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Abstract— This paper presents an integrated distribution lo-

cational marginal pricing (DLMP) method designed to alleviate 

congestion induced by electric vehicle (EV) loads in future power 

systems. In the proposed approach, the distribution system oper-

ator (DSO) determines distribution locational marginal prices 

(DLMPs) by solving the social welfare optimization of the electric 

distribution system which considers EV aggregators as price 

takers in the local DSO market and demand price elasticity. 

Nonlinear optimization has been used to solve the social welfare 

optimization problem in order to obtain the DLMPs. The efficacy 

of the proposed approach was demonstrated by using the bus 4 

distribution system of the Roy Billinton Test System (RBTS) and 

Danish driving data. The case study results show that the inte-

grated DLMP methodology can successfully alleviate the conges-

tion caused by EV loads. It is also shown that the socially optimal 

charging schedule can be implemented through a decentralized 

mechanism where loads respond autonomously to the posted 

DLMPs by maximizing their individual net surplus.   

 
Index Terms--Congestion management, distribution engineer-

ing, DLMP, DLMPs, DSO, EV, RBTS 

I.  NOMENCLATURE 

,l iD  Power transfer distribution factor (PTDF) coeffi-

cient of line l with respect to a unit injected at 

node i 

,i tE  EV charging energy limit at time period t at node 

i 

lK  MVA capacity of line l 

N  Set of all nodes  

cN  Subset of demand nodes 

nN  Subset of non-demand nodes 

, ,DLMP i tP  Distribution locational marginal price at time 

period t at node i of the distribution grid 

, ( , )i t iP tτ  Benefits from using demand iτ  at time period t at 

node i 

,LMP tP  System locational marginal price (LMP) at time 

period t for the node feeding the distribution grid 

,0iS  Initial aggregate battery state of charge (SOC) at 

node i 
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,i tS
−

 Minimum aggregate battery SOC at time period t 

at node i 

,i tS
+

 Maximum aggregate battery SOC at time period t 

at node i 

T  Planning periods for optimization 

,i tc  Conventional household demand at time period t 

at node i 

g  The subset of generation node(s) 

tp  Dual variables for total power flow balance con-

straints 

,g tq  Generation supplied to the distribution grid at 

time period t  

,g tr  Net active power import/export at time period t at 

generation node g (positive for import)  

,i tr  Net active power import/ export at time period t at 

node i (positive for import) 

,i tx  EV charging energy at time period t at node i 

,i tκ −  Dual variables for aggregate EV minimum SOC 

constraints 

,i tκ +  Dual variables for aggregate EV maximum SOC 

constraints 

,l tλ−
 Dual variables for negative line flow constraints 

,l tλ+
 Dual variables for positive line flow constraints 

,i tµ −  Dual variables for EV minimum charging energy 

constraints 

,i tµ +  Dual variables for EV maximum charging energy 

constraints 

,i tξ  Dual variables for conventional household de-

mand constraints 

,i tρ  Dual variables for demand node power balance 

constraints 

,i tτ  Demand variables at time period t at node i 

,g tω  Dual variables for generation node power balance 

constraints 

,i tω  Dual variables for non-demand node net active 

power import/output constraints 

II.  INTRODUCTION 

nvironmental concerns and the quest for energy supply 

independence have resulted in increasing penetration of 

renewable energy sources (RES) and a move toward 

Distribution Locational Marginal Pricing for  
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electrification of transportation. Consequently, electric vehi-

cles (EVs) are expected to play a significant role in the future 

power systems and distribution networks. Increased use of 

EVs will reduce the green house gas (GHG) emission from the 

transport sector by replacing conventional internal combustion 

engine (ICE) vehicles while also serving as distributed energy 

storage that can mitigate uncertainties arising from intermit-

tent RES.  

Numerous studies have addressed vehicle-to-grid (V2G) 

technology to investigate the technical and commercial feasi-

bility of providing ancillary service to the grid from EVs. The 

capacity from EVs and the economic return to participate in 

peak power, spinning reserve and regulation markets have 

been explored in [1]-[3]. The effectiveness of using EVs to 

provide peak load shaving and extra flexibility has been illus-

trated in [4] and [5].  

However, the deployment of a large number of EVs will 

challenge power system operations especially for distribution 

networks if there is no proper coordination of the EV charg-

ing. Grid congestion results from demand patterns that induce 

flows exceeding design limits. Congestion from EVs can be 

observed at the medium voltage (MV) level, as demonstrated 

by a number of studies [6]-[9]. It was also noted that the prob-

lems are likely to originate on the distribution network, and as 

such, analysis of these networks should be conducted as the 

primary stage of EV induced congestion [9]-[11]. 

Grid congestion depends on a number of factors including 

local grid rating and topology, penetration and distribution of 

EVs, and charging management procedures. Coordinated 

charging appears to be an effective means of allowing in-

creased penetration of EVs without violating grid constraints. 

There is some diversity regarding the optimal manner in which 

to coordinate charging and the proposed objectives for such 

coordination include  minimization of losses [7], maximiza-

tion of EV penetration [9], and minimization of customer 

charging costs [12]-[13].  

The congestion management methods can be categorized 

into three groups: Optimal Power Flow (OPF) based method, 

price area congestion control method and transaction-based 

methods [14]. The OPF based congestion management method 

is based on a centralized optimization and is considered to be 

the most accurate and effective congestion management meth-

od. Price-based congestion management controls congestion 

by generation re-dispatch in response to congestion prices 

within an OPF framework [15].  

In the existing work on load management techniques and 

other methods for alleviating congestions from EVs, there is 

no integrated method which has a closed loop solution ac-

counting for conventional demand elasticity and EV demand 

shifting characteristics. In order to address this problem, the 

distribution locational marginal pricing (DLMP) method is 

proposed for electric distribution networks in order to alleviate 

congestion induced by EVs. In the proposed method, the dis-

tribution system operator (DSO) determines the distribution 

locational marginal prices (DLMPs) by solving the social 

welfare optimization for the electric distribution network 

which considers EV aggregators as price takers in the local 

DSO market and demand elasticity for residential energy 

consumption. It is assumed that all the EV aggregators are 

economically rational, i.e. their objective is to maximize their 

individual surplus.  

The paper is arranged as follows. The mathematical formu-

lation of the integrated DLMP method and the determination 

of DLMPs are presented in Section III. In Section IV, the EV 

aggregator based optimal charging management is described. 

The alleviation of congestion induced by EVs within electric 

distribution networks is explained in Section V. Case studies 

were conducted using the bus 4 distribution networks of the 

Roy Billinton Test System (RBTS) [16] and the Danish driv-

ing data, and the case study results are presented in Section VI 

with detailed discussion followed by the conclusion section.  

III.  DETERMINATION OF DISTRIBUTION LOCATIONAL MAR-

GINAL PRICES USING INTEGRATED OPTIMIZATION 

The system LMPs are determined by minimizing the cost of 

generations with the physical constraints of the transmission 

system respected, which exposes producers and consumers to 

the marginal cost of electricity delivery at different locations. 

The LMPs can be decomposed into three components: mar-

ginal cost of generation, marginal cost of losses and marginal 

cost of congestion [17]. 

The LMPs can be computed by either AC optimal power 

flow (ACOPF) or DC optimal power flow (DCOPF). The 

DCOPF is widely used and is considered to be sufficient for 

LMP calculation due to its computational efficiency and ap-

proximation accuracy [18]. The DCOPF has also been em-

ployed by several software tools for chronological LMP 

simulation and forecasting, such as ABB GridViewTM, Sie-

mens Promod, GE MAPSTM and PowerWorld [19]. 

The DCOPF was adopted in the derivation of DLMPs as a 

practical approach to address the computational complexity 

resulting from the large number of nodes within the electric 

distribution network. In the proposed DLMP algorithm, the 

DSO determines the DLMPs for the next day by solving a 

constrained social welfare maximization problem. 

The mathematical formulation in [20]-[22] has been modi-

fied to make it more general to allow economic allocation for 

both conventional household demand and EV charging ener-

gy. The mathematical formulation of the DSO optimization 

problem is presented in (1) to (9), 

Objective Function 
,

0 , , , ,
max ( , )i t

c

c

i t i i t LMP t g t

i N t T t T

P t d P qτ τ
∈ ∈ ∈

−∑ ∑ ∑∫          (1)

   
subject to 

,
0

i t

i N

r t T
∈

= ∀ ∈∑                         ( )tp (2) 

, ,
,

l l i i t l

i N

K D r K l L t T
∈

− ≤ ≤ ∀ ∈ ∀ ∈∑     , ,( , )l t l tλ λ− +
(3) 

, 0 ,i t nr i N t T= ∀ ∈ ∀ ∈         
,( )i tω (4) 

, , 0g t g tr q t T+ = ∀ ∈                      
,( )g tω (5) 

, , , ,i t i t i t cr c x i N t T= + ∀ ∈ ∀ ∈         
,( )i tρ (6) 

, 0 ,i t cc i N t T≥ ∀ ∈ ∀ ∈           
,( )i tξ (7) 

, ,0 ,i t i t cx E i N t T≤ ≤ ∀ ∈ ∀ ∈    
, ,( , )i t i tµ µ− + (8) 

, ,0 , , , , ,

1

, \{1} ( , )i t i i t i t i t c i t i t

t t t t

S S x d S i N t T κ κ− + − +
′ ′

′ ′≤ − ≤

≤ + − ≤ ∀ ∈ ∀ ∈∑ ∑
(9) 
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 3 

The DSO objective is to maximize the social surplus in (1) 

subject to the energy-balance constraints in (2), the transmis-

sion constraints in (3), the non-demand node constraints in (4), 

generation node balance constraints in (5), the demand node 

balance constraints in (6), the conventional household demand 

non-negativity constraints in (7), the charging energy limit 

constraints in (8) and the driving requirement constraints in 

(9). 

For the demand node balance constraints in (6), the assump-

tion is that EVs only charge energy at the location they belong 

to, which requires that the energy import 
,i tr is the sum of the 

conventional household demand 
,i tc and EV demand

,i tx at time 

period t at node i . The elastic conventional household demand 

,i tc is constrained to be non-negative in (7). The EV demand 

,i tx is constrained between 0 and charging energy limit 
,i tE at 

time period t  at node i  in (8). 
,i tE  varies over time to reflect 

the availability of EVs across hours. The SOC of EV batteries 

at time period t  at node i  is the sum of its initial SOC and 

total charging energy 
,i tx up to time period t − 1 minus the 

total driving energy requirement 
,i td  up to time period t . The 

SOC is constrained between minimum SOC 
,i t

S −
and maximum 

SOC 
,i t

S +
 in (9). The variables in parentheses next to each 

constraint denote the Lagrange multipliers corresponding to 

that constraint. 

The objective function consists of two components, social 

value of meeting the conventional demand, given by the area 

under the demand functions, and the cost of satisfying both the 

EV demand and the conventional demand as shown in (1). The 

benefit of the EV demand is not included in the objective 

function since that component is constant, as long as the EV 

demand is met within the day, and is not affected by the charg-

ing schedule. Instead, a constraint requiring that the EV de-

mand be met by the schedule is included. To be more specific, 

the object function in (1) can be further decomposed into three 

terms as shown in (10), 

,

,

,

0 , , , ,

0 , , , , ,

0 , , , , , ,

( , )

( , ) ( )

( , )

i t

c

i t

c c

i t

c c c

c

i t i i t LMP t g t

i N t T t T

c

i t i i t LMP t i t i t

i N t T t T i N

c

i t i i t LMP t i t LMP t i t

i N t T t T i N t T i N

P t d P q

P t d P c x

P t d P c P x

τ τ

τ τ

τ τ

∈ ∈ ∈

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈ ∈

−

= − +

= − −

∑ ∑ ∑∫

∑ ∑ ∑ ∑∫

∑ ∑ ∑ ∑ ∑ ∑∫
 

(10)

 

where ,

0 , , , ,
( , )i t

c c

c

i t i i t LMP t i t

i N t T t T i N

P t d P cτ τ
∈ ∈ ∈ ∈

−∑ ∑ ∑ ∑∫  is the social 

welfare corresponding to the conventional demand and 

, ,

c

LMP t i t

t T i N

P x
∈ ∈
∑ ∑  is the EV charging cost. 

The Karush-Kuhn-Tucker (KKT) optimality conditions for 

the social welfare optimization problem are summarized in 

(11) to (28), 

, , , ,( ) 0 ,i t i t i t i t cP c i N t Tρ ξ− + = ∀ ∈ ∀ ∈       (11) 

, , , ,
( ) 0 ,

t l t l t l i i t c

l L

p D i N t Tλ λ ρ+ −

∈

− − − + = ∀ ∈ ∀ ∈∑       (12) 

, , , ,
( ) 0 ,

t l t l t l i i t n

l L

p D i N t Tλ λ ω+ −

∈

− − − + = ∀ ∈ ∀ ∈∑       (13) 

, , , ,
( ) 0

t l t l t l g g t

l L

p D t Tλ λ ω+ −

∈

− − − + = ∀ ∈∑                     (14) 

, , 0LMP t g tP t Tω− + = ∀ ∈                     (15) 

, . , , ,

1

( ) ( ) 0 , \{| |}
i t i t i t i t i t c

t t

i N t T Tρ µ µ κ κ+ − + −
′ ′

′≥ +

− − − − − = ∀ ∈ ∀ ∈∑
          (16) 

, . ,( ) 0 , | |i t i t i t ci N t Tρ µ µ+ −− − − = ∀ ∈ ∀ =
  

 (17) 

,
0

i t

i N

r t T
∈

= ∀ ∈∑                    (18) 

, 0 ,i t nr i N t T= ∀ ∈ ∀ ∈      (19) 

, , 0g t g tr q t T+ = ∀ ∈                    (20) 

, , , ,i t i t i t cr c x i N t T= + ∀ ∈ ∀ ∈       (21) 

, , ,
0 0 ,

l t l i i t l

i N

D r K l L t Tλ −

∈

≥ ⊥ + ≥ ∀ ∈ ∀ ∈∑         (22) 

, , ,
0 0 ,

l t l l i i t

i N

K D r l L t Tλ +

∈

≥ ⊥ − ≥ ∀ ∈ ∀ ∈∑         (23) 

, ,0 0 ,i t i t cc i N t Tξ ≥ ⊥ ≥ ∀ ∈ ∀ ∈       (24) 

, ,0 0 ,i t i t cx i N t Tµ − ≥ ⊥ ≥ ∀ ∈ ∀ ∈       (25) 

, , ,0 0 ,i t i t i t cE x i N t Tµ+ ≥ ⊥ − ≥ ∀ ∈ ∀ ∈      (26) 

, ,0 , , ,

1

0 0 , \{1}
i t i i t i t i t c

t t t t

S x d S i N t Tκ − −
′ ′

′ ′≤ − ≤

≥ ⊥ + − − ≥ ∀ ∈ ∀ ∈∑ ∑
           (27) 

, , ,0 , ,

1

0 0 , \{1}
i t i t i i t i t c

t t t t

S S x d i N t Tκ + +
′ ′

′ ′≤ − ≤

≥ ⊥ − − + ≥ ∀ ∈ ∀ ∈∑ ∑
 (28) 

The KKT conditions yield the optimality for the primal 

problem and provide an economic interpretation of the La-

grange multipliers. The DLMPs are derived from the KKT 

conditions to provide price incentives for market participants 

to alleviate congestion and ensure efficient load allocation. By 

solving (12), (14) and (15), the marginal value of a unit of EV 

charging energy or conventional demand at time period t  at 

node i , 
,i tρ , takes the form in (29), 

, , , , , , , ,
( ) ( )

i t LMP t l t l t l g l t l t l i

l L l L

P D Dρ λ λ λ λ+ − + −

∈ ∈

= − − + −∑ ∑        (29) 

In the RBTS, the power transfer distribution factor (PTDF) 

coefficient associated with the generation node 
,l gD is set to 

be 0 to enable unlimited import from the grid to the distribu-

tion network, which simplifies (29) and yields (30), 

, , , , ,
( )

i t LMP t l t l t l i

l L

P Dρ λ λ+ −

∈

= + −∑                                        (30) 

The DLMPs can be derived by combining (11) and (30), 

, , , , , ,( )DLMP i t i t i t i t i tP P c ρ ξ= = −
                                           

(31) 

, , , , ,
( )

LMP t l t l t l i i t

l L

P Dλ λ ξ+ −

∈

= + − −∑
                

(32) 

The non-negativity constraint (7) can be excluded by im-

plicitly assuming an interior solution with respect to these 

constraints, forcing the dual variable associated with the con-

straint
, 0i tξ = . This can be explained as: every conventional 

household consumes at least a small positive amount of ener-

gy. Under this assumption, the DLMPs become, 

, , , ,DLMP i t LMP t i tP P ϕ= +                               (33) 
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 4 

where 
, , , ,

( )
i t l t l t l i

l L

Dϕ λ λ+ −

∈

= −∑ . The DLMPs can be interpreted 

as the sum of the reference price 
,LMP tP  and the locational 

congestion markup 
,i tϕ , which is analogous to the marginal 

cost of congestion in the LMPs.  

Noticing that the LMPs only optimize the dispatch of in-

stantaneous demand, the DLMPs are designed to co-optimize 

the dispatch of both the instantaneous demand and the aggre-

gated EV charging schedule over the planning interval. By 

rearranging (16) and (17), 
,i t

ρ can be written as (34), 

. , , ,

1 1
,

. ,

, \ {| |}

, | |

{ i t i t i t i t c

t t t t
i t

i t i t c

i N t T T

i N t T

µ µ κ κ
ρ

µ µ

+ − + −
′ ′

′ ′≥ + ≥ +

+ −

− + − + ∀ ∈ ∀ ∈
=

− + ∀ ∈ ∀ =

∑ ∑
     

(34)  

where 
. , , ,

1 1

i t i t i t i t

t t t t

µ µ κ κ+ − + −
′ ′

′ ′≥ + ≥ +

− + − +∑ ∑ is the marginal value of 

energy at non-terminal period \ {| |}t T T∈  at node i , and 

. ,i t i t
µ µ+ −− +  is marginal value of energy at terminal period 

| |t T=  at node i . Combining (11) and (34) gives the DLMPs 

at time period t  at node i  as a linear combination of the dual 

variables associated with constraints of EVs, 

, , , , , ,
( )

DLMP i t i t i t i t i t
P P c ρ ξ= = −                                               (35) 

,

,

, \ {| |}

, | |

{
+ - + -

i.t i,t i,t i,t i t c

t t+1 t t+1

+ -

i.t i,t i t c

- + - + i N t T T

- + i N t T

µ µ κ κ ξ

µ µ ξ

′ ′
′ ′≥ ≥

− ∀ ∈ ∀ ∈
=

− ∀ ∈ ∀ =

∑ ∑

 

(36) 

. , , ,

1 1

. ,

, \ {| |}

, | |
{ i t i t i t i t c

t t t t

i t i t c

i N t T T

i N t T

µ µ κ κ

µ µ

+ − + −
′ ′

′ ′≥ + ≥ +

+ −

− + − + ∀ ∈ ∀ ∈
=

− + ∀ ∈ ∀ =

∑ ∑

  (37) 

where 
, 0i tξ =  assuming (7) does not bind. 

The DLMPs defined by (33) and (37) can be interpreted as 

the equilibrium conditions for the electric distribution system 

market clearing. The market dynamics and the economic be-

havior of market participants under the DLMPs are discussed 

in the Section IV.  

IV.  AGGREGATOR BASED OPTIMAL EV CHARGING MANAGE-

MENT 

The EV charging management can take different forms: 

charging management controlled by individual EV users, 

aggregator based charging management and proper mixture of 

the two mechanisms. In this paper, the aggregator based EV 

charging management implementation is used. 

In the aggregator based EV charging management concept, 

the EV aggregator is a profit-seeking entity, who takes care of 

the EV fleet on behalf of the EV users, ensures that the energy 

needs are satisfied, and provides customized service and 

charging solution. The objective of EV aggregators is to meet 

the energy needs of EV users with the minimum charging cost. 

It is also assumed that each EV aggregator only controls a 

small portion of the EVs so that EV aggregators do not have 

market power and act as price takers in the DSO market. The 

aggregator based EV optimal charging management can be 

described by the optimization problem in (38) to (40),  

Objective Function 

, , ,
min

DLMP i t i t

t T

P x
∈
∑                              (38) 

subject to                                   

, ,0 i t i tx E t T≤ ≤ ∀ ∈        
, ,( , )i t i tµ µ− +  (39) 

, ,0 , , ,

1

\{1}
i t i i t i t i t

t t t t

S S x d S t T− +
′ ′

′ ′≤ − ≤

≤ + − ≤ ∀ ∈∑ ∑ , ,( , )i t i tκ κ− + (40) 

The constraints in (39) and (40) are to ensure that the EV 

charging energy and the EV battery SOC are within the speci-

fied limits. When the DLMPs,
, ,DLMP i tP , are known to the EV 

aggregator, the optimization problem is a linear programming 

problem and the EV aggregator optimally decides 
,i tx , the 

amount of energy to purchase in each hour, to minimize the 

charging cost subject to the charging power limit constraints 

and the driving requirement constraints. The optimality condi-

tions of the EV charging are summarized in (41) to (52), 

, ,0 i t i tx E t T≤ ≤ ∀ ∈           (41) 

, ,0 , , ,

1

\{1}
i t i i t i t i t

t t t t

S S x d S t T− +
′ ′

′ ′≤ − ≤

≤ + − ≤ ∀ ∈∑ ∑    (42)

 
\{| |}+ - + -

DLMP,i,t i.t i,t i,t i,t

t t+1 t t+1

-P - + - + = 0 t T Tµ µ κ κ′ ′
′ ′≥ ≥

∀ ∈∑ ∑
(43) 

, , . , 0 | |DLMP i t i t i tP t Tµ µ+ −− − + = ∀ =                 (44) 

. 0i t t Tµ − ≥ ∀ ∈                   (45) 

. 0i t t Tµ + ≥ ∀ ∈                   (46) 

0 \{1}i,t t Tκ − ≥ ∀ ∈            (47) 

0 \{1}+

i,t t Tκ ≥ ∀ ∈            (48) 

, , 0i t i tx t Tµ − = ∀ ∈                  (49) 

, , ,( ) 0i t i t i tE x t Tµ + − = ∀ ∈                  (50) 

,0 , , ,

1

( ) 0 \{1}
i,t i i t i t i t

t t t t

S x d S t Tκ − −
′ ′

′ ′≤ − ≤

+ − − = ∀ ∈∑ ∑           (51) 

, ,0 , ,

1

( ) 0 \{1}+

i,t i t i i t i t

t t t t

S S x d t Tκ +
′ ′

′ ′≤ − ≤

− − + = ∀ ∈∑ ∑          (52) 

(41)-(42) are the primal feasibility conditions. (43)-(48) are 

the dual feasibility conditions. (49)-(52) are the complementa-

rity conditions. 

Theorem 1 The efficient allocation of EV charging of the 

DSO problem 
*

,i tx  is optimal for each EV aggregator under the 

DLMPs, if the non-negativity constraint of conventional 

household demand (7) does not bind. 

Proof: It has been shown that the optimal solution of the 

DSO problem
* * * * *

, , , , ,{ , , , , }i t i t i t i t i tx µ µ κ κ+ − + −
 also satisfies the opti-

mality conditions of the EV aggregator’s problem in (41)-(52). 

The optimal solution of the DSO problem satisfies the KKT 

conditions (11)-(28). If (7) does not bind, the optimal solution 

of the DSO problem satisfies (37), 
* * * *

. , , ,
*

1 1
, ,

* *

. ,

\ {| |}

| |
{ i t i t i t i t

t t t t
DLMP i t

i t i t

t T T
P

t T

µ µ κ κ

µ µ

+ − + −
′ ′

′ ′≥ + ≥ +

+ −

− + − + ∀ ∈
=

− + ∀ =

∑ ∑
 

This implies (43) and (44) hold under the optimal solution 
* * * * *

, , , , ,{ , , , , }i t i t i t i t i tx µ µ κ κ+ − + −
. (41), (42) and (45)-(52) come directly 

from KKT conditions (25)-(28). Thus, the efficient allocation 

of EV charging from the DSO problem satisfies the optimality 

conditions of the EV aggregator’s problem. 
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Corollary 1 The efficient allocation of the DSO problem 
* *

, ,{ , }i t i tx c  can be achieved in a decentralized system under the 

DLMPs, if the non-negativity constraint of conventional 

household demand (7) does not bind. 

Proof: The conventional household demand 
*

,i tc is determin-

istic under the DLMPs. From Theorem 1, it is known that, 

under the DLMPs, the optimal solution of the EV aggregator’s 

problem is the efficient allocation of EV charging of the DSO 

problem
*

,i tx . Therefore, the efficient allocation of the DSO 

problem can be achieved in the decentralized implementation. 

V.  ALLEVIATING CONGESTION FROM EVS WITHIN ELECTRIC 

DISTRIBUTION NETWORKS USING DLMP  

The intention of the proposed DLMP concept is to alleviate 

congestion within electric distribution networks which might 

be caused by the EV charging demand. The congestion allevi-

ation approach using DLMP is illustrated in Fig. 1.  

 

 

Fig. 1. Congestion Alleviation from EVs using DLMPs 

The DSO plays a major role in the DLMP based congestion 

management within electric distribution networks. The con-

cept can be explained by the following steps. 

• The DSO obtains the LMPs from the posted day-

ahead energy prices.  

• According to the EV data within the electric distribu-

tion network, the expected EV demand will be fore-

casted by the DSO with the assumption that all EV 

aggregators are minimizing their EV charging costs. 

Conventional demand will be forecasted by the DSO 

according to the posted energy prices.  

• With the information on the forecasted demand, the 

DSO calculates the DLMPs at the electric distribution 

network level taking into account the electric distri-

bution network topology. 

• In the end, the DLMPs will be sent to all EV aggre-

gators and retailers. 

As it is proved in Theorem 1 and Corollary 1, after receiv-

ing the DLMPs from the DSO, EV aggregators and retailers 

will behave exactly as the DSO predicts. Consequently, the 

congestion on the electric distribution network will be proper-

ly managed, while it only requires EV aggregators and retail-

ers to react rationally to the DLMPs by maximizing their 

individual net surplus. At this point, any additional infor-

mation of distribution network grid or line congestion is re-

dundant to the decision-making process of EV aggregators and 

retailers. 

VI.  CASE STUDIES 

In order to illustrate the efficacy of the proposed DLMP 

concept in alleviating congestion from EV demand, case stud-

ies have been conducted using the bus 4 distribution network 

of the RBTS with the Danish driving data.  

 

 

Fig. 2. Single Line Diagram of bus 4 Distribution System of RBTS [16]  

Fig. 2 illustrates the single line diagram of the electric dis-

tribution system used in the case study. The electric distribu-

tion systems of the RBTS were designed following the general 

utility principles and practices regarding topology, ratings and 

load levels. They represent typical distribution networks. The 

bus 4 distribution system of the RTBS has a relatively com-

plex topology and sufficient number of customers. Therefore, 

the bus 4 distribution system of the RTBS was chosen to carry 

out case studies. This medium voltage (MV) distribution net-

work is comprised of three supply points (SPs) connected to 

the main grid by 33 kV/11 kV transformers, 38 load points 

(LPs) and 7 feeders. The customer data are listed in Table I.  

 

Table I 

Customer Data 

 
Number 

of Load 
Points 

Load 

Points 

Customer 

Type 

Load Level Per Load 
Point (MW) 

Number of 

Customers 
Average Peak 

15 

1-4, 
11-13, 

18-21, 

32-35 

Residential 0.545 0.8869 200 

7 

5, 14, 

15, 22, 

23, 36, 
37 

Residential 0.5 0.8137 200 

7 
8, 10, 

26-30 
Small User 1.0 1.63 1 

2 9, 31 Small user 1.5 2.445 1 

7 

6, 7, 

16, 17, 

24, 25, 
38 

Commercial 0.415 0.6714 10 

Total  24.58 40.00 4779 

 

The customer data consist of customer type, peak and aver-

age loads and number of customers. There are 4779 customers 

in total in the electric distribution network. The inverse de-

mand function at each bus is assumed to be linear with a price 

elasticity of −0.1. This level of demand price elasticity is con-
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sistent with empirical studies in [23]. There are 7 feeders in 

the electric distribution network. Each of the lines is one of the 

three types listed in Table II. 

 

Table II 

Connection Line Types 

 

Connection 

Line Type 

Line 

Length 
(km) 

Line Number 

1 0.6 
2 6 10 14 17 21 25 28 30 34 38 41 43 46 

49 51 55 58 61 64 67 

2 0.75 
1 4 7 9 12 16 19 22 24 27 29 32 35 37 40 
42 45 48 50 53 56 60 63 65 

3 0.8 
3 5 8 11 13 15 18 20 23 26 31 33 36 39 44 

47 52 54 57 59 62 66 

A.  EV data 

A non-homogenous EV fleet is used for the EV charging 

management studies. The EV battery size varies according to 

individual EV driving requirements. It is assumed that the 

maximum charging power is 1.15 kW (based on a 5 A, 230 V 

connection). A typical value of 0.15 kWh/km is used to calcu-

late the energy consumption while driving [24]. The minimum 

and maximum EV battery SOC is set as 20% and 85%, respec-

tively. The initial EV SOC varies by individual EV, and is set 

such that individual charging and driving requirements can be 

met. This is in accordance with the non-homogenous nature of 

EVs. A summary of the EV data is listed in Table III. 

 

Table III  

EV Data Summary 

 
EV Parameter EV Parameter Value 

EV Battery Size 25 kWh 

Charging Power 5.28 kW 

Energy Consumption of Driving 150 Wh/km 

Minimum SOC 20% 

Maximum SOC 85% 

 

B.  Driving data  

The Driving data used in the case studies are from the Dan-

ish National Travel Survey [24]. The Danish driving data were 

chosen for the case studies because the driving behavior in 

Denmark could be representative of the EV users’ driving 

pattern. In Denmark, the average driving distance is about 40 

km per day. Customers who need to drive a longer distance 

might not choose to use EVs.  

The Danish driving data are highly detailed and provide 

significant insight into the driving habits of Danish residents. 

The relevant data used in this study are driving stop and start 

time, distance during driving periods, and day type. The EV 

availability for charging is defined as the periods during which 

the EV is parked. The driving profile from the same day type 

as the LMPs is used to create a more consistent test case. The 

EV availability on a working day is illustrated in Fig. 3. Each 

horizontal section represents a single EV, with the white col-

our representing availability to charge, and the black colour 

representing time periods when the EV is driving, and there-

fore is unavailable to charge. 

 
Fig. 3. EV Availability on a Working Day 

C.  Case study results 

Three case studies listed in Table IV have been carried out. 

The EV penetration is defined as the ratio of maximum EV 

charging demand divided by the conventional household peak 

demand. The maximum EV charging demand is the sum of the 

EV charging demand when all EVs charge simultaneously. 

 

Table IV 

Case Study Scenarios 

 
Case Study No Day Type EV Penetration 

1 Tuesday  100% 

2 Saturday 100% 

3 Thursday 500%  

 

Case Study 1  

The results of Case Study 1 are shown in Fig. 4–Fig. 6. Fig. 

4 and Fig. 5 illustrate the effect of congestion alleviation on 

Line 1 when the DLMPs are introduced. Comparing with Fig. 

4, the EV loads are spread out under the DLMPs in Fig. 5 and 

distributed among several hours with low LMPs, instead of 

charging all the EV loads in a single hour. In Fig. 6, the circles 

are the system LMP curve and the solid lines are the DLMPs 

at different nodes. The DLMPs are slightly higher than the 

system LMPs on the buses downstream to the congested line 

in order to shift away the EV loads to avoid severe congestion.  

 

 
Fig. 4. Line 1 Loading without DLMPs of Case 1 
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 7 

 
Fig. 5. Line 1 Loading with DLMPs of Case 1 

 

Fig. 6. System LMPs and DLMPs of Case 1 

 

Case Study 2  

The results of Case Study 2 are shown in Fig. 7-Fig. 9. In Case 

Study 2, the system LMP profile is different from the one in 

Case Study 1. The low system LMPs occur both in the morn-

ing and in the afternoon. Without the DLMPs, congestion 

occurs in both of the two periods on Line 1. With the proposed 

DLMP, it is shown in Fig. 8 that the congestion can be suc-

cessfully alleviated. The EV loads have been shifted to the 

adjacent low LMP hours.  

 
Fig. 7. Line 1 Loading without DLMP of Case 2 

 

 
Fig. 8. Line 1 Loading with DLMP of Case 2 

 

 
Fig. 9. System LMPs and DLMPs of Case 2 

 

Case Study 3 

In Case Studies 1 and 2, it is shown that DLMPs can alleviate 

the congestion induced by EVs under 100% EV penetration. 

In order to further illustrate the effectiveness of the proposed 

DLMP algorithm, studies with one projected future EV pene-

tration levels have been conducted shown in Fig. 10 and Fig. 

11 with 500% EV penetration. 

 
Fig. 10. DLMP with 500% EV Penetration 
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 8 

  
Fig. 11. Line 1 Loading with 500% EV Penetration 

 

With 500% EV penetration, the DLMPs are much higher 

than the system LMPs and the curve of DLMPs is flat in order 

to distribute the EV charging demand across time periods. 

Line capacity constraints are not violated shown in Fig. 11. 

From the Case Study 3 results presented, it can be concluded 

that the DLMP algorithm is a promising approach even with 

very high EV penetration, which is very likely to come into 

existence in the future. 

VII.  CONCLUSION 

An integrated DLMP algorithm has been proposed in order 

to handle the congestion within electric distribution networks 

faced by the future energy industry. The proposed DLMP 

algorithm optimizes social welfare to determine the DLMPs. 

These DLMPs can be used as price signals for EV aggregators 

to manage congestion within the electric distribution net-

works. Case studies with the RBTS electric distribution net-

work and the Danish driving data have shown the efficacy of 

the proposed DLMP concept under the assumption that EV 

aggregators are price takers in the DSO market and under the 

used demand price elasticity. In a very extreme scenario with 

500% EV penetration, the congestion in the electric distribu-

tion network can be alleviated by introducing the DLMPs. 

Future work will mainly cover the extension of  existing 

framework to the environment where DSO only have imper-

fect information on the LMPs and use the forecast LMPs in 

decision-making.  
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