a definite need for fine tuning of the processor
module. However, they are promising on the outset. The false positive rate alone in these results

6.6. SUDDEN PORT BANDWIDTH USE CHANGE 153

Table 6.9: Detection Rate of Each Port Scan Mode

Time (minutes) Detection Rate (%)
2 86
5 82

10 74

does mean that a third-party needs to double check results produced by this module, as in the
worst case currently 1 in every 9 legitimate connections are regarded as a port scan.

The inaccuracy of this module can be accounted to the granularity of the NetFlow protocol in
that finer details are lost. This loss of finer detail leads to some NetFlow data records looking
close enough to others that they can be mistaken for each other when performing a task such as
the port scan detection in this testing.

Lastly, one should note the slow scan results produced in this testing. A strength of this module
is to detect port scans with probes spaced minutes apart. The slow scan results in Table 6.8 was
performed with probes 2 minutes apart. Table 6.9 can be referred to to view the detection rate
for higher times between probes. The tests in Table 6.9 were performed only once, as they are
for demonstration purposes only and take up to a week to perform.

With this taken into consideration, after fine tuning takes place for this module it will be consid-
ered a healthy addition to the processor modules provided with Bolvedere. Reduction of false
positives to sub 5%, while increasing accuracy of every other case to over 95%, will see this
processor module work as intended with minimal overhead for result validation.

6.6 Sudden Port Bandwidth Use Change

This section will show the test results for the Sudden Port Traffic Increase/Decrease Detection
module. To reiterate the functionality of this module defined in Section 5.4, this module uses
link bandwidth use, and applies 3 standard deviations of the mean of a windowed dataset, in
order to detect sudden increases and decreases of bandwidth use on a port-IP pair in terms of
bytes. If a new data point introduced to the module falls within 3 standard deviations of the
mean, the data point is seen as normal and there is no cause for alarm. If a new data point is
identified as an outlier to the existing dataset, the user is then notified of the occurrence.

Testing of this module was performed by simply streaming into it the source IP, destination IP,
source port, destination port and protocol from the Bolvedere base system. Each data point fed

6.6. SUDDEN PORT BANDWIDTH USE CHANGE 154

to this module is precalculated by the data point source as to fall within 3 standard deviations of
the mean recorded by the module, or outside of it. This allows a test iteration to determine the
accuracy of the results produced by this module by knowing whether a data point is an outlier
or not, before it is introduced to this module for processing.

6.6.1 Environment

The data given to this module for testing was done through controlled generation of NetFlow
records in order to test for correctness of the statistical principles applied in this module. These
NetFlow records are then passed into Bolvedere’s collector, which are then processed and
passed onto the publisher before being broadcast out to this module. The results produced by
this module can then be compared to precalculated results, as the dataset is completely known,
and the modules correctness can be inferred from this point.

The dataset is made up of multiple hosts connecting to both monitored and unmonitored IPs
and ports on the given emulated network. These tests were then run a second time excluding
the unmonitored IPs and ports in order to see the effect of these records on the module. Five
iterations of this are performed to ensure that the module produces consistent results. This has
to be the case, as the same values applied to the same formula will always yield the same values
in the statistical theory applied in this module.

A lead time of 25 records per port-IP pair was given to the module, as it needs to first generate
a dataset in which to calculate the mean and, more importantly, the standard deviations for the
given dataset. A dataset with one item will produce a mean of that single item with a standard
deviation of 0. This means that the next point which is not exactly the original point would be
flagged as an anomaly, as it will be an outlier; this result is fairly useless.

The given dataset window size for testing this module was 100 data points. This was seen to be
ample in order to say something meaningful about recent traffic to a given pair when applying
this test dataset.

6.6.2 Sudden Port Bandwidth Use Change Results

The initial batch of results generated over the five iterations of this testing proved to be 100%
accurate in terms of the precalculated results for the used dataset, with every iteration yielding
the same result at every point of each test iteration; this was deemed a success. Because of the

6.7. SOURCE IP ADDRESS ANOMALY DETECTION 155

Table 6.10: Error Rate for Initial 25 Data Points

Data Point Range Error (%)
1 - 5 84

6 - 10 76
11 - 15 36
16 - 20 8
21 - 25 0

lack of interesting points in these results, a change was made in the planned dataset, to see how
many records the module requires to have seen before it starts to produce accurate results.

This was done by removing the 25 record lead time per port-IP pair in order to collect a dataset
large enough to say something meaningful about subsequent data points. As expected, the mod-
ule flagged 78% of initial 10 records across all pairs as outliers, and thus anomalous. However
by the time all port-IP pairs had 21 data points the module was again accurate to that of the
preprocessed results for the dataset. The counts for error per record received per pair can be
viewed in Table 6.10.

With these results this module was seen to work correctly and as expected after enough data
points are collected for each port-IP pair. This value may vary from network to network, but
even in the off chance that the number of required records exceeds the 100 data point window
given for this dataset, this window size can be adjusted to suit such cases.

6.7 Source IP Address Anomaly Detection

The module that deals with detection of Source IP Address Anomalies is tested in this section.
As a recap of Section 5.6, this module pairs a NetFlow source node ID to a subnet which allows
geolocating of a network flow regardless of the source IP. This module uses this information
to then detect whether a network flow sourced from a network is legitimate or not, based on
whether the source IP falls within the subnet expected from that network. Testing whether this
module works or not is as simple as injecting spoofed source IP packets that are bound from an
internal network to an external network, as shown in Figure 6.23. If the source IP in the packet
is not that which belongs to the subnet of the internal network, the user should be notified.

6.7. SOURCE IP ADDRESS ANOMALY DETECTION 156

Internal
Network

G
at

ew
ay External

Network

Figure 6.23: Internal to External Network Flow

6.7.1 Environment

The network environment used was the same as that in Section 6.4 and can be referred to
in Figure 6.21. The reasons for this is that in the environment set up in Section 6.4 there
exists multiple networks each running NetFlow source nodes with unique IDs. Furthermore,
each internal network in the environment has its own subnet allocated to it; this is the ideal
environment to test this module.

The changes made will be that the bots running in these networks will continue operation as
per usual, however these systems will periodically transmit a packet with spoofed source IP
destined to the external network. This will generate a new outbound network flow which this
module will then be expected to detect as an anomaly.

6.7.2 Controlled Generation of Source IP Spoofing

As explained in Section 6.7.1, this testing will be performed through injection of spoofed net-
work traffic into legitimate network traffic created by the aforementioned bots. This spoofed
traffic’s IP addresses will be selected at random, outside of the subnet assigned to the network
in which the spoofed traffic is coming from.

Expected results for this testing will be detection that a network flow is indeed spoofed, this will
be done through comparison of ingress and egress interfaces, as well as the source IP address
seen. The second objective of this testing is to locate which network a spoofed network flow
originated from. This should be easily achievable through use of the source NetFlow node’s
unique ID assigned to it.

6.7.3 Controlled Generation of Source IP Spoofing Results

The graph shown in Figure 6.24 summarizes all that is to be said about this round of testing
in terms of the ability for this processor module to detect spoofed traffic. The 100% detection

6.8. MALWARE NETFLOW FINGERPRINTING 157

Figure 6.24: Success of Spoofed Network Flow Detection

Listing 6.10: Terminal Output of Spoof Detection Processor Module
1 . . .
2 [Okay] FSID 200; Source IP : 212.72.100.201
3 Des t ina t i on IP 180.149.132.47
4
5 [Warning] Anomaly detec ted on 200; Source IP : 54.186.76.208
6 Des t ina t i on IP 104.16.67.203
7 . . .

ratio is due to the simple fact that a packet’s source IP either belongs to a network, or it does
not. For this reason one can say with absolute certainty whether a packet is meant to be seen
at an ingress interface of a gateway or not. Referring to the terminal output of the processor
module used in verbose mode for debugging in Listing 6.10, one can see two selected logs one
after each other chronologically. The subnet assigned to FSID 200 was 212.72.100.0/24, thus
legitimizing the first log generated with source IP 212.72.100.201. However, the very next log
generated was a network flow with the source IP 54.186.76.208, which did not belong to FSID
200’s subnet. This was immediately detected and a warning generated for it. Furthermore, this
result shows that one can say that that spoofed network flow was generated from the subnet
attached to the ingress interface of the gateway that owns FSID 200.

6.8 Malware NetFlow Fingerprinting

This module sought to collect NetFlow logs generated by malicious network flows on a network,
and then analyse them for generating rule sets for use in Bolvedere to detect further attempts

6.8. MALWARE NETFLOW FINGERPRINTING 158

External
Network

Gateway/
NetFlow
Source

Switch

Sw
itc

h

Malicious
Host

Invulnerable
Host

Vulnerable
Host

Vulnerable
Host

Figure 6.25: Virtual Network Overview

of these attacks. For this reason this result section will be broken down into two major parts.
The first part will deal with the collection and analysis of NetFlow logs generated by controlled
malicious attacks in order to build rule sets to detect these attacks, and the second part of
these results will be targeted at the running of the automated Bolvedere system module that
implements these rule sets to detect these recorded malicious attacks.

6.8.1 Environment

These tests were all performed within a virtual environment. The basic configuration of the
virtual network this virtual environment used can be seen in Figure 6.25, and one can see that
hosts are broken up into 4 groups. These are listed below with a short description:

Malicious Hosts: These hosts launch malicious attacks on vulnerable and invulnerable hosts,
typically through the use of Metasploit or custom written code as to the documented ex-
ploitation attack vector.

Vulnerable Hosts: These hosts are built to be vulnerable to a monitored attack.

Invulnerable Hosts: These hosts are built to be made resistant to a monitored attack.

Gateway/NetFlow Source: This host acts as a gateway to an external network (advertises that
it is connected to the Internet) and also runs the NetFlow log generator to store the network
flows that pass through it. This host uses Softflowd to generate all NetFlow logs (Miller,
2016).

One can observe that, in order for the malicious host to communicate with a vulnerable or
invulnerable system, it has to first pass through the gateway system running NetFlow. This

6.8. MALWARE NETFLOW FINGERPRINTING 159

means that the network flows generated between these hosts can be fully logged and analysed
into rule sets at a later point.

6.8.2 NetFlow Logs and Rules Generated

The purpose of this section is to collect the NetFlow logs generated by Softflowd when observ-
ing the network flows caused by malicious attacks. The defining features of these generated
logs are then extracted and used to form rule sets that can discern further attempts of the attacks
that generated the network flow. The logs generated have been tabulated and can be referred
to in Tables 6.11 to 6.18. These results were gathered over 6 iterations, of which 3 iterations
were designed to be successful and 3 were designed to fail. The failures did not show a large
variance in results and so have been omitted but will still be discussed later in this section. Also,
due to the manner in which these results were collected there, is some variance. This is handled
through displaying the result as a range rather than a set value where necessary; this lines up
with the confidence level discussed in Section 5.7.

Terminology used in these results is explained below:

Attacker: The host that is launching the exploitation.

Target: The host which the attacker is attempting to exploit.

Victim: A third-party that is affected due to an Attackers exploit.

A, B and C: These refer to randomly assigned ports by the operating system when a connection
is created without being told to use a specific port.

N: This refers to all consecutive numbers after the last until process is terminated.

X and Y: These refer to counters of varying size relating to packet and byte counts.

Exploit: Used to define the stage of the exploit in which the exploitation is being attempted.

Payload: Used to define the stage of the exploit in which the payload is being transferred and
executed on the system.

Runtime: Used to define the stage of the exploit in which the payload is running.

160

Table 6.11: NetFlow Logs: Successful ms08_067_shell Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A 445 43 - 47 9,900 - 10,100
2 Exploit target → attacker 445 A 42 - 44 7,600 - 7,700
3 Payload attacker → target B Set in Exploit 8 695
N Runtime Bi-Directional B/C Set in Exploit X Y

Table 6.12: NetFlow Logs: Successful ms08_067_vnc Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A 445 43 - 47 9,900 - 10,100
2 Exploit target → attacker 445 A 42 - 44 7,600 - 7,700
3 Payload attacker → target B Set in Exploit 278 416,549
N Runtime Bi-Directional B/C Set in Exploit X Y

Table 6.13: NetFlow Logs: Successful java_rmi_server Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A 1099 6 - 7 358
2 Exploit target → attacker 1099 A 7 567
3 Payload attacker → target A Set in Exploit 7 7,400 - 7,500
N Runtime Bi-Directional A/B Set in Exploit X Y

Table 6.14: NetFlow Logs: Successful distcc_exec Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A 3632 7 656
2 Exploit target → attacker 3632 A 4 276
3 Payload attacker → target B Set in Exploit 4 216
N Runtime Bi-Directional B Set in Exploit X Y

Table 6.15: NetFlow Logs: Successful samba_symlink_traversal Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A 445 10 975
2 Exploit target → attacker 445 A 8 790 - 800
N Runtime Bi-Directional B Set in Exploit X Y

Table 6.16: NetFlow Logs: Successful samba_usermap_script Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A 139 7 733
2 Exploit target → attacker 139 A 4 356
3 Payload attacker → target B Set in Exploit 3 164
4 Payload target → attacker Set in Exploit B 2 135
N Runtime Bi-Directional B Set in Exploit X Y

6.8. MALWARE NETFLOW FINGERPRINTING 161

Table 6.17: NetFlow Logs: Successful unreal_ircd_3281_backdoor Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A Set in Exploit 3 164
2 Exploit target → victim Set in Exploit A 2 135
N Runtime Bi-Directional A Set in Exploit X Y

Table 6.18: NetFlow Logs: Successful ntp_mon_list Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A 123 1 60, 90 or 234
2 Exploit target → victim 123 A up to 10 up to 4,460

6.8.3 Results

Unsurprisingly, the first point to note is that it is the attacker that always starts the communi-
cations in these exploits. The method is usually performed through fingerprinting a target to
identify which services are running on a system (these logs aren’t displayed). Once a vulner-
able service has been identified, the exploit is then launched and, if successful, the payload is
then uploaded to the vulnerable host and an attacker gains access to the target in their chosen
method. As these vulnerabilities are found in services running on a host and these services run
on specific ports, it is to note that these specific ports are what an exploit targets.

A significant point that arose when an exploit was repeated was that the initial NetFlow log’s
packet count, byte count and service port were consistent (the service port consistency is im-
portant as some services utilize multiple ports). This means that one can say that for a new
NetFlow log between two hosts, if a set port is connected to that receives a set packet count
with set total byte count, one should check that targeted host for an occurrence of an attack
that is represented by this signature. Although one should also note that as a NetFlow log only
contains the metadata of a network flow, a perfectly legitimate network flow could also cause
this NetFlow log to be generated.

Some finer details to notice are that MS08-067 (exploitation of Microsoft RPC service) ex-
ploitations tend to have their packet count and byte count vary more than exploits utilizing
other vulnerabilities in these results. Another point is that the NTP monitor list attacks were
generated using 3 separate monitor list request packets, these were of size 60, 90 and 234 as
found in the wild (Rudman and Irwin, 2015, 2016). As this attack is an UDP-based reflection
attack, the attacker did not receive any feedback as to success or failure of their attack, and in-
stead only a response was generated by an NTP server to the victim which the attacker intended
to DDoS. For this reason the attacker also requires the use of a third-party discovery tool, such

6.8. MALWARE NETFLOW FINGERPRINTING 162

as Ping, to see whether the victim was still reachable or not (these ping logs were not shown as
they are not part of the exploit tested).

The failures of these exploits for the most part resulted in a TCP reset at some point in the
exploit attempt. The resulting NetFlow logs depict this with an initial flow from the attacker
with a response flow of 1 packet that is 46 bytes in length. The only two exceptions to this were
the MS08-067 based attacks, which showed a response flow from the target before a follow up
flow was generated in order to access the payload which was responded to with a flow of the
aforementioned TCP reset. The second was the NTP-based attacks which, because they were
UDP-based, showed no response to the exploit of any form.

6.8.4 Rule Sets Generated

Tables 6.11 to 6.18 in the results section, Section 6.8.3, are in the format of the rule sets that will
be given to the Bolvedere module that will attempt to discern these exploits7. It is notable that
the rules outlined by these tables require far fewer checks in an attempt to discern a network
flow than deep packet analysis does; this is due to the fact that every packet in a network flow
doesn’t get analysed, but rather it is the existence of a network flow that matters most. Coupling
this with the sheer reduction in the amount of throughput the overall system has to handle, as
a NetFlow log only contains the metadata of a network flow, this allows for multiple NetFlow
source nodes to sink their generated logs into fewer hosts running Bolvedere than the equivalent
amount of hosts required for a deep packet analysis solution.

6.8.5 Automated Module in Action

In order to check proper functionality and usability of this Bolvedere module, one has to pro-
vide control data for the results to be compared against. For this reason legitimate network
traffic is required to the services running on the vulnerable host. In this testing, the legitimate
connections and use of the services on the vulnerable host was performed by bots. These bots
were programmed to perform simple tasks that required use of these services at random times,
ranging between 500 milliseconds and 10 seconds. One must note that the vulnerable target
host was running every exploitable service in which the rule sets were generated for allowing
for ease of testing8. Furthermore, Microsoft Windows services were made available on this sys-
tem through use of a Windows XP virtual machine, running on the vulnerable host configured

7The tables were developed this way to save space.
8This system is provided by RAPID7 and is available for download at

https://information.rapid7.com/metasploitable-download.html

6.8. MALWARE NETFLOW FINGERPRINTING 163

Listing 6.11: Terminal Output of Bolvedere Module
1 [10.42.0.45:45677 −> 10.42.0 .33:445 ,
2 Size :9991 ,
3 Count :44] : P o t e n t i a l ms08_067_shell
4
5 [10.42.0.13:34782 −> 10.42.0 .33:445 ,
6 Size :15232 ,
7 Count :113] : Seems L e g i t
8
9 [10.42.0.68:40029 −> 10.42.0 .33:123 ,

10 Size :60 ,
11 Count : 1] : P o t e n t i a l ntp_mon_l i s t
12
13 [10.42.0.13:37087 −> 10.42.0 .33:139 ,
14 Size :23011 ,
15 Count :146] : Seems L e g i t
16
17 [10.42.0.103:28928 −> 10.42.0 .33:445 ,
18 Size :18002 ,
19 Count :174] : Seems L e g i t

to bridge its network interface with that of the vulnerable host system. At runtime, the bots
were first enabled to start communicating with the vulnerable host, and then the attacks were
manually launched and results observed through the terminal output of the Bolvedere module.

Testing occurred over 124 separate connections, consisting of multiple network flows depending
on the task at hand. The success or failure of a result was considered on a per connection
bases, and were discerned as to whether a connection was malicious or not by the NetFlow logs
generated by the entire connection. Terminal output of this module can be referred to in Listing
6.11 which includes a false positive regarding the detection of a ntp_mon_list attack. This was
in fact a legitimate request for the monitor list from the NTP server. Referring to Figure 6.26
one can see the results produced by these 124 separate connections.

Of these 124 connections 117 were successfully identified as either a malicious or legitimate
connection, where the only 7 failures were false negatives produced when trying to determine
whether a monitor list request from the NTP service was legitimate, or part of a DDoS attack.
This means that the rule set produced for this Bolvedere module is 94.355% accurate when
attempting to discern the exploits recorded in Tables 6.11 to 6.18.

These results suggest that detection of malicious activities, when legitimate network flows
closely resemble that of malicious flows, becomes difficult. In the case of ntp_mon_list, this is
because a legitimate request is used to exploit an amplification attack on a victim, which is near
impossible to detect against other legitimate requests. For this reason it is suggested that fur-
ther revisions take into account previous connections made by an IP address, however potential

6.9. SUMMARY 164

Figure 6.26: Comparison of Success versus Failure of Network Flow Identifications

memory requirements of the host system should be considered before this step is taken.

Considering the high level of accuracy produced by this module when considering the given
rule set and, non-ntp_mon_list exploit and legitimate connections, these results hold promise
into extension to detection of other malicious connections. In all, the fact that no malicious
connections were missed, even though there were false positives, means that this Bolvedere
module has served its purpose successfully.

6.9 Summary

This chapter sees the testing of the Bolvedere base system (comprised of both collector and pub-
lisher) and processor modules designed and implemented in Chapter 5. Each section outlines
what was tested, why it was tested, and the environment in which testing occurred. The testing
started in Section 6.1 by looking at the correctness of the collector, publisher and then base
subsystems of Bolvedere. Once this was determined to be working in a correct and expected
manner, which was important as every module relies on the correctness of the base system,
testing of each processor module then occurred.

Module testing starts in Section 6.2 with the R-based neural network module, which sought
to detect DDoS attacks. This was followed by testing of the Fourier analysis and then the
reputation analysis modules in Sections 6.3 and 6.4. Testing of port anomaly detection modules
was then performed in Sections 6.5 and 6.6. Source IP anomaly detection was tested in Section

6.9. SUMMARY 165

6.7 before finally drawing the chapter to a close with Section 6.8 which tested the vulnerability
exploit detection module.

In all, these modules all worked in their expected manner given their configuration, and in the
case of the neural network, its training set. Each module showed strengths in its targeted scope,
except for the Fourier analysis module, which demonstrated its shortcomings when dealing
with a dataset in which the time domain (which Fourier analysis bases its calculations on) is
aggregated by the NetFlow protocol. This was an expected outcome of such a processing.

In all, Bolvedere in its entirety was proven to work in the manner expected under a controlled
environment, which concluded success in itself, and showed promise for real-world application.
An implementation of Bolvedere in a real-world application follows this chapter in Chapter 7.

7
Real-World Application

THIS chapter demonstrates the capability of Bolvedere to interact with real network data.
The reason for this is that, up until this point in this document, datasets have been
crafted in a synthetic manner to reflect specific recorded characteristics, or have been

selectively filtered out of existing datasets in a controlled manner. Even though one can combine
these datasets and include real-world traffic into a test dataset, the results concluded from them
in terms of the real-world success of Bolvedere will never be as conclusive as an actual test on
real network data.

Section 7.1 starts by showing basic metrics around the recorded dataset, as well as the basic
structure of the network. This chapter leads on with Sections 7.2 and 7.3 discussing the rate at
which one can expect to process NetFlow records using Bolvedere, followed with a break down
of how long each processor module takes to process data. It was noted that the rise of the Mirai
botnet (Kolias et al., 2017) occurred during the 17 months the dataset was recorded, and details
of Mirai are brought forth in Section 7.4.

The neural network DDoS detection module is the first of Bolvedere’s processor modules that
is tested, and analysis and discussion of its findings are presented in Section 7.5. Results con-
cerning port scan detection and detection of sudden changes in bandwidth use of ports and their

167

7.1. DATASET 168

Table 7.1: Network Totals Overview

Index Year Month Packet Count Traffic (GB) Flow Records
1 2015 Jul 6,981,414,596 1,363 114,191,149
2 Aug 5,356,590,331 887 115,368,660
3 Sep 8,914,154,692 2,099 166,142,920
4 Oct 9,206,301,273 2,239 171,567,671
5 Nov 10,454,546,950 2,047 191,432,860
6 Dec 2,226,338,868 1,121 51,819,800
7 2016 Jan 7,835,083,592 1,920 133,233,053
8 Feb 9,325,696,716 2,226 193,933,750
9 Mar 10,150,001,770 1,975 250,342,199

10 Apr 8,513,790,538 1,775 224,834,832
11 May 13,718,167,671 2,811 327,872,388
12 Jun 11,196,382,368 2,179 262,838,935
13 Jul 12,994,489,128 2,379 201,854,916
14 Aug 7,535,088,754 1,352 170,690,519
15 Sep 6,653,231,772 1,612 132,865,240
16 Oct 13,035,429,739 3,703 250,458,526
17 Nov 5,103,117,299 1,387 102,083,158

Total 149,199,826,057 33,082 3,061,530,576

associated modules is then analysed in Sections 7.6 and 7.7 respectively. Detection of source
IP anomalies is discussed in Section 7.8. The final module used in monitoring the recorded
network is the vulnerability fingerprint detection module, and its results are detailed in Section
7.9. This chapter then draws to a close with a brief discussion of the failure in application of
the Fourier analysis module in Section 7.10.

7.1 Dataset

The real-world dataset under analysis was collected entirely by nfcapd, which was configured to
use NetFlow v9 as its logging protocol. Data was collected over a 17 month time period from of
the beginning of July 2015 to the end of November 2016; there were no significant interruptions
during this time frame. The dataset totals 33 TB which averages to a throughput rate of 750.787
KBps. A total of 149,199,826,057 packets were seen during this time frame, amounting to
3,386 packets per second. The average packet size for the dataset is 227 bytes. The number of
network flows recorded in this dataset was 3,061,530,576 unique NetFlow version 9 network
flow records. This information is tabulated in Tables 7.1 and 7.2 and has also been graphed in

7.1. DATASET 169

Table 7.2: Network Averages Overview

Index Year Month Packets/Sec Kilobytes/Sec Flows/Sec
1 2015 Jul 2,693 526.141 44
2 Aug 2,066 342.322 44
3 Sep 3,439 809.927 64
4 Oct 3,551 863.850 66
5 Nov 4,033 789.753 73
6 Dec 858 432.555 19
7 2016 Jan 3,022 741.029 51
8 Feb 3,597 859.099 74
9 Mar 3,915 761.992 96

10 Apr 3,284 684.852 86
11 May 5,292 1,084.755 126
12 Jun 4,319 840.836 101
13 Jul 5,013 918.135 77
14 Aug 2,907 521.815 65
15 Sep 2,566 622.124 51
16 Oct 5,029 1,428.958 96
17 Nov 1,968 535.228 39

Average 3,386 750.787 69

Figures G.1, G.2 and G.3, which can be found in Appendix G as to better visualize the numbers
presented. The fields recorded in each record are listed in Table 7.3, the order present within
the template record.

The dataset was processed in one month chunks, and measures were taken to ensure that flows
that extended months leading into the one being processed were included in the dataset in order
to keep the stateful nature of NetFlow true. Python-based processor modules used in this testing
ran using the Pypy Python interpreter (Biham and Seberry, 2006). The total time taken to collect
all processor modules’ results was 25 days.

7.1.1 The Network

Blinding was used on the all data collected from the monitored network. This was done due
to privacy concerns for the users of the given network. The monitored network existed with
a single /24 subnetwork block, and so a simple blinding has been performed for reporting in
this document. The IPv4 block used for this remapping was TEST-NET-1 (192.0.2.0/24) as de-
fined by RFC 5735 (Cotton and Vegoda, 2010) which is defined specifically for documentation

7.1. DATASET 170

Table 7.3: Softflowd’s Recorded IPv4 Template Fields In Order

Field Name Field description
IP_SRC_ADDR IPv4 source address
IP_DST_ADDR IPv4 destination address
LAST_SWITCHED System uptime since the last packet of this flow was switched
FIRST_SWITCHED System uptime since the first packet of this flow was switched
BYTES Byte count
PKTS Packet count
INPUT_SNMP Input interface index
OUTPUT_SNMP Output interface index
L4_SRC_PORT TCP/UDP source port
L4_DST_PORT TCP/UDP destination port
PROTOCOL IP protocol used
TCP_FLAGS Count of all flags seen for this flow
IP_PROTOCOL_VERSION Version of the IP protocol used

and example code. Additionally, TEST-NET-2 (198.51.100.0/24) is used for IPs not belonging
directly to the monitored network, but may still require protection of privacy in some form.

The monitored network’s core router connects directly to the South African National Research
Network (SANReN) network1 through a firewall on which nfcapd was executed. Six schools
were connected to SANReN through the core router, each having their own gateways which
implemented NAT to/from their internal networks. Each school’s network was named according
to a random country name generator2 for ease of reference in later text. The names of each
subnet can be found in Table 7.4 accompanied by their allocated subnetworks according to
their original subnetwork size and each of their default gateways. A diagram depicting the
configuration of this monitored network can referred to in Figure 7.1. Permission was obtained
by the school’s consortium before collection of this dataset took place.

External networks monitored in this dataset, these are networks found in the “External Net-

work” block in Figure 7.1, were not blinded throughout the results presented in this chapter.
The estimated user base of all six school networks combined is around 2,000 users. NetFlow
monitoring performed by nfcapd was done on the interface connected to the external network

(SANReN).

1http://www.sanren.ac.za/
2http://www.fantasynamegenerators.com/country_names.php

171

Table 7.4: Network Name and Subnet List

Pseudo-Name Subnetwork /x Primary Gateway IP Size
Firewall 192.0.2.0/30 - 4
Core 192.0.2.64/26 - 64
Seblor 192.0.2.128/27 192.0.2.130 32
Aplana 192.0.2.160/27 192.0.2.162 32
Ocron 192.0.2.192/28 192.0.2.194 16
Ocrington 192.0.2.208/28 192.0.2.210 16
Juwhiestan 192.0.2.224/28 192.0.2.226 16
Brevania 192.0.2.240/28 192.0.2.242 16

Firewall
192.0.2.2/30

(NetFlow Monitor)

Core
192.0.2.64/26

External
Network

Seblor
192.0.2.128/27

Aplana
192.0.2.160/27

Ocron
192.0.2.192/28

Ocrington
192.0.2.208/28

Juwhiestan
192.0.2.224/28

Brevania
192.0.2.240/28

NAT 1

NAT 2

NAT 3

NAT 4

NAT 5

NAT 6

Network Flows
Monitored Here

Figure 7.1: Network Overview

7.2. COMPLETENESS TESTING OF BOLVEDERE 172

Host 1 Host 2External
Network

Host 3

Fourier Analysis

Host 4

Neural Network
DDoS Detection

Host 5

Port Scan Detection

Host 6
Sudden Port
Bandwidth

Change Detection

Host 7

Source IP Anomaly
Detection

Host 8

Vulnerability
Fingerprint Detection

Collector Publisher

Figure 7.2: Host Configuration for 17 Month Data Processing

7.2 Completeness Testing of Bolvedere

In this section the ability for Bolvedere to function correctly in a distributed manner, as well
as its ability to process all data on the given link, is reasoned. These two aspects of Bolvedere
are important, as the former allows for leverage of modern multi-threaded processor and dis-
tributed computational architectures, where as the latter is required in order for Bolvedere to
be completely accurate in its capacity3. If Bolvedere was unable to process every record that it
received it would lose evidence of events which could be required to correctly classify a record.

7.2.1 Distribution

The testing environment used followed the structure shown in Figure 7.2. One can see from
this configuration that each module was distributed onto a separate host which all subscribed
to a common publisher (one can refer back to Figure 4.1 for an overview of the Bolvedere
architecture). Throughout testing, all modules running on the 6 separate hosts (Hosts 3 to 8)

3if data is missed it could lead to a loss of accuracy if a processor module requires previous data in order to
calculate a later result (stateful in nature)

7.2. COMPLETENESS TESTING OF BOLVEDERE 173

received all records published by the publisher and processed them according to the module on
the host. This was validated through comparison of the NetFlow data logs received by each
processor module to the number of NetFlow data logs in the entire dataset.

One can also see that the NetFlow records were replayed from the External Network into the
collector, which then passed on its results (this being the re-ordered data logs discussed in
Section 4.3) on to the publisher. All three of these components mentioned also ran on their own
separate hosts, further justifying the ability for Bolvedere to run in a distributed manner.

Although these tests were performed through a NetFlow replay program (nfreplay4), this pro-
gram replayed the NetFlow packets as one would receive them on a live interface. This further
justifies Bolvedere’s ability to run on a live network, which was proven in Chapter 6’s initial
functional testing. The reason for using this replay mechanism is due to two reasons. The first
is that this system did not exist 17 months prior to its completion and so could not be run live
for 17 months to get these results. The second reason is simply that it is faster to stream the data
through the system in this mode than waiting 17 months for the data set to be generated. This
would simply take too long for the results that are required by this research, as this implementa-
tion needs to remain current and waiting over a year for a result would severely hinder this fact.
It must be noted at this point that this means that Bolvedere can be used to analyse historical
data.

7.2.2 Correctness

The maximum throughput Bolvedere’s base system can handle can be tested by ensuring that,
for all records sent by host running nfreplay to the collector, the required records by the pub-
lisher are distributed out of the publisher to the processor modules in the order required by the
publisher. A monitoring system was set up with 2 network interfaces listening to all traffic sent
by nfreplay and sent by the publisher to the modules, Figure 7.3 depicts this configuration. The
monitoring system was also configured to know the order in which the collector passed records
onto the publisher, as well as which fields of the records were published by the publisher. This
meant that the monitoring system could check that for a given input, the output generated by
the monitored system was correct.

This was done by pregenerating the final correct output of the publisher for every NetFlow
record generated by nfreplay beforehand. From here, when a NetFlow data record was trans-
mitted by nfreplay, the known result could be looked up and then compared to the output by the
monitored publisher.

4http://nfdump.sourceforge.net/

7.3. MAXIMAL THROUGHPUT 174

Host 1 Host 2

Host 9 (Monitor)

External
Network

Host 3

Fourier Analysis

Host 4

Neural Network
DDoS Detection

Host 5

Port Scan Detection

Host 6
Sudden Port
Bandwidth

Change Detection

Host 7

Source IP Anomaly
Detection

Host 8

Vulnerability
Fingerprint Detection

Collector Publisher

Collector Publisher

Figure 7.3: Host Configuration for 17 Month Data Processing with Monitor

The result of this testing was that of all NetFlow packets that were duplicated and introduced
into both the Bolvedere base system and the monitoring system, none were dropped. Further-
more, the expected result for each processed NetFlow data record produced by the publisher was
identical to the preprocessed expected output. From this one can conclude that the Bolvedere
base system works as intended.

7.3 Maximal Throughput

Nfreplay has an option field for delay between transmission of NetFlow record packets of which
each record packet contains 30 records (Claise, 2004). The point of this section is to test the
minimum delay between record packets each module can handle before record loss occurs.
Each module had record counting enable, thus allowing them to count the number of records
they each successfully processed. This number could then be used against a dataset of known
record count to see whether record loss had occurred. Each module was tested separately.
The FFT processor module was omitted from this testing due to the fact that it performs batch
processing every 5 minutes of runtime. The batch processing of this module stores up to the
previous 24 hours worth of NetFlow logs, and during the entirety of this 17 month run did not

7.3. MAXIMAL THROUGHPUT 175

Table 7.5: Minimum Delay Between Processing a NetFlow Records by Module

Module Minimum Delay (ms)
Neural Network
DDoS Detection 3.897
Port Scan Detector 44.441
Sudden Port Bandwidth
Change Detection 6.535
Source IP Anomaly Detection 3.771
Vulnerability Fingerprint
Detection 5.076

see a batch take longer than 5 minutes to complete.

Testing of a module would start with nfreplay set to 100 ms between each data record packet.
If the results of the test showed that all logs transmitted were received and processed by the
processor module. The delay between the data record packets would then be reduced by 10 ms.
This process would be repeated until record loss occurred. At this point the halfway delay time
would be used between the last successful test iteration, and the one that just failed. This would
be repeated until a successful iteration could be stated with a delay to third decimal place (this
process can be directly compared to a binary search (Thomas et al., 2009)).

Table 7.5 shows the minimum delay that each module can be given data record packets at before
record loss occurs. It is worth noting that in none of these test iterations was the base system a
bottleneck in the processing of records through the entire system.

The total number of NetFlow records generated over the entirety of the dataset was 3,061,530,576
which averages 68.406 records per second. This totals an estimated 0.00287 Mbps attributed
to NetFlow Records5. Given that this entire 17 month dataset was sped up to be processed
within a 25 day run time (due to the need to cater for the Port Scan Detection module’s delay
between record packets), this meant that the number of NetFlow records Bolvedere would have
had to deal with per second was 1,476 totalling an estimated throughput of 0.0619 Mbps due to
NetFlow records.

With respect to this network, the total bytes transferred amounted to 33,083 GB. This means
that on average there were 11,603 bytes of network traffic counted per record packet. Using
this result, one can estimate that Bolvedere, in the configuration of this testing, can deal with

5This is due to a recorded IPv4 data record being 42 bytes in length but a template record varying in size
depending on the template being transmitted.

7.4. MIRAI’S EFFECT 176

NetFlow records generated on a network that produces an average of 134 Mbps of throughput.
Removing the Port Scan Detection module, Bolvedere could effectively be run on a network
with an average of 951 Mbps of throughput. This equates to 10,040 NetFlow records per second.

A simpler way to look at these numbers is to realise that 17 months of data was processed
in just 25 days; this means that 518 days of data was processed in 25 days. Effectively this
configuration of Bolvedere for this network can receive 20.72 times more records on average
per day before record loss would occur.

There is no definite way to calculate the number of records that Bolvedere can process for a
given network without actually running that network’s NetFlow records into Bolvedere, how-
ever these results serve as a good estimate. This is because each network will have different
requirements for monitoring, and thus run different modules in different configurations that af-
fect how long they take to process a record. On top of this, the fields that are recorded in the
NetFlow records can vary. The results of these tests do however suggest that for this config-
uration, meaningful results can be discerned at a throughput approaching 1 Gbps. With more
capable host hardware, this system can process NetFlow records generated by a network which
produces more than 1 Gbps of traffic. To quantify this amount, this is 125 MB/s of sequential
data (Seagate, 2011).

7.4 Mirai’s Effect

Focussing on Tables 7.1 and 7.2 a distinct spike of network flows, packets and bytes transferred
in May and October of 2016 is discernible6. A point of interesting here is that October 2016
sees the largest byte count of any other month in this dataset, and this will now be addressed.

Mirai (Section 2.5.6) was first discovered in August 2016 and performed two of its largest
attacks at the end of September (Krebs, 2016) (targeting KrebsOnSecurity7), and middle of
October 2016 (Bonderud, 2016) (targetting OVH8 and DynDNS9). This would better account
for the spike seen in October 2016 in the aforementioned tables. As stated in Section 2.5.6, the
Mirai attack vector is that of telnet (port 23/TCP and port 2323/TCP) where it attempts to login
into the targeted device using insecure login credentials.

6Please note that this work is previously published as part of Southern Africa Telecommunication Networks
and Applications Conference 2018 (Herbert and Irwin, 2018).

7https://krebsonsecurity.com/
8https://www.ovh.com/
9https://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/

7.5. DDOS DETECTION 177

Listing 7.1: TShark Logs for Telnet Login
1 1 0.000000 196.198.0.1−>196.198.0.2 TCP 74 55020−>23 [SYN] . . .
2 2 0.000024 196.198.0.2−>196.198.0.1 TCP 74 23−>55020 [SYN , ACK] . . .
3 3 0.000047 196.198.0.1−>196.198.0.2 TCP 66 55020−>23 [ACK] . . .
4 4 0.000154 196.198.0.2−>196.198.0.1 TELNET 93 Telnet Data . . .
5 5 0.000166 196.198.0.2−>196.198.0.1 TCP 66 23−>55020 [ACK] . . .
6 6 0.004727 196.198.0.2−>196.198.0.1 TELNET 78 Telnet Data . . .
7 7 0.004744 196.198.0.1−>196.198.0.2 TCP 66 55020−>23 [ACK] . . .
8 8 0.004794 196.198.0.2−>196.198.0.1 TELNET 105 Telnet Data . . .
9 9 0.004804 196.198.0.1−>196.198.0.2 TCP 66 55020−>23 [ACK] . . .

10 10 0.004893 196.198.0.2−>196.198.0.1 TELNET 145 Telnet Data . . .
11 11 0.005215 196.198.0.2−>196.198.0.1 TELNET 69 Telnet Data . . .
12 12 0.005308 196.198.0.2−>196.198.0.1 TELNET 69 Telnet Data . . .
13 13 0.005494 196.198.0.2−>196.198.0.1 TELNET 69 Telnet Data . . .
14 14 0.005599 196.198.0.2−>196.198.0.1 TELNET 69 Telnet Data . . .
15 15 0.005616 196.198.0.2−>196.198.0.1 TELNET 86 Telnet Data . . .
16 16 0.043801 196.198.0.1−>196.198.0.2 TCP 66 55020−>23 [ACK] . . .
17 17 0.043820 196.198.0.2−>196.198.0.1 TELNET 78 Telnet Data . . .
18 . . .

Listing 7.1 shows a connection and successful login to a telnet server in a controlled environ-
ment. The columns of interest in this listing are columns 3 and 5 which depict the IPs involved
in the connection and the size of each packet transmitted respectively. The login process for
telnet, and sustained connection if a login is successful, consists of multiple small packet trans-
missions from the IP connecting to the device running the telnet server. This behaviour mimics
the behaviour which the DDoS detection processor module’s neural network uses to identify the
SYN storms it was trained to detect (Section 5.1). This might account for a spike of detected
DDoS attacks in October 2016 (Section 7.5).

Successful infection of a device by Mirai would result in it being added to a botnet which could
in turn be used for performing a DDoS attack at a target. Devices in DDoS attacks typically
spoof their source IP in order to prevent their targets from discovering the location of their
device, or adding firewall rules to deny traffic from an attacking device (Jin et al., 2003). If the
school networks get infected by Mirai, this may lead to geographic anomalies being detected
by the geographic anomaly module (Section 7.8).

7.5 DDoS Detection

This section sees use of the same neural network trained in Section 6.2.1. To summarize how
this neural network classifies potential DDoS attack NetFlows after it was trained, one can refer
to Table 7.6 which was previously stated in Section 6.2.1:

7.5. DDOS DETECTION 178

Table 7.6: Neural Network Classifiers

Classifier Description
Lower packet count Counts below 2,500 cause the resultant to increase even

when the average packet size is low.
Higher average packet size Found to increase the resultant from around 285 bytes

and up.
Most common protocol seen used TCP was noted to act as a deciding factor when edge

cases were presented.
Number of unique ports Has a minor effect on the result, but more unique ports

cause an increase in the result.
Number of unique IPs This had a negligible effect.

Classification of a set of NetFlows in this manner can lead to many false positives in real-world
networks. The main contributing factor for this concern is that the packet count has the greatest
weight on whether a set of NetFlows to a destination IP is part of a DDoS attack, or not. Some
common protocols that use low packet counts in their entire communications are that of DNS
(due to their single request, single response nature) and smaller web pages. Given that the
network that was monitored is primarily used by school going children, it is expected that there
will be a lot of web browser traffic, and thus DNS traffic and web pages. Furthermore, the fact
that there are six networks positioned behind NATs will result in many source IPs destined to
the few IPs held by the NAT gateway hosts.

To compound this problem, due to the nature in which NAT is implemented, external hosts
responding to internal hosts of the NAT would result in the NAT’s IP receiving many responses
from many IPs to many ports (due to responses to multiple source ports used by a single IP to
perform NAT). This would cause an increase in the resultant value from the neural network.

Tables 7.7 and 7.9 show the results collected by this neural network. The first thing to notice
is that in every month there is apparent evidence of DDoS attacks. This is to be expected, as
even if DDoS attacks were not present in this dataset, there will definitely be false positives
generated simply by the students using the network.

Figures 7.4 and 7.5 are the DDoS detection counts per hour for the month of October 2016
depicted as a continuous line graph in Figure 7.4, and each day overlaid for the first 28 days of
October 2016 in Figure 7.4. These two graphs provide strong evidence pointing towards most
of the results produced being false positives.

The first point to note is in Figure 7.4 where the data shown is cyclic by nature with a period
of 24 hours. This is better shown by overlaying each 24 hour period on top of each other in

179

Table 7.7: DDoS Attacks Detected by Real Use Case

Year Month Detection Count Detections/Hour
2015 Jul 39,102,171 52,556

Aug 33,992,405 45,688
Sep 29,238,349 40,608
Oct 42,979,576 57,768
Nov 41,831,870 58,099
Dec 24,396,484 32,790

2016 Jan 35,319,736 47,472
Feb 51,485,583 73,973
Mar 55,934,629 75,180
Apr 41,400,378 57,500
May 58,989,501 79,286
Jun 60,366,972 83,843
Jul 79,289,562 106,571
Aug 82,752,887 111,226
Sep 66,232,880 91,990
Oct 82,405,544 110,760
Nov 61,271,830 85,099

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 100 200 300 400 500 600

D
D

o
S
 I
d
e
n
ti
fi
ca

ti
o
n
 C

o
u
n
t

Hour of Day Oct 2016

DDoS Identification Count per Hour from 1st to 4th Oct 2016

Figure 7.4: DDoS Attacks Detected by Hour in October 2016

7.5. DDOS DETECTION 180

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 5 10 15 20

D
D

o
S
 I
d
e
n
ti
fi
ca

ti
o
n
 C

o
u
n
t

Hour of Day Oct 2016

DDoS Identification Count per Hour from 1st to 4th Oct 2016

Figure 7.5: DDoS Attacks Detected by Overlaid Days in October 2016

Table 7.8: South African Public School Terms

Term Start Date End Date Weeks School Days
1 13 January 18 March 10 48
2 5 April 24 June 12 55
3 18 July 30 September 30 53
4 10 October 7 December 9 43

Figure 7.5. This is typical of a network with a high human user base, and the detection rates of
the neural network following this trend strongly suggest that the inputs that are being classified
as DDoS attempts by the neural network are due to legitimate human traffic (Willinger et al.,
1998; Jo et al., 2012).

Aligning the depicted data with the public school holidays in South Africa found in Table
7.81011, shows further evidence that the DDoS detections are due to human interaction with
the network. The forth school term starts on the 10th of October and one will note in Figure
7.4 that traffic picks up just after the 100th hour; this is the 5th of October 2016 which is a
Wednesday. This suggests that the increase of detections is related to the students returning to
residences for the start of a new term.

What one should note at this point is that the detections for the first 4 days of October (marked
up in red in Figure 7.5) are most likely not due to human interaction on the network. This means
that the potential legitimate DDoS detection count per hour for this month is closer to 35,000

10This is a safe deduction as SANReN is based in South Africa.
11http://www.schoolterms.co.za/2016.html

7.5. DDOS DETECTION 181

 260000

 280000

 300000

 320000

 340000

 360000

 380000

 400000

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96

D
D

o
S
 I
d
e
n
ti
fi
ca

ti
o
n
 C

o
u
n
t

p
e
r

H
o
u
r

Hour in Oct 2016

DDoS Identification Count per Hour from 1st to 4th Oct 2016

Figure 7.6: DDoS Attacks Detected in Days 1 to 4 of October 2016 by Hour

detections per hour than the recorded spikes of above 80,000. This number is still fairly large,
and the fact that it is continuous for the entirety of the month with no response, supports the
fact that a large portion of these detections are also false positives.

In this 4 day time period 53.7% of inbound traffic is sourced from port 443/TCP and a further
27.1% of inbound traffic comes from port 80/TCP. These ports belong to HTTPS and HTTP
respectively and make up 80.8% of all inbound traffic. This means that more than 80% of traffic
entering the NATs’ internal networks are due to general web browsing, and thus most likely
human interaction. This activity could be due to remaining staff that reside on campus, or due
to the holiday being only 1 week long and students that chose to stay at school for the duration
of this holiday. This is a possibility that is supported by the same 24 hour cyclic nature12 found
in these four days monitoring when referring to Figure 7.6. The problem with these conclusions
is that the largest contributor of network traffic is Seblor which follows a 3 term school year.
This format does not align its holidays with the 1st to the 4th of October 2016. Digging deeper
into the original NetFlow logs sees no conclusive evidence of what may have caused this lull in
network traffic.

Table 7.9 serves to give an overview of the top 10 targets of apparent DDoS attacks detected
by this processor module. It is no surprise that 8 of the top 10 belong to NAT gateways to the
schools’ internal networks, and this expected behaviour verifies the correct functionality of this
module. As previously stated, the process of the NAT performing an internal IP map to one
of its ports, and performing the proxy request using the NAT’s own IP, means that all relevant
responses from the external network will be destined to the NAT’s IP.

12Although to a much lesser degree.

7.5. DDOS DETECTION 182

Table 7.9: Detected DDoS Attack’s Top 10 Targets over 17 Months

IP Owner Detection Count
192.0.2.130 Seblor 122,903,123
192.0.2.78 Core 85,333,109
192.0.2.80 Core 39,033,904
192.0.2.190 Aplana 36,022,383
192.175.48.42 DNS-OARC 31,550,528
192.175.48.6 DNS-OARC 31,537,835
192.0.2.210 Ocrington 18,006,122
192.0.2.162 Aplana 14,997,032
192.0.2.167 Aplana 12,850,742
192.0.2.170 Aplana 12,648,895

What this effectively means is that no IP on the NAT’s internal network should ever be seen in
the external network, but instead the NAT’s IP will always be used as a source and destination.
This has the side effect that any group of network flows that are viewed to be attempting a
DDoS at a target on the internal network, will instead always be mapped back to the NAT that is
acting as the proxy. This is the reason why the findings in Table 7.9 consist of mainly the NAT
addresses to the schools.

The existence of the Core network taking up positions 2 and 3 of Table 7.9 does not come
as a surprise either. The reason for this is simply that the Core itself acts as a proxy to the
school’s core systems. However, the existence of the two IPs 192.175.48.42 and 192.175.48.6
in positions 5 and 6 are of concern. IPs originating from the 192.175.48.0/24 block are reserved
by the Internet Assigned Numbers Authority (IANA) for their “blackhole servers”, and not
allocated for public use on the Internet13. This block is specifically reserved to respond to ‘bad’
DNS requests or ‘bad’ reverse DNS requests14 (Cheshire and Krochmal, 2013).

When a ‘bad’ DNS request (a DNS lookup to a non-existent domain, or a reverse DNS lookup
to an unallocated IP) is performed, typically a legitimate response is generated by a DNS server
from the 192.175.48.0/24 IP block to the requesting host (Cheshire and Krochmal, 2013). This
‘bad’ request is served with a legitimate response so that the requesting host refrains from
performing follow up requests on the ‘bad’ request due to the host caching the legitimate
response15. Resolving the domain names of these two IPs in question results in the names
blackhole-1.iana.org and blackhole-2.iana.org for 192.175.48.6 and 192.175.48.42 respectively.

13https://www.iana.org/
14A DNS request to a non-existent domain or an IP that is not assigned or is reserved by IANA.
15This reduces load on the DNS servers found globally.

7.5. DDOS DETECTION 183

Table 7.10: Top 5 DDoS Detection Months Targeted at IANA “Blackhole Servers”

Month 192.175.48.6 192.175.48.42 Total
Mar 6,544,693 6,545,980 13,090,673
Apr 7,393,232 7,393,514 14,786,746
May 7,354,445 7,358,027 14,712,472
Jun 6,670,793 6,674,960 13,345,753
Jul 2,055,338 2,055,881 4,111,219
Total 30,018,501 30,028,362 60,046,863

A point of interest in this dataset is between the months March 2016 to July 2016 which con-
tributed to 95.179% of the total traffic inbound from the 192.175.48.0/24 subnet block. The
count for each of these 5 months according to the two 192.175.48.0/24 IPs that made the top 10
in Table 7.9, can be found in Table 7.10. This result is due to misconfiguration on the internal
networks, as the IPs held accountable for targeting these 192.175.48.0/24 IPs all originate from
the NAT gateways’ IPs16. This is most likely due to the internal networks having an incorrectly
configured, or no reverse DNS lookup mechanism, and so these requests are passed on to a DNS
server in the external network (Cheshire and Krochmal, 2013).

This behaviour is typical of an internally facing DNS server configured to pass all requests to
IANA reserved space through to one of the IANA blackhole servers, as to reduce erroneous
DNS traffic on the internal network. This would result in many of the NATs sourcing DNS
requests to IANA’s blackhole servers. Furthermore, referring back to Test 12 of Table 6.1,
this shows the result of NetFlow logs that one will commonly see generated by multiple DNS
queries by multiple hosts (5 unique IPs, 5 unique destination ports, 1 packet, 120 byte average
and performed over UDP17). This means that a group of these DNS requests would trigger the
processor module’s neural network, and thus the two blackhole servers found at 192.175.48.6
and 192.175.48.42 would be classified as being the target of a DDoS attack. This was rectified
in early to mid June 2016.

7.5.1 Mitigating Neural Network Error

Some methods that could reduce error in the results produced by a neural network tasked at
network anomaly detection are listed below:

16One should note that processor module is not concerned about direction.
17Window sizing set to the last 5 IPs observed.

7.6. PORT SCAN DETECTION 184

Training Set: The training set is vitally important in order to achieve success in this Bolvedere
module. The training set used in Section 6.2 and again here to train this neural network
consisted of 100,000 items and took on average 2.003 seconds to train. This falls in line
with the time taken to train results also found in Section 6.2. This means that this training
set can be made larger, and still be trained in an acceptable time frame. The result of doing
so will improve the accuracy of this Bolvedere module, and thus achieve more accurate
results with less error.

Scope: Training a neural network to detect a type of DDoS attack is a viable tactic for, use of
this processor module. As one can run multiple processor modules in parallel, one can train
separate neural network modules to detect specific kinds of DDoS attack, and then run all
these modules in parallel. This will result in more accurate detection of DDoS attacks, as
a single monolithic neural network that is trained for multiple cases has a higher chance of
error than neural networks trained for specific tasks. These neural networks also require
less nodes in order to achieve their task, and thus are easier to process on resource limited
systems.

Know Your Network: Consideration needs to be made for the network in which the neural
network will be run on, and how inputs collected from the NetFlow logs generated by that
network will be processed by the neural network.

7.6 Port Scan Detection

This port scan detection module was at the outset designed solely to detect vertical scans18.
Due to the nature in which a NAT is implemented, the information gained from this processor
module was found to be ineffectual in the context of the monitored network.

To explain this, consider the following example: multiple users on a NAT’s internal network
accessing a commonly frequented website such as Google19, Facebook20 or YouTube21. This
would result in the NAT translating multiple internal requests to different ports, and making the
requests to these websites on behalf of the internal hosts using its own IP. When the website’s
server responds to each request, each response will be destined to he same IP (this being the
NAT host’s IP) but on different ports, according to the NAT’s translation table. To the port scan

18A port scan directed at multiple ports on a single IP
19https://www.google.com
20https://www.facebook.com
21https://www.youtube.com

7.6. PORT SCAN DETECTION 185

Table 7.11: Unique Port Scanning Hosts Detected by Month

Year Month Detection Count Unique IP Count
2015 Jul 134,777,189 1,566

Aug 118,117,205 1,439
Sep 153,474,410 1,533
Oct 159,391,811 1,698
Nov 177,920,402 1,792
Dec 59,356,590 1,135

2016 Jan 135,659,784 2,101
Feb 166,636,218 2,456
Mar 171,847,852 1,921
Apr 152,709,210 1,598
May 186,118,233 1,985
Jun 174,828,588 1,929
Jul 290,731,187 2,705
Aug 246,517,236 2,183
Sep 208,190,022 1,983
Oct 354,116,914 2,076
Nov 155,017,694 1,512

detection module, this will look like a single host targeting multiple ports on a single host, and
thus raise the possible port scan flag on the sourced IP. An equivalent situation would also occur
with DNS requests to a common DNS server, as a commonly used DNS server would receive
requests and respond to them in the same manner explained above.

Moving forward with this knowledge, and given that there are an estimated 2,000 users across
all internal networks, the configuration for this processor module was set to 60 minute windows
(after which the record for a particular port scan would be removed) with a 500 unique port
count threshold. This configuration was used in order to allow for 25% of users on the network
to connect to website without that site being detected as a source of a port scan. This was thought
to limit false positives and focus down on typical port scans as performed by applications such
as nmap (see Section 2.4.2) with the inclusion of some probe delay (Durumeric et al., 2013;
Barnett and Irwin, 2008). The effectiveness of this configuration will now be discussed.

A count of port scans and unique scanning IPs seen per month is shown Table 7.11. The seem-
ingly large detection counts are partly due to the manner in which this processor module logs
its findings. When a NetFlow log is received that causes a source IP to be pushed over the 500
unique port threshold in a single hour, and thus classified as a source of port scanning, it will
be logged as such. However, if another log arrives within that same hour window (making the
unique port count 501), that is treated as a disjoint event and also logged. This characteristic

7.6. PORT SCAN DETECTION 186

Table 7.12: Top 10 External IPs Marked as Port Scanners

IP Owner Service Source Port Average Events/Month
155.232.135.5 ORG-UP1-AFRINIC DNS 53/UDP 112
8.8.8.8 Google Inc. DNS 53/UDP 90
162.246.18.19 Interserver, Inc DNS 53/UDP 36
192.33.14.30 VeriSign DNS 53/UDP 32
192.175.48.42 DNS-OARC DNS 53/UDP 25
192.175.48.6 DNS-OARC DNS 53/UDP 25
45.32.180.78 Choopa, LLC DNS 53/UDP 24
23.229.5.19 Meridanhq Inc. - 46345/TCP 23
8.8.4.4 Google Inc. DNS 53/UDP 20
23.229.5.21 Meridanhq Inc. - 46345/TCP 18

causes bloat in the logging mechanism and leads to inflated detection counts. That said, this
characteristic of this processor module does not affect the ability of this processor module to
detect port scanning hosts. To help ascertain information from this logging mechanism a unique
IP count is also provided by the processor module and provided in Table 7.11 as well.

Investigating these results further one can refer to Table 7.12 to get the top 10 external IPs
detected as having performed port scans by unique times detected. As expected, one will find
that 8 of the top 10 IPs belong to DNS servers. For the sake of interest, further analysis will be
performed on the 2 IPs that are not DNS servers.

The two IPs in question (23.229.5.19 and 23.229.5.21) belong to the subnetwork 23.229.5.16/29
allocated to Meridanhq Inc22. These two IPs were found to consistently source SYN packets
from port 46345/TCP directed at sequentially interleaved ports on a single destination IP. This
behaviour can be viewed in Listing 7.2 which shows a snippet of the NetFlow logs involved in
a detected port scan. The NetFlow logs viewed in this listing are typical of a vertical portscan
performed using the SYN scan method. This is shown in these logs by 23.229.5.21 having the
‘S’ flag raised, which signifies SYN, followed by 192.0.2.190’s response with flags ‘A’ and ‘R’
raised, which stand for ACK and RST respectively.

When looking further into the 23.229.5.16/29 subnet block 2 more IPs belonging to it were dis-
covered by this processor module to have also performed port scans. These IPs are 23.229.5.20
and 23.229.5.22, and, when viewing the original NetFlow logs, were found to have performed
port scans in the same manner as shown in Listing 7.2. It was also found that the primary target
of these port scans was 192.0.2.190, however 192.0.2.191 was also observed to be a target of

22Whois - updated: 2017-05-30.

187

Listing 7.2: Snippet of Original NetFlow Logs Detected as Part of Port Scan (Target
192.0.2.190)

1 Proto Src IP Addr : Por t Dst IP Addr : Por t F lags Pkts Bytes . . .
2 . . .
3 TCP 23.229.5.21:46345 −> 192.0 .2 .190:48188 S . 1 46 . . .
4 TCP 192.0.2.190:48188 −> 23.229.5.21:46345 . A .R . . 1 40 . . .
5 TCP 23.229.5.21:46345 −> 192.0.2.190:25804 S . 1 46 . . .
6 TCP 192.0.2.190:25804 −> 23.229.5.21:46345 . A .R . . 1 40 . . .
7 TCP 23.229.5.21:46345 −> 192.0 .2 .190:48189 S . 1 46 . . .
8 TCP 192.0.2.190:48189 −> 23.229.5.21:46345 . A .R . . 1 40 . . .
9 TCP 23.229.5.21:46345 −> 192.0.2.190:25805 S . 1 46 . . .

10 TCP 192.0.2.190:25805 −> 23.229.5.21:46345 . A .R . . 1 40 . . .
11 TCP 23.229.5.21:46345 −> 192.0 .2 .190:48190 S . 1 46 . . .
12 TCP 192.0.2.190:48190 −> 23.229.5.21:46345 . A .R . . 1 40 . . .
13 TCP 23.229.5.21:46345 −> 192.0.2.190:25806 S . 1 46 . . .
14 TCP 192.0.2.190:25806 −> 23.229.5.21:46345 . A .R . . 1 40 . . .
15 TCP 23.229.5.21:46345 −> 192.0 .2 .190:48191 S . 1 46 . . .
16 TCP 192.0.2.190:48191 −> 23.229.5.21:46345 . A .R . . 1 40 . . .
17 TCP 23.229.5.21:46345 −> 192.0.2.190:25807 S . 1 46 . . .
18 TCP 192.0.2.190:25807 −> 23.229.5.21:46345 . A .R . . 1 40 . . .
19 TCP 23.229.5.21:46345 −> 192.0 .2 .190:48192 S . 1 46 . . .
20 . . .

Listing 7.3: Snippet of Original NetFlow Logs Detected as Part of Port Scan (Target
192.0.2.190)

1 Proto Src IP Addr : Por t Dst IP Addr : Por t F lags Pkts Bytes . . .
2 . . .
3 TCP 23.229.5.19:46345 −> 192.0.242.191:13296 S . 1 46 . . .
4 TCP 23.229.5.19:46345 −> 192.0.242.191:13297 S . 1 46 . . .
5 TCP 23.229.5.19:46345 −> 192.0.242.191:13301 S . 1 46 . . .
6 TCP 23.229.5.19:46345 −> 192.0.242.191:13305 S . 1 46 . . .
7 TCP 23.229.5.19:46345 −> 192.0.242.191:13306 S . 1 46 . . .
8 . . .

7.6. PORT SCAN DETECTION 188

Table 7.13: Top 10 Institute IPs Marked as Port Scanned

IP Owner Event Count/Month
192.0.2.190 Aplana 375
192.0.2.210 Ocrington 107
192.0.2.130 Seblor 76
192.0.2.211 Ocrington 75
192.0.2.189 Aplana 50
192.0.2.100 Core 36
192.0.2.194 Ocron 34
192.0.2.75 Core 31
192.0.2.76 Core 10
192.0.2.170 Aplana 8

scanning by the 23.229.5.16/29 subnet block. As 192.0.2.191 is not assigned to a physical host
on the network, it yielded no responses to any of the SYN packets destined to it. This most likely
led to scanning being stopped on this destination IP, and hence why it does not appear in the
top 10 most scanned destinations list in Table 7.13. A snippet of a scan directed at 192.0.2.191
from the 23.229.5.16/29 block depicting the lack of response can be viewed in Listing 7.3.

The top 10 source IPs detected to have performed vertical scans against the school networks
when excluding known false positives (this being DNS responses), can be viewed in Table 7.14.
There are two points of interest found in this list that one should note. The first is that the type
of scan seen in each case in this list is that of the SYN scan (discussed above), and other than
a change in the port number originating from 163.172.117.47 and 163.172.117.39, the method
is exactly the same. The other point to note is that Meridanhq Inc. and Server Mania both exist
under the larger organization subnet block allocated to B2 Net Solutions Inc.23 and both use
the same source port to perform their scans. This may be an indication of correlation in the tool
used to perform these port scans.

Considering the results collected by this port scan detection module, with respect to the expected
false positives detected, and the list of vertical scans detected, this processor module is shown
to work under real-world conditions. This being said, there are some modifications that can be
made to it to improve its utility.

Currently this processor module detects vertical scans, but fixing the destination IP and looking
for variation in ports connecting to the fixed IP. If one were to swap these two roles one would
be able to detect horizontal scans24 as well.

23Whois - last-modified: 2016-02-22.
24Port scans that scan a single port across multiple IPs

7.7. SUDDEN PORT BANDWIDTH CHANGE 189

Table 7.14: Top 10 External IPs Marked as Port Scanners

IP Owner Source Port Event Count/Month
23.229.5.19 Meridanhq Inc. 46345/TCP 23
23.229.5.21 Meridanhq Inc. 46345/TCP 18
23.229.5.20 Meridanhq Inc. 46345/TCP 17
69.58.0.148 Server Mania 46345/TCP 15
69.58.0.147 Server Mania 46345/TCP 15
23.229.5.22 Meridanhq Inc. 46345/TCP 12
163.172.117.47 Online.net 22767/TCP 11
69.58.0.149 Server Mania 46345/TCP 10
69.58.0.150 Server Mania 46345/TCP 10
163.172.117.39 Online.net 22767/TCP 8

7.7 Sudden Port Bandwidth Change

Sudden increase or decrease of network traffic (in terms of bytes transmitted) to or from an IP
on a given destination port is a good indicator of change within a network. Detection of such
change does not mean something malicious has occurred, simply that the network’s character-
istic has changed in some manner. In the context of this network, this can be due to a service
coming up or going down, a new popular game being played by students or, the use of a NAT
translating internal IPs to ports.

Configuration of this processor module differed from the configuration used in Section 6.6 in
that a window of 1,000 records was used for each port-IP pair. Furthermore, this processor
module monitored all ports on the 192.0.0.0/16 subnet block which encompassed all NATs, as
well as the Core and Firewall, on the monitored network. Ultimately, the two reasons all ports
were chosen to be monitored on this subnetwork is because there exists multiple NATs on the
monitored network, and that the port range that the NATs translate to is unknown. Memory
was not seen to be an issue in this configuration as the number of IPs that were allocated in this
network block were few.

Table 7.15 shows an overview of results collected for the entirety of the 17 months the network
was monitored. One should note that this table is broken down into two columns which show
the number of sudden bandwidth changes detected on inbound connections, and on outbound
connections.

The symmetry between incoming and outgoing detections is to be expected. This is due to new
connections being opened or connections closing, and would cause a change in both outgoing

7.7. SUDDEN PORT BANDWIDTH CHANGE 190

Table 7.15: Sudden Port Traffic Increase/Decrease Detected in Real Use Case

Year Month Incoming Outgoing Total Count
2015 Jul 2,396,273 2,431,612 4,827,885

Aug 2,538,480 2,539,781 5,078,261
Sep 3,468,545 3,497,653 6,966,198
Oct 3,741,679 3,795,305 7,536,983
Nov 4,056,708 4,070,593 8,127,301
Dec 1,121,278 1,121,580 2,242,858

2016 Jan 2,292,211 2,316,838 4,609,049
Feb 2,429,327 2,445,843 4,875,170
Mar 1,862,852 1,842,106 3,704,958
Apr 1,695,911 1,710,402 3,406,313
May 1,874,149 1,884,385 3,758,534
Jun 1,934,862 1,941,650 3,876,512
Jul 4,114,110 4,163,390 8,277,500
Aug 3,749,106 3,768,360 7,517,466
Sep 2,969,620 2,981,875 5,951,495
Oct 5,050,888 5,115,863 10,166,751
Nov 2,253,920 2,246,000 4,499,920

and incoming communications on the given port-IP pair. Paying attention to December of 2015
one can see a sudden detection count drop off when compared to that of the previous 5 months
and following 3 months. This would be due to the December school holidays closing the schools
and thus drastically reducing the user base of the monitored network. The knock on effect of
this would be a reduction in events on the network, and thus a reduction in anomalous events
detected by this processor module. This suggests that this module is working correctly as it
lines up with the expected behaviour of the network.

Focussing again on October 2016, one can see the number of bandwidth increase and decrease
anomalies by inbound and outbound connections in Tables 7.16 and 7.17. The symmetrical
results of port 53/UDP in both inbound and outbound connections, and its place on both lists,
is expected due to the manner in which DNS works. Some requests are larger than others, and
at first this would cause anomalies to be detected in the number of bytes transmitted. However,
as a long enough history is formed for the port on the monitored IPs, it would reduce the
number of anomalies forming on it. This strongly points to this processor module’s correct
operation. A point of particular interest in both Tables 7.16 and 7.17 is the top port for detected
anomalies, being port 45554/TCP. The reason this port is interesting is that it is an unassigned
port according to IANA Cotton et al. (2011). Digging into the original NetFlow records one
will find IP 192.0.2.189 sourcing a port scan from port 45554/TCP. This port had a sudden rise

191

Table 7.16: Top 10 Bandwidth Anomalies Detected by Destination Port for October 2016 (In-
bound Connections)

Port Increases Decreases Total Anomalies
45554/TCP 269 23,964 24,233

23/TCP 64 23,232 23,296
23/UDP 5 19,828 19,833

35030/TCP 781 16,036 16,817
53/UDP 4,290 10,303 14,593

14008/TCP 33 10,296 10,329
25/TCP 489 8,033 8,522
80/TCP 622 7,050 7,672

6889/TCP 35 6,307 6,342
53/TCP 695 5,185 5,880

29871/TCP 6 5,056 5,062

Table 7.17: Top 10 Bandwidth Anomalies Detected by Source Port for October 2016 (Outbound
Connections)

Port Increases Decreases Total Anomalies
45554/TCP 107 21,623 21,730
35030/TCP 825 11,039 11,864

25/TCP 248 8,068 8,316
6889/UDP 3 7,837 7,840
6889/TCP 5 7,633 7,638

14008/TCP 30 6,651 6,681
80/TCP 251 5,694 5,945
53/UDP 2,037 3,057 5,094

45554/UDP 110 3,462 3,572
53/TCP 10 3,365 3,375

Listing 7.4: Snippet of Original NetFlow Logs Detected as Part of Port Scan (Target 5.8.32.90
and 185.89.102.59)

1 Proto Src IP Addr : Por t Dst IP Addr : Por t F lags Pkts Bytes . . .
2 . . .
3 TCP 192.0.2.189:45554 −> 78.31.67.12:51052 . AP . SF 9 2838 . . .
4 TCP 192.0.2.189:45554 −> 5.8.32.90:47575 . APRSF 7 354 . . .
5 TCP 192.0.2.189:45554 −> 5.8.32.90:57656 . APRSF 7 354 . . .
6 . . .
7 TCP 192.0.2.189:45554 −> 185.89.102.59:41241 . A . . S . 2 120 . . .
8 TCP 192.0.2.189:45554 −> 5.8.32.90:46154 . APRSF 7 354 . . .
9 TCP 192.0.2.189:45554 −> 5.8.32.90:36128 . APRSF 7 354 . . .

10 . . .

7.8. SOURCE IP ANOMALY 192

in use between the 10th of October 2016 and the 5th of July 2017, and was seen used for port
scanning activity25. A snippet of these records can be found in Listing 7.4.

Most of the byte fields recorded by these NetFlow logs capturing the port scanning activity
have the size 354. These NetFlow logs with the recorded 354 byte field make up 98.7% of all
NetFlow logs recorded in this port-IP pair. The remaining byte counts seen are 120 bytes, 180
bytes, and less often than these two is 2,838 bytes. As records containing 384 byte fields make
up the majority of all the records seen for this port-IP pair, this will set the mean of the 1,000
stored records close to 384. Furthermore, this will create a relatively small standard deviation
for this port-IP pair. This means that when a record with byte field value of 120, 180 or 2,838
is received by this processor module, it will be seen as a sudden decrease or increase, as it will
fall outside of 3 standard deviations from the mean.

Lastly, as the byte values 120 and 180 are seen more often than 2,838, this will cause more
sudden decreases to be recorded by the processor module than sudden increases. This result
strongly supports the correct functionality of this processor module.

A downfall of this processor module is that it only considers received logs in the context it
was received in, with respect to previously stored records for a port-IP pair. This means that a
record may be classified as anomaly but, when considered again after a new set of records have
arrived, that anomalous log may be completely legitimate. With this in mind, a mechanism
for reclassification of logs during their stay in the record window should be considered for
implementation. This being said, the processor resource overhead for this implementation may
make this solution unviable for large record windows.

7.8 Source IP Anomaly

Source IP anomalies in this research are defined as packets sourced from a network with source
IPs that do not reside within the subnet block which the network uses. In the context of these
tests, these are packets that sourced from the schools, and are destined to the external network
with source IPs that do not reside in the 192.0.2.0/24 subnet block. This is a problem, as
generation of these packets should not be possible under correct internal network configuration;
the IP seen is effectively a bogon26 to the internal network.

Such generation of packets can be accounted to:

25https://isc.sans.edu/port.html?port=45554 (Accessed 19th October 2017)
26http://www.outpost9.com/reference/jargon/jargon_17.html

7.8. SOURCE IP ANOMALY 193

Table 7.18: Source IP Anomalies Detected by Real Use Case

Year Month Detection Count
2015 Jul 353,359

Aug 978,641
Sep 744,476
Oct 732,866
Nov 625,334
Dec 461,980

2016 Jan 638,408
Feb 320,306
Mar 462,449
Apr 506,207
May 230,349
Jun 121,031
Jul 1,109,196
Aug 1,219,034
Sep 610,035
Oct 1,497,732
Nov 301,647

Misconfiguration: Systems that are misconfigured, particularly with respect to the source IP,
can generate packets with source IPs not found within the allocated network block.

Malformed Packets: Packets that are malformed or damaged in communication can see the
source IP modified to an IP which lies outside of the allocated IP block.

Spoofed Packets: These are packets that are intentionally crafted with a source IP outside of
the network block in order to masquerade as another system to act on behalf of it, or to hide
the original system’s actions.

This processor module was configured to monitor NetFlows sourced from the school’s network
and destined to external network. This means that network flows were only monitored in one
direction. This should be kept in mind when reviewing these results.

Table 7.18 shows the results found for each month in terms of the number of network flows
containing source IPs not belonging to the 192.0.2.0/24 subnet block, and sourced from the
school networks. It was found that 73.27% of all anomalous source IPs were due to broadcasts
or Local Internet Registry (LIR) traffic. Top contributors to this traffic can be viewed in Table
7.19.

What is particularly interesting about these records in Table 7.19 is that each of the sources were

7.8. SOURCE IP ANOMALY 194

Table 7.19: Top Source IP Anomalies Detected

Src IP Dst IP Src Owner Traffic Type Count
87.247.5.126 87.247.21.224 2DAY Telecom LLP LIR 18,697
86.228.245.237 86.228.245.237 Orange S.A. LIR 18,644
87.158.65.4 87.158.80.219 Deutsche Telekom LIR 18,643
86.37.207.106 86.37.223.204 Qatar Foundation for Education LIR 18,620
87.193.31.2 0.6.223.0 QC Internet Services LIR 18,540

Table 7.20: Top Source IP Anomalies Detected (Broadcast and LIRs filtered out)

Src IP Dst IP Src Owner IP Description Detection Count
192.168.200.20 239.255.255.100 IANA Private Network 14,892
198.51.100.218 Multiple Hosts Internet Solutions ISP 950
198.51.100.220 Multiple Hosts Internet Solutions ISP 23
- Other - - < 5

only ever destined to a single destination IP. This was further investigated and it was found that
the first 1,021 occurrences of broadcast group or LIR source IPs were only ever destined to a
single IP. This IP in each case was unique, and belonged to either a broadcast group, or LIR.

Removing LIRs and broadcast groups from the results gathered, one will find 3 points of interest
and are shown in summary by Table 7.20. The first point to notice in this result subset is that
any anomalous source IP with a detection count less than 5 was shown to only contain ICMP
traffic. Due to the manner in which the network flows were captured in this dataset, the contents
of these ICMP messages are unknown. However, there was never more than 5 packets observed
with an average packet size of 178 bytes.

The next point that will be detailed is the existence of 192.168.0.0/1627 traffic on the school
networks. The IP 192.168.200.20 was the only IP used in the 192.168.0.0/16 subnet block and
it destined all of its traffic to 239.255.255.100. This destination IP belongs to the subnet block
224.0.0.0/4 which is reserved for multicasting by IANA Internet Assigned Numbers Authority
(2017). Upon further investigation into the device generating this network traffic, it was found
that a misconfigured network switch was reporting to the the specified multicast group. This
was a useful result generated by this processor module.

The last point to note in Table 7.20 is the two IPs owned by the same ISP28 and communicating
to multiple IPs. Upon further investigation of these sources it was found that destination ports

27Reserved by IANA for Private-Use.
28The original IPs were blinded to TEST-NET-2.

7.9. VULNERABILITY FINGERPRINT DETECTION 195

Table 7.21: Vulnerability Fingerprints Detected by Real Use Case

Year Month Detection Count
2015 Jul 8,510

Aug 21,778
Sep 22,145
Oct 23,812
Nov 12,949
Dec 21,394

2016 Jan 21,396
Feb 12,095
Mar 8,404
Apr 13,943
May 6,781
Jun 8,368
Jul 19,278
Aug 21,336
Sep 10,268
Oct 16,169
Nov 5,337

mostly consisted of 53/UDP (DNS), 80/TCP (HTTP) and 443/TCP (HTTPS). This was most
likely due to outage onto the SANReN network at some point and this was a backup connection
to ensure some degree of Internet access was maintained on the schools’ networks.

7.9 Vulnerability Fingerprint Detection

Before diving into the results presented in this section, one must first take note of a few char-
acteristics of exploits that exist on the Internet29. It is a very difficult task to clamp down on a
general class of exploitation as, one has to bear in mind a few points. The first and most obvious
is the version of the exploit being used, or the version of software the attacker is attempting to
exploit. A change in these would in most cases cause a change in packet sizes and possibly
order of flows. This would cause the NetFlow records to vary from the original fingerprint. It
is also common that multiple versions of an exploit exist live on the Internet at a given point,
for example consider the Conficker worm’s history (Irwin, 2011; Microsoft, 2009). This is
common practice, as cybercrime is often compared to a warfare, where each side of the war is

29In the wild so to speak.

7.9. VULNERABILITY FINGERPRINT DETECTION 196

continuously trying to counteract each others advancements, and so naturally characteristics in
exploits and defence mechanisms change.

Secondly, there exist exploits that simply act as carriers for a variable payload. This can be
thought of as a two phase effort, where each phase is disjoint. The exploit seeks to simply gain
access to a system and upload a payload, where as the payload actually performs the malicious
activity; be it stealing information, deleting something, etc. Depending on what an attacker’s
end goal is, the payload can vary vastly for the use of a single exploit (Khrer et al., 2014). This
has to be considered when fingerprinting an exploit, as the transfer of the payload makes up part
of the exploit’s fingerprint (particularly relating to the byte and packet count).

Lastly, and more subtly, one has to consider the language of the region being exploited. If
one simply changes the text presented to a potential target in an exploit from one language to
another, without actually changing any functionality of the exploit, this alone could change the
size of the exploit and thus the fingerprint. However, this would not change ordering of the
NetFlow records.

These are all factors that need to be considered when creating a fingerprint detector, and is the
reason why detection rates for small sets of fingerprints are usually low (Cox et al., 2006). This
approach should not be discarded though, as it can still be used to fingerprint unmodifiable
parts of an exploit. For example, if one considers the ntp_mon_list (Czyz et al., 2014) exploit
fingerprint in Table 6.18, one will notice that this exploit cannot be modified. It has to make
a monitor list request to an NTP server which takes a specific shape and form. It is a DDoS
attack, so seeing a large amount of these requests in a short period of time means that one can
safely assume that this form of DDoS attack is occurring.

Leading into the results one must note that the fingerprints used in this module were the same
generated in Section 6.8. The number of exploits detected can be viewed in Table 7.21.

Referring to Table 7.22 one can see a break down of how many times each exploit was detected
over the entirety of the 17 months. Of all the exploit fingerprints detected, all but 1 was due to
the ntp_mon_list exploit. This other vulnerability was a samba_usermap_script exploit and it
occurred in July of 2015. This resultant singular detected fingerprint, other than ntp_mon_list,
does not come as a surprise due to the reasons discussed above.

As NTP is also UDP-based, this means that there is no need for an initial handshake, unlike
what was observed in the other exploit fingerprints created in Section 6.8.4. The ntp_mon_list

exploit makes use of a single packet that takes the form of one of three distinct unmodifiable
packets. This makes the ntp_mon_list exploit used to create an amplification attack very easy

7.9. VULNERABILITY FINGERPRINT DETECTION 197

Table 7.22: Count of Each Vulnerability Fingerprint Detected in Dataset

Exploit Count
ms08_067_shell 0
ms08_067_vnc 0
java_rmi_server 0
distcc_exec 0
samba_symlink_traversal 0
samba_usermap_script 1
unreal_ircd_3281 0
ntp_mon_list 253,962

Table 7.23: Breakdown of Top 10 ntp_mon_list Exploit Source IPs

Src IP Open Ports Detection Count
41.73.42.10 22, 81 38,183
196.4.160.4 123 27,492
41.73.42.22 - 25,239
185.94.111.1 - 19,782
146.231.129.86 123 10,469
41.79.80.34 80 10,443
134.147.203.115 22, 53, 80 10,402
208.110.72.90 22, 80, 443 7,385
167.114.85.120 22 5,833
104.255.69.6 80, 137, 445, 3389, 5985 5,072

to fingerprint and detect using that fingerprint (Li et al., 2015). All of the other exploits finger-
printed in Section 6.8.4 also upload a payload onto the target. This allows for variation in the
fingerprint generated by the exploits, and thus is much harder to detect.

Table 7.23 shows the top 10 sources of the ntp_mon_list exploit targeted at the school networks
(192.0.2.0/24), broken down as to how many attempts each made over the 17 month monitoring
period and what ports they had open 30 at the end of the monitoring period. Although it is
very possible that IPs have changed hosts during the entirety of this run, it is interesting to see
41.73.42.22 and 185.94.111.1 having both reported no open ports. This means that the hosts
are most likely offline or the IPs are unallocated. This could also suggest the use of these
IPs as spoofed IPs when performing the ntp_mon_list exploit. There is however not enough
information in the NetFlow logs to draw a complete conclusion about this theory.

Investigating into the original NetFlow logs where ntp_mon_list exploits were detected, these
30https://www.shoadan.io

7.10. FOURIER ANALYSIS 198

Figure 7.7: Fast Fourier Transform of 24 Hour Period (4th October 2016)

detected logs do follow the fingerprint in which this module was expected to detect. This fact led
this testing to the conclusion that this processor module worked, although accuracy is limited
without major refinements. One such refinement would be focussing fingerprints more on the
immutable parts of an exploit, or exploits that are completely immutable like ntp_mon_list.

7.10 Fourier Analysis

Poor results from this FFT processor module were expected from the results found in initial
testing in Section 6.3. To re-iterate: Fourier analysis is not usable in this case because Fourier
transforms are time domain sensitive, and converting network traffic to netflow records results
in the loss of time domain detail, to the point that the data is no longer usable by Fourier analysis
techniques.

To better show the persistence of loss of accuracy, one can view a screenshot generated by
the FFT processor module during its runtime in Figure 7.7. The information shown in the
screenshot follows the same layout as in Section 6.3, and in it there are no frequencies that,
when mapped back onto the original 17 month dataset, reveal any specific characteristics of the
dataset. Furthermore, screenshots taken by this module directly contradict each others findings
in peaks appearing for a frequency in the 24 hour period window at one point of time, not

7.11. SUMMARY 199

appearing in a screenshot 5 minutes later. Again, as in Section 6.3 initial testing, no usable
information was found to be ascertainable from this processor module.

7.11 Summary

This chapter serves to compliment the findings of tests performed on many of the modules found
in Chapter 6, through providing testing results generated from NetFlow records produced from
real-world network traffic. Section 7.1 kicks off this chapter by outlining what the recorded
17 months of data looks like on the surface, and gives the basic structure of the network in
question.

Continuing from this point, this chapter showed how Bolvedere satisfies its goal of scalability
through its ability to be distributed over multiple hosts, or run a on single host, and moreover
handle all records introduced to it from this dataset in Section 7.2. This was followed by a
summary of the time taken for each module to process a record which was calculated in Section
7.3 and theorized throughputs for the network in which the dataset was collected is calculated.

A more detailed look into Mirai and some events that occurred during the recording of the
school network dataset was summarized in Section 7.4. Following this, Section 7.5 discusses
results collected from the neural network DDoS detection module. Port related analysis is
performed on the recorded dataset in Sections 7.6 and 7.7. Results for source IP anomaly
detection is discussed in Section 7.8 and results around vulnerability exploitation detection is
detailed in Section 7.9. Finally this chapter draws to a close with Section 7.10 describing the
failings of the Fourier analysis module.

7.11. SUMMARY 200

8
Hardware Acceleration

AFTER the completion of functional and real-world testing in Chapters 6 and 7, Bolve-
dere was shown to function as intended, supporting 4 of the 5 goals set out in Sec-
tion 1.2. This supports the fact that the collector subsystem in Bolvedere functions

correctly, as, if it didn’t, the knock-on effect would cause failures in logically subsequent sub-
systems within Bolvedere. With this fact in mind, this research can now focus on the discussions
in Chapters 3 and 4 around hardware acceleration of Bolvedere components, and aim to fulfil
the final goal set out in Section 1.2.

This chapter deals with the primary design considerations and implementation of a hardware-
accelerated collector for the Bolvedere system. In Section 8.1, one can find a summary of the
existing software implementation of Bolvedere, why one would want to hardware accelerate
this specific subsystem, and how one would go about achieving this. Section 8.2 approaches
the problem of operating the dedicated hardware at the speed of the network interface to which
it is connected to, to remove the possibility of it being a bottleneck in the system. A functional
block overview is modelled in Section 8.3 to show how data flows within this hardware design,
before discussing reception and transmission of network traffic in Sections 8.4 and 8.5 respec-
tively. The method in which packet discernment occurs in this hardware implementation of the

201

8.1. DESIGN AND IMPLEMENTATION 202

External
Network

Collector 1

Collector N

Publisher 1

Publisher N

HW Module 1

HW Module N

CPU Module 1

CPU Module N

GPGPU Module 1

GPGPU Module N

... ...

...

...

...

Collectors Publishers

Processor
Modules

NetFlow v9
or IPFIX Raw Socket ZMQ

Figure 8.1: Marked Up High-Level System Overview

collector is then discussed in Section 8.6, before looking into how template and data records
are processed in Section 8.7. Lastly, Section 8.8 steps through a simple functional example of
this hardware.

8.1 Design and Implementation

This chapter implements a physical replacement for the collector subsystem of Bolvedere1. To
better understand where this subsystem fits within Bolvedere, one can refer to Figure 8.12. To
revise the logic flow of Bolvedere: Bolvedere is a system that is built on the NetFlow protocol
in order to discern anomalous network flows on a network. The flow of logic through the
Bolvedere system begins at the collector. This subsystem deals with collecting and recording
NetFlow templates for their later use in discerning NetFlow data records. These discerned
NetFlow data records are then filtered and reordered into a format that the publisher requires for
optimal sequential processing. This configuration is received by the collector from the publisher
at the start of the collector’s runtime.

Once these filtered and reordered NetFlow data records arrive at the publisher, which is based
on the sequential x86 and x64 instruction sets (Intel Corperation, 2016), the publisher can run
through these data records from top to bottom, as the format of the records are now known to
the publisher. This is due to the filtering and re-ordering performed by the collector.

1Please note that this work is previously published as part of Southern Africa Telecommunication Networks
and Applications Conference 2015 and 2016 (Herbert and Irwin, 2015, 2016b).

2This is a derivative of Figure 4.1 that was placed in this text for convenience to the reader.

8.2. NETWORK LINK SPEED VERSUS FPGA CLOCK SPEED 203

Figure 8.2: FPGA Product ID: XC3S500E-FGG320D

From this point, the publisher has two tasks. The first is to apply filters to the data records
that are better processed sequentially, and the second is to publish the data to all subscribed
processor modules (simply referred to as processors in Figure 4.1). This data is published using
ZMQ (as discussed in Chapter 4).

The need for a replacement option for the collector of Bolvedere arises when considering scal-
ability and future-proofing of this system. As NetFlow version 9 data records require the use
of data templates in order to discern what the data records mean, overheads are introduced in a
sequential processor system. This is due to the sequential architecture-based system not having
instructions suited to the task of looking up what a field represents within a data record, and how
many bytes that field is (as field size can vary) from the stored template record that discerns the
relevant data record.

When considering that each subsystem of Bolvedere is selected from tools that are best suited
for the task, using a tool which all these subsystems rely on within Bolvedere that is ineffective
will render the optimization of every other subsystem moot. For this reason, it was decided
to develop the collector as a hardware-based stream processor for the discernment, filtering
and re-ordering of NetFlow data records for the publisher subsystem. This would alleviate the
collector’s bottleneck at scale by removing the overheads a sequential processor would suffer
in performing the same task, as dedicated hardware instructions for this task would now exist.

8.2 Network Link Speed versus FPGA Clock Speed

The FPGA used in this implementation was the XC3S500E-FGG320D (Xilinx, 2013) of the
Spartan 3 family with speed grade 4C; this chip is more commonly referred to as the Spartan
3E. This chip has a pin-to-pin time of 3.46 ns (Xilinx, 2013). This is the time taken from
introducing an input to a physical pin on the FPGA package, traversing the logic within the
FPGA, and then outputting the result on another separate physical pin on the FPGA package.

8.2. NETWORK LINK SPEED VERSUS FPGA CLOCK SPEED 204

This was found to be only 13.584% slower than the more expensive3 Spartan 6 family with
a pin-to-pin time of 2.99 ns (Xilinx, 2011). When comparing the hardware emulation space
provided by both the Spartan 3 and Spartan 6 family, and both were ample for this project, so
cost was considered as a major factor in selecting a device (Xilinx, 2011, 2013).

The maximum frequency at which the selected Spartan 3E FPGA can drive its pins is 289.017
Mhz. The logic used to achieve this is a simple connection between the input pin’s input buffer
and the output pin’s output buffer; the simplest functional logic within an FPGA. If one were
to make this logic more complex, the time taken for a signal to propagate from an input pin to
an output pin would increase. This is because it takes time for electrons to propagate through
logic gates within an FPGA, and so one must account for this.

This hardware implementation introduces the hierarchical structure of the 5-layer network stack.
Introduction of this complex logic structure will lead to an increase of time taken for input data
to this system to be processed and output to a connected device. If the time taken between
processing input exceeds that of the time before the a new input arrives for processing, this will
lead to input to this hardware not being processed correctly. This will cause a knock-on effect
that will cause all logically subsequent subsystems in Bolvedere to produce incorrect results.
For this reason, this implementation needs to make sure that input can be dealt with before new
input is introduced into this hardware.

To do this one must first consider what hardware is introducing new data into this system. This
is the network PHY (Arregoces and Portolani, 2003) and when considering the clocking speed
of this input, one needs to consider the rate at which whole bytes are ready to be interacted
with. This consideration has to be made due to the way in which the two networking technolo-
gies considered PHYs interact with other hardware. The first technology considered was 100
Mbps Ethernet. This typically uses the Media-Independent Interface (MII) (IEEE Standards
Association, 2002) protocol which makes use of a nibble4 wide transmit bus, and a nibble wide
receive bus. In order to meet the network rate of 100 Mbps, this protocol requires nibbles to be
transmitted at a 25 Mhz clock rate.

This means that in receiving and sending, a data byte5 is only ready for processing every second
clock cycle of a device using the MII protocol. This means that an FPGA clocked at 12.5 Mhz
would be able to receive every byte sent over a 100 Mbps network link.

A 1 Gbps link makes use of an update to the MII protocol, named the Gigabit Media-Independent
Interface (GMII) (IEEE 802.3 Working Group, 2000). The key differences between MII and

3At the time of writing.
4A nibble is 4 bits.
5Two nibbles or 8 bits.

8.2. NETWORK LINK SPEED VERSUS FPGA CLOCK SPEED 205

Listing 8.1: Synthesis Post-Map Static Timings for Spartan 3 Family FPGA
1 . . .
2 Derived Cons t ra in t Report
3 Derived Cons t r a in t s for TS_fpga_clk
4 +−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−− . . .
5 | | Per iod | Actua l Per iod |
6 | Cons t ra in t | Requirement +−−−−−−−−−−−−−−−+−−− . . .
7 | | | D i r e c t |
8 +−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−− . . .
9 | fpga_c lk | 20.000 ns| 6.000 ns|

10 | CLK0_BUF | 20.000 ns| 10.179 ns|
11 | CLKDV_BUF | 40.000 ns| 10.596 ns|
12 +−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−− . . .
13
14 A l l c o n s t r a i n t s were met .
15 . . .

GMII are that GMII uses a byte wide transmit bus, a byte wide receive bus, and is clocked
at 125 Mhz to achieve the throughput rate required by a 1 Gbps network link. Although an
FPGA can achieve clocking of simple logic at this rate, the logic required to describe how the
5-layer network stack works, as well as use of the payload of these network packets, impedes
the maximal clock rate of the FPGA used.

To better understand this, one can refer to Listing 8.1. This listing shows a snippet of the output
produced during hardware synthesis for the interface to the network PHY. This snippet refers
specifically to the minimum clock period required to ensure proper execution of all logic within
the FPGA for this interface. The “Actual Period” shows that, to traverse the longest logic path
in the FPGA used for this interface, it would take 10.596 ns.

This means that the logic for the network PHY can be processed without any problems arising
due to input timings when dealing with a 100 Mbps network link. The reason for this is that
data at 100 Mbps is clocked in at 25 Mhz which gives 40 ns between each input. This is more
time than required by the FPGA to process the incoming data.

When using this result to consider a 1 Gbps PHY, this 10.596 ns is not adequate to support this
interface. At 10.596 ns the maximum frequency one can clock this FPGA at is 94.375 Mhz. This
is not enough to negotiate with a 1 Gbps network link which requires 125 Mhz. Resynthesizing
this design for a Spartan 6 FPGA leads to the results found in Listing 8.2. The time required to
complete the logic traversal of the PHY is 9.877 ns. This means that the maximum speed that
one can run the Spartan 6 FPGA at with this PHY logic is 101.245 Mhz. This is again too slow
to negotiate with a 1 Gbps network link.

8.2. NETWORK LINK SPEED VERSUS FPGA CLOCK SPEED 206

Listing 8.2: Synthesis Post-Map Static Timings for Spartan 6 Family FPGA
1 . . .
2 Derived Cons t ra in t Report
3 Derived Cons t r a in t s for TS_fpga_clk
4 +−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−− . . .
5 | | Per iod | Actua l Per iod |
6 | Cons t ra in t | Requirement +−−−−−−−−−−−−−−−+−−− . . .
7 | | | D i r e c t |
8 +−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−− . . .
9 | fpga_c lk | 20.000 ns| 6.000 ns|

10 | CLK0_BUF | 20.000 ns| 9.189 ns|
11 | CLKDV_BUF | 40.000 ns| 9.877 ns|
12 +−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−− . . .
13
14 A l l c o n s t r a i n t s were met .
15 . . .

When considering 100 Mbps link rates, the requirements of the FPGA are made more favourable
by the fact that a byte only has to be dealt with every 2 clock cycles. This means that the MII
protocol only requires a byte to be dealt with every 80 ns, meaning that the clocking rate for
whole bytes coming in and out of the FPGA can be set at 12.5 Mhz.

To re-enforce the importance of this implementation’s stream-based design, if the FPGA system
clock is based off of and can support the network link speed, then - because it simply streams the
network traffic through itself - it will work as intended irrespective of the link speed used. This
means that if one were to clock down the network interface to 10 Mbps, this device would scale
down its system clock speed with the network interface, and proceed to work at that clock rate
without need for modification or resynthesis of the hardware within the FPGA. Furthermore,
if one were to fabricate this logic into an ASIC that supported faster physical logical gating
speeds, and thus faster system clock speeds, when attached to a faster network than 100 Mbps
it would simply scale up to the clocking rate of that network. This functionality also serves to
future-proof this implementation.

8.2.1 Keeping State While Streaming

The point of streaming network traffic is raised on more than one occasion in this text, and the
reason why this is possible will now be discussed. The design and implementation of the logic
within the FPGA is based on the Register-Transfer Level (RTL) design abstraction (Bening
and Foster, 2001). This form of design allows for easier modelling of this system in the form
of states. The logic transfer between these states depends on the task the logic is attempting to

8.3. VERY HIGH-LEVEL HARDWARE FUNCTIONAL BLOCK OVERVIEW 207

Top Level

Tx

Rx
PHY MAC

Packet
Arbiter

Management Configuration Registers

ARP

NetFlow Engine

Template
Records

Data
Records

Figure 8.3: High-Level Abstraction of Hardware Functional Blocks and Connections

complete at any given point of execution. Given that the 5-layer network stack (Kozierok, 2005)
and NetFlow protocol packets are assembled as layers, one can work through network packets
in a stateful manner. This is because the next part of information within a network packet is
known, based on a previous part of that packet, and so a state transfer can be made.

In design, this means that incoming network traffic can be streamed, and that the FPGA does
not need to buffer any incoming network traffic. Instead, it can look at the byte that has just been
received, and transfer state without the need to remember something before that byte, or know
something from a byte that has yet to be received. This means that there is a lower memory
footprint, as buffering is only required on outbound packets and for the configuration received
from the publisher. Furthermore, this device can execute regardless of network link speed, as
long as the time for logic to propagate through the devices hardware is less than that of a system
clock period.

8.3 Very High-Level Hardware Functional Block Overview

This section will discuss at a high level the life of a network packet through this hardware
implementation. How each major functional block achieves its task will be discussed in later
sections. Referring to Figure 8.3, one will notice that receipt and transmission of packets are
broken into two separate modules. These modules run in parallel to allow support of full-duplex
connections (Bartlett et al., 1969). This simply means that this device can receive and transmit
network traffic at the same time. The functional block named PHY acts as a general manager for
the Rx and Tx functional blocks, and ensures data is streamed to these blocks in a sane manner
while maintaining link speed synchronisation.

Once a packet is received it is passed to the MAC functional block. This block ensures that

8.3. VERY HIGH-LEVEL HARDWARE FUNCTIONAL BLOCK OVERVIEW 208

that packets are addressed to and from the device’s physical address. This functional block
is also tasked with discerning whether an arriving packet is an Address Resolution Protocol
(ARP) (Plummer, 1982) packet or an IPv4 (Postel, 1981a) packet. As the use of NetFlow in
Bolvedere is primarily focussed at IPv4, if the packet does not satisfy the conditions of use of
either the ARP or IPv4 protocols, the packet is discarded.

Packets successfully received and passed by the MAC functional block are then given to the
Packet Arbiter. This functional block is tasked with identification of ARP type, configuration
reception and NetFlow packets. Once the type of packet is identified, this module passes on the
payload of the packet to the relevant attached functional block. Also, it is note worthy that as
NetFlow in Bolvedere is only dealt with via UDP (Postel, 1980), any packet that is IPv4 but not
of type UDP at the transport layer is explicitly ignored.

Configuration comes in two flavours in this hardware implementation, the first being Manage-

ment and the second being Configuration Registers. The Management functional block deals
with everything relating to the network. This includes which publisher the device is talking
to, the address of that publisher, as well as the IP, port and hardware address of this hardware
device. The Configuration Registers exist to deal with the re-ordering and filtering of NetFlow
data records. Simply, this is where the configuration received from the publisher is stored and
used to re-order and filter NetFlow data records into the form that the publisher expects for
optimal sequential processing.

The ARP functional block does little more than generate appropriate ARP responses for the
Packet Arbiter to transmit. This is handled through a series of flags that are raised to the ARP

block by the Packet Arbiter.

The last three functional blocks deal with the NetFlow protocol. The NetFlow Engine simply
discerns whether a flow set within the NetFlow packet contains template records or data records,
and then passes that part of the payload to the relevant functional block. After the relevant
functional block has finished processing its chunk of the payload, the NetFlow Engine checks
whether the entire packet has been processed. If it has, processing of the NetFlow packet is
complete, if not the next flow set is discerned and passed to the relevant block for continued
processing of the NetFlow packet’s payload.

Processed template records are stored and used in conjunction with the configuration stored
in the Configuration Registers to process data records. Once enough data records have been
processed; the resultant reordered and filtered records are transmitted to the publisher.

8.4. RECEIVING NETWORK TRAFFIC 209

Buffer 1 Buffer 2

Buffer

Transmit

Figure 8.4: Double Buffered Transmission Buffers

8.4 Receiving Network Traffic

Network traffic received is assembled into bytes at the Rx functional block, before being handed
on to the next connected block (the PHY). This is done by storing the first nibble off the wire,
and appending the second nibble to the first when the second is received, to form the full byte.
This byte is then presented to the PHY for processing, which ensures the network traffic follows
the Ethernet (Healey, 1983) standard. This includes ensuring correct inter-frame gap, intact
preamble and correct frame checksums.

8.5 Transmitting Network Traffic

Transmission of network traffic, like receiving, is done a nibble at a time; this concept was
covered in Section 8.4. The main consideration that was made in the Tx functional block was
that of fully saturating the available link’s bandwidth. It was quickly realised that transmitting a
packet without knowing its length, or what was in the payload, would require massive overheads
in terms of the checksum and length fields within both the IPv4 and UDP headers. Thus, the
use of a buffer was chosen to mitigate this overhead.

This approach, however, introduced two new issues. The first was the need for a memory
structure that could support a network packet, and the second was that the buffer could not be
modified while writing it out to the network link. This meant that the use of a single buffer to
transmit network traffic would result in, at best, only half the link’s bandwidth being utilized for
transmission. These two issues were solved through implementing a double buffer for network

8.6. PACKET DISCERNMENT AND FUTURE-PROOFING 210

transmission using First In, First Out (FIFO) (Dan and Towsley, 1990) memory structures,
which easily fit within the Spartan 3E’s block RAM.

Using a double buffer meant that a new network packet could be written to the one buffer while
the other buffer is being transmitted. Once the transmitting buffer is finished transmitting, the
buffer that was just written to can transmit, while the buffer that just transmitted gets buffered
with a new packet. This form of buffering means that the network link can be continuously be
written to. This idea is visually illustrated in Figure 8.4.

The use of a FIFO leads to an issue arising with the IPv4 and UDP checksums in that both
were unknown until the entire payload was buffered into the FIFO. This was overcome through
creation of special checksum registers within each buffer, which were loaded with these relevant
checksums when the packet is entirely buffered.

At transmission time, the fact that the IPv4 and UDP checksums are always located in the same
byte indexes within the FIFO was used to pause reading from the FIFO momentarily at these
times, and instead transmit the bytes from the relevant checksum registers.

8.6 Packet Discernment and Future-Proofing

Packet discernment is handled by multiple functional blocks at different levels of this hardware’s
implementation (this has been discussed previously in section 8.3). The reason for this design
decision was twofold; the first was to keep functional blocks dealing with only the parts that
they are concerned with. This was due to the cycle of development, as if a block did not work
it could be replaced without the need to modify other blocks.

The second reason was that this modularity allowed one to take functional blocks out of this
system’s design, and place them into other systems, given that the inputs to the functional block
follows what the block expects. This led design of this hardware in a manner that separated the
NetFlow Engine (referring back to Figure 8.3) from the networking components of the device.
In short, development in this manner meant that the NetFlow Engine hardware could be taken
and placed into other System on Chip (SoC) designs with little overhead, giving those SoCs the
same capability as this hardware.

8.7. NETFLOW TEMPLATE AND DATA RECORD PROCESSING 211

8.7 NetFlow Template and Data Record Processing

The processing of NetFlow records within this system, and where this processing occurs, was
discussed in Chapter 4. This section will now discuss in further detail the manner in which these
NetFlow packets are processed in this hardware. A NetFlow packet is made up of a header and
one or more flow sets. Each of these flow sets contain their own header, and from this the length
of the flow set, as well as whether the flow set contains template records or data records, is
presented. If one has the template for given a data record flow set, the number of records within
that flow set can be worked out. Each template record within a template FlowSet contains its
own header stating how many fields are within the template record. A template field is made up
of an ID and byte count, each recorded as 16 bit unsigned integers. This means that the length
of a template record is 4 bytes multiplied by the number of fields stated in the template record
header.

The NetFlow Engine functional block (referring back to Figure 8.3) handles discernment of
whether a packet is actually a NetFlow packet, and if it is, the discernment of the NetFlow
record types. This record type discernment is done on a flow set to flow set basis. Discernment
of a NetFlow template flow set is less complex than that of data record discernment, due to the
requirement of the template to make sense of a data record.

If a template flow set is detected, that flow set is then streamed to the Template Records func-
tional block for processing. This functional block has a finite number of templates it can store,
and so template ejection also has to be considered to make space for newer templates. This func-
tional block also has to deal with the possible event of a duplicate template ID being received
(a new template with the same template ID as one already stored).

Dealing with template ejection first, this is handled via a Least Recently Used (LRU) (Lee et al.,
2001) algorithm. When a new NetFlow template record arrives and there is no space for it, the
template which hasn’t been used for the longest time is ejected and replaced with this new
template record. When receiving a duplicate template record ID, this template is considered as
a template record update according to the NetFlow protocol (Claise, 2004). This is handled by
writing over the existing record of the same ID with the new duplicate record’s field data.

NetFlow data records are only processable if there exists a NetFlow template record of that data
record’s type. Relating a data record to template record is performed on a flow set basis, and is
done through use of the flow set ID. Only one kind of data record can exist within a data record
flow set, and the flow set ID determines this type. If the flow set’s ID exists in the template IDs
stored in this hardware at runtime, then that template ID is used to discern all data records in

8.8. A SIMPLE FUNCTIONAL EXAMPLE AT RUNTIME 212

Field 1

Field 2

Field 3

Field 4

Field 5

Field 2

Field 1

Field 5

Data Record

Reordered Record

Figure 8.5: Example Filter and Reorder of NetFlow Fields in a Data Record

the current data record flow set. If it does not exist, the length of the flow set is then used to skip
over and ignore that flow set. Processing of the next flow set continues from here if the end of
the packet has not been reached.

8.8 A Simple Functional Example at Runtime

Data records are filtered and reordered according the the Configuration Register’s functional
block, a simple example of which is provided in Figure 8.5. This configuration is collected
from the publisher at boot time of the device and written into the Configuration Registers.
These registers define which data record fields are wanted by the publisher, and the order in
which the publisher wants these records. This is done by writing to a reordered buffer in a
location specified by the configuration when a field wanted by the publisher is found in a data
record. Once that data record is processed, the reordered buffer is pushed into the buffer FIFO
for passing onto the publisher via the network link.

8.9 Summary

In this chapter, an alternate implementation to Bolvedere’s collector is proposed. This imple-
mentation is focused on an in-hardware solution, leveraging the strength of the FPGA archi-
tecture. As a whole, this implementation takes the weaknesses of the CPU-based sequential
architecture discussed in Chapters 3 and 4 and implements specific hardware-based function-
ality to mitigate these CPU-based overheads.

As the goal of the collector is known by this point in this document, this chapter starts off with
Section 8.1 focusing on why such a hardware implementation of the collector is needed, rather

8.9. SUMMARY 213

than what the collector subsystem aims to achieve as a whole. The hardware implementation’s
ability to keep up with network link speeds is then shown in Section 8.2. Once the FPGA
timings are shown to meet specification, Section 8.3 presents an overview of the design of
the required hardware, as well as a high-level overview of how each functional block will be
connected inside the FPGA. The method of data reception and transmission is then detailed in
Sections 8.4 and 8.5 respectively, and once this concept is understood, the method in which this
custom hardware discerns NetFlow packets is brought to light in Section 8.6.

Once a packet is identified as a NetFlow packet that is addressed to this hardware-based col-
lector, further discernment is required in order to tell what kind of records the packet contains
(template or data). If it is a template record, it is simply stored by the FPGA for later use in
discerning data records. If it is a data record the relevant template needs to be fetched, and the
entire data record filtered and re-ordered as the publisher’s requirements. This functional block
implementation is presented in Section 8.7 and tested in the closing of this chapter in Section
8.8.

Following this chapter, Chapter 9 performs testing against the existing software implemented
collector, to show improvement gained through a hardware-accelerated implementation. The
tests performed in this chapter show correct functionality, the hardware collector’s ability to
stream at link speed, and a direct throughput comparison to the software collector implementa-
tion.

9
Hardware Equivalence Testing

THIS implementation sought to reimplement the Bolvedere collector subsystem in hard-
ware as a stream processor. This means that this hardware implementation should be
able to produce correct results at the full bandwidth the network link speed provided.

In this chapter it was also decided that it was worth showing the performance increase gained
by the publisher when it processes re-ordered NetFlow data records in a known order. This
reasoning led to 3 major tests, which are detailed below

After this testing environment is defined in Section 9.1, the first test performed in Section 9.2
will indicate whether results produced by this hardware implementation are correct, and thus
equivalent to the its software counterpart; answering the question of whether this works. The
second test in Section 9.3 will question the ability of the stream processor design, and will test
whether this device can saturate an entire link’s bandwidth. The third and final test performed
in Section 9.4 does not relate to the device, but will instead show the performance gain by the
publisher when processing data record fields in a known order as per configuration given to the
collector.

215

9.1. ENVIRONMENT 216

Internal Network

G
at

ew
ay External

Network
Host 1

Host 2

Figure 9.1: Physical Configuration of NetFlow Monitored Simple Networks

9.1 Environment

Testing was performed at 100 Mbps link speed. Link speeds of 1 Gbps and above were not con-
sidered were not used due to limitations of the FPGA, as discussed in Section 8.2. Three simple
networks of three physical hosts were created to generate network traffic. One system acted as
a gateway to an external network, while the other two systems resided within that gateway’s
internal network; Figure 9.1 shows the example layout. These gateways ran Softflowd (Miller,
2016) and were configured to export all network flows generated to the hardware collector. The
hardware collector in turn was configured to pass on its filtered and reordered results of these
NetFlow data records to the publisher, which was configured to duplicate the received bytes to
the terminal.

Network traffic is created by custom-written bots that execute on the hosts within the gateway’s
internal network. These bots work by sleeping for a set time before loading a given starting
URL from the Internet, creating a list of all URL links on the returned page, and then choosing
one, before restarting the process of sleeping and loading that URL. All systems used in testing
were running Ubuntu Linux 14.04 LTS 1, and the version of Softflowd used by the gateways
was 0.9.9.

9.2 Correct Filtering and Reordering of NetFlow

Three things need to be considered in order for the output produced by a Bolvedere collector to
be correct:

• Only the fields required exist in the output.

• The fields required are placed in the correct place in the output.

1http://www.ubuntu.com/

9.2. CORRECT FILTERING AND REORDERING OF NETFLOW 217

Table 9.1: Softflowd’s Recorded IPv4 Template Fields In Order

Field Name Field description
IP_SRC_ADDR IPv4 source address
IP_DST_ADDR IPv4 destination address
LAST_SWITCHED System uptime since the last packet of this flow was switched
FIRST_SWITCHED System uptime since the first packet of this flow was switched
BYTES Byte count
PKTS Packet count
INPUT_SNMP Input interface index
OUTPUT_SNMP Output interface index
L4_SRC_PORT TCP/UDP source port
L4_DST_PORT TCP/UDP destination port
PROTOCOL IP protocol used
TCP_FLAGS Count of all flags seen for this flow
IP_PROTOCOL_VERSION Version of the IP protocol used

Table 9.2: Kept and Reordered Fields from Hardware Collector

Field Name Field description
BYTES Byte count
PKTS Packet count
IP_SRC_ADDR IPv4 source address
MIN_PKT_LNGTH Minimum packet length seen in a flow
IP_DST_ADDR IPv4 destination address
MAX_PKT_LNGTH Maximum packet length seen in a flow

• Fields that do not exist in the original data record have the correct place holder put in
place, this being every bit set to 1.

To show that this hardware collector satisfies all three of these points, only a single test is
necessary. Softflowd’s template that describes IPv4 network flows is represented by the same
13 fields as in the order found in Chapter 7. For ease of reading, this list can be found in Table
9.1. For this test, the hardware was configured to filter and reorder the data records generated
by Softflowd into the form found in Table 9.2.

This configuration will reorder the incoming Softflowd generated NetFlow data records, filter
out unrequired data records, and utilise the default place holders for the minimum and maximum
IP packet lengths, as the incoming data records do not contain these fields.

9.2. CORRECT FILTERING AND REORDERING OF NETFLOW 218

Listing 9.1: Reordered Data Record Output as Seen by Publisher
1 . . .
2 Packet Payload Hex Out :
3 00 00 03 FD 00 00 00 03 // Byte Length , Packe t Count
4 9D 48 00 02 FF FF FF FF // Source IP , Min Packe t Length
5 68 10 41 CB FF FF FF FF // D e s t i n a t i o n IP , Max Packe t Length
6 . . .
7 Packet Payload Hex Out :
8 00 00 2B DF 00 00 00 70
9 9D 48 00 11 FF FF FF FF

10 C7 10 9C E6 FF FF FF FF
11 . . .

Table 9.3: Values of Reordered Fields from Bytes Received

Field Result 1 Result 2
Byte Count 1021 11,231
Packet Count 3 112
Source IP 157.72.0.2 157.72.0.17
Minimum Packet Length Place holder Place holder
Destination IP 104.16.65.203 199.16.156.230
Maximum Packet Length Place holder Place holder

9.2.1 Results

Results were collected from known 200 NetFlow data records. A an extract of the output gen-
erated by the publisher showing the received payload bytes can be viewed in Listing 9.1. One
can translate these results by first understanding that the bytes streamed out of the collector are
in the order presented in Table 9.2. Furthermore, each field is 4 bytes in length. Given the bytes
returned are in order and can be read from left to right, line by by line, this means that the first
4 bytes are the byte count, followed by the packet count, source IP, minimum packet length,
destination IP and finally the maximum packet length.

When considering Listing 9.1, it is important to note that both minimum and maximum packet
length fields take on the place-holder value 0xFFFFFFFF. This is due to the fact that Softflowd
does not record these two fields. Following this, when the collector the collector attempts to
draw these fields out of a NetFlow record received from Softflowd, it cannot find them, and so
replaces both of them with the place-holder values 0xFFFFFFFF.

A conversion from these byte values to integers can be found in Table 9.3. Upon comparing the
output generated by the publisher receiving the reordered NetFlow records from the collector, to

9.3. STREAMING AT LINK SPEED 219

the original known 200 NetFlow data records, all were found to be correctly discerned, filtered
and reordered.

9.3 Streaming at Link Speed

This test involves checking whether this device can process NetFlow data records at full link
speed. Keeping track of whether a NetFlow log was missed or not was done by counting the
number of logs received at the publisher. If one knows the number of data records transmitted
to the collector, one simply needs to count how many processed records arrived at the publisher,
whether they arrived in order and that all reordered NetFlow records arrived intact to determine
a result for this test. This test made use of the same configuration as the test performed in
Section 9.2.

Difficulties in this test arose when attempting to saturate the connected network link to the
collector. The reason for this is that NetFlow data records are exported to the collector when
a network flow ends or times out2. When a data record is exported is a very difficult event to
time, and this is a task made even more difficult by trying to saturate a 100 Mbps link with these
legitimate NetFlow records.

To solve this problem, 100 legitimate NetFlow packets were recorded and then randomly re-
played onto the network link attached to the hardware collector, with no delay between pack-
ets. This process was used to replay 200,000 NetFlow packets to the hardware collector, and
resultant reordered packets destined to the publisher were then counted by the publisher. Fur-
thermore, the order in which the 200,000 NetFlow packets were transmitted in was recorded for
later use in verification of results.

9.3.1 Results

This test resulted in the reception of 200,000 reordered NetFlow data record packets at the
publisher. Output from the publisher can be viewed in Listing 9.2. The publisher for this test
had packet counting enabled3, and displays this value between ‘[’ and ‘]’ characters in its output.
The snippet shown in Listing 9.2 shows two records taken from the output. The first output is
selected randomly, while the second is specifically chosen and is the last packet received in the

2No network traffic is seen in the flow for a predefined period of time.
3This feature is turned off by default to save CPU resources.

9.4. HARDWARE VERSUS SOFTWARE PROCESSING TIMES 220

Listing 9.2: Reordered Data Record Output as Seen by Publisher with Count Output Enabled
1 . . .
2 [147477] Packet Payload Hex Out :
3 00 00 5A B2 00 00 00 2F
4 9D 48 00 11 FF FF FF FF
5 C7 10 9C E6 FF FF FF FF
6 . . .
7 [200000] Packet Payload Hex Out :
8 00 00 13 0A 00 00 00 06
9 92 E7 58 04 FF FF FF FF

10 08 08 08 08 FF FF FF FF
11 . . .

test. This last packet is the 200,000th packet received by the publisher, and thus shows that
all packets transmitted were processed by the collector and, after transmitting to the publisher,
were received.

When observing the recorded random order in which the NetFlow packets were transmitted
and comparing these results to the collector’s configuration and the reordered NetFlow records
generated by the collector, all reordered packets were found to be correct. Examples of these
are shown in Listing 9.2 and follow the same translation method found in Section 9.2.

9.4 Hardware versus Software Processing Times

These tests show the total time for a Bolvedere system running a software collector and pub-
lisher to process a set of records, versus a Bolvedere system running a hardware collector and a
software publisher.

Originally, the host’s CPU running Bolvedere dealt with discernment of NetFlow data records
by itself before distribution to processor modules. Given that there are two components involved
in discernment of a data record (these being template and data), and the fact that a sequential
processor has no method of viewing both of these data at the same time, it was noted that this
would cause a bottleneck in Bolvedere as a whole.

This test was performed by introducing varying-sized duplicate datasets to the completely
software-based Bolvedere system, and again to the hardware collector-based Bolvedere sys-
tem, and timing how long it takes to process each. The time to process a NetFlow packet was
timed from point of introduction to the collector, to time the publisher published the relevant
records found in the NetFlow packet.

9.5. SUMMARY 221

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100000 1000000 10000000 100000000

Ti
m

e
 T

a
ke

n
 in

 S
e
co

n
d
s

Number of Lookups

Software Collector versus Hardware Collector Processing Times

Software Collector
Hardware Collector

Figure 9.2: Time Taken for Sequential Processing of In-Order versus Out-of-Order NetFlow
Data Records

9.4.1 Results

Figure 9.2 shows the time taken to process the varying sized datasets for both software and
hardware collector-based Bolvedere implementations. These results strongly motivate the in-
clusion of an option to process NetFlow records on a hardware-based collector subsystem. This
is highlighted in these results, which on average show the hardware collector-based Bolvedere
system records taking 44.318% of the processing time of the software collector-based Bolvedere
system.

This result is particularly interesting as hardware-accelerated records are processed more than
twice as quickly as software processed records. This suggests that the introduction of overheads
in software alone require 5% of all processing time when discerning and processing a field in a
data record.

These results strongly motivate the use of a hardware-accelerated Bolvedere system. This being
said, as both software- and hardware-based collectors produce the same results, depending on
one’s requirements, one should still have access to both options.

9.5 Summary

As this hardware implementation of the collector subsystem of Bolvedere is designed to be a
replacement for the software implementation of it, this hardware implementation needed to be

9.5. SUMMARY 222

shown as functionally equivalent to the software implementation of the collector. This chap-
ter achieves this through first defining the environment in which all testing would be done in
Section 9.1.

Once this testing environment was laid out, testing aimed to check that the ability to filter and
reorder packets was equivalent to that of the software collector in Section 9.2; achieving this
would also ensure that the hardware implementation was functionally correct. The next step
was to check that the hardware implementation could keep up with the Ethernet link speed at
which it synchronised in Section 9.3.

Once this was proven functional, the last step was to note the effect that replacement of the
software-based collector would have on Bolvedere as a whole. These results close this chapter
and are brought forth in Section 9.4, which showed that the use of this hardware implementation
more than halves the time taken for Bolvedere’s base to publish NetFlow records to modules
subscribed to the publisher.

10
Conclusion

THIS research implemented and tested the Bolvedere system; a system that sought to
optimise processing and analysis of network flows when using the NetFlow protocol.
Bolvedere as a whole was tasked with the distribution and filtering of NetFlow records

on an array of hardware configurations. Furthermore, Bolvedere was designed with modularity
in mind, enabling its distributed processing mechanisms on parallel architectures.

Finally, hardware acceleration took place in order to provide hardware instructions for discern-
ing and re-ordering of NetFlow data records on an FPGA-based architecture. This reduced the
time taken to deliver a new record to processing modules in Bolvedere by 55.682%.

This chapter concludes this research by starting with a summary of this document to this point
in Section 10.1. Following this summary, a look at the key points that Bolvedere aimed to
achieve takes place in Section 10.2, which includes compatibility, accessibility, scalability and
parallelization. The degree to which the goals outlined in Chapter 1 are met are then taken into
account in Section 10.3. The level to which real-world application is achieved by this research
is discussed in Section 10.4. Finally, this chapter, and research, concludes with a summary of
the novel contributions this research made to the field in Section 10.5 and then a look into future
extensions that can be made to this research in Section 10.6.

223

10.1. DOCUMENT SUMMARY 224

10.1 Document Summary

This document began with a description of the problem statement and outlines the method by
which this research aimed to resolve this in Chapter 1. Following this, Chapter 2 brought
forth all the background information required for understanding key concepts and the context
in which this research takes place. With this knowledge, Chapter 3 and Chapter 4 evaluated
existing technology’s strengths and weaknesses before designing Bolvedere in a manner that
could best utilise these current technologies. This includes the ability to horizontally scale this
implementation.

Chapter 5 proceeds to design the mechanisms of Bolvedere that would analyse the NetFlow
records. This would serve to show that Bolvedere’s base system1 worked correctly and that
the system as a whole could be used to analyse NetFlow data. Upon completion of imple-
mentation of Bolvedere, Chapter 6 tested Bolvedere’s base system and processor modules in a
synthetic environment. This testing was performed in order to verify the correct functionality
of Bolvedere.

Building on this synthetic testing, once Bolvedere was deemed correct in functionality Chapter
7 introduced a real-world dataset consisting of 17 months of school network data. Although not
extensive, the analysis of this dataset brought to light many interesting events during these 17
months, and showcased the ability of Bolvedere as a whole.

Upon conclusion of showing the usefulness of Bolvedere as a NetFlow processing and analysis
platform, this research refocused its aim on maximising Bolvedere’s NetFlow record through-
put, and future-proofing its implementation in Chapter 8. This was achieved through iden-
tifying bottlenecks in Bolvedere’s collector system, and hardware-accelerating it through the
implementation of the collector in an FPGA.

To ensure that Bolvedere still functioned correctly, testing was performed to show equivalence
between the previously implemented software collector and the newly implemented hardware
collector in Chapter 9. This chapter concluded by benchmarking the hardware collector against
the software collector.

1Consisting of collector and publisher.

10.1. DOCUMENT SUMMARY 225

10.2 Key Aspects

Key aspects of this research, which are extracted from this research’s goals set out in Section
1.2, are listed below:

1. Primary Aspects

(a) To evaluate the benefits of implementing a dedicated NetFlow processor, and the
effects this will have on existing systems.

(b) Ease of processor module development through code base choice and removal of
need to rewrite the initial NetFlow ingress and distribution system (Bolvedere’s
base).

(c) The ease of access to this system to allow for its implementation and continued use.
This also includes the reuse of existing systems in order to make the adoption of
Bolvedere cost-effective.

(d) Scalability of Bolvedere is taken into account to allow for parallel computation of a
task or many tasks that work on common data received by Bolvedere.

2. Secondary Aspects

(a) Real-world application is taken into account, as this research was aimed at being a
real-world implementable product.

(b) Finally, optimisation of this system is taken into account through identification of
bottlenecks and mitigation of them through design and implementation of dedicated
FPGA-based hardware to perform the bottlenecked task.

This research, in its simplest form, was aimed at optimization of the logic flow within network
flow analysis systems. Furthermore, the system developed by this research should be easily
implementable, highly compatible and easily accessed. With this in mind, this research looked
towards drawing robust conclusions from results yielded during testing, and tying these back to
the goals set out at the beginning of this research.

10.2.1 Processor Module Development

With completion of Bolvedere’s base system in both software (Chapter 3) and hardware-accelerated
form (Chapter 8), and its development for compatibility with a well-supported data distribution
platform, the Bolvedere system removes the need for one to write boilerplate code required

10.1. DOCUMENT SUMMARY 226

simply to get a NetFlow record to a processor module. The manner in which this performed
is detailed in Section 4.3. The development of a new processor module for Bolvedere is as
simple as importing ZMQ into the module, and subscribing it to the Bolvedere base system that
is broadcasting the processed NetFlow data records that are relevant to the processor module in
development.

On top of this is the fact that, as ZMQ supports over 30 languages (as detailed in Section 3.2.5),
one can choose the best programming language for the task at hand. Extending this fact is that
ZMQ is a well-defined and well-documented protocol. This allows one to develop a processor
module in a language or on a platform not yet supported by ZMQ. This can be done through the
use of sockets to connect to the Bolvedere base, and then performing communication based on
ZMQ’s documentation to interpret the received data.

In all, this makes for a very easy platform to develop, as the understanding of many complex
underlying mechanisms of NetFlow can be omitted. This allows one to place their focus directly
on the development of the processor module intended to analyse the relevant NetFlow record
data.

10.2.2 Modularity, Scalability and Parallelism

Processor modules perform the bulk of NetFlow data record analysis in Bolvedere. As men-
tioned before, one can choose the best language for the task at hand. Because of this, one can
explore any data analytic that a language supports. This strength is coupled with the manner
in which Bolvedere executes. The Bolvedere base system executes disjointly to any of the pro-
cessor modules listening to the output of the Bolvedere base. This means that modules can be
removed and added to the system as a whole, without any affect on any Bolvedere base system,
or on any other processor module in the system. This technique was used during both synthetic
testing in Chapter 6 and real-world analysis in Chapter 7. This functionality also allows for
removal and addition of Bolvedere base modules during execution of the system in its entirety.

Furthermore, this allows one to break up work-loads into more manageable chunks, or distribute
processing of modules effectively; one can see this configuration being used directly in Section
7.2. For example, if a work-load is too large for a single module to process, this work-load can
be broken down into smaller chunks based on subnets or port range. As Bolvedere is built on
ZMQ, the same processor modules can be executed on separate physical hosts attached to the
same network. This allows the processor modules to simply connect to the same Bolvedere base
using the same ZMQ command that would be used over a network. This logic is also applicable

10.1. DOCUMENT SUMMARY 227

to Bolvedere base systems, as one can run multiple Bolvedere base systems on a network on
which processor modules can choose which subset of these base systems to subscribe to.

On the other end of the scale, if the work-load is small enough that all resources are not used
by a host in processing a processor module, one can run multiple processor modules on that
host, making use of common hardware in order to achieve their tasks disjointly. This system
design inherently allows for ease of scalability as well as parallelism. This was part of the initial
design decisions made in Section 3.2 around Bolvedere’s inter-system communication. This is
due to each processor module executing in its own work space concurrently, and this allows for
parallel operation if hardware support allows for it.

10.2.3 System Accessibility

System Accessibility in terms of this project refers to the ability to execute Bolvedere on a
system with limited resources available for execution. Cost is also taken into consideration
in this evaluation, as the cheaper something is to acquire, the better the adoption rate of that
something is. With these two factors in mind, Ubuntu Linux was chosen as the operating system
of choice for this implementation. This operating system is both free and easily installable, and
is highly compatible with many hardware configurations dating back years in age. This choice
was made during the design phase of Bolvedere in Chapter 3, and all testing performed in
Chapters 6, 7 and 9 made use of this operating system. This allows for poorer demographics
that cannot afford the latest systems to gain access to this research and execute it to some degree.
This will increase the potential penetration rate of Bolvedere.

This design choice is two-fold. Maximising compatibility means that adoption of Bolvedere in
existing infrastructures and systems is also a cost-effective task. In this case, Bolvedere can use
already purchased and in place hosts that are running other systems in order to replace them, or
run alongside them if the host’s resources permit this. This also allows for ease of scalability
in the future with the growth of networks and thus the increase of bandwidth that needs to be
processed.

10.2.4 Hardware Acceleration

Hardware acceleration was introduced into this project in Chapter 8, in order to optimise the
existing system and future-proof it. The entire hardware design is intended to synchronise
and operate at the speed of the network interface to which it is connected, thus allowing the

10.3. EVALUATION OF RESEARCH GOALS 228

hardware to scale seamlessly to the speed of the network it is connected to. This is shown to be
the case in Section 9.3. Furthermore, this VHDL design can be bundled up into an Intellectual
Property Core (IP Core) and included in other networking projects or SoCs. This means that
future hardware can choose to natively support Bolvedere in hardware, thus enabling network
equipment such as switches and routers to act as Bolvedere bases that processor modules can
subscribe to.

It must be restated that this hardware is simply a clone of the functionality existent in the soft-
ware implementation of the collector, and there is no loss of functionality by not having access
to the hardware implementation of the collector. This was shown through using the software-
implemented collector as a direct comparison in Chapter 9, and more specifically by the direct
comparison of results in Section 9.4. If this was not true, no performance comparison could be
justifiably made.

10.3 Evaluation of Research Goals

This sections draws together a conclusion about the degree to which each goal set out in Section
1.2 was achieved. As these goals were labelled previously, they will simply be referred to by
their label in the following text.

1. Primary Goals

(a) The modular design of Bolvedere allowed for leveraging of parallel architectures.
Furthermore, the nature in which these modules execute allowed them to process
their data in a highly concurrent manner, and is best showcased in Chapter 7, where
the entire 17-month school network dataset was processed in parallel over multiple
hosts. This scalability allowed for ease in ramping up of processing power with the
growth of networks and their bandwidth requirements. The disjoint nature of each
module in Bolvedere, as well as the base system, allowed for ease of addition and
removal of processor modules, based on one’s needs and the requirements of the
intended network.

(b) The benefits found through further processing and filtering of NetFlow records
showed to be promising, as it made the task of analysing this data more focused
on the points that are relevant to what is being analysed. Bolvedere used this fact in
Chapter 6 to initially prove that better detection of malicious activity can be achieved
through the use of a lens that is more focused on a network’s activities.

10.4. REAL-WORLD APPLICATION 229

(c) Processing and analysis of reordered NetFlow records by Bolvedere’s base was
achieved though development of several processor modules, which were designed
in Chapter 5. The multi-language support of ZMQ’s allowed for use of the best tool
for the job when developing these processor modules, and results produced in both
synthetic (Chapter 6) and real-world (Chapter 7) testing support this fact. Through
these testing iterations, Bolvedere as a whole was shown to be able to sink NetFlow
records, and process and analyse them to produce meaningful information about
events on a network.

2. Secondary Goals

(a) Testing of Bolvedere on live recorded data in Chapter 7 proved fruitful, as results
from the performed analysis brought to light many anomalous events within the
17-month dataset. When further analysis was performed on these results by viewing
the original NetFlow records, the events detected by these processor modules proved
true2. Furthermore, Bolvedere’s ability to handle and process a large throughput of
NetFlow records helped to prove its potential in live application.

(b) Hardware acceleration of the collector subsystem of Bolvedere was achieved with
great success. The collector software and hardware implementations were shown to
be interchangeable in Chapter 9, with no effect on the output from the Bolvedere
base system. The only difference noted here was a gain in bandwidth throughput in
use of the hardware implementation. As previously mentioned, this also added to
future-proofing of Bolvedere.

In closing, this research aimed to implement a network flow analysis system specifically tar-
geted at NetFlow version 9 and IPFIX. Having achieved the goals set out in Section 1.2, this
research has been concluded to serve as a healthy addition to the research areas involving net-
works, network analysis and network security.

10.4 Real-World Application

Two of the initial aspects of Bolvedere put forth at design time were accessibility to this system,
and its scalability. Commenting on the latter first, it was shown in both the controlled testing
(Chapter 6) and the real-world testing (Chapter 7) that the collector, publisher and all processor

2There was strong evidence of the occurrence of the detected event.

10.4. REAL-WORLD APPLICATION 230

modules of this system could run within a single host. Furthermore, as all parts of Bolvedere
run disjointly, any subsystem of Bolvedere can be run separately on its own host. This allows
Bolvedere as a whole to scale out horizontally as hardware resource requirements increase past
that which a single host can provide. Furthermore, implementation of an in-hardware collector
allowed Bolvedere to increase its overall performance further.

Focusing on accessibility, Bolvedere needed to be accessible to society at large, especially those
that cannot afford or do not have access to the hardware needed to run multiple hosts. As men-
tioned before, the ability to run multiple subsystems of Bolvedere within a single host helped
alleviate the barrier to entry in running this system. This was then coupled with the choice
between a software- or hardware-based collector. Both hardware and software implementations
of the collector are fully featured, and are interchangeable with no functional change other than
performance, where the hardware implementation is designed for far higher throughput rates.
These design and implementation choices have created a system that is applicable in single-
application and multi-application situations. This caters for both someone wanting to just learn
how the system works, and a fully scaled-out system churning through multiple gigabits per
second of network traffic, as shown to be possible in Section 7.3.

Another major point that one should take note of when considering the use of this system is its
simplicity. One need only configure what fields one wishes to see published from the acquired
NetFlow records, and start the publisher and collector. The publisher will configure itself and
then communicate with and configure any collector that is connected to the publisher. This
means that the user need not know the complex workings within the software, or have a deep
understanding of hardware logic level programming in order to initiate Bolvedere. One simply
needs to input what fields are required and the order in which they wish to have them published
to a processor module. This was detailed in Section 4.3.

This leads to the concluding point of Bolvedere. Bolvedere was designed as an easy to access,
scalable system that removes, or to a large degree mitigates, the need to understand the complex
workings of the NetFlow protocol, hardware logic level and low level C programming. It acts
as a complete out-of-the-box system that, beyond configuring what NetFlow fields one wants
to work with, requires little to no other configuration or maintenance. This means that the user
can more quickly get down to developing a Bolvedere processor module to analyse the NetFlow
records that they need to collect meaningful information about a network or, as NetFlow records
can be exported to any device with an IP, multiple networks locally or globally.

10.5. RESEARCH CONTRIBUTION 231

10.5 Research Contribution

This research has made the following novel contributions:

1. This research developed a hardware-accelerated NetFlow version 93 processing system,
namely Bolvedere. This research initially sought to develop a platform which would act
as a base for NetFlow analysis. The user of Bolvedere would simply specify what part
of the NetFlow records they were interested in processing, and Bolvedere’s base system
would ensure this data was published for the user to use. This removed the need for
the user to redevelop and include NetFlow discernment logic in every NetFlow analysis
tool they would develop. Instead, the process of developing a NetFlow analysis tool was
streamlined by the user only having to focus on development of the analysis tool. This
base system that handled the processing, filtering and restructuring of NetFlow records
by request of a user, was hardware-accelerated in this research to improve throughput and
to future-proof its implementation.

2. This research was limited to processing of NetFlow records (Section 1.3); however, this
implementation is able to process any well-defined protocol that follows a template and
data record scheme. This functionality is true of both hardware and software implemen-
tations of the collector with the rest of the Bolvedere system in its entirety.

10.6 Future Work

Information technology is an ever-growing field and, as such, this research should aim to grow
with it. To better streamline this process, some ideas and proposals for future extensions of
Bolvedere are listed below. These ideas arose as extensions to the work performed in this
research, or because some areas proposed fell out of the scope of this research at the time it was
conducted.

• There is always a need for more analysis tools, and in this research, this comes in the form
of processor modules. Although there are a few provided with this research, the focus of
this research was to implement and ensure the correct functionality of the Bolvedere base
system. For this reason, there is a lot of space to grow the analysis side of Bolvedere
through development of new processor modules.

3NetFlow version 9 is also follows the same format as IPFIX and as such, Bolvedere can also process IPFIX
logs.

10.6. FUTURE WORK 232

• As NetFlow works with a pair of records, these being data and template, one can look to
use templates to better describe other forms of data. There is a lot of space left open in
the NetFlow version 9 and IPFIX standards in which to define custom fields. If one were
to use these fields to describe new protocols in development, this would further grow the
support base of Bolvedere.

• Continuing on the previous future work, as the NetFlow protocols that make use of tem-
plates are well-defined, they can be used to record non-network traffic. If a system that
collects other forms of data follows the standard motion of a template describing what
is in the data it is transmitting, and then sending data in the format required by the pro-
tocol, one can effectively log other forms of data using the NetFlow protocol. This can
be directly extended to Bolvedere to perform analysis on this non-network flow data, in
order to better analyse this new form of data. This should require minimal to no modi-
fication of the Bolvedere system, other than the addition of processor modules to handle
this non-network based data.

• The hardware-accelerated implementation of Bolvedere in its current state only supports
IPv4. As such, extension to IPv6 would extend the compatibility of the hardware imple-
mentation of this system. This would only require modification of the network-specific
functional blocks.

• Research into the porting, supporting and testing of Bolvedere on other OSs such as BSD
or Windows. This will allow for an even wider access to Bolvedere.

These proposals are not limited to the scope of this implementation only, and implementation
on a more suited platform is encouraged if that is the case. This research is not intended to be
the pinnacle of all network analysis, and as a collective research community we should strive
continuously into new research areas, even if that means rendering obsolete existing implemen-
tations; stagnation will only serve to kill this area of research.

With this mindset to grow this research and explore new research ventures, the ever-needed
research areas of networks, network security and Computer Science as a whole will continue to
grow steadily.

References

Abramson, N. Development of the alohanet. IEEE Transactions onInformation Theory,
31(2):119–123, 1985. doi:10.1109/TIT.1985.1057021.

Abu Rajab, M., Zarfoss, J., Monrose, F., and Terzis, A. A multifaceted approach to under-

standing the botnet phenomenon. In Proceedings of the 6th ACM SIGCOMM conference on

Internet measurement, pages 41–52. ACM, 2006. doi:10.1145/1177080.1177086.

Amdahl, G. M. Validity of the Single Processor Approach to Achieving Large Scale Computing

Capabilities. Solid-State Circuits Society Newsletter, IEEE, 12(3):19–20, 2007. doi:10.1145/
1465482.1465560.

Argyraki, K. and Cheriton, D. Network capabilities: The good, the bad and the ugly. ACM

HotNets-IV, 139:140, 2005.

Arregoces, M. and Portolani, M. Data Center Fundamentals. Cisco Press, 2003. ISBN
978-1-58-714075-4, 495 pages.

Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R. E., and Sturman,
D. C. An efficient multicast protocol for content-based publish-subscribe systems. In Dis-

tributed Computing Systems, 1999. Proceedings. 19th IEEE International Conference on,
pages 262–272. IEEE, 1999. doi:10.1109/ICDCS.1999.776528.

Barnett, R. J. and Irwin, B. Towards a taxonomy of network scanning techniques. In Pro-

ceedings of the 2008 annual research conference of the South African Institute of Computer

Scientists and Information Technologists on IT research in developing countries: riding the

wave of technology, pages 1–7. ACM, 2008. doi:10.1145/1456659.1456660.

Bartlett, K. A., Scantlebury, R. A., and Wilkinson, P. T. A note on reliable full-duplex

transmission over half-duplex links. Communications of the ACM, 12(5):260–261, 1969.
doi:10.1145/362946.362970.

233

REFERENCES 234

Bening, L. and Foster, H. Principles of verifiable RTL design. Springer, 2001. ISBN 978-0-
79-237368-1.

Biggs, J. Hackers release source code for a powerful ddos app called mirai. Online, October
2016. Accessed 30th June 2017.
URL https://techcrunch.com/2016/10/10/hackers-release-source-

code-for-a-powerful-ddos-app-called-mirai/

Biham, E. and Seberry, J. Pypy: another version of python. Technical report, eSTREAM,
ECRYPT Stream Cipher Project, 2006.

Bilge, L. and Dumitras, T. Before we knew it: an empirical study of zero-day attacks in the

real world. In Proceedings of the 2012 ACM conference on Computer and communications

security, pages 833–844. ACM, 2012. doi:10.1145/2382196.2382284.

Bishop, M. What is Computer Security? Security & Privacy, IEEE, 1(1):67–69, 2003. doi:
10.1109/MSECP.2003.1176998.

Bonderud, D. Leaked Mirai Malware Boosts IoT Insecurity Threat Level. October 2016.
Accessed 11 August 2017.
URL https://securityintelligence.com/news/leaked-mirai-

malware-boosts-iot-insecurity-threat-level/

Boyes, W. Instrumentation Reference Book. Butterworth-Heinemann, 3rd edition, 2002. ISBN
978-0-75-068308-1.

Bracewell, R. The fourier transform and iis applications. New York, 5, 1965.

Braden, R. RFC 1122: Requirements for Internet hosts. 1989. Accessed 27th June 2017.
URL https://tools.ietf.org/html/rfc1122

Brasford, G. The Welchia worm. Global Information Assurance Certification, page 27, 2004.

Cain, B. Source-specific multicast for ip. 2006. Accessed 15th November 2017.
URL https://tools.ietf.org/html/rfc4607

Cerf, V. G. and Kahn, R. E. A protocol for packet network intercommunication. ACM

SIGCOMM Computer Communication Review, 35(2):71–82, 2005. doi:10.1145/1064413.
1064423.

Chen, J. C., Hudson, R. E., and Yao, K. Maximum-likelihood source localization and un-

known sensor location estimation for wideband signals in the near-field. IEEE transactions

on Signal Processing, 50(8):1843–1854, 2002. doi:10.1109/TSP.2002.800420.

https://techcrunch.com/2016/10/10/hackers-release-source-code-for-a-powerful-ddos-app-called-mirai/
https://techcrunch.com/2016/10/10/hackers-release-source-code-for-a-powerful-ddos-app-called-mirai/
https://securityintelligence.com/news/leaked-mirai-malware-boosts-iot-insecurity-threat-level/
https://securityintelligence.com/news/leaked-mirai-malware-boosts-iot-insecurity-threat-level/
https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc4607

REFERENCES 235

Cheshire, S. and Krochmal, M. RFC 6761: Special-Use Domain Names. 2013. Accessed
10th October 2017.
URL https://tools.ietf.org/html/rfc6761

Chiang, K. and Lloyd, L. A Case Study of the Rustock Rootkit and Spam Bot. HotBots,
7:10–10, 2007.

Cho, Y. H., Navab, S., and Mangione-Smith, W. H. Specialized hardware for deep network

packet filtering. In Field-Programmable Logic and Applications: Reconfigurable Computing

Is Going Mainstream, pages 452–461. Springer, 2002.

Cisco. NetFlow V9 Export Format. 2003a. Accessed 13th February 2015.
URL https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/

guide/nfexpfv9.html

Cisco. NetFlow Version 9 Flow-Record Format. 2003b. Accessed 19th May 2016.
URL https://www.cisco.com/en/US/technologies/tk648/tk362/

technologies_white_paper09186a00800a3db9.html

Cisco. Network Address Translation (NAT) FAQ. 2015. Accessed 4th August 2015.
URL http://www.cisco.com/c/en/us/support/docs/ip/network-

address-translation-nat/26704-nat-faq-00.html

Cisco. The zettabyte era–trends and analysis. 2017.
URL http://www.cisco.com/c/en/us/solutions/collateral/

serviceprovider/visualnetworking-index-vni/VNI_

Hyperconnectivity_WP.html

Claise, B. RFC 3954: Cisco systems NetFlow services export version 9. 2004. Accessed 29th
July 2015.
URL https://www.ietf.org/rfc/rfc3954

CloudFlare, Inc. Cloudflare protects and accelerates any website online. 2016. Accessed
19th May 2016.
URL https://www.cloudflare.com/lp/overview/?_bt=91222385652&

_bk=cloudflare&_bm=e&_bn=g&gclid=CJWto6PI6MwCFdRuGwodpp0DDQ

Cockshott, P. and Renfrew, K. SIMD Programming Manual for Linux and Windows. Springer,
2004. ISBN 978-1-84-996920-8, 11–22 pages.

https://tools.ietf.org/html/rfc6761
https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/nfexpfv9.html
https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/nfexpfv9.html
https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/c/en/us/support/docs/ip/network-address-translation-nat/26704-nat-faq-00.html
http://www.cisco.com/c/en/us/support/docs/ip/network-address-translation-nat/26704-nat-faq-00.html
http://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/visualnetworking-index-vni/VNI_Hyperconnectivity_WP.html
http://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/visualnetworking-index-vni/VNI_Hyperconnectivity_WP.html
http://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/visualnetworking-index-vni/VNI_Hyperconnectivity_WP.html
https://www.ietf.org/rfc/rfc3954
https://www.cloudflare.com/lp/overview/?_bt=91222385652&_bk=cloudflare&_bm=e&_bn=g&gclid=CJWto6PI6MwCFdRuGwodpp0DDQ
https://www.cloudflare.com/lp/overview/?_bt=91222385652&_bk=cloudflare&_bm=e&_bn=g&gclid=CJWto6PI6MwCFdRuGwodpp0DDQ

REFERENCES 236

Collingbourne, P., Donaldson, A. F., Ketema, J., and Qadeer, S. Interleaving and lock-step

semantics for analysis and verification of gpu kernels. In ESOP, pages 270–289. Springer,
2013. doi:10.1007/978-3-642-37036-6.

Coltun, R., Ferguson, D., Moy, J., and Lindem, A. RFC 5340: OSPF for IPv6. 2008.
Accessed 27th August 2015.
URL https://tools.ietf.org/html/rfc5340

Computer Society of the IEEE. 1076-2008 - IEEE Standard VHDL Language Reference

Manual. Technical report, IEEE, 1988.
URL http://perso.telecom-paristech.fr/~guilley/ENS/20161206/

TP/tp_syn/doc/IEEE_VHDL_1076-1987.pdf

Cotton, M., Eggert, L., Touch, J., Westerlund, M., and Cheshire, S. Internet Assigned

Numbers Authority (IANA) procedures for the management of the service name and transport

protocol port number registry. 2011. Accessed 23rd October 2017.
URL https://www.iana.org/assignments/service-names-port-

numbers/service-names-port-numbers.xhtml

Cotton, M. and Vegoda, L. RFC 5735: Special use IPv4 addres. 2010. Accessed 30th August
2017.
URL https://tools.ietf.org/html/rfc5735

Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J., Nguyen-
Tuong, A., and Hiser, J. N-variant systems: A secretless framework for security through

diversity. In Usenix Security, volume 6, pages 105–120. 2006.

Czyz, J., Kallitsis, M., Gharaibeh, M., Papadopoulos, C., Bailey, M., and Karir, M. Taming

the 800 pound gorilla: The rise and decline of ntp ddos attacks. In Proceedings of the

2014 Conference on Internet Measurement Conference, pages 435–448. ACM, 2014. doi:
10.1145/2663716.2663717.

Dabbagh, M., Ghandour, A. J., Fawaz, K., El Hajj, W., and Hajj, H. Slow port scanning

detection. In Information Assurance and Security (IAS), 2011 7th International Conference

on, pages 228–233. IEEE, 2011. doi:10.1109/ISIAS.2011.6122824.

Dagum, L. and Enon, R. OpenMP: an industry standard API for shared-memory program-

ming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998. doi:10.1109/99.
660313.

https://tools.ietf.org/html/rfc5340
http://perso.telecom-paristech.fr/~guilley/ENS/20161206/TP/tp_syn/doc/IEEE_VHDL_1076-1987.pdf
http://perso.telecom-paristech.fr/~guilley/ENS/20161206/TP/tp_syn/doc/IEEE_VHDL_1076-1987.pdf
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://tools.ietf.org/html/rfc5735

REFERENCES 237

Dan, A. and Towsley, D. An approximate analysis of the lru and fifo buffer replacement

schemes. SIGMETRICS ’90 Proceedings of the 1990 ACM SIGMETRICS conference on Mea-

surement and modeling of computer systems, 18:143–152, 1990. doi:10.1145/98460.98525.

Danyliw, R., Meijer, J., and Demchenko, Y. RFC 5070: Incident Object Description Ex-

change Format (IODEF). 2012.
URL https://tools.ietf.org/html/rfc5070

Deering, S. RFC 1112: Host extensions for IP multicasting., August 1989. 1997. Accessed
16th July 2016.
URL https://tools.ietf.org/html/rfc1112

Deering, S. E. RFC 2460: Internet Protocol, version 6 (IPv6) specificat. 1998. Accessed 16th
July 2016.
URL https://www.ietf.org/rfc/rfc2460.txt

Dice, D., Shalev, O., and Shavit, N. Transactional Locking II. In DISC’06 Proceedings of the

20th international conference on Distributed Computing, pages 194–208. Springer, 2006.

Digital Equipment Corporation, Intel Corporation and Xerox Corporation. The Ethernet

A Local Area Network Data Link Layer and Physical Layer Specifications V2.0. Technical
report, Xerox PARC, 1982.
URL http://decnet.ipv7.net/docs/dundas/aa-k759b-tk.pdf

Dougherty, C., Havrilla, J., Hernan, S., and Lindner, M. W32/Blaster worm. August 2003.
Accessed 9th March 2015.
URL http://www.cert.org/historical/advisories/CA-2003-20.cfm

Douligeris, C. and Mitrokotsa, A. DDoS attacks and defense mechanisms: classification and

state-of-the-art. Computer Networks, 44(5):643–666, 2004. doi:doi.org/10.1016/j.comnet.
2003.10.003.

Doulos. A Brief History of VHDL. 2014. Accessed 13th February 2015.
URL https://www.doulos.com/knowhow/vhdl_designers_guide/a_

brief_history_of_vhdl/

Doyen, G., Waldburger, M., Celeda, P., Sperotto, A., and Stiller, B. Emerging Manage-

ment Mechanisms for the Future Internet: 7th IFIP WG 6.6 International Conference on

Autonomous Infrastructure, Management, and Security, AIMS 2013, Barcelona, Spain, June

25-28, 2013, Proceedings, volume 7943. Springer, 2013. ISBN 978-3-64-238997-9, 151
pages.

https://tools.ietf.org/html/rfc5070
https://tools.ietf.org/html/rfc1112
https://www.ietf.org/rfc/rfc2460.txt
http://decnet.ipv7.net/docs/dundas/aa-k759b-tk.pdf
http://www.cert.org/historical/advisories/CA-2003-20.cfm
https://www.doulos.com/knowhow/vhdl_designers_guide/a_brief_history_of_vhdl/
https://www.doulos.com/knowhow/vhdl_designers_guide/a_brief_history_of_vhdl/

REFERENCES 238

Durumeric, Z., Wustrow, E., and Halderman, J. A. Zmap: Fast internet-wide scanning and

its security applications. In USENIX Security Symposium, volume 8, pages 47–53. 2013.

Eastlake 3rd, D. and Jones, P. US secure hash algorithm 1 (SHA1). 2001. Accessed 7th April
2016.
URL http://www.rfc-editor.org/rfc/rfc3174.txt

Egevang, K. and Francis, P. RFC 1631: The IP network address translator (NAT). 1994.
Accessed 23rd October 2017.
URL https://tools.ietf.org/html/rfc1631

Embedded Micro. Embedded micro make technology. 2015. Accessed 23th June 2015.
URL https://embeddedmicro.com/tutorials/mojo-fpga-beginners-

guide/how-does-an-fpga-work

Enderton, H. and Enderton, H. B. A Mathematical Introduction to Logic. New York: Harcourt
Academic Press, second edition edition, 2001. ISBN 978-0-08-057038-9.

Estan, C., Keys, K., Moore, D., and Varghese, G. Building a better netflow. In ACM SIG-

COMM Computer Communication Review, volume 34, pages 245–256. ACM, 2004. doi:
10.1145/1015467.1015495.

Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. The many faces of

publish/subscribe. ACM computing surveys (CSUR), 35(2):114–131, 2003. doi:10.1145/
857076.857078.

Facebook. How does Facebook suggest tags? February 2016. Accessed 4th February 2016.
URL https://www.facebook.com/help/122175507864081

Feinstein, L., Schnackenberg, D., Balupari, R., and Kindred, D. Statistical approaches to

ddos attack detection and response. In DARPA Information Survivability Conference and Ex-

position, 2003. Proceedings, volume 1, pages 303–314. IEEE, 2003. doi:10.1109/DISCEX.
2003.1194894.

Fiat, A. and Naor, M. Broadcast encryption. In Advances in Cryptology-CRYPTO’93, pages
480–491. Springer, 1994. doi:10.1007/3-540-48329-2_40.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-Lee,
T. RFC 2616: HyperText Transfer Protocol–HTTP/1.1. 2009. Accessed 10th August 2016.
URL http://www.rfc.net/rfc2616.html

http://www.rfc-editor.org/rfc/rfc3174.txt
https://tools.ietf.org/html/rfc1631
https://embeddedmicro.com/tutorials/mojo-fpga-beginners-guide/how-does-an-fpga-work
https://embeddedmicro.com/tutorials/mojo-fpga-beginners-guide/how-does-an-fpga-work
https://www.facebook.com/help/122175507864081
http://www.rfc.net/rfc2616.html

REFERENCES 239

Francis, R. J., Rose, J., and Vranesic, Z. G. Field-Programmable Gate Arrays. Springer
Science & Business Media, 1992. ISBN 978-0-79-239248-4.

Furnell, S., Bryant, P., and Phippen, A. D. Assessing the security perceptions of personal

Internet users. Computers & Security, 26(5):410–417, 2007. doi:10.1016/j.cose.2007.03.
001.

Gallagher, S. Double-dip Internet-of-Things botnet attack felt across the Internet. Online,
October 2016. Accessed 30th June 2017.
URL https://arstechnica.com/security/2016/10/double-dip-

internet-of-things-botnet-attack-felt-across-the-internet/

Galtsev, A. A. and Sukhov, A. M. Network attack detection at flow level. In Smart Spaces and

Next Generation Wired/Wireless Networking, pages 326–334. Springer, 2011.

Geng, X. and Whinston, A. B. Defeating Distributed Denial of Service attacks. IT Profes-

sional, 2(4):36–42, 2000. doi:10.1109/6294.869381.

Gil, T. M. and Poletto, M. Multops: a data-structure for bandwidth attack detection. In
USENIX Security Symposium. 2001.

Gordon, W. J., Fairhall, A., and Landman, A. Threats to Information Security-Public

Health Implications. New England Journal of Medicine, 377(8):707–709, 2017. doi:
10.1056/NEJMp1707212.

Grafarend, E. W. Linear and nonlinear models: fixed effects, random effects, and mixed

models. de Gruyter, 2006. ISBN 978-3-11-016216-5. Page 556.

Gragido, W. Understanding indicators of compromise (ioc) part ii. 2012. Accessed 6th
November 2015.
URL http://blogs.rsa.com/understanding-indicators-of-

compromise-ioc-part-i/Ov{ě}{ř}enokedni

Gu, G., Perdisci, R., Zhang, J., and Lee, W. Botminer: Clustering analysis of network traffic

for protocol-and structure-independent botnet detection. In USENIX Security Symposium,
volume 5, pages 139–154. 2008.

Gu, G., Porras, P. A., Yegneswaran, V., Fong, M. W., and Lee, W. Bothunter: Detecting

malware infection through ids-driven dialog correlation. In Usenix Security, volume 7, pages
1–16. 2007.

https://arstechnica.com/security/2016/10/double-dip-internet-of-things-botnet-attack-felt-across-the-internet/
https://arstechnica.com/security/2016/10/double-dip-internet-of-things-botnet-attack-felt-across-the-internet/
http://blogs.rsa.com/understanding-indicators-of-compromise-ioc-part-i/Ov{�}{�}enokedni
http://blogs.rsa.com/understanding-indicators-of-compromise-ioc-part-i/Ov{�}{�}enokedni

REFERENCES 240

Hagan, M. T., Demuth, H. B., Beale, M. H., and De Jesús, O. Neural Network Design,
volume 10 of 1. PWS publishing company Boston, 1996. ISBN 978-0-97-173210-0.

Hall, L. O., Bensaid, A. M., Clarke, L. P., Velthuizen, R. P., Silbiger, M. S., and Bezdek,
J. C. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic

resonance images of the brain. Neural Networks, IEEE Transactions on, 3(5):672–682, 1992.
doi:10.1109/72.159057.

Halpin, H. The philosophy of anonymous: Ontological politics without identity. Radical

Philosophy, 176:19, 2012.

Hansen, P. B. The origin of concurrent programming: from semaphores to remote procedure

calls. Springer, 2013. ISBN 978-1-47-573472-0.

Haris, S., Ahmad, R., Ghani, M., and Waleed, G. M. TCP SYN flood detection based on

payload analysis. In Research and Development (SCOReD), 2010 IEEE Student Conference

on, pages 149–153. IEEE, 2010. doi:10.1109/SCORED.2010.5703991.

Harrop, W. and Armitage, G. Defining and evaluating greynets (sparse darknets). In Lo-

cal Computer Networks, 2005. 30th Anniversary. The IEEE Conference on, pages 344–350.
IEEE, 2005. doi:10.1109/LCN.2005.46.

Healey, A. IEEE 802.3 Ethernet Working Group. 1983. Accessed 12th September 2015.
URL http://www.ieee802.org/3/

Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural Networks.

IJCNN., International Joint Conference on, pages 593–605. IEEE, 1989. doi:10.1109/
IJCNN.1989.118638.

Hennessy, J. L. and Patterson, D. A. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann, 5th edition, 2011. ISBN 978-0-12-370490-0.

Herbert, A. and Irwin, B. FPGA Based Implementation of a High Performance Scalable Net-

Flow Filter. In Southern Africa Telecommunication Networks and Applications Conference

(SATNAC) 2015. 2015.

Herbert, A. and Irwin, B. Adaptable exploit detection through scalable netflow analysis.
In Information Security for South Africa (ISSA), 2016, pages 121–128. IEEE, 2016a. doi:
10.1109/ISSA.2016.7802938.

Herbert, A. and Irwin, B. Towards malicious network activity mitigation through subnet

reputation analysis. In Southern Africa Telecommunication Networks and Applications Con-

ference (SATNAC) 2016. 2016b.

http://www.ieee802.org/3/

REFERENCES 241

Herbert, A. and Irwin, B. Towards Enhanced Threat Intelligence Through NetFlow Dis-

tillation. In Southern Africa Telecommunication Networks and Applications Conference

(SATNAC) 2018. 2018.

Herzberg, B., Bekerman, D., and Zeifman, I. Breaking down mirai: An iot ddos botnet

analysis. October 2016. Accessed 12th July 2017.
URL https://www.incapsula.com/blog/malware-analysis-mirai-

ddos-botnet.html

Hintjens, P. ZeroMQ: Messaging for Many Applications. O’Reilly Media, Inc., 2013. ISBN
978-1-44-933443-7.

Hodges, A. Alan Turing: The Enigma of Intelligence. London: Burnett Books, 1st edition,
1983. ISBN 978-0-09-911641-7. Page 111.

Housely, R., Curran, J., Huston, G., and Conrad, D. RFC 7020: The Internet Numbers

Registry System. 2013. Accessed 16th July 2017.
URL https://tools.ietf.org/html/rfc7020

Huston, G. NetFlow Packet Version 5 (V5). 2006a. Accessed 13th February 2015.
URL http://netflow.caligare.com/netflow_ v5.htm

Huston, G. NetFlow Packet Version 8 (V8). 2006b. Accessed 13th February 2015.
URL http://netflow.caligare.com/netflow_ v8.htm

Huston, G. IPv4 Address Report. February 2014. Accessed 6th February 2014.
URL http://www.potaroo.net/tools/ipv4/index.html

IEEE 802.3 Working Group. Part 3: Carrier sense multiple access with collision detection

(csma/cd) access method and physical layer specifications. IEEE Std, 802, 2000. doi:10.
1109/IEEESTD.2010.5621025.

IEEE Standards Association. 802.3ae-2002 - IEEE Standard for Information Technology-

Telecommunications and Information Exchange Between Systems-Local and Metropolitan

Area Networks-Specific Requirements: Carrier Sense Multiple Access with Collision Detec-

tion (CSMA/CD) Access Method and Physical Layer Specifications. IEEE, 2002. ISBN
0-7381-3287-X.

Intel Corperation. IA-64 Application Instruction Set Architecture Guide. Technical report,
Intel Corperation, 2010.
URL https://www.csee.umbc.edu/portal/help/architecture/aig.

pdf

https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
https://tools.ietf.org/html/rfc7020
http://netflow.caligare.com/netflow_ v5.htm
http://netflow.caligare.com/netflow_ v8.htm
http://www.potaroo.net/tools/ipv4/index.html
https://www.csee.umbc.edu/portal/help/architecture/aig.pdf
https://www.csee.umbc.edu/portal/help/architecture/aig.pdf

REFERENCES 242

Intel Corperation. Intel 64 and IA-32 Architectures Software Developer’s Manual. Technical
report, Intel Corperation, 2015.
URL https://www.intel.com/content/dam/www/public/us/en/

documents/manuals/64-ia-32-architectures-software-developer-

instruction-set-reference-manual-325383.pdf

Intel Corperation. Intel 64 and IA-32 Architectures Software Developer’s Manual. Technical
report, 2016.

Internet Assigned Numbers Authority. IANA. 2017. Accessed 16th October 2017.
URL https://www.iana.org/

Ioannidis, S., Keromytis, A. D., Bellovin, S. M., and Smith, J. M. Implementing a distributed

firewall. In Proceedings of the 7th ACM conference on Computer and Communications Se-

curity, pages 190–199. ACM, 2000. doi:10.1145/352600.353052.

Irwin, B. A framework for the application of network telescope sensors in a global IP network.
Ph.D. thesis, Rhodes University, 2011.

Irwin, B. A network telescope perspective of the conficker outbreak. In Information Security

for South Africa (ISSA), 2012, pages 1–8. IEEE, 2012. doi:10.1109/ISSA.2012.6320455.

Irwin, B. A Source Analysis of the Conficker Outbreak from a Network Telescope. SAIEE Africa

Research Journal, 104(2):38, 2013.

Jacob, N. and Brodley, C. Offloading IDS Computation to the GPU. In Computer Security

Applications Conference, 2006. ACSAC’06. 22nd Annual, pages 371–380. IEEE, 2006. doi:
10.1109/ACSAC.2006.35.

Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., and Towsley, D. Inferring TCP connec-

tion characteristics through passive measurements. In INFOCOM 2004. Twenty-third Annu-

alJoint Conference of the IEEE Computer and Communications Societies, volume 3, pages
1582–1592. IEEE, 2004. doi:10.1109/INFCOM.2004.1354571.

JAVAPIPE. Top 3 DDoS Attacks Toughest To Block. April 2017. Accessed 27 September
2017.
URL https://javapipe.com/ddos/blog/top-3-ddos-attacks-

toughest-to-block/

Jensen, M. and Gruschka, N. Flooding attack issues of web services and service-oriented

architectures. In Unsere Jahrestagung - GI - Informatik, pages 117–122. 2008.

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.iana.org/
https://javapipe.com/ddos/blog/top-3-ddos-attacks-toughest-to-block/
https://javapipe.com/ddos/blog/top-3-ddos-attacks-toughest-to-block/

REFERENCES 243

Jin, C., Wang, H., and Shin, K. G. Hop-count filtering: an effective defense against spoofed

ddos traffic. In Proceedings of the 10th ACM conference on Computer and communications

security, pages 30–41. ACM, 2003. doi:10.1145/948109.948116.

Jo, H.-H., Karsai, M., Kertész, J., and Kaski, K. Circadian pattern and burstiness in mobile

phone communication. New Journal of Physics, 14(1):013055, 2012. doi:10.1088/1367-
2630/14/1/013055.

Johnson, P. C., Kapadia, A., Tsang, P. P., and Smith, S. W. Nymble: Anonymous ip-address

blocking. Privacy Enhancing Technologies, pages 113–133, 2007.

Juniper Networks. Juniper Flow Monitoring. 2011. Accessed 7th November 2017.
URL https://www.juniper.net/us/en/local/pdf/app-notes/

3500204-en.pdf

Kane, G. and Heinrich, J. MIPS RISC Architectures. Prentice-Hall, Inc., 2 edition, 1992.
ISBN 978-0-13-590472-5.

Kerr, D. R. and Bruins, B. L. Network flow switching and flow data export. June 5 1996. US
Patent 6,243,667.

Khrer, M., Hupperich, T., Rossow, C., and Holz, T. Exit from hell? reducing the impact of

amplification ddos attacks. In USENIX Security Symposium, pages 111–125. 2014.

Kim, M., Na, H., Chae, K., Bang, H., and Na, J. A combined data mining approach for ddos

attack detection. In Information Networking. Networking Technologies for Broadband and

Mobile Networks, pages 943–950. Springer, 2004.

King, K. F. Geolocation and federalism on the internet: Cutting internet gambling’s gordian

knot. Colum. Sci. & Tech. L. Rev., 11:41–58, 2010.

Kolias, C., Kambourakis, G., Stavrou, A., and Voas, J. DDoS in the IoT: Mirai and Other

Botnets. Computer, 50(7):80–84, 2017. doi:10.1109/MC.2017.201.

Korb, B. Implementation of POPI Act means companies must secure their information. IT

Governance and Risk Management, ITWeb, 10, 2013.

Kosko, B. Neural Networks and Fuzzy Systems: a dynamical systems approach to machine

intelligence/book and disk. Prentice-Hall International, 1992. ISBN 978-0-13-611435-2.

Kozierok, C. M. The TCP/IP guide: a comprehensive, illustrated Internet protocols reference.
No Starch Press, 2005. ISBN 978-1-59-327095-7.

https://www.juniper.net/us/en/local/pdf/app-notes/3500204-en.pdf
https://www.juniper.net/us/en/local/pdf/app-notes/3500204-en.pdf

REFERENCES 244

Krebs, B. KrebsOnSecurity Hit With Record DDoS. September 2016. Accessed 11 August
2017.
URL https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-

with-record-ddos/

Krebs, B. Who is anna-senpai, the Mirai worm author. January 2017. Accessed 11th August
2017.
URL https://krebsonsecurity.com/2017/01/who-is-anna-senpai-

the-mirai-worm-author/

Kumar, S., Jantsch, A., Soininen, J.-P., Forsell, M., Millberg, M., Oberg, J., Tiensyrja, K.,
and Hemani, A. A network on chip architecture and design methodology. In VLSI, 2002.

Proceedings. IEEE Computer Society Annual Symposium on, pages 117–124. IEEE, 2002.
doi:10.1109/ISVLSI.2002.1016885.

Kuon, I. and Rose, J. Measuring the gap between FPGAs and ASICs. Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on, 26(2):203–215, 2007. doi:10.
1109/TCAD.2006.884574.

Lee, D., Choi, J., Kim, J.-H., Noh, S. H., Min, S. L., Cho, Y., and Kim, C. S. Lrfu: A

spectrum of policies that subsumes the least recently used and least frequently used policies.
IEEE transactions on Computers, (12):1352–1361, 2001. doi:10.1109/TC.2001.970573.

Lee, S., Min, S.-J., and Eigenmann, R. OpenMP to GPGPU: a compiler framework for

automatic translation and optimization. ACM Sigplan Notices, 44(4):101–110, 2009. doi:
10.1145/1594835.1504194.

Leighton, F., Maggs, B., and Rao, S. Packet routing and job-shop scheduling in O (Conges-

tion+Dilation) steps. Combinatorica, 14(2):167–186, 1994.

Leslie, D. A. Legal Principles for Combatting Cyberlaundering. Springer, 2014. ISBN 978-3-
31-906415-4. Page 7.

Leyden, J. Slammer: Why security benefits from proof of concept code. February 2003.
Accessed 11th August 2017.
URL https://www.theregister.co.uk/2003/02/06/slammer_why_

security_benefits/

Li, J., Berg, S., Zhang, M., Reiher, P., and Wei, T. Drawbridge: Software-defined

DDOS-resistant traffic engineering. ACM SIGCOMM Computer Communication Review,
44(4):591–592, 2015. doi:10.1145/2740070.2631469.

https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://www.theregister.co.uk/2003/02/06/slammer_why_security_benefits/
https://www.theregister.co.uk/2003/02/06/slammer_why_security_benefits/

REFERENCES 245

Lim, J. S. Two-dimensional signal and image processing. Prentice Hall, 1990. ISBN 978-0-
13-935322-2. Page 710.

Liu, Y., Corbett, C., Chiang, K., Archibald, R., Mukherjee, B., and Ghosal, D. Sidd: A

framework for detecting sensitive data exfiltration by an insider attack. In System Sciences,

2009. HICSS’09. 42nd Hawaii International Conference on, pages 1–10. IEEE, 2009. doi:
10.1109/HICSS.2009.390.

Lyon, G. The Art of Port Scanning. October 2015. Accessed 31st October 2015.
URL https://nmap.org/nmap_doc.html

Lyon, G. F. Nmap network scanning: The official Nmap project guide to network discovery and

security scanning. Insecure, 2009. ISBN 978-0-97-995871-7.

Malkin, G. RFC 2453: Rip version 2. 1998. Accessed 2 February 2016.
URL https://tools.ietf.org/html/rfc2453.html

Markovic, D., Chang, C., Richards, B., So, H., Nikolic, B., and Brodersen, R. W. ASIC

Design and Verification in an FPGA Environment. In Custom Integrated Circuits Conference,

2007. CICC’07. IEEE, pages 737–740. IEEE, 2007. doi:10.1109/CICC.2007.4405836.

Marple Jr, S. L. Digital spectral analysis with applications. Englewood Cliffs, NJ, Prentice-

Hall, Inc., 1987, 512 p., 1, 1987. doi:10.1121/1.398548.

Matalytski, S. System and methodology protecting against key logger spyware. March 30 2006.
US Patent App. 11/308,506.

Maynor, D. Metasploit toolkit for penetration testing, exploit development, and vulnerability

research. Elsevier, 2011. ISBN 978-1-59-749074-0.

Mersereau, R. M. and Oppenheim, A. V. Digital reconstruction of multidimensional signals

from their projections. Proceedings of the IEEE, 62(10):1319–1338, 1974. doi:10.1109/
PROC.1974.9625.

Michael, J. Q. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Higher
Education, 2004. ISBN 978-0-07-282256-4.

Microsoft. Microsoft Security Bulletin MS01-033 - Critical. Novemeber 2003a. Accessed 9th
March 2015.
URL https://technet.microsoft.com/library/security/ms01-033

https://nmap.org/nmap_doc.html
https://tools.ietf.org/html/rfc2453.html
https://technet.microsoft.com/library/security/ms01-033

REFERENCES 246

Microsoft. Microsoft Security Bulletin MS03-026 - Critical. July 2003b. Accessed 27th January
2016.
URL https://technet.microsoft.com/library/security/ms03-026

Microsoft. Microsoft Security Bulletin MS03-039 - Critical. September 2003c. Accessed 27th
January 2016.
URL https://technet.microsoft.com/en-us/library/security/

ms03-039.aspx

Microsoft. Microsoft Security Bulletin MS08-067 - Critical. October 2008. Accessed 31st
October 2015.
URL https://technet.microsoft.com/en-us/library/security/

ms08-067.aspx

Microsoft. Worm:Win32/Conficker.E. April 2009. Accessed 31st October 2015.
URL https://www.microsoft.com/security/portal/threat/

encyclopedia/entry.aspx?Name=Worm:Win32/Conficker.E

Miller, D. Softflowd. 2016. Accessed 30th April 2016.
URL http://www.mindrot.org/projects/softflowd/

Mills, D. RFC 904: Exterior Gateway Protocol Formal Specification, DARPA Network Working

Group Report. 1984. Accessed 12th June 2017.
URL https://tools.ietf.org/html/rfc904

Mills, D. RFC 956: Algorithms for synchronizing network clocks. 1985. Accessed 30th April
2017.
URL https://tools.ietf.org/html/rfc956

Mirkovic, J. and Reiher, P. A taxonomy of DDoS attack and DDoS defense mechanisms. ACM

SIGCOMM Computer Communication Review, 34(2):39–53, 2004. doi:10.1145/997150.
997156.

Mohurle, S. and Patil, M. A brief study of wannacry threat: Ransomware attack 2017. Inter-

national Journal, 8(5), 2017. doi:10.26483/ijarcs.v8i5.4021.

Moore, D. S. Chi-square tests. Technical report, DTIC Document, 1976. Accessed 30th April
2016.
URL http://www.dtic.mil/get-tr-doc/pdf?AD=ADA033287

Moy, J. RFC 2328: OSPF Version 2. 1998. Accessed 11th November 2015.
URL https://tools.ietf.org/html/rfc2178

https://technet.microsoft.com/library/security/ms03-026
https://technet.microsoft.com/en-us/library/security/ms03-039.aspx
https://technet.microsoft.com/en-us/library/security/ms03-039.aspx
https://technet.microsoft.com/en-us/library/security/ms08-067.aspx
https://technet.microsoft.com/en-us/library/security/ms08-067.aspx
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Worm:Win32/Conficker.E
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Worm:Win32/Conficker.E
http://www.mindrot.org/projects/softflowd/
https://tools.ietf.org/html/rfc904
https://tools.ietf.org/html/rfc956
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA033287
https://tools.ietf.org/html/rfc2178

REFERENCES 247

Muniz, J. Web Penetration Testing with Kali Linux. Packt Publishing Ltd, 2013. ISBN 978-1-
78-216317-6.

Munz, G. and Carle, G. Real-time analysis of flow data for network attack detection. In
Integrated Network Management, 2007. IM’07. 10th IFIP/IEEE International Symposium

on, pages 100–108. IEEE, 2007. doi:10.1109/INM.2007.374774.

Murakami, K., Irie, N., and Tomita, S. SIMP (Single Instruction stream/Multiple instruction

Pipelining): a novel high-speed single-processor architecture. In ACM SIGARCH Computer

Architecture News, volume 17, pages 78–85. ACM, 1989. doi:10.1145/74926.74935.

Muuss, M. The story of the ping program. 1983. Accessed 20th March 2016.
URL http://mirrors.pdp-11.ru/_vax/www.bandwidthco.com/

whitepapers/netforensics/icmp/The%20Story%20of%20the%20PING%

20Program.pdf

National Instruments. FPGA Fundamentals. 2015. Accessed 22th June 2015.
URL http://www.ni.com/white-paper/6983/en/

Navas, J. C. and Imielinski, T. Geocast-geographic addressing and routing. In Proceedings

of the 3rd annual ACM/IEEE international conference on Mobile computing and networking,
pages 66–76. ACM, 1997. doi:10.1145/262116.262132.

Nazario, J. and Holz, T. As the net churns: Fast-flux botnet observations. In Malicious and

Unwanted Software, 2008. MALWARE 2008. 3rd International Conference on, pages 24–31.
IEEE, 2008. doi:10.1109/MALWARE.2008.4690854.

Needham, R. M. Denial of Service. In Proceedings of the 1st ACM Conference on Computer

and Communications Security, pages 151–153. ACM, 1993. doi:10.1145/168588.168607.

New Jersey Cybersecurity and Communications Integration Cell. Mirai Botnet. December
2016. Accessed 12 July 2017.
URL https://www.cyber.nj.gov/threat-profiles/botnet-variants/

mirai-botnet

Nikkel, S. Network connection speeds reference. August 2013. Accessed.
URL http://www.ertyu.org/steven_nikkel/netspeeds.html

nVidia. Compute Unified Device Architecture Programming guide. Technical report, 2007.

O’Gorman, G. and McDonald, G. Ransomware: A growing menace. Technical report,
Symantec, 2012.

http://mirrors.pdp-11.ru/_vax/www.bandwidthco.com/whitepapers/netforensics/icmp/The%20Story%20of%20the%20PING%20Program.pdf
http://mirrors.pdp-11.ru/_vax/www.bandwidthco.com/whitepapers/netforensics/icmp/The%20Story%20of%20the%20PING%20Program.pdf
http://mirrors.pdp-11.ru/_vax/www.bandwidthco.com/whitepapers/netforensics/icmp/The%20Story%20of%20the%20PING%20Program.pdf
http://www.ni.com/white-paper/6983/en/
https://www.cyber.nj.gov/threat-profiles/botnet-variants/mirai-botnet
https://www.cyber.nj.gov/threat-profiles/botnet-variants/mirai-botnet
http://www.ertyu.org/steven_nikkel/netspeeds.html

REFERENCES 248

URL http://www.01net.it/whitepaper_library/Symantec_

Ransomware_Growing_Menace.pdf

O’Gorman, J., Kearns, D., and Aharoni, M. Metasploit: The penetration tester’s guide. No
Starch Press, 2011. ISBN 978-1-59-327288-3.

Omana, M., Papasso, G., Rossi, D., and Metra, C. A model for transient fault propagation

in combinatorial logic. In On-Line Testing Symposium, 2003. IOLTS 2003. 9th IEEE, pages
111–115. IEEE, 2003. doi:10.1109/OLT.2003.1214376.

Openstax CNX. CPU Structure and Functions. 2015. Accessed 9 November 2015.
URL http://cnx.org/contents/b87ac62d-79f2-44f2-b4ae-

44eb306a5644@1/CPU-Structure-and-Functions

Oracle. proc(1). 2007. Accessed 9 November 2015.
URL http://www-it.desy.de/cgi-bin/man-cgi?proc+4

Oracle. Java and you, download today. June 2015. Accessed 16th June 2015.
URL https://www.java.com/en/

Oxford English Dictionary. Hardware acceleration. 2015. Accessed 5th August 2015.
URL http://www.oed.com/view/Entry/84197

Oxford University Press. Oxford dictionaries language matters. November 2015. Accessed
9 November 2015.
URL http://www.oxforddictionaries.com/definition/english/

subsystem

Paar, C. and Pelzl, J. Understanding cryptography: a textbook for students and practitioners.
Springer Science & Business Media, 2009. ISBN 978-3-64-204100-6.

Paganini, P. Experts from MalwareMustDie spotted a new ELF trojan backdoor, dubbed ELF

Linux/Mirai, which is now targeting IoT devices. September 2016. Accessed 12th July 2017.
URL http://securityaffairs.co/wordpress/50929/malware/linux-

mirai-elf.html

Pai, S., Thazhuthaveetil, M. J., and Govindarajan, R. Improving GPGPU concurrency with

elastic kernels. In ACM SIGPLAN Notices, volume 48, pages 407–418. ACM, 2013. doi:
10.1145/2499368.2451160.

Pang, R., Yegneswaran, V., Barford, P., Paxson, V., and Peterson, L. Characteristics of

Internet background radiation. In Proceedings of the 4th ACM SIGCOMM conference on

Internet measurement, pages 27–40. ACM, 2004. doi:10.1145/1028788.1028794.

http://www.01net.it/whitepaper_library/Symantec_Ransomware_Growing_Menace.pdf
http://www.01net.it/whitepaper_library/Symantec_Ransomware_Growing_Menace.pdf
http://cnx.org/contents/b87ac62d-79f2-44f2-b4ae-44eb306a5644@1/CPU-Structure-and-Functions
http://cnx.org/contents/b87ac62d-79f2-44f2-b4ae-44eb306a5644@1/CPU-Structure-and-Functions
http://www-it.desy.de/cgi-bin/man-cgi?proc+4
https://www.java.com/en/
http://www.oed.com/view/Entry/84197
http://www.oxforddictionaries.com/definition/english/subsystem
http://www.oxforddictionaries.com/definition/english/subsystem
http://securityaffairs.co/wordpress/50929/malware/linux-mirai-elf.html
http://securityaffairs.co/wordpress/50929/malware/linux-mirai-elf.html

REFERENCES 249

Parhami, B. Computer arithmetic: algorithms and hardware designs. Oxford University Press,
Inc., 2009. ISBN 978-0-19-512583-2.

Passint, R. S., Oberlin, S. M., and Fromm, E. C. Messaging facility with hardware tail pointer

and software implemented head pointer message queue for distributed memory massively

parallel processing system. December 3 1996. US Patent 5,581,705.

Patterson, D. A. and Hennessey, J. L. Computer Organization and Design: the Hardware/-

Software Interface. Morgan Kaufmann, 2nd edition, 1998. ISBN 978-0-12-407726-3.

Paxson, V. Bro: a system for detecting network intruders in real-time. Computer networks,
31(23):2435–2463, 1999. doi:10.1016/S1389-1286(99)00112-7.

Pennefather, S. and Irwin, B. An exploration of geolocation and traffic visualisation using

network flows. In Information Security for South Africa (ISSA), 2014, pages 1–6. IEEE,
2014. doi:10.1109/ISSA.2014.6950507.

Perdisci, R., Lanzi, A., and Lee, W. Mcboost: Boosting scalability in malware collection and

analysis using statistical classification of executables. In Computer Security Applications

Conference, 2008. ACSAC 2008. Annual, pages 301–310. IEEE, 2008. doi:10.1109/ACSAC.
2008.22.

Phaal, P., Panchen, S., and McKee, N. RFC 3176: InMon Corporation’s sFlow: A Method

for Monitoring Traffic in Switched and Routed Networks. September 2001. Accessed 7th
November 2017.
URL https://tools.ietf.org/html/rfc3176

Piedad, F. and Hawkins, M. High availability: design, techniques, and processes. Prentice
Hall Professional, 2001. ISBN 978-0-13-096288-1.

Plummer, D. C. Rfc 826: An ethernet address resolution protocol. 1982. Accessed 27th August
2015.
URL https://tools.ietf.org/html/rfc826

Porras, P., Saidi, H., and Yegneswaran, V. A multi-perspective analysis of the Storm (pea-

comm) worm. Technical report, Technical report, Computer Science Laboratory, SRI Inter-
national, 2007. doi:10.1.1.126.2517.

Postel, J. Comments on Internet Protocol and TCP. August 1977. Accessed 1 August 2015.
URL http://www.postel.org/ien/txt/ien2.txt

https://tools.ietf.org/html/rfc3176
https://tools.ietf.org/html/rfc826
http://www.postel.org/ien/txt/ien2.txt

REFERENCES 250

Postel, J. RFC 768: User Datagram Protocol. 1980. Accessed 1st October 2015.
URL https://tools.ietf.org/html/rfc768

Postel, J. RFC 791: Internet Protocol. 1981a. Accessed 1st October 2015.
URL https://tools.ietf.org/html/rfc791

Postel, J. RFC 792: Internet Control Message Protocol. 1981b. Accessed 1st October 2015.
URL https://tools.ietf.org/html/rfc792

Provos, N. A virtual honeypot framework. In USENIX Security Symposium, volume 173, pages
1–14. 2004.

Qin, Y., Feng, D. G., Chen, K., and Lian, Y. F. Research on monitor position in network

situation assessment. In Industrial Control and Electronics Engineering (ICICEE), 2012

International Conference on, pages 1660–1663. IEEE, 2012. doi:10.1109/ICICEE.2012.439.

Quinn, M. Parallel Programming in C with MPI and OpenMP. McGraw Hill Higher Education,
2004. ISBN 978-0-07-282256-4.

Quittek, J., Zseby, T., Claise, B., and Zander, S. RFC 3917: equirements for IP flow infor-

mation export (IPFIX). 2004. Accessed 20th October 2015.
URL https://tools.ietf.org/html/rfc3917

Raghavan, B., Vishwanath, K., Ramabhadran, S., Yocum, K., and Snoeren, A. C. Cloud

control with distributed rate limiting. In ACM SIGCOMM Computer Communication Review,
volume 37, pages 337–348. ACM, 2007. doi:10.1145/1282380.1282419.

Ramanathan, R. Intel® Multi-Core Processors: Making the Move to Quad-Core and Beyond.
Technical report, Intel, 2006.
URL https://pdfs.semanticscholar.org/7570/

65cc4263ee0c897f61b7facab4f2582c6796.pdf

Reinders, J. Intel threading building blocks: outfitting C++ for multi-core processor paral-

lelism. O’Reilly Media, Inc., 2007. ISBN 978-0-59-651480-8.

Rekhter, Y., Li, T., and Hares, S. RFC 4271: Border Gateway Protocol 4. 2006. Accessed
20th December 2016.
URL https://tools.ietf.org/html/rfc4271

Rivest, R. The MD5 message-digest algorithm. 1992. Accessed 28th January 2016.
URL https://tools.ietf.org/html/rfc1321

https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc3917
https://pdfs.semanticscholar.org/7570/65cc4263ee0c897f61b7facab4f2582c6796.pdf
https://pdfs.semanticscholar.org/7570/65cc4263ee0c897f61b7facab4f2582c6796.pdf
https://tools.ietf.org/html/rfc4271
https://tools.ietf.org/html/rfc1321

REFERENCES 251

Roads, C. The computer music tutorial. MIT press, 1996. ISBN 978-0-26-218158-7.

Rochester, N., Holland, J., Haibt, L., and Duda, W. Tests on a cell assembly theory of the

action of the brain, using a large digital computer. Information Theory, IRE Transactions

on, 2(3):80–93, 1956. doi:10.1109/TIT.1956.1056810.

Roesch, M. Snort: Lightweight Intrusion Detection for Networks. In Large Installation System

Administration, volume 99, pages 229–238. 1999.

Rudman, L. and Irwin, B. Characterization and analysis of NTP amplification based DDoS

attacks. In Information Security for South Africa (ISSA), 2015, pages 1–5. IEEE, 2015. doi:
10.1109/ISSA.2015.7335069.

Rudman, L. and Irwin, B. Characterization and Analysis of NTP Amplifier Traffic. SAIEE

Africa Research Journal, 107(2):54–64, 2016.

Rumelhart, D. E., McClelland, J. L., Group, P. R. et al. Parallel distributed processing. MIT
press Cambridge, MA, USA:, 1987. ISBN 978-0-26-268053-0.

Sak, H., Senior, A. W., and Beaufays, F. Long short-term memory recurrent neural network

architectures for large scale acoustic modeling. In INTERSPEECH, pages 338–342. 2014.

Sanford, B. Integrated Graphics Solutions for Graphics-Intensive Applications. Technical
report, 2007.
URL http://www.techspot.com/news/46773-amd-announces-radeon-

hd-7970-claims-fastest-gpu-title.html

Schuster, M. and Paliwal, K. K. Bidirectional recurrent neural networks. IEEE Transactions

on Signal Processing, 45(11):2673–2681, 1997. doi:10.1109/78.650093.

Seagate. Data Sheet: Barracuda The Port of One. 2011. Accessed 23rd October 2017.
URL https://www.seagate.com/staticfiles/docs/pdf/datasheet/

disc/barracuda-ds1737-1-1111us.pdf

Setiono, R. and Liu, H. Neural-network feature selector. IEEE transactions on neural net-

works, 8(3):654–662, 1997. doi:10.1109/72.572104.

Shannon, C. and Moore, D. The spread of the Witty Worm. Security & Privacy, IEEE, 2(4):46–
50, 2004. doi:10.1109/MSP.2004.59.

Silberschatz, A., Korth, H. F., and Sudarshan, S. Database system concepts, volume 4.
McGraw-Hill New York, 1997. ISBN 978-0-07-352332-3.

http://www.techspot.com/news/46773-amd-announces-radeon-hd-7970-claims-fastest-gpu-title.html
http://www.techspot.com/news/46773-amd-announces-radeon-hd-7970-claims-fastest-gpu-title.html
https://www.seagate.com/staticfiles/docs/pdf/datasheet/disc/barracuda-ds1737-1-1111us.pdf
https://www.seagate.com/staticfiles/docs/pdf/datasheet/disc/barracuda-ds1737-1-1111us.pdf

REFERENCES 252

Smith, A. J. Disk cache-miss ratio analysis and design considerations. ACM Transactions on

Computer Systems (TOCS), 3(3):161–203, 1985. doi:10.1145/3959.3961.

Smith, J. O. Mathematics of the discrete Fourier transform (DFT): with audio applicaitons.
Julius Smith, 2007. ISBN 978-0-97-456074-8.

Srivastava, A. and Giffin, J. Tamper-resistant, application-aware blocking of malicious net-

work connections. raid. In Recent Advances in Intrusion Detection, pages 39–58. Springer,
2008.

Statista. The Statistics Portal: Statistics and Studies from more than 18,000 Sources. 2015.
Accessed 6th August 2015.
URL http://www.statista.com/statistics/267106/global-market-

share-of-pc-processor-manufacturers/

Stewart, J. Calculus. Cegage Learning, 8th edition, 2016. ISBN 978-0-53-849886-9.

Stroustrup, B. The C++ programming language. Pearson Education India, 1986. ISBN
978-0-20-170073-2.

Symantec. Trojan.peacomm. January 2007a. Accessed 27th January 2016.
URL http://www.symantec.com/security_response/writeup.jsp?

docid=2007-011917-1403-99

Symantec. W32.sqlexp.worm. February 2007b. Accessed 28th January 2016.
URL https://www.symantec.com/security_response/writeup.jsp?

docid=2003-012502-3306-99

Templeton, S. J. and Levitt, K. E. Detecting spoofed packets. In DARPA Information Sur-

vivability Conference and Exposition, 2003. Proceedings, volume 1, pages 164–175. IEEE,
2003. doi:10.1109/DISCEX.2003.1194882.

The Open Group. The UNIX System. 2012. Accessed 17th June 2015.
URL http://www.unix.org/

The R Foundation. What is R? January 2016. Accessed 3rd February 2016.
URL https://www.r-project.org/about.html

Thomas, C. H., Charles, L. E., Ronald, R. L., and Clifford, S. Introduction to Algorithms.
MIT Press and McGraw-Hill, 3rd edition, 2009. ISBN 978-0-26-203293-3.

http://www.statista.com/statistics/267106/global-market-share-of-pc-processor-manufacturers/
http://www.statista.com/statistics/267106/global-market-share-of-pc-processor-manufacturers/
http://www.symantec.com/security_response/writeup.jsp?docid=2007-011917-1403-99
http://www.symantec.com/security_response/writeup.jsp?docid=2007-011917-1403-99
https://www.symantec.com/security_response/writeup.jsp?docid=2003-012502-3306-99
https://www.symantec.com/security_response/writeup.jsp?docid=2003-012502-3306-99
http://www.unix.org/
https://www.r-project.org/about.html

REFERENCES 253

Trend Micro. WORMMSBLAST.A. August 2003. Accessed 27th January 2016.
URL https://www.trendmicro.com/vinfo/us/threat-encyclopedia/

archive/malware/worm_msblast.a

Tseng, Y.-C., Ni, S.-Y., Chen, Y.-S., and Sheu, J.-P. The broadcast storm problem in a mobile

ad hoc network. Wireless Networks, 8(2-3):153–167, 2002. doi:10.1023/A:1013763825347.

Tullsen, D. M., Eggers, S. J., and Levy, H. M. Simultaneous multithreading: Maximizing

on-chip parallelism. In ACM SIGARCH Computer Architecture News, volume 23, pages
392–403. ACM, 1995. doi:10.1145/223982.224449.

Underwood, K. FPGAs vs. CPUs: trends in peak floating-point performance. In Proceedings

of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate arrays,
pages 171–180. ACM, 2004. doi:10.1145/968280.968305.

Van Loan, C. Computational frameworks for the fast Fourier transform. SIAM, 1992. ISBN
978-0-89-871285-8.

Videla, A. and Williams, J. J. RabbitMQ in action: distributed messaging for everyone.
Manning, 2012. ISBN 978-1-93-518297-9.

Vinoski, S. Advanced message queuing protocol. IEEE Internet Computing, 10(6), 2006. doi:
10.1109/MIC.2006.116.

Walter, J. Flame attacks: Briefing and indicators of compromise. McAfee Labs Report, 2012.

Wang, B., Wang, B., and Xiong, Q. The comparison of communication methods between

user and kernel space in embedded Linux. In Computational Problem-Solving (ICCP), 2010

International Conference on, pages 234–237. IEEE, 2010. ISBN 978-981-08-6322-7.

Welch, J. L. and Lynch, N. A new fault-tolerant algorithm for clock synchronization. Infor-

mation and Computation, 77(1):1–36, 1988. doi:10.1016/0890-5401(88)90043-0.

Willinger, W., Paxson, V., and Taqqu, M. S. A practical guide to heavy tails: statistical

techniques and applications. Birkhauser, 1998. ISBN 978-3-76-433951-7, 27–53 pages.

Winett, J. M. Rfc 147: Definition of a socket. 1971. Accessed 15th November 2017.
URL https://tools.ietf.org/html/rfc147

Xilinx. Spartan-6 FPGA Packaging and Pinouts. 2009. Accessed 23th June 2015.
URL https://www.xilinx.com/support/documentation/user_guides/

ug385.pdf

https://www.trendmicro.com/vinfo/us/threat-encyclopedia/archive/malware/worm_msblast.a
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/archive/malware/worm_msblast.a
https://tools.ietf.org/html/rfc147
https://www.xilinx.com/support/documentation/user_guides/ug385.pdf
https://www.xilinx.com/support/documentation/user_guides/ug385.pdf

REFERENCES 254

Xilinx. Spartan-6 FPGA Data Sheet: DC and Switching Characteristics. 2011. Accessed 24th
July 2015.
URL https://www.xilinx.com/support/documentation/data_sheets/

ds162.pdf

Xilinx. Spartan-3E FPGA Family Data Sheet. July 2013. Accessed 8th June 2016.
URL http://www.xilinx.com/support/documentation/data_sheets/

ds312.pdf

Xilinx. Spartan-6 FPGA Configuration. 2014. Accessed 23th June 2015.
URL http://www.xilinx.com/support/documentation/user_guides/

ug380.pdf

Yeh, T.-Y. and Patt, Y. N. Two-level adaptive training branch prediction. In Proceedings of

the 24th annual international symposium on Microarchitecture, pages 51–61. ACM, 1991.
doi:10.1145/123465.123475.

Yen, T.-F. and Reiter, M. K. Traffic aggregation for malware detection. Detection of Intrusions

and Malware, and Vulnerability Assessment 5th International Conference, pages 207–227,
2008.

Yu, S., Zhou, W., Jia, W., Guo, S., Xiang, Y., and Tang, F. Discriminating ddos attacks

from flash crowds using flow correlation coefficient. Parallel and Distributed Systems, IEEE

Transactions on, 23(6):1073–1080, 2012. doi:10.1109/TPDS.2011.262.

Zemcik, P. Hardware acceleration of graphics and imaging algorithms using FPGAs. In
Proceedings of the 18th spring conference on Computer graphics, pages 25–32. ACM, 2002.
doi:10.1145/584458.584463.

Zhang, W., Teng, S., and Fu, X. Scan attack detection based on distributed cooperative model.
In Computer Supported Cooperative Work in Design, 2008. CSCWD 2008. 12th International

Conference on, pages 743–748. IEEE, 2008. doi:10.1109/CSCWD.2008.4537071.

Zhang, Z., Li, J., Manikopoulos, C., Jorgenson, J., and Ucles, J. Hide: a hierarchical

network intrusion detection system using statistical preprocessing and neural network clas-

sification. In IEEE Workshop on Information Assurance and Security, pages 85–90. 2001.

Zheng, C. and Thain, D. Integrating Containers into Workflows: A Case Study Using Make-

flow, Work Queue, and Docker. VTDC ’15 Proceedings of the 8th International Work-

shop on Virtualization Technologies in Distributed Computing, pages 31–38, 2015. doi:
10.1145/2755979.2755984.

https://www.xilinx.com/support/documentation/data_sheets/ds162.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds162.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf

REFERENCES 255

Zhenqi, W. and Xinyu, W. Netflow based intrusion detection system. In MultiMedia and In-

formation Technology, 2008. MMIT’08. International Conference on, pages 825–828. IEEE,
2008. doi:10.1109/MMIT.2008.213.

Zhuravlev, S., Blagodurov, S., and Fedorova, A. Addressing shared resource contention

in multicore processors via scheduling. In ACM SIGARCH Computer Architecture News,
volume 38, pages 129–142. ACM, 2010. doi:10.1145/1736020.1736036.

Zukowski, M., Heman, S., Nes, N., and Boncz, P. Super-scalar RAM-CPU cache compres-

sion. In ata Engineering, 2006. ICDE’06. Proceedings of the 22nd International Conference

on, pages 59–59. IEEE, 2006. doi:10.1109/ICDE.2006.150.

A
NetFlow Version 5 Packet Formats

256

257

Figure A.1: NetFlow Version 5 Packet Header Format

Bytes Contents Description
0-1 Version NetFlow export format version number
2-3 Count Number of flows exported in this packet (1-30)
4-7 System Uptime Current time in milliseconds since the export device

booted
8-11 Unix Seconds Current count of seconds since 0000 UTC 1970
12-15 Unix Nanoseconds Residual nanoseconds since 0000 UTC 1970
16-19 Flow Sequence Sequence counter of total flows seen

20 Engine Type Type of flow-switching engine
21 Engine ID Slot number of the flow-switching engine

22-23 Sampling Interval First two bits hold the sampling mode; remaining 14 bits
hold the sampling mode; remaining 14 bits hold value of
sampling interval

Figure A.2: NetFlow Version 5 Record Format

Bytes Contents Description
0-3 Source Address Source IP address
4-7 Destination Address Destination IP address

8-11 Next Hop IP address of next hop router
12-13 Input Interface SNMP index of input interface
14-15 Output Interface SNMP index of output interface
16-19 Packet Count Packets in the flow
20-23 Layer 3 Packet Count Total number of Layer 3 bytes in the packets of the

flow
24-27 Start of Flow SysUptime at start of flow
28-31 End of Flow SysUptime at the time the last packet of the flow

was received
32-33 Source Port TCP/UDP source port number or equivalent
34-35 Destination Port TCP/UDP destination port number or equivalent

36 Padding Unused (zero) bytes
37 TCP Flags Cumulative OR of TCP flags
38 Protocol IP protocol type (for example, TCP = 6; UDP = 17)
39 Type of Service IP type of service (ToS)

40-41 Source AS Number Autonomous system number of the source, either
origin or peer

42-43 Destination AS Number Autonomous system number of the destination,
either origin or peer

44 Source Mask Source address prefix mask bits
45 Destination Mask Destination address prefix mask bits

46-47 Padding Unused (zero) bytes

B
FPGA 6 Input Gate Logic Results

Table B.1: Look-Up Table for Figure 2.11

Input A Input B Input C Input D Input E Input F Output

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 0 1

0 0 0 0 1 1 1

0 0 0 1 0 0 1

0 0 0 1 0 1 1

0 0 0 1 1 0 1

0 0 0 1 1 1 1

0 0 1 0 0 0 1

0 0 1 0 0 1 1

0 0 1 0 1 0 1

0 0 1 0 1 1 1

0 0 1 1 0 0 1

0 0 1 1 0 1 1

258

259

0 0 1 1 1 0 1

0 0 1 1 1 1 1

0 1 0 0 0 0 1

0 1 0 0 0 1 1

0 1 0 0 1 0 1

0 1 0 0 1 1 1

0 1 0 1 0 0 1

0 1 0 1 0 1 1

0 1 0 1 1 0 1

0 1 0 1 1 1 1

0 1 1 0 0 0 1

0 1 1 0 0 1 1

0 1 1 0 1 0 1

0 1 1 0 1 1 1

0 1 1 1 0 0 1

0 1 1 1 0 1 1

0 1 1 1 1 0 1

0 1 1 1 1 1 1

1 0 0 0 0 0 1

1 0 0 0 0 1 1

1 0 0 0 1 0 1

1 0 0 0 1 1 1

1 0 0 1 0 0 1

1 0 0 1 0 1 1

1 0 0 1 1 0 1

1 0 0 1 1 1 0

1 0 1 0 0 0 0

1 0 1 0 0 1 0

1 0 1 0 1 0 0

1 0 1 0 1 1 0

1 0 1 1 0 0 0

1 0 1 1 0 1 0

1 0 1 1 1 0 0

1 0 1 1 1 1 1

1 1 0 0 0 0 0

260

1 1 0 0 0 1 0

1 1 0 0 1 0 0

1 1 0 0 1 1 0

1 1 0 1 0 0 0

1 1 0 1 0 1 0

1 1 0 1 1 0 0

1 1 0 1 1 1 1

1 1 1 0 0 0 1

1 1 1 0 0 1 1

1 1 1 0 1 0 1

1 1 1 0 1 1 1

1 1 1 1 0 0 1

1 1 1 1 0 1 1

1 1 1 1 1 0 1

1 1 1 1 1 1 0

C
The Process Packet Template

1 // −−−
2 //
3 // p r o c e s s _ p a c k e t : Th i s s ou r c e e x i s t s to p r o c e s s p a c k e t s f o r
4 // forward ing out ZMQ
5 //
6 // −−−
7
8 // −−−
9 // I n c l u d e s

10 // −−−
11
12 #include " process_packet . h "
13
14 >>>INCLUDES<<<
15
16 // −−−
17 // G loba l s
18 // −−
19
20 >>>OFFSETS<<<
21
22 >>>GLOBALS<<<
23
24 // −−−
25 // Func t i on s
26 // −−−
27

261

262

28 // −−−
29 //
30 i n t32_ t get_hw_conf (u in t8_ t ** con f_b f f)
31 {
32 * con f_b f f = conf ;
33
34 return conf_count ;
35 }
36
37
38
39 // −−−
40 // P r o c e s s packe t a c co rd ing to t emp la t e s and send data to ZMQ
41 i n t32_ t process_packet (u in t8_ t *pkt , i n t32_ t len)
42 {
43 i n t32_ t record_count = len / con f_ s i z e ;
44 i n t32_ t r e c o r d _ i t t e r a t i o n ;
45
46 i n t32_ t zmq_buffer_len = 0;
47 u in t8_ t * zmq_b f f_ s ta r t = malloc (ZMQ_BUFFER_LEN) ;
48 u in t8_ t * zmq_buffer = zmq_bf f_ s ta r t ;
49
50 u in t8_ t * packet ;
51
52 memset(zmq_bf f_s tar t , 0 , ZMQ_BUFFER_LEN) ;
53
54 for (r e c o r d _ i t t e r a t i o n = 0 ;
55 r e c o r d _ i t t e r a t i o n < record_count ;
56 r e c o r d _ i t t e r a t i o n++)
57 {
58 packet = pkt ;
59 // p r i n t f (" \ n ") ;
60 >>>PROCESS<<<
61 pkt += con f_ s i z e ;
62 }
63
64 send_zmq_data (zmq_bf f_s tar t , zmq_buffer_len) ;
65 f r e e (zmq_b f f_ s ta r t) ;
66
67 return 0;
68 }

D
Storm Worm Bait Mail Subjects and

Attachment Names

THESE are the confirmed subjects of emails used for baiting potential users into running
the executable required to install the Storm Worm software on a Microsoft OS. These
are directly copied from the subject lines of the bait emails used (Symantec, 2007a).

These are listed below:

• A killer at 11, he’s free at 21 and kill again!

• U.S. Secretary of State Condoleezza Rice has kicked German Chancellor Angela Merkel

• British Muslims Genocide

• Naked teens attack home director.

• 230 dead as storm batters Europe.

• Re: Your text

• Radical Muslim drinking enemies’s blood.

263

264

• Chinese/Russian missile shot down Russian/Chinese satellite/aircraft

• Saddam Hussein safe and sound!

• Saddam Hussein alive!

• Venezuelan leader: "Let’s the War beginning".

• Fidel Castro dead.

• If I Knew

• FBI vs. Facebook

• Love birds

• Touched by Love

The confirmed names of executables attached to these bait emails containing the Storm Worm
trojan software are listed below:

• Postcard.exe

• ecard.exe

• FullVideo.exe

• Full Story.exe

• Video.exe

• Read More.exe

• FullClip.exe

• GreetingPostcard.exe

• MoreHere.exe

• FlashPostcard.exe

• GreetingCard.exe

• ClickHere.exe

265

• ReadMore.exe

• FlashPostcard.exe

• FullNews.exe

• NflStatTracker.exe

• ArcadeWorld.exe

• ArcadeWorldGame.exe

• with_love.exe

• withlove.exe

• love.exe

• frommetoyou.exe

• iheartyou.exe

• fck2008.exe

• fck2009.exe

E
Mirai’s IPv4 Subnetwork Exclusion List

THIS is the list of excluded subnetworks for infection defined in the Mirai malware code
accompanied by which entity the subnetwork belongs to:

• 127.0.0.0/8 Loopback

• 0.0.0.0/8 Invalid address space

• 3.0.0.0/8 General Electric (GE)

• 15.0.0.0/7 Hewlett-Packard (HP)

• 56.0.0.0/8 US Postal Service

• 10.0.0.0/8 Internal network

• 192.168.0.0/16 Internal network

• 172.16.0.0/14 Internal network

• 100.64.0.0/10 IANA NAT reserved

266

267

• 169.254.0.0/16 IANA NAT reserved

• 198.18.0.0/15 IANA Special use

• 224.0.0.0/8 Multicast

• 6.0.0.0/7 Department of Defense

• 11.0.0.0/8 Department of Defense

• 21.0.0.0/8 Department of Defense

• 22.0.0.0/8 Department of Defense

• 26.0.0.0/8 Department of Defense

• 28.0.0.0/7 Department of Defense

• 30.0.0.0/8 Department of Defense

• 33.0.0.0/8 Department of Defense

• 55.0.0.0/8 Department of Defense

• 214.0.0.0/7 Department of Defense

F
Simple Template File for Bolvedere Publisher

Listing F.1: Template File Referred to By Configuration File for Building a Bolvedere System
1 # This f i l e dea l s with the default NetFlow v9 f lows sent by Sof t f lowd
2 # for the simple c o n f i c k e r and port scan d e t e c t o r s .
3 # NAME, f low_id , len
4
5 # s r c IP , ds t IP , s r c Port , ds t Port , pkt count , byte count
6
7 IN_BYTES , 1 , 4
8 {
9 * zmq_buffer = *(re l evan t_da ta + 0) ; zmq_buffer++;

10 * zmq_buffer = *(re l evan t_da ta + 1) ; zmq_buffer++;
11 * zmq_buffer = *(re l evan t_da ta + 2) ; zmq_buffer++;
12 * zmq_buffer = *(re l evan t_da ta + 3) ; zmq_buffer++;
13 zmq_buffer_len += 4;
14 p r i n t f (" [Data] bytes communicated : %08X\n " ,
15 ntohl (*(u in t32_t *) re l evan t_da ta)) ;
16 }
17
18 IN_PKTS , 2 , 4
19 {
20 * zmq_buffer = *(re l evan t_da ta + 0) ; zmq_buffer++;
21 * zmq_buffer = *(re l evan t_da ta + 1) ; zmq_buffer++;
22 * zmq_buffer = *(re l evan t_da ta + 2) ; zmq_buffer++;
23 * zmq_buffer = *(re l evan t_da ta + 3) ; zmq_buffer++;
24 zmq_buffer_len += 4;

268

269

25 p r i n t f (" [Data] packets communicated : %08X\n " ,
26 ntohl (*(u in t32_t *) re l evan t_da ta)) ;
27 }
28
29 L4_SRC_PORT , 7 , 2
30 {
31 * zmq_buffer = *(re l evan t_da ta + 0) ; zmq_buffer++;
32 * zmq_buffer = *(re l evan t_da ta + 1) ; zmq_buffer++;
33 zmq_buffer_len += 2;
34 p r i n t f (" [Data] L4 source por t : %04X\n " ,
35 ntohs (*(u in t16_t *) re l evan t_da ta)) ;
36 }
37
38 IPV4_SRC_ADDR , 8 , 4
39 {
40 * zmq_buffer = *(re l evan t_da ta + 0) ; zmq_buffer++;
41 * zmq_buffer = *(re l evan t_da ta + 1) ; zmq_buffer++;
42 * zmq_buffer = *(re l evan t_da ta + 2) ; zmq_buffer++;
43 * zmq_buffer = *(re l evan t_da ta + 3) ; zmq_buffer++;
44 zmq_buffer_len += 4;
45 p r i n t f (" [Data] IPv4 source address : %08X\n " ,
46 ntohl (*(u in t32_t *) re l evan t_da ta)) ;
47 }
48
49 L4_DST_PORT , 11 , 2
50 {
51 * zmq_buffer = *(re l evan t_da ta + 0) ; zmq_buffer++;
52 * zmq_buffer = *(re l evan t_da ta + 1) ; zmq_buffer++;
53 zmq_buffer_len += 2;
54 p r i n t f (" [Data] L4 d e s t i n a t i o n por t : %04X\n " ,
55 ntohs (*(u in t16_t *) re l evan t_da ta)) ;
56 }
57
58 IPV4_DST_ADDR , 12 , 4
59 {
60 * zmq_buffer = *(re l evan t_da ta + 0) ; zmq_buffer++;
61 * zmq_buffer = *(re l evan t_da ta + 1) ; zmq_buffer++;
62 * zmq_buffer = *(re l evan t_da ta + 2) ; zmq_buffer++;
63 * zmq_buffer = *(re l evan t_da ta + 3) ; zmq_buffer++;
64 zmq_buffer_len += 4;
65 p r i n t f (" [Data] IPv4 d e s t i n a t i o n address : %08X\n " ,
66 ntohl (*(u in t32_t *) re l evan t_da ta)) ;
67 }
68
69 FLOW_SOURCE_ID , 512 , 4
70 {
71 * zmq_buffer = *(re l evan t_da ta + 0) ; zmq_buffer++;
72 * zmq_buffer = *(re l evan t_da ta + 1) ; zmq_buffer++;
73 * zmq_buffer = *(re l evan t_da ta + 2) ; zmq_buffer++;
74 * zmq_buffer = *(re l evan t_da ta + 3) ; zmq_buffer++;
75 zmq_buffer_len += 4;
76 p r i n t f (" [Data] Flow Source ID : %08X\n " ,
77 ntohl (*(u in t32_t *) re l evan t_da ta)) ;
78 }

G
Graphed Statistics for Real-World Dataset

Below one can find the graphs depicting the information found in Tables 7.1 and 7.2.

270

271

2015 2016

Figure G.1: Number of Gigabytes Transferred per Month

2015 2016

Figure G.2: Number of Packets Transferred per Month

272

2015 2016

Figure G.3: Number of Flow Records per Month

H
Online Resource Access

Access to online resources is not public and as such should be requested from the author of this
document. To contact the author to request access please send an email to phd@eskerfall.com.
The repository contains this document and both software and hardware implementations dis-
cussed in this research. This repository resides on Bitbucket1 and can be cloned through the
relevant address below where the username is defined by the reader’s registered Bitbucket ac-
count:

https://username@bitbucket.org/twelfthletter/phd

1https://www.bitbucket.org

273

	Introduction
	Problem Statement
	Research Goals
	Scope and Limitations
	Document Conventions
	Document Structure

	Literature Review
	Ethernet
	Network Link Speeds

	Internet Protocol
	Routing
	IPv4

	NetFlow
	NetFlow Version 9 Template Records at a Lower Level

	Malicious Internet Activity
	Brute-Force
	Port Scanning Techniques
	Vulnerability Exploitation
	Availability of Attacks
	Distributed Denial of Service Attack

	Selected Historic Malware
	Blaster Worm
	Welchia
	Storm Worm
	Conficker
	SQL Slammer
	Mirai (The Future)

	Indicators of Compromise (IOC)
	DDoS Attack Detection Approaches
	MULTOPS
	Learning through Neural Network using sFlow as Learning Data
	Attack Classification through Use of NetFlow
	TOPAZ
	Statistical Approach to DDoS Detection

	Internet Background Radiation
	Packet Source IP Geolocation and Dealing with Spoofing
	Use of NetFlow Node Source ID in Packet Spoofing Detection

	Botnet Detection
	BotHunter

	Attack Detection Through Packet Analysis
	Snort
	Bro
	System for Internet-Level Knowledge

	Field-Programmable Gate Array
	How It Works

	Summary

	Technology Evaluation
	Architectures
	CPU
	GPU
	FPGA

	Inter-Process Communication (IPC)
	Network Sockets
	Shared Memory
	Threads and Work Queues
	Other Forms of Interprocess Communication
	Zero Message Queue
	Rabbit Message Queue (RabbitMQ)
	Nanomsg

	Summary

	Design and Implementation of the Base System
	Implementation Goals
	System Design
	System Components and Flow of Logic
	Architecture
	Interprocess Communication
	Configuration

	Build Time and Run Time Configuration
	Build-time Configuration Templates and Configuration
	Runtime Collector Configuration
	NetFlow Template Store and Re-Ordering

	Summary

	Processor Modules
	DDoS Detection Through Use of Neural Networks
	Data Representation and Training
	Supporting Neural Network Feeder Program

	Fourier Analysis
	Implementation

	Port Scan Detection
	Implementation and Configuration

	Sudden Port Bandwidth Use Change Detection
	Implementation
	Configuration

	Reputation Analysis System
	Implementation
	Configuration

	Source IP Address Anomaly Detection
	Implementation and Configuration

	Malware NetFlow Fingerprinting
	Implementation

	Summary

	Testing
	The Base Bolvedere System Work
	Environment
	Collector Testing
	Publisher Testing
	Base Subsystem Testing
	Collector Subsystem Results
	Publisher Subsystem Results
	Base Subsystem Results

	Neural Network Based DDoS Detection
	Environment
	Effectiveness Test
	Time to Train versus Effectiveness Test
	Effectiveness Results
	Time to Train versus Effectiveness Results

	Fourier Analysis
	Environment
	Packet Based versus NetFlow Data Record Based FFT Effectiveness
	Packet Count versus Byte Count Analysis Effectiveness
	Packet Based versus NetFlow Based FFT Effectiveness Results
	Packet Count versus Byte Count Analysis Effectiveness Results
	CUDA Performance on Varying GPUs

	Reputation Analysis System
	Environment
	Runtime Malicious Activity Collection
	Reputation Storage Results

	Port Scan Detection
	Environment
	Port Scan Detection
	Port Scan Detection Results

	Sudden Port Bandwidth Use Change
	Environment
	Sudden Port Bandwidth Use Change Results

	Source IP Address Anomaly Detection
	Environment
	Controlled Generation of Source IP Spoofing
	Controlled Generation of Source IP Spoofing Results

	Malware NetFlow Fingerprinting
	Environment
	NetFlow Logs and Rules Generated
	Results
	Rule Sets Generated
	Automated Module in Action

	Summary

	Real-World Application
	Dataset
	The Network

	Completeness Testing of Bolvedere
	Distribution
	Correctness

	Maximal Throughput
	Mirai's Effect
	DDoS Detection
	Mitigating Neural Network Error

	Port Scan Detection
	Sudden Port Bandwidth Change
	Source IP Anomaly
	Vulnerability Fingerprint Detection
	Fourier Analysis
	Summary

	Hardware Acceleration
	Design and Implementation
	Network Link Speed versus FPGA Clock Speed
	Keeping State While Streaming

	Very High-Level Hardware Functional Block Overview
	Receiving Network Traffic
	Transmitting Network Traffic
	Packet Discernment and Future-Proofing
	NetFlow Template and Data Record Processing
	A Simple Functional Example at Runtime
	Summary

	Hardware Equivalence Testing
	Environment
	Correct Filtering and Reordering of NetFlow
	Results

	Streaming at Link Speed
	Results

	Hardware versus Software Processing Times
	Results

	Summary

	Conclusion
	Document Summary
	Key Aspects
	Processor Module Development
	Modularity, Scalability and Parallelism
	System Accessibility
	Hardware Acceleration

	Evaluation of Research Goals
	Real-World Application
	Research Contribution
	Future Work
	References
	NetFlow Version 5 Packet Formats
	FPGA 6 Input Gate Logic Results
	The Process Packet Template
	Storm Worm Bait Mail Subjects and Attachment Names
	Mirai's IPv4 Subnetwork Exclusion List
	Simple Template File for Bolvedere Publisher
	Graphed Statistics for Real-World Dataset
	Online Resource Access

