

Institute of Parallel and Distributed Systems

University of Stuttgart

Universitätsstraße 38

D-70569 Stuttgart

 Master’s Thesis

Speculative Reordering for a

Latency-optimized Privacy Protection

in Complex Event Processing

 Chien-Hua, Hung

Course of Study: Information Technology (INFOTECH)

Examiner: Prof. Dr. Kurt Rothermel

Supervisor: Saravana Murthy Palanisamy

Commenced: April 23, 2018

Completed: Octorber 23, 2018

 i

ABSTRACT

 With increasing number of applications in Internet of Things (IoT), Complex Event

Processing (CEP) has already become one of the state-of-the-art technologies recently. In

CEP, privacy needs to be considered carefully because events with user’s sensitive

information may be exposed to outside world. However, most privacy issues in CEP

mainly focus on attribute-based events without considering pattern-based events. There

are two important works for pattern-based privacy in CEP: suppression and re-ordering.

The former suppresses events belonging to private patterns while the later tends to re-

order them. The re-ordering mechanism shows better performance in terms of QoS, but

the latency would be long when the size of window increases. Also, the re-ordering

strategy is performed only at the end of the windows.

In this thesis, we extend the Re-ordering strategy by using speculation based on

Markov chains, so we start speculating whether the private pattern occurs in current

window before the end of the window. If the private pattern is predicted to occur, we then

already re-order events that are part of private patterns. Additionally, the top-k preserving

algorithm is introduced for preserving public patterns. Our evaluation results show that

we maintain nearly 80 % utility when compared to the normal re-ordering strategy. From

our experiments, it is seen that we can eliminate the time taken for re-ordering completely

if the window size is greater than 3 ms.

 ii

CONTENTS

ABSTRACT .. i

CONTENTS ... ii

LIST OF FIGURES ... iv

LIST OF TABLES ... v

Chapter 1 Introduction .. 1

Chapter 2 Related Work and Problem Statement .. 3

2.1 Relate Work .. 3

2.2 Problem Statement .. 5

Chapter 3 Basic Concept ... 6

3.1 Complex Event Processing ... 6

3.1.1 Complex Event Processing System ... 6

3.1.2 Basic Model Operators .. 7

3.1.3 Privacy in Complex Event Processing .. 8

3.2 Markov-chain Model .. 11

3.2.1 Definition of Markov Chain .. 11

3.2.2 Transition Matrix ... 12

3.2.3 Transition after t-step .. 13

Chapter 4 Proposed Model .. 14

4.1 Overview... 14

4.2 Discrete Markov-chain Model .. 15

4.3 Offline Learning ... 19

4.4 Speculation ... 22

4.5 Top-k Preserving ... 25

 iii

4.6 Reordering .. 31

4.7 Utility Comparator .. 33

Chapter 5 Evaluation ... 35

5.1 Setup and Parameters .. 35

5.2 Utility Comparison ... 36

5.3 Evaluation of Proposed Speculative Model .. 36

5.4 Evaluation of Threshold ... 38

5.5 Evaluation of Prediction Point .. 39

5.6 Evaluation of Window Size .. 40

5.7 Evaluation of Removing Number k’ ... 43

5.8 Evaluation of Time ... 46

Chapter 6 Conclusion .. 50

REFERENCE .. 51

 iv

LIST OF FIGURES

Figure 3-1 High view of Complex event systems .. 7

Figure 3-2. Reordering introducing False Positive and False Negative 9

Figure 3-3 Simplified CEP system model ... 10

Figure 3-4. Transition diagram with states {A, B, C} ... 12

Figure 4-1 Overview of proposed model.. 15

Figure 4-2. State diagram of pattern P = {‘A’, ‘B’, ‘C’} ... 16

Figure 4-3 Steps of offline learning ... 20

Figure 4-4. Diagram of recall and precision .. 22

Figure 4-5 Procedure of speculation phase.. 23

Figure 4-6. Procedure of top-k preserving... 27

Figure 4-7. Flow of re-ordering ... 32

Figure 4-8. Flow of utility comparator .. 34

Figure 5-1 Prediction points by given thresholds ... 37

Figure 5-2 Precision and recall by given thresholds .. 38

Figure 5-3 Utility comparison ratio under evaluation of threshold 39

Figure 5-4 Utility comparison ration under setting of prediction point 41

Figure 5-5 Utility comparison ratio under the setting of window size 42

Figure 5-6 Utility comparison ratio with different removing numbers 44

Figure 5-7 Number of false negatives with different removing numbers 44

Figure 5-8 Number of false negatives with removing number form 0 to 4 45

Figure 5-9 Comparison of speculative and non-speculative reordering strategy 46

 v

LIST OF TABLES

Table 5-1 Setting of evaluation of proposed speculative model 36

Table 5-2 Setting (I) of evaluation of threshold .. 38

Table 5-3 Setting (II) of evaluation of threshold .. 39

Table 5-4 Setting (I) of evaluation of prediction point ... 40

Table 5-5 Setting (II) of evaluation of prediction point .. 40

Table 5-6 Setting (I) of evaluation of window size... 41

Table 5-7 Setting (II) of evaluation of window size ... 42

Table 5-8 Setting (I) of evaluation of removing number k’ .. 43

Table 5-9 Setting (II) of evaluation of removing number k’ ... 43

Table 5-10 Setting (I) of evaluation time .. 47

Table 5-11 Setting (II) of evaluation time... 47

Table 5-12 Average evaluation time of speculative re-ordering strategy among 25000

windows .. 48

Table 5-13 Average evaluation time of non-speculative re-ordering strategy among

25000 windows ... 48

 1

Chapter 1 Introduction

With the fast-growing number of IoT applications, IoT provides the more direct

integration of the physical world by decorating our world full of networked sensors. There

is a tremendous amount of IoT applications in several diverse fields such as Industrial 4.0

(automation process), Smart City (congestion control), E-health (fitness tracker), and

Smart Homes (fire alarm). According to [26], there will be approximately 20.8 billion IoT

devices by 2020, and an important function is to process the vast amount of raw data from

the equipped sensors.

 Almost all users of IoT applications are more interested in high-level meaningful

information rather than raw data from sensors. Complex Event Processing (CEP) is one

of the state of art paradigm that does this function that processes the stream of the raw

data, and transforms it into meaningful and complex events, depending on rules provided

by IoT applications. Due to the inherent distributed nature of CEP, it is an ideal candidate

for many IoT applications. For instance, fraud detection is inferred when several unusual

transactions of credit cards are observed and the intelligent transportation is realized by

airline companies in order to track flights, track baggage, and transfer passengers. In

addition, the quality of service (QoS) can also be improved while receiving the

meaningful information in IoT applications.

In CEP, there are often events that are highly sensitive in terms of privacy to users,

and users are unwilling to expose such privacy-sensitive events. For example, in the

application of E-health, users provide a large amount of health data to their IoT devices,

such as data from fitness trackers or mobile phones to their service providers, for example,

insurance companies. Although they benefit from the services by sending their personal

health data, they are also afraid of the consequences as privacy sensitive data might be

revealed. Based on the survey in [27], more than 70% of participants are not willing to

share their fitness data as their lifestyle or potential disease may be disclosed, which will

lead to increasing premiums from their insurance providers. Therefore, in order to

maintain users’ privacy, a corresponding privacy-preserving mechanism is quite essential

for users to select which types of data they are willing to share and to not share. The

mechanism while preserving privacy should not deteriorate the Quality of data which in

turn affects the QoS (Quality of Service). Thus QoS will deteriorate if existing complex

events are not discovered (false negatives), or non-existing events are generated (false

 2

positives). In this regard two types of pattern are defined: public patterns and private

patterns. The former are essential for IoT applications to provide services, and the latter

are user-defined events, which should not be shared with untrusted parties. In order to

protect user’s privacy, several mechanisms were proposed. One straightforward approach

is not to share any event of private patterns. However, some events in private patterns

often belong to public patterns as well, so it turns out that many public patterns can no

longer be detected, which implies that there is less QoS. In [10], the pattern-based utility

suppression is proposed by suppressing parts of events in the private pattern, but it will

cause low QoS if the suppressed events is part of public patterns. Instead of sharing no or

any part of events, another pattern-based access control mechanism is introduced [11].

The private patterns are obfuscated by reordering events belonging to private patterns,

and simultaneously the public patterns are preserved to provide high QoS.

However, most CEP applications are real-time and hence events should be forwarded

as soon as possible. But in the re-ordering strategy it is necessary to wait until the least

event of the private pattern is available or till a specific timeframe is lapsed in order to

know whether a private pattern had occurred or not and then reorder. This would

contradict a real time system. In other words, in this thesis we extend the re-ordering

strategy provided by [11] and develop a speculative re-ordering strategy based on

Markov-chains, which speculate private patterns even before it completes and also

reorder thus reducing the time taken for re-ordering after private pattern has completed

or the timeframe window for that private pattern has expired. Therefore, the main goal of

this Speculative Reordering strategy is to minimize the time taken by the non-speculative

re-ordering strategy after the window completion while still maintaining the QoS

guarantees.

 3

Chapter 2 Related Work and Problem Statement

2.1 Relate Work

 As mentioned in the introductory chapter, the main purpose of Complex Event

Processing (CEP) [9] is to deal with temporal relationship between events such as

sequence matching among event streams. Thus CEP has been one of the emerging

technology in which both researchers [1], [2], [3] as well as industries [4], [5] have

invested time and effort in developing an efficient CEP system. In CEP, privacy patterns

are inferred by observing relationships between incoming events, so user’s sensitive

patterns may also be discovered while dealing with events that are part of patterns related

to user’s behavior. Therefore, privacy should be taken into consideration carefully in CEP

system because users are not willing to expose their privacy to untrusted parties. However,

most privacy issues in CEP have focused on individual events rather than pattern-based

events. For example, there are some approaches about privacy in CEP, such as differential

privacy in private data stream [22] , zero-knowledge privacy guarantees [23], all of which

are at the level of attribute-based events. But often privacy is revealed in terms of pattern.

Thus, in this thesis, we focus on pattern-based events which contain both public patterns

and private patterns of the input data stream to CEP systems.

In [10], the authors proposed a pattern-based approach in which private patterns are

concealed by suppressing events belonging to private patterns. Nevertheless, suppressed

events might also be part of public patterns, so the loss of public patterns persists in this

approach, which may result in low QoS. Therefore, in order to maintain user’s privacy,

QoS should not be affected when concealing events that are part of private patterns.

Instead of suppression, another pattern-based access control mechanism is proposed in

[11] by re-ordering events that belong to private patterns. In this way, public patterns can

be preserved, and high QoS is guaranteed simultaneously. Clearly, the re-ordering

mechanism has the better performance in terms of QoS than suppression approach when

maintaining pattern-based privacy.

However, the re-ordering approach may take a longer processing time when the

window size becomes longer or when the number of patterns goes high. Also, re-ordering

to conceal private patterns is done only at the end of window because all events need to

 4

be observed. In order to improve latency, in this thesis, we extend the existing re-ordering

strategy to a Speculative Re-ordering strategy where completion of private patterns are

predicted well before the end of the window and also reordered. There are several research

on speculating event patterns. For instance, in [13], speculation is regarded as a

classification problem that can be solved by using Singular Value Decomposition (SVD)

and Support Vector Machine (SVM) model. In [14], a generic algorithm is implemented

to learn predictive patterns from sequence events as early as possible [14]. A framework

with association rule mining is proposed in [15], and the goal is to detect target patterns

by recognizing events that occur frequently before target patterns happen. Unfortunately,

those approaches have a limitation: Their target patterns are usually composed of rare

events such as equipment failure or anomaly detection, which do not consider the case of

frequent patterns.

For frequent patterns, a speculative model is presented in [16] by deploying decision

trees and Piecewise-Constant Conditional Intensity Models. The model proposed in [16]

is trained from dependencies among sequences of incoming events, and it can predict the

occurrence of target patterns in a given time interval. In addition, the event forecasting

with Markov-chains model is introduced in [17], [18]. The approaches in [17], [18] are

able to estimate when the target pattern is expected to be matched, and they focus on the

completion time of target patterns. Nonetheless, these mechanisms only take continuous

events into consideration, and lack the ability to deal with discrete events. In this thesis,

we basically focus on the data stream containing discrete-time events, and we view our

target pattern as private patterns using Markov-chain predictions.

 Additionally, it is not enough to take only the private pattern into consideration while

re-ordering events, and it is also difficult to know the number of public patterns, which

are involved into re-ordering process. The top-k strategy of selection algorithm has been

discussed in a huge amount of studies. In [20], the authors introduced the Greedy

algorithm for mining top-k influential nodes in order to maximize the spread of the

influence (further adoptions of the new product). Numerous top-k processing techniques

are classified in [21], which shows that top-k queries are effective while dealing with the

massive amount of data in domains such as Web, multimedia and distributed systems. In

[19], the SPECTRE system with speculative approach shows a good scalability by

processing k most promising window versions. In short, the top-k selection algorithm is

useful when dealing with a huge amount of data and aiming to keep a good scalability at

 5

the same time. Thus, in this thesis we use the top-k strategy to preserve the top-k utility

maximizing public patterns along with the speculative strategy.

2.2 Problem Statement

In pattern matching of CEP, the goal is to make sure that QoS is maintaining high

while maintaining user’s privacy by re-ordering events that are part of private patterns.

However, QoS is affected by false positive events and false negative events, which are

maybe introduced after the re-ordering process. Therefore utility is calculated in the non-

speculative reordering strategy as follows: [11]

Utility (U) = Σ𝑖=1
𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑢𝑏𝑙𝑖𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

 𝑤𝑖

 − 2 ∗ Σ𝑗=1
𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

 𝑤𝑗

 − Σ𝑘=1
𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

 𝑤𝑘 (2-1)

where wi, wj are the user-defined weight of public pattern onto the QoS, and wk is the

weight of private patterns defined as below, and we use the same utility function to

evaluate our QoS :

 𝑤𝑘 = (Σ 𝑤𝑖 + 1) ∗ 𝑐𝑝𝑘 (2-2)

where cpk is the tuning factor for trade-off between privacy and QoS.

 The problem now is to find a proper speculative re-ordering strategy that predicts

whether the private pattern occurs in current window via Markov-chains modeling. Thus,

the overall processing time can be improved, which leads to shorter latency, while

maintaining. More precisely, the utility of speculative re-ordering method should

approach the utility of non-speculative reordering strategy as closely as possible.

 6

Chapter 3 Basic Concept

 In this chapter, two main concepts are introduced. First, we introduce the concept

of Complex Event Processing (CEP). Secondly, the concept of Markov-chain model is

presented.

3.1 Complex Event Processing

In this section, we introduce CEP systems, useful operators, and privacy issues in

CEP systems. Complex event processing (CEP) is the process which aims to filter,

combine and interpret a series of input data events in order to infer high-level information

based on a set of user-defined rules and patterns. There are diverse applications of CEP,

such as financial analysis in stock market or traffic monitoring for traffic jams or accidents.

Among above applications, CEP is responsible for processing, analyzing and correlating

the input data stream in order to obtain more complicated information from different

sources. In other words, CEP provides solutions to cope with real-time data from a great

deal of sources such as IoT sensors.

3.1.1 Complex Event Processing System

In 1997, Rosenblum and Wolf [24] proposed the event processing engine with a

publish-subscribe feature, which is regarded as the first prototype of CEP engines. As

shown in Figure 3-1, the conventional CEP system is presented with event observers,

consumers and the CEP engine in the middle. The event observers are responsible for

capturing events, which happened outside the systems, and publishing the notification of

events to CEP engine. The CEP engine then filters, aggregates or combines those

notifications in order to derive more complicated events, also known as complex events.

At the end, the event consumers subscribe complex events from the CEP engines, and

discover the more high-level information in which they are interested. Therefore, through

CEP systems, information sources publish the notification of events to CEP engines, and

users can subscribe a series of user-concerned events at the same time. In this process, the

 7

Figure 3-1 High view of Complex event systems

CEP engine acts as the middleware between information sources and sinks to deal with

event notifications for the purpose of generating useful complex events. There are two

types of CEP systems: topic and content-based systems. In topic-based systems, event

consumers can subscribe concerned events, and event observers would pick up topics

related to consumers’ interest before publishing. On the other hand, in content-based

systems, event observers publish all events, and by using complex event filters consumers

can choose events, which contain the content based on their pre-defined rules.

3.1.2 Basic Model Operators

As mentioned in [25], there is a majority of IFP models, such as function model,

processing model, and language model, each of which has the different purpose. In this

section, we mainly concentrate on operators in language model because they are more

related to the implementation of CEP in this thesis. The language model is more precise

and detailed description of given rules with many operators. It should firstly focus on

specific classes, and suitable operators are chosen for specialized classes. For instance, in

case of logic operators, a conjunction is defined as the situation where all given items

have been detected, while a disjunction is satisfied when at least one of the given items

has been detected.

For pattern-based applications in CEP systems, the sequence operators are the most

important operator for pattern-based events. Since the pattern consists a set of ordered

CEP engine

Event observers
(Sources)

…
…
…
…
.

…
…
…
…
.

Event consumers
(Sinks)

 8

items, and sequence operators not only take responsibility for observing the arrival of a

set of items but also consider the order of arrival time of items. To be more precise, a

sequence is defined as a set of information items with specified order, and it is matched

only when the sequence operator detects all items in a pre-defined order. In most cases,

the ordering relationship is based on timestamps of incoming data flow in CEP systems.

Another useful operator is the window operator in pattern-based event processing.

Due to the unbounded assumption in CEP systems, most language models do not handle

all input data flow at one time, but deal with small chunks of incoming data repeatedly.

The window operator is defined as a range, which only contains a portion of input data

flow. Every time when CEP systems receive the new incoming window, which contains

finite input data stream via window operators, systems can easily cope with the bounded

data. The major types of window operators are time-based (logical) and content-based

(physical). The former treats bounds as a function of time while the latter views bounds

as the number of items. For example, the bound can be regarded as items in five minutes

for time-based type, or first five items for content-based type. In this thesis, we assume

windows to be non-overlapping for simplicity, so windows are considered as disjoint

windows, which are most common type in many applications. We also have fixed size

windows with equally shifting lower and upper bound, which makes it a proper and

powerful tool for continuously arriving data flow.

3.1.3 Privacy in Complex Event Processing

In CEP, some complex events may contain patterns with sensitive information of

users. By observing those complex events, an authorized third party could infer the

behavior of users. Patterns with sensitive information about users are called private

patterns, which should not be exposed to untrusted parties. On the other hand, the public

pattern is defined as the essential pattern, which is required for the CEP application.

During the process of detecting complex events, false negatives will occur if existing

complex events are not discovered, and QoS may be degenerated. Furthermore, non-

existing events might sometimes accidentally be generated, which leads to false positives.

 9

Figure 3-2. Reordering introducing False Positive and False Negative

For example, in order to conceal the private pattern, the re-ordering strategy is

demonstrated as shown in Figure 3-2. In this example, the private pattern (P1) and public

patterns (Q1, Q2, Q3) are defined as following:

𝑄1 = {𝐴, 𝐸} , 𝑄2 = {𝐶, 𝐴}, 𝑄3 = {𝐶, 𝐷, 𝐹}

 𝑃1 = {𝐴, 𝐶, 𝐷}

By reordering the pair {A1,C1} in P1, the private pattern can be concealed. However, in

case of shifting C1 before A1, the false positive of public pattern Q2 (C1, A1) is introduced

into the modified event stream. On the other hand, the public pattern Q1 (A1, E1) is no

longer presented in the modified event stream while shifting A1 after C1, which leads to a

false negative.

A1 E1 C1 D1

P

F1

Q1

A1 E1C1 D1F1

Q1

Q2

C1

False Positive Q2

A1 E1 C1 D1F1

Q1

A1

False Negative Q1

Reordering
by shifting C1

Reordering
by shifting A1

 10

Figure 3-3 Simplified CEP system model

The overall CEP system model is shown in Figure 3-3. There are producers and

consumers on the left and right side. In real-time applications, producers can be any type

of sensors controlled by users, and consumers could be IoT service providers.

Additionally, the CEP middleware may be the extension of IoT service and mainly contain

sequence and window operators with user-defined event rules. In our assumption,

producers are trusted while CEP consumers are untrusted parties, who try to acquire

sensitive information by manipulating CEP middleware to observe private patterns from

producers. Suppose the fitness service as an example. Users are able to send their fitness

data to cloud service (CEP middleware) via IoT sensors (producers) and receive the

feedback about their recent fitness behavior (private patterns), such as running time or

heartbeat during exercise. However, IoT service providers (consumers) are able to analyze

fitness data from users, and sell the result to outside companies. For instance, the

insurance company can modify the insurance fee after receiving the fitness data of

customers from IoT service providers. Therefore, a pattern-based privacy control system

is introduced before sending raw data to CEP middleware, and its goal is to conceal user’s

private pattern by re-ordering events that belongs to private patterns.

CEP middleware

w1

w2

w3

w4

w5

c1

c2

consumers

Patten
based
privacy
control

p1

p2

producers

p3

Defined
event rules

 11

3.2 Markov-chain Model

In this section, there are several basic concepts such as fundamental definitions,

transition matrix, and the characteristic of transition steps. In modern probability, the

processes between different moves assumes that the previous outcomes may be related to

the future outcomes, which implies that after observing a set of outcomes of an

experiment, the past outcomes could affect the prediction of outcomes in future

experiments. In 1907, A. A. Markov started the new assumption of chance process. His

idea is to simplify the process which only takes present outcomes into consideration to

predict the future outcomes of the next experiment. The mathematical system with this

assumption is called the Markov chain.

3.2.1 Definition of Markov Chain

Assumed that there is a set of states, 𝑆 = {𝑋0, 𝑋1, 𝑋2, … }. We define this set of states

as the process of Markov chain, and a few definitions are shown below.

Definition 1: The state space of a Markov chain 𝑆 is the set of values that each Xt can

take, where 𝑋𝑡 represents the value of a state in the Markov chain process at time t. For

example, if X2 = 3, we say the process at time 2 is 3.

Definition 2: A trajectory (i.e. the path in Markov chain) of a Markov chain is a particular

subset of Markov chain process S with values for X0, X1, X2,

For example, if 𝑆 = {1, 2, 3, 4, 5, 6, 7}, the trajectory up to time t = 4 is 1, 2, 3, 4, 5. Thus,

more specifically, the trajectory up to time i means that X0 = s0, X1 = s1, X2 = s2, . . ., Xi

= si .

Moreover, the fundamental property of the Markov chain is described as follows:

only the most recent point in the trajectory affects what happens next. In other words, the

state Xt+1 only depends on the previous state Xt, and other previous states such as Xt-1, Xt-

 12

Figure 3-4. Transition diagram with states {A, B, C}

2, … X0 have no influence on the present state Xt+1. According to this property, we have

the final definition as below.

Definition 3: For s set of states 𝑆 = {𝑋0, 𝑋1, 𝑋2, … }, it is the process of the Markov chain

if it satisfies Markov chain property as below.

P(𝑋𝑡 = s | 𝑋𝑡−1 = 𝑠𝑡−1, … , 𝑋0 = 𝑠0) = P(𝑋𝑡 = s | 𝑋𝑡−1 = 𝑠𝑡−1) ; (3-1)

 where for all t = 1, 2, 3, … t , and for all states 𝑠0, 𝑠1 , … 𝑠𝑡

3.2.2 Transition Matrix

For the purpose of better understanding of transition between different states in

Markov-chain process, the transition diagram of Markov chains is introduced. For

example, the transition diagram of Markov chain with three states is shown in Figure 3-4.

In Figure 3-4, nodes represent each state and arrows correspond to the path of transition

probability between different states. Based on the transition diagram in Figure 3-4, the

corresponding matrix which states the Markov chain can be described as below:

A

B C

PAB

PBA

PBC

PCB

PCA

PAC

 13

P = [

𝑃𝐴𝐴 𝑃𝐴𝐵 𝑃𝐴𝐶

𝑃𝐵𝐴 𝑃𝐵𝐵 𝑃𝐵𝐶

𝑃𝐶𝐴 𝑃𝐶𝐵 𝑃𝐶𝐶

] (3-2)

There are several properties in the transition matrix. First, the rows represent the

current state (i.e. from Xt), and the columns represent the next state (i.e. to Xt+1).

Second, the entry (i, j) in the matrix is the conditional probability which shows transition

from state i to state j. 𝑝𝑖𝑗 is denoted as P(𝑋𝑡+1 = j | 𝑋𝑡 = i) for i, j ∈ {𝐴, 𝐵, 𝐶}, and t =

0, 1, 2, ... By doing so, the transition matrix of Markov chain can be defined as P = (𝑝𝑖𝑗).

The Last but not least, the sum of each row in the transition matrix must be equal to one

but the sum of each column does not generally need to be one.

3.2.3 Transition after t-step

As mentioned before, the probability between different states is only dependent upon

the current state. Assume {𝑋1, 𝑋2, 𝑋3, …} denotes the Markov chain with state space S =

 {1, 2, 3, … , 𝑛}, and the elements in the transition matrix P can be derived as following :

 (P)𝑖𝑗 = 𝑝𝑖𝑗 = 𝑃(𝑋1 = 𝑗 | 𝑋0 = 𝑖) = 𝑃(𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖) ∀ 𝑛 ∈ 𝑆; (3-3)

where 𝑝𝑖𝑗 is the probability of making a transition from state i to state j in a single step.

We can extend the above equation of single step to the t-step transition probabilities given

by the matrix Pt for any t as below :

 (𝑃𝑡)𝑖𝑗 = 𝑃(𝑋𝑡 = 𝑗 | 𝑋0 = 𝑖) = 𝑃(𝑋𝑛+𝑡 = 𝑗 | 𝑋𝑛 = 𝑖) ∀𝑛 ∈ 𝑆 (3-4)

The theorem of t-step transition has been already proved, so we do not delve deeper into

it.

 14

Chapter 4 Proposed Model

 In this chapter, we introduce the proposed model with speculative re-ordering

algorithm. There are four main parts in the proposed model. They are speculation, top-k

preserving, re-ordering and utility comparison. First, the overview of the proposed model

is described. Also, the fundamental aspect of discrete Markov-chain model is introduced

for pattern-based speculation. The discrete Markov-chain model is implemented as an

offline learning model to obtain speculative parameters. Before re-ordering, the most

important patterns are preserved by top-k preserving strategy. Moreover, the graph-based

algorithm is applied for re-ordering. At the end, the utility between speculative re-

ordering and non-speculative re-ordering algorithm is compared for evaluation. For each

model, we give a detailed explanation and description with flow graphs explaining the

procedure.

4.1 Overview

As shown in Figure 4-1, the whole overview of the proposed model is described along

with these function blocks. In this thesis, the goal is to maintain the pattern-based privacy

of data stream with given public patterns and private pattern. First of all, assume that there

is the input data stream for processing with specific fixed window size. Each window of

data stream is sent to speculative trained model. The model is trained by Markov chains

with data that has the same characteristic as input data stream. For example, we can train

the health data of patient last year to build the model for future speculation. After training,

we obtain the transition matrix based on Markov-chain model, prediction point, and

threshold. With above output from trained model, we can speculate whether the private

pattern occurs in each incoming window. If the transition probability derived from

speculation is greater than threshold, the window will be labeled as positive, which

indicates that there is the private pattern in this window. Otherwise, the window will be

labeled as negative.

For positive windows, we take only the part up to prediction point into re-ordering.

Before re-ordering, top-k preserving strategy is implemented to preserve the most

important k public patterns in each window. After top-k preserving, the re-ordered pairs

derived from private pattern are sorted based on estimation weight. In re-ordering, the

 15

Figure 4-1 Overview of proposed model

graph-based re-ordering mechanism is implemented from [11], and the re-ordered

window is obtained. At the end, the utility of speculatively re-ordered window is

compared to the utility of non-speculatively re-ordered window.

4.2 Discrete Markov-chain Model

In Complex Event Processing (CEP), a pattern is matched only when events of pattern

occur in correct order. For instance, a pattern is defined as P1 = {A, C, D}. When event

‘A’, ‘C’, ‘D’ are sequentially observed, pattern P1 is matched. Therefore, the relationship

between events of defined pattern must be taken into consideration when speculating

whether the pattern occurs in the current window. In other words, if the relationship

between previous event and current event is traceable, the occurrence of pattern will be

predictable.

Speculative trained
model based on
Markov chains

input
data
stream

Re-ordering

Top-k
preserving

Utility
comparator

Non-speculative
re-ordering
strategy

Utility comparison ratio

 16

Figure 4-2. State diagram of pattern P = {‘A’, ‘B’, ‘C’}

As discussed in previous chapter, Markov-chain model assumes that future outcomes

only depend on the current state. With the conditional probability of current state given

previous state, the occurrence of next state can be predicted. Thus, in pattern speculation,

different states represent different event relationships, and the pattern can be speculated

by implementing Markov-chain model. Since our events in data stream are not continuous,

we use discrete Markov chains to forecast the occurrence of patterns. In order to describe

more precisely how discrete Markov chains implement into pattern speculation, we give

an example below.

Suppose that event types E contains ‘a’ to ‘z’ and ‘A’ to ‘Z’, and the pattern P equals

to {‘A’, ‘B’, ‘C’}. In Markov-chain model, each state represents the specific outcome. For

pattern speculation, each state is defined as the number of remaining events of pattern.

For example, Sk is denoted as the state, which still needs to receive k remaining events of

pattern before the pattern is totally matched. The state diagram of pattern P is shown in

Figure 4-2.

In Figure 4-2, there is initially no observing event of pattern P, so the initial state is

denoted as S3, which indicates that there are three remaining events ‘A’, ‘B’, ‘C’. The

state stays in S3 until the event ‘A’ comes. When the new coming event is ‘A’, the state

shifts to S2 with the probability PA. In S2, the state keeps staying in S2 with the probability

1 – PB|A, where PB|A is the conditional probability of event B given event A. At the end, in

final state S0, all events belonging to pattern P are all observed in correct order, so the

pattern P is entirely matched. Moreover, no matter what event comes, the state stays in S0

until all coming events are detected.

In order to derive the transition matrix of state diagram in Figure 4-2, we consider

S3 S2

PA
S1 S0

PB|A PC|B

11 - PC|B
1 - PA 1 - PB|A

 17

the coming window w and the state matrix R shown respectively as following:

w = {‘e’, ‘y’, ‘H’, ‘a’, ‘k’, ‘A’, ‘D’, ‘b’, ‘g’, ‘E’, ‘F’, ‘G’, ‘H’, ‘B’, ‘Y’, ‘d’, ‘m’, ‘p’, ‘o’,

‘n’, ‘C’, ‘K’, ‘z’}; (4-1)

𝑅 is initialized as [

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] (4-2)

Before observing event ‘A’, the state keeps in S3, and there are five events before

event ‘A’ is observed. Thus, the number of events in S3 is five, and R becomes as below

 𝑅 = [

5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] (4-3)

After detecting event ‘A’, the state shifts to S2, and R is shown as following:

 𝑅 = [

5 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] (4-4)

Similarly, after detecting event ‘B’, there are seven events in S2 , and equation (4-4)

becomes as below:

 𝑅 = [

5 1 0 0
0 7 1 0
0 0 0 0
0 0 0 0

] (4-5)

At the end, when observing all events including event ‘C’ in window w, the final R can

be derived as following:

 18

𝑅 = [

5 1 0 0
0 7 1 0
0 0 6 1
0 0 0 2

] (4-6)

Hence, if each element in equation (4-6) is divided by the sum of its corresponding

row, we can derive the transition matrix T of Markov-chains model with given pattern P

= {‘A’, ‘B’, ‘C’} for incoming window w as below:

 𝑇 =

[

5

6

1

6
 0 0

0
7

8

1

8
 0

0 0
6

7

1

7

0 0 0 1]

 (4-7)

In each row of transition matrix T, the first non-zero element is the probability that

stays in the current state, and the second non-zero element represents the conditional

probability of the next state given specific relationship of events. Take the second row for

instance. In the second row, the probability that shifts from S2 to S1 is 1/8 when detecting

the event ‘B’, and the probability that stays in current state is 7/8. Note that the sum of

each row should be equal to one due to the property of Markov-chain model.

 With transition matrix, we can speculate whether the pattern occurs after observing

several incoming events based on the theorem of t-steps transition in Markov-chain model.

The transition matrix after t steps is the t-times polynomial of transition matrix itself. For

instance, assume that there will be ten events coming. The transition matrix after

observing ten events T10 are derived as below:

 𝑇10 = [

0.16150558 0.40627997 0.26887591 0.16333854
0.00000000 0.26307558 0.34312082 0.39380360
0.00000000 0.00000000 0.21405832 0.78594168
0.00000000 0.00000000 0.00000000 1.00000000

] (4-8)

In each row of T10
 , the last element represents the occurrence probability of pattern {‘A’,

‘B’, ‘C’} after observing ten events given specific events. Take the third row in T10 as an

 19

example, if event ‘A’ and ‘B’ are already detected, the probability that pattern P occurs

after next ten events is 0.78594168. Furthermore, when the number of next coming events

increases dramatically, the occurrence probability of pattern P in each row will approach

one very closely. Take sixty events for example, and the transition matrix T60 after

observing next sixty events is shown as following:

 𝑇60 = [

0.00000000 0.00125501 0.00494069 0.99378655
0.00000000 0.00033150 0.00164707 0.99802143
0.00000000 0.00000000 0.00000962 0.99990379
0.00000000 0.00000000 0.00000000 1.00000000

] (4-9)

From T60, we can conclude that after observing sixty events, the probability that detects

the pattern {‘A’, ‘B’, ‘C’} is very high because the occurrence probability of pattern P in

every state is nearly one.

4.3 Offline Learning

In offline learning, the goal is to obtain the transition matrix, prediction point and

threshold by implementing Markov-chain model in order to forecast whether the pattern

occurs in every coming window. As discussed previously, the transition probability in

transition matrix is denoted as the occurrence probability of defined pattern in specific

state. In each coming window, if the transition probability is greater than the user-defined

threshold after observing several events, i.e. several steps transition, the pattern will be

highly expected to occur in current window. However, if the transition probability is less

than the threshold, the pattern will not occur in current window.

Figure 4-3 shows the overview of the offline learning model in order to derive the

transition matrix, proper prediction point and threshold. First of all, there are two phases

for generation of transition matrix: training phase and testing phase. In training phase, the

transition matrix is trained with a training dataset. After training, the testing dataset is

generated with the same characteristic as training dataset. The transition matrix is

evaluated in testing phase by precision and recall rate. Finally, based on the result of recall

and precision, a proper threshold and its corresponding prediction point are determined.

At the beginning of offline learning, there is an event generator, which can randomly

generate the dataset based on given event types from A - Z and a - z.

 20

Figure 4-3 Steps of offline learning

For training dataset, the occurrence probability of user-defined pattern is chosen to be

around 0.5, so that the results can be clearly seen, which is not the case for rare private

patterns.

Event generator

Training with
Markov Chain

Model

Testing with
Recall and
Precision

Training
Dataset

Testing
Dataset

Transition
Matrix T

Threshold ts

prediction
point p

Event
Type

 21

The relationship between the user-defined tolerance 𝜀 , which is set to 0.5, and

occurrence probability po is defined as below:

|𝑝𝑜 − 0.5 | ≤ 𝜀 (4-10)

We generate the training dataset in such a way that the inequality (4-10) is satisfied. Now

the transition matrix T is derived by implementing the Markov-chain model. The

transition matrix T is able to predict the transition probability of given pattern if the

processing dataset has the same characteristic as the training dataset. In addition, the

number of windows in training dataset should be large enough to guarantee that the

transition matrix is stable and reliable after training.

The difference between training and testing is that the training dataset is implemented

to build up a trained model while the test dataset is to validate the built model. Moreover,

the size ratio between training dataset and test dataset is chosen as 8 : 2. In testing phase,

the transition matrix T is validated by applying the test dataset, and the purpose is to learn

the proper threshold and corresponding prediction point. The range of threshold starts

from 0.5 to 0.95, and the corresponding prediction point of given threshold is obtained

when the transition probability after observing several events is greater than given

threshold.

In order to decide proper threshold and prediction point, the recall and precision rate

are introduced. As shown in Figure 4-4, false positives are denoted as items, which are

incorrectly labeled as belonging to occurred patterns after prediction. Similarly, false

negatives represent items, which are not labeled as belonging to occurred patterns but

they should be. The formulas of recall and precision are described as following:

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (4-11)

Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (4-12)

 22

Figure 4-4. Diagram of recall and precision

From equation (4-11) and (4-12), recall can be interpreted as the rate of relevant items

that are selected, and the precision is regarded as the rate of selected items that are relevant.

Hence, based on results of recall and precision, an optimal threshold and its corresponding

prediction point are determined that has a relatively high recall and precision.

4.4 Speculation

With threshold, prediction point and transition matrix derived from offline learning,

we can speculate whether there is a private pattern in window of new incoming dataset.

The overview of speculation phase is depicted in Figure 4-5. When dealing with new

incoming data stream, the input data stream is first divided into many windows with same

size. For each window, all events before prediction point p are observed, and we can learn

the relationship between events belonging to private pattern before prediction point.

Based on observation of those events, the transition probability is calculated with

transition matrix T. If the transition probability at prediction point p is greater than

threshold ts, the current processing window will be labeled as positive, which implies that

the private pattern exists in this window. On the contrary, if the transition probability is

Relevant elements

false
positives

false negatives false positives

Selected elements

true
positives

Precision =

Recall =

 23

Figure 4-5 Procedure of speculation phase

less than the threshold, the private pattern is not happening in this window, and it will be

labeled as negative. The speculative algorithm based on Markov-chain model is described

in Algorithm 4.1.

calculation of transition
probability pt

new
incoming
window

w

transition matrix T
prediction point p
threshold ts

pt >= ts?
no yes

labeling w
as negative

labeling w
as positive

first part
of positive
window

wpos_spec

splitting w/
prediction point

prediction point p

remaining
positive
window

wpos_nonSpec

 24

Algorithm 4.1 Speculation based on Markov-chain model

procedure MARKOV-CHAINSPECULATION (predictionPoint p, threshold ts)

for each window in dataStream do

 prob ← window.getTransitionProb(p)

if prob >= ts then

 window.label(positive)

 wpos_spec ← window.first(p)

 wpos_nonSpec ← window.remain(p)

else

 window.label(negative)

end if

end for

end procedure

For example, assuming prediction point p = 40, threshold ts = 0.8, pattern P = {‘A’,

‘B’, ‘C’}, window size = 100, and the transition matrix is defined as below:

 𝑇 = [

0.966 0.034 0 0
0 0.959 0.041 0
0 0 0.961 0.039
0 0 0 1

] (4-13)

Since the prediction point p is 40, there are still 60 events left behind, which indicates

that the transition steps are 60. Thus, when receiving the new coming window, the

transition matrix at the prediction point p is derived as following:

 𝑇60 = [

0.126 0.216 0.262 0.396
0 0.081 0.221 0.698
0 0 0.092 0.908
0 0 0 1

] (4-14)

Based on transition matrix T60, transition probabilities of different states are obtained.

 25

For example, in the third row of T60, the transition probability 0.908 is greater than

threshold ts 0.8, which indicates that the pattern {‘A’, ‘B’, ‘C’} may occur in state S1,

which has already observed event ‘A’ and ‘B’. In other words, if there exist event ‘A’ and

‘B’ before prediction point p, i.e. in first 40 events, there may be the event ‘C’ coming in

the remaining 60 events, so the processing window will be labeled as positive.

At the end, windows labeled as positive are split into two parts based on prediction

point. The first part of positive window contains all events before prediction point, and

we only take the first part of positive windows for re-ordering. On the other hand, for

those windows which are labeled as negative, they stay unchanged without re-ordering

because there is no private pattern based on speculation result, and we can proceed with

the next coming window. Additionally, for positive windows, which would later enter into

re-ordering phase, there should be at least two events that are part of private pattern in

first part of positive window because only one event could not be re-ordered. If there is

just one event in the first part of positive window, we shift the prediction point backwards

until we observe at least two events in the first part of positive window.

4.5 Top-k Preserving

When dealing with events in re-ordering process, it is lack of consideration that only

events belonging to private pattern are taken into consideration for re-ordering. If we

select events that are part of public patterns for re-ordering, QoS will degenerate after re-

ordering. In order to maintain high QoS, public patterns should also be taken into

consideration before re-ordering. This is done by the top-k preserving approach. Those

public patterns with higher weight are not selected for re-ordering. In this way, the top-k

public patterns with highest weights are preserved, so high QoS is guaranteed after re-

ordering.

As shown in Figure 4-6, the procedure of top-k preserving strategy is described. First

of all, the input of top-k preserving phase is the first part of the positive window

containing events, which are before prediction point. Before selecting types of preserved

public patterns, all public patterns are divided into two groups: matched patterns and

unmatched patterns for that window. The former represent the set of public patterns,

which are detected in the incomplete input window, while the latter denote the set of

public patterns, which do not exist in the window yet. Since matched patterns have

 26

already existed in input window, and they would definitely contribute towards QoS, they

are all taken into consideration for re-ordering as “to be preserved”. On the other hand,

there are two types for unmatched patterns: partly unmatched and totally unmatched

patterns. We only consider partly unmatched patterns for preservation because if they are

partly matched in the first part of positive window, the chance they occur in the remaining

part is higher than those totally unmatched patterns. Therefore, partly unmatched patterns

cannot be entirely removed since they will also have the contribution to QoS if they occur

in the window. For simplicity, unmatched patterns are denoted as partly unmatched

patterns in top-k preserving.

For example, private patterns, matched public patterns, unmatched public patterns are

defined as below:

Private pattern = {‘A’, ‘B’, ‘C’}

Matched public patterns = {‘A’, ‘B’, ‘D’} ; weight = {6}

Unmatched public patterns = {‘B’, ‘C’, ‘D’}, {‘B’, ‘C’, ‘H’}, {‘B’, ‘C’, ‘I’}, {‘B’,

‘C’, ‘K’}, {‘B’, ‘C’, ‘L’} ; weight = {4}, {5}, {2}, {1}, {1}

In order to hide the private pattern, the pair for re-ordering can be selected based on

combination of pairs derived from private pattern. In this case, we can re-order either pair

{‘A’, ‘B’} or {‘B’, ‘C’}. If we only take matched public patterns into consideration, {‘A’,

‘B’, ‘D’} is the only preserving pattern, so pair {‘A’, ‘B’} cannot be re-ordered. Hence,

{‘B’, ‘C’} is always selected for re-ordering. After re-ordering, the total weight is six

units when only preserving matched public pattern {‘A’, ‘B’, ‘D’}. However, for instance,

if unmatched public patterns {‘B’, ‘C’, ‘D’} and {‘B’, ‘C’, ‘H’} occur in the remaining

part of positive window, the total weight after re-ordering is nine and it is lost when re-

ordering pair {‘B’, ‘C’}. In other words, QoS may become lower without consideration

of unmatched public patterns when they occur in the remaining part of positive window.

Thus, unmatched public patterns should also be considered for preservation, and the top-

k preserving strategy also includes unmatched public patterns in order to achieve higher

QoS after re-ordering but with slightly lower weights when compared to the matched

public patterns.

The main concept of top-k preserving strategy is to preserve k high-weight patterns,

which may have high contribution towards QoS at the end. Therefore, unmatched public

 27

Figure 4-6. Procedure of top-k preserving

patterns with higher weight should firstly be preserved. Namely, we can remove the low-

weight unmatched public patterns instead. To be more general, k’ is defined as the

removing number of unmatched patterns, and the number of preserving patterns is

denoted as k = N – k’, where N is the total number of public patterns. In the previous

example, assuming the removing number k’ = 2, unmatched public patterns and their

weights after applying top-k preserving strategy are shown as following:

Pattern matching
public patterns {q1,…qn}

prediction point p

top-k preserving weight estimation

Removing light-
weight patterns

Matched
patterns

Unmatched
patterns

removing k’ patterns

preserving
weight wpre

preserving coefficient cpre

private coefficient cpre

first part
of positive
window

wpos_spec

 28

Unmatched patterns after top-k preserving = {‘B’, ‘C’, ‘D’}, {‘B’, ‘C’, ‘H’}, {‘B’,

‘C’, ‘I’}

Weight of unmatched patterns after top-k preserving = {4}, {5}, {2}

In the above result, {‘B’, ‘C’, ‘K’} and {‘B’, ‘C’, ‘L’} are removed because they are the

two lowest-weight unmatched patterns. As a consequence, all preserving patterns for re-

ordering are determined as following:

Preserving patterns = {‘A’, ‘B’, ‘D’}, {‘B’, ‘C’, ‘D’}, {‘B’, ‘C’, ‘H’}, {‘B’, ‘C’, ‘I’}

 Weights = {6}, {4}, {5}, {2}

However, it is difficult to determine the importance of every preserving pattern. The

goal is to keep high QoS after re-ordering, so we can view this problem from QoS point

of view. Since matched public patterns have already existed in input window, they would

definitely have the contribution towards QoS. Thus, matched public patterns should be

assigned to high proportion of weight. On the other hand, unmatched patterns have an

influence on QoS only when they truly occur in the remaining part of positive window.

Hence, lower proportion of weight is given to unmatched patterns. To this end, the

preserving weight wpre is introduced in top-k preserving weight estimation and wpre is

defined as following:

𝑤𝑝𝑟𝑒 = 𝛼 ∙ ∑𝑤𝑚𝑎𝑡𝑐ℎ𝑒𝑑 + 𝛽 ∙ ∑𝑤𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 (4-15)

where 𝑤𝑚𝑎𝑡𝑐ℎ𝑒𝑑 is the weight of matched public pattern for preserving; 𝑤𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 is

the weight of unmatched public pattern for preserving; 𝛼 and 𝛽 are the weighting

factor for matched public patterns and unmatched public pattern, respectively.

As discussed before, matched patterns are assigned to higher proportion of weight,

so 𝛼 is greater than 𝛽. To simplify the equation (4-15), wpre is rewritten as below:

 𝑤𝑝𝑟𝑒 = 𝑐𝑝𝑟𝑒 ∙ ∑𝑤𝑚𝑎𝑡𝑐ℎ𝑒𝑑 + ∑𝑤𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 (4-16)

 29

where 𝑐𝑝𝑟𝑒 is the preserving coefficient, which is defined as following:

 𝑐𝑝𝑟𝑒 = 1 +
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑤𝑖𝑑𝑜𝑤
 (4-17)

It is worth noting that since events before prediction point have already been

observed before top-k preserving, we have to take these observed events into

consideration when giving weights to matched public patterns. 𝑐𝑝𝑟𝑒 can be viewed as

weighting factor for matched public patterns. Thus, in 𝑐𝑝𝑟𝑒, the information of observed

events are included by adding the ratio of prediction point to size of window. Moreover,

if the prediction point is close to the back part of input window, there is more information

about observed events, which implies that the input window contains more events in top-

k preserving approach. As a result, cpre is greater because more information of window is

considered.

Accordingly, the pair for re-ordering can be determined if it has the greatest

preserving weight based on top-k preserving strategy. The algorithm of top-k preserving

is described in Algorithm 4.2. In the previous example, the re-ordered pair can be {‘A’,

‘B’} or {‘B’, ‘C’}. Assume that the prediction point is at the middle of processing window,

and the preserving coefficient cpre can be derived as below:

𝑐𝑝𝑟𝑒 = 1 +
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑤𝑖𝑑𝑜𝑤
= 1 + 0.5 = 1.5 (4-18)

When re-ordered pair is {‘A’, ‘B’}, the preserving patterns are {‘B’, ‘C’, ‘D’}, {‘B’, ‘C’,

‘H’}, {‘B’, ‘C’, ‘I’}, so the preserving weight wpre,{AB} can be derived with preserving

factor cpre as below:

𝑤𝑝𝑟𝑒,{𝐴𝐵} = 𝑐𝑝𝑟𝑒 ∙ ∑𝑤𝑚𝑎𝑡𝑐ℎ𝑒𝑑 + ∑𝑤𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑

 = 1.5 ∙ 0 + (4 + 5 + 2) = 11 (4-19)

Similarly, when re-ordering pair {‘B’, ‘C’}, the preserving pattern is only {‘A’, ‘B’, ‘C’},

so the preserving weight is derived as following:

 30

Algorithm 4.2 Top-k Preserving

procedure TOP-KPRESERVING(k’)

 𝑐𝑝𝑟𝑒 ← 1 + (predictionPoint / windowSize)

 preWeight ← {}

if unmatchedPatternSize > k’ then

for i ← 1…𝑘′ do

 unmatchedPatterns.remove(lowest-weightPattern)

end for

 else

 unmatchedPatterns.removeAll()

 end if

for each pair in privatePattenPairSet do

 for pattern in unmatchedPatterns do

 if pattern is totallyUnmatchedPattern then

 unmatchedPatterns.remove(pattern)

 continue

 if pattern contains pair then

 unmatchedPatterns.remove(pattern)

 end if

 end for

 for pattern in matchedPatterns do

 if pattern contains pair then

 matchedPatterns.remove(pattern)

 end if

 end for

 weight ← 𝑐𝑝𝑟𝑒 ∗ sum(matchedPattern) + sum(unmatchedPattern)

 preWeight.add(weight)

end for

return preWeight

end procedure

 31

𝑤𝑝𝑟𝑒,{𝐵𝐶} = 1.5 ∙ 6 + (0) = 9 (4-20)

From equation (4-19) and (4-20), wpre,{AB} is greater than wpre,{BC}, so the pair {BC} is

selected for re-ordering after implementing top-k preserving strategy. In short, the top-k

preserving strategy takes both matched and unmatched patterns into consideration, and

the preserving weight is determined with the help of preserving coefficient cpre.

4.6 Reordering

In re-ordering phase, the aim is to adjust the order of events that are part of re-ordered

pair pre with preserving weight derived from top-k preserving phase, and the input is the

first part of positive window wpos_spec containing events before prediction point p. The

pattern-based access control mechanism is introduced in [11], and the graph-based re-

ordering algorithm is implemented in this thesis. The overall flow of re-ordering phase is

pictured in Figure 4-7.

First of all, a weighted directed acyclic graph is formed based on types of private

patterns Ppriv and public patterns Q1….Qn. In weighted directed graph, vertices represent

events, and each directed edge represents the order of events. The weights of edge is based

on timestamps of each event. After the graph is completed, the event order of re-ordered

pair ppre must be reversed. Thus, for event pairs with reversed order, the initial edge

weights are negative because the timestamps in graph have not been modified according

to the reversed order.

In graph-based re-ordering, the algorithm takes the formed graph as input. After

detecting negative edges, the algorithm examines all vertices with weights representing

event timestamps, and edge weights denoted as inter-arrival times. The examining

iteration is completed until there is no negative edge. Therefore, all inter-arrival times are

positive, which implies that timestamps are consistent with the event orders after re-

ordering. The detailed algorithm about graph-based re-ordering is mentioned in [11].

Note that the processing window labeled as positive is divided into two parts (wpos_spec

and wpos_nonSpec) based on prediction point in speculation phase, and we take the first part

of positive window wpos_spec as an input for top-k preserving phase and re-ordering phase.

 32

Figure 4-7. Flow of re-ordering

public patterns {q1,…qn}
private pattern Ppriv

Graph forming

Negative edge detection

re-ordered
window
wpos_spec’

Graph-based reordering

first part
of positive
window
wpos_spec

remaining
positive
window
wpos_nonSpec

re-ordered
window

w_pos_reord

 33

After re-ordering, the re-ordered window wpos_spec’ is obtained. By combining wpos_spec’

and wpos_nonSpec, the re-ordered positive window w_pos_reord is finally obtained.

4.7 Utility Comparator

At the end, we need to evaluate the proposed speculative re-ordering model. To be

more precise about the impact of re-ordering, the utility is defined in [11] as below:

Utility (U) = Σ𝑖=1
𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑢𝑏𝑙𝑖𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

 𝑤𝑖

 − 2 ∗ Σ𝑗=1
𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

 𝑤𝑗

 − Σ𝑘=1
𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

 𝑤𝑘; (4-21)

where wi, wj are the user-defined weight of public pattern onto the QoS, and wk is the

weight of private patterns.

As shown in Figure 4-8, by comparing the original positive window wpos and re-

ordered positive window wpos’, false positives and false negatives can be observed. With

false positives, false negatives, and matched public patterns, the utility is derived. It is

worth noting that the high utility indicates there are more public patterns but less false

positives, false negatives or private patterns after re-ordering. In other words, if there still

exists a private pattern after re-ordering, the utility will become low since a private pattern

cause a very high penalty.

Also, the utility of processing window based on non-speculative re-ordering

algorithm in [11] is derived. In utility comparator, both utility are compared in terms of

utility comparison ratio, which is defined as the ratio of utility of speculative-reordering

to utility of non-speculative reordering. Note that the former should approach latter as

closely as possible. Therefore, the aim is to achieve a high utility comparison ratio close

to 1, and it would be used to evaluate our speculative re-ordering model.

 34

Figure 4-8. Flow of utility comparator

Utility comparison ratio

pattern matching/
Window comparison

Utility comparator

matched public
patterns/
false positives/
false negatives

Original
positive
window

wpos

Re-ordered
positive
window

wpos'

non-speculative
re-ordering

matched public
patterns/
false positives/
false negatives

 35

Chapter 5 Evaluation

 In this chapter, we present evaluation results for the speculative Re-ordering

strategy in terms of QoS and latency. Before evaluation, the setup of experiments is

introduced. There are several factors that have an influence on the speculative re-ordering

strategy. We evaluate the strategy with the following parameters.

 Precision and recall: The first and foremost evaluation is the accuracy of

speculation. We use precision and recall, the well-known model for evaluation

the accuracy or performance of speculative model based on Markov chains.

 Threshold ts: Threshold ts determines the confidence probability with which the

private pattern match is predicted.

 Prediction point p: The prediction point p represents the point of start of

prediction in terms of percentage of window size.

 Window size: The window size determines the total number of events in which

need to be considered for speculation and re-ordering.

 Removing number k’: Instead of preserving the most important k public

patterns, we can remove k’ public patterns with lowest weight.

 Running time: The running time impacts whether we can save the latency when

applying speculative re-ordering strategy.

5.1 Setup and Parameters

We implement both non-speculative and speculative re-ordering strategy based on

graph-based re-ordering mechanism in [11] for our evaluation. Both the systems take the

input data stream, and return the modified data stream as output. For all experiments, the

programming language is Python 2.7. The experimental machine used is an Intel Core i5-

6200U 2.8GHz CPU and the operating system is Windows 10 and the RAM is 8GB.

The input data is randomly generated with 25000 windows, and the characteristic of

input data is assumed to be same as the training dataset. We assume that windows in every

experiment are all event-based, and the event types are composed of all English alphabets

in lower and upper case for the purpose of generating public patterns and the private

pattern.

 36

5.2 Utility Comparison

With the definition of utility discussed in equation (4-21), the utility comparison ratio

can be derived as the ratio of speculative reordering to non-speculative reordering

algorithm. Thus, the impact on QoS is evaluated for speculative re-ordering strategy in

comparison to non-speculative re-ordering strategy with the utility comparison ratio. For

all following evaluations, we use this ratio to measure utility performance.

Furthermore, latency is evaluated by measuring running time of speculation, top-k

preserving and re-ordering. For speculative re-ordering strategy, since it often takes very

short time for speculation, the running time for speculation and top-k preserving are

combined. After top-k preserving, the re-ordering time is measured. On the other hand,

there is only re-ordering time for non-speculative re-ordering strategy. Note that we use

the resolution of microseconds for time evaluation, so if the measuring time is less than

one micro second, it will be viewed as zero.

5.3 Evaluation of Proposed Speculative Model

The proposed speculative model is evaluated by precision and recall in test phase. The

test dataset is generated by random selection from event types. The characteristic of test

dataset is basically same as training dataset. Additionally, there are 25000 windows in test

dataset, and each window contains 100 events. The setting of parameters are given by

following table:

Parameters Private pattern Threshold range Increment

Value
{‘A’, ‘B’, ‘C’,

‘D’}
0.55 – 0.925 0.025

Table 5-1 Setting of evaluation of proposed speculative model

First of all, the input stream is taken into the speculative model based on Markov

chains. With given thresholds, the corresponding prediction points are obtained. Also,

every incoming window is labeled as positive or negative based on speculation results.

At the end, recall and precision are calculated.

The corresponding prediction points are shown in Figure 5-1 for changing thresholds.

 37

It is worth noting that all prediction points are located before 50% of window is completed.

The results of precision and recall are shown in Figure 5-2 with different given thresholds.

In Figure 5-2, it can be viewed as two zones split by the threshold 0.675. In the front

zone, the average precision is around 0.8, and the maximum recall is nearly 0.6. In the

back zone, the average precision is around 0.95 but the maximum recall is less than 0.3.

Hence, an optimal threshold should be selected depending on the requirements. We select

the optimal threshold of 0.55 such that both precision and recall is the best. The

corresponding point prediction point is 46% of window size. In this case, the precision is

0.75 and the recall is 0.6. Thus, for all windows labeled as positive, only 1/4 is wrong,

and there are nearly 40 % missing windows which contains private pattern.

Figure 5-1 Prediction points by given thresholds

 38

Figure 5-2 Precision and recall by given thresholds

5.4 Evaluation of Threshold

The threshold is the parameter to determine whether the private pattern occurs in

current window when the transition probability is greater than threshold. In this section,

this evaluation can also be used as an alternative to offline learning, where they can find

the optimal threshold based on precision and recall. Therefore, in order to obtain the

optimal parameters for high utility comparison ratio, we start speculation with different

given thresholds derived from previous offline learning. In this experiment, the setting of

parameters are given by following tables:

Parameters Window size Private pattern Number of public patterns

Value 100
{‘A’, ‘B’, ‘C’,

‘D’}
15

Table 5-2 Setting (I) of evaluation of threshold

 39

Parameters Removing number k’ Threshold range Increment

Value 2 0.55 – 0.925 0.25

Table 5-3 Setting (II) of evaluation of threshold

The result of utility comparison ratio is shown in Figure 5-3 by given thresholds. For

all utility comparison ratios based on different thresholds in Figure 5-3, they are all in the

range from 70% to 76%. Based on this result, we select the optimal threshold as 0.775 for

speculation.

Figure 5-3 Utility comparison ratio under evaluation of threshold

5.5 Evaluation of Prediction Point

The prediction point p determines how many events should be observed before the

 40

state of speculation and re-ordering. With the optimal threshold derived in previous

experiment, we would like to evaluate at which prediction point we can obtain the high

utility comparison ratio after speculation. In this experiment, we first start speculation

with the optimal threshold of 0.775, and every time we shift prediction point with 10% of

window size until the prediction point is over 90% of window size. The setting of

parameters are given by following tables:

Parameters Window size threshold Private pattern
Number of public

patterns

Value 100 0.775
{‘A’, ‘B’, ‘C’,

‘D’}
15

Table 5-4 Setting (I) of evaluation of prediction point

Parameters
Removing

number k’

Initial prediction

Point
Increment

Value 2 48 10

Table 5-5 Setting (II) of evaluation of prediction point

The result of utility comparison ratio is shown in Figure 4 by given prediction points.

As shown in Figure 5-4, the utility comparison ratio increases when the prediction point

is close to the end of window. When prediction point is closer to the end of window, there

are more events observed before speculation. This is because we have more information

about appeared events and event orders, so the speculation would be more accurate. As a

consequence, the utility comparison ratio increases when the prediction point increases.

5.6 Evaluation of Window Size

In this section, we evaluate the speculation strategy with window size. We assume

that the number of windows is always fixed to 25000. For different window sizes, the

number of events in window is different, so the total number of events in test dataset is

also different. In this experiment, we generate the test dataset for different size of

windows, and obtain corresponding thresholds and prediction points by using offline

 41

Figure 5-4 Utility comparison ration under setting of prediction point

learning. With same public patterns, we then start speculative re-ordering strategy with

proposed model in order to acquire utility comparison ratio for different window sizes.

The setting of parameters are given by the following tables:

Parameters Private pattern Number of public patterns

Value
{‘A’, ‘B’, ‘C’,

‘D’}
15

Table 5-6 Setting (I) of evaluation of window size

 42

Parameters
Removing

number k’

Range of

window size
Increment

Value 4 100 - 200 20

Table 5-7 Setting (II) of evaluation of window size

As shown in Figure 5-5, the utility comparison ratio increases when the window size

becomes bigger. If the size of window increases, there are more events in each window,

and it is more likely that more public patterns occur. During re-ordering, only public

patterns that overlapped with the private patterns will be affected, while other public

patterns are kept unchanged. Thus, there may exist more unchanged public patterns in a

bigger window, which results in higher utility comparison ratio. The result also shows

that our strategy works well for all windows.

Figure 5-5 Utility comparison ratio under the setting of window size

 43

5.7 Evaluation of Removing Number k’

The removing number k’ determines how many public patterns we remove in the top-

k preserving strategy. In this experiment, we start speculative re-ordering strategy by

increasing k’, and at the end compare the results with and without preserving public

patterns. The evaluation without preserving public patterns is to show the importance of

top-k preserving strategy. The setting of parameters are given by following tables:

Parameters Window size threshold Prediction point Precision Recall

Value 100 0.55 46 0.75 0.6

Table 5-8 Setting (I) of evaluation of removing number k’

Parameters Private pattern
Number of

public patterns

Range of removing

number k’

Value {‘A’, ‘B’, ‘C’} 15 0 – 4, all

Table 5-9 Setting (II) of evaluation of removing number k’

In Figure 5-7, results of utility comparison ratio are shown with different k’. For all

k’, their utility comparison ratios are nearly 80%, and there is no significant difference

among them. Since the weights of our public patterns are all less than 10, which is quite

smaller than total utility, the preserved public patterns show little contribution towards

total utility.

However, instead of utility comparison ratio, the result in Figure 5-8 shows a

considerable difference in terms of number of false negatives. When preserving no public

pattern, the number of false negatives is around 2600, which implies that the number of

missing public pattern is almost 2600 after reordering. On the other hand, the average

number of false negatives is less than 250 when taking top-k preserving algorithm into

consideration with removing number from 0 to 4. From this result, it provides us a strong

evidence that top-k preserving strategy is useful in terms of number of false negatives.

Furthermore, in Figure 5-8, the number of false negatives are compared when preserving

public patterns. When all public patterns are preserved, the number of false negatives is

almost half of the number of false negatives in other cases. This is because of the obvious

 44

reason that the re-ordering strategy tries to preserve the given of public patterns until

concealing private patterns.

Figure 5-6 Utility comparison ratio with different removing numbers

Figure 5-7 Number of false negatives with different removing numbers

 45

Figure 5-8 Number of false negatives with removing number form 0 to 4

 46

Figure 5-9 Comparison of speculative and non-speculative reordering strategy

5.8 Evaluation of Time

In order to evaluate how much latency can be saved while implementing speculative

re-ordering strategy, we measure the evaluation time for speculation, top-k preserving and

re-ordering. As shown in Figure 5-9, for non-speculative strategy, the re-ordering always

starts from the end of window after observing all events. Therefore, it takes re-ordering

time tre-ordering to conceal the private pattern while implementing non-speculative re-

……………………………………....

tprocessing tre-ordering

e1 e2 en

tspec_topk_reorder

prediction point p

……………………………………....

tprocessing tre-ordering

e1 e2 en

window w

window w

non-speculative reordering strategy

speculative reordering strategy

 47

ordering strategy. The total time will increase if the size of window becomes bigger. On

the other hand, when applying speculative re-ordering strategy, there is no need to wait

until the end of window. It starts speculation after prediction point p, and tspec_topk_reorder is

denoted as total time of speculation, top-k preserving and re-ordering. If tspec_topk_reorder is

completed before the end of window, we can save the re-ordering time tre-ordering of non-

speculative strategy. In other words, the latency is improved by implementing speculative

re-ordering strategy. Therefore, for speculative re-ordering strategy, tspec_topk_reorder should

not be less than remaining time after prediction point, which can be described as below:

 𝑡𝑠𝑝𝑒𝑐_𝑡𝑜𝑝𝑘_𝑟𝑒𝑜𝑟𝑑𝑒𝑟 ≤ 𝑇 ∙
𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 − 𝑝

𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒
 (5-1)

where T is the processing time for each window.

Thus, T in equation (5-1) can become as below:

 𝑇 ≥
𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒

𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒−𝑝
∙ 𝑡𝑠𝑝𝑒𝑐_𝑡𝑜𝑝𝑘_𝑟𝑒𝑜𝑟𝑑𝑒𝑟 (5-2)

Furthermore, in this experiment, the setting of parameters are given by following

tables:

Parameters Window size threshold Prediction point Precision Recall

Value 100 0.55 46 0.75 0.6

Table 5-10 Setting (I) of evaluation time

Parameters Private pattern Number of public patterns

Value
{‘A’, ‘B’, ‘C’,

‘D’}
15

Table 5-11 Setting (II) of evaluation time

The results of evaluation time are shown as in Table 5-12 for both non-speculative

 48

and speculative re-ordering strategy with k’ from 0 to 4.

 Removing number k’

Average

evaluation time (us)

k’ = 0 k’ = 1 k’ = 2 k’ = 3 k’ = 4

Speculation/Top-k preserving 110.32 101.52 103.36 116.12 96.96

Re-ordering 23373.32 1515.92 1479.32 1538.96 1449.68

Total time tspec_topk_reorder 23483.64 1617.44 1582.68 1655.08 1546.64

Table 5-12 Average evaluation time of speculative re-ordering strategy among

25000 windows

Average evaluation

time (ms)

Non-speculative re-ordering

strategy

Re-ordering 355.481

Table 5-13 Average evaluation time of non-speculative re-ordering strategy among

25000 windows

Based on the result of evaluation time in Table 5-12, when preserving all public

patterns, it would take longer time for re-ordering while the re-ordering time is shorter

when removing some low-weight public patterns. As a consequence, there are mainly two

situations in order to save the latency compared to non-speculative re-ordering strategy.

First, when our users take the number of false negatives into main consideration, we

should preserve all public patterns (k’ = 0) because the number of false negatives is lowest

based on result of previous evaluation. In this way, with p = 46, window size = 100 and

the result of evaluation time when removing number k’ is 0, equation (5-2) can be derived

as below:

 𝑇 ≥ 43.49 ms (5-3)

Second, if the number of false negatives is not the main concern for our users, since

the result of previous evaluation shows that there is no substantial difference of utility

comparison rate among different removing numbers, we can choose removing number k’

 49

as 4 for our users, and it gives the shortest tspec_topk_reorder. Similarly, equation (5-2) can be

also derived as below:

 𝑇 ≥ 2.86 ms (5-4)

From equation (5-3) and equation (5-4), we can conclude that the window size should be

at least 43.49 ms when our users care more about the number of false positive. Also, the

processing time of window should be at least 2.86 ms when the requirements are more

stringent for latency. In general, these minimum window sizes are sufficient for a very

large numbers of CEP applications. In other words, our strategy eliminates the need for

re-ordering time if the window size is greater than 50 ms. Furthermore, in both situations,

we can save 355.481 ms on an average in our examples, which is the additional latency

because of re-ordering when implementing non-speculative re-ordering strategy.

 50

Chapter 6 Conclusion

In this thesis, we propose the model with speculative re-ordering strategy in order to

maintain pattern-based privacy in CEP systems. The current available mechanism based

on re-ordering algorithm takes the long latency when the size of window increases, so we

extend its application by speculating whether the private pattern occurs before re-ordering.

For public patterns, the top-k preserving algorithm is introduced in order to preserve

relating important public patterns during re-ordering, thus decreasing the number of false

negatives after re-ordering.

In order to evaluate the impact of QoS, utility comparison ratio is defined as the

performance metric. The evaluation result shows that the utility comparison ratio is nearly

80% for the test dataset generated in our evaluation. When implementing top-k preserving

algorithm for public patterns, the number of false negatives is decreased by 90 % in

comparison to preserving no public pattern. Also, the latency is evaluated by measuring

the running time for speculation, top-k preserving and re-ordering when implementing

both speculative and non-speculative re-ordering strategy. We can conclude that for our

test dataset, we can eliminate the time taken for re-ordering completely if the window

size is greater than 3 ms.

 51

REFERENCE

[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching

over event streams. In SIGMOD, 2008.

[2] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over

streams. In SIGMOD, 2006.

[3] Y. Mei and S. Madden. Zstream: A cost-based query processor for adaptively

detecting composite events. In SIGMOD, 2009.W. T.

[4] Microsoft Stream Insight:

http://msdn.microsoft.com/en-us/sqlserver/ee476990.aspx.

[5] StreamBase: www.streambase.com.

[6] Raman Adaikkalavan, Indrakshi Ray, and Xing Xie. 2011. Multilevel Secure Data

Stream Processing. In Data and Applications Security and Privacy XXV, Yingjiu

Li (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 122–137.

[7] Matteo Migliavacca, Ioannis Papagiannis, David M. Eyers, Brian Shand, Jean

Bacon, and Peter Pietzuch. 2010. DEFCON: High-performance Event Processing

with Information Security. In Proceedings of the 2010 USENIX Conference on

USENIX Annual Technical Conference (USENIXATC’10). USENIX

Association, Berkeley, CA, USA, 1–1.

[8] Jianneng Cao, Barbara Carminati, Elena Ferrari, and Kian-Lee Tan. 2009.

ACStream: Enforcing Access Control over Data Streams. In 2009 IEEE 25th

International Conference on Data Engineering. IEEE.

[9] G. Cugola, A. Margara, "Processing flows of information: From data stream to

complex event processing", ACM Computing Surveys (CSUR), vol. 44, no. 3, pp.

15, 2012.

[10] Di Wang, Yeye He, Elke Rundensteiner, and Jeffrey F. Naughton. 2013. Utility

maximizing event stream suppression. In Proceedings of the 2013 international

conference on Management of data - SIGMOD '13. ACM Press.

[11] Saravana Murthy Palanisamy, Frank Dürr, Muhammad Adnan Tariq, Kurt

Rothermel. 2018. Preserving Privacy and Quality of Service in Complex Event

Processing through Event Reordering. In DEBS '18 Proceedings of the 12th ACM

International Conference on Distributed and Event-based Systems.

[12] R. Vilalta and Sheng Ma. 2002. Predicting rare events in temporal domains. In

http://www.streambase.com/

 52

ICDM.

[13] Carlotta Domeniconi, Chang-shing Perng, Ricardo Vilalta, and Sheng Ma. 2002.

A Classication Approach for Prediction of Target Events in Temporal Sequences.

In Principles of Data Mining and Knowledge Discovery. Springer.

[14] Gary M. Weiss and Haym Hirsh. 1998. Learning to Predict Rare Events in Event

Sequences. In KDD.

[15] R. Vilalta and Sheng Ma. 2002. Predicting rare events in temporal domains. In

ICDM.

[16] Asela Gunawardana, Christopher Meek, and Puyang Xu. 2011. A Model for

Temporal Dependencies in Event Streams. In Advances in Neural Information

Processing Systems 24. Curran Associates, Inc.

[17] Vinod Muthusamy, Haifeng Liu, and Hans-Arno Jacobsen. 2010. Predictive

Publish/Subscribe Matching. In DEBS. ACM.

[18] Elias Alevizos, Alexander Artikis, and George Paliouras. Event forecasting with

pattern markov chains. In Proceedings of the 11th ACM International Conference

on Distributed and Event-based Systems, DEBS ’17, pages 146–157. ACM, 2017.

[19] Ruben Mayer, Ahmad Slo, Muhammad Adnan Tariq, Kurt Rothermel, Manuel

Gräber, and Umakishore Ramachandran. 2017. SPECTRE: Supporting

Consumption Policies in Window-based Parallel Complex Event Processing. In

Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference

(Middleware ’17). ACM, New York, NY, USA, 161–173.

https://doi.org/10.1145/3135974.3135983

[20] Yu Wang, Gao Cong, Guojie Song, Kunqing Xie: Community-based greedy

algorithm for mining top-k influential nodes in mobile social networks. In Proc.

16th Internat. Conf. on Knowledge Discovery and Data Mining (KDD’10), pp.

1039–1048, 2010. [doi:10.1145/1835804.1835935]

[21] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing

techniques in relational database systems. ACM Comp. Surveys, 40(4):1–58,

2008.

[22] Yan Chen, Ashwin Machanavajjhala, Michael Hay, and Gerome Miklau. 2017.

PeGaSus: Data-Adaptive Differentially Private Stream Processing. In Proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communications Security

(CCS ’17). ACM, New York, NY, USA, 1375–1388.

https://doi.org/10.1145/3135974.3135983

 53

[23] Do Le Quoc, Martin Beck, Pramod Bhatotia, Ruichuan Chen, Christof Fetzer, and

Thorsten Strufe. 2017. Privacy Preserving Stream Analytics: The Marriage of

Randomized Response and Approximate Computing. CoRR abs/1701.05403

(2017). arXiv:1701.05403

[24] A Design Framework for Internet-Scale Event Observation and Notification

[25] Processing Flows of Information: From Data Stream to Complex Event Processing

[26] Chet Geschickter and Kristin R. Moyer. 2016. Measuring the Strategic Value of

the Internet of Things for Industries. Technical Report TR ID : G00298896.

Gartner Inc

[27] Avesh Singh. 2017. Applying Artificial Intelligence in Medicine. (May 2017).

Retrieved 2018-02-26 from https://blog.cardiogr.am/applying-

artificialintelligence-in-medicine-our-early-results-78bfe7605d32

https://blog.cardiogr.am/applying-artificialintelligence-in-medicine-our-early-results-78bfe7605d32
https://blog.cardiogr.am/applying-artificialintelligence-in-medicine-our-early-results-78bfe7605d32

 54

 55

Declaration

I hereby declare that the work presented in this thesis is

entirely my own and that I did not use any other sources and

references than the listed ones. I have marked all direct or

indirect statements from other sources contained therein as

quotations. Neither this work nor significant parts of it were

part of another examination procedure. I have not published

this work in whole or in part before. The electronic copy is

consistent with all submitted copies.

Place, Date, Signature

