
Institut für Maschinelle Sprachverarbeitung

University of Stuttgart
Pfaffenwaldring 5 b
D–70569 Stuttgart

Masterarbeit

A Visual Analytics Approach for
Explainability of Deep Neural

Networks

Paul Kuznecov

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Ngoc Thang Vu

Supervisor: Prof. Dr. Ngoc Thang Vu,
Dipl.-Inf. Tanja Munz, M.Sc.

Commenced: April 1, 2018

Completed: October 1, 2018

Abstract

Deep Learning has advanced the state-of-the-art in many fields, including machine translation, where
Neural Machine Translation (NMT) has become the dominant approach in recent years. However,
NMT still faces many challenges such as domain adaption, over- and under-translation, and handling
long sentences, making the need for human translators apparent. Additionally, NMT systems pose
the problems of explainability, interpretability, and interaction with the user, creating a need for better
analytics systems. This thesis introduces NMTVis, an integrated Visual Analytics system for NMT
aimed at translators. The system supports users in multiple tasks during translation: finding, filtering
and selecting machine-generated translations that possibly contain translation errors, interactive
post-editing of machine translations, and domain adaption from user corrections to improve the NMT
model. Multiple metrics are proposed as a proxy for translation quality to allow users to quickly find
sentences for correction using a parallel coordinates plot. Interactive, dynamic graph visualizations
are used to enable exploration and post-editing of translation hypotheses by visualizing beam search
and attention weights generated by the NMT model. A web-based user study showed that a majority
of participants rated the system positively regarding functional effectiveness, ease of interaction
and intuitiveness of visualizations. The user study also revealed a preference for NMTVis over
traditional text-based translation systems, especially for large documents. Additionally, automated
experiments were conducted which showed that using the system can reduce post-editing effort and
improve translation quality for domain-specific documents.

Kurzfassung

Deep Learning hat den Stand der Technik in vielen Bereichen, einschließlich der maschinellen
Sprachübersetzung, vorangetrieben. In den letzten Jahren ist Neural Machine Translation (NMT)
zu dem dominanten Ansatz für maschinelle Sprachübersetzung geworden. Es existiert jedoch noch
immer eine Vielzahl von Herausforderungen in NMT, wie beispielsweise Domänenanpassung,
Über- und Unterübersetzung, sowie der Umgang mit langen Sätzen. Außerdem haben NMT-
Systeme die Probleme der Erklärbarkeit, Interpretierbarkeit und Interaktion mit Endnutzern, was
zu einem Bedarf an besseren Analysesysteme führt. In dieser Arbeit wird NMTVis vorgestellt,
ein Visual Analytics System für NMT, das an Übersetzer gerichtet ist. Das System unterstützt
Nutzer in einer Vielzahl von Aufgaben: dem Finden, Filtern, und Auswählen von fehlerhaften
maschinellen Übersetzungen, der interaktiven Nachbearbeitung von Übersetzungen, und der
Domänenanpassung des NMT-Modells durch Nutzerkorrekturen. Mehrere Metriken werden
eingesetzt, um fehlerhafte Übersetzungen zu detektieren, und mit Parallelen Koordinaten visualisiert.
Interaktive, dynamische Graphen-Visualisierungen werden zur Analyse von Übersetzungshypothesen
und zur Nachbearbeitung eingesetzt, wobei Beam-Search und Attention-Gewichte des NMT Modells
visualisiert werden. Eine web-basierte Nutzerstudie zeigte, dass eine Mehrzahl der Teilnehmer
das System positiv in Hinblick auf Effektivität, Benutzbarkeit und Intuitivität der Visualisierungen
bewerten. Die Nutzerstudie zeigte zusätzlich eine Präferenz für NMTVis gegenüber traditionellen
textbasierten Übersetzungssystemen, insbesondere für große Dokumente. Mehrere automatisierte
Experimente belegten außerdem, dass das System zu einer Reduzierung des Arbeitsaufwands in der
Nachbearbeitung und Verbesserung der Übersetzungsqualität für domänenspezifische Dokumente
führen kann.

3

Contents

1 Introduction 11

2 Background 13
2.1 Machine Learning & Deep Learning . 13
2.2 Neural Networks . 13
2.3 Recurrent Neural Networks . 16
2.4 Long Short-Term Memory . 17
2.5 Visual Analytics . 19
2.6 Related Works . 23

3 Neural Machine Translation 27
3.1 Introduction . 27
3.2 Attention Mechanism & Alignment . 28
3.3 Beam Search Decoding . 30
3.4 Handling Rare Words . 32
3.5 Domain Adaption . 34
3.6 Training . 34
3.7 Evaluation Metrics . 35

4 System Description 37
4.1 Goals & Requirements . 37
4.2 Workflow . 40
4.3 Document View . 40
4.4 Metrics View . 42
4.5 Keyphrase View . 46
4.6 Beam Search View . 47
4.7 Attention View . 53
4.8 Domain Adaption . 55
4.9 Implementation . 56
4.10 NMT Model . 56

5 User Study 63
5.1 Goals . 63
5.2 Study Design . 63
5.3 Data Set . 64
5.4 Participants . 66
5.5 Results . 66
5.6 Discussion . 69

5

6 Automated Evaluation 71
6.1 Data Set . 71
6.2 Correlation of Metrics and Translation Quality 72
6.3 Low Translation Quality Experiment . 74
6.4 Domain Adaption Experiment . 75
6.5 Discussion . 79

7 Conclusion 81

Bibliography 83

A Questionnaire 89

6

List of Figures

2.1 Feedforward Neural Network Structure . 14
2.2 Recurrent Neural Network . 16
2.3 LSTM Architecture . 17
2.4 Visual Analytics Process . 19
2.5 Visual Analytics in Deep Learning . 20

3.1 Encoder-Decoder Architecture . 27
3.2 Attention Mechanism . 28
3.3 Alignment Matrix . 30
3.4 Beam Search Decoding . 31
3.5 BPE Merge Operations . 33

4.1 System Overview . 39
4.2 Standard System Workflow . 40
4.3 Standard System Workflow . 41
4.4 Metrics View . 42
4.5 Attention Metrics . 43
4.6 Metrics View - Usage Scenarios . 45
4.7 Keyphrase View . 46
4.8 Beam Search View . 47
4.9 Beam Search View - Model . 48
4.10 Beam Search View - Visual Encoding . 49
4.11 Beam Search View - Number of Translations 50
4.12 Beam Search View - Correction . 51
4.13 Beam Search View - Custom Correction . 51
4.14 Beam Search View - Interaction . 52
4.15 Attention View . 53
4.16 Attention View - Under-Translation . 54
4.17 Attention View - Over-Translation . 55
4.18 Domain Adaption . 55
4.19 System Architecture . 56
4.20 Attentional Encoder-Decoder Architecture . 57
4.21 Training and Validation Loss . 59
4.22 Bleu Training Scores . 60

6.1 Correlation of Metrics and Translation Quality 72
6.2 Distribution of Metric Scores . 73
6.3 Low Translation Quality Covered per Metric . 74
6.4 Bleu Change in Domain Adaption Experiment 75
6.5 Unigram F1 Change in Domain Adaption Experiment 76

7

List of Tables

4.1 Translation Data Sets . 58
4.2 NMT Training Results . 61

5.1 User Study Document - Sample Sentences . 65
5.2 User Study Document - Keyphrases . 65
5.3 User Study Results - Participant Background . 66
5.4 User Study Results - General Effectiveness . 67
5.5 User Study Results - Effectiveness . 67
5.6 User Study Results - Visualization . 68
5.7 User Study Results - Interaction . 68

6.1 Khresmoi Medical Data Set . 71
6.2 Translation of Rare Words - Example . 78

8

List of Abbreviations

AP Absentmindedness Penalty

BPE Byte Pair Encoding

CDP Coverage Deviation Penalty

CP Coverage Penalty

EOS End-of-Sequence

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

ML Machine Learning

NMT Neural Machine Translation

NN Neural Network

RNN Recurrent Neural Network

SOS Start-of-Sequence

VA Visual Analytics

9

1 Introduction

In recent years, significant progress was made in the field of machine translation [SHB16; VSP+17;
WSC+16] through Neural Machine Translation (NMT) due to large data sets, novel techniques,
architectures and advances in parallel computing. NMT methods have become state-of-the-art,
and are widely employed for translation tasks. However, while significant research was made
into improving these models, they still remain “black-boxes”, as their internal representation is
not suitable for human understanding. For example, NMT models still suffer from issues such
as over- and under-translation [TLS+17], where certain words are either translated repeatedly or
not translated at all, as well as handling rare words and long sentences [KK17]. These problems
show that while NMT systems have achieved promising results in recent years, the need for human
translators to correct errors and evaluate machine-generated translations still exists.

Another big challenge NMT systems face is domain adaption [KK17], meaning that NMT models
trained on general data sets perform worse at translating domain-specific documents such as medical,
legal or scientific texts. However, specific domains are where high-quality machine translation
systems are most useful and necessary [CW18]. For example, operational manuals often have
thousands of pages, containing specific technical terminology and must often be available in multiple
languages, while also being tedious to translate for human translators due to their repetitiveness and
large sizes [Hut05]. At the same time, an adequate translation quality is desired without spending
too much time or effort. NMT systems have the advantage of being computationally efficient, thus
being able to translate large documents quickly but possibly with erroneous translations. Humans,
on the other hand, are comparatively slow but can easily spot and correct wrong translations.
Therefore, combining NMT and human interaction could help to mitigate these disadvantages of
NMT and human translators to get the best of both worlds.

The rapid progress in NMT has created a need for better analytics [KK17], due to the increasing
complexity and opaqueness of these systems. In order to successfully combine NMT and human
interaction to support users, Visual Analytics (VA) can be used, which is a method for facilitating
analytical reasoning by using interactive interfaces. VA can be employed to support users for finding
erroneous translations, collaborative translation, and post-editing. Existing approaches applying
visualizations to NMT have focused on aiding researchers for debugging or gaining insight into
models [SGPR18] [SGB+18], or only focused on a small part of the translation process such as
visualizing beam search [LSK17] or attention weights [RFB17]. However, integrated approaches
that tackle multiple challenges in translating large documents, i.e. pre-translation, sentence selection
and interactive post-editing targeting end users are needed. NMT also offers new opportunities for
interaction and visualization through techniques such as the attention mechanism and beam search
decoding.

11

1 Introduction

This thesis aims at developing an integrated VA approach for translating domain-specific documents
using an NMT model. The proposed system should help users to find erroneous translations,
and aid in post-editing using interactive visualizations. The system should adapt to a domain by
incorporating user corrections and iteratively improve itself. Finally, the system should keep the
human user in the loop, making the underlying NMT model interpretable and explainable.

The main contributions of this thesis are:

1. Proposal of a novel VA approach for interactive post-editing with NMT models

2. Development of a prototype using an attentional encoder-decoder NMT model implementing
the proposed approach

3. Development of interactive visualizations and techniques for exploring documents, translation
hypotheses, and NMT model aspects including beam search and attention weights

4. Evaluation through a user study and automated experiments to validate the proposed approach

Structure

This thesis is structured as follows:

Chapter 2 – Background gives an overview over relevant background topics related to Machine
Learning, different types of Neural Networks, Visual Analytics and related works.

Chapter 3 – Neural Machine Translation gives a brief introduction to Neural Machine Translation,
as well as related techniques and challenges that are relevant for the proposed system, such as
the attention mechanism, domain adaption and handling rare words.

Chapter 4 – System Description introduces the proposed system called NMTVis and describes
its goals, design, architecture and implementation.

Chapter 5 – User Study describes the web-based user study and discusses the results.

Chapter 6 – Automated Evaluation describes the automated experiments that were conducted
concerning the effectiveness of the system.

Chapter 7 – Conclusion summarizes the findings of this thesis and discusses future research
directions.

12

2 Background

This chapter will give additional background for relevant topics and introduce the most important
theoretical foundations related to Machine Learning that are needed to understand Neural Machine
Translation. First, Machine Learning and Deep Learning are introduced, and Neural Networks
are explained, including forward- and backpropagation. Then, Recurrent Neural Networks are
described, followed by a short introduction to the Long Short-Term Memory architecture. A brief
introduction to Visual Analytics and approaches for Deep Learning is given. Finally, related works
are summarized and discussed in the context of this thesis.

2.1 Machine Learning & Deep Learning

Machine Learning (ML) is a research field that concerns itself with algorithms and techniques to
extract patterns from raw data [GBC16], in order to create models that can perform tasks without
being explicitly programmed for them. This enables a new computational paradigm, where computer
programs can perform cognitive tasks such as speech recognition, translation, or image labeling by
learning from experience. Computers learn a hierarchy of concepts, where each concept is built
from simpler concepts. Concepts can thus be seen as layered on top of each other, starting from
simple concepts and building up to complex concepts. For example, in machine translation, a model
may first learn the semantic meaning of each word, and then how words are related within a sentence
based on their meaning, and then how words from different languages relate to each other. Deep
Learning is a subfield of ML that represents the world as a nested hierarchy of concepts, where
more abstract representations are computed from less abstract ones [GBC16]. Neural Networks
are at the core of Deep Learning, as they directly model these deep hierarchies of concepts using
multiple layers.

2.2 Neural Networks

A Neural Network (NN) is a type of non-linear model consisting of artificial neurons [Sch97]. Due
to their ability to approximate any function on their input to any desired accuracy, they are regarded
as ”universal approximators” [HSW89], making them useful for a wide variety of tasks. They
can be used for classification, i.e. classifying data into predetermined classes, or regression, i.e.
predicting some real-valued output. Neurons, which are vaguely inspired by biological neurons, are
the basic building block of NNs. Feedforward NNs are the simplest type of NN, taking some input
and computing output. This computation is defined by the structure of the NN, as well as the choice
of so-called activation functions, which are applied during computation.

13

2 Background

Figure 2.1: The structure of a feedforward NN with single hidden layer. Intermediate nodes within
layers are left out for visual clarity.

Figure 2.1 shows the typical structure of a feedforward NN. The structure of an NN can be viewed
as a directed, weighted graph, with neurons acting as vertices and connections between neurons as
edges with specific weights. An NN consists of multiple layers, which are related sets of neurons at
a certain depth in the NN. No connections are allowed between nodes within a layer, and nodes can
only be connected to nodes in subsequent layers. The input data is fed into the input layer, which
simply stores the input. Then, at least one hidden layer follows, which can be seen as an abstract
representation of the input data that is learned by the NN. Multiple hidden layers can be stacked,
each with possibly distinct sizes. Finally, the output layer contains the output of the NN, computed
from the last hidden layer.

2.2.1 Forward Propagation

We now want to focus on how exactly the input is transformed into the output in a feedforward NN,
a process also called forward propagation. Let us assume that the input of the NN is a vector x of
size m, we want to transform it into the output vector y of size n. For simplicity, let us assume we
have a single hidden layer of size q, with activation function f , and output activation function g.
In practice, the activation function is often a sigmoid, hyperbolic tangent, or another non-linear
function. The value hj of the j-th node in the hidden layer is computed as follows:

hj = f (
m∑
i=1

vjixi) (2.1)

where vji is the weight between the i-th input node and j-th hidden node. We see that hj is computed
by applying the activation function on the weighted sum of the input values xi . We can also consider
the weights between two layers as a single matrix, which simplifies the computation to simple
matrix multiplication. Let Whx be a weight matrix of size q × m between the input layer and the
hidden layer, with element wji being the weight between the i-th input node and j-th hidden layer
node. Then the values of the hidden layer can be expressed as a vector h as follows:

14

2.2 Neural Networks

h = f (Whxx) (2.2)

Note that the activation function must now be applied element-wise to the vector resulting from the
matrix multiplication. As we can see, the value of a hidden node is computed as the weighted sum
of each node from the input layer, with the activation function applied to this sum. As such, these
weights represent how much a certain input feature xi should influence the value of a hidden node.
Similarly, the value yj of the j-th node in the output layer can be computed as such:

yj = g(

q∑
i=1

wjihi) (2.3)

Again, we can vectorize the previous equation to compute the output vector y directly:

y = g(Wyhh) (2.4)

Here, Wyh is a weight matrix of size n × q representing the weights between the hidden layer and
the output layer. As before, we take weighted sums of the values from the previous layer, apply an
activation function, and receive the values for the output layer.

2.2.2 Backpropagation

Forward propagation is the process of computing the output of an NN given some input and weights.
The question still remains how to determine weights such that the NN computes some desired
output for a given task. Backpropagation [RHW86] is a method for adjusting the weights of an NN,
based on repeated application of the chain rule for derivatives. Errors from the output layer are
propagated backwards through the network, layer by layer, resulting in the weights to be updated to
minimize the error. Formally, we define a loss (or error) function L which measures how far off the
output of the NN ŷ is given training sample (x, y), where x is the input and y is the true output or
ground truth. A loss function that is often used for NMT is the negative log-likelihood:

L(ŷj, yj) = −ŷj log(yj) (2.5)

The loss tends towards negative infinity when ŷj is 1 and yj is close to 0. On the other hand, the loss
is 0 whenever ŷj is 0, regardless of the value of yj . If we take the ground truth and NN output as
probabilities, the negative log-likelihood can be seen as a penalty for assigning low probabilities for
outputs that should have high probability. Let rj =

∑q
i=1 wjihi be the weighted sum of all hidden

node values, i.e. the value of the j-th output node before applying the activation function. The
effect of a weight wji on the loss can then be expressed as the partial derivative δL

δwj i
, which can be

computed as follows using the chain rule:

δL
δwji

=
δL
δyj

δyj

δrj

δrj
δwji

(2.6)

15

2 Background

The goal of training is to minimize the loss function L so that the output of the NN is as close to the
true output as possible. Because L is a function of the NN weights w, we can differentiate it with
respect to each weight. Because the derivative can usually not be given analytically, an iterative
approach called gradient descent is used to find the minimum of the loss function. Given a starting
point, i.e. initial values for the weights, the gradient of the loss function is repeatedly computed
with respect to the weights. Because the gradient points in the direction of the steepest ascent, the
vector of same magnitude and opposite direction is added to iteratively refine the estimate for each
weight wi of the NN:

∆wi = −η
δL
δwi

(2.7)

wt+1
i = wt

i + ∆wi (2.8)

where wt
i is the weight at time step t, and wt+1

i at time step t + 1 after a single update operation of
gradient descent. The learning rate η controls how much each update step in the gradient descent
changes the weights and is an important hyperparameter for training NNs. A large learning rate
may overshoot the actual minimum by taking too large steps, while a small learning rate may get
trapped in a local minimum or take a long time to converge to a solution.

2.3 Recurrent Neural Networks

Figure 2.2: An unrolled RNN showing how output at time t is computed based on the previous
timestep.

Feedforward NN models typically cannot capture temporal information, meaning that separate
predictions do not influence each other and their order does not matter. For tasks involving predicting
a variable-length output sequence given a variable-length input sequence, these feedforward NNs
are not suitable, as they do not take previous predictions into account. In translation tasks, for
example, a partial translation of previously predicted words is necessary to provide context when
predicting the next word. Recurrent Neural Networks (RNNs) are an extension of feedforward NNs
where the hidden state of the previous timestep is passed as additional input to the network. By
keeping the hidden state and passing it to the next timestep, the model can take previous inputs
and predictions into account. The forward pass of an RNN can be explained by the following two
equations (based on [Lip15]):

16

2.4 Long Short-Term Memory

ht = f (Whxxt +Whhht−1 + bh) (2.9)

yt = g(Wyhht + by) (2.10)

where Whx is the weight matrix that connects the input to the hidden state and Whh is the weight
matrix that connects the hidden state of subsequent timesteps and f is an arbitrary activation
function, and bh and by are biases. Equation 2.9 explains how the hidden state ht is computed in a
RNN by adding the two terms Whxxt and Whhht−1. Note how this is an extension of a feedforward
NN by adding connections between the nodes of the hidden layers of subsequent timesteps, as seen
in Figure 2.2. These connections between timesteps make RNNs recurrent, allowing them to learn
long-term dependencies. The output yt is calculated by multiplying the weight matrix Wyh and the
hidden state of the current timestep ht and applying a function g. It is also important to realize that
all weight matrices are shared between all timesteps, which is critical for training RNNs and allows
to use backpropagation for training.

2.4 Long Short-Term Memory

Figure 2.3: A standard LSTM architecture showing the gates, layers, operations and the data flow
inside an LSTM cell [Ola15].

Long Short-Term Memory (LSTM) [HS97] is an RNN architecture that solves the two largest
problems of ordinary RNNs, namely (1) exploding gradients and (2) vanishing gradients. These
problems hinder RNNs from learning long-term dependencies in data, which is especially relevant
in NMT, as languages naturally have such dependencies. The main mechanisms by which LSTMs
solve these problems are gates, which control the flow of information and cell states which store
information about long-term dependencies. The LSTM cell is the basic building block of a LSTM,
analogous to a neural unit inside an RNN. Figure 2.3 shows a cell and its inner structure. Each
cell takes the previous hidden state ht−1, cell state Ct−1 and current source word xt as inputs, and
produces a new hidden state ht and cell state Ct .

17

2 Background

We will now explain how an LSTM cell computes new outputs based on its previous state. First, the
forget gate decides which parts and how much of the previous cell state should be forgotten. For this
reason, a sigmoid layer is used, which outputs values between 0 and 1, that is later multiplied with
the cell state element-wise. High values indicate that a certain part of the cell state should remain,
while low values indicate that it should be forgotten. These values are computed by concatenating
the previous hidden state ht−1 and the source token xt , multiplying by a weight matrix Wf , adding
a bias bf and finally passing the result through the sigmoid function:

ft = σ(Wf · [ht−1, xt] + bf) (2.11)

Then the input gate decides which incoming information to store in the cell state. As before, these
values are computed by a sigmoid layer using the weight matrix Wi and bias bi:

it = σ(Wi · [ht−1, xt] + bi) (2.12)

High values in it mean that this part of the input will be updated more than parts with low values.
Having computed which parts of the cell state have to be updated, we can compute C̃t which
contains the actual update information:

C̃t = tanh(WC · [ht−1, xt] + bC) (2.13)

Having decided which parts of the cell state to forget and to update, we can apply these changes
and compute the new cell state Ct by combining what to forget (ft � Ct−1) and what to update
(it � C̃t):

Ct = ft � Ct−1 + it � C̃t (2.14)

Next, the actual output of the cell ht needs to be computed based on the current cell state Ct . Once
again, we pass the concatenation of xt and ht−1 through a sigmoid layer to compute ot :

ot = σ(Wo · [ht−1, xt] + bo) (2.15)

This is the output gate and decides how much each part of the cell state will be used as output.
Finally, ht is computed by element-wise multiplication of ot and Ct :

ht = ot � Ct (2.16)

Together, forget, input and output gates make it possible for LSTMs to learn long-term dependencies
by allowing the NN to decide what to forget, update and output. Many variants of LSTMs exist,
changing the connections of gates or layers inside the cells. The most notable variation is the Gated
Recurrent Unit (GRU) [CVG+14], which can be seen as a simplified type of LSTM, and which
has shown great success in sequence modeling tasks [CGCB14]. A GRU has only two gates, a
reset gate and an update gate, and consolidates cell state and hidden state. Its main advantages over
LSTM are simpler computation and implementation.

18

2.5 Visual Analytics

2.5 Visual Analytics

Figure 2.4: The Visual Analytics process [KKE10]. Models and visualisations aid in knowledge
generation and form a feedback loop back to the data.

This section introduces Visual Analytics in general, as well as its application in the Deep Learning
domain. Different approaches and techniques for Visual Analytics in Deep Learning will be
explained and put into the context of this thesis.

2.5.1 Definition

Visual Analytics (VA) is “the science of analytical reasoning facilitated by interactive visual
interfaces” [CT05]. Keim et al. [KAF+08] further define the goals of VA as the creation of tools
and techniques to enable people to:

1. Synthesize information and derive insight from massive, dynamic, ambiguous, and often
conflicting data

2. Detect the expected and discover the unexpected

3. Provide timely, defensible, and understandable assessments

4. Communicate assessment effectively for action

The VA process [KKE10] is at the core of any VA system. Figure 2.4 shows how the concepts of
data, models, visualisation and knowledge are related. The process starts with some data that a user
wants to analyze, which first be transformed, i.e. aggregated or filtered in some way. This data is
mapped to different visualisations allowing the user to analyze different facets or relationships in

19

2 Background

Figure 2.5: Conceptual framework of Hohman et al. [HKPC18] for VA in Deep Learning. Tech-
niques, approaches and systems can be categorized by answering the questions why,
what, when, who, how and where to use visualizations in Deep Learning.

the data. Models can be built from this data which can also be visualized in addition to the data.
User interaction can update this model, leading to an update in the visualization. While interacting
with the model through the visualization, the user hopefully gains some knowledge about the task
he wants to achieve, forming a feedback loop back into the data, e.g. by choosing different data or
changing it in some way.

We will now explain how the VA process is applied in this thesis. The data is a large domain-specific
document that the user wants to translate into a different language. Sentences are preprocessed,
filtered and aggregated to allow translation and find erroneous translations. Sentences and translation
hypotheses are mapped to multiple visualisations. The model in the VA process is the NMT model
trained from large text corpora and used to translate sentences. Model visualisation is done by
showing the beam search tree, allowing the user to directly interact with the model. Parameters
of the model such as beam size can be refined by the user, which reflect through changes in the
visualisations. Finally, the user gains some knowledge by analyzing different translation hypotheses
and correcting machine-generated translation, feeding corrections back to the NMT model, which in
turn updates translations of the original document. This forms a feedback loop between knowledge
and data, which is a central part of the VA process.

20

2.5 Visual Analytics

2.5.2 Visual Analytics in Deep Learning

Deep Learning comes with a special set of problems and challenges for applying VA. Hohman
et al. [HKPC18] conducted a comprehensive survey on VA in Deep Learning and introduced a
conceptual framework for analyzing and categorizing techniques and approaches as seen in Figure
2.5. They pose six questions (why, who, what, how, when and where) that can be used to describe VA
approaches. The following four reasons for using visualization in Deep Learning are identified:

Interpretability & Explainability Internal model representations can be visualized to make the
model predictions interpretable for humans, allowing users to see reasons why a model came
to a certain prediction.

Debugging & Improving Models Systematic error cases can be found through visualizations in
order to improve models.

Comparing & Selecting Models Visualizations can be used to compare models regarding their
performance to aid in model selection.

Teaching Deep Learning Concepts Visualizations can be useful to teach Deep Learning concepts
such as NN architectures and computational graphs.

This thesis focuses on interpretability and explainability as the main reason for using VA, as NMT
has major potential for improving the translation workflow. Improving models is another important
focus of our system, due to the possibility to use manual corrections made by users. However,
we focus on improving the model by updating model weights, rather than improvement through
architectures or algorithms.

Additionally, there are two temporal aspects for applying VA in Deep Learning:

During Training Visualizations can be used during training to show statistics about a model over
time such as accuracy, loss or evaluation metrics. This may be useful to compare models
during training or find out if a model is overfitting and training should be stopped.

After Training Visualizations can be used to visualize models after training, e.g. for visualizing
model architecture or computational graphs.

The proposed system is not relevant during initial training of the NMT model. However, the system
adapts to a domain by incorporating corrections made by the user in an online fashion. As such, our
approach combines both temporal aspects and therefore is relevant during and after training.

An important aspect for VA systems is user context, which explains who the users are, what their
goals are and what environment they work in. In the context of Deep Learning, users can be
classified into one of the following groups:

Model Developers & Builders These are domain experts in Deep Learning, often researchers
and engineers, who create, implement and deploy new Deep Learning architectures and
techniques. Their focus for using visualizations is technical in nature. They might want
to visualize performance metrics across time to compare models or visualize complex NN
architectures.

21

2 Background

Model Users This group includes technical people who work with Deep Learning models but do
not develop new models or techniques. For example, software engineers who integrate a
trained model for a domain-specific application are part of this group. Their focus is more on
understanding and interpreting model behavior than improving models.

Non-experts Non-experts are people who do not possess special knowledge about Deep Learning
that may use a system based on it. Visualization for non-experts can be used to make
predictions made by Deep Learning systems explainable or for educational reasons, such as
for teaching Deep Learning concepts.

This thesis is primarily concerned with non-experts for the proposed VA system. As such, we are
targeting translators, rather than researchers or developers of NMT model. While there are already
tools for model developers and users to analyze NMT models, end users, i.e. translators, may also
benefit from visualizing model behavior.

Another important issue is what aspects of a Deep Learning model should be visualized:

Computational Graph & Network Architecture The computational graph, which defines how
data moves throughout an NN, can be visualized to give model developers an overview
of computations and their relation for a given model. Additionally, the NN architecture,
including layers and their connections can be visualized.

Learned Model Parameters In contrast to the previous topic of visualizing NN structure, the
learned model parameters, i.e. weights, can be also be visualized. As these weights are
learned from data, visualizing them may show what a particular NN model has learned.

Individual Computation Units We can also visualize aspects of the individual computation units
of NNs, i.e. single neurons. Activations of neurons can be visualized for a given instance
to show features representations generated by the model. Additionally, gradients can be
computed during backpropagation, and visualizing these for neurons could be useful to see
how errors are propagated throughout the NN.

Neurons in High-dimensional Space NNs compute high-level representations of input data
through multiple hidden layers. These representations can be seen as high-dimensional
vectors, that in turn can be visualized e.g. by projecting them onto a 2D plane. This could,
for example, help to see if an NN model learns useful word embeddings in NMT by checking
if semantically related words are close together.

Aggregated Information Finally, aggregated information of a Deep Learning model can be
visualized. This includes aggregation of activations for multiple instances or evaluation
metrics that measure the performance of a model regarding some task.

Because the system proposed in this thesis targets non-experts, we chose not to visualize NN
architecture or learned model parameters. Instead, aggregated information is visualized that
correlate with translation quality.

Finally, having clarified what can be visualized for whom and for what reasons in Deep Learning,
the following types of approaches can be used to answer the question of how to visualize Deep
Learning:

22

2.6 Related Works

Node-link Diagrams for Network Architecture NNs consist of neurons and weights that connect
nodes. Therefore, they can be visualized as node-link diagrams by representing neurons as
nodes and weights as directed, weighted links. The magnitude of a weight can be mapped to
line color or thickness. For computational graphs, operations are represented as nodes and
links represent the flow of data.

Dimensionality Reduction & Scatter Plots As mentioned for the Aggregated Information aspect
for what to visualize, representations that are learned by NN models are useful to see what a
mode has learned. As these representations are high-dimensional, dimensionality reduction
can be used to map representations onto a lower-dimensional space. Then, scatter plots can
be used to show these low-dimensional representations for different instances.

Line Charts for Temporal Metrics Line charts are a simple visualization method to show how
model metrics such as accuracy or loss change over time. This can be helpful during model
training, e.g. to see if a model starts to overfit when the validation error stops decreasing.
Also, this technique enables model comparison and selection by visualizing metrics for
multiple models at once.

Instance-based Analysis & Exploration Instance-based Analysis focuses on small-scale model
exploration through specific data instances. Here, the model is observed during prediction for
a single instance, which can be more tractable compared to analyzing model performance on
multiple instances at once. Testing is another important use case for instance-based analysis.
For instances where the model does not produce a correct classification or prediction, it is
important to analyze how or why the model failed to produce the correct output.

Interactive Experimentation Interactive exploration enables users to change aspects of a model
to see what changes this causes. One way is by allowing users to input arbitrary data to the
model and visualize how the model responds. Another method enables users to change model
hyperparameters such as learning rate or dropout, and directly see how this affects results.

Algorithms for Attribution & Feature Visualization Finally, algorithms for attribution and fea-
ture visualizations show what parts of the input were important for a certain classification
or prediction made by an NN model. Feature visualization constructs synthetic input that
is supposed to represent a certain class best. Other techniques use heatmaps overlaid over
original input to highlight important regions of the input, which enables visualization of
attribution.

This thesis applies VA mainly through instance-based analysis, interactive experimentation, and
algorithms for attribution. Incorrect translations are the instances that are analyzed and interactively
explored by users, using dynamic graph visualizations afforded by beam search decoding. We also
visualize attention weights to show how source words are attributed to each translated word.

2.6 Related Works

The following section will introduce related works on the topics of NMT and VA, as well as how
they relate to this thesis. Related works can be grouped into two distinct groups: (1) algorithms,
architectures, and approaches for machine translation or post-editing, that try to improve the

23

2 Background

translation quality or extend the capability of models and systems in some way, and (2) interactive
visualization and VA approaches relating to NNs and NMT, which try to give insight into models
and their behavior.

2.6.1 Machine Translation

Knowles and Koehn [KK16] developed an interactive translation prediction method for NMT models.
Instead of post-editing machine-generated translations, users type in translations from scratch and
the system suggests words after each keystroke. Users can then either select the suggested word or
proceed manually typing. As in this thesis, they use an attentional encoder-decoder model, BPE and
beam search decoding, also focusing on German→English translation. The goals of their system
are strongly aligned with this thesis, mainly supporting translators in an online fashion and allow
interactive translation using an NMT model. They conducted an automated evaluation, showing
significant improvement regarding word and letter prediction accuracy of their method compared to
traditional phrase-based systems, proving the feasibility of an interactive NMT system. However,
they point out that computational efficiency is still a major drawback of NMT based system due to
their large computational overhead. Their results can be seen as a form of theoretical validation for
the implementation of an interactive NMT system.

Peris et al. [PCC17] proposed and evaluated multiple optimization techniques for online learning
of NMT models in a post-editing scenario. They show that adaptive Stochastic Gradient Descent
methods such as Adam [KB14] are well suited for online domain adaption of NMT models. Their
work is highly relevant for this thesis, as adapting an NMT model based on users corrections is
valuable in a VA setting. We used their findings to guide the development of our domain adaption
and fine-tuning approach.

Hokamp and Liu [HL17] introduced grid beam search, which extends grid search by lexical
constraints. During decoding, the algorithm forces beam search to generate the lexical constraints,
guaranteeing that they appear in the output sentence. These constraints might come from user
input during interactive post-editing of translations. They show that grid beam search can improve
translation quality in interactive scenarios and for domain adaption. A simplified version of this
algorithm was used in this work, using only prefix constraints to force decode a partial translation
for beam search decoding.

Cheng et al. [CHC+16] introduced the pick-revise framework for interactive post-editing. Users
first pick an incorrectly translated phrase and then revise it with a correct translation, after which
the model re-translates the original sentences taking into account the revisions as constraints. This
work can be seen as an extension of their work by using VA to improve the post-editing task using a
graph visualization to guide the user.

2.6.2 Interactive Visualizations & Visual Analytics

Recently, combining Deep Learning and VA has become an emerging research topic. Strobelt
et al. [SGPR18] have developed LSTMVis, an interactive, web-based tool for analyzing LSTMs.
LSTMVis visualizes the hidden states dynamics and enables users to formulate hypotheses about the
model. Several use cases such as machine translation, phrase separation, and biological sequence

24

2.6 Related Works

analysis are provided to show the utility of the system. While LSTMVis aims to provide researchers
and machine learning developers with a way to debug LSTM models, this thesis targets end users
for assisting them during post-editing of machine-translated documents.

Seq2Seq-Vis [SGB+18] is another tool for interactively debugging sequence-to-sequence models for
textual problems such as translation and part-of-speech tagging. Its main goal is giving researchers
insights into the model’s behavior and internal state on multiple levels such as encoding, decoding,
attention, and prediction to find out on which level a model behaves erroneously. Their work also
explores interactive beam search and modification of attention weights by the user However, it does
not allow substitution of arbitrary words, phrases or even tokens unknown to the model. Unlike
the system proposed in this thesis, Seq2Seq-Vis is completely sentence-based: users can input
single sentences and inspect model behavior, but it does not give any document-level insights about
a model. Finally, Seq2Seq-Vis does not persist users’ modifications of attention or beam search
decoding, and does not feed corrections back into the model for improvement or domain adaption.

Lee et al. [LSK17] introduced a system for interactive beam search decoding, supporting both
exploration of beam search decoding and manual and automatic adjustment of attention weights.
We use the main idea of visualizing translation hypotheses from beam search decoding as a tree
in this thesis. However, their system uses only basic visual encoding and interaction techniques,
while this work explores interactive beam search visualization in depth. Their visualization also
does not handle subword units transparently, instead of showing raw subword units in the beam
search tree. Beam search is used exclusively for hypothesis exploration in their work, without
allowing post-editing or translation constraints generated by the user. They also do not deal
with the replacement of unknown words, and only focus on single sentences, as opposed to the
document-based approach in this work. Additionally, they did not conduct any evaluation or
validation of their approach.

Rikters et al. [RFB17] developed a web-based tool for visualizing attention weights and introduced
multiple metrics for automatically scoring sentences based on attention without any reference
translations. Importantly, they suggested multiple attention-based metrics that are supposed to
correlate with translation quality and implemented a prototypical visualization system allowing users
to sort sentences based on metrics. Unfortunately, no type of evaluation or validation was described
in their approach, therefore a statistical evaluation of these metrics was conducted as part of this
thesis. We use the proposed attention-based metrics as the basis for sentence selection, to allow
users to filter sentences that are likely to contain translation errors without having access to reference
translations. While Rikters et al. [RFB17] use multiple bar charts to visualize metric scores, the
proposed system uses a parallel coordinates plot that is better suited to visualize multidimensional
data and allows easier filtering and interaction.

25

3 Neural Machine Translation

This chapter will give a brief introduction into Neural Machine Translation and important topics
including evaluation metrics, handling rare words, attention mechanism and beam search decoding.
The relation of these topics and their relevance to the proposed system will also be described.

3.1 Introduction

Figure 3.1: A sample translation by the RNN encoder-decoder architecture as proposed by Cho
et al. [CMG+14]. Note that the last hidden state of the encoder (red) is used to initialize
the hidden state of the decoder (yellow).

Neural Machine Translation (NMT) is a sub-field of machine translation that concerns itself with
techniques using NNs. In general, the goal of machine translation is to translate a source sequence
x = {x1, . . . , xM } into a target sequence y = {y1, . . . , yN } where each xi is a source token from a
source vocabulary Vs, and each yi is a target token from a target vocabulary Vt . We are seeking a
model parametrized by weights θ that maximizes the conditional probability pθ(y |x). Because the
target translation is generated one token at a time, this probability can be decomposed as follows
[LPM15]:

pθ(y |x) =
N∏
j=1

pθ(yj |y1 . . . yj−1, x) (3.1)

This decomposition implies that the probability of each translated token depends only on the
previously translated words and the source sequence. In order to take previous translations into
account when predicting the next word, the model must learn long-term dependencies of the data.
As explained in Chapter 2, RNNs and LSTMs in particular are suitable for tasks where such
dependencies have to be learned. Therefore, many recent approaches in NMT are based on RNN
architectures. One of the first NN architectures for NMT was introduced by Cho et al. [CMG+14].
This architecture is made up of two RNNs, an encoder, and a decoder. The encoder is responsible
for encoding the source sequence into a fixed-length vector, while the decoder generates a target
sequence after reading this vector.

27

3 Neural Machine Translation

Figure 3.1 shows how the encoder reads the source sequence, passing the previous hidden state
to the next timestep and finally creating a last hidden state, which is then fed into the decoder
along with the Start-of-Sequence (SOS) token. The decoder then generates target tokens until the
End-of-Sequence (EOS) token is generated, stopping the translation process. At every timestep,
the previously generated token and the previous hidden state is passed to the decoder. The major
downside to this basic encoder-decoder architecture is the fact that the entire source sequence must
be encoded into a single fixed-length vector. This creates a bottleneck for translating long sequences
and limits the effectiveness of the model.

3.2 Attention Mechanism & Alignment

Figure 3.2: The attention mechanism as used in a sequence-to-sequence model. The current
decoder hidden state from the target word is is used along with the encoder hidden
states to compute the context vector and the next predicted word good. The figure was
adapted from See et al. [SLM17].

Bahdanau et al. [BCB14] first introduced the attention mechanism for NMT. In the traditional
encoder-decoder approach, the encoder must encode all relevant information into a single fixed-size
vector, as the decoder only has access to the last hidden state of the encoder. The attention
mechanism allows sequence-to-sequence models to attend to different parts of the source sequence
while predicting the next element of the target sequence, by giving the decoder access to the hidden
states of the encoder.

Figure 3.2 shows how the NMT model computes and uses attention to predict the next token. First,
the encoder consumes the complete input sequence, producing one hidden state per token. In this
architecture, the encoder is bidirectional, which means that an encoder hidden state hs is produced
by concatenating the forward hidden state

−→
hs and backward hidden state

←−
hs, which are produced by

a forward RNN reading the source sequence from left to right, and a backward RNN reading it from
right to left, respectively. During decoding, the current decoder hidden state and the encoder hidden

28

3.2 Attention Mechanism & Alignment

states are used to compute the attention weights, which are then used to compute the context vector
as a weighted sum of the encoder hidden states. Finally, the context vector and current decoder state
are used to produce the output layer, giving a probability distribution over the target vocabulary.

Formally, let (h1, . . . , hN) be the hidden states of the encoder after reading each of the N source
elements. Then, for each pair of source and target elements (x j, yi) a weight αi j is computed as
follows, with a being the alignment model:

ei j = a(si−1, h j) (3.2)

αi j =
exp(ei j)∑N

k=1 exp(eik)
(3.3)

This alignment model, which is parametrized as a feedforward NN, expresses how well each xj
and yi match, and depends on the previous decoder hidden state si−1 and encoder hidden state h j .
Using this alignment, we can finally compute the context vector ci , which is a weighted sum of the
encoder hidden states:

ci =
N∑
j=1

αi jh j (3.4)

Finally, the context vector ci , current decoder hidden state si and previous output yi−1 are used to
compute the conditional probability as in Equation 3.1:

p(yi |y1 . . . yi−1, x) = g(yi, si, ci) (3.5)

where g is a non-linear, possibly multi-layered, function that outputs the probability of yi.

Luong et al. [LPM15] abstracted the attention mechanism and described three different formulations
for a scoring function between the current decoder hidden state ht and each encoder hidden state
h̄s:

score(ht, h̄s) =

hTt h̄s dot
hTt Wa h̄s general
va tanh(Wa[ht ; h̄s]) concat

(3.6)

The dot attention computes a score between the decoder hidden state and an encoder hidden by
computing the dot product between both vectors. In the general attention mechanism, the encoder
hidden state is first multiplied by a learned weight matrix Wa before computing the dot product
with the encoder hidden state. Finally, the concat attention mechanism works by concatenating the
encoder and decoder hidden state into a single vector and multiplying it by a weight matrix Wa.
The resulting vector is passed through the tanh function, and finally the dot product is computed
with a learned weight vector va. The scoring function is then used for the computation of αi j as
opposed to ei j in Equation 3.2:

29

3 Neural Machine Translation

Figure 3.3: Alignment between an English source sentence (top) and the translated French target
sentence (left) [BCB14]. Each pixel in row i and column j represents the attention
weight αi j on a greyscale (black: 0, white: 1) between target word xi and source word
yj .

αi j =
exp(score(hi h̄ j))∑N
k=1 exp(score(hi h̄k))

(3.7)

The attention weights have the useful property that they can be easily visualized and used as a form
of explanation for human users for why an NN model predicted a certain output. Applied to NMT,
attention weights can be understood as a soft alignment between source and target sequences as seen
in Figure 3.3. For each translated word, the weight distribution over the source sequence signifies
which source words were most important for predicting this word.

3.3 Beam Search Decoding

Once an NMT model has been trained, it can be used for inference, e.g. translating a sentence
from a source language to a target language. We are seeking the best prediction ŷ given the input
sequence x (based on [HL17]):

ŷ = argmax
y∈{y |T | }

p(y |x) (3.8)

where {y |T |} is the set of all possible output sequences for some maximum length T . Finding an
optimal output by iterating through all possible output sequences is computationally unfeasible for
large vocabularies, as there are |V |T possible such sequences. The simplest way of predicting a

30

3.3 Beam Search Decoding

Figure 3.4: Transition from timestep t to t + 1 for beam search decoding with beam width k. At
timestep t, k current hypotheses are in consideration. Each hypothesis is extended by
computing the probability distribution over the target vocabulary of size |V | for the next
token, resulting in k × |V | possible extensions. The top k hypotheses are then chosen
for the beam at timestep t + 1. Each box represents a hypothesis, with its probability
mapped to the color of the box. Each stack of boxes represents a beam.

target sequence is greedy decoding, where at every time step, the token with the highest output
probability yt from the output vocabulary V is chosen as the next prediction and fed to the decoder
in the next time step:

ŷt = argmax
yi ∈V

p(yi |{y1 . . . yt−1}, x) (3.9)

While greedy decoding is an efficient, straightforward way of generating an output sequence, it may
become stuck in a local maximum. Consider an example sentence where a certain word has the
highest probability of being the first output word, yet all possible output sentences starting with this
word are unlikely, i.e. have a low average output probability. Then, first choosing a word with lower
probability may lead to overall more likely output sentences.

Beam search decoding [Gra12] is a compromise between exhaustive search and greedy decoding. It
enables to trade-off computation time in exchange for exploring a larger result space. In beam search
decoding, a fixed number of hypotheses k is considered at each timestep, also called beam size or
beam width. Each hypothesis is a (partial) output sequence, possibly ending with the EOS token.
As seen in Figure 3.4, the model outputs a probability distribution of the next token over the target
vocabulary for each hypothesis, resulting in k × |V | possible hypotheses. These hypotheses are
sorted by the probability of the latest token, and up to k hypotheses remain in the beam. Hypotheses
ending with the EOS token are filtered out and put into the result set. Once k hypotheses are in the
result set, the beam search concludes and the hypotheses are ranked according to a scoring function.
Wu et al. [WSC+16] proposed the following scoring function s:

s(Y, X) =
log P(Y |X)

lp(Y)
+ cp(X,Y) (3.10)

31

3 Neural Machine Translation

lp(X,Y) =
(5 + |Y |)α

(5 + 1)α
(3.11)

cp(X,Y) = β ∗
|X |∑
j=1

log

(
min

(
|Y |∑
i=1

αi j, 1

))
(3.12)

where Y is a candidate translation, X is the source sequence and αi j is the attention weight between
the j-th source token and i-th target token. The length penalty lp normalizes the score with regard
to length, as otherwise, shorter translations would be preferred due to their higher log probability,
while the coverage penalty cp penalizes translations where source words do not receive enough
attention. The parameter α with 0 ≤ α ≤ 1 controls the strength of length normalization, while
β with 0 ≤ β ≤ 1 controls the strength of coverage normalization. Setting α = 0 and β = 0 will
produce the same scoring function as during normal beam search decoding. Setting k = 1 reduces
beam search to greedy decoding, as the single hypothesis will be extended be the most likely next
token at each timestep.

A useful property of beam search decoding in regard to this work is its interpretability: hypotheses
that are explored or discarded can be visualized and shown to end users, allowing a human translator
to possibly pick a different hypothesis than predicted by the model. This might be useful because the
scoring function in Equation 3.10 does not account for semantic meaning in the translation, which
might be an important criterion for a user deciding between different translation hypotheses.

3.4 Handling Rare Words

One problem NMT models face is handling rare and unknown words. When a trained NMT model
must translate a source sequence containing a word that was not encountered during training,
that word will not be part of the source vocabulary Vs. The simplest solution to this problem is
introducing a special unknown token (UNK), which acts as a stand-in for any word unknown to the
model [SVL14]. During training, rare words, e.g. those who occur only once in the data set, are
replaced with the UNK token, so that the model can learn to translate this token. The disadvantage
of this approach is that translations generated by the model may contain the UNK token, requiring
manual post-editing to replace them with the correct translation. This problem can be alleviated
using the copy mechanism [APS16], whereby a source word is copied into the translation to replace
a UNK token. The source word can be chosen by selecting the word from the source sequence that
maximizes the attention weight of the target word. This approach can easily deal with unknown
words such as names or numbers, where copying the word into the translation will lead to a correct
translation but will likely fail to translate other types of words such as verbs.

Handling rare words in a better way is the main motivation for using subword units [SHB15] for
NMT. Instead of choosing whole words for building the source and target vocabularies, words are
split into subword units, which consist of one more characters. There are two main advantages of
splitting up words in this way. First, the size of the vocabularies is reduced, since many rare words
can be represented by more common subword units. For example, the words “translation” and
“transport” may be segmented into “trans|lation” and “trans|port”. This helps to reduce model size
and complexity, as well as training time. Second, the model can now handle any rare or unknown

32

3.4 Handling Rare Words

Merge Operationsc r o w ●
 n o w ●
c r e w ●

max freq. pair
V = {a, ..., z, ● }

c r cr

 cr o w ●
 n o w ●
 cr e w ●

o w ow

V = {a, ..., z, ●, cr}

 cr ow ●
 n ow ●
 cr e w ●

ow ● ow●

V = {a, ..., z, ●, cr, ow}

 cr ow●
 n ow●

 cr e w ●

V = {a, ..., z, ●, cr, ow, ow●}

Figure 3.5: Three BPE merge operations on the words crow, now and crew. V is the vocabulary
before each merge. The “•” symbol indicates the end of a word. After the final merge
operations the words are segmented as cr|ow, n|ow and cr|e|w.

word by splitting it into its subword units, which are known beforehand and thus do not require a
UNK token for translation. The question remains how to produce a segmentation of a word into
subword units.

Byte Pair Encoding (BPE) [SHB15] is a method for compressing text by recursively joining frequent
pairs of characters into a new symbol. This approach lends itself to be used for segmentation
instead of compression. There are two distinct phases: learning BPE operations and applying
BPE operations. For learning BPE operations, we start with a vocabulary containing only single
characters that exist in the training data, and each word in the data split into single characters.
Additionally, a special symbol “•” denoting the end of a word is added to the vocabulary in order to
reverse the subword segmentation after the model has produced a translation. Then, the frequencies
of all character pairs within word boundaries are computed. Finally, the most frequent character pair
is merged into a single new symbol that is added to the vocabulary, with a symbol being a character
n-gram. All occurrences of this pair in the data are also merged into the new symbol. The process
is then repeated for a predetermined number of times. Figure 3.5 shows how merge operations are
performed for a small example of three words. Note how in the first step, the character pair “n” and
“c” are selected as the most frequent pair to be merged. After the first merge operation, the new
symbol “cr” is added to the vocabulary, and the next merge operation can proceed. Also note that in
the third operation, the most frequent pair is “ow” and “•”, which shows that the “•” symbol is
treated like any other character when counting frequent pairs. The number of merge operations is
the only hyperparameter of this approach, and also controls the size of the resulting vocabulary, as
each merge operation produces an additional symbol. For applying BPE operations, we start with
an unsegmented word, split it into its constituent characters, and apply the merge operations that
were previously learned. Once no more merge operations can be applied, the final segmentation is
produced.

33

3 Neural Machine Translation

3.5 Domain Adaption

Documents often have a specific domain, e.g. legal, medical or scientific. Each domain has specific
terminology, and the same word may even refer to different concepts in different domains. As such,
the ability of NMT models to handle different types of domains is an important research topic.
Domain adaption refers to techniques allowing NMT models trained on general training data, also
called out-of-domain, to adapt to domain-specific documents, called in-domain. This is useful
because while there may be an abundant amount of general training data, domain-specific data may
be rare. Since NMT models need a large amount of training data to achieve good translation quality,
the out-of-domain data can be used to train a baseline model, and the model can then be adapted
using the in-domain data.

Techniques for domain adaption in NMT can generally be grouped into data centric approaches and
model centric approaches [CW18]:

Data Centric approaches focus on the training data rather than changing the underlying model.
Examples include the use of monolingual corpora or synthetic parallel data sets.

Model Centric approaches modify aspects of the model itself to adapt to a domain, such as
specialized training objectives, NMT architectures or decoding algorithms.

Fine tuning is an example of a model centric approach focusing on the training objective. First,
a general model is trained on a large set of out-of-domain data. The model is then fine-tuned on
in-domain data, which typically contains a smaller number of sentences. This reduces the problem
of training an NMT model in a low-resource scenario where little parallel data sets exist for a given
domain. During fine-tuning, a subset of model weights is often frozen, e.g. such that only the
weights of the output layer are adjusted for the in-domain data.

3.6 Training

The general mechanism for training a NMT model is the same as training any ordinary NN model as
described in Section 2.2.2. Let D = {(xt, yt)}T

t=1 be a parallel corpus of size T , where xt and yt are
source and target sequences, respectively. We are seeking a model pθ , parametrized by the weights
θ, that minimizes a loss function Lθ , typically chosen as the negative log-likelihood [PCC17]:

θ̂ = argmin
θ

Lθ (3.13)

= argmin
θ

T∑
t=1
− log(pθ(yt |xt)) (3.14)

= argmin
θ

T∑
t=1

Ni∑
i=1
− log(pθ(yti |y

t
0, . . . , y

t
i−1, x

t)) (3.15)

where Ni is the length of the i-th target sequence. This formulation follows directly from the
decomposition in Equation 3.1, as taking the log of a product is equal to the sum of log values. Then
Stochastic Gradient Descent (SGD) is typically used to iteratively find the optimal weights θ̂.

34

3.7 Evaluation Metrics

3.7 Evaluation Metrics

Evaluation metrics are important for all ML tasks, as they allow to compare models regarding
their performance for a certain task on a quantitative level. An evaluation metric can be seen
as any function that takes as input (1) the outputs of the model to be evaluated and (2) ground
truth representing the real outputs and computes a score that represents the performance of the
model regarding a certain task. Often, multiple evaluation metrics for a given task exist, as their
use may depend on context or because a single metric might not represent all aspects of model
performance.

One issue in machine translation is the subjective nature of translations: there is rarely a single
correct translation for a given source sentence, and multiple translations might be considered
as correct by different people. Since translations are ultimately made for human understanding,
subjective ratings of professional translators would be the best possible evaluation metric, but since
using humans for evaluation is slow and costly, metrics that can be computed automatically are
necessary. Due to these problems, it is difficult to formalize and quantify the quality of translations
generated by an NMT model. Nonetheless, several evaluation metrics have been proposed, focusing
on capturing different aspects of translation quality.

The Bleu metric [PRWZ02] is based on n-gram precision and takes as input for each source sentence
(1) a candidate translation of the model that is to be evaluated and (2) a list of reference translations,
e.g. translations of multiple human translators. Specifically, a modified n-gram precision pn for
n ∈ {1, . . . , 4} is computed, where the n-gram count is clipped to the maximum number of times it
appears in any reference translation. This clipping is necessary as otherwise, candidate translations
containing multiple repetitions of a word may have high precision values, thus distorting the overall
score. The precision is then calculated as the ratio between the clipped counts and all counts of each
n-gram in the candidate translation. Finally, a Brevity Penalty (BP) is applied to the overall score of
a document, which penalizes candidate translations that are shorter than any reference translation.
Putting it all together, the Bleu score is computed as follows:

Bleu = BP · exp

(4∑
n=1

1
4

log pn

)
(3.16)

Bleu has been shown to correlate well with the judgment of professional human translators. It is
important to note that Bleu is a corpus-level metric: while scores on individual sentences might
differ greatly from human translators, averaging over all sentences of a corpus produces a useful
score of translation quality. The Bleu score has become one of the most used metrics for evaluating
NMT models and is therefore useful to compare our system to state-of-the-art NMT models.

Translation Edit Rate (Ter) [SDS+06] is yet another evaluation metric. Ter considers the minimum
number of edits necessary to convert a candidate translation into one of the reference translations.
Thus, it can be seen as a measure of how much effort a human translator would have to expend to
post-edit a machine-generated translation into a reference translation. The Ter score is computed as
the ratio of the number of edits and the average length of the reference translations to normalize with
regards to sentence length. The edits considered for Ter are insertion, deletion, and substitution of
single words as well as shifts of word sequences, and all edits have a uniform cost. This differentiates
Ter from Bleu, since it does not consider n-gram overlaps. Ter is also case-sensitive and considers

35

3 Neural Machine Translation

punctuation for edits. The main advantage of Ter is its intuitiveness, as it simply measures the
effort needed to transform a candidate translation into a reference translation. A disadvantage of
Ter is its high computational complexity compared to Bleu.

CharacTer [WPRN16] is a character-level extension of Ter. Like Ter, CharacTer first calculates
shift edits on word level but uses character-level edit distance on individual words. CharacTer is
found to correlate better with human judgments for morphologically rich languages on a system
level since it takes character-level differences of words into account. It also outperforms other
metrics, including Bleu and Ter, on standard data sets, especially for German→ English and
English→ German translation. It can also be applied on sentence level as opposed to Bleu. We
use CharacTer for automated evaluation of translations generated by the NMT model to analyze
correlations for translation quality.

36

4 System Description

This chapter introduces NMTVis (Neural Machine Translation Visualization), a VA system for
NMT. First, an overview of the most important goals and requirements for the system is given,
followed by detailed descriptions of the different views and visualizations, implementation details,
and the NMT model that backs the system.

4.1 Goals & Requirements

This chapter will outline the goals and requirements that have to be satisfied by the system. In
order to build an effective system, we must first define the goals a system wants to achieve, the
context under which a system operates and define tasks that help to achieve the goals considering
the context. We will use the conceptual framework from Hohman et al. [HKPC18] for analysing VA
approaches for Deep Learning to contextualize our approach. Answering the six questions, this
work can be summarized as follows:

To explore translation hypotheses and correct translation errors (why), professional
translators (who) visualize attention weights and beam search trees of an NMT model
(what) using dynamic graph visualizations (how) after the training phase (when) to
aid in the translation of large, domain-specific documents (where).

The following goals were identified, based on the previous description:

G1 Help translators to translate large, domain-specific documents: The main goal of the sys-
tem is to help users, specifically translators, to translate large, domain-specific documents
efficiently. The main assumption of our system is that the translator is given the task of
translating a large, domain-specific document while facing time constraints, meaning that not
every sentence can be manually translated or post-edited in detail.

G2 Recommend users critical sentences: The most critical sentences, i.e. sentences whose
correction will likely lead to improved translation quality in the remaining sentences, should
be recommended to the user to decrease overall post-editing workload.

G3 Interactively correct translations: The user should be able to see how the model arrived at a
translation, and interactively explore different hypotheses in collaboration with the model.
This should relieve the burden of purely manual translation while also benefiting from a
user’s domain knowledge. Corrections of any kind to the translation should be supported and
applying them should be simple and efficient.

G4 Feed corrections back into the model and improve translations: The corrections made by
the user should be fed back into the model and possibly improve remaining translations,
freeing the user of the burden to correct large amounts of text manually.

37

4 System Description

The goals explain what we want to achieve with the system but not how we can achieve these goals.
Therefore, tasks were derived from the goals, with a task being a description of functionality of
the system from the point of view of a user. The following tasks were identified, with each task
contributing to achieving one or more of the goals:

T1 Show an overview of a document and its sentences as well as translations made by the NMT
model to give an overall context during post-editing.

T2 Find, filter and select critical sentences for post-editing based on relevant metrics such as
translation confidence, sentence length, and number of keyphrases.

T3 Visualize translation hypotheses as generated by the model during beam search decoding to
aid the user during post-editing.

T4 Explore and edit hypotheses using interactive visualizations to correct incorrect translations
generated by the system.

38

4.1 Goals & Requirements

a

g

c

b
d

e

h

i

j

k

l

m

f

Figure 4.1: The NMTVis user interface: The user opens the Document View (a) and selects a
document for translation (b). Source sentences and machine translations are displayed
side by side (c). Domain-specific words can be filtered in the Keyphrase View (d) or
based on metrics in the Metrics View (e). Translations can be directly accepted or
flagged for later correction (f). Detailed post-editing and in-depth analysis of a single
sentence are conducted in the Sentence View (g). The source sentence is displayed on
top for context (h). The Attention View (i) visualizes attention weights for the current
translation (j). The Beam Search View (k) shows a tree of translation hypotheses
that can be interactively explored and corrected (l). Finally, the user can accept the
post-edited translation to adapt the model to the current document (m).

39

4 System Description

4.2 Workflow

Metrics View

Attention ViewUpdate

Post-Editing

Beam Search View

Document SentenceNMT Model

Document View

View

Data

Model

Correction

Translation Selection

Interaction

Selection
Keyphrase View

Filter

Exploration Interaction

Figure 4.2: A visual representation of the translation workflow of NMTVis. Boxes represent views,
models and data. Arrows represent the flow of data and transitions between different
views. Arrow labels describe actions by the system and user.

Before describing the different views and components of NMTVis, the standard translation and
post-editing workflow will be briefly described, relating how the different views and components
work together to achieve the goals outlined before. Figure 4.2 shows a visual representation of
the standard workflow in NMTVis. Documents are uploaded by the user, and translated by the
NMT model. The source sentences and translations are shown in the Document View after the
user selects a document. Once a document is selected, the user can browse the document and
use the Metrics View to find sentences to correct. Using the Keyphrase View, the sentences can
be filtered to analyze the system’s translation regarding specific terminology. The user can flag
machine-generated translations for later correction. Once a sentence is selected, the user opens
the Beam Search View and the Attention View to interactively explore alternative translations and
post-edit the machine translation. When the user is finished with post-editing, their correction
is fed back to update the NMT model. This feedback loop is the core of the translation process,
allowing the user to collaboratively work with the NMT model. Note how this resembles the
standard VA process as described in Section 2.6.2, where a feedback loop is also formed by a user
gaining knowledge about data and models through interaction with visualizations. Figure 4.1 gives
a preliminary overview over system components and views and how they relate to the workflow.

4.3 Document View

The Document View (Figure 4.3), related to task T1, is responsible for managing user-provided
documents and showing an overview of source sentences and translations for a given document.
Machine-generated translations can be accepted or flagged for later correction from the sentence list,
which enables a fluent post-editing workflow where multiple sentences can be reviewed in sequence.
Sentences can be filtered to either hide already corrected translations or show only translations
that were flagged. The Document View enables domain adaption by allowing users to (1) retrain

40

4.4 Metrics View

Figure 4.3: The Document View in detail: Users can upload new documents are view existing ones
(left). The Keyphrase View and Metrics View are embedded for the currently selected
document (top). Three actions can be performed by clicking the respective icon next to
a translation: (1) marking a translation as correct (2) flagging a translation for later
correction and (3) editing a translation in a separate view. The current translation
progress is displayed on the bottom left. Filters (bottom middle) allow users to hide
corrected translations and to show flagged translations. Finally, the underlying NMT
model can be retrained and uncorrected translations can be re-translated (bottom right).

the NMT model based on corrections and (2) re-translate uncorrected sentences. In the second
case, the changes between the previous translations and the new translations are also shown in the
sentence list. This allows users to quickly see how retraining changed the translations.

New documents can be uploaded to the Document View, that are then translated by the NMT model
and shown in the document list on the left. Each uploaded document is run through a preprocessing
pipeline to allow translation by the NMT model. First, the document is separated into separate
sentences, as NMT models translate on sentence-level. Then, a tokenizer splits each sentence into
tokens for further processing. BPE is applied to the tokenized sentences using the same merge
operations as learned from the training data. Afterward, each sentence is translated by the NMT
model using beam search decoding. Finally, the list of translation hypotheses as generated by
beam search decoding is then saved along with attention weights for each hypothesis and for each
sentence.

41

4 System Description

Figure 4.4: In the Metrics View, each sentence is visualized as a line in a parallel coordinates plot.
Blue lines represent currently visible sentences, grey lines represent sentences that are
filtered out. Each axis in the plot represents a metric based on the source sentence
and translation. Sentences in the Metrics View and the list below are linked so that
highlighting a sentence (orange highlight) updates both views. Metrics can be reordered
by dragging and dropping and used for sorting. In this example, the document is sorted
in ascending order based on confidence, and two filters for low confidence and high
sentence length are active.

4.4 Metrics View

4.4.1 Description

The Metrics View (Figure 4.4), related to task T2, shows sentence scores for evaluation metrics
to enable the user to quickly find sentences that are likely to contain translation errors. As there
are multiple relevant metrics per sentence, the Metrics View needs to support visualization of
multivariate data. Parallel coordinate plots [Ins85] are a common visualization technique for
handling such data. They are useful for analyzing correlations between neighboring dimensions, as
well as finding outliers and general trends. Each sentence is mapped to a line in the plot, and the y
coordinates at each axis are determined by the value of the metric of the respective sentence. To
enable comparison between any two metrics, the user can drag and drop each to change the metrics’
order. Brushing and linking is also possible, with each brush acting as a filter of the currently
displayed sentences below. This can be achieved by clicking and dragging on the axis of a metric,
creating a brush over the respective axis. This brush can also be slid up and down the axis by
clicking and dragging it to shift the current filter for a given metric. Hovering over a sentence in the
text area will also highlight the relevant line in the parallel coordinates plot to allow the user to see
the metric scores for that sentence at a glance.

42

4.4 Metrics View

CDP APin APout

Figure 4.5: Illustration showing three cases for high CDP, APin and APout scores. Boxes represent
input and output tokens. Lines represent attention weights, with thick lines being large
attention weights and dashed lines being missing attention weights.

4.4.2 Metrics

The following section will introduce the metrics used in the Metrics View. The attention matrix is
denoted as α where each entry αji is the attention weight between source word xi and target word
yj with source sequence X and target sequence Y . Coverage Penalty (CP), as introduced by Wu
et al. [WSC+16], penalizes translations where input tokens are not given enough attention:

CP(α) = −
|X |∑
j=1

log

(
min

(
|Y |∑
i=1

αji, 1

))
(4.1)

We will now introduce the following attention-based metrics as suggested by Rikters et al. [RFB17]:

Coverage Deviation Penalty (CDP) penalizes excessive or deficient attention per input token.

Absentmindedness Penalty (AP) penalizes scattered attention either per input (APin) or output
token (APout).

Confidence aggregates the previous metrics into a single score.

CDP penalizes excessive attention per input token. Input tokens whose summed attention is higher
or lower than 1 have high CDP scores, while input tokens with a summed attention of 1 have a score
of 0:

CDP(α) =
1
|X |

|X |∑
j=1

log ©«1 +

(
1 −

|Y |∑
i=1

αji

)2ª®¬ (4.2)

The final CDP score is then normalized by the length of the source sequence. AP penalizes scattered
attention either per input (APin) or output (APout) token. APin is high then an input token is paid
attention to by many output tokens, while APout is high when an output token pays attention to
many input tokens.

APin(α) = −
1
|Y |

|X |∑
j=1

|Y |∑
i=1

αi j log(αi j) (4.3)

43

4 System Description

APout(α) = −
1
|Y |

|Y |∑
i=1

|X |∑
j=1

αji log(αji) (4.4)

This metric is based on the cross entropy measure of a probability distribution, which measures the
randomness or scatteredness of a distribution. Attention matrices that distribute attention equally
among tokens will have high AP values, while distributions that distribute it only to a few tokens
will have low AP values. Note that to compute APin, attention values must first be normalized by
the summed attention per input token. Finally, these metrics are combined into a single confidence
score, which sums up CDP, APin and APout:

Confidence(α) = e−0.05(CDP(α)+APin(α)+APout(α)) (4.5)

Adding these metrics into a single confidence score increases the robustness of the resulting metric,
as each metric focuses on a different aspect of the attention distribution. Figure 4.5 illustrates
the characteristics of the metrics through examples. For CDP, the first input token has a missing
attention weight from the first output token, while the second input token has high attention weights
from the first and second output token. Therefore, the attention weights summed over all output
tokens deviate from 1 for the first two input tokens, resulting in a high CDP score. In the second
example, all output tokens pay attention to the second input token, resulting in a scattered attention
distribution. This results in a high APin score. In the third example, the second output token pays
high attention to all input tokens, thus resulting in high APout, as the attention is spread over multiple
input tokens.

Other Metrics

From the introduced metrics, CP and confidence are used in the Metrics View. We did not add the
CDP, APin and APout metrics to the final Metrics View, as they are aggregated into the confidence
score, and thus do not offer useful additional information. Additionally, the following non-attention
based metrics are used in the Metrics View:

Sentence Length: The number of words in a source sentence. This enables users to explore outliers
such as extremely short or long sentences. Long sentences are also more likely to contain
translation errors due to the tendency of NMT model to perform worse on long sentences,
making them interesting for closer analysis.

Document Index: The index of a sentence in the original document, starting from 0 for the first
sentence. Sorting by the document index allows users to see sentences in their original order,
which can be important to for context during post-editing. Furthermore, this metric may
reveal certain trends for a document, e.g. if multiple sentences in a row have low confidence
scores or if certain keyphrases are predominantly used in specific parts of a document.

Keyphrases: The number of keyphrases in a source sentence weighted by the frequency of each
keyphrase occurring in a source sentence. This metrics allows to filter and sort by sentences
that contain many domain-specific words. This is important as the NMT model may produce
erroneous translations for such words, as they have low frequency in the out-of-domain
training data.

44

4.5 Keyphrase View

4.4.3 Usage Scenarios

Figure 4.6: Three usage scenarios for the Metrics View: (a) A negative correlation between
neighboring metrics is uncovered. (b) Outliers for neighboring metrics are found. (c)
A cluster of sentences and an outlier are found for an active keyphrase (not depicted).

Figure 4.6 shows three common scenarios when using the Metrics View. The first scenario depicts
a correlation between neighboring metrics. Here, high confidence scores seem to correlate with
low coverage penalty, as seen by the diagonal lines crossing between both metric axes. Creating
a filter for high confidence reveals a cluster of sentences with low coverage penalty and vice
versa. Uncovering these correlations can be useful to detect erroneous translations. For example,
if confidence negatively correlates with coverage penalty, filtering for sentences with both low
confidence and high coverage penalty should be more robust than filtering only based on either
metric.

The second scenario is outlier detection. As the parallel coordinates plot makes sentences where any
metric has extremely low or high values visible, outliers can easily be detected. Here, four sentences
with significantly higher coverage penalty when the remaining sentences are seen. Applying a filter
for high coverage penalty also reveals that these sentences have high sentence length, suggesting
that the system makes more translation errors for long sentences. Having found these outliers, they
can then be analyzed in the list of sentences below.

The third scenario is a combination of the first two. By activating a keyphrase, a cluster of sentences
with low document order is revealed. This suggests that this keyphrase appears at the beginning
of the document. Also, a negative correlation with coverage penalty is seen, implying that this
keyphrase was likely translated accurately for most sentences. At the same time, a single outlier
with high coverage penalty is seen, which can then be selected for manual review by hovering over
the respective line in the Metrics View.

45

4 System Description

Figure 4.7: The Keyphrase View displays the list of keyphrases automatically extracted from
the current document. The number of currently filtered sentences in the document
containing each keyphrase are displayed on the right. A text input on the bottom allows
users to quickly enter new keyphrases. Each keyphrase occurrence is highlighted in the
source sentences below, as well as target words with attention weight above a threshold
to indicate how the keyphrase was translated.

4.5 Keyphrase View

4.5.1 Description

The Keyphrase View, related to task T2, shows a list of keyphrases that were automatically extracted
from the current document. The main use of the Keyphrase View is sentence selection based on
keyphrases. This allows users to check if domain-specific words were translated correctly by the
system and find sentences with erroneous translations efficiently. Keyphrases are extracted from a
document based on their frequency in the general out-of-domain data the NMT model was trained
on, as well as their frequency in the document itself. Candidate words are first extracted from
the document by removing stop words, and for each candidate its frequency, i.e. the number of
occurrences in the out-of-domain data is determined. Then, all candidates whose frequency is
below a predefined threshold are selected as domain-specific keyphrases and sorted in descending
order based on their frequency in the in-domain document.

There are multiple ways of interacting with the Keyphrase View. First, keyphrases can be toggled
on or off by clicking on its related checkbox. Toggling on a keyphrase makes it active, filtering the
current sentences based on whether a sentence contains the given keyphrase. If multiple keyphrases
are active, then a sentence has to contain all active keyphrases to be displayed, which allows users
to quickly find sentences related to certain topics. The number next to each keyphrase indicates the
number of sentences this keyphrase occurs in for the currently filtered sentences. Keyphrases that
do not occur in the currently filtered sentences are disabled.

Hovering over an inactive topic acts as a temporary filter for the Metrics View: sentences that do not
contain that topic are greyed out so that the user can get an overview which sentences are affected
by activating that topic. This feature also allows users to detect patterns in the Metrics View for a
keyphrase e.g. if most sentences of a topic have high confidence values, then the model can most

46

4.6 Beam Search View

Figure 4.8: The Beam Search view visualizes translation hypotheses found during beam search
decoding as a tree structure. Each node represents a single output word, with word
probability given by the NMT model mapped to the node color. A path from the SOS
root node to an EOS leaf node represents a complete translation hypothesis. Highlighted
edges signify the current best hypothesis.

likely translate sentences containing this keyphrase well. New keyphrases can be added manually
by the user at any time, which enables filtering based on words that were not automatically extracted
from the document.

Additionally, words containing an active keyphrase are highlighted in the source sentence to get an
overview at a glance. More importantly, the words in the target translation are highlighted based
on the soft alignment of the attention weights as seen in Figure 4.7. By visualizing which target
words were translated from the highlighted source words, the user can see how domain-specific
words were translated by the model and whether there are systematic translation errors for certain
keyphrases.

4.6 Beam Search View

This section will introduce and discuss the Beam Search View, including its data model, visual
encoding and interaction concept.

4.6.1 Description

The Beam Search View (Figure 4.8), related to tasks T3 and T4, visualizes translation hypotheses
generated by beam search decoding and allows users to interactively explore and adjust each
hypothesis. As was done in related works [SGB+18] [LSK17], we chose to visualize beam search
hypotheses as a tree structure due to the inherently hierarchical nature of the decoding process.
The main advantage of this approach is that multiple hypotheses can be compactly shown at once,

47

4 System Description

compared to displaying a flat list of hypotheses. Multiple interaction techniques allow exploring
alternative translation hypotheses and incorporate custom user corrections to the Beam Search
View.

4.6.2 Data Model

works EOS

vehicle rides

again

EOSdrivescar

EOSworksvehicle

TheEOSworksvehicleThe

EOSdrivescarThe

This EOSvehicle rides

SOS The vehicle works

SOS The car drives

SOS This vehicle rides

SOS

The

This vehicle

car

vehicle works

drives

rides

EOS

EOS

EOS

EOS

EOS

EOS

t0

t1

t2

EOSworks
eijyi yj cj

pj

ui uj

Figure 4.9: Illustration of the data model (top) of the Beam Search View. Nodes ui and u j are
connected through edge ei j . Node u j has associated word yj , output probability pj and
candidate set c j . Initial translation hypotheses generated by beam search decoding
(left) and transformed tree structure used for Beam Search View (right). Each word
(box text) is associated with a probability (box color) as generated by the NMT model,
and a set of alternative candidate words (hidden boxes).

We will now introduce the data model that backs the Beam Search View. Let H = {t1, . . . , tN } be the
initial set of N translation hypotheses generated by an NMT model p during beam search decoding
from a source sequence x. Each hypothesis ti is defined as a sequence of tuples dj = (yj, pj, c j):

ti = {(y1, p1, c1), . . . , (yni, pni, cni)} (4.6)

where ni is the length of the translation hypothesis, yj is the j-th target word and pj its output
probability p(yj |y1, . . . , yj−1, x) and c j is a set of candidate words that were pruned during beam
search decoding. By definition, y1 is always the special SOS token with p1 = 1 and c1 = {}

indicating the start and yni the EOS token indicating the end of a sequence. Then, H is transformed
into a directed treeT = (V, E)with nodes V and edges E , by merging common prefixes of hypotheses.
Each node is associated with a tuple dj = (yj, pj, c j) as before. The root node r ∈ V is associated
with the SOS token, since every translation hypothesis starts with it by definition. Additionally,
leaf nodes of the tree are associated with EOS tokens, because translation hypotheses end with the
EOS token. Let (r, . . . , l) be a path from the root node r to a leaf node l. A complete translation
hypothesis in T is defined by the path from root node r to l by concatenating the associated dj of
each node vj ∈ V in the path. The tree T serves as the backing model of the Beam Search View.

Figure 4.9 illustrates the data model and the transformation from a set of translation hypotheses H
to a tree of hypotheses T on three sample hypotheses. For each element the tuple dj = (yj, pj, c j) is
shown as a box, where the probability pj is represented by the color of each box, the word shown
is yj , and the set of candidates cj are represented by the partially hidden boxes. On the right, the

48

4.6 Beam Search View

Word Boundary Subword Boundary Word Selection Hypothesis Selection

Figure 4.10: The visual encoding used in the Beam Search View graph. Word Boundary: Two
separate words are connected through a dashed, thin line. Subword Boundary:
Subwords within a word are connected through a continuous, thick line. Word
Selection: Selected (sub)words are bolded, the border around the word’s node is
highlighted in orange. Hypothesis Selection: All lines connecting (sub)words within
the selected hypothesis are highlighted in orange.

transformed tree T is shown. Note how the first two hypotheses both start with the prefix “SOS
The”, and are therefore merged up to the last common prefix word in the tree. Thus, the tree is more
compact compared to the list of hypotheses, as all common prefixes of the hypotheses are shared.

4.6.3 Visual Encoding

Figure 4.10 shows the visual encoding used for the Beam Search View. At a basic level, words
are mapped to tree nodes, and neighboring words in a hypothesis are connected through links. As
detailed in Section 3.4, subword units are an important technique for NMT systems to solve the
rare word problem. Therefore, our visualizations must also support subwords and handle them
intuitively for the user. In order to visualize the difference between normal words in a translation
hypothesis, and subword units that form a single word, we map the type of word boundary to the
visual property of the link between (sub)words. Ordinary word boundaries are represented by thin,
dashed lines, while subword boundaries are visualized by thick, continuous lines. Additionally, the
inter-node distance between subwords is decreased compared to ordinary words to further signalize
that connected subwords form a single unit. While it might seem reasonable to merge neighboring
subword nodes into a single word node, this would make it impossible to explore hypotheses that
branch off of a compound word consisting of subword units by interacting with individual nodes.
Concerning node interaction, two additional visual mappings are applied to nodes and links. First,
the border of (sub)word nodes that are selected by clicking or hovering are highlighted, and the
word text is bolded and enlarged. Second, upon selecting an EOS node, all links belonging to
the respective translation hypothesis are highlighted. This enables the user to see the current best
translation at all times for context.

Each node has two parts, the actual node visualized as a colored circle, and the word text centered
above the circle. The circle’s color is a mapping from the word’s output probability. This helps the
user to see which parts of translation hypotheses might need further manual review, as the NMT
model predicted words with low probability. Because the probability of a word can be seen as an
uncertainty of the NMT model regarding its prediction, results from uncertainty visualization were
used to decide on the visual mapping. Many visual variables can be used to express uncertainty,
such as fuzziness, location, color value, hue or size. MacEachren et al. [MRO+12] evaluated these
variables in an empirical study regarding their intuitiveness, accuracy, and precision. For this work,

49

4 System Description

Figure 4.11: The Beam Search View with a varying number of translations hypotheses. A sample
source sentence (top) is translated into two translation hypotheses (middle) and into
five translation hypotheses (bottom). A higher number enables exploration of more
diverse translations at the expense of increased visual clutter.

intuitiveness is most important, as the uncertainty should simply inform the user, and the exact
probability is not important. Therefore, we selected color value as our visual variable to visualize
word probability.

The user can manually increase the beam size to explore a larger space of hypotheses by using the
input above the tree. Larger beam sizes show more translation hypothesis, but the tree may become
cluttered as the number of nodes of the tree increases, as seen in Figure 4.11. Therefore, this setting
must be individually chosen depending on sentence length and context. The tree is expanded and
shrunk dynamically based on the current beam size, so that context during hypotheses exploration
is not lost when increasing or decreasing the current beam size.

50

4.6 Beam Search View

Figure 4.12: After selecting the node “constantly”, the tree expands, showing three alternative
candidate words “control”, “super” and “follow”, that may be selected to continue the
translation instead of the current next word “monitor”.

Figure 4.13: A custom correction can be applied at any time during exploration by typing words or
phrases. On top, child node “supervise” is appended to the currently selected node
“constantly”, containing the text typed by the user. On the bottom, selecting the child
node updates the Beam Search View, and new translation hypotheses are extended
from the current node, continuing the translation as corrected by the user.

4.6.4 Interaction Concept

In order to facilitate interactive exploration and correction of translation hypotheses, users can
interact with the Beam Search View in a variety of ways. At the most basic level, interactions can
be grouped into two types: (1) navigation and (2) editing. Navigation refers to actions for moving
through translation hypotheses, while editing refers to actions that change translation hypotheses in
some way. Additionally, the Beam Search View supports two input modalities for interaction: (1)
mouse-based input and (2) keyboard-based input. Mouse-based input allows free exploration and
adjustment, while keyboard-based input allows rapid post-editing for increased efficiency.

Navigation

Navigation allows the user to explore translation hypotheses. Figure 4.14 shows how the navigation
concept is realized for different movements. Navigation using mouse mode is afforded through
panning inside the view by clicking and dragging. Panning is useful for exploring long translation
hypotheses, as the width of the tree may not fit into the current viewport. Additionally, the view can

51

4 System Description

Figure 4.14: The two types of interactive actions in the Beam Search View, navigation (left) and
editing (right). Navigation: Going left removes the last word from the current
translation, going right adds the next word to the current translation. Going up or
down cycles through child nodes to decide which node will be selected going right
from the current node. Editing: Candidate expansion shows alternative words to
continue the current translation. Custom correction enables arbitrary user input to
continue the current translation.

be zoomed in and out by scrolling the mouse wheel, which can give a better overview for large trees
than the standard zoom level. Zooming can also be done by clicking dedicated icons in the upper
right corner. A disadvantage of mouse mode is efficiency, as mouse actions are likely slower and
possibly imprecise compared to keyboard inputs. However, mouse mode is the more intuitive way
to navigate through the Beam Search View, as standard interaction techniques such as panning and
zooming are widely used, as for example in online mapping applications.

Keyboard mode enables fast navigation through the arrow keys. Pressing the left arrow key
moves the current word back to the parent node. This allows the user to back-up in case words were
mistakenly added to the corrected translation. Pressing the right arrow key moves the current
word to a child node, thus extending the current translation hypothesis by a word. By default,
the first child node is chosen, as child nodes are sorted based on overall the overall probability of
translation hypotheses from top to bottom. Pressing the up and down arrow key , the user
can cycle through the child nodes of the current word in either direction to select which one he wants
to move to at the next step. In addition, TAB and BACKSPACE can be used which act analogously to
the left and right arrow keys, respectively. The use of BACKSPACE for removing the current word
from the hypothesis and TAB for moving forward is familiar from text processors, where they are
used to delete or move characters, respectively. Because these actions are difficult to discover for
users naturally, a help text is displayed in the lower left corner.

52

4.7 Attention View

Editing

Editing encompasses all actions related to choosing, correcting or selecting a translation hypothesis.
Selecting refers to the act of choosing a (partial) translation hypothesis as the correct translation.
By selecting any node, the current translation is set to the prefix defined by the path starting from
the selected node and its ancestors up to the SOS node. Selecting an EOS node sets a complete
hypothesis as the correct translation.

If the user is not satisfied with any child node of the current node to extend the hypothesis, a candidate
expansion can be performed. Figure 4.12 shows the effect of expanding the node “constantly” in a
sample translation. Since the user rejects “monitor” to continue the partial translation, three child
nodes “control” and “super” (likely as subword for “supervise“) and “follow” are appended. The
user can then select either candidate word to extend the translation. This will cause the beam search
to rerun with a lexical prefix constraint and update the tree accordingly. By allowing arbitrary
text input at any point, the Beam Search View effectively enables standard post-editing, while also
benefiting from the NMT model. As the NMT model continues the translation starting from the last
custom correction, the user does not have to correct the entire translation, instead only needs to
focus on editing a single part at a time.

In case none of the candidate words are suitable to extend the current partial translation, the user
can start a Custom Correction, which allowing them to input arbitrary words by typing them at any
point during editing or navigation, as seen in Figure 4.13. As soon as the user types, a child node is
appended to the current node containing the typed text. In order to differentiate custom edits from
other nodes, the text is underlined. Selecting a custom edited node behaves the same as selecting
any candidate node. In mouse mode, a translation hypothesis is selected by clicking on an EOS
node. For any other node, clicking selects the related prefix translations and also causes a candidate
expansion of the current node. In keyboard mode, selection is performed implicitly by navigating to
a node as described before. Candidate expansion is performed by pressing the ENTER key.

4.7 Attention View

Figure 4.15: The Attention View visualizes the attention values of the current translation as a
weighted graph. Each word is represented as a node, and an attention weight between
a source and target word is represented by a link. The magnitude of attention weights
is mapped linearly to line thickness, and attention weights under a threshold are hidden
to minimize visual clutter. Hovering over a word will highlight connected words in
the other sentence and the associated attention lines.

53

4 System Description

4.7.1 Description

The Attention View, related to task T3, visualizes the attention weights of the model for a particular
source and target sentence pair as a weighted graph, based on Strobelt et al. [SGB+18]. Source and
target words are linked, with the width of the link mapped to the magnitude of the related attention
weight of these words, as seen in Figure 4.15. Hovering over a source token results in the target
tokens being highlighted according to the attention values of the source token, allowing the user to
see which target tokens were generated due to the hovered token at a glance. Inversely, hovering
over a target token highlights the relevant source tokens, again based on the attention values.

Some related works visualized attention weights as a matrix [BCB14]. Using a matrix can be useful
for static visualizations or images, where space is no concern. However, a matrix visualization has
the disadvantage of creating a lot of whitespace for sparse matrices because the area of the matrix
grows quadratically with the length of the sentences, while the number of non-zero entries grows
linearly. Attention matrices are usually sparse, as typically each target word has high attention for
only a few source words at most. Another disadvantage is that the target sentence must be displayed
vertically in a matrix visualization, which goes against the typical reading flow from left to right.
Therefore, a compact node-link visualization was chosen to decrease whitespace, leaving more
space for the remaining views.

4.7.2 Usage Scenarios

Figure 4.16: Attention View for a sample translation showing under-translation by the NMT model.
Note how the phrase “der IAA” was not translated, which can be seen by the missing
attention weights coming from these words.

While the Attention View is interesting to gain insight into the behaviour of the NMT model, it is
also useful for analyzing a translation hypothesis. By visualizing links between source and target
words, irregularities pointing to over- or under-translation can become more obvious, helping the
user to find such errors. In Figure 4.16, attention weights for a sample sentence are shown, indicating
an under-translation made by the NMT model. Note how it is visible by looking at the missing
attention weights that the NMT model skipped translating the source phrase “der IAA”, instead of
continuing with the phrase “das erste Serienfahrzeug”. Also, note that despite under-translation,
the translation is still fluid, so that simply reading the translation may not reveal this translation
error. Therefore, the user must keep the source sentence in mind while checking the translation
hypothesis, which is helped by the Attention View as seen by the example.

Over-translation is a well-known problem of NMT models [KK17]. Figure 4.17 shows the Attention
View for a source and translation sentence showcasing over-translation. Here, the German source
word “jedoch” is translated twice by the NMT model. Note, that the model translates the source

54

4.8 Domain Adaption

Figure 4.17: Attention View for a sample translation showing over-translation by the NMT model.
The NMT model correctly translates source word “jedoch” as “however” but incorrectly
places it at two positions that make sense for this word, as seen by two prominent
attention weights going into “jedoch”.

word correctly, and that both occurrences of “however” in the translation are placed at sensible
positions, which might cause a reader to overlook this translation error. The Attention View makes
over-translation apparent by visualizing attention weights of multiple target words going into a
single source word, thus aiding the user in identifying such translation errors.

4.8 Domain Adaption

Fine Tuning

Source NMT Model

Correction

Translation

Post Editing

Figure 4.18: Domain Adaption workflow of NMTVis. The NMT model translates a source
sentence, producing a translation. The user post-edits the translation using the system,
resulting in a correction. Finally, the NMT model is fine-tuned with the correction in
an online fashion.

An essential functionality of NMTVis is its ability to incorporate corrections of users into the
system, allowing the model to adapt to the specific domain of the current document. Because the
NMT model is pre-trained on general data, this feedback can help the model to learn domain-specific
terminology or semantic differences between the general corpus and the domain-specific document.
Figure 4.18 shows the domain adaption workflow of NMTVIs. After multiple sentences were
corrected by the user, he can choose to retrain the current model by selecting the appropriate option
in the Document View. The model is then fine-tuned using the corrected sentences. As described in
Section 3.5, model centric fine-tuning is performed by freezing all model weights except those of
the output layer of the decoder. Afterward, the system translates the uncorrected sentences again,
possibly improving translation quality by learning from the corrected sentences.

55

4 System Description

Client

Metrics View

Keyphrase View

D
oc

um
en

t S
er

vi
ce

Attention View

d3.js

Angular

Server

JSON

C
on

tro
lle

r

Flask

NMT Model

Document Store SQLite

PyTorch

HTTP

Beam Search View

Figure 4.19: The client-server architecture of NMTVis. Orange boxes represent external depen-
dencies, white boxes represent major system components.

4.9 Implementation

The system was designed as a client-server application running in a web browser. The NMT model
was implemented in PyTorch1. Tokenization of documents was performed using spacy2. The client
and server exchange data through a common REST-like HTTP API. All visualizations were made
with d3.js3, which provides a low-level API for creating interactive visualizations using Scalable
Vector Graphics (SVG). For the tree layout in the Beam Search View, the implementation of the
Reingold-Tilford algorithm [RT81] in d3.js was used. The client is a Single Page Application (SPA)
running on the Angular4 framework. The backend was implemented with Python 3 and the Flask5
framework.

Figure 4.19 shows the system architecture including the most important components. On the client
side, the visualization views are implemented as separate components that use d3.js, accessing
the Document Service to retrieve relevant data from the server. The Document Service handles
communication with the server over HTTP, transporting the data in JSON format. On the server
side, the Controller handles incoming requests from the client, parses the JSON data and retrieves
the data from the Document Store for translated documents, or passes data to the NMT model for
translation. The Document Store stores the data using a lightweight SQLite database. The NMT
model will be explained in more detail in the following sections.

4.10 NMT Model

As part of the system, an NMT model translating from German to English was developed and
trained based on the theoretical foundations as explained in Chapter 2. A standard attentional
encoder-decoder architecture as introduced by [LPM15] was chosen and implemented in PyTorch.
Figure 4.20 shows the architecture of the model including layers, connections and layer sizes. The

1https://pytorch.org/

2https://spacy.io/

3https://d3js.org/

4https://angular.io/

5http://flask.pocoo.org/

56

https://pytorch.org/
https://spacy.io/
https://d3js.org/
https://angular.io/
http://flask.pocoo.org/

4.10 NMT Model

Figure 4.20: The attentional encoder-decoder architecture implemented in this thesis. Each box
represents a NN layer, and the numbers signify the layer size.

encoder uses an embedding size of 512, with two stacked, bi-directional LSTM layers with 1000
hidden units each. The decoder also uses an embedding size of 512, and two stacked LSTM layers
with 1000 hidden units. For regularization, the dropout mechanism with rate 0.1 is used for the
weights between the LSTM layers. The general attention mechanism as described in Equation
3.2 was chosen, in combination with the input feeding approach also introduced by Luong et al.
[LPM15]. Subword units [SHB15] are used with a shared vocabulary of size 32, 000 to handle
unknown words and to keep the size of the vocabulary reasonably small. For beam search decoding,
a beam size of 3 is used, which was shown to bring sufficient benefit [WSC+16].

4.10.1 Data Sets

The choice of the data set for training an NMT model is crucial to ensure adequate translation
quality. Because NMTVis does not focus on a specific domain, a general data set had to be used for
training. At first, the IWSLT’14 [CNS+14] DE-EN data set was chosen, containing over 160, 000
English and German sentences adapted from TED talks. This relatively small data set allows for fast
training time and smaller vocabulary, at the expense of translation quality and model generalization.
After initial testing, the model trained on this data was deemed insufficient regarding translation
quality due to limited vocabularies resulting in many unknown words during translation.

57

4 System Description

WMT’16 IWSLT’14

Train Dev Test Train Dev Test

Sentences 4.5M 2.2k 3k 160k 7.3k 6.8k
Total Words DE 107k 44k 62k 3.1M 142k 126k
Total Words EN 114M 47k 65k 3.3M 150k 131k
Distinct Words DE 2M 10k 13k 114k 17.9k 14k
Distinct Words EN 971k 8.1k 9.9k 53k 12.5k 9.4k

Table 4.1: Number of sentences, words, and distinct words (case-sensitive, including punctuation) of
WMT’16 and IWSLT’14 DE-EN data sets used for development, training and evaluation.
Note that these statistics were computed on the tokenized data sets, before BPE was
applied. Numbers are rounded to thousands (k) and millions (M) for readability.

NMT models exhibit a steep learning curve in relation to the size of training data Koehn and
Knowles [KK17], which means that translation quality starts low, and then rises quickly with
increasing training data size. Many large public data sets are available, drawing from a variety of
sources such as news articles, subtitles or Wikipedia articles, where the existence of a document in
multiple languages is needed. For development, training and evaluation, the DE-EN data set from
the 2016 ACL Conference on Machine Translation (WMT’16) [BCF+16] shared news translation
task was chosen, containing over 4 million sentences. This popular data set was used in several
related works on NMT (e.g. [DN17], [SHB16]) and allows for easy comparison of translation
quality. We use newstest2016 as our test set and newstest2015 as the development set.

Table 4.1 shows the number of sentences and (distinct) words of the translation data sets used in this
thesis. The WMT’16 training set has over 100 million words in total for each language, compared
to 3 million for IWSLT’14. It is also notable that English data sets have a consistently higher total
word count across all types of sets compared to German but also contain significantly fewer distinct
words, e.g. roughly 100, 000 for German and 50, 000 for English in the IWSLT’14 training set. An
explanation might be morphological differences between both languages, e.g. conjugation of verbs
in German compared to English.

4.10.2 Training

All training was carried out on an NVIDIA GeForce GTX Titan X GPU with 12 GB RAM using
Stochastic Gradient Descent and Adam [KB14] with an initial learning rate of 10−4, and using
the cross entropy loss function. All hyperparameters were determined using grid search on the
development set. A batch size of 256 was used, training for a total of 20 epochs. The training corpus
was reshuffled after each epoch. Gradient clipping was used to prevent the exploding gradient issue,
with a maximal gradient norm of 5. For further regularization, weight decay with a value of 10−5

was used. For model selection, the model with the lowest Bleu score on the test set during training
was used as the best model.

Figure 4.21 shows the average cross entropy loss per sentence on the training set and the validation
data for IWSLT’14 and WMT’16 data sets. Note that for IWSLT’14, the validation loss is lower at
first due to the use of dropout, which is disabled when evaluating the model on the validation set,

58

4.10 NMT Model

Figure 4.21: Average cross entropy loss per sentence of NMT model trained on IWSLT’14 and
WMT’16 DE-EN data on training set and validation set for DE-EN and EN-DE
translation directions.

leading to a high initial loss for the training data. The validation loss stops decreasing roughly at
epoch 14, while the training loss keeps steadily decreasing. This means that the model is most likely
starting to overfit on the training data, making further training useless. The loss progression for
WMT’16 has major differences compared to IWSLT’14. First of all, both training and validation
loss start off much lower at about 3.5 and 2.5 respectively compared to IWSLT’14. Both losses
quickly descend at almost equal rates, with validation loss stabilizing around 1.5 after 10 epochs.
The training loss also never goes below the validation loss and does not seem to decrease more
rapidly in comparison, which points to the fact that the NMT model does not overfit as much as for
IWSLT’14.

The most likely reason for these differences in performance and loss of the data sets lies in
the large size difference between them. The training set for IWSLT’14 only contains 160, 215
sentences, compared to 4, 500, 966 for WMT’16. This means that the model was trained on
20 · 160, 215 = 3, 204, 300 sentences for IWSLT’14, less sentences than for a single epoch on the
WMT’16 set. On the other hand, training time for IWSLT’14 is significantly shorter, with 9.5 hours
for German→ English (DE-EN) and 14 hours for English→ German (EN-DE) compared to 5 days
and 6 days for WMT’16, respectively. The small size of IWSLT’14 may also explain the issue of
overfitting, as the model is likely too complex with too many weights for this data set while being a
good fit for the larger WMT’16 data set. Looking at the difference in loss regarding translation
direction, we see that the loss for EN-DE is consistently higher than for DE-EN for both data sets.
This difference is notably higher for IWSLT’14 compared to WMT’16, where EN-DE loss is only
slightly higher. Looking at the loss curves in general, DE-EN loss seems to decrease at the same
rate as EN-DE loss, suggesting that the model does not converge faster for one language direction,
but that translating EN-DE is harder for the NMT model to learn.

59

4 System Description

Figure 4.22: The Bleu score computed on the validation set for each epoch during training for
IWSLT’14 and WMT’16, and translation directions DE-EN and EN-DE.

While tracking the average loss makes sense to control overfitting and generalization, it does not
explain how well the model actually performs on translation tasks. Therefore, the Bleu score was
also computed on the validation set of each data set after each epoch, as seen in Figure 4.22. For
WMT’16, the first epochs lead to a large increase of the score, with a slow incline up to epoch 12,
after which the score remains mostly stable around 30, ending after 20 epochs at 31. For IWSLT’14,
the score starts at around 3, increasing linearly for several epochs, reaching a plateau after 15 epochs
at around 20. The NMT model trained on WMT’16 performs significantly better with a Bleu
score of 31 compared to a score of 20 for IWSLT’14. The model also generalizes better as seen by
evaluating training and validation loss. The main disadvantage of this model is the long training
time due to the size of the data set, which has no impact during translation, however. Therefore, the
WMT’16 model was chosen for the final system.

4.10.3 Model Evaluation

Table 4.2 shows the final results of NMT models on the WMT’16 and IWSLT’14 data sets for
German-English translation in both directions (EN-DE and DE-EN). We report the Bleu on the
untokenized test sets as specified in Section 4.10.1, using the best model selected by the highest
Bleu score on the validation set and training time for each model. The evaluation on the test
sets confirm the preliminary results during training. The model trained on WMT’16 achieves
significantly higher Bleu for both German→ English (31.1 vs. 21.1) and English→ German (28.6
vs. 17.9). Looking at translation direction, we see that the model performs better at translating
into English than into German, with a difference of +2.5 for WMT’16 and +3.2 for IWSLT’14.
This result, which matches with findings by Sennrich et al. [SHB15], suggests that learning to
generate German sentences is harder for NMT models, which may in part be due to more complex
grammar.

60

4.10 NMT Model

WMT’16 IWSLT’14

DE-EN EN-DE DE-EN EN-DE

NMTVis 31.1 28.6 21.1 17.9
Luong et al. [LPM15] 24.9 25.9 - -
Freitag et al. [FWP+14] - - 25.8 23.3
Denkowski and Neubig [DN17] 33.5 - - -
Sennrich et al. [SHB16] 38.6 34.2 - -

Table 4.2: Comparison of Bleu scores of our approach NMTVis and related NMT systems for
German-English (DE-EN) and English-German (EN-DE) translation on the WMT’16
and IWSLT’14 test sets.

We also compare our model against multiple other NMT systems that were evaluated on WMT
and IWSLT data sets. Freitag et al. [FWP+14] achieve significantly higher scores on IWSLT’14
for both directions, compared to our model, with a difference of +4.8 for DE-EN and +5.4 for
EN-DE. For WMT’16 our model performs better than Luong et al. [LPM15], likely due to the
use of subword-units with BPE. For DE-EN, Denkowski and Neubig [DN17] performs slightly
better than our model, with an improvement of +2.4 points. The system of Sennrich et al. [SHB16]
achieves the greatest Bleu score of 38.6 for DE-EN and 34.2 for EN-DE, using ensemble models
and synthetic parallel data sets generated by backtranslating from the target language. These results
show that our base model for WMT’16 has comparable performance to related systems, making
it adequate for our use case, but that there is still a lot of room for improvement using advanced
techniques such as ensembling and synthetic data sets.

61

5 User Study

Evaluating a novel, interactive VA systems is a challenging task, due to the ambiguous, high-level
goals of these systems and their dependency on human users [KKE10]. User studies are a common
way of evaluating VA systems. This chapter will describe the web-based user study that was
conducted as part of this thesis.

5.1 Goals

The goal of the user study was to evaluate the following aspects of NMTVis:

Effectiveness of the system regarding its main tasks as defined in Section 4.1, especially sentence
selection of erroneous translations, exploration, and analysis of translation hypotheses, and
post-editing of machine-generated translation.

Ease of Understanding of the views and visualizations. The visual encoding should be intuitive
and easy to interpret, and present useful information to users.

Ease of Interaction with the views and visualizations to enable effective and efficient execution of
the tasks.

For evaluating effectiveness, an experimental study could have been conducted, e.g. by measuring
the time needed for post-editing and comparing against a baseline system. Due to time constraints
and the high effort needed for conducting such an experiment, a user study was chosen instead,
asking users for their subjective rating regarding the usability and effectiveness of the system
through a questionnaire.

5.2 Study Design

We chose to conduct a web-based user study to evaluate NMTVis, which is afforded by fact that
the system was implemented as a web application, including user management features. There are
a multitude of advantages and disadvantages of web-based user studies and experiments [Rei00].
One advantage of such an unsupervised approach is that participants cannot be influenced by the
presence of a researcher, and are free to explore the system as they desire, removing experimenter
bias. This might result in more credible feedback since participants might feel pressure to give
positive feedback in a supervised setting. Web-based studies also reduce cost and time, as no special
equipment, lab space or inventory is needed, enabling to scale the study for a large number of
participants. However, there are also disadvantages of such an approach. Technical variance is one
disadvantage, as users access the web-based system on a multitude of operating system, browsers,
and platforms. Therefore, experimental conditions can differ between users, and issues can arise

63

5 User Study

due to technical problems. Participants may drop-out during the study unexpectedly due to a lack of
accountability. Additionally, there is a lack of experimental control, and participants may not take
questions or ratings seriously. In order to minimize these disadvantages, special care was taken to
test the system for different technical configurations and environments. An introduction was written
that explains the goals and tasks of NMTVis, as well as the purpose of the user study in simple
language to minimize drop-out due to confusion or information overload.

For the user study, each participant was sent an email containing a web link to the system, that
explained the details of the user study. Participants then could freely use the system for an arbitrary
amount of time. By pressing a “Finish Study” button, a participant could exit the application before
being redirected to a questionnaire. Participants were asked to perform the following three tasks:

1. Sentence Selection: Using the Metrics and Keyphrase View, sentences containing erroneous
translations should be found.

2. Exploration of Translation Hypotheses: Using the Beam Search and Attention View,
translation hypotheses should be explored.

3. Correction of Translation Hypotheses: Using the Beam Search View, sentences found in
the first task should be corrected.

No further instructions were given, and participants were free to perform these tasks in any order
for any length of time. After performing all tasks, participants were prompted to answer the
questionnaire, which is shown in Appendix A. We used a 7-point Likert scale for all rating questions,
as is done by several standard usability questionnaires [Dav89; Lun01]. We adapted a question
from the After-Scenario Questionnaire [Lew95] to measure overall ease of task completion. The
questions are divided into three types: (1) questions regarding the effectiveness of the system,
(2) questions regarding the intuitiveness of visualizations and interaction (3) open questions for
free-form feedback. Specific questions were grouped for each of the four evaluated views (Metrics
View, Keyphrase View, Beam Search View, and Attention View). For general questions about
the effectiveness, we also asked if the participant would prefer to use NMTVis over a traditional
text-based system for (1) small documents with less than 20 sentences and (2) large documents with
more than 100 sentences.

5.3 Data Set

In order to ensure comparable study settings, a pre-selected document was chosen and uploaded
to the system for each participant. Because we cannot assume specific domain knowledge, e.g.
knowledge of medical or legal vernacular from the participants, a document had to be chosen that
could be translated with common knowledge. At the same time, domain-specific words that do
not appear in the out-of-domain training data should still be included to test the effectiveness of
the system for domain-specific documents. Therefore, the the German Wikipedia article about
autonomous driving 1 was chosen for the user study. The chosen document contains 92 sentences,
with a maximum length of 48 words and minimum length of 2 words. The document contains
1822 words in total and 843 distinct words (case-sensitive, including punctuation), with an average

1https://de.wikipedia.org/wiki/Autonomes_Fahren

64

https://de.wikipedia.org/wiki/Autonomes_Fahren

5.4 Participants

Unter autonomem Fahren (manchmal auch automatisches Fahren, automatisiertes
Fahren oder pilotiertes Fahren genannt) ist die Fortbewegung von Fahrzeugen, mobilen
Robotern und fahrerlosen Transportsystemen zu verstehen, die sich weitgehend autonom
verhalten.
Autonomiestufe 3: Bedingungsautomatisierung.
Voraussetzung ist das Vorhandensein von Sensoren (Radar, Video, Laser) und Aktoren
(in der Motorsteuerung, der Lenkung, den Bremsen) im Fahrzeug.
Am 25. Januar 2017 hatte die Bundesregierung einen Gesetzentwurf beschlossen, der
autonomes Fahren auf den Straßen des Landes unter bestimmten Voraussetzungen
zulassen soll.

Table 5.1: Four sample sentences from the German Wikipedia article on autonomous driving.

Keyphrase Frequency

Autonomiestufe 8
Verkehrsgerichtstag 3
Automatisierungsstufe 2
Spurhalten 2
Dilemmasituationen 2
Längsführung 2
Tempomat 2
Mikroprozessorsysteme 1
Sensordaten 1
Spurhalten 1
SAE-Level 1

Table 5.2: Top 10 keyphrases extracted from the German Wikipedia article on autonomous driving
used for the user study.

of 19.8 words per sentence. Table 5.1 shows a manually chosen sample of sentences from the
document that exhibits most of its relevant characteristics. The first sentence is of moderate length
and complexity, containing 30 words and an interjection in parentheses, as well as domain-specific
words such as “automatisiertes Fahren”. The second sentence is comparably short but contains
the compound word “Bedienungsautomatisierung”. The third sentence contains more technical
jargon (“Radar”, “Laser”, “Aktoren”) and the last sentence contains legal terms (“Gesetzentwurf”,
“Bundesregierung”). Table 5.2 shows the top 10 domain-specific keyphrases and their frequency.
As we can see, the keyphrases reflect the domain of the document at hand, with multiple keyphrases
directly related to autonomous driving such as “Autonomiestufe”, “Automatisierungsstufe” and
“SAE-Level” and technical jargon such as “Längsführung” and “Mikroprozessorsysteme”. These
sample sentences and keyphrases validate the use of this document for the user study.

65

5 User Study

Participant Background Knowledge

Median Mean Std. Dev.

German Language Proficiency 7 6.4 1.6
English Language Proficiency 5 4.9 0.8
Visualization Knowledge 4 3.9 1.6
Machine Translation Knowledge 2 2.8 2

Table 5.3: Subjective background knowledge ratings of participants including language proficiency,
visualizations and machine translation knowledge. Each question was asked on a 7-point
Likert scale.

5.4 Participants

Table 5.3 shows the results for the subjective ratings of background knowledge for German and
English language proficiency, as well as visualization and machine translation knowledge. There
were 15 participants that took part in the user study. Five of the participants were researchers and
students at the Institute of Natural Language Processing (IMS) of the University of Stuttgart. Six of
the participants were researchers at the Institute for Visualisation and Interactive Systems (VIS)
of the University of Stuttgart. From the remaining participants, two were Software Engineers. 12
participants were native German speakers, while two participants rated their German language
proficiency as good (subjective ratings of 5 and 6), and one participant rated their German skills
as poor (subjective rating of 1). Regarding English language proficiency, subjective ratings were
high (median = 5, mean = 4.9), however, no native speakers were among the participants. There
was some prior visualization knowledge (median = 4, mean = 3.9) due to the VIS participants.
Knowledge about machine translation was low across all participants (median = 2, mean = 2.8),
with one outlier with a subjective rating of 7 and the largest standard deviation of 2 among all
background questions.

5.5 Results

This section will present the results of the questionnaire regarding the effectiveness, ease of
understanding, and ease of interaction of NMTVis.

5.5.1 General Effectiveness

The results for the general effectiveness of NMTVis are shown in Table 5.4. Overall, ease of task
completion was rated highly (median = 5, mean = 5.1), with a single outlier with rating 1. Two
participants gave the highest positive subjective ranking of 7 regarding ease of task completion.
There is a clear distinction regarding preference of the system for post-editing of small and large
documents compared to a simple text-based editing approach. Preference for using NMTVis for
large documents (median = 6, mean = 5.8) is higher compared to small documents (median = 4,

66

5.5 Results

General Effectiveness

Median Mean Std. Dev.

Ease of Task Completion 5 5.1 1.5
System Preference for Small Documents 4 4.5 1.5
System Preference for Large Documents 6 5.8 0.9

Table 5.4: Ratings for subjective effectiveness of each evaluated view on a 7-point Likert scale.

mean = 4.5). Additionally, the standard deviation is smaller for large documents (0.9) compared to
small documents (1.5). On average, participants rated their preference for large documents higher
by 1.2 points.

5.5.2 Effectiveness

Effectiveness

Median Mean Std. Dev.

Metrics View 6 5.9 1
Keyphrase View 5 4.5 1.5
Beam Search View 6 5.8 1.4
Attention View 5 5.5 0.8

Table 5.5: Ratings for subjective effectiveness of each evaluated view on a 7-point Likert scale.

The results of the user study regarding the effectiveness of the different views for different tasks
are shown in Table 5.5. Overall, the effectiveness of the views was rated highly. In particular,
the Metrics View and the Beam Search View received high ratings with median ratings of 6, and
mean ratings of 5.9 and 5.8 respectively. Close behind, the Attention View received a median
rating of 5 and a mean rating of 5.5, with a standard deviation of 0.8, which is the lowest among
all views. The Keyphrase View received the lowest ratings regarding effectiveness for finding
erroneous translations, with a mean rating of only 4.5, and median rating of 5, as well as the highest
standard deviation of 1.5. Two participants rated the effectiveness of the Keyphrase View for finding
erroneous translations with 2, and three participants rated it with 7, showing that subjective ratings
differ significantly regarding its effectiveness.

5.5.3 Visualization

The results of the user study regarding ease of understanding and intuitiveness of visualizations are
shown in Table 5.6. Generally, ease of understanding and intuitiveness regarding the visualizations
was rated highly. The Metrics View, Keyphrase View, and Beam Search View all received high
ratings with medians of 7, and means of 6.6, 6.5 and 6.2 respectively. In particular, the Metrics
View achieves the highest mean rating with the lowest standard deviation of 0.6. The Attention

67

5 User Study

Visualization

Median Mean Std. Dev.

Metrics View 7 6.6 0.6
Keyphrase View 7 6.5 1
Beam Search View 7 6.2 1.2
Attention View 6 6.1 1.1

Table 5.6: Ratings for ease of understanding and interpretability of the visualizations for each
evaluated view on a 7-point Likert scale.

View received a median rating of 6, with a mean rating of 6.1, close behind the other views with
single outlier with a rating of 3. Compared to all other question groups, ease of understanding of
the visualizations received the highest ratings on average.

5.5.4 Interaction

Interaction

Median Mean Std. Dev.

Metrics View 6 6.1 0.9
Keyphrase View 7 6.4 1
Beam Search View 5 5 1.8
Attention View 6 6 0.8

Table 5.7: Ratings for ease of interaction with each evaluated view on a 7-point Likert scale.

The results of the user study regarding ease of interaction with the different views are shown in
Table 5.7. In general, all views were rated positively, with mean and median ratings above 4. The
Keyphrase View had the highest average rating (median = 7, mean = 6.4). The Metrics View
(median = 6, mean = 6.1) and Attention View (median = 6, mean = 6) were rated slightly lower,
with similar standard deviations (0.9 and 0.8). Interaction with the Beam Search View received the
lowest ratings overall (median = 5, mean = 5) and also has the highest standard deviation with 1.8.
The opinion on Beam Search View interaction seems to differ sharply among participants, with two
low ratings of 1 and 2, and two high ratings of 7, reflecting in its high standard deviation of 1.8.

5.5.5 Free Text Feedback

In addition to the rating questions, we also solicited free text feedback through open questions from
the participants. Regarding functionality and views, a few trends became apparent in the feedback.
The Metrics View was mentioned positively for a majority of participants, especially those with a
visualization background. Multiple participants noted its usefulness for quickly finding erroneous
translations through brushing and linking. For example, one participant stated that the Metrics View
“gives nice possibilities to look for different kinds of errors” and another that it “makes it really

68

5.6 Discussion

easy to find translation errors (mostly confidence & penalty)”. Several participants gave positive
feedback regarding the suggestions from the Beam Search View. For example, one participant
mentioned that the Beam Search View “automatically gives you alternatives which speed up the
correction of translation”. One participant found that “navigation is mostly intuitive, and it only
takes a few minutes to get accustomed with the tool” and that they would find themselves “using
it efficiently after short time of training, given a few tweaks”. Concerning the Attention View a
participant noted that it is “interesting to see the differences in the sentence structure of different
languages” and that they “never saw something like this before in an online translation tool”, which
highlights the use of NMTVis for making the underlying NMT model more interpretable.

Most feedback regarding aspects of the system that the participants viewed negatively revolved around
interactivity and specific features. Multiple participants noted that post-editing and exploration of
long translation are challenging using the Beam Search View, due to the limited size of the viewport.
Two participants found the yellow-red color scale in the Beam Search View hard to interpret, with
one participant pointing out that a diverging color scale, e.g. a red-white-blue scale might be helpful
to get a sense where the central value is. This participant also mentioned that long sentences might
be laborious to correct in the Beam Search View. Another participant found interaction with the
Beam Search View extremely difficult, noting a lack of undo functionality, slow responsiveness, as
well as the fact that individual words cannot be deleted from the Beam Search View. Two other
participants also noted the slow response time for custom corrections in the Beam Search View.
Further, the custom correction was found to be troublesome, noting that “it would be much nicer if I
could press enter, then edit the custom text in a text field and use the arrow keys as I am accustomed
to”. This participant also suggested that it should be possible to freeze parts of a translation so that
it remains static throughout interaction with the Beam Search View. Regarding the Metrics View,
one participant mentioned that filtering through brushing and filtering has the disadvantage that the
local context of a sentence is immediately lost, as the original order of sentences is disturbed. This
would make the translation of large paragraph difficult, as the context of each sentence is important
during translation. Multiple participants could not find out how to remove a brush in the Metrics
View. One participant noted that they would “accidentally highlight a different line (sentence)” in
the Metrics View, as hovering over a line selects the respective sentence.

Regarding suggestions for new features, one participant noted that it might be useful to show similar
sentences given a selected sentence. This might be helpful to find several related sentences that
contain similar errors, e.g. when a particular word is mistranslated by the system. Another suggestion
was a view that “that preserves sentence order but still provides confidence visualizations”, unlike
the Metrics View, that only enables filtering or ordering based on confidence. Confidence scores
could be displayed directly next to a translation. Another suggestion for a future system was to
“combine a regular text field with auto-completion-like translation suggestions”, replacing the Beam
Search View. Such an approach would be closer to traditional text-based post-editing systems and
could still provide benefits of beam search decoding such as suggesting alternative words.

5.6 Discussion

The user study showed that the system in its entirety and the different views were rated positively
regarding effectiveness, interpretability of visualizations and ease of interaction. Overall, the
system was perceived as useful for translation tasks, with a clear preference to use the system for

69

5 User Study

translation large documents compared to a traditional text-based approach. Only the effectiveness
of the Keyphrase View was rated comparatively low and received most differing ratings. For
ease of interaction, the Beam Search View received the most diverging ratings, suggesting that its
interaction concept has potential for improvement. Ease of understanding for the visualizations
received high ratings in absolute terms and also higher ratings compared to effectiveness and
interaction, suggesting the visualizations are mostly intuitive to understand. Most free text feedback
reinforced the ratings, with many participants especially liking the sentence selection mechanism
using the Metrics View and the suggestions made by the Beam Search View. However, the free-form
feedback also revealed weaknesses and opportunities of the current approach of NMTVis. Based
on the qualitative feedback from the participants and our own analysis, the following key challenges
were identified:

Interaction In order for NMTVis to become a productivity tool for post-editing, more research
regarding efficiency, fluency in interaction must be done. In particular, the Beam Search
View interaction should be more responsive, allowing standard text editing features such as
undo functionality. For the Metrics View, removal of brushes should be made more intuitive,
as multiple users had issues removing them. Sentence selection in the Metrics View should
be improved such that accidental selection is minimized.

Visual Encoding Different visual encodings for word probability in the Beam Search View should
be investigated to improve interpretability. A diverging color scale may be useful to get a
better sense of high and low word probabilities. In the Document View, the confidence score
of translations should be visualized in some way, e.g. by mapping the confidence score to the
background colour of a translation.

Scalability of Visualizations The sentence-level visualizations lead to issues for dealing with
long sentences, as their width scales linearly with sentence length. This makes interactive
post-editing of long sentences difficult, as (1) only a part of the source sentence is visible in
the Attention View at a time necessitating scrolling and (2) the depth of the graph in the Beam
Search View makes it difficult to see the entire graph at once, necessitating zooming and
panning. Both issues increase the cognitive load on the user, as he has to actively navigate
through the visualizations while keeping the context of the entire sentence in mind, making
post-editing slower and less efficient. More research needs to be conducted on how to scale
these visualizations better in order to mitigate these disadvantages.

Local Context The user study revealed that the local context of a sentence, made up of its
surrounding sentences, is important during post-editing. The different views must make
the current context of a sentence visible at any time, and the order of sentences should be
restorable. In addition, the Beam Search View should also include some form of context
during post-editing.

70

6 Automated Evaluation

Besides the qualitative evaluation in the user study, we also evaluated the system through a series
of experiments. Since translation evaluation is both time and cost intensive, we conducted these
experiments in an automated manner. The main questions for the automated evaluation were:

• How well do the metrics used in NMTVis correlate with translation quality?

• How useful are the metrics used in NMTVis for finding erroneous and low-quality translations?

• How well does the model used in NMTVis adapt to domain-specific documents?

• How well does the model used in NMTVis learn to translate rare and domain-specific words?

The following sections will explain the experiments we conducted, and discuss the results we
obtained.

6.1 Data Set

Khresmoi Data Set

Test Dev

Sentences 1,000 500
Total Words DE 20,825 8,670
Total Words EN 21,425 9,924
Distinct Words DE 5,730 3,620
Distinct Words EN 4,493 3,180

Table 6.1: Number of sentences, words, and distinct words (case-sensitive, including punctuation)
of Khresmoi medical EN-DE data sets used for the automated evaluation. Note that
these statistics were computed on the tokenized data sets, before BPE was applied.

For the automated evaluation, a domain-specific document was chosen in order to validate the
effectiveness of the system for in-domain data given our NMT model trained on out-of-domain data.
We use the Khresmoi EN-DE data set [DHH+17] from the WMT’17 shared biomedical translation
task [YNN+17] for our experiments. This data set consists of 1500 sentences related to medical
trials, containing complex medical jargon. The data is split into a test set with 1000 sentences and
a development set with 500 sentences. Table 6.1 shows detailed statistics for both sets. We use
the test set for analyzing possible correlations between metrics and translation quality. For the
domain adaption experiments, the test set is used for online training due to its larger size, and the
development set is used as a hold-out set for evaluation.

71

6 Automated Evaluation

6.2 Correlation of Metrics and Translation Quality

Figure 6.1: Scatterplots for each evaluated metric plotted against CharacTer score on the Khresmoi
medical test set. The regression line using the least-squares method is shown, as well as
the 95% confidence interval (faded region). Each point represents a sentence. Metric
scores are plotted on the x-axis, CharacTer scores are plotted on the y-axis. The
Pearson correlation coefficient r is given for each scatterplot.

We introduced the Metrics View (see Section 4.4) which allows selection and filtering of sentences
based on certain metrics. In order to evaluate if the chosen metrics are useful to detect sentences with
low translation quality, a correlational experiment was conducted. Figure 6.1 shows the scatterplot
matrix of each evaluated metric against the CharacTer score (see Section 3.7) for each sentence
from the medical Khresmoi test set, as well as regression lines and Pearson correlation coefficient
r. The CharacTer score was chosen because a sentence-level metric for translation quality was
needed, meaning that Bleu as a document-level metric could not be used. More precisely, for each
metric mi and sentence sj we calculated the metric score xi j = mi(sj), and CharacTer score yj .
The plot for metric mi then shows the points (xi j, yj).

The strongest correlations between metric score and CharacTer score is found for APin with r = 0.47.
Confidence has the largest negative correlation with r = −0.46, with slightly lower magnitude
compared to APin and higher magnitude than APout (r = 0.41). CDP (r = 0.42) ranks third overall
regarding correlation strength but with a similar appearing distribution as APin and APout. CP
with r = 0.16 has a comparably weak correlation compared to the previous metrics. Notably,
sentence length (r = 0.11) has the weakest correlation with CharacTer, meaning that the model
does not significantly perform worse on longer sentences. One explanation might be that because

72

6.2 Correlation of Metrics and Translation Quality

Figure 6.2: The kernel density estimates, histograms and box plots for the scores of each evaluated
metric on the Khresmoi medical test set.

the score is normalized by sentence length, the NMT model does not make over-proportionally
many mistakes on longer sentences, leading to similar scores for short and long sentences. Looking
at the regression lines, we can see a large spread of values around them for all metrics, meaning
there is a large variance for CharacTer scores for a given metric score. Most sentence scores also
seem to be clustered around the mid values of each metric, as seen in the plot for CDP, where a
majority of points are clustered between x = 0.1 and x = 0.3. At the tail ends, however, we can see
clear trends, such as most points with low confidence having high scores or all points with large
APin values having high scores.

We also analyzed the distributions of scores for the different metrics. Figure 6.2 shows the kernel
density estimates, box plots and histograms of the distribution for each evaluated metric on the
Khresmoi test set. All metrics appear to be roughly normally distributed around the median,
except for length which seems to follow a bi-modal distribution. Further, all penalty distributions
show a large number of outliers for large scores, creating long tails for their distributions. These
outliers may represent erroneous translations of the NMT model. For CP, scores larger than 50
are considered outliers, for CDP larger than 0.4, for APin larger than 1.9 and for APout larger than
1.8. Inversely, the confidence distribution has a large number of outliers for low scores (< 0.4), as
confidence represents the opposite of a penalty. The box plots show that the middle 50% of scores
fall into a narrow range around the median value for all metrics except length.

73

6 Automated Evaluation

Figure 6.3: Percentage of sentences with low translation quality (CharacTer score larger than
median score plus one standard deviation) covered with increasing percentage of
sentences considered for each metric on the Khresmoi medical test set. For each metric,
all sentences were first sorted based on the respective metric. The x-axis represents
percentile thresholds, the y-axis the percentage of low-quality sentences covered by
the sentences below the respective threshold. The dashed line represents a theoretical
baseline if low-quality sentence were distributed uniformly after shuffling the test set.

6.3 Low Translation Quality Experiment

Since a focus of our system is finding erroneous translations, we also analyzed the use of metrics
for finding these translations in particular. Again, we used the test set from the Khresmoi data set,
translating from German to English. In the context of this experiment, we consider translations
with CharacTer score larger than one standard deviation above the median score of the test set to
have low translation quality. The median score was 0.43, with a standard deviation of 0.18, thus
we considered all translations with score > 0.61 to have low translation quality, which made up
179 sentences (17.9%) of the data set. First, the test set was sorted based on each metric, using
descending order for all penalty metrics (CP, CDP, APin, APout) and length, and ascending order for
confidence. We then iterated over each sentence of the sorted test set, recording the percentage of
low-quality sentences covered so far after each test set sentence.

Figure 6.3 shows the percentage of low-quality translations covered depending on the percentage of
all sentences under a percentile threshold for each evaluated metric. The results for confidence,
CDP, APin and APout show similar behaviour. For these metrics, the cover percentage increases
sharply at first, with 25% of low-quality translations covered after 7.5% (confidence), 8.9% (CDP),

74

6.4 Domain Adaption Experiment

6.7% (APin) and 10% (APout) of all sentences. In other words, a quarter of low-quality translations
is found after considering 6-10% of all sentences sorted by these metrics. 50% of low-quality
translations are covered after 21.2% (confidence), 24.2% (CDP), 20% (APin) and 23.7% (APout) of
all sentences are considered. For 75% cover, just over 50% of all sentences must be considered for all
four metrics, showing diminishing returns. The rate of increase then decreases towards 100% cover,
which is achieved only after considering all sentences. Notably, CP and length perform similarly to
the random baseline, meaning that sorting based on these metrics brings little benefit for finding
low-quality translations sooner than shuffling sentences randomly. For example, 19.6% of sentences
must be considered to cover 25% of low-quality sentences for CP, which is an improvement of only
5.4% compared to the random baseline.

6.4 Domain Adaption Experiment

Figure 6.4: Absolute change of Bleu score during online domain adaption for each metric on
Khresmoi medical test data compared to an offline system trained only on out-of-
domain data. The x-axis shows the number of sentences corrected so far, the y-axis
is the difference between the Bleu of the online system and the offline system on the
hold-out set. For each metric, all sentences were sorted in descending order, except for
confidence, where ascending order was used. The dashed line represents the baseline
when sentences are shuffled randomly rather than sorted based on a metric.

75

6 Automated Evaluation

Figure 6.5: Absolute change of clipped unigram F1 score of rare words during online domain
adaption for each metric on Khresmoi medical test data compared to an offline system
trained only on out-of-domain data. The x-axis shows the number of sentences corrected
so far, the y-axis is the absolute change between the unigram precision of the offline
system and the online system on the test sentences. For each metric, all sentences were
sorted in descending order, except for confidence, where ascending order was used.
The dashed line represents the baseline when sentences are shuffled randomly rather
than sorted based on a metric.

6.4.1 Setup

Another important feature of the system is domain adaption: the ability to feed user corrections
back into the NMT model, thus improving translation quality for domain-specific documents. We
evaluated the proposed system by analyzing how different metrics affect the system’s ability to
incorporate corrections. Because conducting such an experiment in real post-editing scenario would
be too costly, we simulate post-editing by replacing machine translations by reference translations,
as was done by Peris et al. [PCC17]. We use the test set for online training and the development set
as a holdout set to evaluate domain adaption. Note that we evaluated the keyphrase metric instead
of the length metric as in the correlation analysis, as we want to analyze how correcting sentences
with many keyphrases influences domain adaption.

We conducted the experiment separately for each metric. First, all sentences from the training
set were sorted based on the current metric. For the confidence metric, ascending sort order was
used to start training with the translations with the lowest confidence score. For all other metrics,
descending sort order was used. Then, an online model pre-trained on out-of-domain data as

76

6.4 Domain Adaption Experiment

described in Section 4.10, was trained in an online fashion for each sentence in the specified order.
After each sentence, the current online model was evaluated on the hold-out set. Additionally, the
performance of an offline model on the holdout set was computed as a baseline. For online training,
a fine-tuning approach as described in Section 4.8 was used. For evaluation on the holdout set, we
computed Bleu scores and unigram F1 of rare words. We also computed the performance for a
random baseline, where sentences were first shuffled randomly, to find out not only whether certain
metrics perform better than others for domain adaption but also whether using metrics is beneficial
at all.

6.4.2 Translation Quality

First, we recorded how the translation quality as measured by Bleu score on the holdout set
progressed during the domain adaption experiment for each metric. Figure 6.4 shows the absolute
change in Bleu score for the medical document for the domain adaption experiment compared
to the offline model. First, it appears that regardless of metric, the model successfully adapts to
the domain with an increasing number of corrections, as seen by the steady increase in absolute
improvement over the offline model. In agreement with Peris et al. [PCC17], we also find that the
percentual change first behaves chaotically and declines or even becomes negative during the first
sentences, likely due to the use of adaptive gradient optimization using Adam, which accumulates
previous gradients for updating model weights. Confidence shows the largest initial decrease with
−0.34 points after training on the first 20 sentences. Starting from about 50 sentences, however, the
percentual change starts to improve steadily. The keyphrase metric performs the best, improving
+2.12 Bleu points over the offline model after training on the first 980 sentences. Additionally,
it is the only metric that clearly outperforms the random baseline over the complete run, with
roughly +1 relative improvement over large parts of the experiment. CP achieves the second
highest improvement, with +1.77 change in Bleu score after 860 sentences, however only slightly
outperforming the random baseline which has a maximum improvement of +1.52. The remaining
metrics confidence, APin and APout show maximum Bleu improvements of only +1.06, +1.02
and +0.98 respectively. Additionally, these metrics seem to perform equally or worse than the
random baseline, with APin and APout showing lower improvement over the whole run and CDP
with similar improvements. Notably, the improvement over the offline model starts decreasing for
the confidence metrics after 500 sentences, finishing at less than +1 improvement of Bleu score.

6.4.3 Translation of Rare Words

We also analyzed whether domain adaption improved the translation of rare words. We computed
the clipped unigram F1 score of rare words, as described by Sennrich et al. [SHB15] as a metric for
measuring rare word translation. For this experiment, all words in the document that did not appear
in the WMT’16 training set were considered as rare. Again, we train a model in an online fashion
for all 1000 sentence of the training set and compute the unigram F1 score on the holdout set after
each sentence. Then, the absolute difference between the unigram F1 score of the online model and
the offline model is recorded after each step.

Figure 6.5 shows the absolute differences for each metric, as well as a baseline where sentences are
shuffled randomly before training. Regardless of metric, the model cleary improves regarding the
translation of rare words over the offline model, as the unigram F1 score increases after training on

77

6 Automated Evaluation

Source Multiple epiphysäre Dysplasie kann auch durch ein autosomal-rezessives
Muster vererbt werden, was bedeutet , dass beide Kopien des Gens in
jeder Zelle Mutationen aufweisen .

Reference Multiple epiphyseal dysplasia can also be inherited in an autosomal
recessive pattern, which means both copies of the gene in each cell have
mutations.

Offline Model Multiple epiphysical Dysplasie can also be inherited by an autosomal
recessionary pattern, which means that both copies of the Gens have
mutations in every cell.

Online Model Multiple epiphysical dysplasia can also be inherited by an autosomal
recessionary pattern, which means that both copies of the gene have
mutations in each cell.

Table 6.2: The source sentence, reference translation, translation of the offline model, and the
online model after training during the domain adaption experiment for a sample sentence
from the Khresmoi medical data set. Rare words whose translations were improved in
the online model are underlined. Rare words whose translations were not improved are
underlined dashed.

an increasing number of sentences. Unlike the percentual change of Bleu scores, F1 scores seem
to not suffer as strongly from initial chaotic behaviour due to Adam. All metrics achieve at least
+5 increase in unigram F1 score, with the smallest improvement of +5.1 for APout and the largest
improvement of up to +7.4 for the keyphrase metric. Notably, the results for the keyphrase metric
differ the most from the other metrics. The unigram F1 improves dramatically during the first 200
sentences, quickly reaching +6 improvement. The difference of improvement between keyphrase
metric and the others, including the random baseline, is large with up to +4 improvement relative
to other metrics. However, after about 200 sentences the improvement compared to the offline
model fluctuates between +6 and +7.4, suggesting that a limit is reached. In the second place, CP
performs slightly better throughout the experiment compared to the random baseline, bringing the
second largest improvement of +7. The other metrics improve over the offline model steadily during
training but do not seem to perform consistently better compared to the random baseline. APin
and APout perform similarly to the random baseline, showing a slow but steady increase during
the experiment. CDP and confidence show similar behaviour, with CDP starting with the largest
decrease in unigram F1 score but recovering quickly. Since the NMT model was trained on the
same sentences for each metrics, with the only difference being sentence order, these results suggest
that the order in which the NMT model is trained has an effect on online domain adaption of rare
words.

In order to evaluate the improvement qualitatively sample sentences were analyzed where the online
model improved rare word translation at the end of the experiment. Table 6.2 shows a reference
translation, together with the translation of the offline model, trained only on out-of-domain data,
and the online model trained during the domain adaption experiment. Note how the offline model
translates the source words “Dysplasie” and “Gens” by literally copying them into the translation.
On the other hand, the online model successfully learns to translate both domain-specific words
into “dysplasia” and “gene”, respectively. However, neither model correctly translates the source

78

6.5 Discussion

words “epiphysäre” and “rezessives”. The failure of the online model to translate these words
may be explained due to the difference in frequency in the test set of these words. “Dysplasie” (7
occurrences) and “Gens” (5 occurrences) appear more often than “epiphysären” (2 occurrences) and
“rezessives” (1 occurrence). This result suggests that domain adaption is impeded by rare words
with few occurrences, i.e. words that are not only rare in regards to out-of-domain data but also rare
in regards to in-domain data.

6.5 Discussion

This section will discuss the results of the automated evaluation and relate them to the proposed
system.

6.5.1 Correlation of Metrics and Translation Quality

The correlation analysis showed that the relevant metrics can be used as a proxy for translation
quality. A correlation of metric score and CharacTer score with a magnitude of Pearson coefficient
of 0.46 for the confidence metric was found on the medical corpus. Correlations of similar strength
were found for CDP, APin and APout. As the confidence metric is an aggregation of both AP metrics
and CDP, it is unsurprising that its strength of correlation is comparable to the aforementioned
metrics. Sentence length and CP showed only weak correlations with r = 0.11 and r = 0.16,
respectively. Plotting the results revealed a large variance around the median of metric scores,
implying that the metrics are not a good predictor of translation quality for these ranges. However,
for high scores of penalty metrics and low scores of confidence variance is reduced. Therefore,
extremely high or low scores for penalties and confidence respectively can be used as an indicator
of low translation quality, whereas values around the median are less of an indicator of translation
quality. The metric distributions also revealed numerous outliers for high scores in penalty metrics
and low scores for confidence, again suggesting that erroneous translations are found for extreme
metric scores.

Relating these results back to the proposed system, this suggests that the Metrics View can be
useful for detecting outliers and to find sentences that are likely to contain errors, especially using
the confidence metric, which has one of the strongest correlations with translation quality. The
evaluation showed a weak correlation between length and translation quality but filtering sentences
based on length might still be useful, e.g. for finding the longest or shortest sentences in a document.
However, all sentences with translation errors cannot be found only by looking at outliers for a
single metric. Because the Metrics View allows filtering based on multiple metrics at the same
time, this problem might be mitigated in practice. Further experiments evaluating correlations of
multiple metrics may be useful to gain more insight.

In a separate experiment, we showed that sorting sentences by confidence, CDP, APin and APout
bring large gains for detecting low-quality translations, compared to correcting sentences in a
random order. A quarter of low-quality translations can be found by considering less than 10% of
sentences, and over half of low-quality translations can be found by considering around 25% of all
sentences. On the other hand, sorting based on length and CP brings no measurable improvement
over the random baseline. These results validate one of the main goals of NMTVis for reducing

79

6 Automated Evaluation

post-editing and translation effort, as a majority of erroneous translations can thus be found faster
by using the proposed metrics. However, in a scenario where all low-quality translations need to
be found and corrected, all sentences need to be considered even when sorting based on metrics,
meaning that the metrics alone cannot detect all translation errors.

6.5.2 Domain Adaption

The evaluation of domain adaption showed that in a simulated post-editing experiment, our NMT
model successfully learns from corrections in an online fashion for a medical corpus. In general,
the NMT model adapts to the given domain as seen through improved translation quality on a
holdout set. Sorting based on the number of keyphrases and coverage penalty show the largest
improvement in translation quality for our NMT model with increases of up +2 and +1.6 Bleu
points, respectively. However, other metrics also bring moderate improvement of up to 1.5 Bleu
points. Results also show that a minimum amount of sentences needs to be corrected for domain
adaption to bring improvement, due to the use of adaptive optimization algorithms used which
depend on previous gradients. For our system, this means that users must first correct a certain
amount of sentences but can benefit from the domain adaption approach afterward.

The evaluation further showed that the translation of rare words is improved through online learning
for all metrics. Sorting sentences based on the number of keyphrases brings the largest improvement
for translation of rare words with an increase of unigram F1 score of up to +7.4 compared to
an offline model, but other metrics perform only slightly worse, with improvements of +4 to +6.
Additionally, keyphrases require the fewest number of corrected sentences to bring the largest gains,
validating the use of the keyphrase metric in the Metrics View, as well as the Keyphrase View
for sentence selection. These results suggest that the NMT model adapts to a domain better and
faster when first trained on many sentences containing frequent domain-specific words. However, a
qualitative analysis of rare word translations showed that domain adaption is impeded by keyphrases
that occur only a few times in a document. These rare words are not translated correctly even after
online domain adaption.

The results from the domain adaption experiments validate the functionality of NMTVis to
incorporate user corrections of machine-generated translations into the NMT model, as it improves
translation quality and rare word translation for domain-specific documents. This may reduce
post-editing and translation effort as domain adaption can improve translations for sentences that
were not corrected by the user. However, further experiments are needed to analyze performance on
documents across different domains and languages to generalize the findings of our experiments.

80

7 Conclusion

This thesis introduced NMTVis, a novel VA approach for NMT that supports users in translation
tasks for large, domain-specific documents through interactive visualizations. First, goals and tasks
were identified to guide the development of the system. Different views and visualizations were
developed to support the tasks and goals. A sentence selection mechanism using keyphrase search
and parallel coordinates plot was developed for finding relevant sentences that are likely to require
manual post-editing based on multiple metrics. For post-editing, dynamic graph visualizations and
interaction techniques were developed to allow exploration of translation hypotheses generated
during beam search decoding and attention weights. The system supports domain adaption
through an online training approach using manual corrections of machine-generated translations.
Additionally, an attentional encoder-decoder NMT model using subword units for German→English
translation was trained and used as the base model of NMTVis. The NMT model was evaluated and
compared to state-of-the-art systems, showing satisfactory translation quality as well as a potential
for further improvements. The system was implemented prototypically as a web application.

In order to validate the proposed system, a user study and an automated evaluation were conducted.
The web-based user study, involving 15 researchers and students with visualization and natural
language processing backgrounds, showed positive feedback in regards to effectiveness, ease of
interaction and intuitiveness of visualizations of NMTVis. Participants showed a clear preference
to use NMTVis over traditional text-based post-editing systems, especially for large documents.
As a result of the qualitative feedback, multiple challenges were identified including scalability
of visualizations and efficiency of interactions. Participants also noted potential improvements
regarding interaction and novel features that could be integrated into NMTVis in the future to make
it into a productivity tool for post-editing. The statistical evaluation showed that using the proposed
metrics, particularly the confidence metric, can be effective for sentence selection due to correlations
of metric scores and translation quality. A majority of low-quality translations can be found faster
by sorting sentences based on the metrics compared to a random baseline, reducing post-editing
effort. Additionally, a domain adaption experiment on a medical corpus showed that the domain
adaption mechanism of NMTVis improves translation quality for (1) the whole document and (2)
for rare words, which validates the use of the proposed system for domain-specific documents. The
proposed keyphrase metric was found to bring the largest improvement for domain adaption over a
random baseline.

In a broader context, this thesis showed that a VA approach for a specific Deep Learning task, such
as machine translation, is a viable way to make complex, opaque models and their predictions
more understandable for human users, and that VA can be a useful tool to bridge the gap between
users and Deep Learning models. However, more research is needed to study how visualizations
can make models more explainable and interpretable. Additionally, benchmarks and data sets are
necessary to evaluate the impact of VA systems for Deep Learning quantitatively and to enable
comparison between different systems. Explainability in Deep Learning through visualizations
remains a highly relevant future research topic with many opportunities and challenges.

81

7 Conclusion

Outlook

For future work, a wide range of research directions could be pursued:

User Study A quantitative user study should be conducted, focusing on the effectiveness of the
system for post-editing regarding (1) translation quality and (2) translation speed. This could
be done by comparing the system against a baseline system where only text-editing is possible.
Previous post-editing studies such as [GHM13] should be considered for study design and
evaluation metrics. Lagarda et al. [LAC+09] evaluated a statistical machine translation system
by recording users during translation and post-editing, measuring several metrics such as
edit time, number of edits, translation throughput, productivity, gain and edit distance, which
could be used as a basis for a future user study.

NMT Model Due to the rapid progress in NMT research, novel approaches and architectures could
be incorporated into the system to further improve performance. One such example is the
recent Transformer model architecture, introduced by Vaswani et al. [VSP+17] which uses
multi-headed self-attention instead of an encoder-decoder RNN architecture. This novel
attention mechanism might also lead to better insights about the model and could be visualized
to the user.

Languages This thesis focused on German→English translation for the prototypical implementation
and evaluation of the system. Both languages use the latin alphabet and share many linguistic
similarities. However, logographic writing systems, for example, may pose a challenge for
interactive post-editing using beam search. Therefore, other languages should be incorporated
into the system in order to validate the approach regarding translation from or to languages
with different writing systems such as Chinese.

Domain Adaption The proposed system used a simple fine-tuning approach for domain adaption
using manual corrections, where model weights are frozen and corrections are integrated in
an online fashion. More sophisticated approaches for domain adaption exist [PNW18], that
might improve translation quality for specific domains. Instance weighting [WUL+17] in
particular may be a promising technique for adapting the model to users’ corrections, allowing
the model to improve on domain-specific documents while also maintaining translation
performance on out-of-domain data.

Use Cases This thesis focused on machine translation as the main use case for the proposed system.
Different sequence-to-sequence tasks, such as text summarization, question answering or
image captioning could be integrated into the system to support users in a wide range of tasks.
New interaction and visualization approaches would be needed to handle different data types
such as images, audio, and video.

Scalability of Visualizations The user study showed that large documents and long sentences
proved to be challenging when using the interactive visualizations implemented in the system.
More thought must be put into how these visualizations can be scaled up, as long sentences
and large documents are use cases where the proposed system could help users the most for
post-editing. For the Beam Search View, clustering of nodes that can be collapsed or expanded
through interaction might be a useful extension to handle long translation hypotheses.

82

Bibliography

[APS16] M. Allamanis, H. Peng, C. Sutton. “A Convolutional Attention Network for Extreme
Summarization of Source Code”. In: International Conference on Machine Learning.
2016, pp. 2091–2100 (cit. on p. 32).

[BCB14] D. Bahdanau, K. Cho, Y. Bengio. “Neural Machine Translation by Jointly Learning
to Align and Translate”. In: arXiv preprint arXiv:1409.0473 (2014) (cit. on pp. 28,
30, 54).

[BCF+16] O. Bojar, R. Chatterjee, C. Federmann, Y. Graham, B. Haddow, M. Huck, A. J. Yepes,
P. Koehn, V. Logacheva, C. Monz, et al. “Findings of the 2016 Conference on Machine
Translation.” In: ACL 2016 FIRST CONFERENCE ON MACHINE TRANSLATION
(WMT16). The Association for Computational Linguistics. 2016, pp. 131–198 (cit. on
p. 58).

[CGCB14] J. Chung, Ç. Gülçehre, K. Cho, Y. Bengio. “Empirical Evaluation of Gated Recurrent
Neural Networks on Sequence Modeling”. In: CoRR abs/1412.3555 (2014). arXiv:
1412.3555. url: http://arxiv.org/abs/1412.3555 (cit. on p. 18).

[CHC+16] S. Cheng, S. Huang, H. Chen, X.-Y. Dai, J. Chen. “PRIMT: A Pick-Revise Framework
for Interactive Machine Translation”. In: Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. San Diego, California: Association for Computational
Linguistics, 2016, pp. 1240–1249. doi: 10.18653/v1/N16-1148. url: http://www.
aclweb.org/anthology/N16-1148 (cit. on p. 24).

[CMG+14] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, Y. Bengio.
“Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation”. In: CoRR abs/1406.1078 (2014). arXiv: 1406.1078. url: http://arxiv.
org/abs/1406.1078 (cit. on p. 27).

[CNS+14] M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, M. Federico. “Report on the 11th
IWSLT evaluation campaign, IWSLT 2014”. In: Proceedings of the International
Workshop on Spoken Language Translation, Hanoi, Vietnam. 2014 (cit. on p. 57).

[CT05] K. A. Cook, J. J. Thomas. Illuminating the Path: The Research and Development
Agenda for Visual Analytics. Tech. rep. Pacific Northwest National Lab.(PNNL),
Richland, WA (United States), 2005 (cit. on p. 19).

[CVG+14] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
Y. Bengio. “Learning phrase representations using RNN encoder-decoder for statistical
machine translation”. In: arXiv preprint arXiv:1406.1078 (2014) (cit. on p. 18).

[CW18] C. Chu, R. Wang. “A Survey of Domain Adaptation for Neural Machine Translation”.
In: arXiv preprint arXiv:1806.00258 (2018) (cit. on pp. 11, 34).

83

http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/10.18653/v1/N16-1148
http://www.aclweb.org/anthology/N16-1148
http://www.aclweb.org/anthology/N16-1148
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078

Bibliography

[Dav89] F. D. Davis. “Perceived Usefulness, Perceived Ease of Use, and User Acceptance
of Information Technology”. In: MIS Quarterly 13.3 (1989), pp. 319–340. issn:
02767783. url: http://www.jstor.org/stable/249008 (cit. on p. 64).

[DHH+17] O. Dušek, J. Hajič, J. Hlaváčová, J. Libovický, P. Pecina, A. Tamchyna, Z. Urešová.
Khresmoi Summary Translation Test Data 2.0. LINDAT/CLARIN digital library at
the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University. 2017. url: http://hdl.handle.net/11234/1-2122
(cit. on p. 71).

[DN17] M. J. Denkowski, G. Neubig. “Stronger Baselines for Trustable Results in Neural
Machine Translation”. In: CoRR abs/1706.09733 (2017). arXiv: 1706.09733. url:
http://arxiv.org/abs/1706.09733 (cit. on pp. 58, 61).

[FWP+14] M. Freitag, J. Wuebker, S. Peitz, H. Ney, M. Huck, A. Birch, N. Durrani, P. Koehn,
M. Mediani, I. Slawik, et al. “Combined spoken language translation”. In: Proc. of
the Int. Workshop on Spoken Language Translation (IWSLT), South Lake Tahoe, CA,
USA. 2014 (cit. on p. 61).

[GBC16] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. http://www.deeplearningbo
ok.org. MIT Press, 2016. isbn: 9780262035613 (cit. on p. 13).

[GHM13] S. Green, J. Heer, C. D. Manning. “The Efficacy of Human Post-editing for Language
Translation”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’13. Paris, France: ACM, 2013, pp. 439–448. isbn: 978-1-
4503-1899-0. doi: 10.1145/2470654.2470718. url: http://doi.acm.org/10.1145/
2470654.2470718 (cit. on p. 82).

[Gra12] A. Graves. “Sequence Transduction with Recurrent Neural Networks”. In: CoRR
abs/1211.3711 (2012). arXiv: 1211.3711. url: http://arxiv.org/abs/1211.3711
(cit. on p. 31).

[HKPC18] F. Hohman, M. Kahng, R. Pienta, D. H. Chau. “Visual Analytics in Deep Learning:
An Interrogative Survey for the Next Frontiers”. In: arXiv preprint arXiv:1801.06889
(2018) (cit. on pp. 20, 21, 37).

[HL17] C. Hokamp, Q. Liu. “Lexically Constrained Decoding for Sequence Generation Using
Grid Beam Search”. In: CoRR abs/1704.07138 (2017). arXiv: 1704.07138. url:
http://arxiv.org/abs/1704.07138 (cit. on pp. 24, 30).

[HS97] S. Hochreiter, J. Schmidhuber. “Long Short-Term Memory”. In: Neural Computation
9.8 (1997), pp. 1735–1780 (cit. on p. 17).

[HSW89] K. Hornik, M. Stinchcombe, H. White. “Multilayer feedforward networks are universal
approximators”. In: Neural Networks 2.5 (1989), pp. 359–366 (cit. on p. 13).

[Hut05] J. Hutchins. “Current commercial machine translation systems and computer-based
translation tools: system types and their uses”. In: International Journal of Translation
17.1-2 (2005), pp. 5–38 (cit. on p. 11).

[Ins85] A. Inselberg. “The plane with parallel coordinates”. In: The Visual Computer 1.2
(1985), pp. 69–91. doi: 10.1007/BF01898350. url: https://doi.org/10.1007/
BF01898350 (cit. on p. 42).

84

http://www.jstor.org/stable/249008
http://hdl.handle.net/11234/1-2122
http://arxiv.org/abs/1706.09733
http://arxiv.org/abs/1706.09733
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/2470654.2470718
http://doi.acm.org/10.1145/2470654.2470718
http://doi.acm.org/10.1145/2470654.2470718
http://arxiv.org/abs/1211.3711
http://arxiv.org/abs/1211.3711
http://arxiv.org/abs/1704.07138
http://arxiv.org/abs/1704.07138
https://doi.org/10.1007/BF01898350
https://doi.org/10.1007/BF01898350
https://doi.org/10.1007/BF01898350

Bibliography

[KAF+08] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, G. Melançon. “Visual
Analytics: Definition, Process, and Challenges”. In: Information Visualization: Human-
Centered Issues and Perspectives. Ed. by A. Kerren, J. T. Stasko, J.-D. Fekete, C. North.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 154–175. isbn: 978-3-540-
70956-5. doi: 10.1007/978-3-540-70956-5_7. url: https://doi.org/10.1007/978-
3-540-70956-5_7 (cit. on p. 19).

[KB14] D. P. Kingma, J. Ba. “Adam: A Method for Stochastic Optimization”. In: CoRR
abs/1412.6980 (2014). arXiv: 1412.6980. url: http://arxiv.org/abs/1412.6980
(cit. on pp. 24, 58).

[KK16] R. Knowles, P. Koehn. “Neural Interactive Translation Prediction”. In: Proceedings of
the Association for Machine Translation in the Americas. 2016, pp. 107–120 (cit. on
p. 24).

[KK17] P. Koehn, R. Knowles. “Six Challenges for Neural Machine Translation”. In: CoRR
abs/1706.03872 (2017). arXiv: 1706.03872. url: http://arxiv.org/abs/1706.03872
(cit. on pp. 11, 54, 58).

[KKE10] E. D. Keim, J. Kohlhammer, G. Ellis. “Mastering the Information Age: Solving
Problems with Visual Analytics, Eurographics Association”. In: (2010) (cit. on pp. 19,
63).

[LAC+09] A.-L. Lagarda, V. Alabau, F. Casacuberta, R. Silva, E. Dıaz-de-Liaño. “Statistical
Post-editing of a Rule-based Machine Translation System”. In: Proceedings of Human
Language Technologies: The 2009 Annual Conference of the North American Chapter
of the Association for Computational Linguistics, Companion Volume: Short Papers.
NAACL-Short ’09. Boulder, Colorado: Association for Computational Linguistics,
2009, pp. 217–220. url: http://dl.acm.org/citation.cfm?id=1620853.1620913
(cit. on p. 82).

[Lew95] J. R. Lewis. “IBM computer usability satisfaction questionnaires: Psychometric
evaluation and instructions for use”. In: International Journal of Human–Computer
Interaction 7.1 (1995), pp. 57–78. doi: 10.1080/10447319509526110. url: https:
//doi.org/10.1080/10447319509526110 (cit. on p. 64).

[Lip15] Z. C. Lipton. “A Critical Review of Recurrent Neural Networks for Sequence Learn-
ing”. In: CoRR abs/1506.00019 (2015). arXiv: 1506.00019. url: http://arxiv.org/
abs/1506.00019 (cit. on p. 16).

[LPM15] M. Luong, H. Pham, C. D. Manning. “Effective Approaches to Attention-based Neural
Machine Translation”. In: CoRR abs/1508.04025 (2015). arXiv: 1508.04025. url:
http://arxiv.org/abs/1508.04025 (cit. on pp. 27, 29, 56, 57, 61).

[LSK17] J. Lee, J.-H. Shin, J.-S. Kim. “Interactive Visualization and Manipulation of Attention-
based Neural Machine Translation”. In: Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations. 2017,
pp. 121–126 (cit. on pp. 11, 25, 47).

[Lun01] A. M. Lund. “Measuring Usability with the USE Questionnaire”. In: Usability
Interface 8.2 (2001), pp. 3–6 (cit. on p. 64).

85

https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1007/978-3-540-70956-5_7
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1706.03872
http://arxiv.org/abs/1706.03872
http://dl.acm.org/citation.cfm?id=1620853.1620913
https://doi.org/10.1080/10447319509526110
https://doi.org/10.1080/10447319509526110
https://doi.org/10.1080/10447319509526110
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025

Bibliography

[MRO+12] A. M. MacEachren, R. E. Roth, J. O’Brien, B. Li, D. Swingley, M. Gahegan. “Visual
Semiotics & Uncertainty Visualization: An Empirical Study”. In: IEEE Transactions
on Visualization and Computer Graphics 18.12 (Dec. 2012), pp. 2496–2505. issn:
1077-2626. doi: 10.1109/TVCG.2012.279 (cit. on p. 49).

[Ola15] C. Olah. Understanding LSTM Networks. http://colah.github.io/posts/2015-08-
Understanding-LSTMs/. [Online; accessed 02-August-2018]. 2015 (cit. on p. 17).

[PCC17] Á. Peris, L. Cebrián, F. Casacuberta. “Online Learning for Neural Machine Translation
Post-editing”. In: CoRR abs/1706.03196 (2017). arXiv: 1706.03196. url: http:

//arxiv.org/abs/1706.03196 (cit. on pp. 24, 34, 76, 77).
[PNW18] N.-Q. Pham, J. Niehues, A. Waibel. “Towards one-shot learning for rare-word

translation with external experts”. In: Proceedings of the 2nd Workshop on Neural
Machine Translation and Generation. 2018, pp. 100–109 (cit. on p. 82).

[PRWZ02] K. Papineni, S. Roukos, T. Ward, W.-J. Zhu. “BLEU: A Method for Automatic
Evaluation of Machine Translation”. In: Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics. ACL ’02. Philadelphia, Pennsylvania:
Association for Computational Linguistics, 2002, pp. 311–318. doi: 10.3115/1073083.
1073135. url: https://doi.org/10.3115/1073083.1073135 (cit. on p. 35).

[Rei00] U.-D. Reips. “Chapter 4 - The Web Experiment Method: Advantages, Disadvantages,
and Solutions”. In: Psychological Experiments on the Internet. Ed. by M. H. Birnbaum.
San Diego: Academic Press, 2000, pp. 89–117. isbn: 978-0-12-099980-4. doi: https:
//doi.org/10.1016/B978-012099980-4/50005-8. url: http://www.sciencedirect.
com/science/article/pii/B9780120999804500058 (cit. on p. 63).

[RFB17] M. Rikters, M. Fishel, O. Bojar. “Visualizing Neural Machine Translation Attention
and Confidence”. In: The Prague Bulletin of Mathematical Linguistics 109.1 (2017),
pp. 39–50. url: https://content.sciendo.com/view/journals/pralin/109/1/
article-p39.xml (cit. on pp. 11, 25, 43).

[RHW86] D. E. Rumelhart, G. E. Hinton, R. J. Williams. “Learning representations by back-
propagating errors”. In: Nature 323.6088 (1986), p. 533. url: http://dx.doi.org/
10.1038/323533a0 (cit. on p. 15).

[RT81] E. M. Reingold, J. S. Tilford. “Tidier Drawings of Trees”. In: IEEE Transactions on
Software Engineering 2 (1981), pp. 223–228 (cit. on p. 56).

[Sch97] R. J. Schalkoff. Artificial Neural Networks. Vol. 1. McGraw-Hill New York, 1997.
isbn: 978-0070571181 (cit. on p. 13).

[SDS+06] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, J. Makhoul. “A Study of Translation
Edit Rate with Targeted Human Annotation”. In: Proceedings of Association for
Machine Translation in the Americas. Vol. 200. 6. 2006 (cit. on p. 35).

[SGB+18] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, A. M. Rush. “Seq2Seq-
Vis: A Visual Debugging Tool for Sequence-to-Sequence Models”. In: CoRR
abs/1804.09299 (2018). arXiv: 1804.09299. url: http://arxiv.org/abs/1804.09299
(cit. on pp. 11, 25, 47, 54).

86

https://doi.org/10.1109/TVCG.2012.279
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://arxiv.org/abs/1706.03196
http://arxiv.org/abs/1706.03196
http://arxiv.org/abs/1706.03196
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/https://doi.org/10.1016/B978-012099980-4/50005-8
https://doi.org/https://doi.org/10.1016/B978-012099980-4/50005-8
http://www.sciencedirect.com/science/article/pii/B9780120999804500058
http://www.sciencedirect.com/science/article/pii/B9780120999804500058
https://content.sciendo.com/view/journals/pralin/109/1/article-p39.xml
https://content.sciendo.com/view/journals/pralin/109/1/article-p39.xml
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
http://arxiv.org/abs/1804.09299
http://arxiv.org/abs/1804.09299

Bibliography

[SGPR18] H. Strobelt, S. Gehrmann, H. Pfister, A. M. Rush. “LSTMVis: A Tool for Visual
Analysis of Hidden State Dynamics in Recurrent Neural Networks”. In: IEEE
Transactions on Visualization and Computer Graphics 24.1 (Jan. 2018), pp. 667–676.
issn: 1077-2626. doi: 10.1109/TVCG.2017.2744158 (cit. on pp. 11, 24).

[SHB15] R. Sennrich, B. Haddow, A. Birch. “Neural Machine Translation of Rare Words
with Subword Units”. In: CoRR abs/1508.07909 (2015). arXiv: 1508.07909. url:
http://arxiv.org/abs/1508.07909 (cit. on pp. 32, 33, 57, 60, 77).

[SHB16] R. Sennrich, B. Haddow, A. Birch. “Edinburgh Neural Machine Translation Systems
for WMT 16”. In: CoRR abs/1606.02891 (2016). arXiv: 1606.02891. url: http:
//arxiv.org/abs/1606.02891 (cit. on pp. 11, 58, 61).

[SLM17] A. See, P. J. Liu, C. D. Manning. “Get To The Point: Summarization with Pointer-
Generator Networks”. In: CoRR abs/1704.04368 (2017). arXiv: 1704.04368. url:
http://arxiv.org/abs/1704.04368 (cit. on p. 28).

[SVL14] I. Sutskever, O. Vinyals, Q. V. Le. “Sequence to Sequence Learning with Neural
Networks”. In: Advances in Neural Information Processing Systems 27. Ed. by
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger. Curran
Associates, Inc., 2014, pp. 3104–3112. url: http://papers.nips.cc/paper/5346-
sequence-to-sequence-learning-with-neural-networks.pdf (cit. on p. 32).

[TLS+17] Z. Tu, Y. Liu, L. Shang, X. Liu, H. Li. “Neural Machine Translation with Reconstruc-
tion”. In: AAAI. 2017, pp. 3097–3103 (cit. on p. 11).

[VSP+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
I. Polosukhin. “Attention is All you Need”. In: Advances in Neural Information
Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, R. Garnett. Curran Associates, Inc., 2017, pp. 5998–
6008. url: http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
(cit. on pp. 11, 82).

[WPRN16] W. Wang, J.-T. Peter, H. Rosendahl, H. Ney. “CharacTER: Translation Edit Rate on
Character Level”. In: Proceedings of the First Conference on Machine Translation:
Volume 2, Shared Task Papers. Vol. 2. 2016, pp. 505–510 (cit. on p. 36).

[WSC+16] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser,
S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang,
C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, J. Dean.
“Google’s Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation”. In: CoRR abs/1609.08144 (2016). arXiv: 1609.08144. url:
http://arxiv.org/abs/1609.08144 (cit. on pp. 11, 31, 43, 57).

[WUL+17] R. Wang, M. Utiyama, L. Liu, K. Chen, E. Sumita. “Instance Weighting for Neural
Machine Translation Domain Adaptation”. In: Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing. 2017, pp. 1482–1488 (cit. on
p. 82).

[YNN+17] A. J. Yepes, A. Névéol, M. Neves, K. Verspoor, O. Bojar, A. Boyer, C. Grozea,
B. Haddow, M. Kittner, Y. Lichtblau, et al. “Findings of the WMT 2017 Biomedical
Translation Shared Task”. In: Proceedings of the Second Conference on Machine
Translation. 2017, pp. 234–247 (cit. on p. 71).

87

https://doi.org/10.1109/TVCG.2017.2744158
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1606.02891
http://arxiv.org/abs/1606.02891
http://arxiv.org/abs/1606.02891
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1704.04368
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

Bibliography

All links were last followed on September 25, 2018.

88

A Questionnaire

General

What is your occupation?. Researcher Student Other

Are you affiliated with a research institute?. IMS VIS/VISUS None Other

Background

How much knowledge do you have about Machine Translation? . . .

← None Expert Knowledge→

1 2 3 4 5 6 7

How much knowledge do you have about Visualizations? 1 2 3 4 5 6 7

Language Skills

How do you rate your German language proficiency?

← Poor Native Speaker→

1 2 3 4 5 6 7

How do you rate your English language proficiency? 1 2 3 4 5 6 7

Functionality

Overall, I am satisfied with the ease of completing the tasks in this
scenario. .

agree completely→
← strongly disagree

1 2 3 4 5 6 7

I would prefer the system over a simple text field for translating a large
document (>100 sentences). 1 2 3 4 5 6 7

I would prefer the system over a simple text field for translating a small
document (<20 sentences). 1 2 3 4 5 6 7

Metrics View

The Metrics View was useful for finding sentences that contain transla-
tion errors. .

agree completely→
← strongly disagree

1 2 3 4 5 6 7

It was easy to understand the visual representations in the Metrics
View. 1 2 3 4 5 6 7

It was easy to interact with the Metrics View. 1 2 3 4 5 6 7

89

A Questionnaire

Keyphrase View

The Keyphrase View was useful for finding sentences that contain
translation errors. .

agree completely→
← strongly disagree

1 2 3 4 5 6 7

It was easy to understand the visual representations in the Keyphrase
View. 1 2 3 4 5 6 7

It was easy to interact with the Keyphrase View. 1 2 3 4 5 6 7

Beam Search View

The Beam Search View was helpful for exploring and correcting trans-
lations. .

agree completely→
← strongly disagree

1 2 3 4 5 6 7

It was easy to understand the visual representations in the Beam Search
View. 1 2 3 4 5 6 7

It was easy to interact with the Beam Search View. 1 2 3 4 5 6 7

Attention View

The Attention View was helpful for analysing translations.

agree completely→
← strongly disagree

1 2 3 4 5 6 7

It was easy to understand the visual representations in the Attention
View. 1 2 3 4 5 6 7

It was easy to interact with the Attention View. 1 2 3 4 5 6 7

Feedback

What functionality or part of the system did you like and why?

What functionality or part of the system did you dislike and why?

Do you have suggestions for improvements to be made for the system?

90

Do you have any other feedback or comments?

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Background
	2.1 Machine Learning & Deep Learning
	2.2 Neural Networks
	2.3 Recurrent Neural Networks
	2.4 Long Short-Term Memory
	2.5 Visual Analytics
	2.6 Related Works

	3 Neural Machine Translation
	3.1 Introduction
	3.2 Attention Mechanism & Alignment
	3.3 Beam Search Decoding
	3.4 Handling Rare Words
	3.5 Domain Adaption
	3.6 Training
	3.7 Evaluation Metrics

	4 System Description
	4.1 Goals & Requirements
	4.2 Workflow
	4.3 Document View
	4.4 Metrics View
	4.5 Keyphrase View
	4.6 Beam Search View
	4.7 Attention View
	4.8 Domain Adaption
	4.9 Implementation
	4.10 NMT Model

	5 User Study
	5.1 Goals
	5.2 Study Design
	5.3 Data Set
	5.4 Participants
	5.5 Results
	5.6 Discussion

	6 Automated Evaluation
	6.1 Data Set
	6.2 Correlation of Metrics and Translation Quality
	6.3 Low Translation Quality Experiment
	6.4 Domain Adaption Experiment
	6.5 Discussion

	7 Conclusion
	Bibliography
	A Questionnaire

