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ABSTRACT 

 With increasing number of applications in Internet of Things (IoT), Complex Event 

Processing (CEP) has already become one of the state-of-the-art technologies recently. In 

CEP, privacy needs to be considered carefully because events with user’s sensitive 

information may be exposed to outside world. However, most privacy issues in CEP 

mainly focus on attribute-based events without considering pattern-based events. There 

are two important works for pattern-based privacy in CEP: suppression and re-ordering. 

The former suppresses events belonging to private patterns while the later tends to re-

order them. The re-ordering mechanism shows better performance in terms of QoS, but 

the latency would be long when the size of window increases. Also, the re-ordering 

strategy is performed only at the end of the windows.  

In this thesis, we extend the Re-ordering strategy by using speculation based on 

Markov chains, so we start speculating whether the private pattern occurs in current 

window before the end of the window. If the private pattern is predicted to occur, we then 

already re-order events that are part of private patterns. Additionally, the top-k preserving 

algorithm is introduced for preserving public patterns. Our evaluation results show that 

we maintain nearly 80 % utility when compared to the normal re-ordering strategy. From 

our experiments, it is seen that we can eliminate the time taken for re-ordering completely 

if the window size is greater than 3 ms.  
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Chapter 1 Introduction  

With the fast-growing number of IoT applications, IoT provides the more direct 

integration of the physical world by decorating our world full of networked sensors. There 

is a tremendous amount of IoT applications in several diverse fields such as Industrial 4.0 

(automation process), Smart City (congestion control), E-health (fitness tracker), and 

Smart Homes (fire alarm). According to [26], there will be approximately 20.8 billion IoT 

devices by 2020, and an important function is to process the vast amount of raw data from 

the equipped sensors. 

 Almost all users of IoT applications are more interested in high-level meaningful 

information rather than raw data from sensors. Complex Event Processing (CEP) is one 

of the state of art paradigm that does this function that processes the stream of the raw 

data, and transforms it into meaningful and complex events, depending on rules provided 

by IoT applications. Due to the inherent distributed nature of CEP, it is an ideal candidate 

for many IoT applications. For instance, fraud detection is inferred when several unusual 

transactions of credit cards are observed and the intelligent transportation is realized by 

airline companies in order to track flights, track baggage, and transfer passengers. In 

addition, the quality of service (QoS) can also be improved while receiving the 

meaningful information in IoT applications.  

In CEP, there are often events that are highly sensitive in terms of privacy to users, 

and users are unwilling to expose such privacy-sensitive events. For example, in the 

application of E-health, users provide a large amount of health data to their IoT devices, 

such as data from fitness trackers or mobile phones to their service providers, for example, 

insurance companies. Although they benefit from the services by sending their personal 

health data, they are also afraid of the consequences as privacy sensitive data might be 

revealed. Based on the survey in [27], more than 70% of participants are not willing to 

share their fitness data as their lifestyle or potential disease may be disclosed, which will 

lead to increasing premiums from their insurance providers. Therefore, in order to 

maintain users’ privacy, a corresponding privacy-preserving mechanism is quite essential 

for users to select which types of data they are willing to share and to not share. The 

mechanism while preserving privacy should not deteriorate the Quality of data which in 

turn affects the QoS (Quality of Service). Thus QoS will deteriorate if existing complex 

events are not discovered (false negatives), or non-existing events are generated (false 
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positives). In this regard two types of pattern are defined: public patterns and private 

patterns. The former are essential for IoT applications to provide services, and the latter 

are user-defined events, which should not be shared with untrusted parties. In order to 

protect user’s privacy, several mechanisms were proposed. One straightforward approach 

is not to share any event of private patterns. However, some events in private patterns 

often belong to public patterns as well, so it turns out that many public patterns can no 

longer be detected, which implies that there is less QoS. In [10], the pattern-based utility 

suppression is proposed by suppressing parts of events in the private pattern, but it will 

cause low QoS if the suppressed events is part of public patterns. Instead of sharing no or 

any part of events, another pattern-based access control mechanism is introduced [11]. 

The private patterns are obfuscated by reordering events belonging to private patterns, 

and simultaneously the public patterns are preserved to provide high QoS.  

However, most CEP applications are real-time and hence events should be forwarded 

as soon as possible. But in the re-ordering strategy it is necessary to wait until the least 

event of the private pattern is available or till a specific timeframe is lapsed in order to 

know whether a private pattern had occurred or not and then reorder. This would 

contradict a real time system. In other words, in this thesis we extend the re-ordering 

strategy provided by [11] and develop a speculative re-ordering strategy based on 

Markov-chains, which speculate private patterns even before it completes and also 

reorder thus reducing the time taken for re-ordering after private pattern has completed 

or the timeframe window for that private pattern has expired. Therefore, the main goal of 

this Speculative Reordering strategy is to minimize the time taken by the non-speculative 

re-ordering strategy after the window completion while still maintaining the QoS 

guarantees. 
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Chapter 2 Related Work and Problem Statement 

 

2.1  Relate Work 

 As mentioned in the introductory chapter, the main purpose of Complex Event 

Processing (CEP) [9] is to deal with temporal relationship between events such as 

sequence matching among event streams. Thus CEP has been one of the emerging 

technology in which both researchers [1], [2], [3] as well as industries [4], [5] have 

invested time and effort in developing an efficient CEP system. In CEP, privacy patterns 

are inferred by observing relationships between incoming events, so user’s sensitive 

patterns may also be discovered while dealing with events that are part of patterns related 

to user’s behavior. Therefore, privacy should be taken into consideration carefully in CEP 

system because users are not willing to expose their privacy to untrusted parties. However, 

most privacy issues in CEP have focused on individual events rather than pattern-based 

events. For example, there are some approaches about privacy in CEP, such as differential 

privacy in private data stream [22] , zero-knowledge privacy guarantees [23], all of which 

are at the level of attribute-based events. But often privacy is revealed in terms of pattern. 

Thus, in this thesis, we focus on pattern-based events which contain both public patterns 

and private patterns of the input data stream to CEP systems.  

In [10], the authors proposed a pattern-based approach in which private patterns are 

concealed by suppressing events belonging to private patterns. Nevertheless, suppressed 

events might also be part of public patterns, so the loss of public patterns persists in this 

approach, which may result in low QoS. Therefore, in order to maintain user’s privacy, 

QoS should not be affected when concealing events that are part of private patterns. 

Instead of suppression, another pattern-based access control mechanism is proposed in 

[11] by re-ordering events that belong to private patterns. In this way, public patterns can 

be preserved, and high QoS is guaranteed simultaneously. Clearly, the re-ordering 

mechanism has the better performance in terms of QoS than suppression approach when 

maintaining pattern-based privacy. 

However, the re-ordering approach may take a longer processing time when the 

window size becomes longer or when the number of patterns goes high. Also, re-ordering 

to conceal private patterns is done only at the end of window because all events need to 
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be observed. In order to improve latency, in this thesis, we extend the existing re-ordering 

strategy to a Speculative Re-ordering strategy where completion of private patterns are 

predicted well before the end of the window and also reordered. There are several research 

on speculating event patterns. For instance, in [13], speculation is regarded as a 

classification problem that can be solved by using Singular Value Decomposition (SVD) 

and Support Vector Machine (SVM) model. In [14], a generic algorithm is implemented 

to learn predictive patterns from sequence events as early as possible [14]. A framework 

with association rule mining is proposed in [15], and the goal is to detect target patterns 

by recognizing events that occur frequently before target patterns happen. Unfortunately, 

those approaches have a limitation: Their target patterns are usually composed of rare 

events such as equipment failure or anomaly detection, which do not consider the case of 

frequent patterns.  

For frequent patterns, a speculative model is presented in [16] by deploying decision 

trees and Piecewise-Constant Conditional Intensity Models. The model proposed in [16] 

is trained from dependencies among sequences of incoming events, and it can predict the 

occurrence of target patterns in a given time interval. In addition, the event forecasting 

with Markov-chains model is introduced in [17], [18]. The approaches in [17], [18] are 

able to estimate when the target pattern is expected to be matched, and they focus on the 

completion time of target patterns. Nonetheless, these mechanisms only take continuous 

events into consideration, and lack the ability to deal with discrete events. In this thesis, 

we basically focus on the data stream containing discrete-time events, and we view our 

target pattern as private patterns using Markov-chain predictions.  

 Additionally, it is not enough to take only the private pattern into consideration while 

re-ordering events, and it is also difficult to know the number of public patterns, which 

are involved into re-ordering process. The top-k strategy of selection algorithm has been 

discussed in a huge amount of studies. In [20], the authors introduced the Greedy 

algorithm for mining top-k influential nodes in order to maximize the spread of the 

influence (further adoptions of the new product). Numerous top-k processing techniques 

are classified in [21], which shows that top-k queries are effective while dealing with the 

massive amount of data in domains such as Web, multimedia and distributed systems. In 

[19], the SPECTRE system with speculative approach shows a good scalability by 

processing k most promising window versions. In short, the top-k selection algorithm is 

useful when dealing with a huge amount of data and aiming to keep a good scalability at 
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the same time. Thus, in this thesis we use the top-k strategy to preserve the top-k utility 

maximizing public patterns along with the speculative strategy.  

 

 

2.2  Problem Statement 

In pattern matching of CEP, the goal is to make sure that QoS is maintaining high 

while maintaining user’s privacy by re-ordering events that are part of private patterns. 

However, QoS is affected by false positive events and false negative events, which are 

maybe introduced after the re-ordering process. Therefore utility is calculated in the non-

speculative reordering strategy as follows: [11] 

  

Utility (U) =  Σ𝑖=1
# 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑢𝑏𝑙𝑖𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

 𝑤𝑖 

                                                               − 2 ∗  Σ𝑗=1
# 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

 𝑤𝑗     

            − Σ𝑘=1
# 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

 𝑤𝑘  (2-1)      

  

where wi, wj are the user-defined weight of public pattern onto the QoS, and wk is the 

weight of private patterns defined as below, and we use the same utility function to 

evaluate our QoS : 

 

                      𝑤𝑘 = (Σ 𝑤𝑖 + 1) ∗ 𝑐𝑝𝑘       (2-2) 

 

where cpk is the tuning factor for trade-off between privacy and QoS. 

  

 The problem now is to find a proper speculative re-ordering strategy that predicts 

whether the private pattern occurs in current window via Markov-chains modeling. Thus, 

the overall processing time can be improved, which leads to shorter latency, while 

maintaining. More precisely, the utility of speculative re-ordering method should 

approach the utility of non-speculative reordering strategy as closely as possible.  
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Chapter 3 Basic Concept 

 In this chapter, two main concepts are introduced. First, we introduce the concept 

of Complex Event Processing (CEP). Secondly, the concept of Markov-chain model is 

presented.  

  

3.1  Complex Event Processing   

In this section, we introduce CEP systems, useful operators, and privacy issues in 

CEP systems. Complex event processing (CEP) is the process which aims to filter, 

combine and interpret a series of input data events in order to infer high-level information 

based on a set of user-defined rules and patterns. There are diverse applications of CEP,  

such as financial analysis in stock market or traffic monitoring for traffic jams or accidents. 

Among above applications, CEP is responsible for processing, analyzing and correlating 

the input data stream in order to obtain more complicated information from different 

sources. In other words, CEP provides solutions to cope with real-time data from a great 

deal of sources such as IoT sensors. 

 

3.1.1 Complex Event Processing System 

In 1997, Rosenblum and Wolf [24] proposed the event processing engine with a 

publish-subscribe feature, which is regarded as the first prototype of CEP engines. As 

shown in Figure 3-1, the conventional CEP system is presented with event observers, 

consumers and the CEP engine in the middle. The event observers are responsible for 

capturing events, which happened outside the systems, and publishing the notification of 

events to CEP engine. The CEP engine then filters, aggregates or combines those 

notifications in order to derive more complicated events, also known as complex events. 

At the end, the event consumers subscribe complex events from the CEP engines, and 

discover the more high-level information in which they are interested. Therefore, through 

CEP systems, information sources publish the notification of events to CEP engines, and 

users can subscribe a series of user-concerned events at the same time. In this process, the
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Figure 3-1 High view of Complex event systems 

 

CEP engine acts as the middleware between information sources and sinks to deal with 

event notifications for the purpose of generating useful complex events. There are two 

types of CEP systems: topic and content-based systems. In topic-based systems, event 

consumers can subscribe concerned events, and event observers would pick up topics 

related to consumers’ interest before publishing. On the other hand, in content-based 

systems, event observers publish all events, and by using complex event filters consumers 

can choose events, which contain the content based on their pre-defined rules. 

 

3.1.2 Basic Model Operators  

As mentioned in [25], there is a majority of IFP models, such as function model, 

processing model, and language model, each of which has the different purpose. In this 

section, we mainly concentrate on operators in language model because they are more 

related to the implementation of CEP in this thesis. The language model is more precise 

and detailed description of given rules with many operators. It should firstly focus on 

specific classes, and suitable operators are chosen for specialized classes. For instance, in 

case of logic operators, a conjunction is defined as the situation where all given items 

have been detected, while a disjunction is satisfied when at least one of the given items 

has been detected. 

For pattern-based applications in CEP systems, the sequence operators are the most 

important operator for pattern-based events. Since the pattern consists a set of ordered 

CEP engine

Event observers
(Sources)

…
…
…
…
.

…
…
…
…
.

Event consumers
(Sinks)
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items, and sequence operators not only take responsibility for observing the arrival of a 

set of items but also consider the order of arrival time of items. To be more precise, a 

sequence is defined as a set of information items with specified order, and it is matched 

only when the sequence operator detects all items in a pre-defined order. In most cases, 

the ordering relationship is based on timestamps of incoming data flow in CEP systems.  

Another useful operator is the window operator in pattern-based event processing. 

Due to the unbounded assumption in CEP systems, most language models do not handle 

all input data flow at one time, but deal with small chunks of incoming data repeatedly. 

The window operator is defined as a range, which only contains a portion of input data 

flow. Every time when CEP systems receive the new incoming window, which contains 

finite input data stream via window operators, systems can easily cope with the bounded 

data. The major types of window operators are time-based (logical) and content-based 

(physical). The former treats bounds as a function of time while the latter views bounds 

as the number of items. For example, the bound can be regarded as items in five minutes 

for time-based type, or first five items for content-based type. In this thesis, we assume 

windows to be non-overlapping for simplicity, so windows are considered as disjoint 

windows, which are most common type in many applications. We also have fixed size 

windows with equally shifting lower and upper bound, which makes it a proper and 

powerful tool for continuously arriving data flow. 

 

3.1.3 Privacy in Complex Event Processing  

In CEP, some complex events may contain patterns with sensitive information of 

users. By observing those complex events, an authorized third party could infer the 

behavior of users. Patterns with sensitive information about users are called private 

patterns, which should not be exposed to untrusted parties. On the other hand, the public 

pattern is defined as the essential pattern, which is required for the CEP application. 

During the process of detecting complex events, false negatives will occur if existing 

complex events are not discovered, and QoS may be degenerated. Furthermore, non-

existing events might sometimes accidentally be generated, which leads to false positives. 
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Figure 3-2. Reordering introducing False Positive and False Negative 

 

For example, in order to conceal the private pattern, the re-ordering strategy is 

demonstrated as shown in Figure 3-2. In this example, the private pattern (P1) and public 

patterns (Q1, Q2, Q3) are defined as following:  

 

𝑄1 = {𝐴, 𝐸}  , 𝑄2 = {𝐶, 𝐴},  𝑄3 = {𝐶, 𝐷, 𝐹}  

 𝑃1 = {𝐴, 𝐶, 𝐷} 

  

By reordering the pair {A1,C1} in P1, the private pattern can be concealed. However, in 

case of shifting C1 before A1, the false positive of public pattern Q2 (C1, A1) is introduced 

into the modified event stream. On the other hand, the public pattern Q1 (A1, E1) is no 

longer presented in the modified event stream while shifting A1 after C1, which leads to a 

false negative. 

A1 E1 C1 D1

P

F1

Q1

A1 E1C1 D1F1

Q1

Q2

C1

False Positive Q2

A1 E1 C1 D1F1

Q1

A1

False Negative Q1

Reordering 
by shifting C1

Reordering 
by shifting A1
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Figure 3-3 Simplified CEP system model 

 

The overall CEP system model is shown in Figure 3-3. There are producers and 

consumers on the left and right side. In real-time applications, producers can be any type 

of sensors controlled by users, and consumers could be IoT service providers. 

Additionally, the CEP middleware may be the extension of IoT service and mainly contain 

sequence and window operators with user-defined event rules. In our assumption, 

producers are trusted while CEP consumers are untrusted parties, who try to acquire 

sensitive information by manipulating CEP middleware to observe private patterns from 

producers. Suppose the fitness service as an example. Users are able to send their fitness 

data to cloud service (CEP middleware) via IoT sensors (producers) and receive the 

feedback about their recent fitness behavior (private patterns), such as running time or 

heartbeat during exercise. However, IoT service providers (consumers) are able to analyze 

fitness data from users, and sell the result to outside companies. For instance, the 

insurance company can modify the insurance fee after receiving the fitness data of 

customers from IoT service providers. Therefore, a pattern-based privacy control system 

is introduced before sending raw data to CEP middleware, and its goal is to conceal user’s 

private pattern by re-ordering events that belongs to private patterns. 

 

CEP middleware

w1

w2

w3

w4

w5

c1

c2

consumers

Patten
based
privacy
control
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p3
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3.2  Markov-chain Model 

In this section, there are several basic concepts such as fundamental definitions, 

transition matrix, and the characteristic of transition steps. In modern probability, the 

processes between different moves assumes that the previous outcomes may be related to 

the future outcomes, which implies that after observing a set of outcomes of an 

experiment, the past outcomes could affect the prediction of outcomes in future 

experiments. In 1907, A. A. Markov started the new assumption of chance process. His 

idea is to simplify the process which only takes present outcomes into consideration to 

predict the future outcomes of the next experiment. The mathematical system with this 

assumption is called the Markov chain. 

 

3.2.1 Definition of Markov Chain 

Assumed that there is a set of states, 𝑆 = {𝑋0, 𝑋1, 𝑋2, … }. We define this set of states 

as the process of Markov chain, and a few definitions are shown below. 

 

Definition 1: The state space of a Markov chain 𝑆 is the set of values that each Xt can 

take, where 𝑋𝑡 represents the value of a state in the Markov chain process at time t. For 

example, if X2 = 3, we say the process at time 2 is 3. 

 

Definition 2: A trajectory (i.e. the path in Markov chain) of a Markov chain is a particular 

subset of Markov chain process S with values for X0, X1, X2, . . . . 

For example, if 𝑆 = {1, 2, 3, 4, 5, 6, 7}, the trajectory up to time t = 4 is 1, 2, 3, 4, 5. Thus, 

more specifically, the trajectory up to time i means that X0 = s0, X1 = s1, X2 = s2, . . ., Xi 

= si . 

Moreover, the fundamental property of the Markov chain is described as follows: 

only the most recent point in the trajectory affects what happens next. In other words, the 

state Xt+1 only depends on the previous state Xt, and other previous states such as Xt-1, Xt- 
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Figure 3-4. Transition diagram with states {A, B, C} 

 

2, … X0 have no influence on the present state Xt+1. According to this property, we have 

the final definition as below. 

 

Definition 3: For s set of states 𝑆 = {𝑋0, 𝑋1, 𝑋2, … }, it is the process of the Markov chain 

if it satisfies Markov chain property as below.  

 

P(𝑋𝑡 = s | 𝑋𝑡−1 = 𝑠𝑡−1, … , 𝑋0 = 𝑠0) =  P(𝑋𝑡 = s | 𝑋𝑡−1 = 𝑠𝑡−1) ; (3-1) 

  

 where for all t = 1, 2, 3, … t , and for all states 𝑠0, 𝑠1 , … 𝑠𝑡       

  

3.2.2 Transition Matrix 

For the purpose of better understanding of transition between different states in 

Markov-chain process, the transition diagram of Markov chains is introduced. For 

example, the transition diagram of Markov chain with three states is shown in Figure 3-4. 

In Figure 3-4, nodes represent each state and arrows correspond to the path of transition 

probability between different states. Based on the transition diagram in Figure 3-4, the 

corresponding matrix which states the Markov chain can be described as below: 

 

A

B C

PAB

PBA

PBC

PCB

PCA

PAC
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P = [

𝑃𝐴𝐴 𝑃𝐴𝐵 𝑃𝐴𝐶

𝑃𝐵𝐴 𝑃𝐵𝐵 𝑃𝐵𝐶

𝑃𝐶𝐴 𝑃𝐶𝐵 𝑃𝐶𝐶

]      (3-2) 

 

There are several properties in the transition matrix. First, the rows represent the  

current state (i.e. from Xt), and the columns represent the next state (i.e. to Xt+1). 

Second, the entry (i, j) in the matrix is the conditional probability which shows transition 

from state i to state j. 𝑝𝑖𝑗 is denoted as P(𝑋𝑡+1 = j | 𝑋𝑡 = i) for i, j ∈ {𝐴, 𝐵, 𝐶}, and t = 

0, 1, 2, ... By doing so, the transition matrix of Markov chain can be defined as P =  (𝑝𝑖𝑗). 

The Last but not least, the sum of each row in the transition matrix must be equal to one 

but the sum of each column does not generally need to be one.  

 

3.2.3 Transition after t-step 

As mentioned before, the probability between different states is only dependent upon 

the current state. Assume {𝑋1, 𝑋2, 𝑋3, …} denotes the Markov chain with state space S =

 {1, 2, 3, … , 𝑛}, and the elements in the transition matrix P can be derived as following :  

 

    (P)𝑖𝑗 = 𝑝𝑖𝑗 = 𝑃(𝑋1 = 𝑗 | 𝑋0 = 𝑖)  = 𝑃(𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖) ∀ 𝑛 ∈ 𝑆;    (3-3) 

 

where 𝑝𝑖𝑗 is the probability of making a transition from state i to state j in a single step. 

 

We can extend the above equation of single step to the t-step transition probabilities given 

by the matrix Pt for any t as below :  

 

          (𝑃𝑡)𝑖𝑗 = 𝑃(𝑋𝑡 = 𝑗 | 𝑋0 = 𝑖)  = 𝑃(𝑋𝑛+𝑡 = 𝑗 | 𝑋𝑛 = 𝑖) ∀𝑛 ∈ 𝑆        (3-4) 

 

The theorem of t-step transition has been already proved, so we do not delve deeper into 

it. 
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Chapter 4 Proposed Model 

 In this chapter, we introduce the proposed model with speculative re-ordering 

algorithm. There are four main parts in the proposed model. They are speculation, top-k 

preserving, re-ordering and utility comparison. First, the overview of the proposed model 

is described. Also, the fundamental aspect of discrete Markov-chain model is introduced 

for pattern-based speculation. The discrete Markov-chain model is implemented as an 

offline learning model to obtain speculative parameters. Before re-ordering, the most 

important patterns are preserved by top-k preserving strategy. Moreover, the graph-based 

algorithm is applied for re-ordering. At the end, the utility between speculative re-

ordering and non-speculative re-ordering algorithm is compared for evaluation. For each 

model, we give a detailed explanation and description with flow graphs explaining the 

procedure. 

 

4.1  Overview 

As shown in Figure 4-1, the whole overview of the proposed model is described along 

with these function blocks. In this thesis, the goal is to maintain the pattern-based privacy 

of data stream with given public patterns and private pattern. First of all, assume that there 

is the input data stream for processing with specific fixed window size. Each window of 

data stream is sent to speculative trained model. The model is trained by Markov chains 

with data that has the same characteristic as input data stream. For example, we can train 

the health data of patient last year to build the model for future speculation. After training, 

we obtain the transition matrix based on Markov-chain model, prediction point, and 

threshold. With above output from trained model, we can speculate whether the private 

pattern occurs in each incoming window. If the transition probability derived from 

speculation is greater than threshold, the window will be labeled as positive, which 

indicates that there is the private pattern in this window. Otherwise, the window will be 

labeled as negative.  

For positive windows, we take only the part up to prediction point into re-ordering. 

Before re-ordering, top-k preserving strategy is implemented to preserve the most 

important k public patterns in each window. After top-k preserving, the re-ordered pairs 

derived from private pattern are sorted based on estimation weight. In re-ordering, the   
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Figure 4-1 Overview of proposed model 

 

graph-based re-ordering mechanism is implemented from [11], and the re-ordered 

window is obtained. At the end, the utility of speculatively re-ordered window is 

compared to the utility of non-speculatively re-ordered window. 

 

 

4.2  Discrete Markov-chain Model 

In Complex Event Processing (CEP), a pattern is matched only when events of pattern 

occur in correct order. For instance, a pattern is defined as P1 = {A, C, D}. When event 

‘A’, ‘C’, ‘D’ are sequentially observed, pattern P1 is matched. Therefore, the relationship 

between events of defined pattern must be taken into consideration when speculating 

whether the pattern occurs in the current window. In other words, if the relationship 

between previous event and current event is traceable, the occurrence of pattern will be 

predictable. 
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Figure 4-2. State diagram of pattern P = {‘A’, ‘B’, ‘C’} 

 

As discussed in previous chapter, Markov-chain model assumes that future outcomes 

only depend on the current state. With the conditional probability of current state given 

previous state, the occurrence of next state can be predicted. Thus, in pattern speculation, 

different states represent different event relationships, and the pattern can be speculated 

by implementing Markov-chain model. Since our events in data stream are not continuous, 

we use discrete Markov chains to forecast the occurrence of patterns. In order to describe 

more precisely how discrete Markov chains implement into pattern speculation, we give 

an example below. 

Suppose that event types E contains ‘a’ to ‘z’ and ‘A’ to ‘Z’, and the pattern P equals 

to {‘A’, ‘B’, ‘C’}. In Markov-chain model, each state represents the specific outcome. For 

pattern speculation, each state is defined as the number of remaining events of pattern. 

For example, Sk is denoted as the state, which still needs to receive k remaining events of 

pattern before the pattern is totally matched. The state diagram of pattern P is shown in 

Figure 4-2. 

In Figure 4-2, there is initially no observing event of pattern P, so the initial state is 

denoted as S3, which indicates that there are three remaining events ‘A’, ‘B’, ‘C’. The 

state stays in S3 until the event ‘A’ comes. When the new coming event is ‘A’, the state 

shifts to S2 with the probability PA. In S2, the state keeps staying in S2 with the probability 

1 – PB|A, where PB|A is the conditional probability of event B given event A. At the end, in 

final state S0, all events belonging to pattern P are all observed in correct order, so the 

pattern P is entirely matched. Moreover, no matter what event comes, the state stays in S0 

until all coming events are detected.  

In order to derive the transition matrix of state diagram in Figure 4-2, we consider 

S3 S2

PA
S1 S0

PB|A PC|B

11 - PC|B
1 - PA 1 - PB|A
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the coming window w and the state matrix R shown respectively as following:  

 

w = {‘e’, ‘y’, ‘H’, ‘a’, ‘k’, ‘A’, ‘D’, ‘b’, ‘g’, ‘E’, ‘F’, ‘G’, ‘H’, ‘B’, ‘Y’, ‘d’, ‘m’, ‘p’, ‘o’, 

‘n’, ‘C’, ‘K’, ‘z’};                                                    (4-1) 

 

𝑅 is initialized as [

0  0  0  0
0  0  0  0
0  0  0  0
0  0  0  0

]                                                                                                 (4-2) 

 

Before observing event ‘A’, the state keeps in S3, and there are five events before 

event ‘A’ is observed. Thus, the number of events in S3 is five, and R becomes as below 

 

 𝑅 =  [

5  0  0  0
0  0  0  0
0  0  0  0
0  0  0  0

]          (4-3) 

 

After detecting event ‘A’, the state shifts to S2, and R is shown as following: 

 

      𝑅 = [

5  1  0  0
0  0  0  0
0  0  0  0
0  0  0  0

]                 (4-4) 

 

Similarly, after detecting event ‘B’, there are seven events in S2 , and equation (4-4) 

becomes as below: 

 

                                                            𝑅 =  [

5  1  0  0
0  7  1  0
0  0  0  0
0  0  0  0

]                                                           (4-5) 

 

At the end, when observing all events including event ‘C’ in window w, the final R can 

be derived as following: 
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𝑅 =  [

5  1  0  0
0  7  1  0
0  0  6  1
0  0  0  2

]               (4-6) 

 

Hence, if each element in equation (4-6) is divided by the sum of its corresponding 

row, we can derive the transition matrix T of Markov-chains model with given pattern P 

= {‘A’, ‘B’, ‘C’} for incoming window w as below:  

 

                            𝑇 =

[
 
 
 
 
 
5

6
     

1

6
     0     0

0     
7

8
     

1

8
     0

0     0     
6

7
     

1

7

0     0     0      1]
 
 
 
 
 

                                              (4-7) 

 

In each row of transition matrix T, the first non-zero element is the probability that 

stays in the current state, and the second non-zero element represents the conditional 

probability of the next state given specific relationship of events. Take the second row for 

instance. In the second row, the probability that shifts from S2 to S1 is 1/8 when detecting 

the event ‘B’, and the probability that stays in current state is 7/8. Note that the sum of 

each row should be equal to one due to the property of Markov-chain model.  

 With transition matrix, we can speculate whether the pattern occurs after observing 

several incoming events based on the theorem of t-steps transition in Markov-chain model. 

The transition matrix after t steps is the t-times polynomial of transition matrix itself. For 

instance, assume that there will be ten events coming. The transition matrix after 

observing ten events T10 are derived as below: 

 

              𝑇10 = [

0.16150558    0.40627997    0.26887591    0.16333854
0.00000000     0.26307558    0.34312082    0.39380360
0.00000000     0.00000000    0.21405832    0.78594168
0.00000000    0.00000000    0.00000000    1.00000000

]           (4-8) 

 

In each row of T10
 , the last element represents the occurrence probability of pattern {‘A’, 

‘B’, ‘C’} after observing ten events given specific events. Take the third row in T10 as an 



 19 

example, if event ‘A’ and ‘B’ are already detected, the probability that pattern P occurs 

after next ten events is 0.78594168. Furthermore, when the number of next coming events 

increases dramatically, the occurrence probability of pattern P in each row will approach 

one very closely. Take sixty events for example, and the transition matrix T60 after 

observing next sixty events is shown as following: 

   

       𝑇60 = [

0.00000000    0.00125501   0.00494069    0.99378655
0.00000000    0.00033150   0.00164707    0.99802143
0.00000000    0.00000000   0.00000962    0.99990379
0.00000000    0.00000000   0.00000000    1.00000000

]      (4-9) 

 

From T60, we can conclude that after observing sixty events, the probability that detects 

the pattern {‘A’, ‘B’, ‘C’} is very high because the occurrence probability of pattern P in 

every state is nearly one.  

 

4.3  Offline Learning  

In offline learning, the goal is to obtain the transition matrix, prediction point and 

threshold by implementing Markov-chain model in order to forecast whether the pattern 

occurs in every coming window. As discussed previously, the transition probability in 

transition matrix is denoted as the occurrence probability of defined pattern in specific 

state. In each coming window, if the transition probability is greater than the user-defined 

threshold after observing several events, i.e. several steps transition, the pattern will be 

highly expected to occur in current window. However, if the transition probability is less 

than the threshold, the pattern will not occur in current window.  

Figure 4-3 shows the overview of the offline learning model in order to derive the 

transition matrix, proper prediction point and threshold. First of all, there are two phases 

for generation of transition matrix: training phase and testing phase. In training phase, the 

transition matrix is trained with a training dataset. After training, the testing dataset is 

generated with the same characteristic as training dataset. The transition matrix is 

evaluated in testing phase by precision and recall rate. Finally, based on the result of recall 

and precision, a proper threshold and its corresponding prediction point are determined. 

At the beginning of offline learning, there is an event generator, which can randomly 

generate the dataset based on given event types from A - Z and a - z.  
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Figure 4-3 Steps of offline learning 

 

For training dataset, the occurrence probability of user-defined pattern is chosen to be 

around 0.5, so that the results can be clearly seen, which is not the case for rare private 

patterns. 

Event generator

Training with 
Markov Chain 

Model

Testing with 
Recall and 
Precision

Training 
Dataset

Testing 
Dataset

Transition 
Matrix T

Threshold ts

prediction 
point p

Event
Type



 21 

The relationship between the user-defined tolerance 𝜀 , which is set to 0.5, and 

occurrence probability po is defined as below: 

 

|𝑝𝑜 − 0.5 |  ≤  𝜀 (4-10) 

  

We generate the training dataset in such a way that the inequality (4-10) is satisfied. Now 

the transition matrix T is derived by implementing the Markov-chain model. The 

transition matrix T is able to predict the transition probability of given pattern if the 

processing dataset has the same characteristic as the training dataset. In addition, the 

number of windows in training dataset should be large enough to guarantee that the 

transition matrix is stable and reliable after training. 

The difference between training and testing is that the training dataset is implemented 

to build up a trained model while the test dataset is to validate the built model. Moreover, 

the size ratio between training dataset and test dataset is chosen as 8 : 2. In testing phase, 

the transition matrix T is validated by applying the test dataset, and the purpose is to learn 

the proper threshold and corresponding prediction point. The range of threshold starts 

from 0.5 to 0.95, and the corresponding prediction point of given threshold is obtained 

when the transition probability after observing several events is greater than given 

threshold.  

In order to decide proper threshold and prediction point, the recall and precision rate 

are introduced. As shown in Figure 4-4, false positives are denoted as items, which are 

incorrectly labeled as belonging to occurred patterns after prediction. Similarly, false 

negatives represent items, which are not labeled as belonging to occurred patterns but 

they should be. The formulas of recall and precision are described as following:  

 

Precision =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
 (4-11) 

 

Recall =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
 (4-12) 
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Figure 4-4. Diagram of recall and precision 

 

From equation (4-11) and (4-12), recall can be interpreted as the rate of relevant items 

that are selected, and the precision is regarded as the rate of selected items that are relevant. 

Hence, based on results of recall and precision, an optimal threshold and its corresponding 

prediction point are determined that has a relatively high recall and precision.  

 

4.4  Speculation 

With threshold, prediction point and transition matrix derived from offline learning, 

we can speculate whether there is a private pattern in window of new incoming dataset. 

The overview of speculation phase is depicted in Figure 4-5. When dealing with new 

incoming data stream, the input data stream is first divided into many windows with same 

size. For each window, all events before prediction point p are observed, and we can learn 

the relationship between events belonging to private pattern before prediction point. 

Based on observation of those events, the transition probability is calculated with 

transition matrix T. If the transition probability at prediction point p is greater than 

threshold ts, the current processing window will be labeled as positive, which implies that 

the private pattern exists in this window. On the contrary, if the transition probability is 
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Figure 4-5 Procedure of speculation phase 

 

less than the threshold, the private pattern is not happening in this window, and it will be 

labeled as negative. The speculative algorithm based on Markov-chain model is described 

in Algorithm 4.1.   
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Algorithm 4.1 Speculation based on Markov-chain model  

procedure MARKOV-CHAINSPECULATION (predictionPoint p, threshold ts) 

for each window in dataStream do 

     prob ← window.getTransitionProb(p) 

if prob >= ts then 

    window.label(positive) 

    wpos_spec ← window.first(p) 

    wpos_nonSpec ← window.remain(p) 

else 

    window.label(negative)  

end if 

end for  

end procedure 

 

 

For example, assuming prediction point p = 40, threshold ts = 0.8, pattern P = {‘A’, 

‘B’, ‘C’}, window size = 100, and the transition matrix is defined as below:   

 

 𝑇 = [

0.966     0.034     0     0
0     0.959    0.041     0
0     0     0.961     0.039
0     0             0              1

]                                     (4-13) 

 

Since the prediction point p is 40, there are still 60 events left behind, which indicates 

that the transition steps are 60. Thus, when receiving the new coming window, the 

transition matrix at the prediction point p is derived as following: 

 

 𝑇60 = [

0.126     0.216     0.262     0.396
0              0.081    0.221     0.698
0                 0         0.092     0.908
0                 0             0                  1

]      (4-14) 

 

Based on transition matrix T60, transition probabilities of different states are obtained. 
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For example, in the third row of T60, the transition probability 0.908 is greater than 

threshold ts 0.8, which indicates that the pattern {‘A’, ‘B’, ‘C’} may occur in state S1, 

which has already observed event ‘A’ and ‘B’. In other words, if there exist event ‘A’ and 

‘B’ before prediction point p, i.e. in first 40 events, there may be the event ‘C’ coming in 

the remaining 60 events, so the processing window will be labeled as positive.  

At the end, windows labeled as positive are split into two parts based on prediction 

point. The first part of positive window contains all events before prediction point, and 

we only take the first part of positive windows for re-ordering. On the other hand, for 

those windows which are labeled as negative, they stay unchanged without re-ordering 

because there is no private pattern based on speculation result, and we can proceed with 

the next coming window. Additionally, for positive windows, which would later enter into 

re-ordering phase, there should be at least two events that are part of private pattern in 

first part of positive window because only one event could not be re-ordered. If there is 

just one event in the first part of positive window, we shift the prediction point backwards 

until we observe at least two events in the first part of positive window. 

 

4.5  Top-k Preserving  

When dealing with events in re-ordering process, it is lack of consideration that only 

events belonging to private pattern are taken into consideration for re-ordering. If we 

select events that are part of public patterns for re-ordering, QoS will degenerate after re-

ordering. In order to maintain high QoS, public patterns should also be taken into 

consideration before re-ordering. This is done by the top-k preserving approach. Those 

public patterns with higher weight are not selected for re-ordering. In this way, the top-k 

public patterns with highest weights are preserved, so high QoS is guaranteed after re-

ordering. 

As shown in Figure 4-6, the procedure of top-k preserving strategy is described. First 

of all, the input of top-k preserving phase is the first part of the positive window 

containing events, which are before prediction point. Before selecting types of preserved 

public patterns, all public patterns are divided into two groups: matched patterns and 

unmatched patterns for that window. The former represent the set of public patterns, 

which are detected in the incomplete input window, while the latter denote the set of 

public patterns, which do not exist in the window yet. Since matched patterns have 
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already existed in input window, and they would definitely contribute towards QoS, they 

are all taken into consideration for re-ordering as “to be preserved”. On the other hand, 

there are two types for unmatched patterns: partly unmatched and totally unmatched 

patterns. We only consider partly unmatched patterns for preservation because if they are 

partly matched in the first part of positive window, the chance they occur in the remaining 

part is higher than those totally unmatched patterns. Therefore, partly unmatched patterns 

cannot be entirely removed since they will also have the contribution to QoS if they occur 

in the window. For simplicity, unmatched patterns are denoted as partly unmatched 

patterns in top-k preserving.   

For example, private patterns, matched public patterns, unmatched public patterns are 

defined as below: 

 

Private pattern = {‘A’, ‘B’, ‘C’} 

Matched public patterns = {‘A’, ‘B’, ‘D’} ; weight = {6} 

Unmatched public patterns = {‘B’, ‘C’, ‘D’}, {‘B’, ‘C’, ‘H’}, {‘B’, ‘C’, ‘I’}, {‘B’, 

‘C’, ‘K’}, {‘B’, ‘C’, ‘L’} ; weight = {4}, {5}, {2}, {1}, {1} 

 

In order to hide the private pattern, the pair for re-ordering can be selected based on 

combination of pairs derived from private pattern. In this case, we can re-order either pair 

{‘A’, ‘B’} or {‘B’, ‘C’}. If we only take matched public patterns into consideration, {‘A’, 

‘B’, ‘D’} is the only preserving pattern, so pair {‘A’, ‘B’} cannot be re-ordered. Hence, 

{‘B’, ‘C’} is always selected for re-ordering. After re-ordering, the total weight is six 

units when only preserving matched public pattern {‘A’, ‘B’, ‘D’}. However, for instance, 

if unmatched public patterns {‘B’, ‘C’, ‘D’} and {‘B’, ‘C’, ‘H’} occur in the remaining 

part of positive window, the total weight after re-ordering is nine and it is lost when re- 

ordering pair {‘B’, ‘C’}. In other words, QoS may become lower without consideration 

of unmatched public patterns when they occur in the remaining part of positive window. 

Thus, unmatched public patterns should also be considered for preservation, and the top-

k preserving strategy also includes unmatched public patterns in order to achieve higher 

QoS after re-ordering but with slightly lower weights when compared to the matched 

public patterns.  

The main concept of top-k preserving strategy is to preserve k high-weight patterns, 

which may have high contribution towards QoS at the end. Therefore, unmatched public  
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Figure 4-6. Procedure of top-k preserving 

 

patterns with higher weight should firstly be preserved. Namely, we can remove the low-

weight unmatched public patterns instead. To be more general, k’ is defined as the 

removing number of unmatched patterns, and the number of preserving patterns is 

denoted as k = N – k’, where N is the total number of public patterns. In the previous 

example, assuming the removing number k’ = 2, unmatched public patterns and their 

weights after applying top-k preserving strategy are shown as following:  
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Unmatched patterns after top-k preserving = {‘B’, ‘C’, ‘D’}, {‘B’, ‘C’, ‘H’}, {‘B’, 

‘C’, ‘I’} 

Weight of unmatched patterns after top-k preserving = {4}, {5}, {2}  

 

In the above result, {‘B’, ‘C’, ‘K’} and {‘B’, ‘C’, ‘L’} are removed because they are the 

two lowest-weight unmatched patterns. As a consequence, all preserving patterns for re-

ordering are determined as following: 

 

Preserving patterns = {‘A’, ‘B’, ‘D’}, {‘B’, ‘C’, ‘D’}, {‘B’, ‘C’, ‘H’}, {‘B’, ‘C’, ‘I’} 

 Weights = {6}, {4}, {5}, {2} 

   

However, it is difficult to determine the importance of every preserving pattern. The 

goal is to keep high QoS after re-ordering, so we can view this problem from QoS point 

of view. Since matched public patterns have already existed in input window, they would 

definitely have the contribution towards QoS. Thus, matched public patterns should be 

assigned to high proportion of weight. On the other hand, unmatched patterns have an 

influence on QoS only when they truly occur in the remaining part of positive window. 

Hence, lower proportion of weight is given to unmatched patterns. To this end, the 

preserving weight wpre is introduced in top-k preserving weight estimation and wpre is 

defined as following:  

 

𝑤𝑝𝑟𝑒 =  𝛼 ∙ ∑𝑤𝑚𝑎𝑡𝑐ℎ𝑒𝑑 + 𝛽 ∙ ∑𝑤𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑     (4-15) 

 

where 𝑤𝑚𝑎𝑡𝑐ℎ𝑒𝑑 is the weight of matched public pattern for preserving; 𝑤𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 is 

the weight of unmatched public pattern for preserving; 𝛼  and 𝛽  are the weighting 

factor for matched public patterns and unmatched public pattern, respectively. 

 

As discussed before, matched patterns are assigned to higher proportion of weight, 

so 𝛼 is greater than 𝛽. To simplify the equation (4-15), wpre is rewritten as below: 

 

                                          𝑤𝑝𝑟𝑒 = 𝑐𝑝𝑟𝑒 ∙ ∑𝑤𝑚𝑎𝑡𝑐ℎ𝑒𝑑 + ∑𝑤𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑                (4-16) 
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where 𝑐𝑝𝑟𝑒 is the preserving coefficient, which is defined as following: 

 

                   𝑐𝑝𝑟𝑒 = 1 +
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑤𝑖𝑑𝑜𝑤
                                     (4-17) 

 

It is worth noting that since events before prediction point have already been 

observed before top-k preserving, we have to take these observed events into 

consideration when giving weights to matched public patterns. 𝑐𝑝𝑟𝑒 can be viewed as 

weighting factor for matched public patterns. Thus, in 𝑐𝑝𝑟𝑒, the information of observed 

events are included by adding the ratio of prediction point to size of window. Moreover, 

if the prediction point is close to the back part of input window, there is more information 

about observed events, which implies that the input window contains more events in top-

k preserving approach. As a result, cpre is greater because more information of window is 

considered.  

Accordingly, the pair for re-ordering can be determined if it has the greatest 

preserving weight based on top-k preserving strategy. The algorithm of top-k preserving 

is described in Algorithm 4.2. In the previous example, the re-ordered pair can be {‘A’, 

‘B’} or {‘B’, ‘C’}. Assume that the prediction point is at the middle of processing window, 

and the preserving coefficient cpre can be derived as below:  

 

𝑐𝑝𝑟𝑒 = 1 +
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑤𝑖𝑑𝑜𝑤
= 1 + 0.5 = 1.5     (4-18) 

 

When re-ordered pair is {‘A’, ‘B’}, the preserving patterns are {‘B’, ‘C’, ‘D’}, {‘B’, ‘C’, 

‘H’}, {‘B’, ‘C’, ‘I’}, so the preserving weight wpre,{AB} can be derived with preserving 

factor cpre as below: 

 

𝑤𝑝𝑟𝑒,{𝐴𝐵} = 𝑐𝑝𝑟𝑒 ∙ ∑𝑤𝑚𝑎𝑡𝑐ℎ𝑒𝑑 + ∑𝑤𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑   

                    = 1.5 ∙ 0 + (4 + 5 + 2 ) = 11                 (4-19) 

 

Similarly, when re-ordering pair {‘B’, ‘C’}, the preserving pattern is only {‘A’, ‘B’, ‘C’}, 

so the preserving weight is derived as following:   
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Algorithm 4.2 Top-k Preserving 

procedure TOP-KPRESERVING(k’) 

    𝑐𝑝𝑟𝑒 ← 1 + (predictionPoint / windowSize) 

    preWeight ← {} 

if unmatchedPatternSize > k’ then 

for i ← 1…𝑘′ do 

         unmatchedPatterns.remove(lowest-weightPattern) 

end for 

    else 

     unmatchedPatterns.removeAll() 

       end if 

for each pair in privatePattenPairSet do 

           for pattern in unmatchedPatterns do 

      if pattern is totallyUnmatchedPattern then 

       unmatchedPatterns.remove(pattern) 

       continue  

      if pattern contains pair then 

       unmatchedPatterns.remove(pattern) 

      end if 

     end for 

     for pattern in matchedPatterns do  

      if pattern contains pair then 

       matchedPatterns.remove(pattern) 

      end if 

     end for 

       weight ← 𝑐𝑝𝑟𝑒  ∗ sum(matchedPattern) + sum(unmatchedPattern) 

     preWeight.add(weight) 

end for  

return preWeight 

end procedure 
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𝑤𝑝𝑟𝑒,{𝐵𝐶} =  1.5 ∙ 6 + (0) = 9                (4-20) 

 

From equation (4-19) and (4-20), wpre,{AB} is greater than wpre,{BC}, so the pair {BC} is 

selected for re-ordering after implementing top-k preserving strategy. In short, the top-k 

preserving strategy takes both matched and unmatched patterns into consideration, and 

the preserving weight is determined with the help of preserving coefficient cpre. 

 

4.6  Reordering 

In re-ordering phase, the aim is to adjust the order of events that are part of re-ordered 

pair pre with preserving weight derived from top-k preserving phase, and the input is the 

first part of positive window wpos_spec containing events before prediction point p. The 

pattern-based access control mechanism is introduced in [11], and the graph-based re-

ordering algorithm is implemented in this thesis. The overall flow of re-ordering phase is 

pictured in Figure 4-7.   

First of all, a weighted directed acyclic graph is formed based on types of private 

patterns Ppriv and public patterns Q1….Qn. In weighted directed graph, vertices represent 

events, and each directed edge represents the order of events. The weights of edge is based 

on timestamps of each event. After the graph is completed, the event order of re-ordered 

pair ppre must be reversed. Thus, for event pairs with reversed order, the initial edge 

weights are negative because the timestamps in graph have not been modified according 

to the reversed order.  

In graph-based re-ordering, the algorithm takes the formed graph as input. After 

detecting negative edges, the algorithm examines all vertices with weights representing 

event timestamps, and edge weights denoted as inter-arrival times. The examining 

iteration is completed until there is no negative edge. Therefore, all inter-arrival times are 

positive, which implies that timestamps are consistent with the event orders after re-

ordering. The detailed algorithm about graph-based re-ordering is mentioned in [11].  

Note that the processing window labeled as positive is divided into two parts (wpos_spec 

and wpos_nonSpec) based on prediction point in speculation phase, and we take the first part 

of positive window wpos_spec as an input for top-k preserving phase and re-ordering phase.  
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Figure 4-7. Flow of re-ordering 
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After re-ordering, the re-ordered window wpos_spec’ is obtained. By combining wpos_spec’ 

and wpos_nonSpec, the re-ordered positive window w_pos_reord is finally obtained. 

 

4.7  Utility Comparator  

At the end, we need to evaluate the proposed speculative re-ordering model. To be 

more precise about the impact of re-ordering, the utility is defined in [11] as below: 

 

Utility (U) =  Σ𝑖=1
# 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑢𝑏𝑙𝑖𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

 𝑤𝑖 

                                                               − 2 ∗  Σ𝑗=1
# 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

 𝑤𝑗     

           − Σ𝑘=1
# 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

 𝑤𝑘;                    (4-21) 

 

where wi, wj are the user-defined weight of public pattern onto the QoS, and wk is the  

weight of private patterns. 

 

As shown in Figure 4-8, by comparing the original positive window wpos and re-

ordered positive window wpos’, false positives and false negatives can be observed. With 

false positives, false negatives, and matched public patterns, the utility is derived. It is 

worth noting that the high utility indicates there are more public patterns but less false 

positives, false negatives or private patterns after re-ordering. In other words, if there still 

exists a private pattern after re-ordering, the utility will become low since a private pattern 

cause a very high penalty.  

Also, the utility of processing window based on non-speculative re-ordering 

algorithm in [11] is derived. In utility comparator, both utility are compared in terms of 

utility comparison ratio, which is defined as the ratio of utility of speculative-reordering 

to utility of non-speculative reordering. Note that the former should approach latter as 

closely as possible. Therefore, the aim is to achieve a high utility comparison ratio close 

to 1, and it would be used to evaluate our speculative re-ordering model.  
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Figure 4-8. Flow of utility comparator 
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Chapter 5  Evaluation  

 In this chapter, we present evaluation results for the speculative Re-ordering 

strategy in terms of QoS and latency. Before evaluation, the setup of experiments is 

introduced. There are several factors that have an influence on the speculative re-ordering 

strategy. We evaluate the strategy with the following parameters. 

 

 Precision and recall: The first and foremost evaluation is the accuracy of 

speculation. We use precision and recall, the well-known model for evaluation 

the accuracy or performance of speculative model based on Markov chains. 

 Threshold ts: Threshold ts determines the confidence probability with which the 

private pattern match is predicted. 

 Prediction point p: The prediction point p represents the point of start of 

prediction in terms of percentage of window size.  

 Window size: The window size determines the total number of events in which 

need to be considered for speculation and re-ordering. 

 Removing number k’: Instead of preserving the most important k public 

patterns, we can remove k’ public patterns with lowest weight. 

 Running time: The running time impacts whether we can save the latency when 

applying speculative re-ordering strategy.  

 

5.1  Setup and Parameters  

We implement both non-speculative and speculative re-ordering strategy based on 

graph-based re-ordering mechanism in [11] for our evaluation. Both the systems take the 

input data stream, and return the modified data stream as output. For all experiments, the 

programming language is Python 2.7. The experimental machine used is an Intel Core i5-

6200U 2.8GHz CPU and the operating system is Windows 10 and the RAM is 8GB.  

The input data is randomly generated with 25000 windows, and the characteristic of 

input data is assumed to be same as the training dataset. We assume that windows in every 

experiment are all event-based, and the event types are composed of all English alphabets 

in lower and upper case for the purpose of generating public patterns and the private 

pattern.  
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5.2  Utility Comparison  

With the definition of utility discussed in equation (4-21), the utility comparison ratio 

can be derived as the ratio of speculative reordering to non-speculative reordering 

algorithm. Thus, the impact on QoS is evaluated for speculative re-ordering strategy in 

comparison to non-speculative re-ordering strategy with the utility comparison ratio. For 

all following evaluations, we use this ratio to measure utility performance. 

Furthermore, latency is evaluated by measuring running time of speculation, top-k 

preserving and re-ordering. For speculative re-ordering strategy, since it often takes very 

short time for speculation, the running time for speculation and top-k preserving are 

combined. After top-k preserving, the re-ordering time is measured. On the other hand, 

there is only re-ordering time for non-speculative re-ordering strategy. Note that we use 

the resolution of microseconds for time evaluation, so if the measuring time is less than 

one micro second, it will be viewed as zero.  

 

5.3  Evaluation of Proposed Speculative Model 

The proposed speculative model is evaluated by precision and recall in test phase. The 

test dataset is generated by random selection from event types. The characteristic of test 

dataset is basically same as training dataset. Additionally, there are 25000 windows in test 

dataset, and each window contains 100 events. The setting of parameters are given by 

following table: 

 

Parameters Private pattern Threshold range Increment 

Value 
{‘A’, ‘B’, ‘C’, 

‘D’} 
0.55 – 0.925 0.025 

Table 5-1 Setting of evaluation of proposed speculative model 

 

First of all, the input stream is taken into the speculative model based on Markov 

chains. With given thresholds, the corresponding prediction points are obtained. Also, 

every incoming window is labeled as positive or negative based on speculation results. 

At the end, recall and precision are calculated.  

The corresponding prediction points are shown in Figure 5-1 for changing thresholds. 
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It is worth noting that all prediction points are located before 50% of window is completed. 

The results of precision and recall are shown in Figure 5-2 with different given thresholds.  

In Figure 5-2, it can be viewed as two zones split by the threshold 0.675. In the front 

zone, the average precision is around 0.8, and the maximum recall is nearly 0.6. In the 

back zone, the average precision is around 0.95 but the maximum recall is less than 0.3. 

Hence, an optimal threshold should be selected depending on the requirements. We select 

the optimal threshold of 0.55 such that both precision and recall is the best. The 

corresponding point prediction point is 46% of window size. In this case, the precision is 

0.75 and the recall is 0.6. Thus, for all windows labeled as positive, only 1/4 is wrong, 

and there are nearly 40 % missing windows which contains private pattern.     

 

 

Figure 5-1 Prediction points by given thresholds 
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Figure 5-2 Precision and recall by given thresholds 

 

5.4  Evaluation of Threshold 

The threshold is the parameter to determine whether the private pattern occurs in 

current window when the transition probability is greater than threshold. In this section, 

this evaluation can also be used as an alternative to offline learning, where they can find 

the optimal threshold based on precision and recall. Therefore, in order to obtain the 

optimal parameters for high utility comparison ratio, we start speculation with different 

given thresholds derived from previous offline learning. In this experiment, the setting of 

parameters are given by following tables: 

 

 

Parameters Window size Private pattern Number of public patterns 

Value 100 
{‘A’, ‘B’, ‘C’, 

‘D’} 
15 

Table 5-2 Setting (I) of evaluation of threshold 
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Parameters Removing number k’ Threshold range Increment 

Value 2 0.55 – 0.925 0.25 

Table 5-3 Setting (II) of evaluation of threshold 

 

The result of utility comparison ratio is shown in Figure 5-3 by given thresholds. For 

all utility comparison ratios based on different thresholds in Figure 5-3, they are all in the 

range from 70% to 76%. Based on this result, we select the optimal threshold as 0.775 for 

speculation.    

 

 

Figure 5-3 Utility comparison ratio under evaluation of threshold 

 

 

5.5  Evaluation of Prediction Point 

The prediction point p determines how many events should be observed before the 
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state of speculation and re-ordering. With the optimal threshold derived in previous 

experiment, we would like to evaluate at which prediction point we can obtain the high 

utility comparison ratio after speculation. In this experiment, we first start speculation 

with the optimal threshold of 0.775, and every time we shift prediction point with 10% of 

window size until the prediction point is over 90% of window size. The setting of 

parameters are given by following tables: 

 

Parameters Window size threshold Private pattern 
Number of public 

patterns 

Value 100 0.775 
{‘A’, ‘B’, ‘C’, 

‘D’} 
15 

Table 5-4 Setting (I) of evaluation of prediction point 

 

Parameters 
Removing 

number k’ 

Initial prediction 

Point 
Increment 

Value 2 48 10 

Table 5-5 Setting (II) of evaluation of prediction point 

 

The result of utility comparison ratio is shown in Figure 4 by given prediction points. 

As shown in Figure 5-4, the utility comparison ratio increases when the prediction point 

is close to the end of window. When prediction point is closer to the end of window, there 

are more events observed before speculation. This is because we have more information 

about appeared events and event orders, so the speculation would be more accurate. As a 

consequence, the utility comparison ratio increases when the prediction point increases.   

 

5.6  Evaluation of Window Size 

In this section, we evaluate the speculation strategy with window size. We assume 

that the number of windows is always fixed to 25000. For different window sizes, the 

number of events in window is different, so the total number of events in test dataset is 

also different. In this experiment, we generate the test dataset for different size of 

windows, and obtain corresponding thresholds and prediction points by using offline  
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Figure 5-4 Utility comparison ration under setting of prediction point  

 

learning. With same public patterns, we then start speculative re-ordering strategy with 

proposed model in order to acquire utility comparison ratio for different window sizes. 

The setting of parameters are given by the following tables: 

 

 

Parameters Private pattern Number of public patterns 

Value 
{‘A’, ‘B’, ‘C’, 

‘D’} 
15 

Table 5-6 Setting (I) of evaluation of window size 
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Parameters 
Removing 

number k’ 

Range of 

window size 
Increment  

Value 4 100 - 200 20 

Table 5-7 Setting (II) of evaluation of window size 

 

As shown in Figure 5-5, the utility comparison ratio increases when the window size 

becomes bigger. If the size of window increases, there are more events in each window, 

and it is more likely that more public patterns occur. During re-ordering, only public 

patterns that overlapped with the private patterns will be affected, while other public 

patterns are kept unchanged. Thus, there may exist more unchanged public patterns in a 

bigger window, which results in higher utility comparison ratio. The result also shows 

that our strategy works well for all windows. 

 

 

Figure 5-5 Utility comparison ratio under the setting of window size 
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5.7  Evaluation of Removing Number k’ 

The removing number k’ determines how many public patterns we remove in the top-

k preserving strategy. In this experiment, we start speculative re-ordering strategy by 

increasing k’, and at the end compare the results with and without preserving public 

patterns. The evaluation without preserving public patterns is to show the importance of 

top-k preserving strategy. The setting of parameters are given by following tables: 

 

Parameters Window size threshold Prediction point Precision Recall 

Value 100 0.55 46 0.75 0.6 

Table 5-8 Setting (I) of evaluation of removing number k’ 

 

Parameters Private pattern 
Number of  

public patterns 

Range of removing 

number k’ 

Value {‘A’, ‘B’, ‘C’} 15 0 – 4, all  

Table 5-9 Setting (II) of evaluation of removing number k’ 

 

In Figure 5-7, results of utility comparison ratio are shown with different k’. For all 

k’, their utility comparison ratios are nearly 80%, and there is no significant difference 

among them. Since the weights of our public patterns are all less than 10, which is quite 

smaller than total utility, the preserved public patterns show little contribution towards 

total utility.  

However, instead of utility comparison ratio, the result in Figure 5-8 shows a 

considerable difference in terms of number of false negatives. When preserving no public 

pattern, the number of false negatives is around 2600, which implies that the number of 

missing public pattern is almost 2600 after reordering. On the other hand, the average 

number of false negatives is less than 250 when taking top-k preserving algorithm into 

consideration with removing number from 0 to 4. From this result, it provides us a strong 

evidence that top-k preserving strategy is useful in terms of number of false negatives. 

Furthermore, in Figure 5-8, the number of false negatives are compared when preserving 

public patterns. When all public patterns are preserved, the number of false negatives is 

almost half of the number of false negatives in other cases. This is because of the obvious 
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reason that the re-ordering strategy tries to preserve the given of public patterns until 

concealing private patterns.      

 

 

Figure 5-6 Utility comparison ratio with different removing numbers

 

Figure 5-7 Number of false negatives with different removing numbers 
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Figure 5-8 Number of false negatives with removing number form 0 to 4 
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Figure 5-9 Comparison of speculative and non-speculative reordering strategy 

 

5.8  Evaluation of Time  

In order to evaluate how much latency can be saved while implementing speculative 

re-ordering strategy, we measure the evaluation time for speculation, top-k preserving and 

re-ordering. As shown in Figure 5-9, for non-speculative strategy, the re-ordering always 

starts from the end of window after observing all events. Therefore, it takes re-ordering 

time tre-ordering to conceal the private pattern while implementing non-speculative re-
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ordering strategy. The total time will increase if the size of window becomes bigger. On 

the other hand, when applying speculative re-ordering strategy, there is no need to wait 

until the end of window. It starts speculation after prediction point p, and tspec_topk_reorder is 

denoted as total time of speculation, top-k preserving and re-ordering. If tspec_topk_reorder is 

completed before the end of window, we can save the re-ordering time tre-ordering of non-

speculative strategy. In other words, the latency is improved by implementing speculative 

re-ordering strategy. Therefore, for speculative re-ordering strategy, tspec_topk_reorder should 

not be less than remaining time after prediction point, which can be described as below: 

 

          𝑡𝑠𝑝𝑒𝑐_𝑡𝑜𝑝𝑘_𝑟𝑒𝑜𝑟𝑑𝑒𝑟  ≤  𝑇 ∙  
𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 − 𝑝

𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒
               (5-1) 

 

where T is the processing time for each window. 

    

Thus, T in equation (5-1) can become as below: 

 

                 𝑇 ≥  
𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒

𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒−𝑝
∙ 𝑡𝑠𝑝𝑒𝑐_𝑡𝑜𝑝𝑘_𝑟𝑒𝑜𝑟𝑑𝑒𝑟                (5-2) 

 

Furthermore, in this experiment, the setting of parameters are given by following 

tables: 

 

Parameters Window size threshold Prediction point Precision Recall 

Value 100 0.55 46 0.75 0.6 

Table 5-10 Setting (I) of evaluation time  

 

Parameters Private pattern Number of public patterns 

Value 
{‘A’, ‘B’, ‘C’, 

‘D’} 
15 

Table 5-11 Setting (II) of evaluation time 

 

The results of evaluation time are shown as in Table 5-12 for both non-speculative 
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and speculative re-ordering strategy with k’ from 0 to 4. 

 

          Removing number k’  

Average  

evaluation time (us) 

k’ = 0 k’ = 1 k’ = 2 k’ = 3 k’ = 4 

Speculation/Top-k preserving 110.32 101.52 103.36 116.12 96.96 

Re-ordering 23373.32 1515.92 1479.32 1538.96 1449.68 

Total time tspec_topk_reorder 23483.64  1617.44 1582.68 1655.08 1546.64 

Table 5-12 Average evaluation time of speculative re-ordering strategy among 

25000 windows  

 

Average evaluation 

time (ms) 

Non-speculative re-ordering 

strategy 

Re-ordering 355.481 

Table 5-13 Average evaluation time of non-speculative re-ordering strategy among 

25000 windows 

           

Based on the result of evaluation time in Table 5-12, when preserving all public 

patterns, it would take longer time for re-ordering while the re-ordering time is shorter 

when removing some low-weight public patterns. As a consequence, there are mainly two 

situations in order to save the latency compared to non-speculative re-ordering strategy. 

First, when our users take the number of false negatives into main consideration, we 

should preserve all public patterns (k’ = 0) because the number of false negatives is lowest 

based on result of previous evaluation. In this way, with p = 46, window size = 100 and 

the result of evaluation time when removing number k’ is 0, equation (5-2) can be derived 

as below: 

  

                                                                 𝑇 ≥ 43.49 ms                                                          (5-3) 

  

Second, if the number of false negatives is not the main concern for our users, since 

the result of previous evaluation shows that there is no substantial difference of utility 

comparison rate among different removing numbers, we can choose removing number k’ 
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as 4 for our users, and it gives the shortest tspec_topk_reorder. Similarly, equation (5-2) can be 

also derived as below:  

 

                                                             𝑇 ≥ 2.86 ms                                                               (5-4) 

 

From equation (5-3) and equation (5-4), we can conclude that the window size should be 

at least 43.49 ms when our users care more about the number of false positive. Also, the 

processing time of window should be at least 2.86 ms when the requirements are more 

stringent for latency. In general, these minimum window sizes are sufficient for a very 

large numbers of CEP applications. In other words, our strategy eliminates the need for 

re-ordering time if the window size is greater than 50 ms. Furthermore, in both situations, 

we can save 355.481 ms on an average in our examples, which is the additional latency 

because of re-ordering when implementing non-speculative re-ordering strategy. 
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Chapter 6 Conclusion 

In this thesis, we propose the model with speculative re-ordering strategy in order to 

maintain pattern-based privacy in CEP systems. The current available mechanism based 

on re-ordering algorithm takes the long latency when the size of window increases, so we 

extend its application by speculating whether the private pattern occurs before re-ordering. 

For public patterns, the top-k preserving algorithm is introduced in order to preserve 

relating important public patterns during re-ordering, thus decreasing the number of false 

negatives after re-ordering.  

In order to evaluate the impact of QoS, utility comparison ratio is defined as the 

performance metric. The evaluation result shows that the utility comparison ratio is nearly 

80% for the test dataset generated in our evaluation. When implementing top-k preserving 

algorithm for public patterns, the number of false negatives is decreased by 90 % in 

comparison to preserving no public pattern. Also, the latency is evaluated by measuring 

the running time for speculation, top-k preserving and re-ordering when implementing 

both speculative and non-speculative re-ordering strategy. We can conclude that for our 

test dataset, we can eliminate the time taken for re-ordering completely if the window 

size is greater than 3 ms. 
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