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A Tuning Procedure for ARX-based MPC

Daniel Haugaard Olesen, Jakob Kjøbsted Huusom, John Bagterp Jørgensen

Abstract— We present an optimization based tuning pro-
cedure with certain robustness properties for an offset free
Model Predictive Controller (MPC). The MPC is designed for
univariate processes that can be represented by an ARX model.
The advantage of ARX model representations is that standard
system identification techniques using convex optimization can
be used for identification of such models from input-output
data. The stochastic model of the ARX model identified from
input-output data is modified with an ARMA model designed as
part of the MPC-design procedure to ensure offset-free control.
The ARMAX model description resulting from the extension
can be realized as a state space model in innovation form.
The MPC is designed and implemented based on this state
space model in innovation form. Expressions for the closed-loop
dynamics of the unconstrained system is used to derive the sen-
sitivity function of this system. The closed-loop expressions are
also used to numerically evaluate absolute integral performance
measures. Due to the closed-loop expressions, these evaluations
can be done relative quickly. Consequently, the tuning may
be performed by numerical minimization of the integrated
absolute error subject to the a constraint on the maximum of the
sensitivity function. The latter constraint provides a robustness
measure that is essential for the procedure.

I. INTRODUCTION

Model Predictive Control (MPC) has evolved to become
an industrial standard in advanced process control [1]. MPC
is a control methodology that uses a model of the system
to predict the process output over some future horizon. An
ARX model representation of the plant may be obtained from
input-output data using convex optimization methods. To
ensure offset free control, integrators has to be introduced to
the plant model in case of persistent unmeasured disturbances
and/or plant model mismatch. In such cases, the observer
that guarantees offset free control introduces a plant model
mismatch. This plant model mismatch complicates the tuning
of the controller [2]–[5].

Despite the growing popularity of MPC, a systematic
tuning practice has not evolved, and only few guidelines
exist. The topic has not been short of research, as there are
numerous academic publications on the subject. A compre-
hensive review of proposed tuning methods is presented in
[6] and loop transfer recovery procedures have also been
investigated [7], [8]. Our study relies on a closed loop
description of the controller and the process model to assess
the performance of an MPC with a given tuning. It has
previously been proposed to use a closed loop description
for synthesis of a MPC by application of robust design
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techniques [9]. In this paper, we state the tuning problem as
an inequality constrained optimization problem. We have de-
fined a deterministic tuning objective related to the integrated
absolute error and use a bound on the maximum sensitivity
to ensure robustness. The objective is defined for a set point
change where a gain mismatch is introduced between the
observer and our design model. The mismatch is used to
ensure that offset free control is obtained.

The paper is organized as follows. Section II describes
an ARX-based MPC for univariate processes and develops
a state-space model for the controller. Section III derives a
state-space model for the closed-loop system and uses this
state space model for covariance computation, sensitivity
function computation and for computation of integrated
absolute error measures. These measures and the sensitivity
function are used to formulate an optimization problem for
selecting the tuning parameters of the MPC. In Section IV
the proposed tuning method is demonstrated for three first
order processes with different time delays. Conclusions are
presented in Section V.

II. ARX-BASED MPC FOR SISO SYSTEMS

In this section we derive a state space representation for
an unconstrained MPC based on an ARX-model modified
with a filtered integrated white noise stochastic model. First,
we represent the ARX model as a state space model in
innovation form. Subsequently, we use this state space model
in innovation form to derive the correct control law for the
unconstrained MPC. As the control law is linear, the resulting
controller may be represented in a state space form.

A. State Space Model in Innovation Form
The ARX model

A(q−1)yk = B(q−1)uk + εk (1)

has been used in a number of MPC applications. The advan-
tage of this model parametrization is that the parameters may
be identified using standard system identification techniques
based on convex optimization. To have offset-free control
from the MPC based on this model, the stochastic part of
the model is modified to be a filtered white noise process

εk =
1− αq−1

1− q−1
ek (2)

where ek ∼ Niid(0, Ree). The coefficient α ∈ [0, 1] is a
design parameter of the MPC.

The modified ARX model can be represented as an ARI-
MAX model as:

A(q−1)yk = B(q−1)uk +
1− αq−1

1− q−1
ek (3)
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By rearrangement the ARIMAX model can be represented
as an ARMAX model:

Ā(q−1)yk = B̄(q−1)uk + C̄(q−1)ek (4)

with

Ā(q−1) = (1− q−1)A(q−1) (5a)

B̄(q−1) = (1− q−1)B(q−1) (5b)

C̄(q−1) = 1− αq−1 (5c)

Denote the coefficients of Ā(q−1) and B̄(q−1) as

Ā(q−1) = 1 + ā1q
−1 + ā2q

−2 + ...+ ānq
−n (6a)

B̄(q−1) = b̄1q
−1 + b̄2q

−2 + ...+ b̄nq
−n (6b)

Then the system (1)-(2) may be represented as a state space
model in innovation form

xk+1 = Âxk + B̂uk + K̂ek (7a)

yk = Ĉxk + ek (7b)

with the state space matrices (Â, B̂, K̂, Ĉ) realized in ob-
server canonical form

Â =


−ā1 1 0 0 0
−ā2 0 1 0 0

...
...

. . .
...

−ān−1 0 0 · · · 1
−ān 0 0 · · · 0

 B̂ =


b̄1
b̄2
...

b̄n−1

b̄n

 K̂ =


α− ā1
−ā2

...
−ān−1

−ān


Ĉ =

[
1 0 0 · · · 0

]

B. Unconstrained MPC for State-Space Models in Innova-
tion Form

The filtered state estimation and the one-step prediction
may for state space models in innovation form (7) be
combined to give the following expressions for computation
of the innovation, ek [4]:

x̂k|k−1 = Âx̂k−1|k−2 + B̂uk−1 + K̂ek−1 (8a)

ŷk|k−1 = Ĉx̂k|k−1 (8b)
ek = yk − ŷk|k−1 (8c)

Initially, x̂0|−1 is known and the one-step prediction (8a) is
not needed. Knowing the innovation, ek, the predictions in
the state space model in innovation form may be represented
as [4]

x̂k+1|k = Âx̂k|k−1 + B̂ûk|k + K̂ek (9a)

x̂k+1+j|k = Âx̂k+j|k + B̂ûk+j|k, j = 1, . . . , N − 1 (9b)

ŷk+j|k = Ĉx̂k+j|k, j = 1, . . . , N (9c)

It is important to notice the term K̂ek in (9a). This term is
important for derivation of the correct control law [4]. Let
the objective of the MPC be

φ =
1

2

N−1∑
j=0

∥∥ŷk+j+1|k − rk+j+1|k
∥∥2

2
+ λ

∥∥∆ûk+j|k
∥∥2

2
(10)

in which the second term,
∥∥∆ûk+j|j

∥∥2

2
, is a regular-

ization term. We assume the reference parametrization,

{
rk+j|k

}N
j=1

= {rk, . . . , rk}. The tuning parameters in this
objective function is the scalar weight, λ, which penalizes
control signal movement.

The unconstrained MPC is represented as the convex
quadratic optimization problem

min
{ûk+j|j}N−1

j=0

{
φ = φ(

{
ûk+j|j

}N−1

j=0
; rk, uk−1, x̂k|k−1, ek) : (9)

}
which has the solution Uk = [ûk|k, . . . , ûk+N−1|k] with [4]

uk = ûk|k = Lxx̂k|k−1 + Lwek + Luuk−1 + Lrrk (11)

The specific expressions for and derivation of Lx, Lw, Lu
and Lr are given in [4]. It must be emphasized that most
available expressions for linear-quadratic controllers misses
the term Lwek that arise due to the term K̂ek in (9a).

Define the controller states as xck = [x̂k|k−1;uk−1] such
that the unconstrained MPC consisting of (8) and (11) may
be represented in the state space form

xck+1 = Acx
c
k +Bcyyk +Bcrrk (12a)

uk = Ccx
c
k +Dcyyk +Dcrrk (12b)

with

Ac =

[
(Â− K̂Ĉ) + B̂(Lx − LwĈ) B̂Lu

Lx − LwĈ Lu

]
(13a)

Bcy =

[
K̂ + B̂Lw

Lw

]
Bcr =

[
B̂Lr
Lr

]
(13b)

Cc =
[
Lx − LwĈ Lu

]
(13c)

Dcy = Lw Dcr = Lr (13d)

In addition to the model (1), this controller representation
depends on the tuning parameters (α, λ).

III. CLOSED-LOOP SYSTEM AND MEASURES

Let the system be a LTI system in the form

xk+1 = Axk +Buk + Edk +Gwk (14a)
zk = Cxk (14b)
yk = zk + vk (14c)

where xk is the states, uk is the manipulated inputs, dk are
unknown disturbances, wk ∼ Niid(0, Rww) is stochastic pro-
cess noise, zk is the uncorrupted outputs, vk ∼ Niid(0, Rvv)
is measurement noise, and yk is the measurements, i.e. the
outputs, zk, corrupted by measurement noise, vk. This model
(A,B,E,G,C) is not necessarily identical to the model
(Â, B̂, Ĉ, K̂) used by the MPC.

Using the system model (14) and the MPC state space rep-
resentation (12), the closed-loop system may be represented
as

xclk+1 = Aclx
cl
k +Bwclwk +Bvclvk +Brclrk +Bdcldk (15a)

zk = Cclx
cl
k (15b)

yk = Cclx
cl
k + vk (15c)

uk = Cuclx
cl
k +Dvclvk +Drclrk (15d)
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Controller

Process

Y(z)

U(z)

Fig. 1: Closed-loop system. The transfer functions Cur(z)
and Cuy(z) forms the unconstrained MPC. The controlled
outputs of the process is described by Gzu(z), Gzw(z) and
Gzd(z).

with xclk = [xk;xck] and

Acl =

[
A+BDcyC BCc

BcyC Ac

]
, Bwcl =

[
G
0

]
,

Bvcl =

[
BDcy

Bcy

]
, Brcl =

[
BDcr

Bcr

]
, Bdcl =

[
E
0

]
,

Ccl =
[
C 0

]
, Cucl =

[
DcyC Cc

]
,

Dvcl = Dcy, Drcl = Dcr.

(16)

This representation depends on the MPC tuning parameters,
(α, λ), and is used extensively to compute measures for the
controller performance. One obvious measure is of course the
eigenvalues of the closed-loop system, eig(Acl). Acceptable
tunings must provide stable closed loop systems, i.e. systems
in which all the closed-loop eigenvalues of Acl have modulus
less than 1.

A. Variance

The variance of the signals, (zk, yk, uk), for the closed-
loop system as response to the exogenous stochastic signals,
wk and vk, is one measure for the performance of the MPC.

Provided that Acl is stable, the covariance of the states of
the closed loop system, Rxx, may be computed by solution
of the discrete Lyapunov equation

Rxx = AclRxxA
T
cl +BwclRwwB

T
wcl +BvclRvvB

T
vcl (17)

and the corresponding output variances are

Rzz = CclRxxC
T
cl (18a)

Ryy = CclRxxC
T
cl +Rvv (18b)

Ruu = CuclRxxC
T
uc +DvclRvvD

T
vcl (18c)

B. Sensitivity

Fig. 1 illustrates the transfer functions in the closed loop
system. The transfer function representation of the process
model (14) is

Y (z) = Gzu(z)U(z) +Gzd(z)D(z) +GzwW (z) + V (z)
(19)

and the transfer function of the MPC control law (12) may
be represented as

U(z) = Cuy(z)Y (z) + Cur(z)R(z) (20)

Gzu(z), Gzd(z), Gzw(z), Cuy(z), and Cur(z) may be
computed from the associated state-space representations in
the standard way. Combining (19) and (20) yields a transfer
function for the closed-loop system (15)

Y (z) = S(z)D̄(z) + T (z)R(z) (21)

with D̄(z) = Gzd(z)D(z) +Gzw(z)W (z) + V (z) and

S(z) = Ccl(zI −Acl)−1Bvcl + 1 (22a)

T (z) = Ccl(zI −Acl)−1Brcl (22b)

S(z) is the sensitivity function and T (z) is the complemen-
tary sensitivity function. The sensitivity function, S(z), is
related to the robustness of the system in relation to model-
plant mismatch as well as process and measurement noise
[10]. In particular the H∞ norm of S(z) for a SISO process

MS = ‖S(z)‖∞ = max
ω

S(ejωTs) (23)

has been used as a measure of robustness. Ts is the sampling
time. A common requirement is to select MS ≤ 2. This
corresponds to ensuring a phase margin better than 29
degrees [10].

C. Integrated Absolute Error

The integrated absolute error (IAE) is a classical way to
measure control systems performance for certain reference
and disturbance scenarios of systems without noise (wk =
0 and vk = 0). Consider a scenario starting from steady
state and specified by [r(t)]

tf
t0 = {rk}

nf−1
k=0 and [d(t)]

tf
t0 =

{dk}
nf−1
k=0 with r(t) = rk and d(t) = dk for tk ≤ t < tk+1

using tk = t0 + kTs and tf = t0 + nfTs. The IAE of this
scenario is defined as

J̃ =

∫ tf

t0

|y(t)− r(t)|dt (24)

which using Euler integration and J = J̃/Ts may be
approximated by

J =

nf−1∑
k=0

|yk − rk| (25)

(25) is evaluated by simulation using the deterministic part
of (15), the initial steady state, xcl0 = 0, and the specified
scenario, {rk}

nf−1
k=0 and {dk}

nf−1
k=0 .

In this paper, we assume that Gzu(s) are available from
the system identification step, while Gzw(s) and Gzd(s)
are not available. Consequently, the scenario simulation can
be conducted for reference scenarios only. To have offset
free control for the resulting tuning, unknown disturbances
are emulated by model-plant mismatch. The model-plant
mismatch is conducted using the identified model for the
controller design, Ĝzu(s), and using a perturbation of this
model for the plant. A number of scenarios can be simulated
by selecting the plant model from an ensemble of models.
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D. Tuning

In the tuning of the MPC, the control and prediction
horizon, N , is chosen sufficiently large such that the resulting
controller for all practical purposes corresponds to an infinity
horizon controller, i.e. uk = µN (x̂k|k−1, ek, uk−1, rk) ≈
µ∞(x̂k|k−1, ek, uk−1, rk). The remaining tuning parameters,
(α, λ), are chosen by solution of the constrained optimization
problem

min
α,λ

J = J(α, λ) (26a)

s.t. MS(α, λ) ≤MS,max (26b)
0 ≤ α ≤ 1 (26c)
λmin ≤ λ ≤ λmax (26d)

The objective minimizes some measure related to the IAE
of the chosen scenarios. The scenarios are created by using
the estimated model for the controller design and different
model parametrization chosen from an ensemble of models to
represent the plant. This model-plant mismatch can be used
to represent unknown disturbances. In such scenarios, it is
necessary that the controller is equipped with an integrator to
provide offset free control. Therefore, instead of evaluating a
disturbance scenario, we consider a set-point change scenario
where we use a modified gain for the known process model
(A,B,C) in (15). We require a modified process model for
(15) in order to ensure, an offset free controller is generated
from (26). Using the correct model would result in a situation
in which the output predictions match the process model
and thus eliminating the need for integration, i.e. leading to
α = 1.

It is critical for the usefulness of the resulting tuning that
the robustness constraint (26b) is included in the optimiza-
tion problem. Useless results are obtained if the robustness
constraint (26b) is discarded by using a large upper bound.
In such cases, the resulting controller is far too aggressive
and useless in practice. MS,max is a user selected parameter
used for deciding how robust the resulting closed loop system
should be. Smaller values gives a less aggressive and more
robust controller. The computations needed for correct eval-
uation of the IAE-related objective function and MS(α, λ)
have been enabled by correct control laws for systems in
innovation form and their closed-loop representation [4].

(26) is a constrained nonlinear optimization problem
which is not necessarily convex. Accordingly, we cannot
guarantee location of the global optimum of (26 when using
solvers such as fmincon, KNITRO, IPOPT, NLOPT, or
SNOPT.

IV. NUMERICAL CASE STUDIES

In this section we demonstrate the tuning procedure for
simulated case studies. The simulation models considered
are the continuous-discrete system

Z(s) = G(s)U(s) +H(s)(D(s) +W (s)) (27a)
y(tk) = z(tk) + v(tk) (27b)

with the transfer functions

G(s) =
K

τs+ 1
e−τds (28a)

H(s) =
K̄

τ̄s+ 1
e−τ̄ds (28b)

and the parameters K = 20, τ = 10, K̄ = −5, τ̄ = 2,
τ̄d = 10. We consider three different time delays in G(s):
τd = 0, τd = 5, and τd = 20. In this way, we examine tuning
of a system for different ratios between the time constant, τ ,
and the time delay, τd. (27a) with (28) is discretized using
a zero-order-hold assumption on the inputs (u, d, w) and a
sampling time of Ts = 1. With this discretization the system
(27) is realized in the state space form (14).The process noise
and the measurement noise have the distributions: wk ∼
Niid(0, 0.01) and vk ∼ Niid(0, 0.01). Independent of τd, the
open-loop output variance of this system is Ryy,ol = 0.0712.

In the synthesis and tuning of the controller, only a model
of the transfer function from U to Y, Ĝ(s), is known:

Ĝ(s) =
K̂

τ̂s+ 1
e−τ̂ds (29)

The tuning of the controller is conducted using the esti-
mated parameters (K̂, τ̂ , τ̂d) in the controller design and
an ensemble of parameters to represent the system. The
ensemble parameters are perturbation of K̂, τ̂ , and τ̂d. The
controller tuning is conducted by solving (26) for MS,max =
{1.4, 1.7, 2.0} and using the bounds λmin = 10−6 and
λmax = 106. To have offset-free control in this procedure,
it is important that the ensemble contains gains and time
constants that are different from the gain and time constants
of the model used in the design of the controller. In the
simulation in this papers, the ensemble consisted of a single
gain deviation of 50%.

For evaluation of the resulting closed-loop controller per-
formance with the computed tuning, we have used an MPC as
described but with additional input constraints: −1 ≤ uk ≤
1. For such closed-loop simulation the true model (27) is
also used to represent the system.

A. Case I: No time delay, τd = 0

In Case I, there is no time delay, i.e. τd = 0. The
controllers generated by solution of (26) for this system are
listed in Table I. In this case, the difference of the closed-
loop output variance, Ryy,cl, for the three controllers is
insignificant. The lowest output variance, Ryy,cl, is obtained
with MS,max = 1.4. The closed loop output variance is for
all controllers smaller than open loop variance. It is also
evident from Table I, that the variance of the control signal
is dependent of MS,max.

The designed controllers are investigated in terms of their
sensitivity functions and by closed-loop simulation. The
simulation profile features a reference step from 0 to 5
at t = 0. A step disturbance enters the system at t =
100. Fig. 2 illustrates the sensitivity function as well as
the closed-loop simulation. For all three controllers similar
output variance is obtained and the tracking characteristics
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TABLE I: Controller tunings as well as closed loop output
and input variance (τd = 0)

MS,max α λ Ryy,cl Ruu,cl

1.4 0.9042 2.41 0.0634 0.0053
1.7 0.9039 0.26 0.0642 0.0119
2.0 0.9038 0.0048 0.0668 0.0168
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Fig. 2: Sensitivity and simulation results (τd = 0)

seems indistinguishable. The sensitivity plots show that all
three controllers have similar suppression of low frequency
noise and disturbances. This is verified in the simulation,
where the disturbance is very efficiently rejected for all three
controllers. The peak values of all three sensitivity functions
occurs close to the Nyquist frequency.

From the simulations, we can conclude that there is no
apparent benefit from selecting a high value of MS,max as
this primarily increases output and control signal variance
and do not offer a significant better tracking for the system.

B. Case II: Moderate time delay, τd = 5

In Case II, a moderate time delay, τd = 5, is present in the
system. Table II lists the controllers generated for this system
by solution of (26). For this system, none of the generated
controllers are able to obtain output variance smaller than the

TABLE II: Controller tunings as well as closed loop output
and input variance (τd = 5)

MS,max α λ Ryy,cl Ruu,cl

1.4 0.0000 2.49 · 104 0.0811 2.04 · 10−4

1.7 0.9414 59.22 0.0877 6.54 · 10−4

2.0 0.9048 2.2 · 10−6 0.1287 0.0169
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Fig. 3: Sensitivity and simulation results (τd = 5)

open loop output variance. Ryy,cl is dependent on MS,max

and the lowest value is obtained with MS,max = 1.4. The
tuning with MS,max = 1.4 has α = 0 which corresponds to
full integration.

Fig. 3 plots the sensitivity function of the closed loop sys-
tems and provides closed-loop simulations for the three con-
troller tunings. The sensitivity plots indicates the controllers
for this system deviates from zero at a lower frequency
compared to the system without time delay. The sensitivity
function for the controller with MS,max = 2 is closest to zero
in the low frequency region. This characteristic is apparent in
the simulations as the controller offers the fastest disturbance
rejection. However, this disturbance rejection comes at the
price of higher input variations and sensitivity to model-plant
mismatch. Therefore, the best trade-off between low input
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TABLE III: Controller tunings as well as closed loop output
and input variance (τd = 20)

MS,max α λ Ryy,cl Ruu,cl

1.4 0.9739 1.14 · 10−6 0.0812 0.0021
1.7 0.9435 1.00 · 10−6 0.1027 0.0068
2.0 0.9048 1.39 · 10−6 0.1414 0.0169
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Fig. 4: Sensitivity and simulation results (τd = 20)

variance and disturbance rejections seems to be obtained for
a tuning using MS,max = 1.4 or MS,max = 1.7.

C. Case III: Long time delay, τd = 20

In Case III, the system has a long time delay, τd = 20.
The controllers designed by solution of (26) for this system
are summarized in Table III. All three controllers have higher
output variance than the open loop system. The lowest output
as well as input variance is obtained for the tuning using
MS,max = 1.4.

Fig. 4. plots the sensitivity functions and closed loop
simulation for the three controllers. As expected, the long
time delay lowers the bandwidth of efficient disturbance
rejection. This indicated by the sensitivity function having
larger magnitudes at lower frequencies compared to the pre-

vious cases. The sensitivity plot for MS = 2.0 lies below the
plots for MS = {1.4, 1.7} in the low frequency region. This
gives a better suppression for low frequency disturbances as
reflected in the simulation. However, at higher frequencies
this sensitivity function has larger magnitudes which is
manifested by the higher input variation revealed in the
closed loop simulation. Even for challenging systems with
long time delays, the procedure seems to give reasonable
tunings based on selection of MS,max.

V. CONCLUSION

In this paper, we have presented a procedure to tune an
ARX based MPC for univariate processes. The ARX-based
MPC has been designed such that it gives offset-free control
for type I disturbances (steps). When offset free control is
desired, the tuning is non-trivial. The model used by the ARX
based MPC is a state space model in innovation form. For
such systems, we state the correct control law and develop
a state space representation of the closed-loop system. This
state space representation can be used for computation of
covariances, the sensitivity function, and measures related
to the integrated absolute error for deterministic tracking
and disturbance rejection scenarios. The suggested tuning is
obtained by minimizing a measure related to the integrated
absolute error for a set point change scenario. Robustness of
the resulting tuning is obtained by restricting the maximum
of the sensitivity function by an upper bound. The method
has been demonstrated for a first order process with three
different dead times.

The only user determined parameter for the tuning is the
robustness constraint, MS,max. We have shown how a trade
off can be made using this parameter between variance and
tracking performance.
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