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Metamaterial anisotropic flux concentrators and magnetic arrays

R. Bjørk,a) A. Smith, and C. R. H. Bahl
Department of Energy Conversion and Storage, Technical University of Denmark - DTU,
Frederiksborgvej 399, DK-4000 Roskilde, Denmark

(Received 14 May 2013; accepted 3 July 2013; published online 6 August 2013)

A metamaterial magnetic flux concentrator is investigated in detail in combination with a Halbach

cylinder of infinite length. A general analytical solution to the field is determined and the magnetic

figure of merit is determined for a Halbach cylinder with a flux concentrator. It is shown that an ideal

flux concentrator will not change the figure of merit of a given magnet design, while the non-ideal will

always lower it. The geometric parameters producing maximum figure of merit, i.e., the most efficient

devices, are determined. The force and torque between two concentric Halbach cylinders with flux

concentrators is determined and the maximum torque is found. Finally, the effect of non-ideal flux

concentrators and the practical use of flux concentrators, as well as demagnetization issues, is

discussed. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4816096]

I. INTRODUCTION

Magnetic metamaterials, i.e., materials that are artifi-

cially modified at a length scale larger than the atomic, have

been the subject of increasing interest. A special case is that

of metamaterials which can modify static magnetic fields,

i.e., fields at zero frequency. One example is a magnetic

cloak, which when placed in an external magnetic field

leaves that field unchanged while an interior cavity in the

cloak experiences zero field. Such a material was suggested

by Wood and Pendry1 (and others) and investigated experi-

mentally by Magnus et al.2 and G€om€ory et al.3

However, metamaterials may be used to actively modify

the field instead of used for shielding purposes. Recently,

Navau et al.4 suggested an interesting metamaterial object

consisting of a cylindrical ring (or a spherical shell) made of

a material with an anisotropic, spatially constant magnetic

permeability (lr 6¼ l/, where lr and l/ are the relative per-

meabilities in the radial and tangential directions, respec-

tively). If lr > l/, this object tends to concentrate external

flux lines in the space which it encloses; we will henceforth

refer to it as a flux concentrator. Navau et al. show that in

the limit lr !1 and l/ ! 0 while keeping lrl/ ¼ 1 such

a flux concentrator will leave a uniform external field

unchanged on the outside of the concentrator while generat-

ing a uniform field inside it equal to the external field multi-

plied by a factor of Rm=Ri, where Rm and Ri are the outer and

inner radius of the flux concentrator, respectively. The focus

of Navau et al. was the use of such a structure for harvesting

and redistributing magnetic energy in space. However, one

can also consider the effect of a flux concentrator in conjunc-

tion with a permanent magnet configuration. Then the object

is not to harvest magnetic energy but to change the field pro-

duced by the magnet configuration in a given volume. The

object of the present paper is to analyze the field produced

by the combination of a permanent magnet configuration

with a flux concentrator.

Permanent magnet constructions that produce a power-

ful magnetic flux density, either uniformly or with a pre-

scribed spatial variation, in a specified volume are used in a

number of applications, such as nuclear magnetic resonance

(NMR) equipment,5,6 accelerator magnets7,8 and magnetic

refrigeration devices.9,10 A widely used permanent magnet

configuration is the so-called Halbach cylinder which can

generate either a uniform flux density or a multipole field. In

the limit where the length of the array is much larger than its

diameter, the field from the magnet can to a good approxima-

tion be found by considering a Halbach cylinder of infinite

length. This two-dimensional problem becomes amenable to

analytical calculations. The Halbach cylinder is a hollow

cylinder made of a ferromagnetic material with a remanent

flux density which in cylindrical coordinates is given by

Brem;r ¼ Brem cos p/;

Brem;/ ¼ Brem sin p/;
(1)

where Brem is the magnitude of the remanent flux density and

p is an integer.11,12 For p positive an internal field is gener-

ated, which for the important case of p¼ 1 is spatially uni-

form. Outside the cylinder, the field is identically zero. For p
negative the Halbach cylinder creates a field on its outside,

while the inside field becomes zero. The magnetic field dis-

tribution for a Halbach cylinder of infinite length13–17 as

well as for finite length.18–21 has previously been investi-

gated in detail. However, the question of the field from a

Halbach cylinder with a flux concentrator does not seem to

have been considered before in the literature.

The plan of the paper is as follows: First we calculate

the field generated by a p-Halbach in combination with a

flux concentrator analytically and discuss how the flux con-

centrator impacts the field. The figure of merit, i.e., effi-

ciency, of such a system, considered as a device for the

generation of a magnetic field, is then determined. We then

discuss the case of two concentric Halbachs together with

two flux concentrators and show how the magnetic field as

well as the torque between the inner and outer Halbach is

influenced by the flux concentrators. Materials with infinitea)Electronic address: rabj@dtu.dk
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permeability in one direction and zero permeability in another

do not exist, of course. Therefore, we examine some possible

realizations of such as a material as a composite metamaterial.

Finally, we discuss the implications of our findings.

II. ANALYTICAL RESULTS

Let us consider the field from a p-Halbach in combina-

tion with a flux concentrator with radial permeability lr

and tangential permeability l/; for the present, we make no

assumptions regarding their relative sizes. The geometry is

as shown in Fig. 1 for the case of an “interior” Halbach

(positive p); for “exterior” Halbachs (corresponding to

negative p), the flux concentrator is placed concentrically

on the outside of the cylinder. We assume that the perma-

nent magnets are perfectly linear, i.e., with an infinite

intrinsic coercivity.

To find the field, we introduce the vector potential

Azðr;/Þ through B ¼ r� ð0; 0;AzÞ. We then solve the

Maxwell equation r�H ¼ 0 in each of the domains, sub-

ject to the boundary conditions of continuity of Br and H/

(see Appendix A for details). The results for the field may be

expressed in terms of the two parameters j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l/=lr

q
and

k ¼ ffiffiffiffiffiffiffiffiffiffilrl/
p

. We get for the interior Halbach:

Brðr;/Þ
B/ðr;/Þ

 !
¼

Brem

p

p� 1

Ri

Rm

� �jp�1

1� Rm

Ro

� �p�1
" #

4k

ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2jp

r

Ri

� �p�1 cos p/

�sin p/

 !
p > 1

Brem

Ri

Rm

� �j�1

ln
Ro

Rm

� �
4k

ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2j

cos /

�sin /

 !
p ¼ 1:

8>>>>>><
>>>>>>:

(2)

Here Ro is the outer radius of the Halbach, Rm is the inner

radius (equal to the outer radius of the flux concentrator),

while Ri is the inner radius of the flux concentrator. For p¼ 1,

the generated field is still uniform, while for p > 1, the field

has the same spatial and angular dependence as for a p-

Halbach without the flux concentrator. Thus, in both cases the

effect of the flux concentrator is to multiply the field by a con-

stant factor, allowing us to summarize the results as

BIðr;/Þ ¼ Ri

Rm

� �jp�p
4k

ð1þ kÞ2�ð1� kÞ2ðRi=RmÞ2jp
BI

0ðr;/Þ;

(3)

where BI denotes the flux density in region I in Fig. 1 and BI
0

denotes the field in the same region, in the case without a

flux concentrator. However, it should be noted that if k 6¼ 1,

there will now be a field on the outside of the cylinder, in

contrast to the case without the concentrator. This field can

be found from Appendix A.

For an exterior Halbach (p � �1) we get for the field

outside the Halbach and flux concentrator (Rm and Ro are the

inner and outer radius of the Halbach; Ro and RO are the

inner and outer radius of the flux concentrator),

Brðr;/Þ
B/ðr;/Þ

 !
¼ Brem

p

p� 1

RO

Ro

� �jp�1

� 1� Ro

Rm

� �p�1
" #

� 4k

ð1þ kÞ2 � ð1� kÞ2ðRO=RoÞ2jp

RO

r

� ��pþ1

�
cos p/

�sin p/

 !
: (4)

The resulting flux density, BIV , is also a constant times the

field without the flux concentrator, BIV
0 ,

BIVðr;/Þ¼ RO

Ro

� �jp�p
4k

ð1þkÞ2�ð1�kÞ2ðRO=RoÞ2jp
BIV

0 ðr;/Þ:

(5)

In this case, there is also a field inside the Halbach if

k 6¼ 1.

Both for an interior and an exterior Halbach, the field

generated is the same for k and 1=k. The k-dependent factor

is in both cases positive and bounded by 1.
FIG. 1. The combined Halbach cylinder and flux concentrator system for a

p-Halbach (p > 0). The different radii and regions have been indicated.
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For the case of k ¼ 1 the above expressions simplify

considerably and the field outside the interior Halbachs and

inside the exterior Halbachs becomes identically zero, in

generalization of the result found by Navau et al.4 If we

compare now the two extreme cases j ¼ 1 (an ordinary iso-

tropic material, i.e., no flux concentration) and j ¼ 0 (maxi-

mally anisotropic flux concentrator), we find that the effect

of the flux concentrator is to multiply the field generated by

a p-Halbach by the simple factor ðRm=RiÞp (interior Halbach)

or ðRO=RoÞ�p
(exterior Halbach). This has implications both

for the figure of merit of a given combination of Halbach

cylinder and flux concentrator and for the force and torque

experienced by concentric Halbachs. These questions will be

addressed below.

Finally, we note that if j > 1, i.e., if l/ > lr, the gener-

ated field decreases by a factor of ðRm=RiÞjp
(for an interior

Halbach) compared to the isotropic case. Thus, in this case,

the flux concentrator acts as a “flux diluter.”

A. Figure of merit of a Halbach cylinder with a flux
concentrator

The object of a permanent magnet array is to generate a

magnetic field of given characteristics in a given volume.

Many different magnet configurations can in principle pro-

duce the same magnetic field, and thus the question arises of

how to do it most efficiently. Jensen and Abele22 proposed a

general figure of merit, M, to characterize the efficiency of a

given magnet design,

M ¼

ð
Vfield

jjBjj2dVð
Vmag

jjBremjj2dV

¼

ð
Vmag

ð�B �HÞdV

4lr

ð
Vmag

ð�B �HÞmaxdV

; (6)

where Vfield is the volume of the region where the magnetic

field is created and Vmag is the volume of the magnets. The

figure of merit is the ratio of the energy stored in the field

region to the maximum amount of magnetic energy available

in the magnetic material, or formulated in terms of the

permanent magnet energy product (�B �HÞ, the average

energy product to the average of the maximum energy prod-

uct. It can be shown that the maximum value of M is 0.25.

Thus, this figure of merit parameter measures how well uti-

lized the magnets are, when generating a specific magnetic

field.

The general magnetic figure of merit of a Halbach cylin-

der have been calculated,30 but here we consider the com-

bined system with a flux concentrator. When a flux

concentrator is added to the Halbach cylinder, the domain of

integration of the field in Eq. (6) changes from the edges of

the Halbach cylinder to those of the flux concentrator. The

flux density is given by Eqs. (3) and (5). The figure of merit

becomes

M ¼

Ri

Rm

� �2jp
4k

ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2jp

 !2
p

ð1� pÞ2
1� Rm

Ro

� �p�1
 !2

ðRm=RoÞ2

1� ðRm=RoÞ2
p > 1

Ri

Rm

� �2jp
4k

ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2jp

 !2

ln
Ro

Rm

� �2 ðRm=RoÞ2

1� ðRm=RoÞ2
p ¼ 1

� RO

Ro

� �2jp
4k

ð1þ kÞ2 � ð1� kÞ2ðRO=RoÞ2jp

 !2 ðRm=RoÞ2

1� ðRm=RoÞ2
Rm

Ro

� ��2p p

ð1� pÞ2
1� Rm

Ro

� �p�1
 !2

p � �1:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(7)

The expressions in Eq. (7) have been verified by com-

parison with simulation results from COMSOL MULTIPHYSICS.

For j ¼ 0 and k ¼ 1, the figure of merit becomes equal to

the figure of merit of a Halbach cylinder without flux con-

centrator,17 while for j > 0 or k 6¼ 1, the figure of merit will

decrease. Thus, only in the case of an ideal flux concentrator,

the figure of merit of the magnet system will be unchanged

when a flux concentrator is added to the system. This is due

to the fact that in the interior of the ideal flux concentrator

B �H ¼ 0, i.e., no magnetic energy is stored inside it. The

maximum figure of merit will still occur for the same ratio of

the inner and outer radius as for the imperfect flux concentra-

tor. Since this will be true for any given magnet design add-

ing an ideal flux concentrator will not change the figure of

merit of a magnet design. However, Eq. (7) can be used to

calculate the figure of merit for a system with an imperfect

flux concentrator, which is useful for practical applications.

Furthermore, because the figure of merit at best remains

unchanged when an flux concentrator is used, certainly does

not mean that the flux concentrator cannot be advantageous

for certain applications. This will be considered in Sec. IV.

It is also of interest to consider a magnet efficiency pa-

rameters that differs from M, as specific applications might

have a different field dependence than B2. Consider, e.g., the

efficiency parameter for magnetic refrigeration for a com-

pletely uniform field, Kcool ¼ ðB2=3 � B
2=3
lowÞ Vfield

Vmag
Pfield, where

Blow is the flux density in the low field region and Pfield is the

fraction of time magnetocaloric material is in the field.10,20

This efficiency parameter is proportional to B2=3 as the adia-

batic temperature change due to the magnetocaloric effect

scales with this value close to the Curie temperature. Adding

a magnetic flux concentrator to a system will increase B, but

also decrease Vfield. Performing the integration, one can see

that if the relevant figure of merit is proportional to Ba for

053912-3 Bjørk, Smith, and Bahl J. Appl. Phys. 114, 053912 (2013)

Downloaded 04 Sep 2013 to 192.38.90.17. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions



a < 2, the efficiency of a design will always decrease when

adding a flux concentrator, while it will increase for a > 2,

assuming that the efficiency is directly proportional to Vmag.

Thus for the Kcool figure of merit, a flux concentrator will

always decrease the efficiency of a given design.

B. Halbach with flux concentrator for p 5 1

It is of interest to determine the optimal geometrical

dimensions of the most efficient combined Halbach cylinder

and flux concentrator system. For a Halbach cylinder without

flux concentrator, the optimal ratio of the radii does not have a

closed form solution for p > 3,17 and this will also be the case

for a system with flux concentrator. We, therefore, consider

the most common Halbach cylinder, namely the p¼ 1

Halbach cylinder in combination with a flux concentrator. We

wish to determine the optimal geometrical size of the flux

concentrator for a given desired value of B and inner radius

Ri. For now, we only consider a perfect flux concentrator, i.e.,

j ¼ 0 and k ¼ 1. Calculating and differentiating the expres-

sion for B from Eq. (2), i.e. Eq. (A36), with respect to Rm and

putting it equal to zero, one gets that the flux density will

obtain its largest value when

Rm ¼ Roe�1; (8)

which will produce the maximum flux density, Bmax, for a

given inner and outer radius of the whole system, of

Bmax ¼ Breme�1 Ro

Ri

; (9)

with a corresponding magnet area of

Amag;Bmax
¼ pðe2 � 1ÞB

2
max

B2
rem

R2
i : (10)

However, in order to obtain the maximum efficiency of

a combined p¼ 1 Halbach and flux concentrator the configu-

ration that produces a desired flux density in a desired bore

using the least amount of magnet material must be found.

The cross-sectional area of the magnet, i.e., the Halbach cyl-

inder, is given by

Amag ¼ pR2
m e2 B

Brem

Ri
Rm � 1

� �
: (11)

The minimum amount of magnet material as function of Rm

can be found by differentiating Amag with respect to Rm and set-

ting the derivative equal to zero. The solution to this equation is

Rm ¼
B

Brem

2Ri

Wð�2e�2Þ þ 2
� 1:2550

B

Brem

Ri; (12)

where W is the Lambert W function. The argument of the

Lambert W function is greater than �1=e, which means that

the function is single-valued. Defining the constant x ¼ 2=
ðWð�2e�2Þ þ 2Þ � 1:2550, the corresponding minimum

amount of magnet is

Amag;min ¼ px2ðe2
x � 1Þ B2

B2
rem

R2
i ; (13)

which is needed to produce a given flux density for a given

inner radius for a combined Halbach cylinder and flux con-

centrator system. The corresponding values of Ro can be

found from isolating Ro in the equation for the norm of B,

Eq. (A36), derived from Eq. (2), while the value for Rm is

given in Eq. (12). The minimum cross-sectional area can be

compared with the cross-sectional area obtained when using

the maximum value of B, i.e., Eq. (10). The difference

between these is a constant factor of

Amag;min

Amag;Bmax

¼ x2ðe2
x � 1Þ

e2 � 1
� 0:967: (14)

The difference in value for Rm is also a constant factor of

Rm;min mag

Rm;Bmax

¼ x: (15)

For Ro, the ratio depends on the ratio between B and Brem.

For the two systems producing either the maximum flux

or the configuration with the least magnet material, the figure

of merits becomes independent of geometry. Using Eqs. (10)

and (13), the figures of merit become

MBmax
¼ 1

e2 � 1
� 0:157;

MAmin
¼ 1

x2ðe 2
x � 1Þ

� 0:162; (16)

for the two cases, respectively. This means that a combined

Halbach cylinder and flux concentrator system can be

designed whose figure of merit does not depend on the ratio

of B and Brem, opposite the case for a p¼ 1 Halbach without a

flux concentrator. The reason for this is that a magnetic flux

concentrator is simply used to increase the magnetic flux den-

sity of an already maximally efficient Halbach cylinder sys-

tem without a flux concentrator to the desired value of B. This

would be an ideal application for a flux concentrator. While

the figure of merit of the overall systems remains the same as

for a case without a flux concentrator, the field achieved is

much greater than would otherwise be the case. This clearly

illustrates the usefulness of flux concentrators.

III. CONCENTRIC HALBACHS WITH FLUX
CONCENTRATORS

Two ordinary Halbach cylinders (without flux concen-

trators) which are placed concentrically one within the other

exert a force and a torque on each other for certain values of

their pole number. Both the force and the torque can be cal-

culated from the Maxwell stress tensor. Thus, the force per

unit length exerted by the outer cylinder on the inner is given

in Cartesian coordinates by

F ¼
þ

S

T
$
� nds; (17)

where the integration is done over a closed surface (i.e., a

line in 2D) enclosing the inner but not the outer Halbach; it
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can conveniently by taken as a circle in the middle of the

gap between the two Halbachs. The Maxwell stress tensor T
$

has the components

Txx Txy

Tyx Tyy

� �
¼

1

2
ðB2

x � B2
yÞ BxBy

BxBy
1

2
ðB2

y � B2
xÞ

0
BB@

1
CCA; (18)

while n is the outwards-directed normal to the integration

surface.

It can be shown17 that the force is only non-zero for

p1 ¼ 1� p2 and p2 > 1, where the innermost cylinder is a

p1-Halbach, while the outer is a p2-Halbach. In this case, the

force per unit length acting on the inner cylinder due to the

field of the outer is

Fx

Fy

� �
¼ 2p

l0

K
cos p1/0

sin p1/0

� �
; (19)

where we have assumed that the inner magnet is rotated an

angle /0 with respect to the outer; the positive constant K is

K ¼ Brem;1Brem;2ðRp1

m;2 � Rp1

o;2ÞðR
p2

o;1 � Rp2

m;1Þ.
Similarly, there is only a torque between two ordinary

Halbachs, if p � p2 ¼ �p1 > 0. For p > 1, the torque per

unit length is

s ¼ 2p
l0

p2

1� p2
Ks sin p2/0; (20)

where Ks ¼ Brem;1Brem;2ðR1�p
m;2 � R1�p

o;2 ÞðR
pþ1
o;1 � Rpþ1

m;1 Þ. The

case p¼ 1 has to be considered separately, and one gets

s ¼ � p
l0

K
0

s sin /0; (21)

with K
0
s ¼ Brem;1Brem;2ðR2

o;1 � R2
m;1Þln

Ro;2

Rm;2
.

If we now consider two Halbachs, each equipped with a

flux concentrator (see Fig. 2), the force and the torque is

modified. As the angular dependence of the Halbach fields is

the same with and without a flux concentrator, it is still the

case that the force is only non-zero for p1 ¼ 1� p2 and

p2 > 1. Using Eqs. (3) and (5), we immediately get that the

force per unit length becomes

Fx

Fy

� �
¼ 2p

l0

Kfc
cos p1/0

sin p1/0

� �
; (22)

where

Kfc ¼ Brem;1Brem;2ðRp1

m;2�Rp1

o;2ÞðR
p2

o;1�Rp2

m;1Þ

� Ri;2

Rm;2

� �j2p2�p2 4k2

ð1þ k2Þ2�ð1� k2Þ2ðRi;2=Rm;2Þ2j2p2

� RO;1

Ro;1

� �j1p1�p1 4k1

ð1þ k1Þ2�ð1� k1Þ2ðRO;1=Ro;1Þ2j1p1
:

(23)

As before, there is only a torque for p � p2 ¼ �p1 > 0. The

torque per unit length is

s ¼

p2

1� p2
Kfc;s sin p/0 p > 1

� p
l0

K
0

fc;s sin /0; p ¼ 1;

8>>><
>>>:

(24)

where

Kfc;s ¼Brem;1Brem;2ðR1�p
m;2 �R1�p

o;2 ÞðR
pþ1
o;1 �Rpþ1

m;1 Þ

� Ri;2

Rm;2

� �j2p�p 4k2

ð1þk2Þ2�ð1�k2Þ2ðRi;2=Rm;2Þ2j2p

� RO;1

Ro;1

� ��j1pþp 4k1

ð1þk1Þ2�ð1�k1Þ2ðRO;1=Ro;1Þ�2j1p

(25)

and

K
0

fc;s ¼ Brem;1Brem;2ðR2
o;1�R2

m;1Þln
Ro;2

Rm;2

� Ri;2

Rm;2

� �j2�1 4k2

ð1þ k2Þ2� ð1� k2Þ2ðRi;2=Rm;2Þ2j2

� RO;1

Ro;1

� ��j1þ1 4k1

ð1þ k1Þ2� ð1� k1Þ2ðRO;1=Ro;1Þ�2j1
:

(26)

With the technology of torque transfer through mag-

netic couplings in mind one may ask whether there is an

optimal combination of Rm;1 � Ro;1 � RO;1 � Ri;2 � Rm;2 �
Ro;2 which for a given outer radius Ro;2 will maximize the

torque between the two Halbachs. It turns out (see

Appendix B) that the maximum torque is achieved by hav-

ing the two magnets fill the entire volume, i.e., with no flux

concentrators and Rm;1 ¼ 0, and with an outer radius of the

inner magnet equal to the inner radius of the outer magnet

equal to Rmax, where
FIG. 2. The two Halbachs, each equipped with a flux concentrator, used for

the torque calculation. The different radii and regions have been indicated.
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Rmax ¼
e�1=2Ro;2 p ¼ 1

2

pþ 1

� � 1
p�1

Ro;2 p > 1:

8>><
>>: (27)

Thus, it is not possible to increase the maximum amount of

torque between two Halbachs by using flux concentrators.

Even though the maximum amount of torque cannot be

increased, it should be noted that for two given (non-optimal)

concentric Halbachs with some gap space between them, it is

possible to increase the torque between them by filling the gap

completely or partially with an ideal flux concentrator.

IV. APPLICATION OF FLUX CONCENTRATORS

It is of interest to consider the performance of a imper-

fect flux concentrator for application purposes. We consider

a p¼ 1 Halbach cylinder with maximally efficient dimen-

sions, i.e., Ro=Rm ¼ 2:22, as this is most frequently used in

applications.23,24 The flux generated in the bore by placing

an imperfect flux concentrator inside the Halbach cylinder

can be found from Eq. (3). In the following, we will consider

a flux concentrator with a fixed value of lr ¼ 105.

The flux density produced in the bore as function of the

size of the flux concentrator is shown in Fig. 3 for a range of

values of l/. It is clear that a high value of l/ severely

reduces the performance of the flux concentrator. This last

point is better illustrated by showing the figure of merit of

the combined system, as function of the size of the flux con-

centrator for the same range of l/ values. This is shown in

Fig. 4. This figure clearly shows that increasing l/ reduces

the figure of merit of the flux concentrator severely.

A possible application for flux concentrators is for high

field systems, for which demagnetization issues become

relevant.26–28 Consider, e.g., a p¼ 1 Halbach for which the

reverse component of the magnetic field can exceed the

intrinsic coercivity in regions around the inner equator,20,29

as discussed previously. Using a combined Halbach cylinder

and magnetic lens efficiently resolves this problem, as the

Halbach cylinder in which the generated field does not

exceed the coercivity can be used, and the magnetic lens can

increase the field to the desired value, even though this is

higher than the coercivity of the permanent magnets. This

will be discussed subsequently.

For application purposes, it is also of interest to evaluate

the performance of a segmented flux concentrator, as this

might be a way to realize the flux concentrator design experi-

mentally. Here, we compare with the performance for a non-

ideal but unsegmented flux concentrator. As an example, we

consider a system with Ri ¼ 1; Rm ¼ 3; and Ro ¼ 8 for a

p¼ 1 Halbach with a remanence of Brem ¼ 1:4 T. Shown in

Fig. 5 is the average field in the bore for a non-ideal flux con-

centrator with lr ¼ 104 and varying l/ and for a 48 seg-

mented flux concentrator with alternating segments of

materials with a isotropic permeability of lr ¼ 104 and l/,

respectively. Also shown is the flux density produced by a

Halbach alone with an equal amount of magnet, i.e., substi-

tuting the flux concentrator with magnet and changing the

outer radius to Ro ¼ 7:48. As can be seen the 48 segmented

design produces a consistently lower flux density than the

non-segmented flux concentrator. In this example, this means

FIG. 3. The normalized magnetic flux density as function of the size of the

flux concentrator for different values of l/. Note the logarithmic scale.

FIG. 4. The figure of merit as function of the size of the flux concentrator

for different values of l/. The legend is identical to Fig. 3.

FIG. 5. The average magnetic flux density in the bore for a p¼ 1 Halbach

with an imperfect flux concentrator as function of l/ for the specific geome-

try. Also shown in the average field produced by the 48 segmented flux con-

centrator with alternating an alternating segments of materials with a isotropic

permeability of lr and l/, respectively. Finally, the flux density produced by

a Halbach alone with an equal amount of magnet, i.e., Ro ¼ 7:48 is shown.
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that for example a value of l/ ¼ 0:5 a non-segmented flux

concentrator still increases the flux density compared to a

Halbach alone, whereas this is no longer the case if the flux

concentrator is segmented in 48 parts.

A. Demagnetization effects

When a given Halbach design is implemented using perma-

nent magnets with a finite coercivity, the demagnetization field

internally in the magnet becomes an issue that need to be con-

sidered.25 While the demagnetization of a p-Halbach cylinder

alone has been considered elsewhere,30 it is relevant to consider

the influence of a flux concentrator on the demagnetization of a

Halbach cylinder. The condition for demagnetization to occur is

l0

H �M
Brem

� �Hc: (28)

We consider the cases p¼ 1 and p > 1 separately. The case

of p < 1 is not considered, but the calculations follow the

case of p > 1.

For the case of p¼ 1, the vector field inside the Halbach

array is given by Eq. (A27). From this, the magnetic flux

density is readily derived and using elementary trigonomet-

ric relations we get

l0

H �M
Brem

¼ l�1
0 Brem

�
ln

Ro

Rm
� 1

2

�
cos 2/þ KIII

2

Brem

r�2 � 1

2

 !
;

(29)

where KIII
2 is given by Eq. (A32). The condition for demag-

netization becomes

�l0Hc

Brem

þ 1

2
>

�
ln

Ro

r
� 1

2

�
cos 2/þ KIII

2

Brem

r�2: (30)

These equations are identical to case for a Halbach cylinder

without flux concentrator30 except for the KIII
2 constant. This

constant is equal to zero for the case without flux concentra-

tor and also for the case for the conjugate flux concentrator,

k ¼ 1. For this case the field inside the Halbach is unchanged

by the presence of the flux concentrator, regardless of the

value of j. In this case, demagnetization will first arise for

cos 2/ ¼ 61.

For a p > 1 Halbach cylinder, the calculation of the

demagnetization proceeds very similarly to the case of p¼ 1.

We get, using Eqs. (A6), (A17), and (A18), that the condition

for demagnetization to occur becomes

�l0Hc

Brem

þ 1

2
> � p

p� 1

r

Ro

� �p�1

þ 1

2

pþ 1

p� 1

 !
cos 2p/

þ p
KIII

2

rpþ1
: (31)

Now, KIII
2 is given by Eq. (A18). Again the equation is

identical to the case without flux concentrator, except for the

KIII
2 constant.30 Thus the general conclusion is that flux con-

centrators with k > 1 tends to decrease demagnetization,

while k < 1 increases it. A flux concentrator can thus be

used to design a high flux density system, which would not

have been possible without the flux concentrator due to

demagnetization effects. Thus this constitutes another possi-

ble application for flux concentrators.

V. DISCUSSION AND CONCLUSION

Magnetic metamaterials have long been studied theoreti-

cally, but their practical applications have been few. For the spe-

cial case of metamaterials which can modify static magnetic

fields, Navau et al. recently suggested a metamaterial object con-

sisting of a hollow cylinder (or a spherical shell) made of a mate-

rial with an anisotropic, spatially constant magnetic permeability.

This object can concentrate external flux lines in the space which

it encloses. By considering a well known cylindrical permanent

magnetic structure, namely the Halbach cylinder, together with a

flux concentrator, the influence of the flux concentrator on an

actual magnetic structure can be investigated directly. The

Halbach cylinder is a hollow cylinder made of a ferromagnetic

material with a remanent flux density which is varied as a func-

tion of angle but remains constant in the radial direction.

Here, we have calculated the field generated by a general

Halbach cylinder in combination with a flux concentrator ana-

lytically. Having directly derived the analytical field equations

allows for the magnetic efficiency of such a system to be

determined directly and subsequently the optimal dimensions

of such a system to be determined. It was shown that a flux

concentrator cannot increase the figure of merit of a given

magnet design. Following this, the case of two concentric

Halbachs together with two flux concentrators was discussed

with emphasis on how the magnetic field as well as the torque

between the inner and outer Halbach is influenced by the flux

concentrators. The torque was calculated analytically and the

maximum torque was determined. Finally, the possible real-

ization of a metamaterial flux concentrator was discussed, and

the generated field and figure of merit of such constructs were

discussed. It was showed that by constructing a segmented

flux concentrator, the choice of materials and more specifi-

cally their relative permeability was critically important for

the generated field. Demagnetization was also discussed, and

it was shown that flux concentrators may be useful for reliev-

ing demagnetization in permanent magnet constructs.

APPENDIX A: ANALYTICAL SOLUTION OF THE FIELD

The field from a p-Halbach together with an anisotropic

flux concentrator can readily be found analytically, using the

methods outlined in, e.g., Ref. 17. For reference, we briefly

summarize the procedure here, together with the full results

for the field distribution. A p-Halbach has the magnetization

l0Mr ¼ Brem cos p/; l0M/ ¼ Brem sin p/, where Brem is the

magnitude of the remanence. For p > 0, the Halbach cylin-

der generates a field in the region inside it, while for p < 0 it

generates a field on the outside.

For the two-dimensional case considered here, we can

write B ¼ r� A ¼ r� ð0; 0;AzÞ. We solve the Maxwell

equation r�H ¼ 0 in the Lorenz gauge r � A ¼ 0. In cy-

lindrical coordinates, we get the following differential equa-

tion for Azðr;/Þ in the two vacuum regions:
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r2 @
2Az

@r2
þ r

@Az

@r
þ @

2Az

@/2
¼ 0: (A1)

In the region containing the flux concentrator, we have

Hr ¼ 1
lrl0

Br and H/ ¼ 1
l/l0

B/ and get

r2 @
2Az

@r2
þ r

@Az

@r
þ j2 @

2Az

@/2
¼ 0; (A2)

where we have introduced j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l/=lr

q
. Finally, inside the

Halbach, we have Hr ¼ 1
lrl0

Br �Mr and H/ ¼ 1
l/l0

B/ �M/,

and the equation to solve becomes

r2 @
2Az

@r2
þ r

@Az

@r
þ @

2Az

@/2
¼ �Bremðpþ 1Þr sin p/: (A3)

The solution has to be found subject to the conditions of con-

tinuity of Br and H/ at each of the boundaries between the

regions. This immediately constrains the general solution of

the above equations to only contain terms with the angular

dependence sin p/.

1. The interior Halbach with p > 1

We get the following solutions for the vector potential

in each of the four regions:

Azðr;/Þ ¼ KI
1rp sin p/ ðboreÞ (A4)

Azðr;/Þ ¼ ðKII
1 rjp þ KII

2 r�jpÞ sin p/ ðflux concentratorÞ
(A5)

Azðr;/Þ ¼ KIII
1 rp þ KIII

2 r�p þ Brem

p� 1
r

� �
sin p/ ðHalbachÞ

(A6)

Azðr;/Þ ¼ KIV
2 r�p sin p/ ðoutsideÞ; (A7)

where we have used the fact that the vector potential must

remain finite for r ! 0 and r !1 to set KI
2 ¼ KIV

1 ¼ 0.

The six constants are determined from the following six

equations:

KI
1Rp�1

i ¼ KII
1 Rjp�1

i þ KII
2 R�jp�1

i ; (A8)

KI
1Rp�1

i ¼ k�1ðKII
1 Rjp�1

i � KII
2 R�jp�1

i Þ; (A9)

KII
1 Rjp�1

m þ KII
2 R�jp�1

m ¼ KIII
1 Rp�1

m þ KIII
2 R�p�1

m þ 1

p� 1
Brem;

(A10)

k�1ðKII
1 Rjp�1

m � KII
2 R�jp�1

m Þ ¼ KIII
1 Rp�1

m � KIII
2 R�p�1

m

þ 1

p� 1
Brem; (A11)

KIII
1 Rp�1

o þ KIII
2 R�p�1

o þ 1

p� 1
Brem ¼ KIV

2 R�p�1
o ; (A12)

KIII
1 Rp�1

o � KIII
2 R�p�1

o þ 1

p� 1
Brem ¼ �KIV

2 R�p�1
o : (A13)

Here, we have introduced k ¼ ffiffiffiffiffiffiffiffiffiffilrl/
p

.

This linear set of equations is straightforward to solve

using, e.g., MATHEMATICA. We get:

KI
1 ¼

Brem

p� 1
R�pþ1

i

Ri

Rm

� �jp�1

1� Rm

Ro

� �p�1
" #

� 4k

ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2jp
; (A14)

KII
1 ¼

Brem

p� 1
R�jpþ1

m 1� Rm

Ro

� �p�1
" #

� 2kð1þ kÞ
ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2jp

; (A15)

KII
2 ¼

Brem

p� 1
Rjpþ1

m

Ri

Rm

� �2jp

1� Rm

Ro

� �p�1
" #

� 2kð1� kÞ
ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2jp

; (A16)

KIII
1 ¼ �

Brem

p� 1
R�pþ1

o ; (A17)

KIII
2 ¼

Brem

p� 1
Rpþ1

m 1� Ri

Rm

� �2jp
" #

1� Rm

Ro

� �p�1
" #

� k2 � 1

ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2jp
(A18)

KIV
2 ¼ KIII

2 : (A19)

The field inside the bore is

BI
rðr;/Þ ¼ Brem

p

p� 1

Ri

Rm

� �jp�1

1� Rm

Ro

� �p�1
" #

� 4k

ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2jp

r

Ri

� �p�1

cos p/;

(A20)

BI
/ðr;/Þ ¼ �Brem

p

p� 1

Ri

Rm

� �jp�1

1� Rm

Ro

� �p�1
" #

� 4k

ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2jp

r

Ri

� �p�1

sin p/:

(A21)

In the absence of a flux concentrator, the p > 1 Halbach

cylinder generates the following field:17

BI
0;r ¼ Brem

p

p� 1
1� Rm

Ro

� �p�1
" #

r

Rm

� �p�1

cos p/; (A22)

BI
0;/ ¼ �Brem

p

p� 1
1� Rm

Ro

� �p�1
" #

r

Rm

� �p�1

sin p/:

(A23)

Thus, the effect of the flux concentrator is to modify the

interior field by a constant factor:
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BIðr;/Þ ¼ Ri

Rm

� �jp�p
4k

ð1þ kÞ2�ð1� kÞ2ðRi=RmÞ2jp
BI

0ðr;/Þ:

(A24)

If k ¼ 1, i.e., the radial and the tangential components

of the permeability are conjugate in the sense that lr ¼ l�1
/ ,

the above expressions simplify considerably. In that case the

field in the bore becomes

BI
rðr;/Þ ¼ Brem

p

p� 1

Ri

Rm

� �jp�1

1� Rm

Ro

� �p�1
" #

� r

Ri

� �p�1

cos p/; (A25)

BI
/ðr;/Þ ¼ �Brem

p

p� 1

Ri

Rm

� �jp�1

1� Rm

Ro

� �p�1
" #

� r

Ri

� �p�1

sin p/; (A26)

and the field outside the Halbach becomes identically zero.

2. The interior Halbach with p 5 1

The case of p¼ 1 has to be considered separately. The

vector potential inside the Halbach now becomes

Azðr;/Þ ¼ ðKIII
1 r þ KIII

2 r�1 � BremrlnrÞ sin / ðHalbachÞ:
(A27)

Again we get six equations with six unknowns. The solution

is

KI
1 ¼ Brem

Ri

Rm

� �j�1

ln
Ro

Rm

� �
4k

ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2j ;

(A28)

KII
1 ¼ BremR�jþ1

m ln
Ro

Rm

� �
2kð1þ kÞ

ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2j ;

(A29)

KII
2 ¼BremRjþ1

m

Ri

Rm

� �2j

ln
Ro

Rm

� �
2ð1�kÞk

ð1þkÞ2�ð1�kÞ2ðRi=RmÞ2j ;

(A30)

KIII
1 ¼ BremlnRo; (A31)

KIII
2 ¼ BremR2

m 1� Ri

Rm

� �2j
" #

ln
Ro

Rm

� �

� k2 � 1

ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2j ; (A32)

KIV
2 ¼ KIII

2 : (A33)

The field inside the bore is constant, with a magnitude

equal to

BI ¼ Brem

Ri

Rm

� �j�1

ln
Ro

Rm

� �
4k

ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2j :

(A34)

The field for the p¼ 1 Halbach without a flux concentrator is

BI
0 ¼ BremlnðRo=RmÞ, and again the effect of the flux concen-

trator is to multiply the field by a constant factor:

BI ¼ Ri

Rm

� �j�1
4k

ð1þ kÞ2 � ð1� kÞ2ðRi=RmÞ2j BI
0: (A35)

For the case of a conjugate material, we get for the field

inside the bore:

BI ¼ Brem

Ri

Rm

� �j�1

ln
Ro

Rm

� �
; (A36)

with the field outside the Halbach equal to zero.

3. The exterior Halbach with p £ 21

The negative p Halbach generates a field in the region

outside it, while the field inside it is zero. Thus, it makes

most sense to place the flux concentrator on the outside of

the Halbach. We continue to call the interior and exterior

radii of the Halbach for Rm and Ro, but now the inner radius

of the flux concentrator is Ro, while the outer radius is RO.

For p < �1, we get the following solutions for the vec-

tor potential in each of the four regions:

Azðr;/Þ ¼ KI
2r�p sin p/ ðboreÞ; (A37)

Azðr;/Þ ¼ ðKII
1 rp þ KII

2 r�p þ Brem

p� 1
rÞ sin p/ ðHalbachÞ;

(A38)

Azðr;/Þ ¼ ðKIII
1 rjp þ KIII

2 r�jpÞ sin p/ ðflux concentratorÞ;
(A39)

Azðr;/Þ ¼ KIV
1 rp sin p/ ðoutsideÞ; (A40)

subject to the six boundary conditions.

Again, the solution is straightforward, and we get

KI
2 ¼

Brem

p� 1
Rpþ1

o 1� RO

Ro

� �2jp
" #

1� Ro

Rm

� �p�1
" #

� k2 � 1

ð1þ kÞ2 � ð1� kÞ2ðRO=RoÞ2jp
; (A41)

KII
1 ¼ �

Brem

p� 1
R�pþ1

m ; (A42)

KII
2 ¼ KI

2; (A43)

KIII
1 ¼

Brem

p� 1
R�jpþ1

o 1� Ro

Rm

� �p�1
" #

� 2kð1þ kÞ
ð1þ kÞ2 � ð1� kÞ2ðRO=RoÞ2jp

; (A44)
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KIII
2 ¼

Brem

p� 1
Rjpþ1

o

RO

Ro

� �2jp

1� Ro

Rm

� �p�1
" #

� 2kð1� kÞ
ð1þ kÞ2 � ð1� kÞ2ðRO=RoÞ2jp

; (A45)

KIV
2 ¼

Brem

p� 1
R�pþ1

O

RO

Ro

� �jp�1

1� Ro

Rm

� �p�1
" #

� 4k

ð1þ kÞ2 � ð1� kÞ2ðRO=RoÞ2jp
: (A46)

The field outside the Halbach is then

BIV
r ðr;/Þ¼Brem

p

p�1

RO

Ro

� �jp�1

1� Ro

Rm

� �p�1
" #

� 4k

ð1þkÞ2�ð1�kÞ2ðRO=RoÞ2jp

RO

r

� ��pþ1

cosp/;

(A47)

BIV
/ ðr;/Þ¼�Brem

p

p�1

RO

Ro

� �jp�1

1� Ro

Rm

� �p�1
" #

� 4k

ð1þkÞ2�ð1�kÞ2ðRO=RoÞ2jp

RO

r

� ��pþ1

sinp/:

(A48)

Compared to the case without a flux concentrator, the field is

BIVðr;/Þ¼ RO

Ro

� �jp�p
4k

ð1þkÞ2�ð1�kÞ2ðRO=RoÞ2jp
BIV

0 ðr;/Þ:

(A49)

Finally, the field in the conjugate case becomes

BIV
r ðr;/Þ ¼ Brem

p

p� 1

RO

Ro

� �jp�1

1� Ro

Rm

� �p�1
" #

� RO

r

� ��pþ1

cos p/; (A50)

BIV
/ ðr;/Þ ¼ �Brem

p

p� 1

RO

Ro

� �jp�1

1� Ro

Rm

� �p�1
" #

� RO

r

� ��pþ1

sin p/: (A51)

The field inside the bore is identically zero.

For p ¼ �1, the vector potential in region II is

Azðr;/Þ ¼ ðKII
1 rp þ KII

2 r�pÞ sin p/. However, it turns out

that the expressions for the six constants given above are still

valid. In particular, the field outside the magnet is still given

by Eq. (A49).

APPENDIX B: MAXIMUM TORQUE BETWEEN TWO
CONCENTRIC HALBACH ARRAYS

The torque experienced by a �p-Halbach placed inside

a p-Halbach is given by Eq. (24). The cases p¼ 1 and p > 1

have to be considered separately. However, in both cases, it

is evident that the torque considered as a function of the flux

concentrator parameters k1; j1; k2; j2 attains its maximum

for k1 ¼ k2 ¼ 1 and j1 ¼ j2 ¼ 0. Thus, we only need to

consider these values.

1. The maximum torque for p 5 1

The magnitude of the torque is a constant times

ðR2
o;1 � R2

m;1Þ ln
Ro;2

Rm;2

� �
Ri;2

Rm;2

� ��1 RO;1

Ro;1

� �
: (B1)

We keep the outer radius of the outer Halbach fixed and put

it equal to 1, i.e., measure all radii in units of Ro;2. Then the

object is to maximize

f ðx1; x2; x3; x4; x5Þ ¼ �ðx2
2 � x2

1Þðlnx5Þx4x�1
5 x3x�1

2 (B2)

subject to the constraints 0 � x1 � x2 � x3 � x4 � x5 � 1.

Since @f=@x1 < 0, we can put x1 ¼ 0. Then all the partial

derivatives @f=@xi are negative for i ¼ 2; 3; 4, i.e., x2; x3,

and x4 should be as large as possible. Thus, we put x2 ¼ x3

¼ x4 ¼ x5 and the expression to be optimized becomes

�x2
5lnx5. By equating its derivative to zero, the maximum is

found to be at

x5 ¼ e�1=2: (B3)

2. The maximum torque for p > 1

Now the expression to be maximized becomes

gðx1; x2; x3; x4; x5Þ ¼ ðx1�p
5 � 1Þðxpþ1

2 � xpþ1
1 Þx

p
4x�p

5 xp
3x�p

2

(B4)

subject to the constraints 0 � x1 � x2 � x3 � x4 � x5 � 1.

Again we find x1 ¼ 0 and x2 ¼ x3 ¼ x4 ¼ x5. Then, we have

to maximize ðx1�p
5 � 1Þxpþ1

5 ¼ x2
5 � xpþ1

5 and get for the

maximum that

x5 ¼
2

pþ 1

� �� 1
p�1

: (B5)
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