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ABSTRACT. There is considerable intraspecific variation in metabolic rates and locomotor performance 
in aquatic ectothermic vertebrates, however, the mechanistic basis remains poorly understood. Using 
pregnant Trinidadian guppies (Poecilia reticulata Peters), a live-bearing teleost, we examined the effects 
of reproductive traits, pectoral fin use, and burst-assisted swimming on the swimming metabolic rate, 
standard metabolic rate (MO2std) and prolonged swimming performance (Ucrit). Reproductive traits 
included reproductive allocation and pregnancy stage; the former defined as the mass of the reproductive 
tissues divided by the total body mass. Results showed that the metabolic rate increased curvilinearly 
with swimming speed. The slope of the relationship was used as an index of swimming cost. There was 
no evidence that reproductive traits correlated with the swimming cost, MO2std, or Ucrit. In contrast, data 
revealed strong effects of pectoral fin use on swimming cost and Ucrit. Poecilia reticulata employed body-
caudal fin (BCF) swimming at all tested swimming speeds, however, fish with a high simultaneous use of 
the pectoral fins exhibited increased swimming cost and decreased Ucrit. These data indicated that 
combining BCF swimming and pectoral fin movement over a wide speed range, presumably to support 
swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted 
swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other 
than swimming speed that affect swimming cost and suggests that intraspecific diversity in biomechanical 
performance, such as pectoral fin use, is an important source of variation in both locomotor cost and 
maximal performance.   
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SUMMARY 33 

There is considerable intraspecific variation in metabolic rates and locomotor performance in aquatic 34 

ectothermic vertebrates, however, the mechanistic basis remains poorly understood. Using pregnant Trinidadian 35 

guppies (Poecilia reticulata Peters), a live-bearing teleost, we examined the effects of reproductive traits, pectoral 36 

fin use, and burst-assisted swimming on the swimming metabolic rate, standard metabolic rate (MO2std) and 37 

prolonged swimming performance (Ucrit). Reproductive traits included reproductive allocation and pregnancy 38 

stage; the former defined as the mass of the reproductive tissues divided by the total body mass. Results showed 39 

that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as 40 

an index of swimming cost. There was no evidence that reproductive traits correlated with the swimming cost, 41 

MO2std, or Ucrit. In contrast, data revealed strong effects of pectoral fin use on swimming cost and Ucrit. Poecilia 42 

reticulata employed body-caudal fin (BCF) swimming at all tested swimming speeds, however, fish with a high 43 

simultaneous use of the pectoral fins exhibited increased swimming cost and decreased Ucrit. These data indicated 44 

that combining BCF swimming and pectoral fin movement over a wide speed range, presumably to support 45 

swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted 46 

swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than 47 

swimming speed that affect swimming cost and suggests that intraspecific diversity in biomechanical 48 

performance, such as pectoral fin use, is an important source of variation in both locomotor cost and maximal 49 

performance.    50 

 51 

Key words: basal metabolic rate, energetics, gait transition, gravidity, life history, respiratory physiology.        52 

 53 

   54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 



3 

 

INTRODUCTION 69 

Intraspecific variation in metabolic rate and locomotor performance remain poorly understood in many taxa. Variation 70 

in physiological traits may be important, however, because it can be functionally significant and reflect behavioural or 71 

physiological trade-offs, where the costs or benefits of any phenotype are variable and may depend on internal and 72 

external factors (Williams, 2008; Biro and Stamps, 2010; Burton et al., 2011). For example, intraspecific variation in 73 

metabolic rate and locomotor performance may be associated with disruptive selection regimes leading to variation in 74 

foraging strategy and predator avoidance (Marras et al., 2010). Moreover, studies of physiological diversity may reveal 75 

the physiological basis of intraspecific variation in life history traits (Speakman, 2005; Arnott et al., 2006; Williams, 76 

2012). Finally, phenotypic diversity may be indicative of genetic diversity and the degree to which a population can 77 

adjust to environmental change (Hayes and Jenkins, 1997; Bolnick et al., 2003; Sears et al., 2009).   78 

Reproductive status may be a source of intraspecific variation in metabolic rate and locomotor performance. 79 

Elevated metabolic rate in relation to gravidity or pregnancy has been reported in many animals, including eastern 80 

garter snake (Thamnophis sirtalis Linnaeus) (Birchard et al., 1984), mountain spiny lizard (Sceloporus jarrovi Cope) 81 

(DeMarco, 1993), yellowtail rockfish (Sebastes flavidus Ayres) (Hopkins et al., 1995), Korean rockfish (Sebastes 82 

schlegeli Hilgendorf) (Boehlert et al., 1991), sailfin molly (Poecilia latipinna Lesueur) (Timmerman and Chapman, 83 

2003), striped surfperch (Embiotoca lateralis Agassiz) (Webb and Brett, 1972) and European eelpout (Zoarces 84 

viviparus Linnaeus) (Skov et al., 2010). Several studies have demonstrated diminished locomotor performance caused 85 

by gravidity or pregnancy. Examples include the northern death adder (Acanthophis praelongus Ramsay) (Webb, 2004), 86 

side-blotched lizard (Uta stansburiana Baird and Girard) (Miles et al., 2000), short-horn sculpin (Myoxocephalus 87 

scorpius Linnaeus) (James and Johnston, 1998) and mosquitofish (Gambusia affinis Baird and Girard) (Plaut, 2002; 88 

Belk and Tuckfield, 2010). Using the Trinidadian guppy (Poecilia reticulata Peters), Ghalambor and colleagues 89 

provided evidence that pregnancy may constrain fast-start swimming performance employed to evade predators 90 

(Ghalambor et al., 2004). It has been suggested that diminished swimming performance in live-bearing pregnant fish 91 

may be attributed to metabolic constraints caused by the embryos (Plaut, 2002), however, to our knowledge such 92 

relationships have not been examined. 93 

The impact of pregnancy on female performance could have important ecological and evolutionary consequences. 94 

For example, pregnant bighorn sheep (Ovis canadensis Shaw) spend less time in optimal foraging areas, where the 95 

predation risk is highest, than females that have recently given birth (Berger, 1991). Such differences in behaviour may 96 

reduce the predation risk associated with diminished locomotor performance at the cost of resource acquisition. From an 97 

evolutionary point of view, cost of reproduction represents one of the most prominent elements in life history evolution 98 

(Stearns, 1989). Using free-ranging lizards, Miles and colleagues demonstrated that a decrement in performance is 99 

associated with current reproductive investment and represents a cost of reproduction expressed as diminished 100 

locomotor performance and lowered survivorship to next clutch (Miles et al. 2000).  101 

Recent studies on the metabolic rates of swimming fish have included measurements of gait transitions occurring 102 

as a function of swimming speed (Korsmeyer et al., 2002; Jones et al., 2007; Cannas et al., 2006; Svendsen et al., 2010). 103 

A gait is “a pattern of locomotion characteristic of a limited range of speeds described by quantities of which one or 104 

more change discontinuously at transitions to other gaits” (Alexander, 1989). However, as far as is known, no previous 105 

studies have investigated how intraspecific variation in fin use within a single gait affects swimming cost and maximal 106 

performance. Moreover, while previous studies have examined the metabolic rates associated with the transition from 107 
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rigid-body, median or paired-fin (MPF) swimming to undulatory, body-caudal fin (BCF) swimming (Korsmeyer et al., 108 

2002; Cannas et al., 2006; Svendsen et al., 2010), the energetics of the gait transition from steady BCF swimming to 109 

unsteady BCF swimming (i.e. burst-assisted) remain poorly understood (Farrell, 2007).  110 

The objective of this study was to examine whether diversity in reproductive traits and swimming behaviour 111 

correlate with intraspecific variation in metabolic rates and maximal locomotor performance. Reproductive traits 112 

included reproductive allocation and pregnancy stage; the former defined as the mass of reproductive tissues divided by 113 

the total body mass. Swimming behaviour included use of the pectoral fins and gait transition from steady BCF 114 

swimming to unsteady BCF swimming (i.e. burst-assisted). To this end, we used P. reticulata Peters 1859 captured in 115 

Trinidad for swimming trials at increasing speeds.  116 

Poecilia reticulata is a live-bearing species producing one litter every 3 - 4 weeks (Reznick and Yang, 1993). 117 

Reproductive allocation in female P. reticulata tends to vary with season (Reznick, 1989), resource availability 118 

(Reznick and Yang, 1993) and predation regime (Reznick and Endler, 1982). In terms of locomotion, P. reticulata is an 119 

acanthomorph fish (Chen et al., 2003) and as such, the pectoral fins are located relatively high on the body, at an 120 

approximately mid‐dorsal position and relatively close to the centre of mass of the fish (Drucker et al., 2006). Compared 121 

to less derived fishes, the pectoral fins of acanthomorph fishes are generally associated with a wider range of motion 122 

and a correspondingly greater propulsor diversity (Drucker et al., 2006). Moreover, P. reticulata is a BCF swimmer that 123 

may switch to burst-assisted swimming (Pohlman et al., 2001). Several studies have used Trinidadian P. reticulata to 124 

investigate factors causing intraspecific variation in relation to evolutionary ecology (Magurran, 2005), and P. 125 

reticulata is a key organism for empirical tests of theoretical life history models (Reznick et al., 1990; Reznick et al., 126 

1996; Ghalambor et al., 2003). We used individual female P. reticulata, varying in reproductive traits, to document 127 

swimming metabolic rates, standard metabolic rate, swimming behaviour and prolonged swimming performance. 128 

Measurements of excess post-exercise oxygen consumption (Lee et al., 2003b) were included because individual 129 

variation in swimming performance might be related to processes associated with anaerobic rather than aerobic power 130 

production. 131 

We predicted that reproductive allocation and/or pregnancy stage would correlate positively with metabolic 132 

swimming cost and negatively with prolonged swimming performance. Further, we predicted that standard metabolic 133 

rate would correlate positively with reproductive allocation and/or pregnancy stage. In terms of fin use, we predicted 134 

that fish extending their pectoral fins would experience increased drag and increased swimming cost, as hypothesised 135 

by previous studies (Webb, 1998; Weihs, 2002; Green and Hale, 2012). Inefficient fin use at increasing speeds could 136 

translate into decreased swimming performance. For example, if extending the pectoral fins causes a consistent increase 137 

in the swimming cost, a fish with extensive pectoral fin use at increasing speeds could exhibit inferior swimming 138 

performance, because the fish would reach the maximum metabolic rate at a relatively slow swimming speed. Finally, 139 

as a consequence of gait transition to burst-assisted swimming, aerobic metabolic rate (i.e. oxygen consumption rate 140 

during exercise) should either plateau; or the rate of increase, as a function of swimming speed, should decline because 141 

burst-assisted swimming is partly covered by anaerobic metabolism (Farrell, 2007).  142 

 143 

MATERIALS AND METHODS 144 

Experimental animals 145 
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A total of 18 female P. reticulata (body mass: 0.296 ± 0.009 g; total length: 3.0 ± 0.0 cm (mean ± S.E.)) was captured 146 

using butterfly nets in the Naranjo River in Trinidad. The river is a low predation tributary to the Aripo River. The mean 147 

current velocity at the collection site was 12.7 ± 1.2 cm s
-1

. In the laboratory, fish were kept in five identical holding 148 

tanks (30 l each) using filtered water originating from the Arima Valley. Each tank housed 4 – 5 individuals including 149 

one male. One air stone in each tank secured normoxic conditions. Each tank was cleaned and water was replaced every 150 

third day. Prior to experimentation, fish were acclimated to the laboratory for 2 - 3 weeks. Fish were fed daily on 151 

commercial flake food to satiation. Mean water temperature in the holding tanks was 25.8°C (range: 24.6 – 26.9°C). All 152 

fish holding procedures were identical for the five tanks.  153 

 P. reticulata is a lecithotrophic species. Lecithotrophic means that there is no placenta-like connection between 154 

the mother and young (Reznick and Yang, 1993), such that yolk stored in the egg is assumed to be the only source of 155 

embryo nutrition. Recent work within the Poeciliidae has indicated, however, that some mother-to-embryo nutrient 156 

transfer may occur in species thought to be lecithotrophic (Marsh-Matthews et al., 2005; Marsh-Matthews et al., 2010). 157 

To our knowledge, no attempt has been made to quantify any post-fertilization provisioning in P. reticulata, and it is 158 

not known to what degree there is a limited transfer of oxygen or small molecules. 159 

 160 

Respirometry 161 

A 0.170 l Bläzka-type swimming respirometer (Model SW10000; Loligo Systems Aps, Tjele, Denmark) was used to 162 

measure oxygen consumption rate (MO2; mg O2 kg
-1

 h
-1

) as a function of swimming speed (U). The respirometer was 163 

submerged in an ambient tank (0.9 × 0.35 × 0.39 m) supplying water for the respirometer. Water temperature was 164 

maintained at 26.0°C (range: 25.9-26.1°C) using two cooling peltier elements (IceProbe; Cool Works Inc., San Rafael, 165 

CA, USA) and a submersible heater (50 W; AkvaStabil; Haderslev, Denmark). An air stone in the ambient tank 166 

maintained oxygen levels > 95% air saturation.  167 

The inner dimensions of the cylindrical observation section in the respirometer were 26 × 100 mm (diameter × 168 

length). An impeller, placed downstream of the observation section, was driven by an external electric motor that 169 

generated the re-circulating flow. Deflectors situated upstream of the observation section collimated the flow. To 170 

promote rectilinear flow and a uniform velocity profile in the observation section, water was passed through an 171 

upstream honeycomb (3 mm cell diameter) producing a micro turbulent flow. A grid (2 × 2 mm) in the downstream 172 

direction bounded the observation section. Water speeds in the observation section were measured using a Laser 173 

Doppler Anemometer consisting of a 4W Ar-ion laser, a Fiberprobe and BSA data processors (Dantec Dynamics, 174 

Skovlunde, Denmark). The measurements were used to correlate water speed with voltage output from the external 175 

motor controller. Additional details have been published previously (Poulsen et al., 2012) 176 

Polystyrene sheets covered the majority of the ambient tank to minimize any outside stimuli affecting the fish 177 

during the experiment. A small opening was used for behavioural observations. Fish were encouraged to swim in the 178 

most upstream part of the observation section using a darkening hide.  179 

Oxygen partial pressure in the respirometer was measured using fibre optic sensor technology (PreSens, 180 

Regensburg, Germany). Intermittent-flow respirometry was applied in accordance with previous studies (Steffensen, 181 

1989). The respirometer was fitted with an inlet port and a standpipe outlet, through which the volume of water in the 182 

respirometer could be replaced with a computer-actuated pump. The software AutoResp (Loligo Systems Aps, Tjele, 183 

Denmark) was used to control the flush (240 s), wait (120 s) and measurement (360 s) phases. These settings provided 184 
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one MO2 measurement per 12 min. Preliminary trials demonstrated that the R
2
 associated with each MO2 measurement 185 

was always > 0.95, similar to previous studies (Claireaux et al., 2006; Svendsen et al., 2012). The oxygen content never 186 

fell below 18.4 kPa. Standard equations were used to calculate MO2 (Svendsen et al., 2010). Water in the ambient tank 187 

was recirculated through a loop consisting of a separate mechanical filter (Pick-up 2006; Eheim, Deizisau, Germany) 188 

and a UV-sterilizer (UV-10000; Tetra Pond, Melle, Germany). Between experimental runs, the entire setup was cleaned 189 

using a chlorine solution, flushed repeatedly, and refilled with water from the same source as used for the fish holding.  190 

Fish for experiments were starved for 24 h prior to respirometry to ensure a post-absorptive state. Fish mass (to 191 

nearest 0.001 g), length, depth and width (all to nearest 0.5 mm) were determined for pre-experimental calculation and 192 

correction of the solid blocking effects, ranging from 2.2 to 4.2%. Calculations of solid blocking effects followed 193 

previous studies (Bell and Terhune, 1970).   194 

Each P. reticulata was introduced to the working section and given at least 8 h (overnight) to acclimate while 195 

swimming at 2 LT s
-1

 (total body lengths per second). Preliminary trials demonstrated that 2 LT s
-1

 was the minimum 196 

swimming speed that secured positive rheotaxis (i.e. upstream orientation of the anterior body part). After the 197 

acclimation period, fish maintained a low MO2, even when exposed to a few stepwise increases in the swimming speed. 198 

Occasionally, the acclimation period was extended to meet this criterion. Subsequently, each individual fish was 199 

exposed to progressive increments in the swimming speed of 0.5 LT s
-1

 every 12 min until fatigue. MO2 was measured at 200 

each swimming speed. Preliminary trials demonstrated that the critical (maximum) swimming speed (Ucrit) was 9-17 LT 201 

s
-1

. The speed increment (0.5 LT s
-1

) was chosen to ensure an adequate number of MO2 measurements (>12) at 202 

increasing speeds in individual fish. This type of data was required because we aimed at describing the relationship 203 

between U and MO2 using an equation representing each individual fish. Maximum MO2 (MO2max) was estimated as the 204 

highest MO2 measured during the swimming protocol (McKenzie et al., 2003).  205 

Immediately after fatigue, the swimming speed was returned to 2 LT s
-1

 (acclimation speed), following Lee and 206 

colleagues (Lee et al., 2003b). Using this swimming speed, MO2 was measured for 1 h to quantify any excess post-207 

exercise oxygen consumption (EPOC) (Lee et al., 2003b). Levels of background respiration were estimated from blank 208 

runs and used to correct the MO2 measurements following past studies (Jones et al., 2007). 209 

 210 

Swimming behaviours and critical swimming speed (Ucrit) 211 

Behavioural data were collected during the swimming trials, similar to previous studies (Swanson et al., 1998). During 212 

the measurement phase (6 min) of the respirometric loop (12 min), time spent swimming with extended pectoral fins, 213 

caudal undulation, and using burst-assisted swimming were recorded. Use of each behaviour was recorded over a 1 min 214 

time interval (i.e. 3 min in total). These data were collected during each 12 min interval, starting at the acclimation 215 

speed (2 LT s
-1

) and ending at fatigue. End point values were the percentages of time allocated to these swimming 216 

behaviours at each swimming speed (Korsmeyer et al., 2002; Webb and Fairchild, 2001). The values were used to 217 

calculate the average fin and gait use (% of time) during the complete swimming trial for the individual fish. Finally, 218 

the gait transition speed (USTmax (Peake, 2008)) from steady to unsteady swimming (i.e. burst-assisted) was recorded as 219 

the highest swimming speed without unsteady swimming.   220 

The equation provided by Brett was used to calculate Ucrit (Brett, 1964). Oufiero and Garland demonstrated that 221 

the Ucrit protocol yields critical swimming speeds that are repeatable for individual P. reticulata, indicating that they 222 

represent actual measures of organism performance (Oufiero and Garland, 2009). 223 
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 224 

Reproductive traits 225 

Immediately after the swimming trial, fish were euthanized using an over-doze of MS-222 and preserved in 6% 226 

formaldehyde. Wet and dry reproductive allocation (RA) was quantified using methods similar to Reznick (Reznick, 227 

1983). Briefly, embryos and associated reproductive tissues were separated from female somatic tissue. Stage of 228 

embryonic development (i.e. pregnancy stage) was determined morphologically following standard procedures 229 

(Haynes, 1995). Development ranged from stage 0 (an egg with yolking ova) to stage 50 (fully developed embryos, 230 

ready to be born). Wet weights of the reproductive and somatic tissues were measured using a Mettler AE163 analytical 231 

balance (Mettler-Toledo, Columbus, OH, USA) and recorded to the nearest 0.00001 g. Subsequently, the tissues were 232 

air dried for 24 h at 600°C and weighed again following the same procedure. RA was calculated as the mass of 233 

reproductive tissues divided by the total body mass. 234 

 235 

Data analysis 236 

As indicated, we aimed at describing the relationship between U and MO2 using an equation representing each 237 

individual fish. Previous studies have used power, exponential and polynomial models to describe the relationship 238 

between U and MO2 (Korsmeyer et al., 2002; Arnott et al., 2006; Tudorache et al., 2011). Webb recommended that a 239 

certain model should not be assumed, but rather a model should be used that best describes the available data (Webb, 240 

1993). Accordingly, we examined various models before determining the most appropriate model. Using the model for 241 

individual fish, MO2 was extrapolated to zero swimming speed to estimate standard metabolic rate (MO2std), following 242 

previous studies (Brett, 1964; Arnott et al., 2006). The model was also used to estimate metabolic swimming cost in 243 

individual fish, expressed as the slope of the relationship between U and MO2.  244 

To test the predictions of this study, reproductive traits and pectoral fin use (considered the independent 245 

variables) were correlated with swimming cost and MO2std, both derived from the identified model, as well as Ucrit 246 

(considered the dependent variables). Reproductive traits and pectoral fin use were not manipulated experimentally. 247 

Instead, the analyses relied on post-hoc intraspecific variation resulting from differences among individuals. To test our 248 

predictions, linear least square regression was used to examine if the reproductive traits correlated positively with 249 

MO2std and swimming cost and negatively with Ucrit. In terms of pectoral fin use, we tested if this variable correlated 250 

positively with swimming cost and negatively with Ucrit. To assess such relationships further, we also tested for a 251 

negative correlation between Ucrit and swimming cost.  252 

The final objective of this study was to test the prediction that gait transition from steady BCF to unsteady BCF 253 

swimming would cause MO2 to either plateau; or the rate of increase, as a function of swimming speed, would decline. 254 

To examine this prediction, we compared MO2 before and after transition to burst-assisted swimming at increasing 255 

speeds using a sign test. 256 

Because the five fish holding tanks were identical, maintained in an identical fashion and kept in the same room, 257 

we have no reason to believe that the different tanks affected the fish differently. Therefore, tank origin was not 258 

included in any analyses. 259 

Estimates of MO2std and MO2max were used to estimate the metabolic scope (MS). The MS was defined as the 260 

difference between MO2std and MO2max, following past studies (Farrell and Richards, 2009). The speed where fish 261 
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transitioned from steady to unsteady BCF swimming (USTmax), and the simultaneous MO2 measurements, were used to 262 

partition the MS into the proportion attributed to steady swimming and the proportion attributed to unsteady swimming. 263 

 To detect EPOC, we compared the individual pre-exercise MO2 with the first post-exercise MO2 using a paired t-264 

test after examining the assumptions of normal distribution of data and homogeneity of variance. Both data sets were 265 

collected while the fish was swimming at 2 LT s
-1

 (acclimation speed). If post-exercise MO2 was significantly higher 266 

than pre-exercise MO2, it was considered evidence of EPOC and anaerobic power production, following previous 267 

studies (Svendsen et al., 2010). 268 

The free statistical software R (R Development Core Team, 2011) was used for statistical analyses. The R-269 

package nlme (Pinheiro et al., 2011) was used to fit models. Results were considered significant if α = 0.05. All values 270 

are reported as means ± s.e.m. unless noted otherwise. 271 

 272 

RESULTS 273 

The behavioural data showed that P. reticulata employed the caudal fin for swimming (i.e. BCF swimming) at all 274 

speeds (data not shown). In contrast, use of the pectoral fins and burst-assisted swimming varied with the swimming 275 

speed (Fig. 1). As swimming speed increased, the use of the pectoral fins decreased, however, there was no distinct 276 

threshold speed at which fish discontinued using the pectoral fins (Fig. 1). In fact, two individuals used the pectoral fins 277 

at all swimming speeds (Fig. 1).  278 

Most fish (15 out of 18) employed burst-assisted swimming at the highest swimming speeds (Fig. 1). Burst-279 

assisted swimming was less variable than use of the pectoral fins. All fish that started using burst-assisted swimming 280 

continued doing so throughout the remaining swimming trial (Fig. 1). The average gait transition speed (USTmax) from 281 

steady swimming to unsteady swimming (i.e. burst-assisted swimming) was 40.85 ± 1.79 cm s
-1

, equivalent to 13.48 ± 282 

0.59 LT s
-1

. This measure included the maximum recorded steady swimming speed of three individuals that did not 283 

perform burst-assisted swimming (Fig. 1). The mean Ucrit was 44.99 ± 1.84 cm s
-1

, equivalent to 14.89 ± 0.66 LT s
-1

. 284 

There was no significant relationship between fish total length (cm) and Ucrit (cm s
-1

) (P > 0.1; R
2
 < 0.16).   285 

In terms of metabolic rates, MO2 as a function of U in individual fish was best described by the exponential 286 

function: 287 

 288 

MO2 = a exp(U b)                (1) 289 

 290 

where a is the MO2 at zero speed (i.e. U = 0), and b is the rate of increase in the MO2 as a function of U. The equation 291 

has been used to describe relationships between MO2 and U in a number of studies (Brett, 1964; McKenzie et al., 2003; 292 

Arnott et al., 2006). Equation (1) provided an estimate of the MO2std (i.e. a) and swimming cost (i.e. b) measured at 293 

increasing U in individual fish.   294 

Maximum likelihood estimation was done on the logarithm of the MO2. The log MO2 was described by the 295 

following linear random coefficient model for the i’th observation on the j’th fish: 296 

 297 

Log       =   
  +       +    ,   i = 1, …,   ,   j = 1, …, 18.          (2) 298 

         299 
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The fish specific intercepts   
  and slopes    were assumed to follow normal distributions with means    and    and 300 

variances   
  and   

 . Moreover, a correlation between   
  and   , ρ, was allowed. An AR1 (autoregressive of order 1) 301 

autocorrelation was allowed in the residuals using the equation: 302 

 303 

    =          +                    (3)  304 

 305 

where   is the autoregressive parameter. The     are assumed to be independently and identically normally distributed 306 

with mean zero and variance   
 . The MO2 at zero U is    = exp(  

 ) for the j’th fish, while    is the rate of increase in 307 

the MO2, as a function of swimming speed, for the j’th fish. Thus,    and    represent MO2std and swimming cost, 308 

respectively, for the j’th fish.  309 

Measurements of MO2 in relation to U in individual fish are plotted in Fig. 2. Data indicated that the rate of 310 

increase in MO2, as a function of U, was lower at speeds when burst-assisted swimming was not employed (steady 311 

swimming) than at speeds when burst-assisted swimming was employed (unsteady swimming) (Fig. 2). Consequently, 312 

the parameters in equation (1) were estimated using observations with steady swimming only (Figs 1, 2).  313 

The mean MO2std was exp(  ) = exp(5.76) = 318.05 mg O2 kg
-1

 h
-1

. The 95% confidence interval was 294.01 – 314 

344.05 mg O2 kg
-1

 h
-1

. The average rate of increase in the MO2 as a function of U was 0.0262 (Fig. 2). Estimates of the 315 

parameters for equations (1-3) are provided in Table 1. The average MO2max was 1270.69 ± 40.50 mg O2 kg
-1

 h
-1

. Body 316 

mass correlated weakly with MO2std and MO2max in a positive and negative fashion, respectively, but none of the 317 

relationships were significant (P>0.05). 318 

    After completing the swimming trial, fish were dissected and     (i.e. fish specific RA) and fish specific 319 

pregnancy stage were quantified as described above. Measurements showed that both wet and dry RA varied between 320 

individuals (Table 2). Likewise, the pregnancy stages varied between individuals (Table 2). Wet and dry     and fish 321 

specific pregnancy stage were related to  ̂  (i.e. estimated fish specific steady swimming cost),  ̂   (i.e. estimated fish 322 

specific MO2std) and         (i.e. fish specific Ucrit). The tests revealed no significant relationships (all P>0.1). These 323 

findings indicated that steady swimming cost, MO2std and Ucrit did not correlate with the reproductive traits.  324 

The same tests were carried out using average pectoral fin use instead of the reproductive traits. These tests 325 

revealed that steady swimming cost (i.e.  ̂ ) correlated positively with the average pectoral fin use (P<0.001; R
2
=0.56; 326 

Fig. 3). Hence, P. reticulata spending more time with extended pectoral fins had increased steady swimming costs (Fig. 327 

3). There was no correlation between  ̂  and the average pectoral fin use, indicating that MO2std and average pectoral fin 328 

use were unrelated (P=0.42).  329 

There was a negative correlation between the average pectoral fin use and         (P<0.0001; R
2
=0.70; Fig. 4). 330 

Hence, P. reticulata spending more time with extended pectoral fins had a low Ucrit (Fig. 4). There was no correlation 331 

between average pectoral fin use and          (fish specific MO2max), or between         and          (both P>0.25), 332 

indicating that MO2max did not influence the average pectoral fin use or Ucrit. 333 

The average pectoral fin use by individual fish was calculated using three different methods: 1) the average 334 

pectoral fin use throughout the complete swimming trial (i.e. from acclimation speed to Ucrit); 2) the average pectoral fin 335 

use up to the initiation of burst-assisted swimming; and 3) the average pectoral fin use up to 9.5 LT s
-1

 (equivalent to 336 
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28.8 cm s
-1

). This swimming speed represented the highest swimming speed that all fish managed to maintain for a 337 

complete respirometric loop (Figs 1, 2). The average pectoral fin use data presented in Figs 3 and 4 were based on 338 

methods 2) and 1), respectively. The relationships shown in Figs 3 and 4 were present and significant (all P<0.02; 339 

R
2
>0.31) regardless of the method employed to calculate the average pectoral fin use for the individual fish. These 340 

findings indicated that the relationships between average pectoral fin use and steady swimming cost (Fig. 3) and Ucrit 341 

(Fig. 4) were not artefacts caused by the variable swimming performance of the fish.  342 

Fish condition index was calculated following previous studies (Marras et al., 2011) and correlated with average 343 

pectoral fin use. Employing methods 1) and 2) to calculate average pectoral fin use, there was no significant correlation 344 

between fish condition index and average pectoral fin use (both P>0.11). When method 3) was employed, fish condition 345 

index correlated negatively with the average pectoral fin use (P=0.01; R
2
=0.34). Because of the inconsistent 346 

relationships, a possible effect of condition index on pectoral fin use was not considered any further. 347 

Finally,  ̂  correlated negatively with         (P=0.002; R
2
=0.46) (Fig. 5). Hence, P. reticulata with a low Ucrit had 348 

increased steady swimming costs in comparison with fish with a high Ucrit (Fig. 5). Collectively, Figs 3, 4 and 5 349 

indicated that elevated pectoral fin use increased steady swimming costs, which translated into a low Ucrit. It appeared 350 

that increased steady swimming costs meant that P. reticulata with elevated pectoral fin use reached the maximum 351 

metabolic rate at a relatively low speed and therefore had a low Ucrit. The findings suggested that inefficient fin use at 352 

increasing swimming speeds is coupled with a low Ucrit. 353 

Metabolic rate data collected when unsteady swimming occurred were insufficient to estimate the actual rate of 354 

increase in the MO2 as a function of U, specific for this swimming gait (Fig. 2). It was clear, however, that the vast 355 

majority of the MO2 data points during unsteady swimming were higher than what would be expected based on 356 

extrapolation of the values representing steady swimming (Fig. 2). To examine these observations statistically, a sign 357 

test was used to investigate if observations involving unsteady swimming (Fig. 2) were distributed around the prediction 358 

of the exponential equation (1) with an equal probability against the two-sided alternative. Differences between 359 

predicted values, using equation (1), and the actual observations involving unsteady swimming were aggregated for 360 

each fish and the mean difference was used as the end point value. These calculations showed that for all 15 fish 361 

performing unsteady swimming, the mean difference was positive (i.e. higher mean MO2 than expected). Testing the 362 

data using the sign test revealed a highly significant result (P<0.001), showing that the metabolic rate increased after 363 

transition to burst-assisted swimming. 364 

The MO2max was 1270.69 ± 40.50 mg O2 kg
-1

 h
-1

. This value was recorded as the highest MO2 measured during 365 

the swimming protocol (McKenzie et al., 2003). In four fish, the maximum metabolic rate was not associated with the 366 

highest swimming speed, but with the second highest swimming speed (Fig. 2). Thus, the mean MO2 recorded during 367 

the highest swimming speed (1258.76 ± 39.73 mg O2 kg
-1

 h
-1

) was slightly lower (1%) than MO2max.      368 

The metabolic scope (MS) was calculated as MO2max – MO2std following past studies (Farrell and Richards, 2009) 369 

and was on average 952.64 mg O2 kg
-1

 h
-1

. Depending on the fish, MO2max occurred during steady or unsteady 370 

swimming (Fig. 2). The highest MO2 recorded during steady swimming was on average 1015.61 mg O2 kg
-1

 h
-1

. This 371 

measure included MO2max of three individuals that did not perform any burst-assisted swimming (Figs 1, 2). The MO2 372 

increased by 255.08 mg O2 kg
-1

 h
-1

 during the part of the swimming protocol that involved unsteady swimming (Fig. 2). 373 

In proportions of the MS, steady swimming accounted for 73.2%, whereas unsteady swimming accounted for 26.8%. 374 

These findings showed that unsteady swimming contributed significantly to MS. 375 
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 Immediately after fatigue, the swimming speed was reduced to the acclimation speed (2 LT s
-1

), following Lee and 376 

colleagues (Lee et al., 2003b). Starting at the MO2 recorded during the highest swimming speed (1258.76 ± 39.73 mg 377 

O2 kg
-1

 h
-1

), post-exercise MO2 declined rapidly and approached the pre-exercise MO2 (Fig. 6). The first measure of 378 

post-exercise MO2 was significantly higher than the pre-exercise MO2 (P<0.001), providing evidence of EPOC and 379 

anaerobic power production in P. reticulata (Fig. 6). The rapidly declining MO2, and the fact that we had no MO2 data 380 

between 0 h and 0.2 h (Fig. 6), precluded an accurate estimation of EPOC (mg O2 kg
-1

). Post-exercise MO2 declined 381 

until 0.69 h and approached the pre-exercise MO2. The last two measurements of post-exercise MO2 at 0.89 h and 1.08 382 

h remained slightly elevated relative to the pre-exercise MO2 (Fig. 6). The majority of the post-exercise decline in the 383 

MO2 occurred within 0.3 h after the swimming speed was returned to the acclimation speed (Fig. 6). 384 

 385 

DISCUSSION  386 

Contrary to predictions, we found no evidence of correlations between reproductive traits and steady swimming cost, 387 

standard metabolic rate (MO2std) and prolonged swimming performance (Ucrit). In contrast, pectoral fin use correlated 388 

positively with swimming cost and negatively with Ucrit. We suggest that the use of pectoral fins indicated a mechanism 389 

to maintain swimming stability, rather than generate forward thrust. Further, we propose that elevated use of pectoral 390 

fins indicated an elevated need to support swimming stability resulting in increased swimming cost and therefore 391 

decreased Ucrit. Finally, we found that the aerobic metabolic rate increased after transition to burst-assisted swimming 392 

suggesting that unsteady swimming constituted 26.8% of the metabolic scope (MS).  393 

Although pregnancy may influence metabolic rates and swimming performance in live-bearing fish, this study 394 

found no evidence of reproductive allocation (RA) or pregnancy stage correlating with MO2std, steady swimming cost or 395 

Ucrit in wild P. reticulata from a low predation river. A number of studies have reported elevated metabolic rate (Webb 396 

and Brett, 1972; Boehlert et al., 1991; Hopkins et al., 1995; Timmerman and Chapman, 2003; Skov et al., 2010) and 397 

diminished swimming performance (Plaut, 2002; Ghalambor et al., 2004; Belk and Tuckfield, 2010) in pregnant live-398 

bearing fish. The studies differ from the present study in a number of ways. Firstly, two previous studies tested 399 

pregnancy effects on fast-start swimming performance (Ghalambor et al., 2004; Belk and Tuckfield, 2010) rather than 400 

Ucrit. It is possible that fast-start swimming performance is more sensitive to pregnancy than Ucrit. Secondly, previous 401 

studies followed individual fish over the course of the gestation period for repeated measurements (Webb and Brett, 402 

1972; Plaut, 2002; Timmerman and Chapman, 2003) or made comparisons between gestating females and 403 

reproductively inactive females or males (Boehlert et al., 1991; Hopkins et al., 1995; Skov et al., 2010). We were 404 

unable to make repeated measurements on individual fish because of the destructive nature of measuring RA, and our 405 

samples included no reproductively inactive fish (all wet RA ≥ 4.93%). Finally, our study examined low predation P. 406 

reticulata only. It is well known, however that high predation P. reticulata (e.g. from Aripo River) have considerably 407 

higher RA than low predation P. reticulata (Reznick and Endler, 1982). Further studies should test for pregnancy 408 

effects on metabolic rates and Ucrit in both high and low predation fish, while also controlling for age and genetic 409 

background (Ghalambor et al., 2004; Belk and Tuckfield, 2010).  410 

Previous studies have covered the energetics of gait transitions from 1) exclusive pectoral fin propulsion to 411 

combined pectoral and caudal fin propulsion (Korsmeyer et al., 2002; Cannas et al., 2006; Jones et al., 2007; Kendall et 412 

al., 2007; Svendsen et al., 2010); 2) steady swimming to unsteady swimming (Svendsen et al., 2010); 3) dorsal and anal 413 

fin propulsion to caudal fin propulsion (Korsmeyer et al., 2002); and, 4) free stream swimming to Karman gaiting (Liao 414 
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et al., 2007; Taguchi and Liao, 2011). By contrast, little attention has been devoted to the energetic effects of fin use 415 

variation within a single gait. The present study found that within the steady BCF swimming gait, swimming cost 416 

correlated strongly with pectoral fin use. Fish that ceased using the pectoral fins at low speeds reduced swimming cost 417 

in comparison with fish that ceased using the pectoral fins at a higher speed or not at all. According to previous studies, 418 

BCF swimmers extending their paired fins should experience increased swimming costs (Webb, 1998; Webb, 2002) 419 

because of the additional drag (Videler and Wardle, 1991; Weihs, 2002; Green and Hale, 2012), however, this 420 

hypothesis has rarely been tested. Although furling of the pectoral fins at relatively low speeds is common (Drucker and 421 

Lauder, 2003), some BCF swimmers employ both caudal and pectoral fins at relatively high swimming speeds. For 422 

example, in the field, brook trout (Salvelinus fontinalis Mitchill) combine the use of the caudal and pectoral fins at a 423 

wide range of swimming speeds (McLaughlin and Noakes, 1998). Notably, S. fontinalis using their pectoral fins swim 424 

with a higher caudal fin beat frequency at a given swimming speed than those not using their pectoral fins (McLaughlin 425 

and Noakes, 1998). Because there is a positive relationship between caudal fin beat frequency and MO2 (Ohlberger et 426 

al., 2007), these findings indicate that S. fontinalis using the pectoral fins experienced increased swimming cost. The 427 

observations on S. fontinalis are consistent with the present study demonstrating a positive relationship between 428 

pectoral fin use and steady swimming cost in P. reticulata. Our data suggest that combining the caudal and pectoral fins 429 

over a wide speed range is an inefficient BCF swimming behaviour.        430 

What proximate mechanism could underpin the observed intraspecific variation in pectoral fin use? A likely 431 

mechanism involves variable needs to support swimming stability and control. In BCF swimmers, pectoral fins are not 432 

used for forward thrust generation, but play an important role as trimming and/or powered correction systems to 433 

maintain swimming stability (Webb, 2002). The former involves positioning the fins to dampen or correct 434 

perturbations, whereas the latter involves active movements of the fins independent of the body to correct perturbations 435 

(Webb, 2002). Stability and control can be a major problem in swimming (Videler and Wardle, 1991; Webb, 1998; 436 

Webb, 2002). For example, there are six possible recoil motions for a rigid body resulting from propulsor movements, 437 

three of them translational and three rotational (Hove et al., 2001). BCF swimming generates large side forces that 438 

cause the anterior parts of the body to recoil (yaw and/or sideslip) (Hove et al., 2001; Weihs, 2002; Lauder, 2006), 439 

which may represent a major stability problem in BCF swimming (Webb, 1988; Weihs, 2002). The yaw movements 440 

generated by the caudal fin are usually countered by movements of the pectoral or pelvic fins (Lauder, 2006). Such 441 

needs for stability control by balancing forces have led recent studies to emphasize the importance of multiple fins 442 

employed by swimming fish (Hove et al., 2001; Drucker et al., 2006; Lauder and Tytell, 2006, Tytell et al., 2008; Blake 443 

et al., 2009). The use of paired fins to maintain stability and control is most pronounced at lower speeds. At higher 444 

swimming speeds, various stability problems persist, but control is shifted more towards the body-caudal fin. In the 445 

present study, individual P. reticulata employed the pectoral fins at a variable speed range, and increased pectoral fin 446 

use was associated with increased steady swimming costs and a low Ucrit. Although the exact function of extending the 447 

pectoral fins remains unknown, it is likely that the variation in pectoral fin use reflected, at least partly, different needs 448 

to balance forces and support swimming stability and control. According to this hypothesis, P. reticulata that continued 449 

using the pectoral fins at high swimming speeds did so to support swimming stability. As such, the extent of pectoral fin 450 

use at increasing speeds could be interpreted as an index of swimming stability in individual fish, with extensive 451 

pectoral fin use indicating a swimmer with stability problems.   452 
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What is the metabolic cost of stability control in swimming fishes? The metabolic cost of stability control is not 453 

known (Lauder, 2006), but the cost likely represents a significant part of the total swimming cost (Webb, 2002). In the 454 

present study, the pectoral fins were presumably not employed to generate forward thrust, but to support stability 455 

control. Using the pectoral fins as a trimming and/or powered correction system to stabilize BCF swimming should 456 

increase swimming costs (Webb, 1998; Weihs, 2002) because of the increased lateral surface and hence additional drag 457 

(Videler and Wardle, 1991; Weihs, 2002; Green and Hale, 2012). Correspondingly, we suggest that the positive 458 

relationship between pectoral fin use and steady swimming cost reflected, at least partially, cost of stability control 459 

incurred when using the pectoral fins as a trimming and/or powered correction system. In the same vein, the negative 460 

relationship between pectoral fin use and Ucrit could be explained by the fact that pectoral fin use correlated positively 461 

with swimming cost. Fish that made extensive use of the pectoral fins exhibited a significant increase in the swimming 462 

cost, which may have resulted in inferior swimming performance, because the fish reached the maximum metabolic rate 463 

at a relatively slow swimming speed. 464 

 Many fish species transition from steady to unsteady swimming at increasing swimming speeds. Few studies, 465 

however, have quantified the metabolic rate associated with burst-assisted swimming. Metabolic rate studies concerned 466 

with burst-assisted swimming at high speeds remain challenged by the facts that the gait can be maintained for only a 467 

short period of time (Farrell, 2007) and involves anaerobic metabolism (Burgetz et al., 1998; Lee et al., 2003b; 468 

Svendsen et al., 2010) that may complicate the measurements (Farrell, 2007; Ellerby, 2010). Anaerobic metabolism is 469 

evidenced by the activation of white muscles and the occurrence of glycolysis followed by EPOC (Burgetz et al., 1998; 470 

Lee et al., 2003b; Farrell, 2007; Svendsen et al., 2010). Farrell reviewed past studies and discussed the paradox that the 471 

relationship between swimming speed and aerobic MO2 often is exponential and not sigmoidal as predicted by the 472 

anaerobic influence on the total metabolic cost (Farrell, 2007). The exponential relationship may be explained by a 473 

number of factors including white muscles working in a partially aerobic fashion, and pooling fish that vary 474 

considerably in their individual Ucrit values, as this would tend to obscure any individual plateaus in MO2 (Farrell, 475 

2007). The present study examined the relationship between swimming speed and MO2 up to Ucrit in individual fish and 476 

found no evidence of a sigmoidal relationship. Instead, MO2 continued to increase during burst-assisted swimming, and 477 

the data points during unsteady swimming were higher than what would be expected based on extrapolation of the 478 

values representing steady swimming. Correspondingly, unsteady swimming constituted 26.8% of the MS. The absence 479 

of MO2 plateauing during unsteady swimming at increasing speeds suggests that anaerobic metabolism played a limited 480 

role in fuelling the swimming, even close to Ucrit. This inference is consistent with past studies suggesting limited 481 

anaerobic capacity (Kieffer, 2000) and dependence on anaerobic power production during swimming (Goolish, 1991) in 482 

small fish (< 10 cm in body length). On the other hand, we did find evidence of EPOC, indicating that anaerobic power 483 

production occurred during the swimming trial. The majority of the post-exercise metabolic decline occurred within 0.3 484 

h. Previous studies measuring metabolic recovery after Ucrit tests have reported recovery times from approximately 0.2 485 

to 4 h (Brett, 1964; Bushnell et al., 1994; Reidy et al., 1995; Lee et al., 2003a; Lee et al., 2003b). Scaling relationships 486 

between body size and the partitioning of aerobic and anaerobic power production in swimming fish remain an 487 

important future avenue of empirical research.  488 

 In many terrestrial animals, gait transitions reduce metabolic cost of locomotion (Griffin et al., 2004; Rubenson et 489 

al., 2004; Nudds et al., 2011), but the proximate mechanism driving the transition may not be metabolic per se, but 490 

rather related to mechanical factors, such as musculoskeletal force (Farley and Taylor, 1991) and bone strain (Biewener 491 
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and Taylor, 1986). Compared to terrestrial locomotion, gait transitions in aquatic locomotion remain poorly understood. 492 

The present study analysed metabolic consequences of the gait transition from steady to unsteady BCF swimming and 493 

found that the metabolic rate increased after the transition. These data raises the question why an animal would perform 494 

a transition to a gait that is less energy efficient. In labriform swimmers, it has been suggested that the pectoral-caudal 495 

gait transition is driven by a need to supply additional mechanical power rather than to minimize metabolic swimming 496 

costs (Alexander, 1989; Korsmeyer et al., 2002; Cannas et al., 2006; Jones et al., 2007; Kendall et al., 2007). Only small 497 

amounts of muscle can be packed around the paired fins while larger amounts can be accommodated about the axial 498 

skeleton driving caudal propulsion (Webb, 1998). The transition from steady to unsteady BCF swimming could have a 499 

similar mechanistic basis, because additional mechanical power from white muscle fibres may be available after 500 

transition to burst-assisted swimming. However, this remains speculation, and additional studies of muscle recruitment 501 

patterns at increasing speeds combined with aerobic and anaerobic metabolic rates of disparate muscle types are 502 

required to evaluate the hypothesis. 503 

 The Ucrit protocol provides a measure of physiological endurance capacity, initially used in fisheries sciences 504 

(Brett, 1964; Beamish, 1978). Recently, studies have started to examine Ucrit in ecological and evolutionary contexts 505 

(Claireaux et al. 2007; Oufiero et al. 2011; Dalziel and Schulte, 2012; Dalziel et al., 2012a; Dalziel et al., 2012b). Using 506 

individual fish, the present study demonstrated a relationship between pectoral fin use, steady swimming cost and Ucrit. 507 

Fish with a low Ucrit spent more time with extended pectoral fins and exhibited increased steady swimming cost. We 508 

found no evidence that MO2max correlated with Ucrit. These findings indicate that Ucrit does not only reflect the 509 

physiological endurance capacity of individual fish, but indeed also the biomechanical performance.  510 

This study shows that fish with a low Ucrit may spend more energy on swimming, in comparison with fish with a 511 

high Ucrit, because the former fish have higher swimming costs during steady swimming. This may be particularly 512 

relevant in species living in lotic habitats. For example, Nelson and colleagues reported a positive relationship between 513 

home-stream current velocity and Ucrit in blacknose dace (Rhinichthys atratulus Hermann) (Nelson et al., 2003). Our 514 

finding that Ucrit correlates negatively with steady swimming costs indicates that not only will a high Ucrit allow fish to 515 

traverse fast flowing riffles without fatigue, as suggested by Nelson et al. (2003), a high Ucrit also implies lower steady 516 

swimming cost at current velocities that represent sub-maximal swimming speeds. Thus, because of superior 517 

biomechanical performance, a high Ucrit may allow fish to inhabit relatively high stream current velocities and yet have 518 

relatively low swimming costs. As such, the observed intraspecific variation in pectoral fin use, swimming cost and Ucrit 519 

could have implications for habitat use in individual fish. For example, Ellerby and Gerry showed that habitat use varies 520 

with individual differences in energy economy, steady-state swimming and maneuverability in bluegill sunfish 521 

(Lepomis macrochirus Rafinesque) (Ellerby and Gerry, 2011). Although P. reticulata often occupy distinct pools in 522 

rivers, it remains to be tested if intraspecific variation in pectoral fin use, swimming cost and Ucrit influence habitat use 523 

within pools and to what degree such relationships (or lack of) affect daily energy expenditures (Careau and Garland, 524 

2012).        525 

In summary, this study found that elevated pectoral fin use is associated with increased swimming cost and 526 

decreased Ucrit. It is unclear why some P. reticulata continued using the pectoral fins while others quickly ceased using 527 

them at increasing swimming speeds. We propose that use of the pectoral fins is related to stability and control rather 528 

than generation of forward thrust. Extending the pectoral fins may help maintain swimming stability, but it comes with 529 

increased swimming cost, which in turn is associated with reduced Ucrit. The causes and consequences of variation in 530 
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pectoral fin use remain, however, poorly understood and further study is warranted. Finally, we found that the aerobic 531 

metabolic rate increased after transition to burst-assisted swimming, and unsteady swimming constituted 26.8% of the 532 

MS.  533 

 534 

LIST OF SYMBOLS AND ABBREVIATIONS 535 

a   oxygen consumption rate at zero swimming speed 536 

  
    fish specific log oxygen consumption rate at zero swimming speed 537 

 ̂    estimated fish specific oxygen consumption rate at zero swimming speed 538 

     fish specific oxygen consumption rate at zero swimming speed 539 

AR1   autoregressive process of order 1 540 

b  rate of increase in the oxygen consumption rate as a function of swimming speed. The parameter is 541 

an index of swimming cost 542 

   fish specific rate of increase in the oxygen consumption rate as a function of swimming speed 543 

 ̂  estimated fish specific rate of increase in the oxygen consumption rate as a function of swimming 544 

speed 545 

      autocorrelated residuals 546 

EPOC   excess post-exercise oxygen consumption 547 

      uncorrelated residuals assumed to be independently and identically normally distributed 548 

LT    total body length 549 

MO2   metabolic rate 550 

        metabolic rate for the i’th observation on the j’th fish 551 

MO2max  maximum metabolic rate 552 

          fish specific maximum metabolic rate 553 

MO2std  standard metabolic rate 554 

MS   metabolic scope 555 

     mean fish specific log oxygen consumption rate at zero swimming speed 556 

   mean fish specific rate of increase in the oxygen consumption rate as a function of swimming speed 557 

    autoregressive (AR1) parameter 558 

  correlation between the fish specific log oxygen consumption rate at zero swimming speed (  
 ) and 559 

the fish specific rate of increase in the oxygen consumption rate as a function of swimming speed (  ) 560 

  
    variance of the fish specific log oxygen consumption rate at zero swimming speed 561 

  
   variance of the fish specific rate of increase in the oxygen consumption rate as a function of  562 

swimming speed 563 

  
    variance of the uncorrelated residuals (   ) 564 

RA   reproductive allocation 565 

      fish specific reproductive allocation 566 

U    swimming speed 567 
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Ucrit    critical swimming speed 568 

          fish specific critical swimming speed 569 

USTmax  gait transition speed from steady to unsteady swimming 570 
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Figure Legends 801 

 802 

Figure 1. Use of pectoral fins and burst-assisted swimming (% of time) in 18 individual P. reticulata as a function of 803 

swimming speed (U; cm s
-1

). Pectoral fin use is indicated using a blue line, whereas burst-assisted swimming is 804 

indicated using a red line (unsteady swimming). The caudal fin was employed at all swimming speeds (i.e. body-caudal 805 

fin swimming). Each fish is represented by an average of 28 measurements of pectoral fin use and burst-assisted 806 

swimming. 807 

 808 

Figure 2. Oxygen consumption rate (MO2; mg O2 kg
-1

 h
-1

) as a function of swimming speed (U; cm s
-1

) in 18 individual 809 

P. reticulata. Grey symbols represent MO2 when no burst-assisted swimming occurred (steady swimming), whereas red 810 

symbols represent MO2 when burst-assisted swimming occurred (unsteady swimming) (see Fig. 1). Each datum 811 

represents a 12 min period. Equation (1) was fitted to the data without burst-assisted swimming (black lines) (see Table 812 

1). The slope of each black line represents the rate of increase in MO2 as a function of U and is considered an index of 813 

steady swimming cost in individual fish.    814 

 815 

Figure 3. Steady swimming cost as a function of the average pectoral fin use (% of time) in 18 individual P. reticulata. 816 

Steady swimming cost was measured as the rate of increase in the oxygen consumption rate as a function of swimming 817 

speed (see Fig. 2; Eqn 1; Table 1). Both steady swimming cost and average pectoral fin use were based on 818 

measurements up to the swimming speed where burst-assisted swimming occurred (see Fig. 1).  819 

 820 

Figure 4. Critical swimming speed (Ucrit; cm s
-1

) as a function of average pectoral fin use (% of time) in 18 individual 821 

P. reticulata. Average pectoral fin use was based on measurements up to Ucrit (i.e. including burst-assisted swimming) 822 

(see Fig. 1). 823 

 824 

Figure 5. Steady swimming cost as a function of critical swimming speed (Ucrit; cm s
-1

) in 18 individual P. reticulata. 825 

Steady swimming cost was measured as the rate of increase in the oxygen consumption rate as a function of swimming 826 

speed (see Fig. 2; Eqn 1; Table 1). Steady swimming cost was based on measurements up to the swimming speed where 827 

burst-assisted swimming occurred (see Fig. 1).   828 

 829 

Figure 6. Oxygen consumption rate (MO2; mg O2 kg
-1

 h
-1

) at the highest recorded swimming speed (closed circle), and 830 

post-exercise MO2 during the subsequent recovery phase (open circles). The swimming speed was adjusted to 2 LT s
-1

 831 

(total body lengths per second) during the recovery phase. Pre-exercise MO2 at 2 LT s
-1

 is indicated using a solid line 832 

(95% CL; dashed lines). 833 
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