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Abstract

Introduction: The artificial pancreas is believed to ease the burden of constant management of type 1
diabetes for the patients substantially. An important aspect of the artificial pancreas development is the
mathematical models used for control, prediction or simulation. A major challenge to the realization of
the artificial pancreas is the effect of exercise on the insulin and plasma glucose dynamics. In this report,
we take the first step towards a population model of exercise effects in type 1 diabetes. We focus on the
effect on the insulin pharmacokinetics in continuous subcutaneous insulin infusion (CSII) treated patients
by modelling the absorption rate as a function of exercise. Methods: Three models are estimated from
17 data sequences. All of them are based on a linear three-compartment base model. The models are
based on stochastic differential equations to allow noise to enter the dynamics. In the first model, the
insulin absorption rate parameter is replaced by a random walk. In the second model, the relationship
between the absorption rate and exercise is modelled as a linear dependency, while in the third model this
linear relationship depends on the intensity. A Lamperti transformation is used to ensure non-negative
state values. A special focus is put on the structural identifiability of the base model, while the posterior
identifiability is checked for all models from the conditional likelihood profiles. Results: The first model
is disregarded due to the small number of observations during the exercise bout. From likelihood-ratio
tests and information criteria, the third model is appointed as the best model to model the relationship
between exercise and the insulin absorption. The posterior identifiability check showed that it was not
possible to identify the variance of the measurement variance. Conclusion: A model to predict the insulin
appearance in plasma during exercise in CSII treated patients is identified. Further clinical studies are
needed to confirm the increase in insulin plasma concentration during exercise in type 1 diabetes patients.
These studies should include dense sampling to allow for a fully data driven identification of an appropriate
model.
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1 Introduction

The treatment of type 1 diabetes opposes a major challenge on the patients and their health care providers.
Thus many initiatives are investigated to ease the burden and to simplify the daily management of
the disease. A promising approach is the so-called artificial pancreas consisting of an insulin pump
delivering insulin continuously, a continuous glucose monitor (CGM) and a control algorithm to regulate
the insulin infusion automatically based on feedback from the CGM. The insulin pump and the CGM
are commercially available today, but the patients are required to regulate the pump themselves several
times daily. Hence, the connection of the pump and CGM via a control algorithm are believed to ease
the management of type 1 diabetes for the patients substantially [1].

Currently, the research activities within the artificial pancreas area is rapidly developing due to an
increasing number of researchers and technological advances. One of the main challenges for an artificial
pancreas is the management of the plasma glucose level during and after exercise. The exercise effects
on the blood glucose level are adverse and depends on intensity, duration, timing related to meals and
insulin boluses, and type of activity [31].

Mathematical models resembling the dynamics of insulin-glucose system are important tools in the de-
velopment of control algorithms for the artificial pancreas. Virtual type 1 diabetes patients enable the
researchers to test various treatment scenarios and identify the most promising algorithms prior to ex-
pensive and time-consuming clinical studies.

Until now several models have been suggested to mimic the dynamic relation between exogenous insulin
and blood glucose in type 1 diabetes. They include the transport of glucose from meals to the plasma
[34, 7, 15]. Few models have dealt with the effect of exercise on the insulin sensitivity and blood glucose
level [5, 6, 33, 18, 13, 8, 26].

Clinical studies investigating the effects of exercise in type 1 diabetes have mainly focused on the effects
on changes in plasma glucose [31]. Several studies have however shown a significant increase in insulin
absorption during physical activity in type 1 diabetes patients [11, 29, 30, 36, 3, 28, 27]. The cause of this
increase is not clarified, but increasing blood flow or temperature in the peripheral area of the body could
be the cause. In [2], they show that a hot bath and local massage at the injection site increase the speed of
the insulin absorption after a subcutaneous injection. To our knowledge, the increase related to exercise
has not been investigated from a pharmacokinetic modelling perspective. However, to understand the
glucose dynamics during exercise it is necessary to determine whether the increase is caused by changes in
insulin pharmacokinetic or pharmacodynamic parameters or if it is unrelated to the insulin concentration.

In this report, a model of the effects of exercise on the insulin pharmacokinetics is developed. We identify
a proper population model for the effect of exercise on the subcutaneous absorption of insulin delivered
continuously by an insulin pump. The model could potentially be implemented into a simulation model
of the insulin-glucose dynamics.

We employ stochastic differential equations (SDEs) instead of the traditional ordinary differential equa-
tions (ODEs). In SDEs, the residual noise is split into a diffusion term and a normally distributed and
uncorrelated measurement noise. This helps to ensure that the residuals are independent as required
by standard statistical model validation tools. Furthermore, the noise is allowed to enter the system to
account for the inherent uncertainties in all models of physiological systems. Finally, SDEs provide us
with a method to pinpoint model deficiencies and to suggest how to extent the model to capture the
relevant behavior [17, 32].

The structure of the paper is the following: In Section 2, the clinical data set is described. Then, in
Section 3 the models and methods are described including a identifiability check. In Section 4, the results
are presented. Section 5 presents a discussion of the study. Finally, in Section 6 the conclusions are
stated.
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2 Data

The insulin data for this study originates from a clinical study on 12 subjects with type 1 diabetes treated
with continuous subcutaneous insulin infusion (CSII). The insulin pump was placed in the subcutaneous
layer in either the abdominal or gluteal area. The purpose of the clinical study was to evaluate the effect
of insulin boluses, meals and exercise on the plasma glucose level [27, 10]. Beside plasma glucose, insulin
plasma levels were analysed. The insulin type was insulin aspart Novorapid - a fast acting insulin type.

Each patient went through two study days separated by at least three weeks. A study day consisted of a
two hour stabilization period followed by three events separated by 150 min. The three event types were
meals, insulin boluses and a 20 minutes-run on a treadmill at a predetermined heart rate (HR). Not two
of the total 24 study days were identical as the order of events where different from study day to study
day. The predetermined HR corresponded to either mild exercise with a HR equal to 50% of (maximum
HR - resting HR) + resting HR or moderate exercise with a HR equal to 75% of (maximum HR - resting
HR) + resting HR.

Insulin observations were sampled at a non-equidistantly sampling scheme with higher frequency just after
each event and analysed with a LOCI technology. For each study day a data sequence was obtained.
In some of the data sequences the plasma insulin concentration was not in steady-state during the
stabilization period prior to the first event. Thus we removed data sequences with at min-max range
> 5mU/L during the stabilization period to ease the model estimation. Six of the study days included
exercise on mild level, eight of them included exercise on moderate level, while three of them did not
include exercise.

3 Methods

Our interest is to model population characteristics related to exercise. To identify a proper model taking
into account the inter-individual variability we use a population modelling approach. This type of models
is build as hierarchical models where the parameters are estimated in a two-stage manner. Individual
parameters are modelled as a combination of fixed population effects and random individual effects as
seen in (1):

θi = h(θpop, Zi) · exp(ηi) (1)

Here θi is the parameter value for individual i, h(·) is a known function, θpop is the overall population
parameter (fixed effect), Zi are covariates (age, weight, gender etc.), and ηi ∼ N(0,Ω) is the individual
random effect. In the first stage, the random effects, ηi’s, are estimated for each individual. The fixed
effect parameters, θpop, are estimated in the second stage with the entire data set from an approximate
population likelihood function [32].

In the single-subject modeling case, the R-package CTSM-R (Continuous Time Stochastic Modelling in
R) can be used to identify SDE models [9]. However, currently CTSM cannot handle population models.
Thus as a part of this study, a prototype of an population modelling extension to CTSM was developed.

The modelling procedure is the following. First, a base model is estimated without any exercise effects.
A number of extensions to this model are then estimated to identify the most appropriate model of the
exercise effects.

3.1 The Base Model

A linear three-compartment ODE model is used as basis to describe the pharmacokinetics of subcutaneous
infused insulin in a single subject as suggested by Wilinska et al. [34]. The model is illustrated in Figure
1.
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Figure 1: Illustration of the three-compartment model describing the pharmacokinetics of insulin delivered con-
tinuously from an insulin pump. Lightnings indicate diffusion terms.

The absorption is characterized by an identical rate parameter, ka between all three compartments. Two
compartments are affected by diffusion.

The total SDE model is presented on state-space form in (2) and (3):

d

Isc1Isc2
Ip

 =

 (Ipump − ka · Isc1)dt
(ka · Isc1 − ka · Isc2)dt+ σIscdωIsc

(ka

VI
· Isc2 − ke · Ip)dt+ σIpdωIp

 (2)

where Isc1 [mU] and Isc2 [mU] represent the subcutaneous layer and deeper tissues, respectively, and
Ip [mU/L] represents plasma. Ipump is the input from the pump [mU/min]. ka [min−1] is the absorption
rate and ke [min−1] is the clearance rate of insulin from plasma. VI is the volume of distribution [L]. σIsc
and σIp are diffusion scaling parameters. ωIsc and ωIp are Wiener processes with independent Gaussian
increments [19]. They constitute the diffusion terms entering the system.

The observations are linked to the system with the observation equation:

log(yk) = log(Ipk) + ek (3)

where yk are the discrete observations of plasma insulin concentration and ek ∼ N(0, ξ) is the measure-
ment noise.

To introduce the hierarchical structure of the model, the parameters are specified for each individual as
in (1). The individual initial values and parameters are:

θi =



Isc10i
Isc20i
Ip0i
kai
kei
VIi
σIsci
σIpi
ξi


=



Isc10 · exp(ηi1)
Isc20 · exp(ηi1)

Ip0i
ka · exp(ηi2)
ke · exp(ηi3)
VI · weighti

σIsc
σIp
ξ


(4)

where weighti is the body weight [kg] of individual i. ηi1, ηi2, ηi3 ∼ N(0,Ω) where Ω is a diagonal matrix
with three element: ΩIsc, Ωka, and Ωke. The measurement noise is modelled as an exponential error
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to approximate the assumption of a proportional measurement error. Furthermore, the variance of the
measurement noise, ξ is parameterized as ξ = Smin +S, where Smin is fixed to the a reasonable minimum
variance and S is estimated. The value of Smin is found from a mean value of estimated %CVs (coefficient
of variation) for the relevant concentration range in [25].

As seen in (2), Ip is affected by additive diffusion and thus negative values can be obtained. This is
problematic, first of all because it is non-physiological, but also due to the structure of the observation
equation in (3) which cannot be computed when Ipk < 0. Instead, we use a multiplicative state-dependent
diffusion term for Ip to ensure that the state is strictly positive:

dIpi =

(
kai
VIi
· Isc2i − kei · Ipi

)
dt+ σIpi

Ipi dωIp (5)

3.2 Lamperti State Transformation

As CTSM cannot handle state-dependent multiplicative diffusion we transform the state, Ipi into a space
where this multiplicative noise becomes additive, zIpi . This can be done by a Lamperti transformation. A
description of the derivation of the Lamperti transformation is out of the scope of this report. However,
details about the transformation can be found in [14, 24, 23, 4, 22]. We consider a general system
equation:

dxt = f(xt, t, ut)dt+ σxtxtdωxt (6)

where xt represents the states and ut represents the inputs to the system. We can then choose a trans-
formed equation, zt as:

zt = ψ(xt) =

∫
1

s
ds

∣∣∣∣∣
s=xt

= log(xt) (7)

According to the theory behind the Lamperti transformation, zt is governed by:

dzt =

(
f(exp(zt), t)

exp(zt)
− 1

2
σ2
xt

)
dt+ σxtdωzt (8)

As seen, the transformation eliminates the state-dependent diffusion term from xt. Repeating this pro-
cedure for Ipi, we get the transformed state, zIpi

:

dzIpi
=

(
kai

VIi
· Isc2i − kei · exp(zIpi

)

exp(zIpi
)

+
1

2
σ2
Ipi

)
dt+ σIpi

dωzIp (9)

The observation equation in (3) simply transforms into:

log(yki) = zIpik + eki (10)
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For technical reasons, we used the following observation equation for the rest of the study:

yki = exp(zIpik) + eki (11)

The Lamperti-transformation ensures that the diffusion term is additive while the parameters are the
same as in the original model in (5) and (3).

3.3 Structural Identifiability

Prior to parameter estimation, the identifiability of the model is checked to make sure that we can
find a reliable estimate of the model. Two types of identifiability exists: Structural identifiability and
identifiability related to the experimental conditions. In the following, the structural identifiability of
the base model for a single subject is investigated. For the sake of simplicity, the observation equation
is considered to be continuous, but the result applies to the discrete observation equation as well. First,
the state-space model in (2) is rewritten into the general form for linear state-space models:

dxt = (Axt +But) dt+ Σdωt (12)

yt = Cxt + et (13)

For the base model, the matrices A, B, C and Σ are specified as:

A =

−ka 0 0
ka −ka 0

0 ka

VI
−ke

 B =

1
0
0



C =
[
0 0 1

]
Σ =

0 0 0
0 σIsc 0
0 0 σIp


(14)

To determine whether the model is structural identifiable, the transfer functions, Gp and Hp are used. Gp

and Hp describe the relationship between the input and output, and the noise and output, respectively:

yt = Gp · ut +Hpεt (15)

where εt is the part of the output that cannot be predicted exactly (the difference between the observed
and estimated concentration). First, we consider the deterministic part of the model and hence Gp, which
can be found from the following the relationship:

Gp = C (pI −A)
−1
B (16)

We are able to observe Gp from ut and yt in the following form:

Gp =
bjp

j + bj−1p
j−1 + ...b0

alpl + al−1pl−1 + ...a0
(17)
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where al = 1. In our case j = 0 and l = 3. From (16) and (14) we find:

Gp =

k2
a

VI

(p+ ka)
2

(p+ ke)
(18)

If the model is structural identifiable we are able to identify ka, ke, and VI from a0, a1, a2, and b0 in
(17). We can obtain four equations from (17) to determine ka, ke, and VI from (17) and (18):

b0
a2p2 + a1p1 + a0

=

k2
a

VI

(p+ ka)
2

(p+ ke)
⇒ (19)

b0 =
k2
a

VI
a0 = k2ake

a1 = ka (ka + 2ke) a2 = 2ka + ke
(20)

Four equations and only three parameters is an overdetermined system. While there is no guarantee for
all equations to be fulfilled there will be a solution in some appropriate norm (L2). Thus the system is
structurally identifiable. Regarding the identifiability of the noise parameters, the analytical solution is
cumbersome. However, the following holds for the number of identifiable noise parameters:

# of ident. noise parameters ≤ nm+m (m+ 1) /2 (21)

where n is the order of the system, in our case n = 3 and m is the number of outputs; in our case
m = 1. Thus we can identify at most four noise parameters. The model is specified with only three noise
parameters as seen in (2) and (3). For more details about structural identifiability see [20]. Whether the
base model is identifiable from the experimental conditions is checked in a posterior manner from the
estimated conditional likelihood profiles for each parameter – see Section 4.

3.4 Exercise Effects

The aim of the study is to investigate the effect of exercise on the absorption rate parameter, ka. To
include this effect, three approaches are investigated. The first one exploits the ability of SDEs to track
parameter variation. The parameter, ka is modelled as a random walk to investigate if the absorption
rate increases during exercise:

dka = 0 dt+ σkadω3 (22)

where σka
is a scaling diffusion parameter. The model with this specification is named Model A

In the second approach, we specify ka as:

ka = k̄a + α · Ex (23)

where k̄a represents the basal rate and α determines the effect of exercise, Ex. Ex is specified as a vector
with the value 0 when the patient is not exercising and the value 1 during exercise. This model is named
Model B.
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With the third approach we take into account the fact that the subjects exercised on two different intensity
levels. Thus we extend (23) to:

ka = k̄a + αmild · Exmild + αmoderate · Exmoderate (24)

Here, αmild and αmoderate determines the effect of mild and moderate exercise, respectively. Exmild and
Exmoderate are specified as Ex just for each of the two levels. This model is named Model C.

In all cases the model becomes non-linear. Hence, the identifiability check presented earlier cannot be
used for the extended models. However, the posterior check is performed for these models as well.

3.5 Parameter Estimation with CTSM

The parameters are estimated by minimising the likelihood function resulting in maximum likelihood
estimates. Introducing random effects to the model changes the way the likelihood function is computed.
Only the distribution of the random effects are really interesting, but technically the individual ηi must
be estimated for a set of parameters. Thus the optimisation turns into a two step optimisation procedure:
The overall model parameters (population or first stage) and the individual (or second stage) parameters.

For a given set of population parameters the second stage optimisation identifies the ηi’s for each subject.
The numerical noise for the individual log-likelihood function is sufficiently small such that the gradi-
ent based quasi-Newton optimisation can be used. Each subject is independent and depending on the
computer the speed of this part of the estimation can be significantly increased when running in parallel.

For this report 17 data sequences are used. Some of these data sequences came from the same person being
studied over two different days. For now all trials are considered independent. The numerical noise from
each of the 17 log-likelihood functions accumulate making the resulting population log-likelihood function
quite noisy and unsuitable for a deterministic gradient based optimisation. The genetic algorithm is a
stochastic optimiser which attempts to mimic evolution. An initial population is randomly drawn. A
selection of the parameters yielding the best log-likelihood values breeds a new population. This process
is continued until the fitness function does not improve over a period or when the computational budget
is spend. For each of the three models, 1000 iterations are computed with a population of 50 resulting in
50.000 evaluations of the population log-likelihood. Each of them requires the second stage optimisation
of the individual log-likelihood. The 1000 iterations take about 35 hours using 17 cores at the DTU
High-Performance- Computing servers.

Details on the population log-likelihood can be found in [16]. Details on the individual log-likelihood can
be found in [17].

3.6 Model Comparison

As the base model is nested into all the extended models, the models in Section 3.4 are compared to
the base model in (2) and (3) by a likelihood-ratio-test (LRT). The likelihood ratio, λy, between two
likelihoods can be written as:

λy = log(LExt (θ; y))− log(LBase (θ; y)) (25)

where LExt(θ; y) and LBase(θ; y) are the maximum likelihood estimates for the parameters θ given the
data y of one of the extended models including exercise and the base model, respectively.

Under the null-hypothesis (claiming that the base model and the extended model perform equally), the
random variable −2λ(y) follows a χ2

(p−q) distribution, where p and q are the number of the parameters

in the base model and the extended model, respectively [21].
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As the different models with an exercise extension are not nested, their performance is compared with
Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC).

4 Results

Preliminary estimations showed that VI was practically unidentifiable for the base model. Thus we fixed
VI for the rest of the study. The fixed parameters are seen in Table 1.

Table 1: Value of fixed parameters

Parameter Value
Smin 0.438 [25]
VI 0.19 [12]
Ip0i This value was fixed to the value

of the first observation for each subject.

In the following, the three extended models will be evaluated.

4.1 Preliminary Model Evaluation

Initial estimations of Model A showed that the specification of ka as an random walk was not appropriate.
The variation in ka was not significant. Thus this model was disregarded in the further evaluation.

4.2 Posterior Identifiability Check

The posterior identifiability is checked from the conditional likelihood profiles. They are computed for
each estimated parameter by fixing all parameters except the parameter of interest and estimating the
negative log-likelihood function. In Figure 2, the estimated profiles for the base model are seen. For all
parameters except the variance of the measurement noise, S, the profile has a minimum. The same holds
for Model B and Model C as seen in Figure 3 and 4.

The parameter estimates are within an acceptable range of the minimum for all parameters. The discrep-
ancy between the estimate and the minimum of the curve for ΩIsc0 (the first element of the Ω matrix) in
Figure 2 is caused by graphical issues. The curvature of the profiles around the minimum indicates the
size of the uncertainty of the estimates. All three models seem to have a large uncertainty of k̂e (ke.pop
in the figures).

4.3 Model Comparison

The models are evaluated by comparing the maximum likelihood estimates with LRT, AIC and BIC.
The estimates and the corresponding statistical measures can be seen in Table 2. As seen, Model C is
assessed as the best model from all the criteria. Both Model B and Model C explain significantly more
of the variability in the data than the base model.

Table 2: Results of LRT, AIC and BIC

Model Number of estimated −log(L) p-value from LRT AIC BIC
parameters

Base model 10 927 - 1878 1799
Model B 11 897 9.436896e-15 1817 1729
Model C 12 895 1.221245e-15 1815 1720
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Figure 2: Conditional loglikelihood profiles for the base model. The red points indicate the parameter estimates.
x10.pop and x20.pop are the initial values of Isc1 and Isc2, respectively. S in the plot corresponds to log(S) in the
model. ka.pop and ke.pop are ka and ke, respectively. s12 = log(σIsc) and s3 = log(σIp). Omega.ISC0, Omega.ke,
and Omega.ka are the diagonal elements of Ω.
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Figure 3: Conditional loglikelihood profiles for Model B The red points indicate the parameter estimates. x10.pop
and x20.pop are the initial values of Isc1 and Isc2, respectively. S in the plot corresponds to log(S) in the model
.ka.pop and ke.pop are k̄a and ke, respectively. s12 = log(σIsc) and s3 = log(σIp). Omega.ISC0, Omega.ke, and
Omega.ka are the diagonal elements of Ω.
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Figure 4: Conditional loglikelihood profiles for Model C. The red points indicate the parameter estimates. x10.pop
and x20.pop are the initial values of Isc1 and Isc2, respectively. S in the plot corresponds to log(S) in the model.
ka.pop and ke.pop are k̄a and ke, respectively. s12 = log(σIsc) and s3 = log(σIp). Omega.ISC0, Omega.ke, and
Omega.ka are the diagonal elements of Ω.
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The parameter estimates for all three models are seen in Table 3. For Model C, the moderate intensity
exercise results in a larger absorption rate than mild exercise.

Table 3: Parameter estimates from the base model, Model B, and Model C

Base Model Model B Model C

Isc10 87.4 58.3 61.8
Isc20 35.9 56.3 52.2
ka 0.023 0.026 0.024
ke 0.079 0.077 0.076
σIsc 2.94 2.61 2.48
σIp 0.030 0.027 0.026
S 0.000 28 0.000 34 0.000 75
ΩIsc 0.379 0.226 0.299
Ωka 0.122 0.112 0.112
Ωke 0.142 0.150 0.146
α 0.007 62
αmild 0.009 61
αmoderate 0.005 15

4.4 Model Predictions

From the above results, Model C with an intensity-dependent absorption rate is appointed as the best
model to explain the dynamics. The one-step predictions from Model C for 3 representative data sequences
are seen in Figure 5, 6 and 7. In general, the predictions are acceptable and the model does seem to
capture the increase related to exercise. Especially, in Figure 7 the compliance between the predictions
and the observations is good. The width of the prediction interval is however large in this case. The
prediction in Figure 6 does not seem to follow the dynamics of the observations very well. The increase
during exercise is underestimated and the increase due to the insulin bolus is overestimated. Finally,
the prediction in Figure 6 underestimates the increase during exercise while the prediction of the bolus
increase is acceptable.

4.5 Model Check

Diagnostic plots of the standardised residuals of Model C are depicted in Figure 8. Note that the initial
value was fixed to the value of the first observations and thus the corresponding residual is equal to
zero. The plots confirm that the model does not seriously violate the assumption of equally and normally
distributed residuals.

5 Discussion

The purpose of this study is to evaluate three model extensions describing the relationship between
exercise and the insulin absorption rate in CSII treated type 1 diabetes patients. From the model
evaluations we appoint Model C as the best model extension. This model takes into account the intensity
of the exercise bout. From a physiological point of view this is a reasonable hypothesis. The two separate
terms for mild and moderate exercise could be replaced by the heart rate or percentage of maximum
oxygen consumption.

During the estimation, seven of the 24 data sequences were disregarded due to non-steady initialization.
The non-steady behavior could be caused by previously injected insulin in the early morning or changes
in the basal delivery rate prior to study start. In future studies with these data, the observations from
the initial stabilization period could be eliminated to avoid this problem. However, it is important to be
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Figure 5: Data sequence no. 8. Top: One-step predictions from Model C (Blue line). The observations are
represented by dots. The grey area indicates 95% prediction interval. Middle and bottom: Insulin and exercise
inputs.
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Figure 6: Data sequence no. 9. Top: One-step predictions from Model C (Blue line). The observations are
represented by dots. The grey area indicates 95% prediction interval. Middle and bottom: Insulin and exercise
inputs.
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Figure 7: Data sequence no. 10. Top: One-step predictions from Model C (Blue line). The observations are
represented by dots. The grey area indicates 95% prediction interval. Middle and bottom: Insulin and exercise
inputs.
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Figure 8: Topleft: Standardised residuals versus time. Note that the initial value is fixed to the value of the
first observations and thus the corresponding residual is equal to zero. Topright: Standardised residuals versus
predictions. Bottomleft: Standardised residuals versus subjects (data sequences). Bottomright: QQ-plot of the
standardised residuals versus a normal distribution.
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aware of any insulin boluses delivered during or in the hours prior to the stabilization period as some of
the insulin would still be present in plasma at the time of the first event. Insulin is present in plasma
upto 4-5 hours after the injection.

In the estimation, we have to assume that the data set was obtained from 17 individuals due to limitations
in the software prototype. The original data set included 12 patients in total. Each patient went through
two study days resulting in 24 data sequences. The 17 data sequences which were left after the initial
data cleaning came from 10 patients. Thus we mix the inter-individual variability with the inter-occasion
variability. In future versions of the software, the possibility to distinguish between these two variabilities
is a necessity to ensure a correct handling of the variability.

The specification of the insulin absorption rate parameter ka in Model A includes a random walk. This
kind of parameter tracking is one of the main advantages of SDE models due to its ability to identify
hidden relationships in the data. The random walk is predicted along with the other state predictions
by a Kalman Filter. The data sequences included 23 observations each sampled non-equidistantly. The
exercise bout lasted 20 minutes and plasma insulin was sampled at the start, after ten minutes, and at
the end of the exercise bout. Thus, we had very few observations to drive the random walk. This could
be the reason to the failure of Model A. Longer exercise bouts and very rich sampling are needed to use
this method for model extension.

The clinical study investigated the effect of 20 minutes of exercise on a treadmill. Thus, the results cannot
be extrapolated to other types of sport or other durations. Furthermore, the effect can be different for
other types of insulin as well. To fully evaluate and model the effect of exercise on insulin kinetics in CSII
treated type 1 diabetes patients, a clinical study designed to investigate this effect specifically is needed.

More complex models of the insulin pharmacokinetics have been proposed in the literature. In [35] 11
models were compared including the base model used here. The authors conclude that a more complex
model is the most suitable model to explain the insulin dynamics. However, as the purpose of this study
was to add complexity to the model, we prioritised to start with a simple model as base model.

The effect of exercise on the insulin absorption must be assumed to be exposed to inter-individual vari-
ability. Thus, the model fit would probably improve further by adding a random effect to αmild and
αmoderate. This would likely improve the prediction of the increase in plasma insulin concentration dur-
ing exercise, but as for the random walk in Model A, this extension would require longer time series to
be identified.

As the software is a prototype, we cannot obtain the standard deviations of the parameters nor the
covariances. Thus, the results are only tentative as we cannot fully validate the model. If we assume that
the model is valid, the next step would be to perform covariate analysis to identify relationships between
the individual ηi’s and relevant covariates, e.g., age, level of fitness, weight, and gender.

The posterior identifiability check showed that for the base model, Model B, and Model C it is not possible
to estimate a realistic variance of the measurement noise. This could indicate that the models are not
able to fully capture the dynamics. Hence, the Kalman filter used in the estimation attempts to improve
the fit by minimizing this variance.

The identified model has the potential to incorporated into a larger model of the insulin as well as glucose
dynamics during exercise. The impact of the increased plasma insulin concentration on the plasma glucose
concentration due to exercise still has to be investigated.

6 Conclusion

This study investigated the effect of exercise on the insulin absorption rate in CSII treated type 1 diabetes
patients. Former models of exercise responses of the insulin-glucose system do not take this relationship
into account. Three candidates for model extension of a population insulin pharmacokinetic model were
evaluated. For all three models, the insulin absorption rate was assumed to be affected by exercise. In
the first candidate, the absorption rate parameter was modelled as random walk. In this way, the model
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structure was based completely on information from the data. However, as the data set did not include
enough observations sampled during the exercise bout to drive the estimation, this model was disregarded.
The two remaining models described a linear relationship between exercise and the absorption rate. One
model included an absorption rate independent of intensity, and one included an intensity–dependent
absorption rate. These two models were compared to a base model with a constant absorption rate
with LRT, AIC and BIC. From these measures, the model with an intensity dependent absorption rate
was evaluated as the best model to describe the data. A posterior identifiability check showed problems
in estimating the variance of the measurement variance. The predictions from the best model showed
that the model did capture behavior of the system and thus the model could be incorporated into an
existing model of the insulin-glucose system in type 1 diabetes. Further clinical studies are needed to fully
understand the increase in insulin plasma concentration during exercise. These studies should include
dense sampling to allow for a fully data driven identification of an appropriate model.
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