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ANALYSIS OF COMPOSITION AND MICROSTRUCTURAL 
UNIFORMITY OF HYBRID GLASS/CARBON FIBRE 

COMPOSITES 

Justine Beauson, Christen Malte Markussen and Bo Madsen 

Composites and Materials Mechanics, Department of Wind Energy, 
Risø Campus, Technical University of Denmark,  

DK-4000 Roskilde, Denmark 

ABSTRACT 

In hybrid fibre composites, the intermixing of the two types of fibres imposes challenges to 
obtain materials with a well-defined and uniform microstructure. In the present paper, the 
composition and the microstructural uniformity of hybrid glass/carbon fibre composites mixed 
at the fibre bundle level are investigated. The different levels of compositions in the composites 
are defined and experimentally determined. The composite volume fractions are determined 
using an image analysis based procedure. The global fibre volume fractions are determined 
using a gravimetrical based method. The local fibre volume fractions are determined using 
volumetric calculations. A model is presented to predict the interrelation of volume fractions in 
hybrid fibre composites. The microstructural uniformity of the composites is analysed by the 
determined variation in composite volume fractions. Two analytical methods, a standard 
deviation based method and a fast Fourier transform method, are used to quantify the difference 
in microstructural uniformity between composites, and to detect and quantify any repeating 
pattern in the composite microstructure.  

1. INTRODUCTION 

Hybrid fibre composites consisting of two types of fibres (e.g. glass and carbon fibres) are 
attracting scientific and industrial interest due to the potential synergistic effect of having 
reinforcement fibres with different properties. The so-called “hybrid effect” is explored on a 
mechanical basis (e.g. to have longer fatigue life, and larger compression strength), and, equally 
important, it is explored for economic reasons to improve the materials cost-performance. 
Earlier work has addressed hybrid fibre composites by analysing the difference in failure strain 
and dimensions between the two reinforcement fibres with respect to improved composite 
strength (Aveston and Kelly 1980). Later on, in the 1990’ies, within an EU Framework 
Programme (JOULE) with participation from Risø National Laboratory, Denmark, studies were 
performed on the manufacturing and testing of hybrid composites for wind turbine rotor blades. 
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Recently, the hybrid fibre concept has been addressed in a number scientific studies (e.g. 
Hermann et al. 2006, Hillermeier 2009, Zhang et al. 2012), forming also a central element in a 
current Danish technology project (Blade King).  

By their nature, composites are heterogeneous materials due to the dispersion of discrete fibres 
in a continuous matrix. For conventional composites consisting of a single type of fibres, 
fibre/matrix preforms and composite manufacturing techniques have been developed to produce 
materials with a well-defined and uniform microstructure. Hence, this allows for the use of 
representative geometrical models of the microstructure (so-called representative volume 
elements) for the analysis and modelling of the (mechanical) properties of the composites. This 
supports the use of composites in highly demanding structural applications, such as rotor blades 
for wind turbines. However, in the case of hybrid fibre composites consisting of two fibre types, 
the intermixing of the two fibres will impose challenges to obtain a similar high degree of 
microstructural uniformity to allow reliable analysis and modelling of properties. Different fibre 
intermixing levels can be defined: fibre-fibre, bundle-bundle and ply-ply, and each level bring 
forward specific microstructural characteristics.  

In the present paper, based on experimental data from a number of manufactured hybrid 
glass/carbon fibre composites, the microstructure of the composites is studied by two aspects. 
The first one is related to the composition of the composites, i.e. volume fractions of the two 
composite phases, the two fibre types and the matrix, and with focus on establishing a model for 
their interrelations. The second one is related to the microstructural uniformity of the 
composites, and with focus on the variation in volume fractions of the two composite phases.  

2. MATERIALS AND METHODS 

Plates of hybrid and non-hybrid fibre composites were made with the same type of glass fibre 
roving (Hybon2026 - PPG FibreGlass, 2447 tex) and the same type of carbon fibre roving 
(PANEX35 - Zoltek, 3645 tex).  One type of preform was used, uniaxial fibre assemblies made 
by filament-winding, and with variable number of glass and carbon rovings to have composites 
with different composition and microstructure. The composite plates were made with vacuum 
infusion using epoxy (DowAirstone)  as matrix, and the plates had dimensions of 450 mm x 475 
mm x thickness of the plate (see Table 1). Fig. 1 shows the cross section of the eight 
manufactured composite plates, and Table 1 summarizes their specifications. In the table,  is 
the hybrid fibre weight mixing ratio: 

                   (1) 

where mf is the mass of fibres. Likewise, a hybrid fibre volume mixing ratio  can be defined, 
and the relation between  and  can be established: 

                 (2) 

               (3) 

where vf is the volume of fibres, and  is the density of fibres. The calculated values of  
shown in Table 1 are based on a glass fibre density of 2.58 g/cm3, and a carbon fibre density of 
1.83 g/cm3, which were measured by pycnometry.  
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representative local areas. Fig. 5 shows examples of three selected areas in a glass fibre 
composite region. The local glass fibre volume fractions are found to vary from about 0.40 to 
0.60.  

 
a)   = 0.42 

 
b)  = 0.54 

 
c)  = 0.63 

Fig. 5. Examples of determined local glass fibre volume fractions in three areas of a glass 
fibre composite region. 

2.2. Determination of microstructural uniformity. As indicated by the images in Fig. 1, the 
composition of the hybrid fibre composites will be varying depending on the location and size of 
the selected cross sectional area. As an example, the composite CXG-06 shows large areas of 
glass composite rich regions, which means that at certain cross sectional areas of the composite, 
the glass fibre composite volume fraction is very high (approaching 1.0).  

To describe the variation in composition of the composites, is determined in rectangular cross 
sectional areas, i.e. windows, with a width of 0.1 mm, and with a height equal to the height of 
the image, i.e. from one edge to the other edge of the sample. is determined in windows 
successively moved from one end (left side) to the other end (right side) of the image. This 
result in a curve showing  as a function of the position across the sample (see example in Fig. 
10).  

In order to quantify the microstructural uniformity of the composites, the determined variation 
in is then analysed using two different methods: a standard deviation based method, and a 
fast Fourier transform method. The two methods will be explained in details later on.  

3.  COMPOSITION OF HYBRID COMPOSITES 

3.1. Composite volume fractions and global fibre volume fractions. The obtained binary images 
of the hybrid glass/carbon fibre composites are shown in Fig. 6, and the determined values of  

 and   are summarized in Table 2.  

Table 2. Determined composite volume fractions and global fibre volume fractions 
in the manufactured hybrid and non-hybrid glass/carbon fibre composites. 

Composite 
plate code     

CXG-01 0.00 0.00 1.00 0.00 0.59 
CXG-06 0.21 0.30 0.70 0.15 0.41 
CXG-03 0.28 0.36 0.64 0.20 0.38 
CXG-02 0.28 0.35 0.65 0.20 0.37 
CXG-07 0.28 0.39 0.61 0.21 0.38 
CXG-10 0.28 0.39 0.61 0.21 0.38 
CXG-05 0.44 0.54 0.46 0.28 0.31 
CXG-04 1.00 1.00 0.00 0.53 0.00 
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Fig. 6. Binary images of the hybrid glass/carbon fibre composites. 

The variation in the results due to the sensitivity of the applied image analysis procedure was 
tested. The main source of error in the procedure to determine Vc comes from the objectivity of 
the operator when the Quick selection tool is used to manually detect the border between the two 
composite regions. This effect was tested by repeating three times the procedure on the same 
image. The results are shown in Fig. 7, and it can be observed that the difference between the 
determined values of Vc is negligible.  

 = 0.341  

 

= 0.342  

Original grayscale image 
= 0.342 

Fig. 7. Results obtained for the sensitivity testing of the image analysis procedure. The 
procedure was repeated three times on the same image to determine . 

  

 = 0.21      CXG 06

 = 0.28      CXG 03 - CXG 02 - CXG 07 - CXG 10

 = 0.44      CXG 05

10 mm
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3.2. Local fibre volume fractions. From Eq. (7), the local carbon and glass fibre volume 
fractions,  and  are calculated based on the experimental data in Table 2. The 
results are summarized in Table 3. 

Table 3. Calculated local glass and carbon fibre volume fraction 
in the manufactured hybrid glass/carbon fibre composites. 

Composite 
plate code  

CXG-06 0.50 0.59 
CXG-03 0.56 0.59 
CXG-02 0.57 0.57 
CXG-07 0.54 0.62 
CXG-10 0.54 0.62 
CXG-05 0.56 0.62 
Average 0.54 0.60 

It can be realized that the fibre volume fractions determined with the gravimetric method for the 
non-hybrid composites, CXG-04, containing only carbon fibres, and CXG-01, containing only 
glass fibres (see Table 2), can be compared to the calculated local carbon and glass fibre volume 
fractions in the hybrid composites. 

The fibre volume fraction of CXG-04 is 0.53, and this compares well to the mean value on 0.54 
for the calculated local carbon fibre volume fractions. Similarly, the fibre volume fraction of 
CXG-01 is 0.59 and this compares well to the mean value on 0.60 for the calculated local glass 
fibre volume fractions.  

Thus, the local fibre volume fractions in the hybrid composites can be closely approximated by 
the fibre volume fractions determined in the related non-hybrid composites. In other words, it is 
demonstrated that the values of the local fibre volume fractions in hybrid composites can be 
determined a priori by manufacturing of the two non-hybrid fibre composites, and by 
determining the fibre volume fractions in these composites.  

4.  MODEL FOR COMPOSITION OF HYBRID COMPOSITES 

Hereafter follows the derivation of model equations for the interrelation of volume fractions in 
hybrid composites. The equations can be used to calculate the global fibre volume fractions (Vf) 
and composite volume fractions (Vc) as a function of the hybrid fibre volume mixing ratio ( ), 
and with the local fibre volume fractions ( ) as input parameters.  

To derive the model equations, some useful support equations can be established on beforehand: 

 =  

 =  

1  =     
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The equation for the global carbon fibre volume fraction is derived as follows: 

   =  =   

                        (8) 

 
The equation for the global glass fibre volume fraction is derived in the same way: 

   =   

=                          (9) 

 
The porosity content is assumed to be 0, and the global matrix volume fraction is therefore 
calculated as follows: 

             (10) 

 
The equations for the carbon and glass composite volume fractions are derived as follows: 

    

              (11) 

      

              (12) 

In the equations (8) - (12),  is used as the independent variable. It is however more appropriate 
to use  as the independent variable, since the two fibre types most typically is mixed by their 
weights in the hybrid fibre preforms. Thus,  is typically accurately controlled, and known for a 
given preform. The relation between  and  is given by Eq. (3).  

In Figs. 8 and 9, the model equations (8) – (12) are plotted for the hybrid glass/carbon fibre 
composites. The used values of local carbon and glass fibre volume fractions are 0.53 and 0.59, 
respectively, which are the values determined from the non-hybrid composites (CXG-04 and 
CXG-01). The experimental data of the hybrid composites (Table 2) is shown together with the 
model lines.  
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Fig. 8. Global fibre and matrix volume fractions in hybrid glass/carbon fibre composites 
as function of the hybrid fibre weight mixing ratio ( ), model predictions and 
experimental data. 

 
Fig. 9. Composite volume fractions in hybrid glass/carbon fibre composites as function of 
the hybrid fibre weight mixing ratio ( ), model predictions and experimental data.  
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As can be observed in Figs. 8 and 9, there is generally a good agreement between the model 
lines, and the experimental data points. Thus, it is demonstrated that the model equations are 
useful for the prediction of the composition in hybrid fibre composites, and thereby for the 
design of hybrid composites with wanted property profiles. 

5.  MICROSTRUCTURAL UNIFORMITY OF HYBRID COMPOSITES 

For the analysis of the microstructural uniformity, the two composites CXG-05 and CXG-10 
were selected since they have a marked difference in their microstructure (see Fig. 6). CXG-05 
has a bundle-bundle structure, and CXG-10 has a ply-ply structure. The image of CXG-10 is 
about half the width of the image of CXG-05 (about 20 vs. 40 mm), and it was therefore 
prolonged by stitching together twice the same image. 

The first step in the quantification of the microstructural uniformity is to present the variation in 
the composite composition from one end of the composite sample to the other.  

The results of the determined  for every 0.1 mm of the two composites are shown in Fig. 
10, where the composition is plotted against the position across the sample (or image). The 
dashed straight lines in Fig. 10 show the average  values (which are similar to the ones in 
Table 2):   

 = 0.46   and = 0.61 

The bundle-bundle curve is oscillating from about 0.2 to about 0.8, and the ply-ply curve is 
oscillating from about 0.5 to about 0.7. In each case, the difference between the two extreme 
values gives an indication of the dispersion of , which reflects how constant the 
composition is across the composite. It is therefore clear that the ply-ply composite has a 
roughly constant composition compared to the bundle-bundle composite.  

Other indications given in Fig. 10 for the bundle-bundle composite are the presences of glass 
composite rich regions (  > 0.8) and carbon composite rich regions (  < 0.2). The 
distance between these consecutive regions can roughly be estimated to 4 mm. Thus, one can 
say that the bundle-bundle composite is varying between two very different composite 
compositions within few millimetres across the sample.  
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Fig. 10. Glass composite volume fraction (Vc glass) as function of position across the 
composite sample for composites with a bundle-bundle structure (CXG-05) and with a 
ply-ply structure (CXG-10). Shown are also average values.  

In order to analyse the observed variation in Vc, and thereby to be able to quantify the 
microstructural uniformity, two methods are presented. 

It can be realized that the variation in the determined values of Vc (see Fig. 10) depends on the 
width of the cross sectional windows used to determine Vc. It can be expected that the smaller 
the width of the cross sectional windows, the larger the variation of the determined values of Vc. 
This qualitative expectation will be quantified by a standard deviation based method, where a 
parameter D is calculated for a given width of the cross sectional windows (k) to represent the 
deviation in Vc from the overall (true) value of Vc. 

1
1

2

n

XX
kD

n

i
i

                (13) 

where Xi are the determined values of Vc for all possible locations of a cross sectional window 
with a width of k (in mm) across the composite sample,  is the overall Vc determined for the 
entire sample (or image), i.e.  is equal to the average values shown in Fig. 10. The parameter n 
is the number of all possible locations of a cross sectional window with a width of k across the 
composite sample (or image). The parameter D is named characteristic deviation to designate 
that the parameter is not used in the normal statistical meaning of a standard deviation.   

The parameter k and the width of the composite sample (or image) have to be a multiple of 0.1 
mm, and the parameter n can then be calculated: 

n = width of composite sample ·10 – k·10 +1             (14) 

The presented method can be exemplified on the image in Fig. 6 of the hybrid composite with 
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the bundle-bundle structure (CXG-05), where the width of the image is 44.5 mm, and the overall 
Vc for the glass fibre composite phase is determined to be 0.46.  

For a cross sectional window width of 0.1 mm (k = 0.1 mm), there will be n = 445 
possible locations of the window. On each of these n locations, Vc is determined, and 
then D is calculated by Eq. (13) to be 0.27. Thus, for a window width of 0.1 mm, the 
characteristic deviation of Vc can be stated to be 0.46 ± 0.27.  

For a cross sectional window width of 4.0 mm (k = 4.0 mm), there will be n = 406 
possible locations of the window. On each of these n locations, Vc is determined, and 
then D is calculated by Eq. (13) to be 0.18. Thus, for a window width of 4.0 mm, the 
characteristic deviation of Vc can be stated to be 0.46 ± 0.18.  

By varying k stepwise from the minimum window width (= 0.1 mm) to the maximum window 
width (= width of the image – 0.1mm, where n = 2), a curve can be established showing D as a 
function of k.  

In Fig. 11, the curves for D as a function of k are shown for the bundle-bundle composite and 
the ply-ply composite (CXG05 and CXG10). Firstly, it can be observed that the deviations in Vc 
are smaller for the ply-ply composite. As an example, for a window width of 4 mm, the 
characteristic deviations of Vc are 0.46 ± 0.18 and 0.61 ± 0.02 for the bundle-bundle composite 
and the ply-ply composite, respectively. Accordingly, Vc will therefore vary from about 0.28 to 
0.64 for the bundle-bundle composite depending on the location of the 4 mm cross sectional 
window, whereas Vc will only vary from about 0.59 to 0.63 for the ply-ply composite.    

From this first observation, one can say that the presented method is able to quantify the 
difference in microstructural uniformity between composites.  

Secondly, it can be observed in Fig. 11 that for the bundle-bundle composite, the curve is clearly 
oscillating, whereas for the ply-ply composite, the curve is more flat. This indicates that the 
bundle-bundle composite contain a repeating pattern in the microstructure, whereas the ply-ply 
composite does not contain such a pattern.  

In Fig. 11, the bundle-bundle curve shows a first minimum at a width of 8.9 mm, and the 
following minimum values are roughly at a multiple of this value, located at 17.1 mm and 25.7 
mm. These values are easily and precisely determined. Thus, at every about 9 mm, the 
composition of the composite has gone through a glass composite rich region, and a carbon 
composite rich region. The same observation can be made from the results in Fig. 10. It can be 
realised that for samples with widths equal to a multiple of the width of the repeating pattern, 
the variation in Vc is at a minimum. In contrast, for samples with widths equal to a multiple of 
half the width of the repeating pattern, the variation in Vc is at a maximum.  

From this second observation, one can say that the presented method is able to detect and 
quantify any repeating pattern in the microstructure of composites. 
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Fig. 11. Characteristic deviation of Vc as a function of width of the cross sectional 
window, obtained by the standard deviation based method. Results are shown for a 
composite with a bundle-bundle structure, and for a composite with a ply-ply structure.  

 

In order to analyse further the observed variation behaviour in Fig. 10, a second method was 
used, a fast Fourier transform method. For that method, the two curves in Fig. 10 were 
considered as oscillating signals from which fundamental frequencies could be determined, and 
the Fourier transforms were calculated using the fast Fourier transform function in Excel.  

The results obtained by this method are presented in Fig. 12, and show the frequency magnitude 
as a function of frequency range. It can be observed that the bundle-bundle curve shows a clear 
first peak at a frequency of 0.117 mm-1, which correspond to a period of 8.5 mm. The ply-ply 
curve does not show any noteworthy peak. The period found for the bundle-bundle curve 
corresponds well to the results obtained by the standard deviation based method.  

 
Fig. 12. Frequency magnitude as a function of frequency range obtained by the fast 
Fourier transform method. Results are shown for a composite with a bundle-bundle 
structure, and for a composite with a ply-ply structure. 
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6. CONCLUSIONS 

The three levels of compositions in hybrid fibre composites were defined, experimentally 
determined and analysed. A model for the volume fractions in hybrid composites was presented, 
and used for the analysis of the experimental data. Good agreement between model predictions 
and experimental data was observed. Two quantification methods were implemented to analyse 
the microstructural uniformity of the composites. The methods were demonstrated to be well 
suitable to quantify the difference in microstructural uniformity between composites, and to 
detect and quantify any repeating pattern in the composite microstructure. 
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