Technical University of Denmark

Wind Turbines: Innovative Concepts

Henriksen, Lars Christian

Publication date: 2013

Link to publication

Citation (APA): Henriksen, L. C. (2013). Wind Turbines: Innovative Concepts [Sound/Visual production (digital)]. hi[13]. Seminar on Control of Wind turbines, 04/09/2013

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Wind Turbines: Innovative Concepts

Lars Christian Henriksen, DTU Wind Energy

Wind Energy Theme Day for Industry: Control

hi [13] The Nordic Expo, Herning, September 4th 2013

DTU Wind Energy Department of Wind Energy

Outline

- Model-based control
 - Basics: State estimation, LQ/MPC control
 - Control Design Model
 - Example: Dynamic Inflow
- Trailing edge flaps
 - The concept
 - Combining trailing edge flaps and IPC
- LiDAR enhanced control
 - Load alleviation
 - Power optimization
- Passive vs. active control
 - Bend-twist couplings
- Floating wind turbines
 - Using an Extended Kalman Filter for state estimation

Model-based Control

DTU Wind Energy Department of Wind Energy

Model-based Control Control Methods applied on Wind Turbines

- Classic Control Methods
 - PI Control
 - Interconnected PI Controllers and Bandpass Filters

- ...

Modern Control Methods

- Linear Quadratic Control (LQ)
- Linear Parameter Varying Control (LPV)
- Robust Control (H_2, H_{∞})
- Model Predictive Control (MPC)
- Misc. Nonlinear Control Methods

• Individual Pitch

- *Coleman/Multi-blade Coordinate Transformation*
- Decoupling of control loops

- ...

• Trailing edge flaps

- Decoupling of control loops

- ...

- LiDAR
 - Feed forward of measure wind

- ...

- ...

Model-based Control **Control Theory in Time Discrete Form**

State space model $\mathbf{y}(t_k) = \mathbf{g}(\mathbf{x}(t_k), \mathbf{u}(t_k)) + \mathbf{v}(t_k) \qquad \mathbf{x}(t_{k+1}|t_k) = \mathbf{f}(\mathbf{x}(t_k|t_k), \mathbf{u}(t_k))$

State estimator $\mathbf{x}(t_{k+1}) = \mathbf{f}(\mathbf{x}(t_k), \mathbf{u}(t_k)) + \mathbf{w}(t_k) \quad \mathbf{x}(t_k|t_k) = \mathbf{x}(t_k|t_{k-1}) + \mathbf{L} \cdot [\mathbf{y}(t_k) - \mathbf{g}(\mathbf{x}(t_k|t_{k-1}), \mathbf{u}(t_k))]$

State space controller

$$\boldsymbol{u}(t_k) = \boldsymbol{K} \cdot \boldsymbol{x}(t_k | t_k)$$

or
 $\boldsymbol{u}(t_k) = \boldsymbol{K} \cdot \boldsymbol{x}(t_k | t_{k-1})$
or
 $\boldsymbol{u}(t_k) = \boldsymbol{k}(\boldsymbol{x}(t_k | t_{k-1}))$
or
...

(Turbulent Wind, Wave forces, ...)

Model-based Control Control Design Model

 The control design model is a set of linear/nonlinear ordinary differential equations (in state space form), which are "adequately" describing the system to be controlled.

 "Adequately" means including phenomena of interest (tower DOFs, blade DOFs etc.) in a frequency range of interest.

- The control design model can be obtained from *first-principles* modeling, system identification (black box), a combination of the two (gray box).
 - A *first-principles* model of a wind turbine can be obtained from aeroelastic software codes such as Bladed, FAST, HAWCStab2 etc.

Model-based Control Control Design Model

• Bode plots – From collective blade pitch to generator speed

8 m/s

16 m/s

Model-based Control **Dynamic Inflow**

Trailing Edge Flaps

DTU Wind Energy Department of Wind Energy

Hi 13, Herning 2013, September 4th

Trailing Edge Flaps The CRTEF Development

Comsol 2D analyses

Trailing Edge Flaps Wind tunnel experiment Dec. 2009

two different inflow sensors

Trailing Edge Flaps Comparison of measurements and model

Trailing Edge Flaps Test rig

Pressure measurements

Trailing Edge Flaps Simulation Test Case

- Reference NREL 5 MW turbine
- Adaptive Trailing Edge Flaps
 All flaps on one blade moved as one
- Sensors:
 - Shaft sp., Blade root b.mom, Tower top acc.
- Simulations with HAWC2
 - Multibody dynamics, includes torsion
 - Unsteady BEM aerodynamics
- IEC conditions: class A. Iref:0.16 (wsp: 18 m/s)
- Focus on blade load alleviation

Reference Wind Turbine		Flap Setup	
Rat. Power	5 MW	Chordwise ext.	10%
Num.Blades	3	Deflect.limits	$\pm 10^{\circ}$
Rotor Diam.	126 m	Max. ΔCl	$-0.45 \sim +0.41$
Blade length	61.5 m	Spanwise length	12.3 m (20% blade length)
Rat. Rot.Sp.	1.267 rad/s	Spanwise loc.	from 47.7 m to 60.0 m span
Hub height	90 m	Max. Δ Mx.Bl.Rt	approx. ±1100 kNm

14 DTU Wind Energy, Technical University of Denmark

Trailing Edge Flaps Combined IPC and Trailing Edge Flap Control

LiDAR Enhanced Control

DTU Wind Energy Department of Wind Energy

16

Hi 13, Herning 2013, September 4th

LiDAR Enhanced Control Types and objectives

- Load alleviation
 - Collective pitch control (CPC)
 - Individual pitch control (IPC)
- Power optimization
 - Tracking optimal operation point
 - Reducing yaw misalignment

- Nacelle mounted (mounted on top of nacelle)
- Spinner/hub mounted
- Blade mounted (instead of pitottubes)

LiDAR Enhanced Control Uncertainties and Limitations

• LiDAR uncertainties

- Validity of Taylors hypothesis of frozen turbulence
- Volume average of wind speed measurements
- Projection error
- Measurement availability and system reliability

LiDAR Enhanced Control Collective Pitch Control

- D. Schlipf et al., 2012.
 - Experimental results shows that fatique loads of CART2 turbine can lowered by introducing LiDAR based feed-forward collective pitch control
- E. Bossanyi et al., 2012

Figure 11: Lifetime fatigue load reductions

LiDAR Enhanced Control Individual Pitch Control

- K. A. Kragh et al., 2013
 - LiDAR based feed-forward IPC is mainly beneficial in situations with rapid, smal scale variations (e.g. changing wind shear).
 - Very sensitive to uncertainties relating to the inflow estimation

Passive vs. Active Control

DTU Wind Energy Department of Wind Energy

Hi 13, Herning 2013, September 4th

Passive vs. Active Control **Overview**

- Passive control methods
 - Swept blades
 - Bend-twist couplings
- Active control methods
 - Individual pitch control
 - Trailing edge flap control

Figure 2.1: Torsion of a traditional design (left) and bend-twist coupled design (right) wind turbine blade sections

Passive vs. Active Control **Issues**

- Many aero-elastic tools needs further development to handle complex beam models.
- Can the blades be fabricated such that they behave as predicted by the aero-elastic tools.
- Further development of control methods is needed.
- Developed control methods should be adopted by industry.

Floating Wind Turbines

DTU Wind Energy Department of Wind Energy

Hi 13, Herning 2013, September 4th

24

Floating Wind Turbines The Hywind Concept

Floating Wind Turbines Simulations of the Hywind Concept (I)

Wind turbine states

- 1 or 2 tower fore-aft DOF
- 1 or 2 tower side-side DOF
- 2 blade edge-wise DOF pr. blade
- 2 blade flap-wise DOF pr. Blade
- 1 induced wind speed state pr. blade
- Disturbance states
- 1 wind speed (2nd order) pr.
 blade
- 1 fore-aft hydrodynamic force (2nd order)
- 1 side-side hydrodynamic force (2nd order)

Sensors used by the EKF

- Pitch angles of each blade
- Electro magnetic generator torque
- Generator power
- Generator speed
- Rotor speed

٠

- Tower top fore-aft acceleration
 - Tower top side-side acceleration
 - Flap-wise blade root bending moment at each blade
 - Edge-wise blade root bending moment at each blade

Floating Wind Turbines Simulations of the Hywind Concept (II)

Floating Wind Turbines Simulations of the Hywind Concept (III)

Floating Wind Turbines The WindFloat Concept

Levelized Cost of Energy (€*/MWh) evolution per number of built platforms

Industrial/academic Cooperation

DTU Wind Energy Department of Wind Energy

30

Hi 13, Herning 2013, September 4th

Industrial/academic Cooperation

- Foundations for offshore wind turbines (incl. floating concepts)
- Trailing edge flaps
- LiDARs
- Pitch gears
- Drive train gears
- Aerodynamic blade design
- Structural blade design
- Materials research both composites and alloys/metals
- Wind Recourse Assessments
- Measurement campaigns for wind turbines
- High altitude wind energy converters (Kites and lighter than air devices)

Conclusions

- Good mathematical models of systems and components are required both for control design purposes but also for evaluation of performance/behavior.
- Many innovative concepts have been and will be tested and developed, some will mature for commercial success and some will be forgotten, only to be presented as innovations a decade later.
- Cost-of-energy (COE) is ultimately the main driver determining whether or not an innovation will reach a commercial state.
- Academic cooperation is good way to test some of the innovative ideas before spending to much time and money on the idea.

Thank you for your attention!

DTU Wind Energy Department of Wind Energy