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Abstract

Named entities, such as persons or locations, are crucial bearers of infor-

mation within an unstructured text. Recognition and classification of these

(named) entities is an essential part of information extraction. Relation clas-

sification, the process of categorizing semantic relations between two entities

within a text, is another task closely linked to named entities. Those two

tasks – entity and relation classification – have been commonly treated as a

pipeline of two separate models. While this separation simplifies the problem,

it also disregards underlying dependencies and connections between the two

subtasks. As a consequence, merging both subtasks into one joint model for

entity and relation classification is the next logical step.

A thorough investigation and comparison of different levels of joining the two

tasks is the goal of this thesis. This thesis will accomplish the objective by

defining different levels of joint entity and relation classification and develop-

ing (implementing and evaluating) and analyzing machine learning models

for each level. The levels which will be investigated are:

• (L1) a pipeline of independent models for entity classification and re-

lation classification

• (L2) using the entity class predictions as features for relation classifi-

cation

• (L3) global features for both entity and relation classification

• (L4) explicit utilization of a single joint model for entity and relation

classification

The best results are achieved using the model for level 3 with an F1 score of

0.830 for entity classification and an F1 score of 0.52 for relation classification.
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Kurzfassung

Entitäten, wie Personen oder Orte sind ausschlaggebende Informationsträger

in unstrukturierten Texten. Das Erkennen und das Klassifizieren dieser En-

titäten ist eine entscheidende Aufgabe in der Informationsextraktion. Das

Klassifizieren von semantischen Relationen zwischen zwei Entitäten in einem

Text ist eine weitere Aufgabe, die eng mit Entitäten verbunden ist. Diese

zwei Aufgaben (Entitäts- und Relationsklassifikation) werden üblicherweise

in einer Pipeline hintereinander mit zwei verschiedenen Modellen durchge-

führt. Während die Aufteilung der beiden Probleme den Klassifizierungspro-

zess vereinfacht, ignoriert sie aber auch darunterliegende Abhängigkeiten und

Zusammenhänge zwischen den beiden Aufgaben. Daher scheint es ratsam, ein

gemeinsames Modell für beide Probleme zu entwickeln.

Eine umfassende Untersuchung von verschiedenen Stufen der Verknüpfung

der beiden Aufgaben ist das Ziel dieser Bachelorarbeit. Dazu werden Modelle

für die unterschiedlichen Stufen der Verknüpfung zwischen Entitäts- und Re-

lationsklassifikation definiert und mittels maschinellen Lernens ausgewertet

und evaluiert. Die verschiedenen Stufen die betrachtet werden, sind:

• (L1) Verwendung einer Pipeline zum sequentiellen und unabhängigen

Ausführen beider Modelle

• (L2) Verwendung der Vorhersagen über die Entitätsklassen als Merk-

male für die Relationsklassifikation

• (L3) Verwendung von globalen Merkmale für sowohl die Entitätsklassi-

fikation als auch für die Relationsklassifikation

• (L4) Explizite Verwendung eines gemeinsamen Modells zur Entitäts-

und Relationsklassifikation

Die besten Resultate wurden mit dem Modell für Level 3 erreicht. Das F1-

Maß der Entitätsklassifikation beträgt 0.830 und das F1-Maß der Relation-

sklassifikation beträgt 0.52.
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1 Introduction

Information Extraction (IE) describes the process of taking unstructured

text as input and creating structured and unambiguous data as output. This

usually requires a text processing task to identify and recognize necessary

information, such as named entities and relations among them. Named en-

tities include many different types of words such as locations, persons or

organisations. Named entity recognition and classification is defined as the

task of detecting and classifying named entities in an unstructured text.

Several learning methods using diverse classifiers for supervised learning or

more uncommon unsupervised learning are in use (McCallum and Li, 2003).

The recognition and classification of named entities is a necessity to extract

relations between two or more entities from a sentence. Relations typically

include physical relations (located etc.) or social relations (family, employ-

ment etc.) among others (Wang et al., 2006). As the extraction of relations

is based on the recognition and classification of entities, the two tasks have

been commonly treated as a pipeline of two independent models (Miwa and

Sasaki, 2014). While this separation simplifies the task, it also disregards un-

derlying dependencies and connections between the two subtasks (Miwa and

Sasaki, 2014). The model is prone to error propagation due to the pipeline

approach as errors in entity recognition are propagated downwards to relation

extraction. Furthermore, the model does not consider cross-task dependen-

cies. Thus, a combination of both subtasks into one joint model seems like

the next logical step (Li and Ji, 2014).

Figure 1 shows a visualization of a sentence with already annotated named

entities and relations. A Kill relation requires two People entities and a

Live In relation requires People and Loc entities. The task of extracting re-

lations is not possible without recognition and classification of the required

named entities.
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Figure 1: An example of entity and relation. Named entities persons (Peop)

and locations (Loc) are connected by relations Kill and Live In (Roth and

Yih, 2004).

1.1 Goal of the Thesis

The purpose of this thesis is therefore to investigate different levels of joining

entity and relation classification by examining the results for each level. The

dataset used for this thesis is the ”entity and relation recognition” (ERR)

dataset from (Roth and Yih, 2004). The models for each level have a gradi-

ent increase of joining the two subtasks by using an incremental amount of

cross-task features per level similar to (Li and Ji, 2014). Level one to three

use a linear-chain conditional random field (CRF) as introduced by Lafferty

et al. (2001) for entity classification while understanding the task of relation

extraction as a multi-class classification problem (Zhou et al., 2005). The

extraction of relations can be understood as the process of finding the nec-

essary named entities and using a pair of entities as model input for relation

classification. Given an entity pair {e1, e2} the classification method has to

decide what relation (if any) exists between the given pair (Roth and Yih,

2004; Zhou et al., 2005).

While level one uses the pipeline model of two independent subtasks, level

two increases the level of joining entity and relation classification by using en-
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tity type information for relation extraction similar to Giuliano et al. (2007).

Furthermore, level three uses relation type features for entity classification

while keeping all other features. The model utilized for level four uses a single

joint model for entity and relation classification similar to the one described

by (Zheng et al., 2017).

The main research question investigated in this thesis is

• Which level or joining entity and relation classification performs the

best?

This can be further divided into the following sub-questions:

• Which model performs the best?

• Which features are key to the performance?

Structure of the Thesis

This thesis is structured in the following manner:

Chapter 1 - Introduction: The topic and goals of the thesis are introduced.

Chapter 2 - Related Work: Related work is introduced.

Chapter 3 - Background: The fundamentals needed for named entity and

relation classification are explained. This includes the principles of evaluation

metrics and the definition of classification methods.

Chapter 4 - Data: This chapter focuses on the data and necessary prepro-

cessing steps.

Chapter 5 - Models: The models, features and hyperparameters used for

this thesis are introduced and specified.

Chapter 6 - Results and Analysis: The experiments and their results will

be presented and analysed.

Chapter 7 - Conclusion and Future Work: The main findings are sum-

marized and possible directions for future works are identified.
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2 Related Work

The two tasks, entity and relation classification, have had multiple proposed

models over the past years. A very popular model is the pipeline approach of

treating the two tasks as a pipeline of two independent models. Other models

use end-to-end methods to join entity and relation classification. A special

focus will be put on works and studies using the same dataset as this thesis.

Traditional methods to handle this task is a pipeline manner, recognizing

the entities first and then extracting their relations (Zheng et al., 2017).

Most existing named entity recognition models use linear-chain conditional

random fields (CRF) whose performances heavily rely on annotated features

extracted by NLP tools (Wang et al., 2006; Lafferty et al., 2001; Yao et al.,

2009). Florian et al. (2003) present a classifier-combination framework for

named entity recognition using gazetteer information as features. The tradi-

tional models used for relation classification largely rely on feature represen-

tation (Kambhatla, 2004) or kernel design (Zelenko et al., 2003). Recently

new models using neural networks have been proposed to both tasks with

great success such as the combination of bidirectional LSTMs and conditional

random fields by Lample et al. (2016) for named entity recognition and the

introduction of dependency-based neural networks for relation classification

by Liu et al. (2015).

Multiple studies and works use the ”entity and relation recognition” (ERR)

dataset (Roth and Yih, 2004; 2007) although with different models. Roth

and Yih (2004) use linear programming with constraints to normalize en-

tity types and relations on a global scale. In contrast to the typically used

pipeline framework, this model does not trust the results of classification

and is therefore able to overcome mistakes made by classifiers with the us-

age of constraints (Roth and Yih, 2004). Kate and Mooney (2010) describe a

novel method for joint entity and relation extracting by using a card-pyramid

9



graph which encodes all possible entities and relations in a sentence, reducing

the task of their joint extraction to jointly labeling its nodes. Giuliano et al.

(2007) use entity type information for relation extraction without training

both tasks in a joint model. Furthermore, Giuliano et al. (2007) use a com-

bination of kernel functions to integrate two different information sources

which include the whole sentence where the relation appears and the local

contexts around the entities participating in the relation. The results of re-

lation extraction show that the novel approach of using entity type informa-

tion as features for relation extraction, significantly improves previous results

achieved on the same dataset (Giuliano et al., 2007). Miwa and Sasaki (2014)

propose a novel learning approach that jointly extracts entities and relations

of a sentence by introducing a flexible table representation of entities and

relations. The task of entity and relation classification is then mapped to a

simple table-filling problem which outperforms the pipeline approach. Adel

and Schütze (2017) note that previous works also use a variety of linguistic

features, such as part-of-speech tags. Other works not using the ERR dataset

include a single probabilistic graphical system for both tasks (Singh et al.,

2013) and a model to incrementally join entity and relation extraction using

structured perceptron with efficient beam-search (Li and Ji, 2014). Li and Ji

(2014) assess that the results of entity recognition affect the performance of

relation classification. Zheng et al. (2017) introduce a novel tagging scheme

converting the task of joining entity and relation extraction to a tagging

problem.

Similar to Roth and Yih (2004), Kate and Mooney (2010) and Giuliano

et al. (2007) the models used for level one to three train separate models

for entity and relation classification on the dataset while understanding the

task of relation extraction as the task of identifying relations between named

entity pairs. Thus, the query entities for relation extraction are only named

entity pairs.
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The features for the models used for named entity recognition and classi-

fication are similar to the features used by Florian et al. (2003) and Miwa

and Sasaki (2014) and includes annotated features such as part-of-speech

tags, word types and surrounding words. Some features are more general

and the gazetteer information is excluded. Features for relation extraction

include the usage of shortest dependency paths and their length similar to

Xu et al. (2015) and context information such as the sentence the query entity

pairs appear in. The model for level two also uses entity type information as

features for relation extraction as introduced by Giuliano et al. (2007). The

model for level three uses global features similar to Miwa and Sasaki (2014).

The model for level four uses a similar tagging scheme as Zheng et al. (2017)

with the inclusion of adjacency nodes in the dependency graph as features.

In contrast to most works, the goal of this thesis is the investigation of differ-

ent levels of joining entity and relation classification. Miwa and Sasaki (2014)

compare two different levels of joining both tasks while this thesis defines and

investigates four different levels of joining entity and relation classification.

Thus, the usage of features has to be constant across all levels with the in-

cremental increase of cross-task features that help evaluating the process of

finding out which level of joining the both tasks leads to the best result.
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3 Background

3.1 Evaluation Metrics

The metric chosen for evaluation is very decisive. The selection of metrics

influences how the performance of machine learning algorithms is measured

and compared. The focus on different weights of characteristics is dependent

on the choice of the evaluation metrics. Accuracy, Precision-Recall, F1 score

and confusion matrices are common options when deciding for a classification

metric (Hossin and Sulaiman, 2015).

Precision and recall are classification metrics used to evaluate systems. Pre-

cision is the percentage of relevant answers in the result and recall is the

percentage of relevant answers that have been predicted (Kent et al., 1955).

In binary classification, a classifier labels documents as either positive or neg-

ative. This decision can be represented in a so called confusion matrix (or

contingency table). The four categories of the table are the following: True

positives (TP), false positives (FP), false negatives (FN) and true negatives

(TN). True positives are positives which have been correctly labeled as posi-

tives. Likewise, true negatives are negatives which have been correctly labeled

as negatives. False positives and false negatives however have an incorrect

label. While false positives refer to negatives that have been wrongly labeled

as positives, false negatives are positives that have been incorrectly labeled

as negatives.

Table 1 shows the confusion matrix and the definitions of precision and recall

where TP, FP and FN denote the number of true positives, false positives

and false negatives, respectively.
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Precision = TP

TP+FP
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False
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True
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Recall = TP
TP+FN

Accuracy = TP+TN
TP+FP+FN+TN

Table 1: Confusion matrix

The standard way to combine precision and recall into one single performance

measure is through the F1 score. The F1 score is the harmonic average of

precision and recall. It reaches its best value at 1 and its worst score at 0.

(1) F1 =
2

1

precision
+

1

recall

=
2 · precision · recall

precision + recall
=

TP

TP +
FP + FN

2

Two different methods are commonly used to determine the average; Micro-

and macro average. Micro- and macro-averages are computed slightly dif-

ferently and thus their interpretation differs. A macro-average computes the

metric independently for each label and then takes the average. It treats all

classes equally. Whereas a micro-average tries to aggregate the contributions

of all classes to compute the average metric. The micro-average is affected

less by performance on rare labels. Thus, it is preferable to use the micro-

average in a multi-label classification problem (Lipton, Zachary Chase and

Elkan, Charles and Narayanaswamy, Balakrishnan, 2014). The two methods

can both be applied to both evaluation metrics, PR and F1 score.
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3.2 Part-of-Speech

Part-of-speech tagging is the assignment of words and punctuation characters

of a text to their corresponding part-of-speech label. A part of speech is a

category of lexical items with similar properties Brill (1992). A list of part-

of-speech tags can be found in the appendix (Figure 11).

3.3 Training, Test and Validation Sets

One of the core concepts of machine learning is the notion of creating a model,

capable of accurately making predictions on test data. Machine learning mod-

els need information to precisely make predictions. The training set is used

to give the necessary information to the models (train) while the test set, like

the name implies, is used for testing. The test set is untouched during training

and only used in the end for testing and analysing the generalisability of the

model. A third set needs to be prepared to estimate the prediction error for

model selection, the validation set or development set (Guyon, 1997). While

performing machine learning the following steps are advised: Initially the gold

data is utilized to train the model by pairing the input with the expected

output. Then in order to estimate how well the model has been trained and

to adjust model properties (to find optimal numbers) a validation set is used

(Hastie, Trevor and Tibshirani, Robert and Friedman, Jerome, 2001). Lastly

a test set is utilized to assess the performance of a trained model and to en-

sure unbiased classification. Tuning the model after assessing the model on

the test set is not advised as it leads to an underestimation of the true test er-

ror and is prone to biased decisions. Using cross-validation or a validation set

may give an overall insight on how the model will predict a completely new

dataset (Hastie, Trevor and Tibshirani, Robert and Friedman, Jerome, 2001).

As a general rule a typical split might be 50% for training, and 25% each for

validation and testing (Hastie, Trevor and Tibshirani, Robert and Friedman,

Jerome, 2001). Determining what fraction of the data set should be reserved
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as a validation set is a controversial topic as optimal performance depends

on various factors (Guyon, 1997). This thesis uses a 60%− 20%− 20% split

of the training, validation and test set (see Section 4).

3.4 N-Gram

N-Grams are the results of partitioning a given text into fragments. An n-

gram is a contiguous sequence of n characters or words of a given sample.

An n-gram size of n = 1 is called unigram, size 2 is called bigram and an

n-gram of size 3 is a trigram (Hastie, Trevor and Tibshirani, Robert and

Friedman, Jerome, 2001). Sometimes the beginning and end of a text are

explicity modeled to match beginning-of-word and ending-of-word situations

(Cavnar, William B and Trenkle, John M and others, 1994) and a special

character (e.g. ” ”) is used to represent blanks. Therefore the word ”Word”

has the following character:

• unigrams: , W, O, R, D,

• bigrams: W, WO, OR, RD, D

• trigrams: WO, WOR, ORD, RD , D

3.5 Vector Space Model and Bag-of-Words Model

Vector space model as introduced by Salton et al. (1975) is an algebraic

model for representing a set of documents as vectors in a common vector

space. As raw data (a sequence of characters) cannot be put into algorithms

because they expect numerical features, the text documents have to undergo

a vectorization process. In general this describes the process of turning a col-

lection of text documents into numerical feature vectors (Ko, 2012). In the

vector space model, a document is represented as a vector d = (w1, ..., w|V |),

where |V | is the size of the vocabulary. The value of the weight for each
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term w1 represents how much the term w1 contributes to the semantics of

the document d (Ko, 2012). The term weight may be a binary value (with

1 indicating that the term occured in the document, and 0 indicating that

it did not occur in the document) or a term frequency value tft,d (equal to

the number of occurrences of term t in the document d) among others. The

model of only counting the occurrences of each term but ignoring their rel-

ative position information in the document is called the bag-of-words model

(Schütze et al., 2008). Thus, the documents d1 = ”John likes Mary” and

d2 = ”Mary likes John” appear the same in this model. As term frequency is

not necessarily the best representation for a text due to common words like

”the” or ”a” being almost always among the highest frequency terms in the

text, the utilization of stop words is recommended (Tsz-Wai Lo et al., 2005).

3.6 Encoding with BILOU

The task of named entity recognition is commonly viewed as a prediction

problem with the aim to assign the correct label for each token. There are

many different ways of encoding information into a set of labels. This leads

to many different representations of chunks. Two frequently used schemes

are BILOU and BIO (Ratinov and Roth, 2009).

BIO stands for (B)eginning, (I)nside and (O)utside encoding of a text seg-

ment. Beginning signifies the beginning of a named entity. Inside signifies

that the word is inside a named entity and outside signifies that the word

is just a regular word outside of a named entity. Below is a sample sentence

annotated in BIO:

• Tuvia Tzafir is from Israel

• B-Person I-Person O O B-Location

In BIO encoding labels can either be the beginning of an entity (B X) or the

continuation of an entity (I X).
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BILOU encodes the (B)eginning, the (I)nside and the (L)ast token of multi-

token entities while (U)nit tokens are separated from other entities. (O)utside

still signifies regular words not in a named entity. The same sentence is dif-

ferently annotated in BILOU:

• Tuvia Tzafir is from Israel

• B-Person L-Person O O U-Location

In BILOU encoding, I X can only follow B X and L X can either follow B X

or I X. Ratinov and Roth (2009) have shown that for some datasets, BILOU

outperforms BIO.

3.7 Classification

In text classification, a fixed set of classes C = {c1, c2, ..., cn} and an amount

of inputs (which can be documents, sentences or words, depending on the

task) d ∈ X is given. Classes can also be called categories or labels. A prime

example of classes are spam or non-spam emails. Furthermore a training set

D of labeled inputs is given where each input 〈d, c〉, where 〈d, c〉 ∈ X × C
(e.g. 〈d, c〉 = 〈John F. Kennedy, Person 〉).
Using a learning method, we then wish to learn a classifier f that maps inputs

to their label: f : X → C (Schütze et al., 2008). This is called supervised

learning. Supervised learning can be seen as a function y = f(x) where y

needs to be predicted, x is the data while f is a function that needs to be

learned. In short, supervised learning describes the process (given an already

known training set of correctly labeled documents) of identifying to which

set of categories a new document belongs to.

This process can be enhanced by using features. Features (or attributes)

are representing characteristics of the input. Features for text classification
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may include the frequency of specific terms or the amount of punctuation

characters. Features for named entity recognition usually include lexical fea-

tures such as word types (lowercase, pos-tags etc.) or contextual features like

surrounding words or variables indicating the position of the word in the

sentence. Section 5.6 shows the features used for this thesis. Features also

need to be turned into a vector model as classifiers need numerical features

to represent a document.

In the following sections the classifiers used for this thesis will be presented.

3.7.1 Support Vector Machine

A Support Vector Machine (SVM) is a classifier defined by a separating

max-margin hyperplane. Given already labeled training data, the algorithm

tries to create an optimal hyperplane to categorize new examples. In two-

dimensional space the hyperplane is a line and in three-dimensional space

it is an ordinary plane. A vector w is defined as a weight vector which

is perpendicular to the hyperplane and an intercept term b is defined. All

points x on the hyperplane satisfy: wTx + b = 0. Quadratic optimization

can be used to find the plane. In a binary classification problem the two

classes are yi = +1 and yi = −1. The linear classifier is then defined as

f(x) = sign(wTx+ b) where the sign indicates the class. As multiple hyper-

planes exist the hyperplane with the highest margin should be selected as it

guarantees the best generalisability (Schütze et al., 2008). Figure 2 shows the

maximum-margin separating hyperplane in a simple two-dimensional binary

classification problem. The margin is maximized for all points on the selected

hyperplane. Non-optimal hyperplanes do not satisfy this requirement.

3.7.2 Perceptron

The perceptron is an algorithm used to classify binary data. The perceptron

algorithm learns to separate data by changing weights w and bias b using
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Figure 2: Example of a hyperplane.

iteration. A variable 0 < α ≤ 1 is defined as the learning rate, which indicates

how quickly the algorithm responds to changes. The function f is defined as:

f(x) =

1 if wTx+ b > 0

0 otherwise

Perceptron follows an update rule:

1. Perform the following steps for all inputs xi for each example i in the

training set where fi is the predicted output and di is the desired out-

put. Two classes are defined as di = 1 if xi belongs to that class and

di = 0 otherwise.

2. Initializing the algorithm with w(0), b(0), t = 0

2a. Calculate the output by computing the dot product:

fi(t) = wi(t) · xi + b
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2b. Update the weights and bias accordingly for the next iteration:

wi(t+ 1) = wi(t) + α(di − fi(t))xi
b(t+ 1) = b(t) + α(di − fi(t))

t = t+ 1

The perceptron is guaranteed to converge if the training set is linearly sep-

arable (Collins, 2002). The perceptron can naturally be generalized to learn

and classify multiclass classification problems. (Collins, 2002).

3.7.3 Decision Tree Classification

Decision Trees are a supervised learning method used for classification. The

Decision Tree Classification uses decision trees to create a model that makes

predictions by learning simple decision rules inferred from data features. In

the context of named entity recognition, asked questions may include ”Is the

word in lowercase?” among others. The decision tree classifier asks questions

with the highest information gain first aiming to reduce uncertainty.

3.7.4 Logistic Regression

Logistic regression, also known as Maximum Entropy (Manning and Klein,

2003), is a statistical model used to estimate probabilities. At the core of the

method lies the logistic function 1/(1 + eX). Input values xi are combined

using weights (coefficients) w to predict a score:

score(xi, k) = w0,k + w1,kx1,i + ...+ wN,kxN,i = wk · xi

In machine learning, logistic regression is a widely used method with the goal

to model the probability of a random variable y being 0 or 1:

(2) p(y|x) =

hθ(x) if y = 1

1− hθ(x) if y = 0
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where θ is the set of weights w (θ is the vector of weights) and hθ(x) =
1

1 + e−θTX
= Pr(Y = 1|X; θ)

The probability function can be written as:

(3) p(y|x) = (hθ(x))y(1− hθ(x))1−y

Using the maximum log-likelihood for N observation to estimate parameters:

l(θ|x) = log[
N∏
n=1

(hθ(xn))yn(1− hθ(xn))1−yn ](4)

l(θ|x) =
N∑
n=1

[yn log hθ(xn) + (1− yn) log(1− hθ(xn))](5)

While logistic regression is a probabilistic model for binomial cases, it can

easily be extended for multinomial cases (multinomial logistic regression):

(6) p(y|x) =



exp(θT1 x)∑N
i=1 exp(θ

T
i x)

if y = 1

exp(θT2 x)∑N
i=1 exp(θ

T
i x)

if y = 2

. . .

exp(θTNx)∑N
i=1 exp(θ

T
i x)

if y = N

The following steps are omitted as they are corresponding to the binomial

model. Unlike Naive Bayes Classifiers, Maximum Entropy does not assume

statistical independence of features. In short, the logistic regression classifier

computes the posterior class probability of an example by evaluating the

normalized product of the active weights (Florian et al., 2003).

3.7.5 Conditional Random Field

A Conditional Random Field (CRF) is a method used for structured predic-

tion. A Linear-Chain CRF is a special form of a CRF with linear structure
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(mainly used in natural language processing) used to predict sequences of

labels for sequences of input samples. In a linear-chain CRF for text process-

ing, each feature function fi is a function that takes as input: The sentence

s, the position i of a word in the sentence s, the label li of the current word

and the label li−1 of the previous word (Lafferty et al., 2001). Assigning a

weight λj (finding the value of the weight by e.g. gradient descent) to each

feature function fj allows to score a labeling l of s by adding up the weighted

features over all words in the sentence:

(7) score(l|s) =
m∑
j=1

n∑
i=1

λjfj(s, i, li, li−1)

Where n is the amount of words in the sentence and m is the amount of

sentences in the data. Transform the scores into probabilities p(l|s) between

0 and 1:

(8) p(l|s) =
exp[score(l|s)]∑
l′ exp[score(l

′|s)]
=

exp[
∑m

j=1

∑n
i=1 λjfj(s, i, li, li−1)]∑

l′ exp[
∑m

j=1

∑n
i=1 λjfj(s, i, l

′
i, l
′
i−1)]

The formula only includes features for the current and previous word’s iden-

tity. Extending the linear-chain formula to include richer features such as

prefixes and suffixes of the current word and the identities of surrounding

words is fortunately very simple as the definition is quite extensible (Sutton

et al., 2012).

Equation 8 is similar to the ones used in logistic regression as CRFs are

basically the sequential version of logistic regression (Sutton et al., 2012).

Figure 3 shows the relationship of naive bayes, logistic regression, hidden

markov models (HMMs) and linear-chain CRFs. The also shown HMMs are

another possible sequence model which is not used in this thesis.
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Figure 3: Relationships between Naive Bayes, Logistic Regression, HMMs

and Linear-Chain CRFs (Sutton et al., 2012)

3.7.6 Stochastic Gradient Descent Classifier

Stochastic Gradient Descent (SGD) is a simple stochastic approximation of

the gradient descent optimization method for minimizing a function. SGD

tries to find minima (or maxima) by iteration. Hence, the SGD Classifier is a

linear classifier that uses SGD for training by looking for the minima of the

loss function using SGD. The loss function may be linear SVMs or logistic

regression.

3.8 Dependency Grammar

In dependency grammars the syntactic structure of a sentence is described

by the words in a sentence and an associated set of grammatical relations.

Unlike phrase structure grammar, dependency grammar only focuses on how

words relate to other words.
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Figure 4: Dependency structure for an English sentence from the Penn Tree-

bank (Kubler et al., 2009): Arrows point from heads to their dependents

while labels indicate the grammatical function of the word as either subject

or object.
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4 Data

CoNLL (Conference Computational Natural Language Learning) is a con-

ference organized by the SIGNLL (ACL’s Special Interest Group on Natural

Language Learning). The Text REtrieval Conference (TREC) is a series of

conferences focusing on different information retrieval topics and research

areas. The dataset which will be used for the experiments and analysis of

this thesis is the ”Entity and Relation Recognition” dataset1. It consists of

5516 sentences from the TREC corpus which have been manually annotated

with four entity types and relations between them (Roth and Yih, 2004).

4.1 Structure of the Data

The data is split into a block for each sentence. Each block contains infor-

mation about the entities and relations of one sentence. The format of each

block is the following:

• the sentence and all the other columns in a table model

• empty line

• relation assignments (may be empty if no relations exist in the sentence)

• empty line

It is certainly possible for a sentence in the dataset to not contain any re-

lations. When this is the case, the relation descriptors are omitted as they

serve no purpose. It is also possible for a sentence to have more than one

relation. The additional relations are simply added below.

In the block, each row represents an element (a single word, consecutive

words or punctuation characters) of the sentence. The columns hold different

amounts of expressiveness. The columns contain the following information:

1http://cogcomp.org/Data/ER/conll04.corp
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• Column 1: SentenceID (sentence order number)

• Column 2: (Named) Entity class label

• Column 3: TokenID (The order of the elements in the sentence)

• Column 4: O

• Column 5: Part-of-speech tags

• Column 6: Tokens (words or punctuation characters)

• Column 7: O

• Column 8: O

• Column 9: O

As shown in the enumeration afore, the only columns to contain valuable

information are columns one to three, five and six. All other columns can

simply be ignored. Table 2 shows an exemplary sentence with relations in

the dataset.

Four named entities are given in the CoNLL-2004 dataset: Location, Or-

ganisation, People and Other. Likewise, five relations are given in the

CoNLL-2004 dataset: Located In, Work For, OrgBased In, Live In and

Kill. The entity-relation dependencies are defined as shown in Table 3. There

are no other possible relations other than those shown in the table. It is pos-

sible that a single named entity participates in more than one relation. It is

however not possible that a single relation includes more (or less) than two

named entities. Relations between eponymous entity types are reasonable

except for the entity type Organisation. Relations are directed and are not

reversible. Thus, a Person named Mike is able to live in Rome, Rome is not

able to live in a Person named Mike.
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SentenceID NER TokenID O POS Token O O O

28 Loc 0 O NNP Rome O O O

28 O 1 O VBZ is O O O

28 O 2 O IN in O O O

28 Loc 3 O NNP Lazio O O O

28 O 4 O NN province O O O

28 O 5 O CC and O O O

28 Loc 6 O NNP Naples O O O

28 O 7 O IN in O O O

28 Loc 8 O NNP Campania O O O

28 O 9 O . . O O O

0 3 Located In

6 8 Located In

Table 2: Example of a sentence with relations

4.2 Data Preprocessing

As the data is already annotated there is almost no need to revise it. It is how-

ever necessary to split multi-token entities (Table 4) into single tokens to get

them into the BILOU encoding scheme (Table 5). Splitting multi-token enti-

ties is done by splitting on a special character. Most special characters such

as brackets or parentheses are for instance replaced by -LRB- (Left Round

Bracket) and -RRB- (Right Round Bracket). The special character ”\” still

appears in the column token. In the data the backslash is used to separate

multi-token entities. The words in those tokens share the same TokenID and

NER tags while their POS tags could potentially be different. They are be-

ing grouped due to the fact that they only contribute to a relation if they

are jointed. For example, New York City is a location in the United States

but the word ”city” alone is neither a descriptive location nor a necessary
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Location Organisation People Other

Location Located In

Organisation OrgBased In

People Live In Work For Kill

Other

Table 3: Entity-Relation Dependencies

SentenceID NER TokenID POS Token

36 Org 13 NNP/IN/NNP University/of/Virginia

Table 4: Example of a multi token entity

information carrier for this relation. For named entity recognition however

it is quintessential to separate all multi-token entities (Vincze et al., 2011).

The following algorithm creates a new DataFrame (see Section 5.7) splitting

the old DataFrame on a given character.

DF New =

pd . DataFrame ( [

[ sentenceID , NER, tokenID , O, p , t , O,O,O]

for sentenceID , NER, tokenID , O, POS, token , O,O,O

in DF. i t e r t u p l e s ( index=False )

for p , t in zip (POS. s p l i t ( ’ / ’ ) , token . s p l i t ( ’ / ’ ) )

] , columns=DF. columns )

Splitting the data is a needed procedure to encode them into the aforemen-

tioned BILOU scheme. Encoding the tokens with their accurate BILOU tag

is a process of iterating over the dataset and setting the proper tag accord-

ing to the established rules. Multi-token entities cannot have tags other than
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SentenceID NER TokenID POS Token

36 B-Org 13 NNP University

36 I-Org 13 IN of

36 L-Org 13 NNP Virginia

Table 5: Example of a splitted multi-token entity with BILOU encoding

(a) percentage of unused sentences (b) distribution of sets

Figure 5: Distribution of data

beginning, inside and last. The result of the encoding process can be found

in Table 5.

The data needs to be split into a training, a test and a validation set. Follow-

ing prior work (Gupta et al., 2016), only sentences with relations are used.

Figure 5a shows the distribution of used and unused sentences. That implies

that every sentence in each set possesses one or more relation. There are

1441 sentences with one or more relations. Splitting the sentences according

to Gupta et al. (2016); Adel and Schütze (2017) into a training and a test set.

The training set contains 1153 sentences and the test set contains 288 sen-

tences. Additionally, the training set is randomly split (74−26%) into a train
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Figure 6: Named entity types

and a validation set (Figure 5b). The train-test split can be found online2.

Indices within the respective set determine the belonging of the sentence.

4.3 Data Statistics

This section provides statistics of the dataset. The used sets for named en-

tity recognition and classification (and relation classification) contain 1441

sentences and 33519+8337 = 41856 tokens. The number of tokens without a

named entity tag is 31912, meaning that 1− 31912
41856

≈ 24.8% of the tokens are

named entities. The distribution of each type of named entity can be found

in Figure 6.

The distribution of the named entity types is roughly the same across all

different datasets. Location (1968) is the named entity type with the most

2https://github.com/pgcool/TF-MTRNN/tree/master/data/CoNLL04
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Figure 7: Relation types

appearances in the dataset with People (1691) following close behind while

Organisation (984) and Other (706) occur about half as often.

All sentences contain at least one relation and two named entities are needed

for a relation. Due to the distribution of the named entity types, certain

relations occur much more frequently than others. The distribution of the

relation types can be found in Figure 7. Unlike the distribution of the named

entity types, the distribution of the relation types is not very similar across

the different datasets. Live In (521) is overall the relation type with the most

appearances. OrgBased In (452) is the second most common relation type.

Located In (406) and Work For(401) are approximately equally represented

in the dataset while Kill (258) has a noticeably low amount of occurrences.

The distribution of relation types in each set however does not follow the

same principle. The relation Live In for example has the highest amount of

appearances in the training and the dev set while having the second highest
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amount of occurrences in the actual test set. Located In has a low number

of occurrences in the training set while being close to the top in both dev

and test. The relation Kill at least has the lowest amount of appearances

across sets. The different distribution of the validation set might stem from

its creation by random sampling.
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5 Models

In this section the models used for named entity classification and relation

classification for each level are defined. Entities and relations are extracted

from a sentence. As described in Section 4 entities can span over multiple

tokens and relations are directed. For extracting relations by multinomial

classification, a new relation called ”N” is created. This relation type signi-

fies there is no relation between two probed entities. The investigation distin-

guishes between four different levels of joining entity and relation classifica-

tion. The data is usable after undergoing data preprocessing like described in

Section 4. The predicted labels are compared with the expected labels at the

end of each model returning a classification report, which includes precision,

recall and F1 score.

5.1 Level One

In Level one a pipeline of independent models for entity and relation classi-

fication is used. The model used for entity classification was first introduced

by Lafferty et al. (2001). In the first step, a linear-chain CRF is used to recog-

nize and classify entities by setting a sequence of tokens with corresponding

features as the input and expecting a sequence of named entity types (labels)

as output. A predicted label counts as correctly predicted if the entire label

matches the entire named entity type with BILOU encoding. After predict-

ing the entity labels, the predicted data is restructured to fit into the needed

form to extract relations. In this process, all tokens with a predicted label

that is not a named entity type are ignored. Thus, only tokens with a label

of a named entity types will be left. All sequential entities with the same

entity type are grouped into one entity with ”B-” and ”L-” being the start

and the end of an entity boundary (likewise with ”U-”). Then all entities in a

sentence are put against all other entities in the same sentence meaning there

are y = (n−1) ·n (∀n > 1) many possibilities of relation pairs for n extracted
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SentenceID Entity1 Entity2 Relation

10 Israel Tuvia Tzafir N

10 Tuvia Tzafir Israel Live In

Table 6: Showing relation pairs of two entities. All other columns in this

DataFrame are omitted as they would only cluster the table; Multi-token

entities are treated as a single entity and any relations are mapped on the

respective last token of the multi-token entity

entity pairs. The order of the relation is reflected by the order of the entities

in the table: Entity1 ⇒ Entity2. An example table demonstrating this can

be found in Table 6. Similar to Miwa and Sasaki (2014) relations on entities

are mapped on the last words of the entities. In the last step the entity pair

(Entity1, Entity2) in a vectorized form and a FeatureVector as described in

Section 5.6 are used as input for the respective classifier.

5.2 Level Two

Level two utilizes the same aforementioned model although the model now

includes entity type predictions as input for the classifiers as described by

Giuliano et al. (2007). The best results have been achieved using only the

named entity type prediction excluding the BILOU label.

5.3 Level Three

Level three uses global features to make more accurate predictions on the test

set. The level three models still use local features as the level two models and

global features in addition. In particular, the predictions of the entity clas-
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sification are used for relation classification and afterwards the predictions

of relation classification are used to predict better named entity tags. The

predictions of linear support vector machines have been utilized as global

features for entity-relation.

5.4 Level Four

Level four uses a model to join entity and relation classification. A linear-

chain CRF is used to classify the data after being fitted on the train set. A

sequence of tokens with corresponding features is the input and a sequence

of the following format is the output:

• Y − ARGX + Z.

• X is the number of the argument. As relations are directed, the relation

has a first and a second argument. X is the identifier of the relation

argument.

• Y is a relation type such as Live In or Kill of the token (or phrase)

• Z is the BILOU label of the token (or phrase)

• Examples: ”Live In-ARG1+B” or ”Kill-ARG2+U”

If the token does not participate in any relations a simple ”N” will be given

as the label. Table 7 shows already preprocessed data with the new label.

As the input only expects a binary classification problem, the model has to

be run multiple times with different relation types as labels with the same

model type (CRF). Thus, one model is used for each relation type. The model

cannot include entities with multi-labels (ARG1 and ARG2 for the same re-

lation type). Therefore all tokens with multi-labels are modelled into tokens

with one label. As this only happens in a miniscule amount of cases (around

1%) it should not affect the evaluation. Evaluating the predictions is not as
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SentenceID Token NER Relation Label

10 Israel U-Loc Live In Live In-ARG2+U

10 television O N N

10 rejected O N N

10 a O N N

10 skit O N N

10 by O N N

10 comedian O N N

10 Tuvia B-Peop Live In Live In-ARG1+B

10 Tzafir L-Peop Live In Live In-ARG1+L

· · · · · · · · · · · · · · ·

Table 7: Result of restructuring the data of sentence 10 to fit the model used

for level 4. In comparison to Table 6, all tokens have to be relabeled.

simple as it was for level one to three. First the tokens have to be converted

into entities respective to their predicted label. As the order is already estab-

lished there is no reason to determine the direction as seen in Table 6. Thus,

only the predicted order is saved. A relation counts as correctly predicted if

the entity boundaries are accurate and the order of the entity pair and the

order of the arguments is correct. For entity classification the model chooses

the predicted BILOU label and concatenates it with the appropriate named

entity tag related to the position of the entity in the argument (see Table

3). Thus, only entities that participate in relations can be recognized. The

entity type ”Other” cannot be predicted using this model since this entity

type does not participate in any relation.

Figures 8 and 9 showcase the different models. Figure 8 shows the model

of level one to three while Figure 9 shows the model of level four. All tokens

that do not participate in relations have the label N.
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Figure 8: Model of level one to three of the sentence ”Apple Inc. is based

in Cupertino, California”. The color red is used to mark features introduced

by level two while the color green is used to mark features used for entity

classification of level three.

Figure 9: Model of level four of the sentence ”Apple Inc. is based in Cupertino,

California”. Two different relations are found in the sentence indicating the

usage of two different CRF models.
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5.5 Hyperparameters

Hyperparameter optimization has been performed on named entity classifi-

cation of levels one to three and on the joint model of level four. The opti-

mization has been performed on regulation parameters (c1, c2) of the CRF

classifier using randomized search and 3-fold cross-validation. The model was

fitted 50 ∗ 3 = 150 times during the process. Hyperparameter optimization

on the joint model of level four was done in a similar way for all relation

types.

Optimizing the classifiers for relation classification has been done on a much

smaller scale as hyperparameter optimization of five different classifiers per

level is computationally expensive. Thus, only the parameter class weight

has been optimized for all classifiers. The LinearSVC classifier underwent an

additional optimization process of finding the best value of C among multiple

values. Parameters can be found in the appendix in Table 24.

5.6 Features

In this section the features are explained. The features for words (entities)

are similar to the features used by Florian et al. (2003) and Miwa and Sasaki

(2014). Some features are more general and the gazetteer information is ex-

cluded. For relations, a variety of different features is used. Cross-task fea-

tures for entity recognition and classification are used in level three to repre-

sent dependencies between entity and relation. (Shortest) Dependency paths

features are similar to Xu et al. (2015). The features used for each level can

be found in the Table 8 to 11. The features marked with colour indicate fea-

tures that are introduced in that respective level. Features marked with red

are introduced in level two and features marked with green are introduced

in level three. The colours are similar to the colours used in Figure 8.
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Target Category Features

Entity Lexical Word (first 2/3 characters)

Word types (word lower, initial-

capitalized, all-digits, all-puncts, title)

Part-Of-Speech Tags ( + pos bigrams)

Contextual Word (+ word bigrams within a con-

text window of 3 words (i-1,i,i+1)

Word types (as described) in a context

window of 3 words (i-1,i,i+1)

PoS-tags within a context window of 3

words(i-1,i,i+1)

Begin of Sentence, End of Sentence

Relation Entities Entities in bag-of-words model

Contextual Sentences (bigrams of characters) in

which the entities appear

Shortest

path

Shortest dependency path between two

entities (entity1-dependency-entity2)

The length of the paths

Table 8: Features for Level 1
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Target Category Features

Entity Lexical Word (first 2/3 characters)

Word types (word lower, initial-

capitalized, all-digits, all-puncts, title)

Part-Of-Speech Tags ( + pos bigrams)

Contextual Word (+ word bigrams within a con-

text window of 3 words (i-1,i,i+1)

Word types (as described) in a context

window of 3 words (i-1,i,i+1)

PoS-tags within a context window of 3

words(i-1,i,i+1)

Begin of Sentence, End of Sentence

Relation Entities Entities in bag-of-words model

Contextual Sentences (bigrams of characters) in

which the entities appear

Shortest

path

Shortest dependency path between two

entities (entity1-dependency-entity2)

The length of the paths

Entity

type

Predictions of entity label for each en-

tity

Table 9: Features for Level 2. The features which are different to level 1 are

highlighted in red.
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Target Category Features

Entity Lexical Word (first 2/3 characters)

Word types (word lower, initial-

capitalized, all-digits, all-puncts, title)

Part-Of-Speech Tags ( + pos bigrams)

Contextual Word (+ word bigrams within a con-

text window of 3 words (i-1,i,i+1)

Word types (as described) in a context

window of 3 words (i-1,i,i+1)

PoS-tags within a context window of 3

words(i-1,i,i+1)

Begin of Sentence, End of Sentence

Entity-

relation

Relation label and the label of its par-

ticipating entity

Relation Entities Entities in bag-of-words model

Contextual Sentences (bigrams of characters) in

which the entities appear

Shortest

path

Shortest dependency path between two

entities (entity1-dependency-entity2)

The length of the paths

Entity

type

Predictions of entity label for each en-

tity

Table 10: Features for Level 3. The features which are different to level 2 are

highlighted in green.
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Target Category Features

Entity and

Relation

Lexical Word (first 2/3 characters)

Word types (word lower, initial-

capitalized, all-digits, all-puncts, title)

Part-Of-Speech Tags ( + pos bigrams)

Contextual Word (+ word bigrams within a con-

text window of 3 words (i-1,i,i+1)

Word types (as described) in a context

window of 3 words (i-1,i,i+1)

PoS-tags within a context window of 3

words(i-1,i,i+1)

Begin of Sentence, End of Sentence

Adjacency

nodes

Adjacency nodes of all words from the

dependency tree

Table 11: Features for Level 4
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5.7 Implementation Methods

Python has been chosen as the programming language to implement the

models as Python offers various libraries dedicated to natural language pro-

cessing and machine learning.

Scikit-learn3 offers simple and efficient tools for data mining and data ana-

lysis built on NumPy, SciPy and matplotlib. Scikit-learn is an open source

library offering a wide range of state-of-the-art machine learning algorithms

for supervised and unsupervised learning (Pedregosa et al., 2011). Used al-

gorithms and methods for this thesis include CountVectorizer, a converter

of text documents into matrices of token counts and the implementations of

classifiers such as linear support vector machines.

Pandas4 is an open source library providing data structures and data anal-

ysis tools for Python. Pandas.DataFrames are the primary data structure

of pandas. DataFrames are two-dimensional tabular data structures with la-

beled axes, capable of allowing arithmetic operations on both row and column

labels and mutable in size. In the context of this thesis, DataFrames are used

to store all data in a flexible structure.

SpaCy5 is a free open source library for NLP in Python. Alongside its wide

area of NLP related tasks, it offers labelled dependency parsing. As our fea-

tures include the dependency grammar, a combination of SpaCy and Net-

workX6 are used to create the graphs using trained tokenization models7.

NetworkX algorithms are then applied to find the shortest path between

two words in a graph and to calculate the length of the path. Furthermore,

adjacent nodes within the graph are found and used as features for level four.

3http://scikit-learn.org/stable/
4https://pandas.pydata.org/
5https://spacy.io/
6https://networkx.github.io/
7https://spacy.io/usage/models
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6 Results and Analysis

In this section, the experiments and their results will be presented and ana-

lyzed.

6.1 Experiments and Results

The models have been applied to the development set for validation and hy-

perparameter tuning and the test set for testing. The results of entity recog-

nition and classification can be found in Table 12 and 13. Table 14 shows

the results of each entity type with BILOU encoding for each level while

Table 12 shows the results of each level for entity classification. All entity

types (including Other) are included in the table. The results of level four

are excluded as it uses a different model and therefore only includes named

entities that participate in relations. Thus, the results are not comparable.

The results of named entity recognition and classification for level four can

be found in the appendix (see Figure 25 and Figure 26). Level one and level

two use the same model for entity classification and hence their results are

identical. The results show that level three has the best overall F1 score with

a value of 0.830. Level one and level two are equal with an F1 score of 0.815.

There is no noticeable discrepancy between precision and recall for level one

and two. A slight discrepancy exists for level three as the score for recall is

about 0.1 worse than the score for precision. Level four has a comparable

precision score with 0.822. The accuracy score is comparable across all levels

with level three having slightly better results than level one and two.

Table 13 shows the results of each level for entity classification with the ex-

clusion of the entity type Other and an exclusion of the results of level four as

aforementioned. The results for the remaining entity types Person, Location

and Organisation are displayed in the table above. Level three has the overall

best results for Person and Organisation, with 0.884 and 0.816 respectively

while having the second best result of Location with an F1 score of 0.811. The
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Level All Entities Accuracy

Level 1 0.828 / 0.810 / 0.815 0.940

Level 2 0.828 / 0.810 / 0.815 0.940

Level 3 0.881 / 0.796 / 0.830 0.943

Table 12: Results of entity classification with all entity types (including

Other) on the test set (precision / recall / F1 score)

Level 1 & 2 Level 3

Person 0.838 / 0.905 / 0.869 0.889 / 0.880 / 0.884

Location 0.880 / 0.806 / 0.838 0.914 / 0.744 / 0.811

Organisation 0.739 / 0.747 / 0.741 0.844 / 0.794 / 0.816

Average 0.819 / 0.819 / 0.816 0.884 / 0.806 / 0.837

Table 13: Results of entity classification with named entity types (excluding

Other) on the test set (precision / recall / F1 score)

model of level one and two offers slightly worse results. The precision scores

of level four are nearly ideal for entity types Person and Location with 0.947

and 0.991 respectively. Table 14 is validating this observation. The entity

type Location has the best precision scores with Person having the overall

best recall scores and hence the best overall F1 score. The label U-Other has

low scores for both, precision and recall in all levels.
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Level 1 Level 2 Level 3 Level 4

B-Loc 0.91/0.76/0.83 0.91/0.76/0.83 0.98/0.66/0.79 1.00/0.37/0.54

I-Loc 0.95/0.69/0.80 0.95/0.69/0.80 0.97/0.58/0.73 1.00/0.52/0.68

L-Loc 0.88/0.74/0.80 0.88/0.74/0.80 0.98/0.66/0.79 1.00/0.37/0.54

U-Loc 0.85/0.89/0.87 0.85/0.89/0.87 0.83/0.87/0.85 0.98/0.34/0.51

B-Org 0.69/0.72/0.70 0.69/0.72/0.70 0.81/0.80/0.81 0.85/0.38/0.53

I-Org 0.69/0.77/0.73 0.69/0.77/0.73 0.89/0.87/0.88 0.76/0.38/0.50

L-Org 0.76/0.80/0.78 0.76/0.80/0.78 0.83/0.82/0.82 0.92/0.40/0.56

U-Org 0.86/0.67/0.76 0.86/0.67/0.76 0.85/0.62/0.72 1.00/0.28/0.43

B-Peop 0.82/0.88/0.84 0.82/0.88/0.84 0.89/0.89/0.89 0.92/0.55/0.69

I-Peop 0.82/0.95/0.88 0.82/0.95/0.88 0.94/0.91/0.92 0.98/0.68/0.80

L-Peop 0.87/0.94/0.91 0.87/0.94/0.91 0.89/0.89/0.89 0.94/0.56/0.70

U-Peop 0.83/0.81/0.82 0.83/0.81/0.82 0.80/0.78/0.79 1.00/0.29/0.45

B-Other 0.89/0.74/0.81 0.89/0.74/0.81 0.94/0.79/0.86 *

I-Other 0.84/0.70/0.76 0.84/0.70/0.76 0.91/0.76/0.83 *

L-Other 0.87/0.73/0.79 0.87/0.73/0.79 0.91/0.76/0.83 *

U-Other 0.58/0.45/0.51 0.58/0.45/0.51 0.54/0.39/0.45 *

Table 14: Results of entity classification visualized with all entity types in

BILOU encoding (precision/recall/F1 score). The * selected cells cannot be

classified with the level four approach as explained in the model description.
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Table 15 shows the results of each classifier used for relation extraction and

classification for all levels. Five different classifiers have been used to extract

and classify relations: Linear Support Vector Machine (LinearSVC), Decision

Tree Classifier (DTC), Perceptron, Stochastic Gradient Descent Classifier

(SGDC) and Maximum Entropy (MaxEnt). The arithmetic mean is added

below the results for each level. Due to the different model of level four the

relation extraction and classification of level four is done via linear-chain

CRF with and without graph features. The used features can be found in

Section 5.6.

The results for level one are mixed. DTC and SGDC have low F1 scores

with 0.32 and 0.36 respectively, whereas LinearSVC, Perceptron and Max-

Ent have about 20% higher F1 scores with around 0.44. The accuracy score

is about equal for all classifiers with a value of approximately 0.89. There is,

however a noticeable discrepancy between precision and recall for LinearSVC

and DTC. Consequently, LinearSVC performs the best for level one and DTC

performs the worst.

Level two sees distinguished improvements on all sides compared to level

one. All classifiers have increased recall and F1 scores with LinearSVC and

Perceptron being the best classifiers with an F1 score of 0.54. While preci-

sion went down for LinearSVC and SGDC, the increase of recall raised the

F1 score. Particularly the enhancement of the decision tree classifier is no-

ticeable. With an increase of its recall score from 0.24 to 0.43, which is nearly

an increase of 100% it augmented its F1 score from a poor 0.32 to a solid

0.49. There are no huge differences when comparing the results of level two

to the results of level three. SGD Classifier saw a small increase of 0.04 while

the other classifiers stayed mostly the same. Thus, level three offers slightly

better results than level two and given the results of the other levels, the best

results of all levels with an average F1 score of 0.52.
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Level 1

Classifier All Relations Accuracy

LinearSVC 0.66 / 0.36 / 0.46 0.912

DTC 0.51 / 0.24 / 0.32 0.897

Perceptron 0.52 / 0.41 / 0.44 0.881

SGDC 0.45 / 0.36 / 0.36 0.876

MaxEnt 0.50 / 0.42 / 0.44 0.888

avg/total 0.53 / 0.36 / 0.40 0.891

Level 2

LinearSVC 0.62 / 0.49 / 0.54 0.914

DTC 0.60 / 0.43 / 0.49 0.914

Perceptron 0.55 / 0.55 / 0.54 0.897

SGDC 0.40 / 0.59 / 0.46 0.857

MaxEnt 0.50 / 0.56 / 0.52 0.892

avg/total 0.53 / 0.52 / 0.51 0.895

Level 3

LinearSVC 0.58 / 0.49 / 0.53 0.915

DTC 0.61 / 0.44 / 0.49 0.914

Perceptron 0.53 / 0.55 / 0.53 0.894

SGDC 0.47 / 0.55 / 0.50 0.878

MaxEnt 0.49 / 0.58 / 0.53 0.892

avg/total 0.54 / 0.52 / 0.52 0.899

Level 4 CRF Graph 0.82 / 0.28 / 0.42 0.913

CRF 0.86 / 0.31 / 0.43 0.915

avg/total 0.84 / 0.30 / 0.42 0.914

Table 15: Results of relation extraction on the test set and using (precision

/ recall / F1 score) and accuracy to evaluate
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The results for level four show two linear-chain CRFs. One used graph fea-

tures such as adjacency nodes while the other did not include graph features.

Comparing the two models returns almost identical F1 scores of 0.42 for a

CRF with graph features and 0.43 for a CRF without graph features. The

recall scores follow the same scheme, whereas the precision scores show slight

differences with the CRF without graph features being marginally better than

the CRF with graph features. Level four has slightly better accuracy scores

compared to the other levels. However, accuracy as an evaluation metric is

flawed when it comes to an unbalanced amount of positives and negatives.

Thus, predicting N for all cases always results in high accuracy scores. Con-

sequently, the F1 score is the better alternative to compare results.

Table 16 and 17 show the results of each relation type for each classifier and

level. Table 16 includes the relation types Kill, Live In and Located In whilst

Table 17 shows the results of relation types Work For and OrgBased In. The

first noticeable thing about the table is the fact that the relation type Kill

has by far the best F1 score of all relations with the DTC reaching 0.90 for

level two and three. By way of contrast, the relation Located In has by far

the worst F1 score reaching a value of 0.38 at best while using the perceptron

classifier for level two and three. The results of OrgBased In and Work For

are more or less equal while the results for Live In are worse.

Moreover, Table 27 in the appendix shows the results of the used model

for level four. Here, the F1 scores for each argument of each relation are dis-

played. Additionally, each argument was split into all possible BILOU labels

to provide further information. CRF Dev describes the result on the valida-

tion set while CRF Test and CRF Test Graph describe the results on the test

set without graph features and with graph features. In short, the precision

scores are very high while the recall scores are somewhere between very low

and very good, as seen in all labels starting with Kill. Thus, performance of

the model is not as stable as the performance of level two and three.
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Level 1

Kill Live In Located In

LinearSVC 0.84/0.79/0.81 0.64/0.27/0.38 0.43/0.21/0.29

DTC 0.88/0.64/0.74 0.48/0.22/0.30 0.35/0.09/0.14

Perceptron 0.68/0.81/0.74 0.44/0.31/0.36 0.22/0.38/0.28

SGDC 0.45/0.89/0.60 0.46/0.19/0.27 0.30/0.17/0.22

MaxEnt 0.68/0.85/0.75 0.46/0.28/0.35 0.32/0.32/0.32

Level 2

LinearSVC 0.79/0.79/0.79 0.50/0.55/0.53 0.49/0.21/0.30

DTC 0.93/0.87/0.90 0.54/0.43/0.48 0.40/0.11/0.17

Perceptron 0.75/0.83/0.79 0.39/0.58/0.47 0.35/0.41/0.38

SGDC 0.66/0.89/0.72 0.39/0.58/0.47 0.42/0.26/0.32

MaxEnt 0.66/0.87/0.75 0.40/0.59/0.48 0.34/0.38/0.36

Level 3

LinearSVC 0.79/0.79/0.79 0.49/0.51/0.50 0.45/0.24/0.32

DTC 0.93/0.85/0.89 0.52/0.38/0.44 0.52/0.14/0.22

Perceptron 0.76/0.81/0.78 0.39/0.53/0.45 0.32/0.45/0.38

SGDC 0.51/0.91/0.65 0.43/0.54/0.48 0.27/0.44/0.33

MaxEnt 0.67/0.85/0.75 0.41/0.55/0.47 0.34/0.41/0.37

Level 4
CRF Graph 0.89/0.72/0.80 0.92/0.23/0.37 0.62/0.20/0.30

CRF 0.87/0.72/0.79 0.95/0.19/0.32 0.72/0.20/0.30

Table 16: Results of relation extraction (i) on the data set using (precision /

recall / F1 score) to evaluate
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Level 1

OrgBased In Work For

LinearSVC 0.82/0.43/0.56 0.64/0.30/0.41

DTC 0.56/0.29/0.38 0.46/0.14/0.22

Perceptron 0.80/0.34/0.48 0.51/0.45/0.48

SGDC 0.69/0.34/0.46 0.30/0.49/0.37

MaxEnt 0.72/0.39/0.51 0.37/0.49/0.42

Level 2

LinearSVC 0.70/0.54/0.61 0.69/0.50/0.58

DTC 0.61/0.50/0.55 0.71/0.49/0.58

Perceptron 0.75/0.51/0.61 0.63/0.55/0.59

SGDC 0.29/0.70/0.41 0.44/0.67/0.53

MaxEnt 0.58/0.56/0.57 0.59/0.55/0.57

Level 3

LinearSVC 0.67/0.55/0.61 0.62/0.49/0.53

DTC 0.62/0.50/0.56 0.62/0.53/0.57

Perceptron 0.71/0.51/0.60 0.59/0.58/0.58

SGDC 0.62/0.46/0.53 0.52/0.63/0.57

MaxEnt 0.58/0.58/0.58 0.56/0.64/0.60

Level 4
CRF Graph 0.88/0.28/0.43 0.71/0.16/0.26

CRF 0.92/0.31/0.47 0.77/0.17/0.28

Table 17: Results of relation extraction (ii) on the data set using (precision

/ recall / F1 score) to evaluate
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6.2 Analysis

The previous section introduced and presented the experiments the results.

The goal of this section is a comprehensive analysis of the results for both,

entity and relation classification starting from level one. The analysis of the

results of entity and relation recognition and classification will be divided

into two parts. First, the entity and relation classification for level one, two

and level three will be analysed and evaluated and then the joint approach

for level four will be examined.

Level 1 & 2 Level 3

Top Likely

I-Org ⇒ L-Org 7.5 B-Org ⇒L-Org 6.5

B-Org ⇒L-Org 7.1 B-Org ⇒ I-Org 6.4

B-Loc ⇒L-Loc 7.0 I-Org ⇒ L-Org 6.2

B-Org ⇒I-Org 6.6 I-Org ⇒ I-Org 6.0

I-Org ⇒I-Org 6.6 B-Loc ⇒ L-Loc 6.0

B-Loc ⇒I-Loc 6.6 B-Peop ⇒ L-Peop 5.9

I-Peop ⇒L-Peop 6.2 I-Peop ⇒ L-Peop 5.6

Bot Likely

O ⇒ I-Org -4.2 O ⇒ L-Loc -2.1

I-Other ⇒ O -4.1 B-Loc ⇒ O -2.1

O ⇒ L-Loc -3.6 O ⇒ I-Peop -2.0

O ⇒ I-Other -3.3 O ⇒ I-Org -2.0

B-Other ⇒ O -3.3 B-Org ⇒ O -1.7

B-Loc ⇒ O -3.2 O ⇒ L-Peop -1.5

I-Loc ⇒ O -3.1 B-Peop ⇒ O -1.5

Table 18: Transitions of CRF labels
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6.2.1 Entity Classification

Table 14 is an extensive spreadsheet showcasing the results for all possible

labels. The first step in analyzing the CRF layer is the extraction of the most

(and the least) likely transitions and the extraction of indicating words. Table

18 shows the seven most and least likely transitions while Table 19 displays

the five top positive and negative words for level one to three. All correlations

and transitions between entity types are accurate. It is very likely that the

beginning of an organisation name is followed by a token inside the name

(I-Org) or a token at the end of the name of the organisation. The same

applies for the relation type People. Transitions from and to tokens with the

label O are penalized. The Organisation labels have the most appearances in

the table even though Organisation as an entity type has one of the worst F1

scores (see Table 13). However when looking at Table 19 there are no appear-

ances of Org labels in the rows for level one and two. The first appearance

of an Org label is on position 12 with ”+1:word.lower():nomination”. There

is no appearance at all when looking at the top negatives. Thus even though

Organisation as a label has the most likely transitions, it does not have many

words indicating that the respective word does indeed belong to an Organ-

isation. The tagging is however very good once the beginning token of a

multi-token entity has been accurately labeled. Furthermore, the transition

score may indicates a better performance for entity recognition and classifi-

cation for level one and two than for level three but Table 19 weakens that

particular sentiment as the top positives are dominated by all relation type

features (global) with the prime example being ”relation:N ” with an out-

standing score of 12. The other relation types are all having positive scores

indicating that the inclusion of relation types as features is very helpful for

entity recognition. Another perk of including relation types as features is the

usage of context as for example the label U-Peop has the negative feature

”-1:word.lower():in”. This means that the word in before an entity implicitly

denies the possibility of the entity being a person. Worth mentioning is the

occurrence of an entity with two relation types which indicates a location.
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Label Feature Score

Level 1/2 Pos

U-Other +1:word.lower():basque 7.12

U-Other word.lower():rice 6.6

O word[-2:]:94 5.2

U-Loc word.lower():beijing 5.0

U-Loc word.lower():france 4.6

Level 1/2 Neg

O 1:word.lower():18th -4.0

O postag:NNP -3.7

O +1:word.lower():side -3.2

L-Peop +1:postag[:2]:NN -2.6

O +1:word.lower():plant -2.6

Level 3 Pos

O relation:N 12.0

U-Loc relation: Located In 4.3

U-Peop relation: Kill 4.1

U-Org relation: Work For 3.7

. . . . . . . . .

U-Loc relation: Located In OrgBased In 3.2

Level 3 Neg

U-Other +1:postag[:2]:NN -2.5

L-Peop +1:postag:NNP -1.9

U-Peop -1:word.lower():in -1.8

Table 19: Top positives and negatives CRF level 1&2 and level 3
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In general, most of the top positives and negatives involve labels with the

BILOU label (U)nit. Thus, entities with that particular label have some of the

best F1 scores, especially U-Loc. This is particularly important as relations

are mapped on isolated entity tokens (Unit) and last tokens of multi-token

entities. Furthermore, the occurences of various features revolving part-of-

speech tags (see Figure 11) is encouraging as ”O, postag:NNP, -3.7” indicates

that words with a proper noun tag (NP) are often entities. The same applies

for top positives or negatives like”O, word[-2:]:94, +5.2” that use word type

features, in this case digits, to indicate that the word is most likely not an

entity. Lafferty et al. (2001); Yao et al. (2009) described a close dependency

between NLP processed features and CRF performance which can also be

found in this model.

A rather worrisome point is the fact that the model seems to remember

the names of some entities. This is the case for some of the positives across

the three levels as locations such as France, Beijing or Moscow or even com-

mon words without relation affiliations like basque or rice appear in the top

15. This might be a case of overfitting which decreases the performance of

the model on new data (Cawley and Talbot, 2010).

6.2.2 Relation Classification

The pipeline approach treats the process of entity recognition and classifica-

tion as a necessary first step to extract relations. Relations are dependent on

entities and cannot be extracted if the required entities are not recognized.

Using cross-task features for both tasks improves the results of both tasks as

described earlier. In this section, an analysis of the results of relation classi-

fication will be presented.

Table 16 and Table 17 on page 51 and 52 have shown the results of each

classifier for each relation type. In this section, a special focus will be put on

the linear support vector machine classifier as the classifier is considered state

55



of the art (Lauer and Bloch, 2008; Tang, 2013). Figure 10 depicts the confu-

sion matrix of level one, two and three. The graphic depicts the predictions

of the classifier on the available data meaning that the best possible predic-

tion is the correct prediction of all correctly recognized and classified named

entities. The figure depicts the predicted labels on the x-axis and the actual

labels on the y-axis. The colour visualises the count of elements although

the sheer amount of accurate N predictions is dominating the figure. This

result is expected because most entity pairs have no relation to each other.

Regarding the N-rows there is a vast number of inaccurate predictions. Level

one mostly predicts N when it should predict another label while level two

and three predict another label when it should be N. This can be seen in the

N-column of level one and the N-row on level two and three. There is a huge

increase of predictions of the true label Live In when comparing the values

for level one and the other two. While this label is only 27 times predicted

using level one, it is 55 times predicted using level two. A similar increase

happens for the label Work For and the label OrgBased In while Located In

and Kill are barely affected. All those results can be seen in Table 16 and 17.

The results for relation types Located In and Kill for LinearSVC have only

marginal changes across all levels, whereas the results for Live In, Work For

and OrgBased In have stark contrasts between level one and two.

Table 20 shows the percentage of correctly predicted labels for each level.

The column Count lists the count of maximum possible relation types based

on the predicted entities while the column True Count lists the true count of

relation types. As expected, the percentage of correctly predicted relations

is higher when only the maximum possible relations are considered. There is

a steady increase of correctly predicted relation types across the three levels

with the exception of Live In which has better results for level two than level

three. This can be explained by referencing Table 14 as L-Loc and U-Loc have

better results for level two than level three and hence more existing relations

can be discovered. There is also almost no improvement for Located In as the
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(a) Confusion matrix level 1 LinearSVC

(b) Confusion matrix level 2 LinearSVC

(c) Confusion matrix level 3 LinearSVC

Figure 10: Confusion matrices using the LinearSVC classifier
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Relation Type Count % True Count True %

Level 1

Kill 47 79 47 79

Live In 78 35 100 27

Located In 78 25 94 21

OrgBased In 85 53 105 43

Work For 58 40 76 30

Level 2

Kill 47 79 47 79

Live In 78 71 100 55

Located In 78 25 94 21

OrgBased In 85 67 105 54

Work For 59 64 76 50

Level 3

Kill 47 79 47 79

Live In 77 66 100 51

Located In 83 27 94 25

OrgBased In 85 69 105 55

Work For 61 64 76 50

Table 20: The percentage of correctly predicted relations for level one to three

results of relation classification of level one and two regarding relations with

the entity type Location have the worst results. The small number of correctly

predicted relations with the entity type Location as their first (or second) ar-

gument influences the results of level three by the fact that the linear-chain

conditional random field precisely picks the already established location en-

tities (marked with the relation type Located In) without returning a broad

amount of entities. This explains the low recall score of all location labels in

Table 14 for level three. Due to the high precision score more actual relations

with the entity type Location are discovered. The largest improvement in the

Table 20 can be found for the relation type Live In. The gradient jump from

a low percentage of 35% of level one to a high percentage of 71% for level

58



two is significant. As both models use the same entity classification method

this increase can only be explained by the utilization of different features

of the relation extraction. Level two uses entity type predictions as input

for relation classification. The best results have been achieved without using

BILOU encoding. The top positive features for level one and the relation

type Live In include common locations such as ”england”, ”of york”, ”italy”

or ”mexico” or persons such as ”robinson”,”george” or ”elizabeth” while

the top negative features include miscellaneous words like ”comma came”,

”march”, ”replaced” or ”president of”. Furthermore, top negative features

also include words like ”ap” or ”xinhua” which indicate organisations and

the aforementioned words are indeed top positive features for the relation

type OrgBased In. In contrast, the top negative features for level two and

the relation type Live In is the predicted entity type Other among others.

For the relation type N the top feature is also Other while various names or

locations are included in the top negatives. Words with the entity type Other

have no relations and therefore indicate the classifier that entities with the

feature Other should not participate in any relation and hence the classifier

predicts N. There is almost no difference between the top features for level

two and the top features for level three. There is a noticeable change regard-

ing the intercept values for level one and two. For level one the values are all

negatives [−0.8,−0.4] for the relation types without N which is around 0.08.

Level two however has values between [−1.0,−1.5] for the relation types and

0.7 for N. The classifier is therefore much more likely to predict N for an

unknown entity pair for level one than for level two and three.

The increase of performance between level one and level two is the main dif-

ference between the levels. The increase of performance is due to the selection

of entity types as additional features. This addition improves the classifica-

tion process by a noticeable amount. The differences between level two and

three can be explained by the better results of entity classification as there is

no real difference regarding relation extraction between level two and three.
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6.2.3 Analysis of the Joint Model

As the previous models treat the task of entity and relation classification as

a pipeline of two separated tasks, the model may hurt the performance of

both tasks. One of the most important arguments is the fact that named en-

tity recognition and classification is the basis for relation classification. Thus,

errors in the upstream component (NER) are propagated to the downstream

component (RC) without any feedback (Zhou et al., 2017) as described in

the sections before. Thus, it is impossible to properly extract relations if

the corresponding entities were not even recognized. Furthermore, a separate

model does not consider cross-task dependencies. As the results of level two

and three show, using a more combined model including the consideration

of cross-task dependencies such as relation type features as input for entity

classification increases the performance for both tasks.

The model used for level four however, has worse results than the disjointed

models as described in Section 6.1. The analysis of the joint model will ex-

plain the differences of performance. Table 21 shows a sentence of the dataset

SentenceID NER POS Token Model

2741 B-Loc NNP BUENOS Located In-ARG1-B

2741 L-Loc NNP AIRES Located In-ARG1-L

2741 O , COMMA N

2741 U-Loc NNP Argentina Located In-ARG2-U

2741 O -LRB- -LRB N

2741 U-Org NNP AP N

2741 O -RRB- -RRB- N

0 2 Located In

Table 21: Example of a sentence with the model for level four
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using the format for level four. The labels have been adjusted to fit into the

scheme. The sentence contains a relation of the relation type Located In and

the two corresponding entities Buenos Aires and Argentina. It also contains

the entity AP. AP is an entity of the entity type Organisation that is very

easy to classify (see Section 6.2.1) if the model could recognize it. Due to

the method used however, the model is not able to recognize entities without

relations as their label does not accurately represent them as named entities.

Label True Count Lvl 4 True Lvl 4 Miss Lvl 4 Pred

B-Loc 153 106 47 56

I-Loc 52 41 11 27

L-Loc 153 106 47 56

U-Loc 274 199 75 96

B-Org 122 92 30 54

I-Org 120 92 28 59

L-Org 122 92 30 53

U-Org 76 51 25 21

B-Peop 236 201 35 141

I-Peop 133 120 13 92

L-Peop 236 201 35 142

U-Peop 85 48 37 25

B-Other 84 0 84 0

I-Other 46 0 46 0

L-Other 84 0 84 0

U-Other 49 0 49 0

Sum 2024 1349 675 822

Table 22: Count of named entity types in the test set
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Table 22 represents the amount of named entities in the test set using the

model for level four. The column ”Lvl 4 True” displays the amount of named

entity types in the test set for model four. As seen in the table, 675 named en-

tities cannot be represented. This implies that 1
3

of all named entities cannot

be recognized and classified. Thus, using this model for named entity recog-

nition and classification is not comparable to previous models as a third of

all named entities cannot even be classified.

Table 27 in the appendix shows the complete results of the model for level

four. Each argument is displayed for each BILOU label and relation type.

All named entities participating in relations can be recognized and classified

by the position they appear in. A relation is correctly extracted if the entire

named entity boundary is accurate and the order of the named entities partic-

ipating in the relation is accurate. That is to say, that in order for a relation

to be correct, both arguments have to be accurate. If one of the two necessary

arguments is wrong or simply inaccurate, the corresponding relation cannot

be extracted. That implies that a multi-token entity has to be completely ac-

curate for the relation to count as correct. The transition matrix of each CRF

has learned correct transitions between arguments. Thus, it is likely for the

CRF to correctly classify a multi-token entity if the entity was recognized.

Recognition, however is a huge problem. This is mirrored in the results of

each relation type. As the combination of two pertinent relation arguments

proves to be difficult, the performance dwindles. A change of the evaluation

method may thwart this assessment. Mapping relations to the last token of

multi-token entities similar to the models for level one to three and only focus

on the last token as entity boundary may increase performance of the model.

An addition to the established tagging model may increase performance by

adding new tags for entities that do not participate in relations. The tag

could have a format of N-X+Z with N indicating that the token does not

participate in a relation, X being the NER tag and Z being the BILOU label.
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6.2.4 Comparison to State-of-the-Art Results

Kate and Mooney (2010) Roth and Yih (2004)

Person 0.921 / 0.942 / 0.932 0.894 / 0.892 / 0.893

Location 0.908 / 0.942 / 0.924 0.682 / 0.909 / 0.779

Organisation 0.905 / 0.887 / 0.895 0.869 / 0.914 / 0.891

Kill 0.916 / 0.641 / 0.752 0.736 / 0.821 / 0.776

Live In 0.664 / 0.601 / 0.629 0.616 / 0.397 / 0.483

Located In 0.675 / 0.567 / 0.583 0.430 / 0.547 / 0.482

OrgBased In 0.662 / 0.641 / 0.647 0.849 / 0.361 / 0.506

Work For 0.735 / 0.683 / 0.707 0.516 / 0.421 / 0.464

Level 3

Person 0.889 / 0.880 / 0.884

Location 0.914 / 0.744 / 0.811

Organisation 0.844 / 0.794 / 0.816

Kill 0.79 / 0.79 / 0.79

Live In 0.49 / 0.51 / 0.50

Located In 0.45 / 0.24 / 0.32

OrgBased In 0.67 / 0.55 / 0.61

Work For 0.62 / 0.49 / 0.53

Table 23: Results of state-of-the-art methods and results of level three using

linear support vector machines (precision / recall / F1 score).

Table 23 shows a comparison of the results to standard state-of-the-art meth-

ods. As shown in the table, the model has comparable performances to the

linear programming model utilized by Roth and Yih (2004) and to the card-

pyramid model introdcued by Kate and Mooney (2010).
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7 Conclusion and Future Work

Named entity classification and relation classification are two important tasks

in Information Extraction that are heavily connected. The standard method

of extracting entities and relations is defined as a pipeline model of two

independent subtasks. With this separation, underlying dependencies and

cross-task features are ignored. Incrementally joining entity and relation clas-

sification into one joint model is desirable not only due to possible utilization

of cross-task dependencies but also to increase performance of the two tasks.

The goal of this thesis was the investigation of different levels of joining

entity and relation classification. Four levels were hereto defined with an

incremental increase of cross-task features per level. Level one uses the stan-

dard pipeline model of two sequential and independent subtasks. It achieved

an F1 score of 0.815 for entity classification and an F1 score of 0.40 for re-

lation classification across all classifiers. Level two includes the utilization of

entity type information as features for relation extraction and increases the

performance of relation extraction to an F1 score of 0.51, whereas the entity

classification uses the same model as level one. Level three uses relation type

features as additional features for entity classification and increases the F1

score of entity classification to 0.830. Relation classification uses the same

model as level two and performs slight better with an F1 score of 0.52 for

relation classification across all classifiers.

Level four uses a completely joint model for both tasks. As the model only

includes named entities that participate in relations, entity recognition and

classification is not comparable to the other levels and is also not advised.

Although good results for the prediction of relation arguments were achieved,

the combination of two different arguments proved to be difficult resulting in

a low F1 score of 0.42, which while higher than level one, is still not on par

with the models of level two and three. It could be proven however, that the
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enhancement of performance was indeed dependent on the usage of cross-task

features. Thus, the model for level three saw better results than the model

for level one.

To sum up, the answer to the main research question of this thesis can be

given as follows:

• Level three achieved the best results for both tasks.

• It used models which include cross-task features for both entity and

relation classification.

• Those cross-task features were key to increase the performance.

7.1 Future Work

As for future work, improvements could be achieved by choosing additional

features. Linear-chain CRFs rely heavily on features and thus, the correct

choice of accurate features may improve the results of the model. Further-

more, the model for level four leaves much to be desired. The model should be

capable of extracting named entities and relations more accurately and not

exclude named entities from the data set by applying a more detailed tagging

scheme as described earlier. Hyperparameter optimization should be done for

all classifiers of each level as classifiers perform much better when optimized.

Eventually, the models could be extended to apply deep learning methods

as recent works using neural networks massively improve performance for

relation extraction.
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8 Appendix

Figure 11: List of part of speech tags Taylor et al. (2003)
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Classifier Regulation Class Weight

Level 1-3

CRF c1 = 0.146 , c2 = 0.046 -

LinearSVC C = 1, penalty= l2 None

DTC - None

Perceptron max iter=50, alpha=0.0001 None

SGDC loss=hinge, penalty= l2 Balanced

MaxEnt C = 1, penalty= l2 Balanced

Level 4

CRF Live In c1 = 0.072 , c2 = 0.023 -

CRF Located In c1 = 0.007 , c2 = 0.081 -

CRF Kill c1 = 0.070 , c2 = 0.029 -

CRF OrgBased In c1 = 0.210 , c2 = 0.039 -

CRF Work For c1 = 0.572 , c2 = 0.009 -

Table 24: Hyperparameter optimization results

Table 24 provides the results of hyperparameter optimization. All CRFs use

gradient descent with the L-BFGS method and 100 iterations.
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Level All Entities Accuracy

Level 4 0.822 / 0.382 / 0.513 0.849

Table 25: Results of entity classification with all entity types (including

Other) on the test set (precision / recall / F1 score) for level four

Level 4

Person 0.947 / 0.548 / 0.451

Location 0.991 / 0.369 / 0.535

Organisation 0.873 / 0.367 / 0.513

Table 26: Results of entity classification with named entity types (excluding

Other) on the test set (precision / recall / F1 score) for level four
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CRF Dev CRF Test CRF Test Graph

P/R/F1 P/R/F1 P/R/F1

Live In

Live InARG1+B 0.71/0.38/0.50 0.79/0.40/0.53 0.82/0.43/0.56

Live InARG1+I 0.80/0.24/0.36 0.85/0.46/0.59 1.00/0.50/0.67

Live InARG1+L 0.71/0.38/0.49 0.79/0.42/0.55 0.85/0.46/0.59

Live InARG1+U 0.00/0.00/0.00 1.00/0.05/0.10 1.00/0.05/0.10

Live InARG2+B 0.76/0.63/0.68 0.85/0.58/0.69 0.88/0.60/0.72

Live InARG2+I 0.87/0.79/0.83 0.92/0.88/0.90 0.92/0.88/0.90

Live InARG2+L 0.76/0.63/0.68 0.85/0.57/0.68 0.88/0.59/0.71

Live InARG2+U 0.48/0.18/0.26 0.33/0.11/0.17 0.31/0.09/0.14

avg/total 0.68/0.42/0.51 0.78/0.44/0.54 0.81/0.56/0.57

Loc In

Loc In-ARG1+B 1.00/0.21/0.35 0.60/0.21/0.32 0.70/0.25/0.37

Loc In-ARG1+I 1.00/0.08/0.14 0.00/0.00/0.00 0.80/0.28/0.41

Loc In-ARG1+L 1.00/0.20/0.33 0.70/0.24/0.36 0.80/0.28/0.41

Loc In-ARG1+U 0.50/0.20/0.29 0.78/0.21/0.33 0.88/0.27/0.41

Loc In-ARG2+B 0.83/0.24/0.37 0.40/0.13/0.20 0.50/0.13/0.21

Loc In-ARG2+I 0.00/0.00/0.00 0.00/0.00/0.00 0.00/0.00/0.00

Loc In-ARG2+L 0.83/0.25/0.38 0.40/0.14/0.21 0.50/0.14/0.22

Loc In-ARG2+U 0.68/0.60/0.64 0.83/0.56/0.67 0.87/0.54/0.67

avg/total 0.78/0.30/0.39 0.66/0.29/0.39 0.78/0.32/0.44

Work For

Work ForARG1+B 0.60/0.34/0.44 0.66/0.44/0.53 0.66/0.44/0.53

Work ForARG1+I 0.67/0.43/0.52 0.69/0.56/0.62 0.78/0.44/0.56

Work ForARG1+L 0.66/0.37/0.47 0.65/0.50/0.57 0.67/0.47/0.55

Work ForARG1+U 0.00/0.00/0.00 0.75/0.30/0.43 0.75/0.30/0.43

Work ForARG2+B 0.55/0.20/0.29 0.53/0.44/0.49 0.50/0.35/0.41

Work ForARG2+I 0.65/0.23/0.34 0.43/0.35/0.39 0.37/0.31/0.33

Work ForARG2+L 0.55/0.20/0.30 0.55/0.42/0.47 0.58/0.40/0.47

Work ForARG2+U 0.80/0.36/0.50 0.83/0.23/0.36 1.00/0.23/0.37

avg/total 0.59/0.27/0.37 0.59/0.42/0.48 0.60/0.38/0.46

Org In

Org InARG1+B 0.86/0.36/0.51 0.73/0.38/0.50 0.83/0.40/0.54

Org InARG1+I 0.73/0.17/0.27 0.72/0.33/0.45 0.82/0.35/0.49

Org InARG1+L 0.86/0.35/0.49 0.85/0.44/0.58 0.88/0.40/0.55

Org InARG1+U 0.61/0.64/0.62 0.70/0.53/0.60 0.81/0.43/0.57

Org InARG2+B 1.00/0.27/0.42 1.00/0.46/0.63 1.00/0.42/0.59

Org InARG2+I 0.00/0.00/0.00 1.00/0.25/0.40 1.00/0.13/0.22

Org InARG2+L 1.00/0.31/0.47 1.00/0.45/0.63 1.00/0.46/0.63

Org InARG2+U 0.74/0.38/0.51 0.74/0.36/0.57 0.71/0.43/0.54

avg/total 0.80/0.34/0.46 0.80/0.43/0.55 0.84/0.40/0.54

Kill

Kill-ARG1+B 0.97/0.88/0.92 0.94/0.82/0.88 0.91/0.82/0.86

Kill-ARG1+I 0.96/0.86/0.91 1.00/0.81/0.89 0.96/0.84/0.90

Kill-ARG1+L 0.97/0.88/0.92 0.94/0.82/0.88 0.91/0.82/0.86

Kill-ARG1+U 1.00/0.64/0.78 1.00/0.86/0.92 0.88/1.00/0.93

Kill-ARG2+B 1.00/0.72/0.84 0.86/0.76/0.81 0.89/0.73/0.80

Kill-ARG2+I 1.00/0.93/0.96 0.94/0.90/0.92 0.96/0.86/0.90

Kill-ARG2+L 1.00/0.72/0.84 0.86/0.76/0.81 0.89/0.73/0.80

Kill-ARG2+U 1.00/0.76/0.86 0.92/0.86/0.89 0.92/0.79/0.85

avg/total 0.99/0.81/0.89 0.93/0.82/0.87 0.92/0.81/0.86

Table 27: Results of relation arguments on the data set using the model for

level four (precision / recall / F1 score)
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