Technical University of Denmark

Quantum Optics with Photonic Nanowires and Photonic Trumpets: Basics and Applications

Gerard, J.; Claudon, J.; Munsch, M.; Bleuse, J.; Delga, A.; Gregersen, Niels; Mørk, Jesper

Publication date: 2013

Document Version Peer reviewed version

Link to publication

Citation (APA):

Gerard, J., Claudon, J., Munsch, M., Bleuse, J., Delga, A., Gregersen, N., & Mørk, J. (2013). Quantum Optics with Photonic Nanowires and Photonic Trumpets: Basics and Applications. Abstract from 34th Progress In Electromagnetics Research Symposium, Stockholm, Sweden.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Quantum Optics with Photonic Nanowires and Photonic Trumpets: Basics and Applications

J. M. Gérard¹, J. Claudon¹, M. Munsch¹, J. Bleuse¹, A. Delga¹, N. Gregersen², and J. $Mørk^2$

¹CEA-CNRS-UJF Joint Group 'NanoPhysique et SemiConducteurs' CEA, INAC, SP2M, Grenoble 38054, France

²DTU Fotonik, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark

Abstract— Optimizing the coupling between a localized quantum emitter and a single-mode optical channel represents a powerful route to realise bright sources of non-classical light states. Reversibly, the efficient absorption of a photon impinging on the emitter is key to realise a spin-photon interface, the node of future quantum networks.

Besides optical microcavities [1], photonic wires have recently demonstrated in this context an appealing potential [2, 3]. For instance, single photon sources (SPS) based on a single quantum dot in a vertical photonic wire with integrated bottom mirror and tapered tip have enabled for the first time to achieve simultaneously a very high efficiency (0.72 photon per pulse) and a very pure single photon emission ($g^{(2)}(0) < 0.01$). Furthermore, photonic wires with an elongated cross-section provide polarization control of the spontaneous emission of embedded emitters [4].

However, the performance of photonic wire SPS with tapered tips is sensitive to minute geometrical details and optimum behaviour is only obtained for ultra-sharp tips. Photonic trumpets [5], which exploit the opposite tapering strategy, overcome this important limitation. Moreover, they feature a Gaussian far-field emission, a strong asset for most applications. We report on the first implementation of this strategy and demonstrate an ultra-bright SPS (first-lens external efficiency: 0.75 ± 0.1) [5]. More generally, photonic trumpets appear as a very promising template to explore and exploit in a solid-state system the unique optical properties of "one-dimensional atoms".

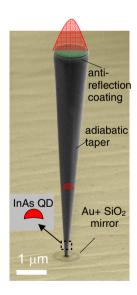


Figure 1: Colorized scanning electron micrograph of a GaAs photonic trumpet (from [5]).

REFERENCES

- 1. Gérard, J. M., et al., Phys. Rev. Lett., Vol. 81, 1110, 1998.
- 2. Friedler, I., et al., Opt. Exp., Vol. 17, 2095–2110, 2009.
- 3. Claudon, J., et al., Nature Photon., Vol. 4, 174, 2010.
- 4. Munsch, M., et al., Phys. Rev. Lett., Vol. 108, 077405, 2012.
- 5. Munsch, M., et al., Phys. Rev. Lett., Vol. 110, 177402, 2013.