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Plasmons in metals can oscillate on a sub-wavelength length scale and this large-k response constitutes an
inherent prerequisite for fascinating effects such as perfect imaging and intriguing wave phenomena
associated with the epsilon-near-zero (ENZ) regime. While there is no upper cut-off within the
local-response approximation (LRA) of the plasma polarization, nonlocal dynamics suppress response
beyond v/vF, where vF is the Fermi velocity of the electron gas. Nonlocal response has previously been found
to pose limitations to field-enhancement phenomena. Accounting for nonlocal hydrodynamic response, we
show that perfect imaging is surprisingly only marginally affected by nonlocal properties of a metal slab,
even for a deep subwavelength case and an extremely thin film. Similarly, for the ENZ response we find no
indications of nonlocal response jeopardizing the basic behaviors anticipated from the LRA. Finally, our
study of waveguiding of gap plasmons even shows a positive nonlocal influence on the propagation length.

P
lasmonics has provided us with a number of fascinating optical phenomena and taught us ways to squeeze
light down to the nanometer-scale. Surface plasmons are guided electromagnetic (EM) waves confined at
the interface between a metal and a dielectric, which originate from collective interaction of light and free

conducting electrons. Current research, with emphasis on applied aspects, focuses on the design and experi-
mental characterization of sensors1,2, communication devices, such as compact optical switches3, waveguides4 and
detectors all on the nanoscale. One of many challenges within this framework is to provide integrated building
blocks in order to facilitate high-bandwidth and long-range plasmon propagation for many intriguing engin-
eering application. Beyond these technical complexities, there are other more fundamental ingredients in plas-
monic structures playing an important role, in need to be regarded, when seeking for maximal field
enhancements, super focusing and improving the figures of merits within these components. Apart from resistive
losses of metals, the dominant role played by quantum effects and, in particular, intrinsic nonlocality in the
dielectric response are known to be limiting factors when aiming at highest plasmonic robustness for the full
control of light5–7.

In this work, we investigate planar plasmonic systems when taking into account the effects of nonlocality. Our
aim is to look at basic building blocks and their striking functionalities and we wish to demonstrate how their
properties can be altered implementing the nonlocal nature within the dielectric response. Nonlocal effects arise
from the quantum nature of the free electrons and their interactions in metals8–12. Including the spill-out of
valence electrons, narrow gaps or molecules in the proximity of a metallic surface allow for complex interactions
with the environment. Recent experiments explore this frontier13–17 that has come into reach for modern nano-
fabrication methods. The hydrodynamic approach7,18–26 and other semi-classical theories6,27–30 have proven
important for analyzing the observed effects. In the hydrodynamic model, b~

ffiffiffiffiffiffiffi
3=5

p
vF quantifies the strength

of the nonlocal response associated with hydrodynamic pressure due to electron-electron interactions, where vF is
the material dependent Fermi velocity. For larger systems, edge effects due to the electron spill-out play a minor
role compared to nonlocal bulk effects that are subject to the uniform electron distribution inside the metal
structure.

Metal slabs provide a rather simple, yet rich in view of possible functionalities, structure to test various
plasmonic properties in the scope of nonlocality. In the context of the Veselago lens31, Pendry showed that a
thin silver layer treated within the extreme near-field limit and radiated with p-polarized light at a frequency when
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E~{1 could function as a ‘‘poor-man’s superlens’’ with seemingly
unlimited spatial resolution32. A sub-diffraction limited source can
thus be perfectly imaged at the far-side of the slab by its propagative
wave components, but most importantly, also by the amplified evan-
escent component hosting all important near-field information32,33.
Nonlocal response is generally associated with a long-wavevector
cutoff7 which could have detrimental consequences for perfect
imaging. We show with the hydrodynamic model that perfect
imaging is only marginally affected by nonlocal properties of a metal
slab, even for a deep subwavelength case and an extremely thin film.
This supports the conclusion of previous work where the nonlocal
dynamics was accounted for by hydrodynamic models34 and more
elaborate density-functional theory within the time-dependent local-
density approximation35 confirming the robustness of this superlens
concept. In a related context, when radiating a silver slab at its plasma
frequency, the electric response is suppressed and the permittivity
zero. It is known that a material slab with epsilon-near-zero (ENZ)
will give rise to tunneling and super-coupling related phenomena36–39.
Operating at ENZ will emit the radiated waves of a point source
through a slab in a directive pattern due to zero phase change within
such materials. Our aim is to study this phenomena at the nanoscale
by taking into consideration nonlocal effects. Finally, these effects
will be also considered in metal-insulator-metal (MIM) waveguides
that are known for supporting long-range propagating surface plas-
mons40–42. Interestingly, we do find propagation lengths in these
MIM waveguides to be increased due to the nonlocal properties of
the metal regions.

We provide a tutorial and entirely analytical insight into planar
plasmonic structures with illustrative metamaterial-inspired exam-
ples. In this framework we show that the hydrodynamic model repre-
senting the nonlocal nature of the optical response can be cast into a
simple wave equation. Solving the respective boundary value pro-
blems, we arrive at the analytical nonlocal analogue of Fresnel’s
coeffcients for abrupt interfaces, i. e. a uniform electron distribution
inside the metal, which neglects the effect of the electron spill-out.
This results in additional longitudinal modes not present in the local
approximation. Differences in the performance of plasmonic devices
compared to the local approximation are discussed on the basis of
this analytic study.

Results
Nonlocal Fresnel coefficients. Fresnel’s optical coefficients describe
the behaviour of EM waves crossing a planar interface between media
of differing refractive indices. Our aim is the derivation of these
coefficients in single slab environments consisting of metal films
with Drude dielectric function E\ surrounded by dielectric mate-
rial with permittivty E0 and vice-versa including nonlocal proper-
ties of the free electron gas in the metal regions. The electric field in
nonlocal media consists of transversal and longitudinal components
in contrast to the local approximation, where only transversal waves
are reflected and transmitted at a metal to dielectric interface. This

leads to the wave numbers k2
z0
~

v2

c2
E0{k2

E, k2
z1
~

v2

c2
E0\{k2

E and q

associated to light propagation in the dielectric and to transversal and
longitudinal waves in the metal, respectively. Note that we consider
p-polarized light that supports surface plasmons. The classical
Fresnel equations do not change in case of s-polarization, assumi-
ng non-magnetic media with permeability m 5 1.

We solve for the coefficients of reflection r and transmission t of a
single metal-dielectric interface by evaluating the retarded Maxwell’s
equations together with the linearized hydrodynamic equation using
appropriate boundary conditions21,43. Details on this procedure are
given in the methods section. Note, that the incident wave is always
considered to be transversal. However, on entering a nonlocal metal
both transversal and longitudinal polarizations are excited.
Considering multiple reflections inside a metal slab, the case of a

transversal wave incident on a metal-to-dielectric interface has to be
regarded. This results in three sets of optical coefficients discussed
next. At a dielectric-to-metal interface the following transversal (index
p) and longitudinal (index l) modes are found for p-polarization

rp~
kz0E\{kz1E0 1zgð Þ
kz0E\zkz1E0 1zgð Þ , ð1aÞ

tp~
2kz0

ffiffiffiffiffiffiffiffiffi
E0E0\

p
kz0E\zkz1E0 1zgð Þ , ð1bÞ

tl~Fltp~
kE k2

Ezq2
� �1=2

qk
ffiffiffiffiffi
E0\

p E\
Eb

{1

� �
tp: ð1cÞ

Likewise, for a transversal wave incident on a metal-to-dielectric inter-
face we have

r0p~
kz1E0 1{gð Þ{kz0E\
kz0E\zkz1E0 1zgð Þ , ð2aÞ

t0p~
2kz1

ffiffiffiffi
E0
p

E\
� ffiffiffiffiffi

E0\
p

kz0E\zkz1E0 1zgð Þ , r0l~Fl 1zr0p

� �
: ð2bÞ

Finally, for the case of a longitudinal wave incident on a metal-to-
dielectric interface we write

r00p ~

2kkEE0

ffiffiffiffiffi
E0\

p �
q2zk2

E

� �1=2

kz0E\zkz1E0 1zgð Þ , ð3aÞ

t00p ~

2kkEE\
ffiffiffiffi
E0
p

�
q2zk2

E

� �1=2

kz0E\zkz1E0 1zgð Þ , r00l ~Flr
00
p z1: ð3bÞ

Without loss of generality, these expressions also include intrinsic
material losses via the complex permittivity of the materials. The
overall form of the transversal modes is similar to the local Fresnel
coefficients, but the resonance structure now depends on the parallel
momentum via the term

g~
k2

E

qkz1

1{
E\
Eb

� �
: ð4Þ

In the local limit (kE?0), the usual optical coefficients are recovered
and the additional longitudinal contributions, not present in the local
case, vanish. Note that the strength of the nonlocal response b is
introduced in these equations via the wave number of the longit-
udinal wave q*1

�
b. For a metal slab or an MIM structure, we need to

consider multiple reflections in the inner layer. In contrast to the
local approximation, additional contributions from scattered longit-
udinal waves are found and we therefore need to sum all components
to arrive at the overall expressions for the transmittance and reflec-
tance jTj2 5 jTtransj2 1 jTlongj2 and jRj2 5 jRtransj2 1 jRlongj2.

Image of a subwavelength source. Pendry predicted that negative
refraction makes a perfect lens32. While initially this concept faced
some criticism it was quickly realized and experimentally verified
that perfect imaging is possible although limited due to intrinsic
material losses32,44. It is our aim to test the feasibility of this perfect
lens in the scope of nonlocality. The usual way a very small object
emits light is by propagating waves which can be seen under a
conventional microscope. We are, however, more interested in the
finer details of the near-field that are difficult to detect. Using a
perfect lens, we can amplify the evanescent near-field waves and
principally being able to refocus the small object onto the image
plane in the far-side of the flat lens. The poor-man’s superlens, as

www.nature.com/scientificreports
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provided by a good conductor below the plasma frequency

E v?vp

. ffiffiffi
2
p� �

~{1
� �

, decouples magnetic contributions from

electrical ones in thin films. This allows for using the derived
Fresnel coefficients for the case of p-polarized light. These
nonlocal expressions reveal a complex resonance structure
originating not only from the resonance frequency mismatch
induced by the additional term g in the single surface optical
coefficients, see Eq. (4), but also from additional contributions
given by longitudinal waves not present in the local approximation

T~
t00p eiqD tlfztpx

	 

zt0peikz1 D tpdztla

	 

fd{ax

, ð5aÞ

with the coefficients

f~1{r0p
2e2ikz1 D{r00p r0l e

i qzkz1ð ÞD, ð5bÞ

a~r00p r00l e2iqDzr00p r0pei qzkz1ð ÞD, ð5cÞ

d~1{r00l
2e2iqD{r00p r0l e

i qzkz1ð ÞD, ð5dÞ

x~r0pr0l e
2ikz1 Dzr00l r0l e

i qzkz1ð ÞD: ð5eÞ
Note that in the local limit a, x R 0 and d R 1, whereby f becomes

the known denominator for the optical coefficients of a local slab of

thickness D. Fig. 1(b) shows the transmission Eq. (5a) versus slab
thickness and parallel momentum (normalized by k0 5 v/c) at

imaging conditions, i. e. v~vp

. ffiffiffi
2
p

, including intrinsic resistive

losses. We predict a reduction in the momentum bandwidth for
the presented nonlocal case, which is a direct consequence of addi-
tional loss channels introduced by the augmented sensitivity with
parallel momentum via Eq. (4). The coupling to the longitudinal
modes, not present in the local approximation, results in sharpened
resonances shifted towards lower parallel momenta as seen in
Fig. 1(d). For increasing slab thicknesses the nonlocal results con-
verge to the local limit. In all cases however, both for the local and
nonlocal examples, as expected we find transmissions exceeding
unity due to the amplification of evanescent waves. Spectrally, as
illustrated in Fig. 1(c), we reconfirm that optical modes become
dependent on kE in nonlocal theories both for their resonance posi-
tion and width. The resultant blueshift leads to a reduction in the
transmission for increasing spatial dispersion. In other words, a local
metal slab shows resonances independent with parallel momentum
(for high enough kE), while in the nonlocal case a frequency mis-
match is observed that depends crucially on the parallel momentum.
From these results we expect consequences for perfect imaging. The
performance of nonlocal lenses under perfect imaging conditions has
been investigated previously5,34,35. As rendered in Fig. 2 we use a deep
subwavelength source of width l/30 and investigate the imaging
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Figure 1 | Optical properties of a silver slab at v~vp

. ffiffiffi
2
p

in the local approximation and with nonlocal response. (a) Illustration of the setup under

consideration using a silver slab with Drude response using vp 5 9.1 eV and c 5 0.02 eV. (b) Transmission | T | as a function of parallel momentum kE

and slab thickness D including realistic damping c. (c) At specific parallel momenta kE we plot | T | as a function of photon energy v for D 5 10 nm. The

values chosen are normalized by kp~vp
�

c. (d) Here the frequency is again locked at v~vp
� ffiffiffi

2
p

but for various slab thicknesses, as indicated, we plot

T kE
� � .
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properties of extremely thin metal films, D 5 5 nm and 20 nm.
Although the foregoing study reveals a reduction in kE bandwidth,
we do not find severe deterioration in the imaging quality, since the
emitted near-field of the quasi point-source does not exceed the
available kE spectrum. Thus, the difference in the bandwidth does
play a minor role. This is further confirmed by the values of the
FWHM calculated for each case and indicated in Fig. 2. Therefore,
we conclude, that nonlocality is not a considerable limiting factor for
lensing applications, given only minor differences in the quality of
the image as illustrated by the intensity profiles in Fig. 2.

Nonlocal epsilon-near-zero metal slabs. The effective wavelength of
an electric field in a material at a frequency with zero permittivity
(E<0, ENZ) can become very large and provides very small phase
variations over physically long dinstances. This enables the efficient

transport of electromagnetic energy through subwave-
length channels and yields enhanced radiation directivity in media
operating at the ENZ condition, see inset in Fig. 3(b). These exciting
optical properties can be artificially created by metamaterials to work
at any desirable frequency. However, metal films exhibit the same
property at their plasma frequency vp allowing to study ENZ
phenomena which rely on the intrinsic behaviour of a metallic
medium.

We apply the above equations (5) for nonlocal thin metal films at a
frequency v 5 vp, which leads to E\~0 in the local case. For a local
metal thin film, full transmission at this frequency is possible only for
radiation at normal incidence38 kE~0, see Fig. 3(a). While this also is
the case for the nonlocal situation, an increased transmission with
parallel momentum is found due to additional longitudinal modes.
The frequency mismatch of the nonlocal case is increasing with the
parallel momentum and leads to an actual mismatch of the ENZ
condition. An increase of several orders of magnitude in the trans-
mission is observed, giving rise to almost fully transparent thin non-
local metal films for higher parallel momenta. Since the transmission
shows sensitivity to spatial dispersion we expect that directive radi-
ation will be influenced by the nonlocal contributions. Light emitted
by a point source, placed at the nearest vicinity (with distance D/2
from the first interface) of an ENZ material slab, propagates with
uniform phase distribution inside the material. Providing sufficient
material thickness, the wave remains directive upon emerging the
broadside of the slab38. This is shown in Fig. 3(b) with the intensity
profile captured at D/2 in the far-side for the case of D 5 20 nm. In
the extreme limit comprising a slab of D 5 5 nm thickness, as already
depicted in Fig. 3(a), the uniformity of the phase is broken leading to
an increase of the transmitted energy. However, the slab is already
too thin to provide full phase-alignment when emerging the region of
ENZ, hence for realistically designed systems working as super-cou-
plers and directive antennas, minor influence is to be expected within
the scope of nonlocality.

Waveguiding properties. Apart from the optical properties of bare
metal slabs, we also study the implications of nonlocal optical
response in metal-insulator-metal (MIM) waveguides. Surface
plasmon based MIM waveguides are used to guide light in volumes
far beneath the diffraction limit, which is enabled by a strong
confinement of the surface plasmons to the metallic surfaces. This

Figure 2 | Perfect imaging of a deep subwavelength source by nonlocal
metal slabs. Normalized intensity profile at the image-plane using two

different thicknesses, D 5 5 nm and 20 nm. A hat-function of linewidth l/

30, constitutes a subwavelength light emitting source and is placed at a

distance D/2 in front of the lens with thickness D. The image plane locates

at D/2 behind the slab. The FWHM values are given for each case to

demonstrate the small change of imaging quality.

Figure 3 | Local and nonlocal metal slabs at ENZ condition v ; vp. (a) We plot the transmission | T | as a function of kE for various slab

thicknesses D for a silver slab in Drude response with vp 5 9.1 eV and c 5 0.02 eV. (b) At D/2 in the far-side of the ENZ slab, intensity profiles for slabs of

D 5 5 nm and 20 nm are plotted for a light emitting source placed at distance D/2 in front of the slab.

www.nature.com/scientificreports
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is in contrast to single metal-insulator interfaces where high propa-
gation losses are observed.

In the present study we examine the quality and properties of
waveguiding in MIM structures in the presence of additional longit-
udinal modes originating from nonlocal properties of the metal
regions. In the same theoretical framework as presented earlier for
the bare metal slab, we derive reflection coefficients comprising
transversal and longitudinal optical propagation for the MIM con-
figuration, see Fig. 4(a), assuming an incoming transversal wave,

Rtrans~r0pz
rpt0ptpe2ikz0 D

1{r2
pe2ikz0 D , ð6Þ

Rlong~r0lz
rpt0ptle2ikz0 D

1{r2
pe2ikz0 D : ð7Þ

By inspecting the poles of the denominator in the reflection coef-
ficient, we are able to calculate the band structure such as the line-
width of the resonances. In other words, for a given frequency we can
evaluate the real and imaginary part of the parallel wave vector in
order to express the figure of merit (FOM) and the propagation
length of the surface plasmons (LSPP)

FOM:
Re kE
� �

Im kE
� � , LSPP:

1

2 Im kE
� � : ð8Þ

Results are depicted in Fig. 4 that show a remarkable benefit from the
nonlocal properties of the metal regions in comparison to the local
case42. We begin by calculating the FOM as a function of frequency
and dielectric gap size D as presented in Fig. 4(b). The local approxi-
mation shows an abrupt transition from high to low FOM right at the
SPP resonance42. In the nonlocal case this FOM edge is blueshifted

for gap separations D # 5 nm and leading to a remarkably high FOM
for small gap sizes beyond the plasmon resonance. Next, we consider
two representative dielectric gap sizes from Fig. 4(b), D 5 1 nm and
D 5 20 nm. Again, we use the expressions for the propagation length
LSPP and the FOM given by Eq. (8) and plot their dependence with
frequency for the two specific configurations, see Fig. 4(c) and 4(d).
While the case for D 5 20 nm shows minimal differences, Fig. 4(c)
for D 5 1 nm again highlights the improved quality such as
enhanced propagation lengths when including a nonlocal dielectric
response. In order to trace back the origin for this improvement we
plot the complex band diagrams as illustrated in Fig. 4(e) and 4(f). In
the local approximation the plasmon propagation length, due to an
almost constant imaginary part of kE, remains unaltered for the two
specific values of D. In the nonlocal picture however, Im kE

� �
is

severely reduced which means that MIM structures sustain reso-
nances of high lifetime and consequently give rise to impressively
large FOMs. As expected, this prediction is most notable for the case
with D 5 1 nm. For the larger dielectric gap, only slight differences
are found in the bandstructure between the local and nonlocal case.
With decreasing size, we not only observe a blueshift of the res-
onance, see Fig. 4(e), but the aforementioned enhanced FOM is also
explained by a reduction in the linewidth of the mode. Interestingly,
the predicted plasmon propagation length within a 1 nm dielectric
gap is itself only a fraction of a nanometer, but above the plasmon
resonance (v/vp . 0.7) it is orders of magnitude larger than in the
local approximation.

Discussion
Within an analytical framework we have inspected plasmonic build-
ing blocks and their use for superlenses and ENZ applications such as
waveguiding. We have derived exact expressions for the nonlocal

(a) (c)

(b) (d)

(e)

(f)

Figure 4 | Waveguiding properties of MIM structures including nonlocal optical response. (a) Illustration of the silver MIM structure under

consideration. (b) The figure of merit (FOM) for local and nonlocal MIM structures as a function of v (normalized to the plasma frequency vp) and the

dielectric gap size D. (c), (d) FOM (black curves) and SPP propagation length LSPP (blue) in the local approximation (solid) and including nonlocality

(dashed). (e),(f) Photonic band structure of the MIM waveguides comparing the local and nonlocal theory. Simulations are conducted with gap size D 5

1 nm in (c) and (e) and D 5 20 nm in (d) and (f).
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Fresnel coefficients through a semiclassical hydrodynamic approach.
Through them, we demonstrated that nonlocality does not necessar-
ily spoil the optical phenomena found for surface plasmon related
phenomena comprising strong dependence with spatial dispersion.

We can conclude that negative refraction, also in the quasi-static
approximation, taking into account nonlocal contributions does not
put the prospects of the pefect lens at stake. The effects of nonlocality
are only marginally influencing this concept. The same applies to ENZ
applications, but the propagation length and figure of merits in MIM
structures are remarkably increased, altogether paving a way for novel
plasmonic applications even in the scope of nonlocal interactions.

Methods
Hydrodynamic framework. In the hydrodynamic model we treat the dynamics of the
free electron gas in terms of a change in the induced charge and current density, and
the core-polarization within the metal with dielectric background Eb separately25. We

introduce the transversal dielectric function E\~Eb{v2
p

.
v vzicð Þ of a metal with

the free electron contribution defined via its characteristic plasma frequency vp and
the inverse lifetime of plasmonic excitations c. Throughout this article, we study silver
slabs in Drude response and waveguides with vp 5 9.1 eV, c 5 0.02 eV and Eb~1.

In the linearized hydrodynamic equation

v vzicð Þ~j ind~iv
e2

me
n0~E{b2+ +~j ind

	 

, ð9Þ

where the parameter b~
me

ffiffiffiffiffiffiffi
3=5

p
kF introduces nonlocal effects. This is defining the

pressure of a fully degenerated electron gas subjected to Coulomb interaction45,46

which accounts partly for the quantum nature of the conduction band electrons. The
coupling between the light wave and the electron current density is given by
ivEb+~E~4p+~j ind. This leads to the wave equation

+|+|~E{k2Eb~E~
4pik2

v
~j ind: ð10Þ

Combining eqs. (9) and (10), we can rewrite the wave equation into43

+|+|~E~k{1 k2E\z
b2k2Eb

v vzicð Þ+
2

� �
~E, ð11Þ

where the vector identity +|+|~F~{+2~Fz+ +:~F
	 


was used. Noting that the

small parameter k is approximately k~1{
b2k2Eb

v vzicð Þ<1zO Eb
b

c

� �2 1
1{ic=v

 !
,

we neglect the inverse term on the right hand side and arrive at a generic wave
equation that is independent of the current density and is very suitable for imple-
mentation in any numerical framework enabling the study of arbitrary structures43. In
this work, however, we solve these equations analytically for planar metal-dielectric
interfaces.

The inhomogeneous solution of the electric field determines the longitudinal
modes. Those are unaltered by the introduced approximation. Note, that the trans-
versal part of the electric field inside the nonlocal metal is governed by eikz1 z and
the longitudinal solutions propagate with eiqz with k2

z1
~k2E0\{kE and q~

1
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E\
Eb

v vzicð Þ{k2
Eb2

r
. With the generic wave equation derived above E0\~

E\ 1z
b2k2Eb

v vzicð Þ

� �{1

. The additional factor appearing here is again small and leads

for all investigated cases to the same results as the full wave equation result.

Boundary conditions and longitudinal solution. To derive the nonlocal Fresnel
coefficients at an interface with surface normal ~̂n, we need to evaluate the solutions of
the above equations with suitable boundary conditions. The hydrodynamic equation
requires an additional boundary condition, which demands the continuity of the
normal component of the current density. This leads to a set of three equations for a
metal-dielectric interface given by ~̂n:~j ind~0,~̂n|d~EE~0 and the continuity of
Eb~̂n:~E\ . Since surface plasmons are supported by incident p-polarization (TM) waves,
we restrict ourselves to this case.

After some algebra we rewrite the wave equation to

1z
b2k2Eb

v vzicð Þ

� �
+2~Ezk2E\~E~+ +:~j ind

	 
 4p
ivEb

ð12Þ

and find the solution for the inhomogeneous (longitudinal) part to read

~Ep~{
4pb2

E\v vzicð Þ
+ +~j ind
	 


iv
: ð13Þ

Finally, one can solve a set of equations given by the above boundary conditions.
Furthermore, depending on the wave nature of the incoming wave (transversal or

longitudinal) such as the composition of the interface (metal to dielectric or vice-
versa) we arrive at the optical coefficients presented with eqs. (1a)–(3b).
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