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Outline 

• Model-based control 

– Basics: State estimation, LQ/MPC control 

– Control Design Model 

• Example: Dynamic Inflow 

• Trailing edge flaps 

– The concept 

– Combining trailing edge flaps and IPC 

• LiDAR enhanced control 

– Load alleviation 

– Power optimization 

• Passive vs. active control  

– Bend-twist couplings 

• Floating wind turbines 

– Using an Extended Kalman Filter for state estimation 
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Model-based Control 
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Model-based Control 

Control Methods applied on Wind Turbines 

• Classic Control Methods 

– PI Control 

– Interconnected PI Controllers 
and Bandpass Filters 

– ... 

• Modern Control Methods 

– Linear Quadratic Control (LQ) 

– Linear Parameter Varying 

Control (LPV) 

– Robust Control (H2,H∞) 

– Model Predictive Control (MPC) 

– Misc. Nonlinear Control 
Methods 

– ... 

• Individual Pitch 

– Coleman/Multi-blade 

Coordinate Transformation 

– Decoupling of control loops 

– ... 

• Trailing edge flaps 

– Decoupling of control loops 

– ... 

• LiDAR 

– Feed forward of measure wind 

– ... 
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Model-based Control 

Control Theory in Time Discrete Form 

y and u State 

Estimator 

( KF or ...) 

State space 

Controller 

(MPC or ...) 

Plant 

(Wind Turbine) 
u 

Disturbances: w and v 

(Turbulent Wind, Wave forces, ...) 

x 

State space model 
x(tk+1) = f(x(tk),u(tk)) + w(tk) 

y(tk) = g(x(tk),u(tk)) + v(tk) 
 

State estimator 
x(tk|tk) = x(tk|tk-1) + L·[y(tk) - g(x(tk|tk-1),u(tk))] 

x(tk+1|tk) = f(x(tk|tk),u(tk)) 

State space controller 
u(tk) = K·x(tk|tk) 

or 
u(tk) = K·x(tk|tk-1) 

or 
u(tk) = k(x(tk|tk-1)) 

or 

... 
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Model-based Control 

Control Design Model 

 

• The control design model is a set of linear/nonlinear ordinary differential 
equations (in state space form), which are “adequately” describing the 

system to be controlled. 

 

– “Adequately” means including phenomena of interest (tower DOFs, 
blade DOFs etc.) in a frequency range of interest. 

 

• The control design model can be obtained from first-principles modeling, 
system identification (black box), a combination of the two (gray box). 

 

– A first-principles model of a wind turbine can be obtained from aero-
elastic software codes such as Bladed, FAST, HAWCStab2 etc. 

6 Hi 13, Herning 2013, September 4th 



DTU Wind Energy, Technical University of Denmark 

Model-based Control 

Control Design Model 

• Bode plots – From collective blade pitch to generator speed 
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Model-based Control 

Dynamic Inflow 
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Trailing Edge Flaps 
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Comsol 2D analyses 

Trailing Edge Flaps 

The CRTEF Development 
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Trailing Edge Flaps 

Wind tunnel experiment  Dec. 2009 

11 

two different inflow sensors 
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Trailing Edge Flaps 

Comparison of measurements and model 
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DTU Wind Energy, Technical University of Denmark 13 

Pitch actuator 

Pressure 

measurements 

Trailing Edge Flaps 

Test rig 

Test rig based on a 100 kW 
turbine. 
Rotation of a 10m long tube with 
an airfoil section of about 2x1m 
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Trailing Edge Flaps 

Simulation Test Case 
 • Reference NREL 5 MW turbine 

 

• Adaptive Trailing Edge Flaps 

– All flaps on one blade moved as one 
 

• Sensors:  

– Shaft sp., Blade root b.mom, Tower top acc. 
 

• Simulations with HAWC2 

– Multibody dynamics, includes torsion 

– Unsteady BEM aerodynamics 
 

• IEC conditions: class A. Iref:0.16 (wsp: 18 m/s) 
 

• Focus on blade load alleviation 
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DTU Wind Energy, Technical University of Denmark Combined Pitch and ATEFs control 15 
PI 0.3 

Trailing Edge Flaps 

Combined IPC and Trailing Edge Flap Control 
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LiDAR Enhanced Control  
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LiDAR Enhanced Control 

Types and objectives 

• Load alleviation 

– Collective pitch control (CPC) 

– Individual pitch control (IPC) 

• Power optimization 

– Tracking optimal operation 

point 

– Reducing yaw misalignment 

 

• Nacelle mounted (mounted on top 

of nacelle) 

 

• Spinner/hub mounted 

 

• Blade mounted (instead of pitot-
tubes) 

Hi 13, Herning 2013, September 4th 17 



DTU Wind Energy, Technical University of Denmark 

LiDAR Enhanced Control  

Uncertainties and Limitations 

18 

• LiDAR uncertainties 

– Validity of Taylors 
hypothesis of frozen 

turbulence 

– Volume average of wind 
speed measurements 

– Projection error 

– Measurement availability 
and system reliability 
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LiDAR Enhanced Control 

Collective Pitch Control 

• D. Schlipf et al., 2012. 

– Experimental results shows that fatique loads of CART2 turbine can 
lowered by introducing LiDAR based feed-forward collective pitch 

control 

• E. Bossanyi et al., 2012 
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LiDAR Enhanced Control 

Individual Pitch Control 

• K. A. Kragh et al., 2013 

– LiDAR based feed-forward IPC is mainly beneficial in situations with 
rapid, smal scale variations (e.g. changing wind shear). 

– Very sensitive to uncertainties relating to the inflow estimation 
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Passive vs. Active Control 
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Passive vs. Active Control 

Overview 

• Passive control methods 

– Swept blades 

– Bend-twist couplings 

 

• Active control methods 

– Individual pitch control 

– Trailing edge flap control 
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Passive vs. Active Control 

Issues 

 

• Many aero-elastic tools needs further development to handle complex 
beam models. 

 

• Can the blades be fabricated such that they behave as predicted by the 

aero-elastic tools. 

 

• Further development of control methods is needed. 

 

• Developed control methods should be adopted by industry. 

Hi 13, Herning 2013, September 4th 23 



Floating Wind Turbines 
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Floating Wind Turbines 

The Hywind Concept 
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Floating Wind Turbines 

Simulations of the Hywind Concept (I) 

Wind turbine states 

• 1 or 2 tower fore-aft DOF 

• 1 or 2 tower side-side DOF 

• 2 blade edge-wise DOF pr. blade 

• 2 blade flap-wise DOF pr. Blade 

• 1 induced wind speed state pr. 

blade 

• Disturbance states 

• 1 wind speed (2nd order) pr. 
blade 

• 1 fore-aft hydrodynamic force 
(2nd order)  

• 1 side-side hydrodynamic force 
(2nd order)  

 

Sensors used by the EKF 

• Pitch angles of each blade 

• Electro magnetic generator 

torque 

• Generator power 

• Generator speed 

• Rotor speed 

• Tower top fore-aft acceleration 

• Tower top side-side acceleration 

• Flap-wise blade root bending 

moment at each blade 

• Edge-wise blade root bending 

moment at each blade 
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Floating Wind Turbines 

Simulations of the Hywind Concept (II) 
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Floating Wind Turbines 

Simulations of the Hywind Concept (III) 
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Floating Wind Turbines 

The WindFloat Concept 
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Industrial/academic Cooperation 
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Industrial/academic Cooperation 

• Foundations for offshore wind turbines (incl. floating concepts) 

• Trailing edge flaps 

• LiDARs 

• Pitch gears 

• Drive train gears 

• Aerodynamic blade design 

• Structural blade design 

 

• Materials research both composites and alloys/metals 

• Wind Recourse Assessments 

 

• Measurement campaigns for wind turbines 

 

• High altitude wind energy converters (Kites and lighter than air devices) 
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Conclusions 

 

• Good mathematical models of systems and components are required 
both for control design purposes but also for evaluation of 

performance/behavior. 

 

• Many innovative concepts have been and will be tested and developed, 
some will mature for commercial success and some will be forgotten, 

only to be presented as innovations a decade later. 

 

• Cost-of-energy (COE) is ultimately the main driver determining whether 

or not an innovation will reach a commercial state. 

 

• Academic cooperation is good way to test some of the innovative ideas 

before spending to much time and money on the idea. 
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Thank you for your attention! 
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