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Complementary microscopic and diffraction based methods revealed a peculiar microstructure of

electrodeposited nickel. For the as-deposited layer, thus, without any additional treatment, multiple

twinning yields a high population of R3n boundaries, which interrupts the network of normal high

angle grain boundaries. A peculiar arrangement of R3 boundaries forming five-fold junctions is

observed. The resulting microstructure meets the requirements for grain boundary engineering.

Twinning induced effects on the crystallographic orientation of grains result in one major texture

component being a h210i fiber axis and additional minor orientations originating from first

and second generation twins of h210i, i.e., h542i and h20 2 1i. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4816257]

Grain boundaries play a significant role in the properties

of polycrystalline materials.1 Traditional materials process-

ing has mainly aimed to control the grain size, i.e., the num-

ber of grain boundaries. More important than their number,

however, is the characteristics of grain boundaries as the key

for designing and controlling functional properties. Hence,

materials with high fraction of special boundaries have been

produced for industrial applications.2 Low energy bounda-

ries, and most notably R3 boundaries3 are of high importance

to design grain-boundary-specific materials properties.4,5 In

this respect, materials are defined as “grain boundary engi-

neered” if a high fraction of R3n (n is an integer) boundaries

is present and networks of normal high angle grain bounda-

ries are interrupted.6 Utilizing numerous nano-twin lamellae

enveloped in sub-micron-sized grains, has been reported on

the example of copper to bring about an improvement of the

mechanical strength without reducing ductility7 and without

affecting physical properties, e.g., electrical conductivity.8

Furthermore, such a microstructure with numerous nano-

twins has a much higher thermal stability than a nanocrystal-

line microstructure of equal average crystallite size, but

without twins.9,10 Hence, twinning is of crucial importance

for the synthesis of materials with tailored properties.

Nickel layers are characterized by high wear resistance,

relatively high hardness, barrier properties, high corrosion re-

sistance, and ease of synthesis.11 Accordingly, a large portion

of overall nickel used worldwide is in the form of thin coat-

ings, electrodeposition being the most common metal plating

process.12 Optimizing electrodeposition conditions to tailor

the grain boundaries and, thus, associated properties in nickel

electrodeposits are of high interest. A Watts electrolyte,

sometimes modified by additives, is the most widely used

electrolyte for nickel electrodeposition.11 Extensive studies

have been carried out since the 70 s and 80 s to understand the

relation between electrochemistry of the deposition process

and microstructure development in the deposits of Watts-

based electrolytes.13–16 For an additive free electrolyte, it has

been shown that four major fiber textures can develop: h100i,

h110i, h211i, and h210i, depending on the combination of the

electrolyte’s pH-value and the applied current density.13

Among them, h210i is the least studied; although a peculiar

faceted microstructure of a h210i textured nickel electrodepo-

sit is reported,17 nickel films with a preferred h210i orienta-

tion are not investigated in detail until now.

The present work reports about grain boundaries and

multiple twinning of a 16.5 lm-thick nickel layer with h210i
fiber texture, electrodeposited onto an amorphous Ni-P sub-

strate. Electrodeposition was carried out from a Watts elec-

trolyte consisting of 300 g/dm3 NiSO4 � 7H2O, 35 g/dm3

NiCl2 � 6H2O, and 40 g/dm3 H3BO3. The pH of the electro-

lyte was 2.5, vigorous mechanical stirring was applied and

the deposition temperature was kept constant at 323 K during

electrodeposition. The applied current density was 10 A/dm2.

For quantitative crystallographic texture analysis, X-ray

diffraction (XRD) pole figures of 111, 200, and 220 reflec-

tions were measured with Cu-Ka-radiation (Diffractometer

D8 Discover, Bruker AXS). The azimuth angle u was varied

from 0� to 360� in steps of 5�; the sample tilt given by the

pole angle w was varied from 0� to 75� in steps of 5�.
Measured intensities were corrected for background and a

Ni-powder standard was used for defocussing correction.

Following,18 the complete 3D orientation distribution func-

tion was calculated, but as the sample has a fiber texture in

the direction of layer growth (normal direction, ND), the

inverse pole figure in ND fully characterizes the texture in

the deposit. As shown in Fig. 1(a), the major texture compo-

nent is h210i with an orientation density of 3.8 m.r.d. (multi-

ples of random distribution). This fiber texture is rather

broad with a deviation of 9.4� around the ideal fiber axis. In

addition to the major h210i, two minor components close to

h542i and h711i with orientation densities of 1.4 and

1.2 m.r.d., respectively, are identified. Calculating the twin

orientation relations in FCC shows that these three orienta-

tions are related to one another by a twinning operation. The

first generation of twins originating from h210i is either

h210i or h542i; and the first generation of twins from h542i
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are h210i, h16 10 7i, h25 15 6i, and h20 2 1i. Since the angu-

lar difference between h16 10 7i and h542i is 7.0� and that of

h25 15 6i and h542i is 9.4�, and the maxima in the inverse

pole figure are broad (e.g., large spread around h542i,
Fig. 1(a)), h16 10 7i and h25 15 6i cannot be resolved sepa-

rately and are approximated by h542i. Similarly, there is

only a slight deviation from the calculated h20 2 1i orienta-

tion and the experimentally measured orientation maximum.

In Fig. 1(b), h210i, h542i, and h20 2 1i are shown by yellow,

light blue, and light red dots, respectively. Taking into

account the broadness of the h210i fiber component, twin-

ning operations of h210i! h542i and h542i! h20 2 1i are

also calculated for other orientations close to the ideal fiber

axis (black and gray lines around the h210i in Fig. 1(b)). It is

noted that further possible twinning such as h210i! h210i,
h542i! h210i, etc. are not considered in the calculations.

Nevertheless, despite the apparent deviation, there is a satis-

factory agreement between the expected twin components

and the measured textures. Hence, the global XRD analysis,

i.e., averaging over about the whole layer thickness, strongly

suggests that up to the second generation of twins originating

from the major texture component are present in the

microstructure.

To investigate the local texture and examine the charac-

ter of the grain boundaries, electron backscatter diffraction

(EBSD) and ion channeling imaging (ICI) were performed in

a FEI Helios NanoLabTM 600, equipped with an EDAX-TSL

EBSD system and a Hikari camera. The EBSD measurement

was performed in a hexagonal grid with an electron probe

current of 5.5 nA at an acceleration voltage of 12 kV, with

step size of 25 nm. The cleaning procedure of the measured

data was applied using OIM 5TM as follows: (i) grain confi-

dence index standardization, (ii) single iteration grain dila-

tion (in both cases, a grain was defined as a region consisting

of at least four connected points with misorientations of less

than 5�), (iii) all the data points with confidence index below

0.1 were disregarded. The ICI investigation was performed

using Gaþ ions with an energy of 30 keV and ion density of

2.6 C/m2 on the same location, where the orientation map

was acquired beforehand for supplementary characterization

at higher resolution.19 Images covering the whole thickness

of the deposit are shown in Fig. 2. Based on the ion channel-

ing image (Fig. 2(a)), the grain size is estimated to be below

50 nm in the near-interface region (the first 1 lm) of the

layer. Consequently, in this region no reliable information

was obtained with EBSD for the current conditions, as is

reflected by the ragged appearance and the relatively many

non-indexed pixels (white regions in the orientation map,

Fig. 2(b)). At a thickness of 1 lm, relatively large grains

with characteristic straight boundaries have developed. With

increasing distance from the substrate, the grain size

increases, but the same characteristic straight boundaries

remain. The orientation map in Fig. 2(b) shows that most

of those straight boundaries are R3 boundaries (shown in

black). Furthermore, it shows that the microstructure is com-

posed of h210i oriented columns (yellow to yellowish green)

and that the h210i oriented columns consist of a chain of

h210i oriented grains, which are separated by R3 boundaries

and, thus, must be a result of repeated and multiple twinning.

In Fig. 3, one column of h210i oriented grains and its

neighboring grains is highlighted and shown as an orienta-

tion map (Fig. 3(a)). It is evident from Fig. 3(a) that a h210i
oriented grain is twinned into another h210i oriented grain,

which at its turn twins into another h210i grain. Accordingly,

a column dominated by h210i oriented grains is the result

of h210i! h210i twinning. Clearly h542i oriented grains

(in light blue/purple color) are bounding the h210i oriented

FIG. 1. Crystallographic texture analysis by XRD (a) Inverse pole figure in

ND. h210i is the major texture component (3.8 m.r.d). h542i and h711i are

minor texture components (1.4 and 1.2 m.r.d, respectively). (b) Inverse pole

figure showing calculated first and second generation twins of h210i, being

h542i and h20 2 1i. Twin orientations originating from an initial orientation

close to h210i (i.e., within the measured broad maximum) are marked by

black and gray regions.

FIG. 2. Microstructure of the cross section of the layer from the layer/substrate interface to the surface (in all figures the same location is shown). (a) Ion chan-

neling image. Note that many boundaries are straight lines. (b) Orientation map, color coded in relation with the electrodeposit’s growth direction (GD) shown

by an arrow in the legend; R3 boundaries are shown in black; (c) High angle grain boundary network, R3n (n¼ 1,2,3) boundaries are shown in green and all

other high angle grain boundaries in red.
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column and are separated from the h210i grains by a R3

boundary. Moreover, it is observed that h542i oriented grains

either have a h210i or another h542i oriented grain as their

direct neighbor. Thus, it appears that h542i grains do not

form independently but rather are the result of twinning of a

h210i or another h542i grain (h210i! h542i! h542i). The

h20 2 1i grains (in reddish colors) also have a h542i oriented

grain as a neighbor, and a R3 boundary separates the two

grains. This shows that h20 2 1i is also the result of twinning,

h210i! h542i! h20 2 1i. Interestingly, Fig. 3(a) reveals

R3 boundaries between h20 2 1i oriented grains (in reddish

color) and h551i oriented grain (in dark green color). These

two orientations are also in twin relation. This indicates that

even the third generation of twins of h210i grains is present

locally. In the texture investigation with XRD (Fig. 1(a)), the

population of h551i oriented grains does not exceed random

distribution. Accordingly, the population of third generation

twins is not of significance in this material.

Since multiple twinning is evidently has occurred in the

studied material, a high fraction of R3n boundaries is

expected in the microstructure.20,21 Averaging the length

fraction of R3n boundaries over the layer thickness, 54.3% of

all high angle grain boundaries are in fact of R3n character.

Importantly, for larger distances from the film/substrate

interface the length fraction of R3n boundaries is higher than

the average, e.g., for the upper 12 lm of the layer it is above

60%. In addition, the network of normal high angle grain

boundaries is interrupted; i.e., there is no passage of normal

high angle grain boundaries from the substrate to the surface

(see Fig. 2(c)). Thus, the two requirements of grain boundary

engineered material, i.e., (i) high population of R3n bounda-

ries and (ii) interrupted networks of normal high angle grain

boundaries6 are satisfied for the 16.5 lm-thick electrodepos-

ited nickel layer. Notably, the grain boundary engineered

microstructure is achieved in the as-deposited state and,

in contrast to iterative thermomechanical treatments,5 no fur-

ther post-deposition treatment is required to achieve such a

high population of special boundaries in the present electro-

deposit. It is noted that by increase of film thickness, popula-

tion of R3n boundaries and grain size increases. The former

is beneficial for enhanced grain boundary specific properties,

whereas the latter is deteriorating mechanical strength.

Hence, thickness should be optimized as a trade of between

the two for different applications. In addition to thickness,

careful selection of electrodeposition conditions can signifi-

cantly influence multiple twinning and, hence, the resulting

microstructure. The origin of multiple twinning is not com-

pletely understood yet. For the applied deposition conditions,

i.e., low pH and high current density, hydrogen evolution is

favored.13 Thus, it is suggested that the evolution of H2, at

the cathode/electrolyte interface plays a role.

A peculiar observation is that in the regions with abun-

dant R3 boundaries a five-fold junction of straight bounda-

ries occurs. In Fig. 3(b), a network of grain boundaries in

such a region is shown and two of the five-fold junctions are

marked by the black rectangles. EBSD analysis identified the

occurrence of R9 boundaries, with length of 2–3 pixels

(50–75 nm) in the center of a five-fold junction of R3 boun-

daries. Altogether five R3 boundaries meeting in a single

point would span a total angle of 352.6�, only 7.4� from a

full rotation. Then, it might be suggested that the closing

angle of 7.4� is compensated by the occurrence of a small R9

boundary, so that no actual five-fold junction occurs.

However, TEM investigations in a Titan 80–300 filed emis-

sion TEM, from FEI operated at 300 KV, in HAADF-STEM

mode, show that the five boundaries actually do meet in the

center of five-fold junctions, see Fig. 3(c). Hence, the R9

boundaries identified in the orientation map at the center of a

five-fold junction are merely an artifact, caused by the choice

of a hexagonal grid for measurement of the orientation map

(up to 3 boundaries can meet in one point in such a grid).

Thorough analysis of R9 boundaries as well as the thermal

stability of the layers consisting of numerous and multiple

twins are of high importance22 and will be addressed

elsewhere.

Summarizing, it was demonstrated by combining XRD

texture measurements and local orientation analysis by

EBSD that electrodeposition of nickel from a highly acidic

Watts electrolyte and high current density, results in multiple

twinning of h210i oriented grains. This yields the develop-

ment of peculiar h210i columns with sequences of twins

within individual columns and, thus, a high number of R3

boundaries separating the grains forming these columns.

Finally, by careful selection of electrodeposition conditions,

grain boundary engineered material can be achieved.
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