
Studiengang:

Prüfer:

Betreuer:

begonnen am:

beendet am:

Institut für Maschinelle Sprachverarbeitung

Abteilung Computerlinguistik

Pfaffenwaldring 5b

70569 Stuttgart

Universität Stuttgart

Masterarbeit

Machine Question Answering with

Attention-based Convolutional

Neural Networks

Matthias Blohm

M. Sc. Softwaretechnik

Junior-Prof. Dr. Ngoc Thang Vu

Junior-Prof. Dr. Ngoc Thang Vu, Xiang Yu

15.10.2017

15.04.2018

Zusammenfassung

Die aktuelle Aufgabe, textuelle Fragen maschinell mithilfe von De-

ep Learning Techniken zu beantworten, stellt derzeit eine interessan-

te Herausforderung dar. Obwohl bereits vielversprechende Erfolge in

vorherigen Arbeiten erzielt werden konnten, lassen diese Ansätze noch

viel Raum für weitere Überlegungen und Verbesserungen.

Diese Arbeit beschäftigt sich mit der Frage, durch welche moder-

nen Methoden ein System realisiert werden kann, welches in der Lage

ist, textuelle Inhalte zu erfassen, zu verarbeiten, und daraus die rich-

tigen Schlüsse zur Beantwortung von Multiple-Choice-Fragen zu zie-

hen. Hierfür werden aktuelle Techniken wie Convolutional Neural Net-

works und Attention-Mechanismen verwendet und an den Benchmark-

Datensätzen MovieQA, WikiQA und InsuranceQA getestet, drei Cor-

pora mit Frage-Antwort Einträgen aus den Domänen Film, Wikipedia

bzw. Versicherungen, die mit jeweils unterschiedlichen Aufgabenstel-

lungen einhergehen. Die Implementierung geschieht mithilfe des Fra-

meworks TensorFlow; Für die Repräsentation der textuellen Inhalte

werden vortrainierte Wortvektoren des Tools GloVe verwendet.

Neben der Verbesserung des Systems verfolgt diese Arbeit zusätzlich

das Ziel, dessen Lernverhalten zu analysieren und zu evaluieren. Dies

geschieht unter der Zuhilfenahme sogenannter Adversarial Examples,

in welchen durch Modifizierung textueller Kontextinformationen ge-

prüft wird, ob sich das neuronale Netz bei der Beantwortung einer Fra-

ge auf die richtigen Inhalte konzentriert und ab welchem Grad der Ma-

nipulation eine erfolgreiche Performance ausbleibt. Hierdurch werden

gleichzeitig die Grenzen derartiger Textverständnissysteme aufgezeigt,

die zwar oftmals Textsequenzen richtiggehend vergleichen knnen, je-

doch kein tiefergehendes Verstehen für Bedeutung und Inhalt der

Eingaben entwickeln. Das im Rahmen dieser Arbeit erstellte Text-

verständnissystem stellt für MovieQA mit einer Treffgenauigkeit von

82.73% richtig beantworteter Fragen den neuesten Stand der Technik

dar.

1

Abstract

The task of answering textual questions with the help of deep learn-

ing techniques is currently an interesting challenge. Although promis-

ing results have been achieved in previous works, these approaches

leave much room for further considerations and improvements.

This thesis deals with the question, how a system can be realized,

which is able to capture and process textual contents, and to draw

the right conclusions for answering multiple-choice questions with the

help of modern methods. For this, current techniques such as convo-

lutional neural networks (CNNs) and attention mechanisms are used

and tested on the benchmark datasets MovieQA, WikiQA and Insur-

anceQA, three corpora with question-answer entries from the domains

movies, Wikipedia resp. insurances, each with a slightly different task.

The implementation is done using the framework TensorFlow; For the

representation of the textual content, pre-trained word vectors of the

tool GloVe are used.

In addition to improving the system, this work also aims to an-

alyze and evaluate its learning behavior. This is done with the aid

of so-called adversarial examples, where by modifying textual context

information it is checked whether the neural network concentrates on

the correct content when answering a question, and at which degree of

manipulation a successful performance gets impossible. At the same

time, the limitations of such text comprehension systems are shown,

which are often able to compare text sequences, but do not develop a

deeper understanding of the meaning and content of the inputs. The

text comprehension system created in this work achieves a new state-

of-the-art for MovieQA with an accuracy of 82.73% correctly answered

questions.

2

Contents

1 Introduction 9

2 Related Work 10

3 Background 12

3.1 Textual Question Answering 12

3.2 Artificial Neural Networks . 12

3.2.1 Convolutional Neural Networks 15

3.2.2 Attention Mechanisms 16

4 Resources 16

4.1 Tools and Frameworks . 16

4.1.1 TensorFlow . 17

4.1.2 GloVe . 19

4.2 Datasets . 19

4.2.1 MovieQA . 20

4.2.2 WikiQA . 23

4.2.3 InsuranceQA . 24

5 Network Design and Implementation 25

5.1 Considerations . 25

5.2 Network Design . 26

5.2.1 Preprocessing Layer . 28

5.2.2 Attention Layer . 29

5.2.3 Comparison Layer . 30

3

5.2.4 Aggregation Layer . 31

5.2.5 Prediction Layer . 31

5.2.6 Task-Specific Adaptations 32

5.3 Implementation Details . 35

5.3.1 Environment Setup . 35

5.3.2 Data Preprocessing . 35

6 Experiments 37

6.1 Experimental Setup . 37

6.1.1 Hyperparameter Setting and Tuning 37

6.1.2 Updated Embeddings 40

6.1.3 Sentence Attention . 40

6.1.4 Adversarial Examples 46

6.1.5 Ensemble Model . 47

6.2 Results and Discussion . 48

6.2.1 Overview . 48

6.2.2 Hyperparameter Tuning Results 51

6.2.3 Updated Embeddings Results 53

6.2.4 Sentence Attention Results 54

6.2.5 Adversarial Results . 58

6.2.6 Further Discussions . 63

7 Conclusion and Future Work 65

References 68

A Adversarial Experimental Data 69

4

List of Figures

1 Neural network with one single sigmoid neuron (Fumo (2018)). 13

2 Multilayer neural network with hidden layer in between (Fumo

(2018)). 14

3 Convolutional Neural Network with multiple convolutional fil-

ter and pooling layers (Fumo (2018)). 15

4 Core architecture of the TensorFlow framework (The Tensor-

Flow Team (2018)). 18

5 Communication between TensorFlow components (The Ten-

sorFlow Team (2018)). 18

6 Data statistics for the three data sets. Q = question, C =

candidate answer, P = plot (Wang and Jiang (2016)). 20

7 Model layers for WikiQA and InsuranceQA for a prepared

question Q and an candidate answer A. 27

8 Preprocessing layer with question length Q, candidate answer

length A, GloVe word embedding size d and layer output size l. 28

9 Attention and comparison layer with question-weighted an-

swer vectors H. 30

10 CNN and predcition layer with nl = number of different ker-

nel heights × kernel number each. K = number of candidate

answers. 31

11 Model layers for MovieQA. The additional plot resource P is

matched with both Q and A. 33

12 Attention layer for MovieQA task. Here the whole plot is

weighted with both question and candidate answer. 34

13 Comparison layer for MovieQA task. Question and answer are

compared to their weighted plot version. 34

5

14 Convolutional layer for the MovieQA task. Question and an-

swer weighted plots Tq and Ta are concatenated right before

the convolution. 35

15 Stage one of sentence attention model produces sentence fea-

tures rq, ra and rpi. 41

16 Stage two of sentence attention model produces final features

rs for one candidate answer. 42

17 Preparation step for MovieQA with sentence attention. Each

sentence of the plot is processed separately and matched to

question and candidate answer instead of taking the whole

plot at once. 43

18 Stage one output sentence representation of plot sentence,

question and answer with one shared convolutional layer. . . . 44

19 Second attention step on sentence level of stage two for ques-

tion rq and answer ra with concatenated plot sentences [rp0, rp1, ..., rpi]. 45

20 Second convolutional layer for final feature representation rs

of one answer choice. 45

21 Example validation precisions for different weight initializers. . 52

22 Validation results for different optimizers on WikiQA. 52

23 MovieQA attention visualization (correct answer). 55

24 MovieQA attention visualization (incorrect answer). 55

25 Accuracy results for validation set (1958 samples). 57

26 Model and human performance on small evaluation set (20

samples). 57

27 Accuracy results for full validation set before and after adver-

sarial training. 61

28 Model and human performance on small evaluation set before

and after adversarial training. 62

6

29 Reduced plot with k = 5 words before adversarial training,

wrong answer is chosen. 63

30 Reduced plot with k = 5 words after adversarial training, cor-

rect answer is chosen. 64

List of Tables

1 MovieQA example question (Wang and Jiang (2016)). 23

2 InsuranceQA example question (Wang and Jiang (2016)). . . . 25

3 MovieQA adversarial example question with modified plot sen-

tence based on word attention and with k=3 exchanged words. 47

4 Overview experimental results. 48

5 Related work overview . 49

6 Final hyperparameter configuration for the tuned model. . . . 51

7 Results of experiments with updated embeddings. 54

8 Comparison of word and sentence level attention. 54

9 Accuracy comparison of k word manipulations in most focused

plot sentence. 56

10 Accuracy comparison after adversarial training with different

percentages, mean accuracies for testing on dev set with k =

0 and k = 1..5. 59

11 Evaluation on both adversarial techniques. 60

12 Accuracy comparison for best adversarial model (training with

80% attention based samples) for training and testing with k

from 1 to 5. 60

13 Final evaluation for attention based testing compared to initial

evaluation results. 61

7

14 Comparison of accuracy results for small evaluation set (20

samples) before adversarial training. 69

15 Final evaluation for random-based testing. 69

16 Final attention-based testing on small evaluation set (20 sam-

ples) of trained adversarial model. 70

17 Final random-based testing on small evaluation set (20 sam-

ples) of trained adversarial model. 70

List of Listings

1 Example from MovieQA’s movies JSON file 22

2 Example from MovieQA’s question-answer JSON file. 22

8

1 Introduction

The fast progress in the area of deep learning facilitated the performance

of tasks such as image recognition or natural language understanding. For

future applications based on artificial intelligence, machine understanding of

human language at a high semantic level is essential. Imagine, for example, a

visually impaired person that would like to watch a certain movie, but is not

able to perceive the whole story or the context that the different roles are

acting in. For cases like these, an application that is able to answer questions

about the contents of the movie, could help to understand what is going on

and could thus be a great support.

With MovieQA, Tapaswi et al. (2015) provide a benchmark data set for

the task of multiple choice question answering in the domain of movies. The

corpus can be used to test and evaluate the current state-of-the-art perfor-

mance of neural networks which have been built for this purpose of machine

text comprehension. Although a lot of promising approaches have been seen

already, like the convolutional attention-based matching networks of Wang

and Jiang (2016) and Liu et al. (2017), the topic of question answering using

neural networks stays a highly frequented research field with a lot of space for

improvements. Further data resources from the question answering domain

came up with the introduction of the WikiQA data set by Yang et al. (2015)

and InsuranceQA, which was proposed by Feng et al. (2015).

Within this context, the goal of this thesis is to determine how a machine

comprehension system can be built which is able to capture and understand

meaningful textual information of inputs in order to predict correct answers

to questions. Furthermore, this system is aimed be improved using state-of-

the-art deep learning techniques such as attention mechanisms (see Section

3.2.2). Next to this, an important task is to also analyze the comprehension

system and to find out if the network really has learned what it was supposed

to learn, i.e. whether it is able to pick out and to use the right textual

information for answering the question, and, last, what the limits of such a

9

system are.

Section 2 will give an overview about the current research state of related

works that have been regarded for the purposes of this thesis. In Section 3,

some theoretical background such as the basics of neural networks and of

the TensorFlow framework is provided, which aims to facilitate the under-

standing of the further work. The used data resources and individual tasks

associated with them are explained in Section 4.2, followed by a detailed

description of how the neural network on which this work is based has been

constructed. The actual experiments that have been performed to measure

the progress in relation to the given problem statements and their results

can be found in Section 6. Finally, Section 7 completes this thesis with a

conclusion and an outlook about remaining future work.

2 Related Work

Before starting this thesis, a lot of research was already conducted in the field

of machine question answering already, including the upcoming of several

benchmark data sets over the last years:

The creators of MovieQA, which contains question and answer sets about

movies, provide several baselines that evaluate their data set (Tapaswi et al.

(2015)). The best result achieved an accuracy of 56.7% by using a convolu-

tional neural similarity network which compares both question and answers to

textual windows of the movie’s plot synopses and looks for the best match.

There are also some video-based approaches, that try to answer questions

with the help of visual data, however, their performance with a maximum of

38.0% accuracy is rather poor compared to the results of the models using

textual sources only. More detailed information concerning these approaches

and MovieQA are provided by Tapaswi (2016). Similarly, the data set Wik-

iQA, which contains questions and answers based on Wikipedia pages, as

well as InsuranceQA, whose data addresses questions taken from the domain

10

of insurances, both come with an initial baseline provided by Yang et al.

(2015) resp. Feng et al. (2015).

Wang and Jiang (2016) provide a first general approach with a convolution-

based matching network using a word-level attention mechanism, which was

evaluated for all of these data sources. In their work they are experimenting

with different comparison techniques, of which the best achieved an accuracy

of 72.91% with MovieQA, also using plot synopses only. Input data is gen-

erated using pre-trained word embeddings only. For all mentioned data sets

they outperform the initial baselines. Based upon previous work, Liu et al.

(2017) came up with another matching network based on convolutions that

provides an additional level of attention, namely sentence attention. In this

system they weighted every plot sentence of MovieQA individually instead of

treating the whole text as a long sequence of words. This approach led to a

performance of 79.99% for the test set. Both of the mentioned methods have

been published at the MovieQA leaderboard1.

While for InsuranceQA the state-of-the-art is still hold byWang and Jiang

(2016), for WikiQA, the best ever achieved result of knowledge was received

by Min et al. (2017) with a mean average precision of 83.20%, where the

model was trained on a different large data set, namely the SQuAD corpus,

and only fine-tuned on the small set of WikiQA training data. Finally, for a

better understanding of the true learning state of modern question answering

systems, Jia and Liang (2017) evaluated many neural networks within an

adversarial approach that aimed to fool the model by manipulating individual

words of the inputs.

1See http://movieqa.cs.toronto.edu/leaderboard/.

11

http://movieqa.cs.toronto.edu/leaderboard/

3 Background

3.1 Textual Question Answering

Question answering provides a good way to test a system’s knowledge about

a specific textual content. Although open ended question answering with

freely created answers still remains a challenging task for artificial systems,

multiple choice answering has indeed become a doable task that has already

been addressed in many works (see Tapaswi (2016)). Most datasets for tex-

tual machine question answering contain samples with one question sentence

and several candidate answers, which may be single words or also whole

sentences. For some cases like MovieQA, an additional resource document is

available providing helpful context that a system may acquire in order to pre-

dict the correct answer for a question (see Section 4.2). The main challenge

is now to create systems that try to extract and capture meaningful informa-

tion in these sentences, to match them against each other and to draw the

right conclusions from it. A promising way to achieve this is to build textual

comprehension systems with neural networks.

3.2 Artificial Neural Networks

The idea of artificial neural networks (ANNs) dates back to the approach of

modeling the biological functions of a human brain. Its basic unit is called

a neuron, of which a human nervous system has about 86 billion (Karpathy

(2018)). These neurons are interconnected and transmit signals between each

other. Figure 1 shows the simplest form of a neural network with only one

neuron. The neuron can take several inputs, but only outputs one single

accumulated signal. For distinguishing the importance of the different inputs,

each input ai gets assigned a weight Wi that either in- or decreases the

importance of the input. The output signal is then computed by summing

up all weighted inputs and by feeding this value into the sigmoid function σ,

which is a common choice for a so-called activation function. An activation

12

Figure 1: Neural network with one single sigmoid neuron (Fumo (2018)).

function determines the firing rate of a neuron: Instead of simply outputting

values of either 0 or 1, the nonlinear sigmoid function expresses the strength

of the signal by transforming it into a digit between 0 and 1 and allows

smoother computations. Additionally, a bias b is often added to the sum of

weighted inputs. This value can be considered as a kind of threshold that

controls how easy the neuron is able to output a value close to 1. For big

positive biases it is easy to submit a strong signal, however, if the bias is

highly negative, very strong input signals are needed for the neuron to fire a

strong output signal (Nielsen (2018)).

Usually, neural networks consist of more than one neuron. Figure 2 visu-

alizes a so-called feed forward multilayer network. Each layer’s neurons are

connected to all neurons of the next layer. The input layer takes the initial

inputs and transmits them to forward through one ore multiple so-called

hidden layers, which are not observable from the outside. Finally, the signals

reach the output layer, whose amount of neurons determines the size of the

output space. Each output neuron produces a score Yi which can be used to

take decisions or predictions.

In supervised training, the correct results for training data are known,

which allows to define a loss function that measures the greatness of the

13

Figure 2: Multilayer neural network with hidden layer in between (Fumo

(2018)).

error in the prediction. This loss value can be used to train a neural network’s

weight parameters by computing the gradients backwards and updating them

in order to minimize the error for further future predictions. This process is

called backpropagation and allows the neural network to automatically learn

from its mistakes and to improve itself.

For example, a common usage of a neural network is the task of image

classification. Assuming that the inputs ai represent significant features of the

original image, each of the final outputs Y stand for a possible class that the

image may belong to. A high score indicates a high probability that the image

belongs to that class. Besides image recognition, neural networks became

famous for solving problems in many other areas like speech or language

processing. Regarding the task of question answering, neural networks can

be built in such a way they take the words of question and answer sentences

as input features. Based on this, they can produce a prediction, saying which

of the candidate possibilities is most likely the correct one to that question.

14

Figure 3: Convolutional Neural Network with multiple convolutional filter

and pooling layers (Fumo (2018)).

3.2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a special kind of neural networks:

In fully connected layers as described above, for an input feature like a pixel

in the task of image processing, its location in the image is not considered,

as each input feature is connected to all neurons in the first hidden layer in

the same way. The idea of convolutional filters is to take only small regional

windows of an image at once that are connected to one hidden neuron. The

convolutional filter then moves over the whole image and produces one output

for every position while applying the same weights and bias for every step.

This way, a filter (sometimes also called kernel) produces a feature map for

the whole image that captures regional properties and patterns. Usually,

many different filters are applied that aim to detect different features of the

input. In the next step, the most meaningful information of the produced

feature maps is often extracted using so-called pooling layers. For instance, a

common pooling technique named max pooling simply takes the maximum of

output values in the previous layer in a certain region. This helps the network

to concentrate on the most significant features found during convolution and

to reduce the number of needed weight parameters for following layers (Kim

(2014)). Figure 3 shows this process with several subsequent convolution

and pooling steps before a final classification is performed with some fully

connected layers.

15

In the same way as for image recognition, convolutional networks can be

built for the purpose of textual understanding (Kim (2014)). One sentence

consists of several words, of which each again can be represented as a multidi-

mensional vector (see Section 4.1.2). This results in a sentence matrix where

convolutional filters are able to extract features considering word order and

regional context.

3.2.2 Attention Mechanisms

The idea of so-called attention in the context of deep learning is reminiscent

of the human ability to focus on particular objects or spots in his view. These

objects get sharper, while the rest of the image stays blurred. In the same

way, a neural network can concentrate on information considered relevant

for a specific task (Tian (2018)). For natural language processing, particu-

larly for question answering, this can be achieved, for example, by focusing

on meaningful words in the answer sentence that appear somehow related

to those in the question. Hence, such words can be assigned with stronger

weights. The attention weights can be determined, for instance, by comput-

ing dot products between all word vectors from the question and all those

from the answer sentence that should be matched. In contrast to the so-

called hard attention techniques, a text comprehension model using this soft

attention stays fully differentiable and still allows the computation of the

backpropagation.

4 Resources

4.1 Tools and Frameworks

In this section, some additional libraries will be described in detail that were

used for network construction and during the experiments.

16

4.1.1 TensorFlow

From a technical point of view and concerning neural network implementa-

tion, besides well-tried solutions like Theano or Torch, the relatively new Ten-

sorFlow framework is currently enjoying great popularity. The open source

machine learning tool was developed by Google, or more precisely the Google

Brain Team. It was first released in 2015 and represents the successor of the

previous tool DistBelief. Compared to this, it scores mainly on greater flex-

ibility and portability (Simon (2018)). TensorFlow models can be executed

in different environments like CPU or GPU and even on mobile or embed-

ded devices without having to port the code. Furthermore, the tool is highly

scalable and supports parallel executions. The additional tool TensorBoard

simplifies the display of aggregated execution summaries.

The implementation of new neural models is achieved by constructing a

computational graph. The nodes of this graph are executable numerical op-

erations, while the edges represent the tensors. Tensors are data arrays with

multiple dimensions that “flow” between the different nodes. New models can

be easily built and extended with the existing building blocks taken from the

TensorFlow toolkit in a high level programming language like Python, C++,

Go or Java.

Figure 4 illustrates the core architecture of the framework. In the client

layer, the computational graph is created and prepared for execution. There

are many libraries with a high level of abstraction that help to facilitate this

process. The computed graph is then initiated within a TensorFlow session

and passed to the (distributed) master. The master is responsible for par-

titioning and distributing the execution of subsets of the graph operations

to one or several workers, which may reside on different devices and/or in

additional processes. Figure 5 shows this interaction between the different

TensorFlow components. In this example, /job:ps/task:0 is the parameter

server and responsible for managing and updating the model’s parameters,

which may be triggered by operations on the other worker. Note that instead

17

Figure 4: Core architecture of the TensorFlow framework (The TensorFlow

Team (2018)).

Figure 5: Communication between TensorFlow components (The TensorFlow

Team (2018)).

18

of using this distributed behavior, of course also all computation can be

done by a single process. However, the real strength of TensorFlow shows in

its automatic parallel optimization techniques when applied to a distributed

system. The kernel operations, which represent single core graph operations

and of which more than 200 are existing at the moment, are mostly imple-

mented in C++. They also support efficient execution also on GPUs through

a binding to NVIDIA’s CUDA and cuDNN libraries. Additionally, they can

be expanded by the community if a new operation is required. For these rea-

sons, this flexible, highly scalable tool with growing community support was

considered a good choice for the purposes of this thesis.

4.1.2 GloVe

GloVe stands for an algorithm that is able to train global word representa-

tions in the shape of high dimensional vectors (Pennington et al. (2014)).

During training on large corpora it catches some statistics of word occur-

rences and the frequency of their appearances in a context together with

other words. This information is reflected in the final trained vector rep-

resentation of a word and allows to execute tasks of similarity or analogy,

for example, to find the most similar neighbor word. This is very useful for

purposes of text comprehension, since a neural network model is able to rec-

ognize related words by considering the relatedness of their mathematical

representations in the vector space. For this thesis, an existing GloVe model

was taken that was pre-trained on common web crawl data with 840 billion

tokens, a vocabulary size of 2.2 million words and vector dimensions of 3002.

4.2 Datasets

To measure the performance of the created neural network, it was trained

and tested on three benchmark data sets, namely MovieQA, WikiQA and

2See http://nlp.stanford.edu/data/glove.840B.300d.zip.

19

http://nlp.stanford.edu/data/glove.840B.300d.zip

Figure 6: Data statistics for the three data sets. Q = question, C = candidate

answer, P = plot (Wang and Jiang (2016)).

InsuranceQA. The first one contains question-answer sets demanding the

comprehension of movie contents and actions. The second one is a collec-

tion of query logs and wiki pages from Wikipedia. Finally, the contents of

InsuranceQA are all about the insurance domain, the questions come from

customers and ask for information about different kinds of insurances. Al-

though all data sets contain questions and a set of multiple choice candidate

answers, each of them comes with a slightly different task and provides quite

different statistics, as Figure 6 reveals. The individual data sets and their

properties will now be explained in detail.

4.2.1 MovieQA

The data set consists of a collection of 14,944 question and answer sets taken

from 408 movies and collected by human annotators, while the questions may

vary from simple ’who’ or ’when’ to more complex ’why’ or ’how’ question

types. Each question comes with five possible candidate answers of which

only one is the correct answer to the question. Therefore, the task for a

system is here to predict that one correct answer.

As an additional support for answering the questions, the data set con-

tains several different sources that provide further information about the

movie contents: Plot synopses are texts written by fans who have watched

20

the movie and mostly describe the actions happening in the story. Videos

are provided as clips together with their subtitles and are referenced via

timestamps. Besides, Described Video Service (DVS) files are available, which

contain narration texts of movies for visually impaired people and thus are

including also descriptions of visual details of the movie. Finally, script files

written by screenwriters are included which usually contain both, information

about a scene, and the intended dialogs of the actors in the final movie.

All of these data sources are aligned to the corresponding movie and

referenced in the question sets as JSON files as shown in the example of

Listings 1 and 2. The first one is an excerpt of the movie database containing

one single entry, namely The Lord the Rings: The Return of the King. Here

all available additional sources of information are linked together with the ID

of the movie. This allows one question-answer sample like that one shown in

the second listing to reference textual or visual support files like the movie’s

plot, script or subtitles. Also the index of the correct answer and the plot

sentence(s) containing a hint to the correct answer are given here.

Thus, all aligned data can be accessed as an additional source of informa-

tion by any question-answer problem to be solved. Another sample question

is given in Table 1 together with its five candidate answers and an excerpt

of the corresponding movie plot which contains the necessary information to

answer the question. For this work, only plots are used as they provided the

most promising results in all previous works3. Note that the accuracies for

the test set can only be computed online on the authors’ server because the

correct labels are not included in the download files of the data set. The data

set includes simple data loader classes that allow to load and access all data

from within python.

3See http://movieqa.cs.toronto.edu/leaderboard/.

21

http://movieqa.cs.toronto.edu/leaderboard/

{

"genre": "Adventure, Fantasy",

"text": {

"plot": "story/plot/tt0167260.wiki",

"subtitle": "story/subtt/tt0167260.srt",

"dvs": null,

"script": "story/script/tt0167260.script"

},

"imdb_key": "tt0167260",

"name": "The Lord of the Rings: The Return of the King",

"year": "2003"

}

Listing 1: Example from MovieQA’s movies JSON file

{

"qid": "val:1683",

"question": "How is the Ring finally destroyed?",

"answers": [

"Sauron gets bored of it and throws it into the volcano",

"Gollum breaks it",

"Sam throws it into the fire",

"Frodo burns it",

"It is consumed by the fire when Gollum falls with it in his hand"

],

"imdb_key": "tt0167260",

"correct_index": 4,

"plot_alignment": [

31

],

"video_clips": [

"tt0167260.sf-303781.ef- 307282.video.mp4"

]

}

Listing 2: Example from MovieQA’s question-answer JSON file.

22

Question Where does Sam marry Rosie?

Plot

... Aragorn is crowned King of Gondor

and taking Arwen as his queen before all

present at his coronation bowing before Frodo

and the other Hobbits. The Hobbits return to

the Shire where Sam marries Rosie Cotton. ...

Candidate answers
0) Grey Havens. 1) Gondor. 2) The Shire.

3) Erebor. 4) Mordor.

Table 1: MovieQA example question (Wang and Jiang (2016)).

4.2.2 WikiQA

The WikiQA data set was originally collected by Microsoft’s research group

(Yang et al. (2015)). It consists of 3,047 questions extracted from collected

query logs taken from Microsoft’s search engine bing. Each of the selected

questions forwarded the user, who had entered the query, to a Wikipedia

page about this topic. As each of these pages contains a paragraph that

summarizes the most important contents, each sentence of this paragraph

was taken as a candidate answer for this data set. For this reason, the number

of possible answers variates for WikiQA. A typical WikiQA question-answer

set originally looks like this:

Question: Who wrote second Corinthians?

Second Epistle to the Corinthians The Second Epistle to the Corinthi-

ans, often referred to as Second Corinthians (and written as 2 Corinthians),

is the eighth book of the New Testament of the Bible. Paul the Apostle and

“Timothy our brother” wrote this epistle to “the church of God which is at

Corinth, with all the saints which are in all Achaia”.

Here, the question is listed together with its corresponding summary para-

graph of Wikipedia, where each sentence will result in an answer possibility.

23

Each candidate was annotated by several human workers with YES, if

the sentence provided a correct answer to the corresponding question, or

with NO, if it did not. Therefore, on the one hand, there are questions with

multiple correct answers where several sentences of the paragraph provided

a valid answer. On the other hand, the data set contains a lot of questions

(about two thirds) that do not come with any correct answer, in case the

summary paragraph did not provide any. As these questions are of special

interest, for instance, in the field of answer triggering, but are not suitable

to answer selection tasks, the questions with no correct answers have been

excluded in this approach as done by Wang and Jiang (2016). This results

in a relatively small data set with only 873 samples for training, 126 for

validation and 243 for the test set, as Figure 6 shows.

In contrast to both of the other data sets, the task of WikiQA is not only

to find one correct answer since there may exist multiple ones, but also to rank

the candidate answers according to their likelihood of answering the question.

For this reason, the success of a model for WikiQA is not measured in terms

of accuracy, but rather with metrics of mean average precision (MAP) and

mean reciprocal rank (MRR).

4.2.3 InsuranceQA

The InsuranceQA corpus consists of question and answer sets concerning

the insurance domain collected from the website Insurance Library4, where

experts can be asked all kinds of questions about insurances. With a total

amount of 24,981 answers, this data set provides the biggest answer pool

in this work. Each question comes with a so-called ground truth set, which

contains one or several correct answers to the question. In this case, the

corresponding goal is to determine the best candidate answer for a given

question out of a big pool that contains the ground truth set and is filled up

with wrong answers. For the InsuranceQA task, a question is considered as

4See http://www.insurancelibrary.com.

24

http://www.insurancelibrary.com

Question can i have auto insurance without a car

Ground-truth answer

yes, it be possible have auto insurance

without own a vehicle. you will purchase

what be call a name ...

Other (wrong) candidate answer

insurance not be a tax or merely a legal

obligation because auto insurance follow

a car...

Table 2: InsuranceQA example question (Wang and Jiang (2016)).

answered correctly, if the candidate answer predicted by a model lies within

the ground truth set.

Table 2 shows an example question together with its ground truth and

another incorrect candidate answer. As the sentences reveal, all of the word

sequences were parsed with the Stanford Tokenizer5 before. Also, in contrast

to MovieQA and WikiQA, the text of this corpus has already been lemma-

tized. For the validation and test set, the answer pools are fixed with a size

of 500 questions in total. For training, the pool’s size and wrong candidate

answers can be chosen freely for a question from the total pool of answers.

The approach for building the answer pool used in this work is described in

Section 6.1.1.

5 Network Design and Implementation

5.1 Considerations

When starting this thesis, one of the most promising approaches for sequence

matching problems and, thus, also for question answering, was provided with

the CNN matching network by Wang and Jiang (2016). The great advantage

5See https://nlp.stanford.edu/software/tokenizer.shtml.

25

https://nlp.stanford.edu/software/tokenizer.shtml

of this contribution lies in its generality. As the authors demonstrated, their

network structure can be applied to question-answer data sets that come

from different domains and have slightly different tasks without the need for

greater changes. Furthermore, they optimized their model regarding different

comparison functions between sequences of words. In these experiments they

achieved quite impressive results (see Section 6.2.1 for all tested data sets

compared to the original proposed baselines, which are MovieQA (Tapaswi

et al. (2015)), InsuranceQA (Feng et al. (2015)), WikiQA (Yang et al. (2015))

and SNLI (Bowman et al. (2015)). In addition, parts of the source code were

made public6, which facilitates reimplementation and reproduction of results.

For these reasons and in order to receive a flexible text comprehension system

that might be extendend for future tasks even after creation, the approach of

Wang and Jiang (2016) was reimplemented with the framework TensorFlow

and serves as a baseline for this work and for all further experiments. All

data sets except for SNLI are supported by this reimplementation, since this

huge corpus would have required a lot of additional resources and time for

training. Also, the corpus does not contain question-answer sets, but rather

statement sentences for the task of textual entailment.

Although generally following this CNN matching network approach, some

details have been modified in the TensorFlow reimplementation. Therefore,

in the following sections, design and implementation of the baseline model

will be described in detail.

5.2 Network Design

As mentioned before, the general idea of this approach is to build a so-

called compare-aggregate system. Hence, the basic thought is to match two

text sequences by first comparing them word by word and then aggregate

the comparison result with a convolutional layer for the final prediction.

For the aim of question answering, the model’s task is to decide whether a

6See https://github.com/pcgreat/SeqMatchSeq.

26

https://github.com/pcgreat/SeqMatchSeq

Figure 7: Model layers for WikiQA and InsuranceQA for a prepared question

Q and an candidate answer A.

27

Figure 8: Preprocessing layer with question lengthQ, candidate answer length

A, GloVe word embedding size d and layer output size l.

potential candidate answer text sequence is probably a correct answer to a

given question sequence or not.

Figure 7 shows the layer flow of the model in its final implementation,

which will be explained in detail subsequently. For the network description

it is assumed that for one input sample, in each step there exists a question

Q and a candidate answer A, that needs to be matched against the question

with the help of the neural network. This process is explained for one question

and one candidate answer, as each of them is compared to the question

separately. Only in the final layer the scores of all candidates come together

for making a prediction.

5.2.1 Preprocessing Layer

After prepocessing the data as explained later in Section 5.3.2, Q and A are

available as sentence embeddings with Q ∈ R
Q×d and A ∈ R

A×d, where Q

and A are the length of question resp. answer and d is the dimension of the

word vectors.

Both Q and A now run through an additional preparing layer shown in

Figure 8, which projects the high dimensional word embeddings to a lower

output size l in order to reduce the number of needed parameters for subse-

quent layers. This step is done as follows:

X = σ
(

WiX+ bi
)

⊙ tanh (WuX+ bu)

28

Here ⊙ indicates element-wise multiplication. Wi, Wu
∈ R

l×d and bi,

bu
∈ R

l are trainable parameters that produce new embeddings of size l.

These weights and biases are reused for both preparing question and answer

sequences. Thus, applying this layer finally results in the new embeddings

Q ∈ R
Q×l and A ∈ R

A×l. As proposed by Wang and Jiang (2016), some

dropout is performed on the initial word embeddings before feeding them into

the projection layer, too. Especially for WikiQA this becomes important in

order to prevent overfitting since the training data set is very small. Details

are discussed in Section 6.1.1

5.2.2 Attention Layer

The second layer aims to create an attention-weighted version of the question

regarding a specific candidate answer. This means that those words in the

question that are most related to individual words in the answer sequence

are emphasized in a way that the model will pay more attention to them.

Therefore, the attention weight matrix G ∈ R
Q×A is constructed first:

G = softmax
(

Q
T
A
)

Note that in contrast to Wang and Jiang (2016), the learnable parameters

have been left out of the attention layer in this work because they seemed

to provide no help in this approach but rather decreased evaluation accura-

cies during the experiments. The attention weight matrix is then multiplied

with the question for generating an attention-weighted version of the answer,

labeled as H ∈ R
l×A:

H = QG

In detail, each weighted vector hj inH represents that part of the question

which best fits to the corresponding word vector aj of the prepared candidate

answer A. Figure 9 illustrates the creation of H out of question and answer.

29

Figure 9: Attention and comparison layer with question-weighted answer vec-

tors H.

5.2.3 Comparison Layer

The next step is done by a comparison layer that matches each hj in H with

its counterpart aj, which is also visualized as part of Figure 9. While Wang

and Jiang (2016) experimented with many different comparison functions,

here, only the two most convincing functions are chosen that provided best

results in their work. The first one, labeled as MULT, consists of a simple

multiplication of the vectors:

MULT : tj = aj ⊙ hj

This function proved to be best for small data sets like WikiQA and is,

thus, used in the present work for this task, too. For the other tasks,MovieQA

and InsuranceQA, the following SUBMULT comparison function is used:

SUBMULT : tj = ReLU(W

[

(aj − hj)⊙ (aj − hj)

aj ⊙ hj

]

+ b)

Here, W ∈ R
l×2l and b ∈ R

l are trainable parameters again. The result-

ing vectors tj have the same dimensions as aj and hj.

30

Figure 10: CNN and predcition layer with nl = number of different kernel

heights × kernel number each. K = number of candidate answers.

5.2.4 Aggregation Layer

In the following step, the vectors tj are aggregated using a one layer CNN,

as proposed by Kim (2014):

r = CNN([t1, ..., tA])

CNN internally consists of a convolutional layer with kernels W ∈ R
k×l×l,

where k is the kernel height and l again determines kernel width and number

of kernels. As shown in Figure 10, each convolutional layer is followed by a

max pooling layer, which reduces the feature maps to r ∈ R
nl, where n

stands for the number of different kernel windows used. Finally, the resulting

r represents the features of one candidate answer, which can be used together

with the features of the other candidates in a prediction layer.

5.2.5 Prediction Layer

The final prediction layer, which is visualized on the right side of Figure 10,

uses the precomputed features R = [r1, ..., rK] of K candidate answers to

make a prediction:

p = softmax(wT tanh(WsR + bs) + b)

with Ws
∈ R

nl×l, bs
∈ R

l, w ∈ R
l and bs

∈ R. The resulting p ∈ R
K

is the probability distribution among the candidate answers that indicates,

31

which answer is considered most likely to be correct. Note that the prediction

scores for all candidate answers are computed separately for every rK before

the softmax function, but in contrast to classical classification tasks the same

weights and bias are shared for all final dense layers. The softmax function is

used here only for smoothing the results in order to receive a valid probability

distribution.

5.2.6 Task-Specific Adaptations

For the MovieQA dataset, the model as it has been described so far has to be

adapted slightly. An overview about the changes are given by Figure 11: Since

there are three sequences to be matched, namely question, candidate answer

and plot text, the question is compared to the whole plot sequence first by

sending both through the attention and comparison layers shown in Figures

12 and 13. In accordance, every candidate answer is compared to the plot

again by sending both through the same layers with identical weights as for

processing the question. The results of both question and answer comparisons

with the plot are then merged together before the aggregation step in the

convolutional layer of Figure 14 as follows:

tk,j =

[

tqj

tak,j

]

This way, the convolutional filters regard features of question as well as

answer weighted plot and extract significant features of both at once. After

the convolution, the prediction is computed in the same way as described for

the other data sets.

32

Figure 11: Model layers for MovieQA. The additional plot resource P is

matched with both Q and A.

33

Figure 12: Attention layer for MovieQA task. Here the whole plot is weighted

with both question and candidate answer.

Figure 13: Comparison layer for MovieQA task. Question and answer are

compared to their weighted plot version.

34

Figure 14: Convolutional layer for the MovieQA task. Question and answer

weighted plots Tq and Ta are concatenated right before the convolution.

5.3 Implementation Details

5.3.1 Environment Setup

The implementation of the baseline model as well as all experiments were

run using a GPU compatible version of TensorFlow (v. 1.5) together with

a python 3.6 environment. This programming language provides the most

supported frontend with the currently biggest community where many high

level interfaces are provided for creating neural networks. All data sets were

downloaded, extracted and prepared for their usage within the TensorFlow

framework. Note that this work uses version V1 of the InsuranceQA data

set for being comparable to the work of Wang and Jiang (2016), although

version V2 is already available7.

5.3.2 Data Preprocessing

As introduced in Section 4.1.2, the inputs of the system are built upon pre-

trained word embeddings taken from a GloVe model with vector dimensions

7See https://github.com/shuzi/insuranceQA.

35

https://github.com/shuzi/insuranceQA

of d=300. For the simple baseline model, the embeddings are not updated

during training. In a first step, all sentences in every data set are converted

into a matrix of shape n × d, where n is the number of words in a sentence

and d the dimension of the word embeddings. If there is no representation

available for a word, the vector is initialized with a small random uniform

vector with values between -1.3 and 1.3 as most embedding values lie in this

range. Every used word representation is saved in a vocabulary dictionary

and is referenced by its key.

For every sentence the word keys are stored under their context (question,

answer or plot), usually in TensorFlow’s TFRecord format, which is based

on Google’s protocol buffer format. This way, the whole data set is being

included into the computational graph and can be loaded, batched and shuf-

feled by TensorFlow models easily. Also, storing of the labels varies among

the different tasks: For MovieQA, where there is only one correct answer to a

question at any time, the label entry in the record file is written as a simple

one-hot vector. For WikiQA, on the other hand, there may be several cor-

rect answers among the candidates. In this case, every correct label is first

assigned with 1 and then divided by the total amount of correct answers for

this question. This way, the label vectors sum up to 1 and can be used as a

well distributed input for a loss computation with softmax and cross-entropy

during training for optimizing the model.

For InsuranceQA, as mentioned above, only the correct answers for a

question are given for the training set by default. So during preprocessing

only each correct answer is stored together with its question as one single

sample that gets filled up with wrong answers later. This way they can be

exchanged easily by other random candidates from the whole answer space

in every new epoch.

36

6 Experiments

6.1 Experimental Setup

For the tasks of evaluating and improving the baseline built in Section 5, sev-

eral experiments were performed on the existing model. To measure the suc-

cess of the created neural networks, accuracy of correctly answered questions

has been used during all experiments, except for WikiQA, which requires

ranking of answers and, thus, is evaluated by computing mean average pre-

cision (MAP) and mean reciprocal rank (MRR).

First of all, an attempt was made to get better evaluation accuracies by

fine tuning the hyperparameters of the network. In a second experiment, the

existing pre-trained GloVe word embeddings were replaced by updateable

embeddings. Besides, for MovieQA the model was extended with a second

stage of attention and convolution on sentence level for the plot text. Finally,

for inferring the model’s internal learning state and limits, it was evaluated

using adversarial samples.

6.1.1 Hyperparameter Setting and Tuning

The performance of a network strongly depends on its setting of parameters.

Therefore, in order to improve the results which have been achieved with the

baseline, the initial network’s parameters have been tuned in search for an

optimized configuration. For finding good choices for the model’s hyperpa-

rameters, a greedy approach was chosen which tried to variate one parameter

after another and always took that configuration providing the best results,

i.e. achieving the highest validation accuracies or precisions and the lowest

total loss, into the next steps. For each parameter’s tuning, at least five dif-

ferent models were trained on every tested setting for ensuring significance

of the results.

While all biases are initialized constantly with zeros, as proposed by

37

Karpathy (2018), different TensorFlow weight initializer implementations

were tested. The following initializer functions were tried out:

• tf.contrib.layers.xavier initializer8 with uniform distribution

• tf.random uniform initializer9 with values between -0.1 and 0.1

• tf.variance scaling initializer10

• tf.truncated normal initializer11

• tf.random normal initializer12 with a mean of 0 and a standard

deviation of 0.1

While random normal and random uniform initializers compute the weights

without regarding the input or output sizes of layers, this is indeed done by

the xavier and variance initializers with the aim to keep the gradients in the

same scale through all layers. The truncated normal initializer is similar to

the random normal initializer, but here outliers that deviate to far from the

mean are thrown away and newly computed. All of the described initializers

were tested with the standard settings listed here in order to observe which

one contributes to the best score with the given model.

During the experiments, also three different optimizers for updating the

weights were tested out: A standard stochastic gradient optimizer (SGD),

the Adam optimizer (Kingma and Ba (2014)), and the Adamax optimizer, a

variation of Adam which was also used by Wang and Jiang (2016).

Furthermore, for the optimization of the model, two different loss func-

tions were evaluated: A standard cross entropy loss function and a variant of

8https://www.tensorflow.org/api docs/python/tf/contrib/layers/

xavier initializer.
9https://www.tensorflow.org/api docs/python/tf/random uniform initializer.

10https://www.tensorflow.org/api docs/python/tf/variance scaling initializer.
11https://www.tensorflow.org/api docs/python/tf/truncated normal initializer.
12https://www.tensorflow.org/api docs/python/tf/random normal initializer.

38

https://www.tensorflow.org/api_docs/python/tf/contrib/layers/xavier_initializer
https://www.tensorflow.org/api_docs/python/tf/contrib/layers/xavier_initializer
https://www.tensorflow.org/api_docs/python/tf/random_uniform_initializer
https://www.tensorflow.org/api_docs/python/tf/variance_scaling_initializer
https://www.tensorflow.org/api_docs/python/tf/truncated_normal_initializer
https://www.tensorflow.org/api_docs/python/tf/random_normal_initializer

the hinge loss, in which the margin between the scores of correct and wrong

answers to a question is tried to be maximized with:

Lhinge = max(0, (smaxWrong − scorrect +m))

Where smaxWrong is the biggest score among the wrong candidate answers,

scorrect is the score of the correct answer and m = 1 is the margin between the

scores that is tried to be achieved. If there are multiple correct answers (as

it is the case for the WikiQA dataset), the loss is computed for each correct

answer and the highest value is chosen for the optimizing step. Using this

formula, the loss is 0 if the margin between the two scores is high enough.

For the single dropout on the initial word embeddings, different dropout

rates of 0.1, 0.2, 0.4, 0.6 and 0.8 were tried out. If necessary, the experiment

was repeated with more fine grained values that lay between the initial ones.

While fine tuning the learning rates, values of 0.01, 0.001 and 0.0001 were

tried out first. Afterward, the best configuration was taken and fine-tuned

using smaller variations.

The batch size was set to 30 for all runs and not tuned during experiments.

Also, L2 regularization has been added to the loss function to penalize outliers

among the weight updates. The beta scale of the regularization function

was tested with values of 0.01, 0.001 and 0.0001. Within the convolutional

layer, fixed filters with different kernel heights were used: [1,3,5] for MovieQA

and [1,2,3,4,5] for both WikiQA and InsuranceQA. The number of kernels is

set to 150 for each individual kernel and their resulting feature maps are

concatenated after max pooling. The number of output units l has been set

to 150 for all other (dense) layers.

Note that for InsuranceQA, the training data set is not fixed and only

the true answers for a question are given. The pool of negative answers still

had to be built by taking random wrong answers from the total answer pool.

These negative answers are resampled every epoch. Although the results of

Wang and Jiang (2016) were claimed to be achieved with a training pool

39

size of 50 candidate answers, it was also tried out with a size of 100 during

training, hoping to achieve better results this way on the big test sets with

500 candidate answers per question.

6.1.2 Updated Embeddings

Since in most of the related works the word embeddings were not updated

during training of the model, this attempt was made in the scope of this

work in two ways: First, pre-trained GloVe vectors were used as described so

far and updated during training in every batch step. In a second experiment,

all word vectors were initialized as random uniform distributed vectors with

values from -1.3 to 1.3 (in which areas most of the glove vector values lie)

and updated every batch step, too. Both experiments were performed for the

WikiQA task first, as this small data set needs the least training time.

6.1.3 Sentence Attention

As described before, MovieQA uses an additional textual source, the movie

plot, which consists, compared to question and answer phrases, of a rather

large text. For this reason, an attempt was made to include an additional level

of attention to the model, namely sentence level attention, as also proposed

by Liu et al. (2017). Because their model variates from the baseline which

is followed in the present work, this sentence attention concept could not

be transferred completely the way it was described there. Nonetheless, the

core idea to match each sentence of the plot with question and candidate

answer separately instead of taking the whole plot at once was adopted for

a corresponding extension of the baseline model.

Figure 17 illustrates the first stage of this process: For every plot sen-

tence Pi with length of ps words, the feature maps are computed exactly the

same way as before and are fed into the convolutional layer shown in Fig-

ure 18, which creates a question and answer weighted feature set for every

40

Figure 15: Stage one of sentence attention model produces sentence features

rq, ra and rpi.

41

Figure 16: Stage two of sentence attention model produces final features rs

for one candidate answer.

42

Figure 17: Preparation step for MovieQA with sentence attention. Each sen-

tence of the plot is processed separately and matched to question and can-

didate answer instead of taking the whole plot at once.

plot sentence. The initial prepared question and answer features are now sent

through the same convolutional layer (i.e. with the same weights). Therefore,

both are duplicated and concatenated for fitting to the convolutional filters

used for the creation of rpi.

The output results of this first stage’s layers are feature sentence repre-

sentations for question, answer and a plot sentence. In the following, these

outputs of the first stage are used as inputs for the second stage of sentence

level processing, of which Figure 16 gives an overview. In the beginning,

the plot sentence features are all concatenated again, as Figure 19 indicates.

Then, the whole plot runs through another attention step where its sentence

features are weighted with the sentence features of question and candidate

answer again (Note that both are considered to consist of exactly one sen-

tence). What follows is another comparison step for both weighted plots. For

this second comparison layer, new weights are used, but they are shared for

both question and answer weighted plot comparison again.

Finally, the resulting question and answer feature maps Tqs and Tas are

concatenated again and fed into another convolutional layer with new weights,

which is shown in Figure 20. The process described so far reduces the features

43

Figure 18: Stage one output sentence representation of plot sentence, question

and answer with one shared convolutional layer.

44

Figure 19: Second attention step on sentence level of stage two for question

rq and answer ra with concatenated plot sentences [rp0, rp1, ..., rpi].

Figure 20: Second convolutional layer for final feature representation rs of

one answer choice.

45

of all plot sentences to one feature vector of length nl per candidate answer.

These vectors are then, again, used for the prediction layer in the same way

as done before.

6.1.4 Adversarial Examples

The idea of adversarial examples is to fool or confuse a model by manipulating

the given information as done by Jia and Liang (2017) for the field of text

comprehension. This approach aims to show how deep the true understanding

of the network really is. In this work, during the experiments the plot for the

MovieQA sentence attention model was modified in that part of the text with

the strongest textual attention, which is the first contribution of this kind to

the best of own knowledge. After changing the plot, the model was evaluated

to see whether it concentrated on the right section of the text and if it is still

able to answer the question correctly when the context changes.

Therefore, in a first step, some words of the plot were changed within that

sentence getting the most attention by the model. For these experiments,

a single model was chosen and modified twofold: In one approach, 1 to k

random words were exchanged by other random word representations taken

from the vocabulary. In a second approach, the 1 to k most attention weighted

words in that sentence were exchanged. By this setting, the effect of word

attention is observed and compared to the strategy of randomly taking out

words.

Additionally, for evaluating how well the model is able to understand and

answer the question correctly compared to a human being, a small evaluation

set of 20 randomly chosen samples was taken from the validation set and

observed manually. A question was considered as answerable correctly by a

human, if the right answer could be recognized among all candidates only

with the help of the (remaining modified) plot text. Table 3 contains an

example of the original and modified plot for a question. As one can see, in

the manipulated plot the right answer name is still appearing in the sentence,

46

Question What is William’s mother’s name?

Original plot His mother Elaine wants him to become a lawyer.

Modified plot (k=3) Autua argo Elaine wants him to firing a lawyer.

Candidate answers
0) Shunn. 1) Ann. 2) Anita.

3) Elaine. 4) San.

Table 3: MovieQA adversarial example question with modified plot sentence

based on word attention and with k=3 exchanged words.

but the context of mother has gone, so the model will probably fail to answer

this question and also a human could not answer it anymore with the modified

plot sentence.

Finally, there was an attempt of improving the overall model performance

by training it with a portion of adversarial examples. This training happened

with the hope to stabilize the model and to achieve better results when it is

tested on modified plots. So after training, it was tested in the same way as

in the beginning in order to compare how the results changed. For a better

understanding of the attention layer’s effects within the neural network mod-

els, especially during the adversarial experiments, an visualization plotting

function was added that illustrates the attention weighted word features as a

heatmap at the state of the convolutional layer (see Sections 6.2.4 and 6.2.5).

6.1.5 Ensemble Model

For every data set an additional ensemble model was built that consists of

a combination of nine fine-tuned single models for MovieQA and five for

WikiQA and InsuranceQA. The ensemble models choose the correct candi-

date answer(s) by majority vote and were created with the aim to provide

a greater stability of predictions. For MovieQA, this model also was used to

create a file with predicted labels for the test set, which was submitted to

the server provided by the authors for the final evaluation of the system’s

performance on this task.

47

MovieQA WikiQA InsuranceQA

Val. Test Val. Test Val. Test

Baseline 73.23 - 72.50 - 63.70 -

Tuned Model 75.60 - 76.39 73.45 73.60 73.27

Updated Embeddings - - 70.41 - - -

Sentence Attention 80.69 - - - - -

Ensemble Model 82.89 82.73 76.29 75.51 73.20 74.10

Table 4: Overview experimental results.

6.2 Results and Discussion

This section presents all experimental results for the settings described so

far. First, an result overview over all experiments performed is given and

the achieved scores are compared to those of related works. Afterwards, all

individual experiments and their outcomes will be discussed in detail.

6.2.1 Overview

Table 4 shows the evolution of the accuracy scores from the initial Tensor-

Flow baseline to the final models. The experiments have been performed in

the order in which they are listed above and each one was built on its pre-

decessor’s best result. As one can see, the building of ensemble models has a

notable effect on the performance, since it increases stability of the answer

decisions, except for WikiQA, where one single model performed best (re-

member that the results of this corpus are given by terms of mean average

precision instead of accuracy). In contrast, the updated embeddings made

the systems perform even worse than the baseline with no updated embed-

dings. On the other hand, the introduction of the sentence level attention

lead to a great improvement of more than 5% for MovieQA. The adversarial

experiment’s final result is left out here because its testing context differs

from the other results and cannot be displayed as a single value as explained

48

MovieQA WikiQA InsuranceQA

Val. Test MAP MRR Val. Test

Yang et al. (2015) - - 65.20 65.20 - -

Feng et al. (2015) - - - - 65.4 65.3

Tan et al. (2015) - - - - 68.4 68.1

Wang and Jiang (2016) 72.1 72.90 74.33 75.45 77.00 75.60

Liu et al. (2017) 79.00 79.99 - - - -

Dzendzik et al. (2017) - 80.02 - - - -

Min et al. (2017) - - 83.20 84.58 - -

Own Work 82.89 82.73 76.39 76.41 73.60 74.10

Table 5: Related work overview

in Section 6.2.5. The best adversarial accuracies on the unchanged evaluation

set lie in the same range as the model with sentence attention.

As Table 5 shows, the TensorFlow reimplementation of the approach of

Wang and Jiang (2016) achieves competitive results for the WikiQA data

set compared to the original work, but does not reach the state-of-the-art

approach by Min et al. (2017). In their work, the model’s parameters (in-

cluding word embeddings) were pre-trained with data from SQuAD. This

data set also comes from the domain of Wikipedia, but with 100k training

samples the corpus is about 100 times bigger than WikiQA. Thus, training

the embeddings and model weights on this huge corpus and only fine-tuning

on WikiQA resulted in far better results than they could be achieved by this

work. Since training on such a large corpus would have required a lot of ad-

ditional efforts, this experiment proved to be impracticable for the scope of

this work and remains as a future work.

For MovieQA, the results could be improved quite a lot by combining

the original compare-aggregate approach with the sentence level attention,

which was inspired by Liu et al. (2017), but realized slightly different. The

ensemble model, which was created out of these single models, outperforms

49

all current approaches of knowledge for MovieQA13, including the work of

Dzendzik et al. (2017), who held the top of the leaderboard for a longer time

with their approach using logistic regression over sentence similarities. This

improvement in comparison to all previous works goes back to the additional

implementation of the second stage with attention on sentence level for the

biggest part and may also be due to the fact that random vectors for unknown

word representations are used here instead of initializing them with zero

vectors as in the original work by Wang and Jiang (2016).

For InsuranceQA, although also following exactly the same approach and

implementation, in contrast to WikiQA this implementation still lies some

percents behind the results provided by Wang and Jiang (2016), which is

kind of surprising. Although not having published the source code for this

data set, in a discussion on their GitHub page14 the authors claim that the

model structure for InsuranceQA is exactly the same as for WikiQA. The

only difference mentioned there is the construction of the answer pool, which

besides the one correct answer is filled up with 49 wrong candidates that

are reassigned each epoch. So the most obvious reason why the TensorFlow

reimplementation performs worse is that the exact process of how the answer

pool is preprocessed and created might differ from the original work in some

significant details. While working on this thesis, theMovieQA data set turned

out to be of greater interest because of its additional textual resources like

the plot. Therefore, no further investigations for improving InsuranceQA were

made, but instead the MovieQA was focused more in the subsequent work.

So all in all, the created comprehension system could outperform all re-

cent works on MovieQA, but could not beat the state-of-the arts for the other

data sets. The reasons for this gap go back to MovieQA’s adapted sentence

attention model, which in combination with the general compare-aggregate

structure provides a novel mechanism to find and focus the correct sentence

with the hint to answer a question with a high probability. For WikiQA and

13See http://movieqa.cs.toronto.edu/leaderboard/.
14See https://github.com/shuohangwang/SeqMatchSeq/issues/2.

50

http://movieqa.cs.toronto.edu/leaderboard/
https://github.com/shuohangwang/SeqMatchSeq/issues/2

WikiQA MovieQA InsuranceQA

Initializer xavier xavier xavier

Optimizer Adam Adam Adam

Loss function entropy entropy hinge

Dropout 0.55 0.0 0.0

Learning rate 0.006 0.001 0.001

Regularization L2 (β=0.0001) L2 (β=0.0001) L2 (β=0.0001)

CNN kernel heights [1,3,5] [1,2,3,4,5] [1,2,3,4,5]

Embedding dim. 300 300 300

Batch size 30 30 30

Answer pool size - - 100

Table 6: Final hyperparameter configuration for the tuned model.

InsuranceQA, there is no additional context document given, so the only

sources of usable information for the system are question and answer sen-

tences themselves, which made the introduction of another level of sentence

attention useless for these cases. Hence, as the number of wrong candidate

answers is also a lot bigger than for MovieQA (see Table 6), it is harder

to deal with additional misleading information for the model with only one

stage of word level attention, which prevents it from achieving new high

scores. In the following, the individual experimental results will be explained

and discussed in detail.

6.2.2 Hyperparameter Tuning Results

After testing out all of the settings discussed in Section 6.1.1, the final opti-

mized configuration of the hyperparameters resulted in what is shown in the

overview of Table 6. Figure 21 shows the validation results for the experiment

runs with the different tested weight initializers as described in Section 6.1.

The best scores could be produced using a uniform distribution of the initial

weights and the xavier initializer (Glorot and Bengio (2010)), which aims to

51

keep the gradients in the same scale for all layers by regarding input and

output shapes. The same is done by the variance initializer, however, here

only the input sizes of the layers are taken into account by default. Although

the uniform distribution achieved the highest score during the experiments,

the xavier and variance results seemed more stable when regarding different

runs, which is why for all future runs, the xavier initializer was chosen.

Figure 21: Example validation precisions for different weight initializers.

Figure 22: Validation results for different optimizers on WikiQA.

Figure 22 shows the validation results of the experiments with the dif-

ferent optimizers. As the plot indicate, although being less stable, Adam

converged much faster than both of the other candidates and provided the

best accuracies. The additional parameters for the Adam optimizer were set

to β1 = 0.9, β2 = 0.999 and ε = 1 × 10−8. All of these plots were produced

using TensorFlow’s TensorBoard utility and have been smoothed for a better

52

visualization. The x-axis shows the number of applied training batch steps

over time, while the y-axis reveals the mean batch loss resp. precision values.

Furthermore, both loss functions achieved similar results for all data sets;

Cross entropy performed slightly better with the listed settings for WikiQA

and MovieQA. For InsuranceQA, especially with a bigger answer pool size of

100 candidates, the hinge loss was found to achieve higher accuracies.

Concerning the dropout rate it showed that for both MovieQA and Insur-

anceQA a setting with no dropout achieved the best results as there seems to

be enough training data for not overfitting too fast. For the smallest dataset

WikiQA, on the other hand, rates of 0.5 and 0.6 delivered optimal results,

so for all further runs it was set to 0.55 for this data set. Experiments with

the learning rates showed that rates between 0.001 and 0.006 worked best

on this model in combination with the Adam optimizer, while staying stable

enough. For the larger sets of InsuranceQA and MovieQA, a learning rate of

0.001 was sufficient. WikiQA showed the highest performance with a rate of

0.006 in single runs.

6.2.3 Updated Embeddings Results

Both options mentioned in Section 6.1.2 were tested for WikiQA, but even

the highest achieved scores in single runs were not able to compete with

the precisions of the original model with fixed pre-trained word vectors, as

Table 7 shows. The decrease of performance lets assume that the WikiQA

corpus alone does not provide enough data and context to train as meaningful

embeddings as provided by GloVe. Since similar results were expected for

the other data sets, the experiment was not performed for them anymore. As

already mentioned, training the embeddings on bigger corpora coming from

the same domain might improve the results in a future approach, as already

shown by Min et al. (2017) for WikiQA.

53

WikiQA (Val. set)

Fixed GloVe Embeddings 76.39

Updated GloVe Embeddings 70.41

Updated Random Embeddings 67.26

Table 7: Results of experiments with updated embeddings.

MovieQA (Val. set)

Word Level Attention 75.60

Sentence Level Attention 80.69

Table 8: Comparison of word and sentence level attention.

6.2.4 Sentence Attention Results

As Table 8 shows, the sentence level attention achieves a big improvement

of 5% compared to word level attention only. Note that this improvement

is exchanged for with some additional computational efforts during training

caused by additional CNN layers in comparison to the baseline model. Note

also that the same hyperparameters settings were used here as in the baseline

model.

Figure 23 shows an example plot of the MovieQA validation set, whose

words have been weighted with both, question and the correct answer sen-

tence. Figure 24, on the other side, shows a wrong answer for the same ques-

tion. The correct answer was chosen by the sentence attention model with

a probability of 96.93%, while the wrong answer was assigned only 0.04%

probability to be the correct one. In both figures, all weighted plot sentences

for the candidate answer that is written above are shown. On the left side,

the smoothed plot sentence level attention is displayed in percent. A high

percentage means that the model believes this sentence to contain the hint

to answer to the question most likely and will, thus, concentrate more on this

sentence’s contents.

Furthermore, the strongly colored parts in each row indicate that the

54

Figure 23: MovieQA attention visualization (correct answer).

Figure 24: MovieQA attention visualization (incorrect answer).

55

k Random Based Word Attention Based

0 79.99 79.99

1 75.43 72.11

2 71.30 65.63

3 67.97 58.63

5 60.01 49.69

10 46.11 38.46

20 35.85 34.42

40 33.86 33.04

Table 9: Accuracy comparison of k word manipulations in most focused plot

sentence.

convolution will pay more attention to these words within the sentence. As

one can see, more attention is payed to plot words occurring in question and

answer sentences, which makes this sentence more important than others

which contain less words that match.

Generally, evaluation proved that a long answer sentence tends to attract

more attention from the model to one single plot sentence than short ones do.

This might be due to the fact that this sentence contains a whole sequence of

words which each match to the answer sentence, in contrast to, for example,

one-word answers like proper names, that might occur in many sentences.

In this case, the phrase their lack of reflection in the mirror, for example,

appears exactly the same in both, the plot and the correct answer sentence.

Therefore, this strong correspondence is assigned with higher attention than

the few words leave the house of the incorrect answer that match. This leads

to the right decision of the model. So for long answers, the focus on one sen-

tence is stronger, but the model can also be distracted easier if this sentence

changes as the adversarial experiments in Section 6.2.5 showed.

56

Figure 25: Accuracy results for validation set (1958 samples).

Figure 26: Model and human performance on small evaluation set (20 sam-

ples).

57

6.2.5 Adversarial Results

Initial Evaluation Results Table 9 shows the initial testing results for

the adversarial experiments on the full validation set. The number of modified

words k was set to values between 0 and 40, which corresponds of exchanging

that number of words according to the two techniques introduced earlier and

listed in the columns. As one can see, the model’s performance gets worse

for an increasing number of distracting words in the most focused sentence

of the plot. This indicates that the model truly concentrates on the correct

sentence in the plot in most cases and is, therefore, not able to answer the

question anymore if too many words in that sentence become meaningless.

Furthermore, the comparison between the two different manipulation

techniques reveals that manipulating the words that are considered most

important first leads to a faster decrement of the accuracy than when ex-

changing the words in the same sentence randomly, as Figure 25 demon-

strates. This proves that the model indeed recognizes the most important

words within the relevant sentences for most cases, as removing them step

by step decreases the network’s ability to answer correctly in a strong way.

Both approaches converge at an accuracy of about 30% for large k, which

corresponds with filling up the whole sentence with random words so that

it becomes useless as a whole. The manual evaluation of the small test set

of 20 samples, which is shown in Figure 26, provided similar results and is,

thus, considered representative for the whole testing set. The human being

performs slightly better than the model when exchanging only several words

for both techniques as he is still able to draw better conclusions from the

remaining context. For growing values of k, this difference shrinks, as the

ability to answer vanished completely for both, machine and human, at the

latest extreme when all significant words in the sentence have been replaced.

Adversarial Training Results The results after training are listed in

Table 10. For training, the amount of original training samples was replaced

58

Attention Train and Test Random Train and Test

% k=0 mean k=1..5 k=0 mean k=1..5

5 80.03 62.04 79.49 68.66

10 79.50 63.26 79.07 68.35

30 79.27 65.84 79.61 63.13

50 78.49 67.71 78,93 70.34

80 76.14 68.48 76.76 70.23

Table 10: Accuracy comparison after adversarial training with different per-

centages, mean accuracies for testing on dev set with k = 0 and k = 1..5.

with growing percentages of adversarial samples for k from 1 to 5. To be

more specific, all trained models were evaluated on the validation set again

with (k > 0) and without (k = 0) manipulated sentences and for the same

testing values of k from 1 to 5. As one can see, accuracy increases for the

modified sentences for a bigger percentage of adversarial training samples,

but the accuracy for the original, unchanged validation set decreases slightly.

On average, the best model for attention based training was achieved by

replacing 80% of the original training data with adversarial samples. How-

ever, for random based samples a rate of 50% provided the best outcomes.

These two models were taken and tested again, however, this time with the

other adversarial technique they were not trained with in order to observe,

which one deals better with both kinds of manipulated plots. The results are

listed in Table 11. In contrast to the random model, the model trained with

attention based samples achieved better accuracies on both test runs when

regarding the mean performance and, hence, it provided the better choice for

adversarial stabilization.

Table 12 contains the detailed testing results for this model trained with

80% adversarial samples. The columns contain validation accuracies for dif-

ferent values of k during training, the rows different settings of k during

testing. As the mean over all accuracies for different testings of k in the last

59

Training Random (50%) Attention (80%)

Testing k Random Attention Random Attention

1 76.37 73.61 73.88 75.14

2 73.72 68.64 72.00 71.52

3 70.48 63.80 69.47 68.01

4 67.34 59.16 67.57 63.85

5 63.80 54.98 65.38 60.03

mean 70.34 65.00 69.66 67.72

Table 11: Evaluation on both adversarial techniques.

k test / k train 1 2 3 4 5 mean

1 74.46 75.75 74.20 73.90 72.77 74.22

2 69.61 73.08 71.65 71.96 71.76 71.62

3 65.58 70.14 69.36 69.96 69.15 68.01

4 60.62 66.03 67.26 67.31 67.41 63.85

5 56.74 61.13 62.56 64.75 64.96 60.03

mean 65.40 69.226 69.01 69.58 69.21 67.72

Table 12: Accuracy comparison for best adversarial model (training with 80%

attention based samples) for training and testing with k from 1 to 5.

row reveals, the model with a setting of k = 4 words during training per-

formed best during testing in general. Therefore, this model was chosen as

the most promising candidate for the final evaluation.

Final Evaluation Table 13 contains the final evaluation results on the

validation set, compared with the initial testing results for the attention

based samples. The change of results is also plotted in Figure 27. For most

values of k, particularly in the range between 3 and 10, improvements are

notable with more than 10%. Therefore, on the adversarial trained version,

it is more difficult to fool the model and it needs higher values for k to

achieve the same behavior as before. The random-based k -testing results are

60

k Initial Attention Trained

0 79.99 74.71

1 72.11 73.39

2 65.63 71.55

3 58.63 69.81

5 49.69 64.91

10 38.46 53.31

20 34.42 37.64

40 33.04 32.07

mean 54.00 59.67

Table 13: Final evaluation for attention based testing compared to initial

evaluation results.

Figure 27: Accuracy results for full validation set before and after adversarial

training.

61

Figure 28: Model and human performance on small evaluation set before and

after adversarial training.

not listed here for reasons of overview. They can be found in Table 15 of

Appendix A. As the table shows, the new accuracies are similar to those of

the attention based technique: Especially for testing values of k between 3

and 10 there are greater improvements in the stabilized model compared to

the initial one, although the overall mean accuracy did not increase as much

as for the attention based approach.

On the small evaluation set of 20 samples, the model also improved its

performance, as Figure 28 shows. The human evaluation is the same, before

and after adversarial training, which is not that surprising, as basically the

same words of the sentence with most attention are changed in both cases for

the attention based approach. Again, results for random testing are similar.

The detailed experimental results are listed in in Table 16, which contains

the evaluation for the small set under attention based word exchange and

Table 17, where k random words have been exchanged again. Both tables

can be found in Appendix A. As the scores reveal, for both approaches the

trained model’s performance gets closer to the human performance, for big k

it even outperforms the human being. In the following, a closer look is taken

at this behavior in search for possible reasons.

62

Figure 29: Reduced plot with k = 5 words before adversarial training, wrong

answer is chosen.

6.2.6 Further Discussions

Further analysis on the small test set for the best adversarial model makes the

improvements of the system visible, as it is illustrated in Figures 29 and 30,

which show the same sample questions before and after adversarial training:

After training, the attention on the words occurring in the answer sentence

is even stronger than before, so the sentence as a whole gets an attention of

17.39% instead of 9.38%, which is almost twice as much as before, although

the modified plot sentence only contains one single word of the answer. This

leads to the fact that the remaining single significant word (in this case the

last name of the searched accomplice Vitello) is now enough to answer the

question correctly, as the candidate with a probability of 43.98% gets the

highest score. At this point, the untrained model failed before, since with

11.09% it didn’t recognize this answer to be the correct one.

To put it in a nutshell, adversarial experiments proved that the model

indeed learns what it is supposed to learn and concentrates on the right

spots of the plot, as even taking out only the few most important words in

the most focused sentence decreases accuracy dramatically. This effect can

63

Figure 30: Reduced plot with k = 5 words after adversarial training, correct

answer is chosen.

be faced with additional adversarial training, which makes the model more

stable for modified testing circumstances, but still, this was not enough to

improve the overall final accuracy on the unchanged test set significantly.

Analyzes of the small set’s visualizations lead to the assumption that there

are three main reasons why the remaining amount of questions still could be

answered correctly after the adversarial manipulation, even for big k.

First, the model had concentrated on the wrong plot sentence before.

Since this sentence has gone completely, the chance that the model will con-

centrate on the correct one which contains hints to answer the question is

even bigger now. Of course also humans are still able to find the correct sen-

tence where all necessary information can be found. Second, the information

needed to answer the question is available not only in one but also in one

or several other sentences, and the presence of the remaining hints is still

enough for model and human to take the right decision. Last, the model still

could guess the correct answer by chance due to many occurrences of words

appearing in the correct answer elsewhere in the plot or due to other reasons,

which could not be made visible in the visualizations. For example, for k=40,

the model, by chance, answered one question correctly that a human was no

64

longer able to answer and, thus, achieved a better overall performance (see

Table 14). After adversarial training, this phenomenon even got stronger,

as Tables 16 and 17 prove: The trained model answered even more ques-

tions correctly than before in comparison to a human for large k, because

individual significant words of question and answer were still appearing, yet,

without the necessary context that would allow a human being to draw the

right conclusions.

This machine behavior which has been described so far provides some

hints to the limitations of suchlike textual comprehension systems: The fooled

model created in this work still answers some questions correctly for big k,

particularly examples with short answer sentences. This is due to the fact that

the relevant words, like proper names, strongly occur elsewhere in the plot

compared to those of the other candidates, but they appear in no way related

to the specific question there. This indicates that such a system performs

well on a level of word matching and comparing textual sequences, where

it sometimes even outperforms human answering competences, but, on the

other hand, it also shows that it has no real deep understanding of the input

document’s semantic contents like true meaning of questions and answers.

7 Conclusion and Future Work

This work has shown how to face the task of machine question answering by

building and improving a neural network based on convolutional operations

and attention mechanisms. For the MovieQA data set, a new state-of-the-art

has been achieved with the expanded two-staged attention system, which out-

performs all recent works. As the experiments and evaluations shave shown,

given an input consisting of a question, several answers, and a movie plot,

which are all represented by word vectors, the created system is able to focus

on the right textual information with the help of attention techniques. Al-

though performing well on matching sequences of words against each other

and drawing correct conclusions from it, the true understanding of contents

65

goes beyond the capabilities of such a system, which could be revealed by

the adversarial tests.

To make a more accurate statement about to what extent the system is ac-

tually able to capture the deeper meanings of statements, future experiments

with paraphrased texts are thinkable, which keep the original semantics and

messages of phrases and sentences, but use different words. In addition, the

adversarial tests are aimed to be extended to part of speech based word ma-

nipulations in order to observe which parts of the sentence are most important

for successful machine question answering. Besides, more fine-grained exper-

iments with adversarial training might lead to an even better stabilization

of the network’s weak points that results in an overall performance improve-

ment, also for unchanged test sets. Another way to improve the accuracies

might be achieved by training the models with additional data from other

corpora from the same domain, which already led to impressive results for

WikiQA as proposed by Min et al. (2017).

References

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D.

Manning. A large annotated corpus for learning natural language inference.

CoRR, abs/1508.05326, 2015. URL http://arxiv.org/abs/1508.05326.

Daria Dzendzik, Carl Vogel, and Qun Liu. Who framed roger rabbit? mul-

tiple choice questions answering about movie plot. 2017. URL http:

//doras.dcu.ie/22225/1/09.pdf.

Minwei Feng, Bing Xiang, Michael R. Glass, Lidan Wang, and Bowen Zhou.

Applying deep learning to answer selection: A study and an open task.

CoRR, abs/1508.01585, 2015. URL http://arxiv.org/abs/1508.01585.

David Fumo. A gentle introduction to neural networks, 2018.

URL https://towardsdatascience.com/a-gentle-introduction-to-

66

http://arxiv.org/abs/1508.05326
http://doras.dcu.ie/22225/1/09.pdf
http://doras.dcu.ie/22225/1/09.pdf
http://arxiv.org/abs/1508.01585
https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc
https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc

neural-networks-series-part-1-2b90b87795bc. Last visited March

16, 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of train-

ing deep feedforward neural networks. In Yee Whye Teh and Mike Tit-

terington, editors, Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics, volume 9 of Proceedings of Ma-

chine Learning Research, pages 249–256, Chia Laguna Resort, Sardinia,

Italy, 13–15 May 2010. PMLR. URL http://proceedings.mlr.press/

v9/glorot10a.html.

Robin Jia and Percy Liang. Adversarial examples for evaluating read-

ing comprehension systems. CoRR, abs/1707.07328, 2017. URL http:

//arxiv.org/abs/1707.07328.

Andrej Karpathy. Convolutional neural networks for visual recognition, 2018.

URL http://cs231n.github.io/. Last visited March 16, 2018.

Yoon Kim. Convolutional neural networks for sentence classification. CoRR,

abs/1408.5882, 2014. URL http://arxiv.org/abs/1408.5882.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic op-

timization. CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/

1412.6980.

Tzu-Chien Liu, Yu-Hsueh Wu, and Hung-yi Lee. Attention-based CNN

matching net. CoRR, abs/1709.05036, 2017. URL http://arxiv.org/

abs/1709.05036.

Sewon Min, Minjoon Seo, and Hannaneh Hajishirzi. Domain adapta-

tion in question answering. CoRR, abs/1702.02171, 2017. URL http:

//arxiv.org/abs/1702.02171.

Michael Nielsen. Neural networks and deep learning, 2018. URL http:

//neuralnetworksanddeeplearning.com/. Last visited March 16, 2018.

67

https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc
https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1707.07328
http://arxiv.org/abs/1707.07328
http://cs231n.github.io/
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1709.05036
http://arxiv.org/abs/1709.05036
http://arxiv.org/abs/1702.02171
http://arxiv.org/abs/1702.02171
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:

Global vectors for word representation. In Empirical Methods in Natural

Language Processing (EMNLP), pages 1532–1543, 2014. URL http://

www.aclweb.org/anthology/D14-1162.

Frank Simon. Maschinelles Lernen mit TensorFlow). web & mobile developer,

2018.

Ming Tan, Bing Xiang, and Bowen Zhou. Lstm-based deep learning models

for non-factoid answer selection. CoRR, abs/1511.04108, 2015. URL http:

//arxiv.org/abs/1511.04108.

Makarand Tapaswi. Story Understanding Through Semantic Analysis

and Automatic Alignment of Text and Video. 2016. URL https://

cvhci.anthropomatik.kit.edu/~mtapaswi/papers/PhD Thesis.pdf.

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio Torralba,

Raquel Urtasun, and Sanja Fidler. Movieqa: Understanding stories in

movies through question-answering. CoRR, abs/1512.02902, 2015. URL

http://arxiv.org/abs/1512.02902.

The TensorFlow Team. Tensorflow architecture, 2018. URL https://

www.tensorflow.org/extend/architecture. Last visited March 15, 2018.

Tristan Yu Tian. Visual attention model in deep learning, 2018. URL

https://towardsdatascience.com/visual-attention-model-in-

deep-learning-708813c2912c. Last visited March 16, 2018.

Shuohang Wang and Jing Jiang. A compare-aggregate model for matching

text sequences. CoRR, abs/1611.01747, 2016. URL http://arxiv.org/

abs/1611.01747.

Yi Yang, Scott Wen-tau Yih, and Chris Meek. Wikiqa: A challenge

dataset for open-domain question answering. September 2015. URL

https://www.microsoft.com/en-us/research/publication/wikiqa-

a-challenge-dataset-for-open-domain-question-answering/.

68

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1511.04108
http://arxiv.org/abs/1511.04108
https://cvhci.anthropomatik.kit.edu/~mtapaswi/papers/PhD_Thesis.pdf
https://cvhci.anthropomatik.kit.edu/~mtapaswi/papers/PhD_Thesis.pdf
http://arxiv.org/abs/1512.02902
https://www.tensorflow.org/extend/architecture
https://www.tensorflow.org/extend/architecture
https://towardsdatascience.com/visual-attention-model-in-deep-learning-708813c2912c
https://towardsdatascience.com/visual-attention-model-in-deep-learning-708813c2912c
http://arxiv.org/abs/1611.01747
http://arxiv.org/abs/1611.01747
https://www.microsoft.com/en-us/research/publication/wikiqa-a-challenge-dataset-for-open-domain-question-answering/
https://www.microsoft.com/en-us/research/publication/wikiqa-a-challenge-dataset-for-open-domain-question-answering/

Appendix A Adversarial Experimental Data

Random based Attention based

k Model Human Model Human

0 80.00 100.0 80.00 100.00

1 75.00 95.00 80.00 100.00

2 70.00 95.00 75.00 95.00

3 70.00 90.00 65.00 80.00

5 60.00 70.00 55.00 75.00

10 35.00 65.00 35.00 40.00

20 30.00 35.00 25.00 25.00

40 25.00 20.00 25.00 20.00

Table 14: Comparison of accuracy results for small evaluation set (20 samples)

before adversarial training.

k Initial Random Trained

0 79.99 73.99

1 75.43 71.85

2 71.30 70.37

3 67.97 69.46

5 60.01 64.6

10 46.11 55.61

20 35.85 39.73

40 32.99 32.58

mean 58.70 59.77

Table 15: Final evaluation for random-based testing.

69

k Initial Model Trained Model Human

0 80.00 95.00 100.00

1 80.00 95.00 100.00

2 75.00 80.00 95.00

3 65.00 70.00 80.00

5 55.00 60.00 75.00

10 35.00 50.00 40.00

20 25.00 35.00 25.00

40 25.00 30.00 20.00

Table 16: Final attention-based testing on small evaluation set (20 samples)

of trained adversarial model.

k Initial Model Trained Model Human

0 80.00 80.00 100.00

1 75.00 75.00 100.00

2 70.00 65.00 90.00

3 70.00 70.00 80.00

5 60.00 70.00 80.00

10 35.00 55.00 60.00

20 30.00 45.00 30.00

40 25.00 35.00 20.00

Table 17: Final random-based testing on small evaluation set (20 samples)

of trained adversarial model.

70

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen als die

angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken

übernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche

Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens. Ich habe diese

Arbeit bisher weder teilweise noch vollständig veröffentlicht. Das elektronische Exemplar

stimmt mit allen eingereichten Exemplaren überein.

Datum und Unterschrift:

Declaration

I hereby declare that the work presented in this thesis is entirely my own. I did not use any

other sources and references that the listed ones. I have marked all direct or indirect

statements from other sources contained therein as quotations. Neither this work nor

significant parts of it were part of another examination procedure. I have not published this

work in whole or in part before. The electronic copy is consistent with all submitted

copies.

Date and Signature:

	Studiengang:
	Unterschrift:

	Declaration
	Signature:

	Introduction
	Related Work
	Background
	Textual Question Answering
	Artificial Neural Networks
	Convolutional Neural Networks
	Attention Mechanisms

	Resources
	Tools and Frameworks
	TensorFlow
	GloVe

	Datasets
	MovieQA
	WikiQA
	InsuranceQA

	Network Design and Implementation
	Considerations
	Network Design
	Preprocessing Layer
	Attention Layer
	Comparison Layer
	Aggregation Layer
	Prediction Layer
	Task-Specific Adaptations

	Implementation Details
	Environment Setup
	Data Preprocessing

	Experiments
	Experimental Setup
	Hyperparameter Setting and Tuning
	Updated Embeddings
	Sentence Attention
	Adversarial Examples
	Ensemble Model

	Results and Discussion
	Overview
	Hyperparameter Tuning Results
	Updated Embeddings Results
	Sentence Attention Results
	Adversarial Results
	Further Discussions

	Conclusion and Future Work
	References
	Adversarial Experimental Data
	Studiengang:
	Unterschrift:

	Declaration
	Signature:

