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Applications of hybrid measurements with discrete and continuous variables

Abstract. The main topic of this thesis revolves around quantum measure-
ment. We illustrate how two different views of quantum objects, the discrete-
and continuous-variable views, can be combined to more effectively distin-
guish between orthogonal states. Such combined measurements are referred
to as hybrid. The discrete-variable view is more appropriate to probe energy
eigenstates. However, when two or more energy eigenstates are superposed,
accurate measurements in the energy eigenbasis require rotations in phase
space which are very unwieldy as they require strong nonlinearities and
elaborate interactions between light and matter. On the other hand, energy
eigenstate superpositions carry a continuous relative phase which is easily
probed by continuous-variable interference measurements such as homodyn-
ing. The tradeoff between photon counting and homodyning is in practice
determined by feasibility studies. This is what we do for two particular
applications of quantum measurements: Bell tests and the amplification of
Schrödinger cat states. This project also had an experimental component
which was supposed to produce high-fidelity Schrödinger cat states. This
goal turned out to be hampered by noise from the laser as well as a se-
ries of anomalous behavior of the nonlinear crystal whereby no classical
de-amplification, and therefore no squeezing, could be observed.
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Anvendelser af hybride m̊alinger med diskrete og kontinuerte variable

Dansk resumé. Det vigtigste emne for denne afhandling kredser omkring
kvantem̊aling. Vi viser hvordan to forskellige beskrivelser af et kvanteobjekt—
den diskrete og den kontinuerte variable tilgang—kan kombineres, og derved
mere effektivt kan skelne mellem ortogonale tilstande. S̊adanne kombinerede
m̊alinger omtales som hybride. Den diskrete variable tilgang er mere hen-
sigtsmæssigt til at m̊ale energi-egentilstande, men n̊ar to eller flere energi-
egentilstande er overlejret kræver nøjagtige m̊alinger i energi-egenbasen rota-
tioner i Fock-rummet. Disse er meget besværlige, da de kræver stærke ikke-
lineariteter eller vanskelige interaktioner mellem lys og stof. P̊a den anden
side bærer superpositionerne af energi-egentilstande en kontinuerlig relativ
fase, som let probes ved kontinuerte variable interferensm̊alinger s̊asom ho-
modyning. Afvejningen mellem foton tælling og homodyning bestemmes i
praksis ved forundersøgelser. Dette er, hvad vi gør for to særlige anvendelser
af kvante m̊alinger: Bell test og forstærkningen af Schrödinger kat-tilstande.
Dette projekt havde ogs̊a en eksperimentel komponent. Målet var at pro-
ducere meget rene Schrödinger kat-tilstande med anvendelse indenfor kvan-
teinformatik. Dette m̊al viste sig at være hæmmet af støj fra laseren samt
en serie af unormal adfærd af det ulineære krystal, hvorved ingen klassisk
negativ forstærkning, og derfor ingen squeezing, kunne observeres.
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Chapter 1

Introduction

As far as informatics is concerned, the related superposition and uncertainty
principles that pertain to the quantum world present an advantage and dis-
advantage, respectively. Whereas the former can be harnessed for powerful
computational applications via coherent interference and entanglement, the
latter renders the measurement process very challenging. Simply put, this
is because quantum measurements consist of projecting a complex, multi-
dimensional quantum object onto a one-dimensional classical spectrum. To
perform such operations, one needs to devise an optimal—though not al-
ways possibly ideal—strategy which takes into account both the nature of
the quantum state and the set of experimental devices at hand. To illustrate
this point, consider the intuitive sketch of projective measurements in Fig.
1.1 where “quantum objects” and measurements are represented by three-
and two-dimensional shapes, respectively. If the object can be lain flat onto
the measurement surface so that both areas match exactly, then the mea-
surement can be pictured as ideal. However, we rarely are able to tailor the
measurement perimeter as the range of measurement devices is limited. To
pursue the classical analogy, if the imprint of the measured object onto the
measuring interface is only partial, we effectively have an approximate mea-
surement which is prone to ambiguity. The name of the game is therefore to
see how the quantum object can be re-oriented or re-shaped so as to maxi-
mize its overlap with the measurement device. Rephrased in mathematical
terms, the goal is to transform the states and measurement operators such
that the interaction Hamiltonian between the them is diagonalized.

7



8 CHAPTER 1. INTRODUCTION

Figure 1.1: Toy model for the measurement problem of quantum mechan-
ics. Quantum objects ρ̂ span a mutli-dimentional Hilbert space of which
we can only see a cross-section at time due to the complementarity princi-
ple. The imprint of the object on that cross-section, just like a footprint
on the ground, is thus the only signature of the object available to identify
it. Ideally, the measurement projector consists of a “cast” ρ̂′ which per-
fectly matches the imprint. In practice, however, the measurement devices
available in the laboratory are only approximations Π̂ of this ideal cast. In
addition, any given object may exhibit partial overlap with the ideal projec-
tor of a different object, thereby leading to ambiguous measurement. (We
assume of course that all objects are “normalized”, i.e., that all footprint
areas are equal.)

As an illustration of how hard it can be to measure certain states, we
shall describe in Chapter 3 an instance of Bell measurements where the
probability of success is restricted to 50% for linear operations [1]. The
difficulty with such measurements originates from the fact that the states
at hand lie in a basis other than the energy eigenbasis. One has therefore
to rotate the state so as to align it with the measurement basis. As will be
shown, although this method works in principle, it nonetheless is a testimony
to the difficulty in measuring certain states.1

If one is willing to sacrifice the quality of quantum measurement by al-
lowing for some inaccuracy in the readout of detection, then one has to de-
vise approximate projectors (cf. Fig. 1.1). In Chapter 4, such projectors are
built to discriminate two orthogonal Fock state superpositions, which—once
again—are not aligned with the energy eigenbasis, namely 1√

2
(|0〉 ± |1〉).

1Chapter 3 is adapted from Phys. Rev. A 85, 022316 (2012).
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The accuracy of the discrimination is then incorporated in a feasibility study
for Bell tests, where the conclusiveness of the test is quantified as a function
of quantum efficiencies.2

Another specificity of quantum measurements is that, unlike their clas-
sical counterparts, they are not only ends in themselves, but can also serve
computational purposes in the processing of quantum states. They can in-
deed be thought of as operations in Hilbert space which reduce a multimode
input into a smaller sub-state with certain desired properties. This technique
is variously referred to as a measurement-induced operation, post-selection,
or heralding. Chapter 5 will be devoted to illustrating this point for the
purpose of amplifying coherent state superpositions in realistic conditions.3

As transpires from the above, the recurring theme of this dissertation
is therefore quantum measurement. We shall however start in the next
chapter by illustrating two ways of looking at quantum objects, namely the
discrete variable (DV) and continuous variable (CV) approaches. Whereas
the first describes optical quanta in a discrete Hilbert space, the second is
the formal analog of the phase space picture. In very loose terms, the DV
and CV pictures can be alternated depending on whether one is interested
in probing the particle-like or wave-like nature of light. As we shall see,
DV and CV degrees of freedom are best recorded by photon-counting and
homodyne detectors, respectively. The two types of detectors can then be
put to use at different parts of a same setup. Such arrangements, either for
state measurement or state preparation, are known as hybrid [2], and will
be featured in Chapters 4 and 5.

The last chapter, though somewhat unrelated to the central theme of the
thesis, serves as a record of the experimental challenges faced in the course
of the project.

2Chapter 4 is adapted from Phys. Rev. A 84, 062127 (2011).
3Chapter 5 is adapted from Phys. Rev. A 87, 043826 (2013).
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Chapter 2

Quantum optics toolbox

Today’s informatics is mostly realized by the field of classical electronics.
Information is represented in discrete electric charges which propagate in a
circuit according to the rules of boolean logic to produce the desired output.
These three main components—the representation, processing, and readout
of information—are also present in quantum information (Tab. 2.1). The
goal of this chapter is to present these three compartments of the quantum
optics toolbox.

2.1 Representations

Classical information encoded in electrical signals can either be analog or
digital. Whereas the former can add up as continuous functions, the latter
obey the rules of boolean logic. One can see in these two representations
of classical information a manifest similarity with the wave and particle
representations from modern physics. The novelty in quantum mechanics is
that the two representations are fundamentally one and the same: Discrete
quanta can add up and interfere as wave-like probability distributions. For
the external observer, the choice of whether to measure a quantum system

Classical Quantum
Representation Digital or analog Discrete or continuous variable
Storage Electronic charges (bits) Quantum states (qubits)
Foundation Boolean logic Superposition principle
Probability Always extrinsic Either inherent or extrinsic

Table 2.1: Qualitative comparison of classical and quantum information.

11



12 CHAPTER 2. QUANTUM OPTICS TOOLBOX

as a wave or particle really reduces to a choice of strategy depending on
what aspect of information is to be extracted.

This section describes the digital (DV) and analog (CV) representations
of the quantum objects, namely the Fock and Wigner functions. By quan-
tum objects, we will come to mean not only the quantum states that carry
the information, but also the operators that act on these carriers, i.e., mea-
surement projectors.

2.1.1 Fock

The most intuitive quantum representation of optical states is that which
enumerates photons in any given field mode. This is known as the photon-
number, or Fock, representation; its Hilbert space is spanned by the energy
eigenstates {|n〉}, where n is the number of photons. Let’s briefly review
how this Hilbert space arises from a formal analogy between the energetics
of the electromagnetic field and that of a harmonic oscillator [3].

Consider an electric field of amplitude E0 pointing in the Cartesian x
direction and propagating along z,

Ex(z, t) = E0 sin(kz) sin(ωt), (2.1)

where k is the wave vector and ω is the angular frequency. With the magnetic
field being orthogonal to the electric field, Maxwell-Ampère’s equation,1

∇× ~B = ε0µ0

~E

∂t
⇒ −∂By

∂z
= ε0µ0

∂Ex
∂t

, (2.2)

is solved by

By(z, t) =
E0

c
cos(kz) cos(ωt). (2.3)

The electromagnetic energy density is therefore given by

U =
1

2

(
ε0E

2 +
1

µ0
B2

)
=

1

2
ε0E

2
0

(
sin2 kz sin2 ωt+ cos2 kz cos2 ωt

)
. (2.4)

Let’s assume the light to be confined to an arbitrary cavity of transverse
area A and length L such that its volume is V = AL. The contained

1We are here treating the case where the magnetization current ~J is null.
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electromagnetic energy E is then

E =

∫
V
U dV

= A

∫ L

0
U(z) dz

=
1

4
ε0E

2
0V
(
sin2 ωt+ cos2 ωt

)
, (2.5)

where we assumed that the field vanishes at the boundaries; i.e., we have a
standing wave inside the cavity. If we now substitute2x(t) = 1

ω

√
ε0V

2 E0 sinωt

p(t) =
√

ε0V
2 E0 cosωt

(2.6)

into the Hamiltonian of the harmonic oscillator

H =
1

2

(
p2 + ω2x2

)
, (2.7)

we see that we recover (2.5). Notwithstanding the choice of units, the elec-
tric and magnetic fields are thus formally reducible to the position and
momentum of a harmonic oscillator.

Now that we have arrived at the harmonic oscillator Hamiltonian, there
remains to follow any standard quantum mechanics textbook’s treatment of
how quantization ensues from the correspondence rule [4]. We then obtain

Ĥ = ~ω
(
â†â+

1

2

)
, (2.8)

where the operators â† and â respectively create and annihilate excitations
of the electromagnetic field—photons—of energy ~ω and exhibit the non-
commutativity relation [â, â†] = 1. The Schrödinger equation,

Ĥ|n〉 = ~ω
(
n+

1

2

)
|n〉, (2.9)

is solved by the energy eigenstates {|n〉} consisting of n indistinguishable
photons of frequency ω. These solutions, also known as Fock states, obey

2Beware of notational confusion: The variable x(t) here has nothing to do with the
transverse Cartesian coordinate x.
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the following key equations:

â|n〉 =
√
n|n− 1〉, (2.10)

â†|n〉 =
√
n+ 1|n+ 1〉, (2.11)

â†â|n〉 = n|n〉, (2.12)

|n〉 =
(â†)n√
n!
|0〉. (2.13)

As a transition from the discrete Fock picture to the continuous variable
description to be used extensively later, let’s see how the energy eigenstates
of the electromagnetic field can be expressed as continuous wave equations.
The first step to this effect is to introduce the so-called quadrature operatorsx̂ =

√
~
2

(
â† + â

)
,

p̂ = i
√

~
2

(
â† − â

)
.

(2.14)

Note that unlike the ladder operators â and â†, the quadrature operators
are Hermitian and therefore qualify as physical observables. We shall from
now on refer to them as the position x and momentum p. A wave function
corresponding to an arbitrary Fock state |n〉 can then be expressed in either
basis {|x〉} or {|p〉} or any combination thereof q̂θ = cos(θ) x̂+ sin(θ) p̂. For
example, the wave function of |n〉 in the position basis is given by

ϕn(x) = 〈x|n〉

=
Hn(x)√
2n
√
πn!

e−x
2/2, (2.15)

where Hn is the nth Hermite polynomial.
Up to now, we have only looked at pure states |n〉, which we can lin-

early combine to produce other pure states {
∑
cn|n〉 : n ∈ N, cn ∈ C}. It

is precisely this coherent superposition of orthogonal states that lies at the
heart of quantum mechanical behaviour. In real life, however, the coherence
of the superposition is seldom maintained due to the plethora of couplings
that can take place with the environment. Two orthogonal eigenstates |n〉
and |m〉 may not “co-exist” simultaneously; rather, either one or other—but
not both—of them may be pre-existing for any experimental preparation of
the system. This is illustrated in Fig. 2.1. With mixed states, therefore,
the probability associated with any possible measurement outcome merely
encapsulates our ignorance of the system, just as is customary in treatment
of ensembles in statistical physics.



2.1. REPRESENTATIONS 15

Figure 2.1: Illustration of the difference between coherent superpositions
(pure states) and classical ensembles (mixed states) for ten preparations of
the same state. The measurement of several mixed states is tantamount to
picking out a different copy of either one of two states {| ↑〉, | →〉} from a
classical “grab bag”: Although the mixed state as a whole can be repre-
sented as a single density matrix, it in fact instantiates as different states.
On the right, however, all instances of the pure state are objectively identical
copies of a diagonal superposition | ↗〉 = 1√

2
(| ↑〉+ | →〉). It is only upon

measurement in the orthogonal basis that the diagonal vector collapses—
randomly—onto one of the basis states, thereby producing the same statis-
tics as with a classical mixture.

The most general notation for quantum states, both pure and mixed, is
the density matrix

ρ̂ =
∑
n,m

cn,m|n〉〈m|, (2.16)

which satisfies the following properties

Tr {ρ̂} = 1, (2.17)

ρ̂ = ρ̂†, (2.18)

〈u|ρ̂|u〉 ≥ 0, ∀|u〉 ∈ {|n〉} . (2.19)

For practical purposes, we shall note that completely mixed states—i.e.,
those that possess no fixed quantum phase—the density matrix has no
off-diagonal elements. If, in the example illustrated in Fig. 2.1, we use
{| ↑〉, | →〉} as the basis of the Hilbert space, then we get that the mixed
state is

ρ̂mixed =
1

2
(| ↑〉〈↑ |+ | →〉〈→ |) =

1

2

[
1 0
0 1

]
, (2.20)
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whereas the pure state is

ρ̂pure =
1

2

(
| ↑〉+ eiθ| →〉

)
=

1

2

[
1 eiθ

e−iθ 1

]
. (2.21)

2.1.2 Wigner

Consider the mapping of an (algebraic) operator Â to an (analytical) func-
tion Ã,

Ã(x, p) =

∫
e−ipy/~〈x+ y/2|Â|x− y/2〉 dy, (2.22)

where the variables x and p are taken to be the canonical position and
momentum, respectively. I.e, if Â is a complex matrix expanded in the Fock
basis as Â =

∑
n,mAn,m|n〉〈m|, then the bra-ket integrand in (2.22) unfolds

as
〈x+ y

2 |Â|x−
y
2 〉 =

∑
n,m

An,m ϕn

(
x+

y

2

)
ϕ∗m

(
x− y

2

)
. (2.23)

The continuous function Ã(x, p) is called the Weyl transform of the op-
erator Â. Though historically it arose from an attempt to reach a quantum
operator from a classical function [5], its subsequent use turned out to be
different. Not only did it offer an alternative description to the discrete
Fock representation, but—more importantly—it allowed for a simultaneous
visualization of the wave function in the position and momentum basis. As
we shall see in a moment, this representation of quantum states bears some
resemblance with classical phase space portraits and thereby offers a com-
plete description of quantum states. In modern quantum mechanics, this
phase space representation of a density matrix ρ̂ is called the Wigner func-
tion W (x, p) and is simply the Weyl transform of the matrix divided by
Planck’s constant,

W (x, p) =
1

h
ρ̃

=
1

h

∫
e−ipy/~〈x+ y/2|ρ̂|x− y/2〉 dy. (2.24)

One important property of the Weyl transform is that the quantum
projection of an operator Â onto another B̂ can be re-written analytically
as

Tr[ÂB̂] =
1

h

∫∫
Ã(x, p)B̃(x, p) dx dp. (2.25)

The relevance of the above product integral will become apparent in the next
sections where it will serve as the mathematical blueprint for several physical
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concepts such as projective measurements, fidelity, purity, and success rate.
For now let’s note that it can produce the expectation value of an observable
Â when used with the Wigner function of the quantum state ρ̂, in complete
analogy to the trace of the matrix product ρ̂Â,3

〈Â〉 = Tr[ρ̂Â]

=
1

h

∫∫
ρ̃(x, p)Ã(x, p) dx dp

=

∫∫
W (x, p)Ã(x, p) dx dp. (2.26)

Figure 2.2: Comparison between the classical (left) and quantum (right)
phase space representation of the harmonic oscillator. Classically, the par-
ticle is represented by a point coordinate traveling on a well-defined ellipse.
Quantum mechanically, a coherent state consists of an ensemble of point-like
particles traveling in unison in phase space. Their distribution is Gaussian
and is guided by the same ellipse as that of a classical particle.

Now that we have defined the mathematics of the Wigner function, let’s
return to its interpretation as a phase space distribution. In classical me-
chanics, a particle of momentum p lying at position x is represented in phase
space as a well-defined point. Its subsequent trajectory in phase space is
entirely determined by its initial configuration, (x0, p0) and by the classical
Hamiltonian governing its motion. This simple state of affairs does not carry
over to quantum mechanics since, as prohibited by the uncertainty principle,
conjugate variables cannot be well defined for any single particle.4 A con-
venient imagery is then to consider not one particle, but an ensemble—or

3We assume for simplicity that the state ρ̂ is normalized.
4Note that we are only referring to position and momentum as the conjugate canonical

variables that arise from, say, the Harmonic oscillator. In quantum optics, these are simply
the quadratures of the electromagnetic field, and do not have any kinematic meaning as
in classical physics.
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distribution—of particles spread over a continuous, albeit finite, area ∆x∆p
of phase space (Fig. 2.2). Conceptually, the Wigner function lies somewhere
between the complex wave function representation and the classical proba-
bility distribution given that, though entirely real, it can take on negative
values that “encode” the interference of probability amplitudes [6]. In fact,
the probability amplitude can be recovered directly from the Wigner func-
tion by projecting onto—i.e., integrating over—one of the quadratures. For
example, the probability distribution of momentum is given by

∫
W (x, p) dx;

the probability for a particle to lie within a given interval [xa, xb] is

P (xa ≤ x ≤ xb) =

∫ xb

xa

∫ ∞
−∞

W (x, p) dp dx. (2.27)

2.2 States

This section will serve as a “photo album” of the states that constitute the
staple of most quantum optics applications, namely, the Fock state, coherent
state, and squeezed state. The first two are relevant because they constitute
computational bases—i.e., alphabet spaces—for potential quantum informa-
tion uses. We shall in particular discuss superpositions in those respective
bases and how they are represented in the Wigner picture. Though rich in
“quantumness”, such superpositions are notoriously difficult to produce and
characterize.5 The third category, the squeezed state, is on the other hand a
relatively easy resource to produce in a quantum optics laboratory and can
be harnessed to emulate coherent state superpositions in the low intensity
regime. We shall define the key attributes of these states and touch on the
central concept of Gaussianity.

2.2.1 Fock state superposition

A recurring theme throughout this dissertation is the alternative visualiza-
tion of quantum states in the two descriptions presented in the previous
section. We shall in particular emphasize the conversion from the Fock to
the Wigner representation. Recall that the density matrix is really just a
linear combination of outer products, ket-bras, of general form |n〉〈m| where

5Characterization by means of tomography is always an easy “brute force” option
provided we have several copies of the state. What is meant by difficult characterization,
however, is when we only have a single copy of the state. Whereas a single interferometry
or photon-counting measurement is enough to determine unambiguously states such as
|γ〉 or |n〉, respectively, there does not exist simple setups to characterize even trivial
superpositions such as 1√

2
(|γ〉 ± |−γ〉) or 1√

2
(|0〉 ± |1〉).
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n,m ∈ N. From Wigner’s formula (2.24) and the definition of the x-wave
function ϕn (2.15) we see that the Wigner term corresponding to the density
matrix element |n〉〈m| is6

W|n〉〈m| =
1

h

∫
R
e−

ipy
~ ϕn

(
x+

y

2

)
ϕ∗m

(
x− y

2

)
dy. (2.28)

Note that contrary to a full-fledged Wigner function, the “Wigner elements”
W|n〉〈m| may or may not be real if n 6= m. Their computational advantage
is that, just like matrix elements |n〉〈m|, they add up linearly to form the
overall state

ρ̂ =
∑
n,m

ρn,m|n〉〈m| ⇔Wρ̂ =
∑
n,m

ρn,mW|n〉〈m|. (2.29)

Two of the most trivial examples are the vacuum and the single photon,

W|0〉 =
1

π
e−x

2−p2
, and (2.30)

W|1〉 =
1

π
e−x

2−p2 (
2x2 + 2p2 − 1

)
. (2.31)

We shall note that (i) only the vacuum has a Gaussian profile, (ii) all other
states are non-Gaussian and exhibit a negative pseudo-probability at the
origin, and (iii) no Fock state has any phase dependence (Fig. 2.3).

Figure 2.3: Wigner function of the vacuum |0〉 (left) and single photon |1〉
(right).

A more interesting case arises with superpositions of Fock states. Con-
sider for example the state c1|n〉+c2|m〉 where c1, c2 ∈ C. One cannot simply

6We shall from now take for granted the arguments (x, p) of the Wigner function. The
latter shall therefore be simply written W as opposed to W (x, p).
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add the Wigner functions of the two pure terms c1W|n〉 + c2W|m〉. Instead,
all interference terms and their complex conjugates should be considered.
This can only be done from the full density matrix expansion

c1|n〉+ c2|m〉 ≡ |c1|2 |n〉〈n|+ c1c
∗
2|n〉〈m|+

c∗1c2|m〉〈n|+ |c2|2 |m〉〈m|, (2.32)

thereby yielding

W =
|c1|2W|n〉〈n| + |c2|2W|m〉〈m| + c1c

∗
2W|n〉〈m| + c∗1c2W|m〉〈n|

|c1|2 + |c2|2 + c∗1c2〈n|m〉+ c1c∗2〈m|n〉
, (2.33)

where the denominator ensures the normalization of the Wigner function∫∫
W dx dp

!
= 1. (More will be said later about this normalization condition

and the information that can be extracted from non-normalized Wigner
functions, namely the success probability of a given process.) As for the
inner product of Fock states it is simply given by

〈n|m〉 = δn,m. (2.34)

A particular example of Fock state superposition we will be interested
in is the vacuum-photon qubit,

|ψqbit〉 = cosφ|0〉+ eiθ sinφ|1〉, (2.35)

which can be thought of as a unit vector pointing along the polar coordinates
(θ, φ) of the Bloch sphere, with the vacuum and single photon representing
the north and south poles, respectively. Its Wigner function is given by

W|ψqbit〉 =
1

π
e−x

2−p2
(

cos(2φ) + 2(x2 + p2) sin2 φ+
√

2 sin(2φ)(x cos θ − p sin θ)
)
.(2.36)

The special case φ = π
4 is plotted in Fig. 2.4 for θ equalling π and 0.

2.2.2 Coherent state superposition

Recall the analogy between the classical and quantum harmonic oscillators
in phase space (Fig. 2.2). We saw that no point-like state could exist in the
quantum picture. Instead, one is bound to have continuous distributions
of finite area ∆x∆p ≥ 1

2 . If this inequality is tight, and if furthermore the
probability distribution is Gaussian, then we have a coherent state. This
is the state whose behaviour is closest to that of a classical oscillator while
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Figure 2.4: Wigner function of the Fock state superposition 1√
2

(|0〉 ± |1〉).
Unlike the the Fock states |0〉 and |1〉 taken individually, their superposition
does have a phase dependence.

still abiding by Heisenberg’s uncertainty principle. It is of ubiquitous use
in quantum optics for several reasons. The first is that, for being a pure
state, it carries with it valuable phase information which, combined with its
potentially high luminosity (as opposed to individual Fock states), allows
one to use it as a phase reference. In that case it is called a local oscillator
and can be thought of a propagating ruler (or clock) with which other states
can interfere, thereby revealing phase information. The second reason why
coherent states are useful is that they can effectively form a computational
basis in the limit of high intensity. Let’s expand on this point with the
formal definition of a coherent state in the Fock basis

|γ〉 = e−
1
2
|γ|2

∞∑
n=0

γn√
n!
|n〉, (2.37)

where γ ∈ C.7 A note of warning should be stated up-front regarding the
orthogonality of coherent states. They only form an effective basis at high
intensities γ because, unlike Fock states, they are not truly orthogonal as
their inner product reads8

〈α|β〉 = e−
1
2
|α|2− 1

2
|β|2+α∗β. (2.38)

7Note that both Fock states and coherent states are indicated with the Dirac notation.
We shall distinguish the two bases by labeling Fock states with Roman letters and coherent
states with Greek letters.

8We shall occasionally set ~ = 1. Any time a numerical result is presented, this
evaluation of Planck’s constant is implied.
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With the above in mind, we can go over the same reasoning as in §2.2.1
to convert any mixture of coherent states from the Dirac notation to the
Wigner formalism. We start with the x-wave function

ϕγ(x) = 〈x|γ〉

= π−
1
4 e−

1
2(x−

√
2<{γ})

2
+i
√

2={γ}x−i<{γ}={γ}, (2.39)

which we can then use in determining the Wigner term corresponding to
any matrix element |α〉〈β| in the coherent state basis

W|α〉〈β| =
1

h

∫
R
e−

ipy
~ ϕα

(
x+

y

2

)
ϕ∗β

(
x− y

2

)
dy. (2.40)

In particular, an arbitrary coherent state |γ〉 will be given by,

Wγ = W|γ〉〈γ|

=
1

π
e−x

2−p2+2x
√

2<{γ}−2<{γ}2+2p
√

2={γ}−2={γ}2 . (2.41)

In the coherent state basis {|γ〉}, two examples of states which show no
coherence are shown in Fig. 2.5, namely a single pure state and a mixture.
Neither exhibits any negativity in the quasi-probability distribution that
would indicate a quantum interference effect.9

Figure 2.5: Coherent state of amplitude γ = 2eiπ/4 (left). Mixed state
1
2 (|γ〉〈γ|+ |−γ〉〈−γ|) for γ = 2 (right).

9Note that this is despite the fact that coherent states are actually coherent superpo-
sitions in the Fock basis.
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Let’s now move on to superpositions of coherent states. Just like we have
put forth the vacuum-photon superposition (2.35) as a qubit, we can also
conceive of superpositions of (pseudo-)orthogonal coherent states as qubits
in an analogous Bloch sphere [7]. Such states shall be called cat states, in
reference to Schödinger’s cat, that is both dead and alive, the parallel drawn
here is that the coherent state harmonic oscillator sways in two out-of-phase
eigenstates simultaneously. In Dirac notation, a cat state of amplitude γ ∈ C
shall be defined as

|κ±(γ)〉 =
1√

2± 2e−2|γ|2
(|γ〉 ± |−γ〉) , (2.42)

where the sign ± indicates the even and odd cat, respectively (Fig. 2.6).
More generally, any superposition c1|α〉 + c2|β〉 can be written in Wigner
representation as

W =
|c1|2W|α〉〈α| + |c2|2W|β〉〈β| + c1c

∗
2W|α〉〈β| + c∗1c2W|β〉〈α|

|c1|2 + |c2|2 + c∗1c2〈α|β〉+ c1c∗2〈β|α〉
. (2.43)

The particular case of (2.42) is then given by

Wκ±(γ) = − e−x
2−p2+2

√
2iγp

2π
(
−e−2γ2 ∓ 1

) − e−x
2−p2−2

√
2iγp

2π
(
−e−2γ2 ∓ 1

) (2.44)

+
e−x

2−p2+2
√

2γx−2γ2

2π
(
−e−2γ2 ∓ 1

) +
e−x

2−p2−2
√

2γx−2γ2

2π
(
−e−2γ2 ∓ 1

)
=

e−x
2−p2

π
(
e−2γ2 ± 1

) [cos(2
√

2γp)− e−2γ2
cosh(2

√
2γx)

]
.(2.45)

Figure 2.6: Even and odd cat of amplitude γ = 2.
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A key point to retain from the above which we shall stress in the next
sections is that every Wigner element W|α〉〈β| is Gaussian (though not nec-
essarily real if α 6= β). This property will turn out to be a computational
advantage when, upon many integrals transforms involving Gaussian kernels
(cf. (2.25) and §2.3.1), the integral outcome remains conveniently Gaussian.
We shall come back to this point in greater detail in §2.5.

2.2.3 Squeezed state

Consider the classical harmonic oscillator whose phase portrait is plotted
in Fig. 2.2 (left). We could exemplify this oscillator with an idealized case
of Hooke’s law involving a mass m attached to a spring of constant k and
displaced from rest by x0 on a friction-less horizontal surface. The total
energy is given by E0 = 1

2kx
2
0 and the area of the ellipse traced in phase

space is A0 = πx0p0 where x0 and p0 =
√
kmx2

0 represent the horizontal
and vertical semi-axes, respectively. Because the motion is sinusoidal,10

x(t) = x0 cos

(√
k
m t

)
p(t) =

√
kmx0 cos

(√
k
m t+ π

2

) , (2.46)

the variance of position over an oscillation period T = 2π
√

m
k is then

Vx =
1

T

∫ T

0
(x(t))2 dt−

(
1

T

∫ T

0
x(t) dt

)2

=
1

2
x2

0, (2.47)

and similarly for momentum

Vp =
1

2
kmx2

0 =
1

2
p2

0. (2.48)

In other words, if we are to perform at any given time some stroboscopic
measurement of either11 position or momentum, it will turn out to be off
by an of average

√
Vx or

√
Vp from its mean value of zero. Now imagine we

10These equations of motion can be easily shown to follow from the Hamiltonian H =
1

2m
p2 + 1

2
kx2.

11This exclusive disjunction can be relaxed for the classical case, but let’s maintain it
for now for the sake of drawing the parallel with the non-commutativity in the quantum
case.
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need to have better control over the spread of position or momentum. What
can we do such that their standard deviation is reduced (i.e., squeezed)?
Given that the semi-axes of the ellipse are proportional to the standard
deviation, the straightforward solution is have it narrowed and/or widened
by multiplicative factors sx and sp as in{

x0 → x′0 = sxx0,

p0 → p′0 = spp0 = sp
√
kmx0.

(2.49)

If we assume the mass m to be constant, the transformation (2.49) can be
implemented by multiplying the release position x0 by sx and the spring
constant by s2

p. For example, if we halve the release position and quadruple
the spring constant, then the position distribution over any oscillation period
is halved at the expense of a doubled “uncertainty” in momentum.

Let’s now introduce the additional requirement that the squeezing pro-
cess conserves the total energy. This will later be referred to as pure squeez-
ing and represents a wide class of quantum optical transformations referred
to as passive (cf. §2.3.1). The energy transformed by (2.49) is

E0 → E′0 =
1

2
k′x′20 =

1

2
(ks2

p)(sxx0)2 = (sxsp)
2E0, (2.50)

which, under a conservative process E′0 = E0 implies that sxsp = 1. (We
assume that sx and sp are positive—any negative values they could take
on would anyhow merely reflect a phase delay.) Pure squeezing there-
fore enforces a trade-off in the uncertainties of the canonical coordinates:
A squeezed—i.e., narrower—spread in position entails a commensurately
heightened uncertainty—i.e., anti-squeezing—in momentum, and vice versa.
(Very often we will refer to the overall process as squeezing, keeping in mind
that it always involves both squeezing proper and anti-squeezing.)

Topologically, energy conservation E′0 = E0 translates into an area con-
servation A′0 = A0 of the ellipse in phase space. This will be touched on
more formally with references to Liouville’s theorem in §2.3.1. For now it
can be easily verified from (2.49) and the requirement that sxsp = 1,

A0 → A′0 = π(sxx0)(spp0) = {sxsp = 1} = A0. (2.51)

Though somewhat lengthy, the classical digression above makes it easier
to grasp the concept of squeezing. In quantum optics, instead of adjusting x0

and k, we shape the phase portrait of our “electromagnetic pendulum” via
nonlinear interactions within a crystal. This is discussed in §6.2; for the time
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being, we shall only go through the “kinematics” of squeezing and lay out its
main parameters. We shall in particular restrict ourselves to the squeezing
of vacuum (cf. Fig. 2.3 left). In view of Heisenberg’s uncertainty principle,
this implies that instead of referring to a sharply defined (hollow) ellipse,
the squeezing will be applied to a two-dimensional Gaussian distribution
characterized by the variance of vacuum, which we know from (2.30) to be12

V0 =

∫∫
R

x2W|0〉 dx dp

=

∫∫
R

x2 1

π
e−x

2−p2
dx dp

=
1

2
. (2.52)

In order to mold the phase space distribution into a Gaussian of variance Vx
and Vp, the quadratures need to be re-scaled by ratio of the desired standard
deviation with that of the vacuum

sx =

√
Vx
V0
, and sp =

√
Vp
V0
. (2.53)

(We are looking at the square root of variance because, by dimensional
analysis, quadratures are linear to the standard deviation.) In experimental
quantum optics, it is more customary to expressed squeezing in decibels with
respect to the vacuum variance , the latter of which is called shot noise. The
squeezing ξq in decibels along a quadrature q is thus given by

ξq = 10 log10

Vq
V0

= 20 log10 sq ⇔ sq = 10ξq/20. (2.54)

For the sake of completeness we shall introduce a third variable to quan-
tify squeezing that is equivalent to s and ξ, but usually contains the actual
physical constants underpinning the squeezing process, namely the interac-
tion time t and the non-linearity strength χ of the crystal. We will come
back to this in §§2.3.1 and 6.2. For now, let’s relate it to the dimensionless
quadrature rescaling factor by

s = er, (2.55)

where r ∝ χt.
12Here, we are looking at the variance in the x direction, but because of the symmetry of

the vacuum Wigner function a similar variance is obtained along p. We have also omitted
to subtract the mean as it clearly is zero.
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Purity of squeezing

As mentioned above, the purity of squeezing can be related to the trade-off
in uncertainty between conjugate canonical variables. When this trade-off is
tight, i.e., when the overall uncertainty is minimized to satisfy VxVp = V2

0 ,
the squeezing is considered pure. Any departure from this condition implies
that external information (i.e., noise) has filtered through the system via
de-coherence. (To return to the classical analogy of a Hooke’s law, it’s as if
an external driving force were applied to the mass and therefore the mass-
spring system is not isolated anymore.)

As we shall motivate in §2.6, the purity of a state of Wigner function W
is

P = 2π

∫∫
W 2 dxdp, (2.56)

and the Wigner function of a squeezed vacuum state Ŝ|0〉 is

WŜ|0〉(x, p) =
1

πsxsp
e−(x/sx)2−(p/sp)2

. (2.57)

The purity of squeezed vacuum can therefore be shown to be

P =
1

sxsp
= 10−

1
20

(ξx+ξp). (2.58)

2.3 Operations

“Information is physical.” This aphorism, owed to Rolf Landauer [8], sum-
marizes the correspondence between information theory and physical sys-
tems. Just like information can be stored, processed, and output, so can
physical observables be prepared, operated on by a series of Hamiltonians,
and measured.13 We have discussed the storage, or encoding, of information
into physical states in the previous section. We shall now look at what can
be done to physical states so that they take on a new piece of information
and how that newly processed information can be read out. Let’s start by
illustrating this point with a very sketchy example from classical mechanics.
Assume that the initial information, the input, is encoded in the position-
momentum pair (x, p) of some marble of mass m and initial velocity v0,

13In addition to this formal similitude between information and physical systems, there
remains the semi-philosophical question as to whether information can conceivably exist
outside any physical encoding, or conversely—and of higher relevance to the interpreta-
tion of quantum mechanics—whether a physical system can objectively not contain any
predefined information before measurement.
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traveling on a flat friction-less path. We are not being specific about how
this alphabet—in the computer science sense of the term—is used, but sim-
ply state that any pair (x, p) can be used to store information. We want
to process this initial information (x, p) into the output (x′, p′), namely into
the “answer” of the computation. This transformation can be represented
by a mathematical function f

(x, p)→ (x′, p′) = f(x, p). (2.59)

If, for example, the correct output of the computation consists of x and
p oscillating out of phase of one another at frequency ω, then a harmonic
potential V ∝ ωx2 would offer the ideal physical operator corresponding to
the function f . This is shown in Fig. 2.7.

One can thus see that mathematical computations f , once transposed in
the physical world, are simply Hamiltonians acting on a given system. As a
consequence, the trajectory of the particle in phase space is redirected along
a new path. In the example under consideration, it transforms a straight
line into a closed elliptical loop. As we shall see throughout this dissertation,
the “name of the game” in continuous variable quantum information is to
devise operations that reshape input phase space distributions into new ones
according to a given algorithm. This brings us to discuss quantum systems.
They, too can be used to process information with the added advantage
that the superposition principle permits to solve problems intractable with
the procedural steps of classical mechanics. The major difference is that,
unlike the point-like marble of Fig. 2.7, quantum objects can only exists as
one or more probability clusters flowing about in phase space. The rest of
the analogy regarding the nature of physical information processing remains
however unchanged. The encoded information—now stored in qubits—can
be processed through several Hamiltonian operators which then mold the
phase space distribution into an output state.
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Figure 2.7: Information is physical. Here, x and p represent the linear
position along the friction-less path. The trajectories in configuration- and
phase-space are traced by the dotted red line, with the arrow indicating the
direction of time. The marble at any given point is shown in blue.

2.3.1 Canonical transformations

We shall now introduce the simplest class of computations, namely linear
transformations of the type

f : ~q → A~q + δ~q, (2.60)

where ~q is a position-momentum pair (x, p)T, A is a constant 2× 2 matrix,
and δ~q is a constant 2 × 1 vector. In the particular case where δ~q = 0 and
A ∈ SU(2), the physical system neither dissipates to nor receives any energy
from the environment, and thereby retains the entirety of its information
content. Mappings of the type (2.60) are one-to-one, reversible, and are
therefore called canonical transformations, in reference to form-invariant
systems in Hamiltonian mechanics. As we shall see in a while, they model
a wide array of optical elements alternatively called passive, Gaussian, or
more generally, linear.

One can recall from Hamiltonian mechanics that canonical transforma-
tion are really just coordinate transformations in phase space. Let’s di-



30 CHAPTER 2. QUANTUM OPTICS TOOLBOX

gress for a while to illustrate a basic example of coordinate transformation
that belongs to the SU(2) group, namely the rotation operation of a vector
~v = (v1, v2)T by an angle θ,[

v1

v2

]
→
[
cos θ − sinθ
sin θ cos θ

] [
v1

v2

]
, (2.61)

where the “output” vector

~v′ =

[
cos(θ)v1 − sin(θ)v2

sin(θ)v1 + cos(θ)v2

]
(2.62)

has has the same norm as that of the input |~v| = |~v′|, thereby indicating the
energy-conserving property of the transformation. The crucial point to be
retained from this example is that the rotation (our computation) can be
modeled either by rotating the vector (our information) by θ or by rotating
the coordinate space (our “alphabet space”) by −θ while leaving the vector
unchanged (left column of Fig. 2.8).

Let’s return to continuous variable quantum optics, for which the Wigner
function is established as the most appropriate representation. For being an
analytical function, the Wigner distribution belongs to a different domain
than that of density matrices. The two nonetheless satisfy a one-to-one
correspondence via Weyl’s transform (2.22). This correspondence extends
to transformations. For example, the transformation of a quantum state ρ̂

ρ̂→ Û †ρ̂Û (2.63)

translates in Wigner notation to an integral transform [9, 10]

W (x, p)→ W̃ (x, p) =

∫∫
R

K(x′, p′) ·W (x′, p′) dx′dp′ (2.64)

where K is a transformation function, also known as a kernel.14 The kernel
is independent of the initial and final states of the system, but encompasses
instead all its dynamical properties.

As is illustrated in the left column of Fig. 2.8, it turns out that for
systems whose Hamiltonian is at most quadratic in the ladder operators
a canonical transformation suffices, rather than a full blown integral trans-
form. One only needs to transform the phase space coordinates while leaving
the Wigner function “unchanged” and then renaming the new function in

14The most common example of integral transforms is the Fourier transform.
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Figure 2.8: Illustration of a canonical transformation in phase space (right
column) by analogy to a simple transformation in vector space, namely a
rotation (left column). Whereas the information on the left is encoded as
a point in vector space [v1, v2], it is encoded on the right as a probability
distribution W in a phase space [x, p]. The transformation under consid-
eration is that of a pure squeezing in the p quadrature. In the first row,
the information processing is performed in one step, which would entail an
integral transform for the Wigner function. The message to be conveyed is
that this can be simplified into two algebraic steps where only phase space
is re-scaled while maintaining the function unchanged. Please be aware that
we have only represented the Wigner function as a flat disk while in reality
it is a continuous distribution of finite volume pervading phase space to in-
finity. We shall assume for this example that it has Gaussian cross sections
in both quadratures and that the disk merely delineates its surface lying
above a given threshold.
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the re-scaled space as our final function in the old space. I.e., the first row
of Fig. 2.8 is tantamount to the second row followed by the third. The
transformation thus reads

W (~q)→W (A−1~q) = W̃ (~q). (2.65)

Note that coordinates undergo the inverse transformation to that applied to
the function.

It should be said that (2.60) is a special case of the broader set of Bo-
goliubov transformations acting on M modes,

â′i =
M∑
j=1

Aij âj +Bij â
†
j + γi, (2.66)

where A and B satisfy ABT =
(
ABT

)T
and AA† = BB† + Î so as to abide

by the bosonic commutation relation [11]. A Bogoliubov transformation can
describe any combination of Hamiltonians that are quadratic in the ladder
operators.

The time is now ripe to work out from scratch an example of canonical
transformations from an actual Hamiltonian. We shall look at the squeez-
ing operation. For this we use a non-linear crystal as a transducer between
an exciting mode âp of frequency 2ω, the pump, and two indistinguishable
modes âs and âi of frequency ω each, referred to as the signal and idler.
We will elaborate on this in Sec. 6.2; but for now we shall retain that en-
ergy is transferred from the pump into the signal-idler pair via the crystal,
while—naturally—satisfying energy and momentum conservation. Quan-
tum mechanically we therefore remove an excitation from the pump with âp
to transfer it to both the signal and idler with â†

p and â†
i . For the sake of

reversibility, we also need to add the complex conjugate of the process. The
interaction Hamiltonian thus reads

Ĥ ∝ i~χ(2)
(
âpâ

†
sâ

†
i − â

†
pâsâi

)
. (2.67)

We shall further make two simplifications. First, we shall approximate the
pump to be so strong as to traverse the nonlinear medium virtually un-
depleted. This allows us to treat it as a classical reservoir of energy and
thus lift the requirement to have it modeled as a quantum operator. We
can thus apply the so-called parametric approximation: âp ≈ αp = |αp| eiΘ
[12]. The second simplification consists of looking only at the degenerate
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case âs = âp = â so that two identical photons emerge from a single pump
photon of double the frequency. The Hamiltonian becomes

Ĥ = i~
κ

2

((
â†)2 eiΘ − â2e−iΘ

)
, (2.68)

where we have bundled the pump amplitude and the non-linearity of the
crystal into a single coupling term κ.

Setting the macroscopic pump phase to zero Θ = 0, the Heisenberg
equation,

d

dt
â(t) =

1

i~

[
â(t), Ĥ

]
= κâ†(t), (2.69)

where we have used the commutation relation [â, â†] = 1, can be shown to
be solved by

â(t) = â(0) cosh(κt) + â†(0) sinh(κt). (2.70)

The interaction time is labeled by t. Converting the ladder operators into the
quadrature operators via (2.14), we finally get the canonical transformation
of degenerate squeezing,[

xout

pout

]
=

[
e+r 0
0 e−r

] [
xin

pin

]
, (2.71)

where r = κt is the squeezing gain. One can clearly see that squeezing is
tantamount to stretching the phase space plane in the position direction by
e+r while shrinking it in the momentum direction by e−r.

Thanks to the linearity of (2.60), and more generally of Bogoliubov trans-
formations, the serial application of a quadratic Hamiltonians on an initial
state can be modeled by a convenient cascade of matrix multiplications
and—in the case of coherent displacement—of vector additions. This is il-
lustrated in Fig. 2.9 for the case of a proof-of-principle Hadamard gate in the
coherent state basis which makes use of a degenerate single-mode squeezer,
a displacement operator, and three beam splitters [13]. (The final part of
the operation, the measurements will be discussed in the following sections.)

A reference list of quadratic interaction Hamiltonians and their ensuing
canonical transformations is provided in Table 2.2. As can be seen, such
transformations need not act on a single mode only, but on any number of
modes M such that the vector ~q in (2.60) be of length 2M .
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Figure 2.9: Top: Circuit of a proof-of-principle Hadamard gate in the co-
herent state superposition basis [13]. The states (W ) and modes (q) are in
blue and operations are in green. Bottom: Canonical transformation of the
quadrature coordinates corresponding to the linear part of the circuit. Note
the use of permutation matrices to keep track of the right modes.

Table 2.2: Linear canonical transformations of quadrature bases

Operation Hamiltonian Transformation

Phase shift ~φâ†â/t

[
cosφ sinφ
− sinφ cosφ

] [
xin
pin

]
Coherent displacement i~(αâ† − α∗â)

[
1 0
0 1

] [
xin
pin

]
+

[
δx
δp

]
Single-mode squeezer i~χ

(
â2 − (â†)2

)
/2

[
s 0
0 1

s

] [
xin
pin

]

Tow-mode squeezer i~χ
(
âiâs − â†

i â
†
s

)
/2


cosh r 0 − sinh r 0

0 cosh r 0 sinh r
− sinh r 0 cosh r 0

0 sinh r 0 cosh r



xs,in
ps,in
xi,in
pi,in



Beam splitter i~κl
(
â†

2â1 − â†
1â2

)
/2


√
T 0

√
1− T 0

0
√
T 0

√
1− T

−
√

1− T 0
√
T 0

0 −
√

1− T 0
√
T



x1,in
p1,in
x2,in
p2,in



Quantum non-demolition ~κqx̂1p̂2


1 0 0 0
0 1 0 −G
G 0 1 0
0 0 0 1



x1,in
p1,in
x2,in
p2,in


s is the quadrature rescaling parameter given by s = er where r = κt.
T ∈ [0, 1] is the beam splitter transmission and is given by T = cos2(κlt) where κl is the linear coupling constant.
G = κqt is the nonlinear interaction gain.
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We shall conclude this subsection with a qualitative discussion of Liou-
ville’s theorem. Recall that in classical mechanics, Liouville’s theorem states
that a statistical ensemble of particles whose motion is governed by the same
dynamics evolve in phase space as a probability distribution whose density
is conserved. The probability density thus behaves as an “incompressible
fluid” in phase space [9]. The same is true in quantum mechanics where
no process can ever compress the Wigner function into an area smaller than
the minimum ∆x∆p specified by Heisenberg’s uncertainty relation. Further-
more, no linear process—as expressed by Bogoliubov transforms—can turn
a Gaussian Wigner function into a non-Gaussian one, hence the alternative
appellation of linear processes as Gaussian processes.

2.3.2 The generic projection: A mathematical blueprint

Recall property (2.25) involving two operators Â and B̂,

Tr[ÂB̂] =
1

h

∫∫
Ã(x, p)B̃(x, p) dx dp, (2.72)

where Ã and B̃ are the Weyl transforms of Â and B̂. We stated that
the above represents the mathematical blueprint for several concepts such
as measurement operations, fidelity, purity, and success probability. More
generally, it can be thought of as a projection, or “similarity measure”,
between two quantum objects A and B expressed either in the discrete basis
(on the left-hand side) or continuous basis (on the right hand-side). Special
cases of (2.72) are straightforward bra-ket inner products 〈ψA|ψB〉 between
two pure states |ψA〉 and |ψB〉. More general scenarios are summarized in
Table 2.3. Particular emphasis on the continuous-variable implementation
of (2.72) will be made in §2.5.

A B Interpretation of (2.72)
Any pure quantum state Any quantum state Fidelity
Any pure quantum state B = A Purity
Any quantum state Any measurement operator Success probability

Table 2.3: Three different interpretations of Eq. (2.72). Note that if A spans
more modes than B, then the success probability is given by normalizing the
state living in the remaining modes. Eq. (2.72) thereby also produces the
output of the measurement. It is interesting to note that mathematically,
the nature of A and B as either quantum states or measurement operators
is irrelevant: They are nothing more than density matrices to be compared.



36 CHAPTER 2. QUANTUM OPTICS TOOLBOX

2.3.3 Homodyne measurement

A homodyne measurement corresponds to a projection on a given quadrature
|q0〉〈q0| where |q0〉 = cos θ|x0〉+ sin θ|p0〉. This projector, when applied to a
state whose Wigner function is W (x, p), “picks out” the cross-section along
q0 to yield a probability density. Such a projection is given in the quadrature
basis by

Π̂HD(q0) = |q0〉〈q0|, (2.73)

which, in the Wigner representation would most appropriately be given by
the Dirac delta function

WHD(q0) = δ(q − q0). (2.74)

If we choose for simplicity that q0 = x0, then the projection operation (2.96)
onto some state W (x, p) yields∫∫

R

W (x, p) · WHD(q0) dx dp

=

∫∫
R

W (x, p) · δ(x− x0) dx dp

= W (x0, p)

= P (x0). (2.75)

Intuitively, the probability of measuring exactly the quadrature q0 should
be vanishingly small. Yet, P (x0) has a finite value since it is a probability
density. To model the more realistic scenario where homodyne detection has
a given resolution bandwidth ∆q around the measured value q0, an interval
projector is more appropriate

Π̂HD(q0,∆q) =

∫ q0+ ∆q
2

q0−
∆q
2

|q〉〈q|dq (2.76)

or, in Wigner representation

WHD(q0,∆q)

=
1

2π

∫ q0+ ∆q
2

q0−
∆q
2

δ(q − q′) dq′

=
1

2π

[
Θ

(
q − q0 +

1

2
∆q

)
−Θ

(
q − q0 −

1

2
∆q

)]
, (2.77)
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where Θ is the Heaviside step function. Note how (2.77) does not fit the
Gaussian form of (2.87). For calculational ease, the wide homodyning op-
eration is therefore best performed last so as to maintain the convenient
Gaussianity of the quantum states as long as possible.

In the limiting case of ideal homodyning, ∆Q→ 0, we expect (2.74) and
(2.77) to yield the same result.

2.3.4 Photon-number measurement

Just like homodyne detectors are the main measurement device for CV quan-
tum optics, DV quantum optics is most naturally probed by detectors whose
eigenvalues match those of the photon number operator n̂. A photon number
resolving detector (PNR) returns a discrete current that is proportional to
the number of photons n impinging on it. Mathematically, it is represented
by

Π̂n̂ = |n〉〈n| (2.78)

In practice, PNRs are not only expensive and difficult to operate but
they also have an upper bound nmax on the photon numbers they can resolve
[14, 15]. A simpler device, is the avalanche photo diode (APD) which only
offers a binary output: Either it clicks if at least one photon impinges on it,
or it does not click at all. These two events are modeled by the projectors

Π̂1 =
∞∑
n=1

|n〉〈n| = Î− |0〉〈0| (2.79)

and
Π̂0 = |0〉〈0|, (2.80)

respectively.

2.3.5 Adaptive feedback measurement

Whereas homodyne and photon-number measurements are projections onto
fixed bases, adaptive feedback measurements project onto a “movable basis”
whose orientation in Fock or phase space is continuously adjusted to better
probe the incoming state as it gradually collapses. Adaptive feedback tech-
niques are primarily useful to determine the a priori unknown phase of a
quantum state. The overall procedure consists of distributing the state into
multiple spatial or temporal modes which are then collapsed in sequence
with measurements settings depending on the history of outcomes. In other
words, adaptive feedback measurements can be thought of as a series of
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weak measurements on the whole system or, alternatively, as a series of von
Neumann projections onto fractions it (Fig. 2.10). After each weak (or sub-
system) measurement, the system reveals a tiny piece of information about
the desired observable, typically the phase. This infinitesimal information is
fed back to the detection apparatus so as to rotate the measurement basis in
a direction which is optimally aligned with the orientation of the remaining
part of the incoming state vector. This re-alignment procedure could consist,
for example, of adjusting the phase of a local oscillator in a homodyne setup,
thereby rotating the projection quadrature, or—alternatively—of displacing
a coherent state so as to overlap it with the vacuum.

Figure 2.10: An adaptive feedback measurement, as the one sketched here,
is essentially a homodyne measurement with a phase for the local oscillator
which is adjusted on the fly to better probe the incoming state. By stretching
the state in time domain to a lenght τ longer than the response delay of the
detector, a series of weak measurement can be performed to feedback the
appropriate phase θ of the local oscillator given a pre-defined algorithm.

Although adaptive feedback is a powerful technique to estimate the phase
of a system for which no prior information is available, it may not necessarily
outperform other techniques (e.g. homodyning) when a given projection
basis is known to be privileged. This will be further elaborated in §2.4 in
the context of qubit phase measurement.

2.4 Qubit operations

In this section, we shall confine our attention to two-level quantum systems
and, in particular, attempt the characterization of generic qubits of the form

|ψϕ, φ〉 = cos
(ϕ

2

)
|0〉+ sin

(ϕ
2

)
eiφ|1〉, (2.81)
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where ϕ ∈ [0, π] and φ ∈ [0, 2π) are the polar and azimuthal angles, re-
spectively, of the Bloch sphere. As we shall see in chapters 4 and 3, the
characterization of such qubits is required to perform Bell measurements in
the two-dimensional Fock Hilbert space spanned by {|0〉, |1〉}.

Qubit projections

To characterize a qubit %̂ϕ, φ = |ψϕ, φ〉〈ψϕ, φ|, one needs to devise a projector

Π̂ such that the probability of successfully projecting %̂ϕ, φ onto Π̂ is

P (ϕ, φ) =
Tr
{
%̂ϕ, φΠ̂

}
Tr {%̂ϕ, φ}

. (2.82)

Ideally, this probability is unity if %̂ϕ, φ and Π̂ are equal (up to a global phase

factor) and zero if they are orthogonal. An ideal projector Π̂ϑ,θ
I is therefore

constructed by simply taking the outer product of a qubit of Bloch angles
ϑ and θ

Π̂ϑ,θ
I = |ψϑ, θ〉〈ψϑ, θ|

=

[
cos2(ϑ2 ) cos(ϑ2 ) sin(ϑ2 )e−iθ

sin(ϑ2 ) cos(ϑ2 )eiθ sin2(ϑ2 )

]
. (2.83)

In other words, the projection probability (2.82) is proportional to the inner
product between the measured (ϕ, φ) and measuring (ϑ, θ) qubits.

The above operator represents the best possible measurement along an
arbitrary qubit of Bloch coordinates (ϑ, θ). It turns out that in practice,
however, we are most often only interested in knowing if the qubit to be
characterized is equal to one of the four states |0〉, |1〉, 1√

2
(|0〉+ |1〉), or

1√
2

(|0〉 − |1〉) so that the whole continuum of qubits need not be resolved.

To measure the vacuum or the single-photon state, which are energy
eigenstates, one needs the projectors Π̂0,∀θ

I and Π̂π,∀θ
I , respectively. These

projectors are best emulated by photon detectors such as avalanche photo
diodes provided one assumes unit quantum efficiency.

The measurement is more complicated if one needs to measure the com-
ponent of the qubit along the equatorial basis 1√

2
(|0〉 ± |1〉) given that it

is not aligned with any trivial basis such as the energy eigenbasis. One
has then to resort to approximate projectors which can only discriminate
between orthogonal states up to a certain accuracy.

A method to achieve this is homodyne thresholding whereby we use two
operators Π̂+

H and Π̂−H to project onto %̂π
2
, 0 and %̂π

2
, π, respectively. In Fock
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Figure 2.11: %̂π
2
, 0 and %̂π

2
, π project onto the x -quadrature basis as the solid

and dotted curve, respectively. Given that the quadrature distribution of the
latter is mostly biased towards negative values whereas that of the former is
mostly positive, homodyne post-selection can discriminate the two—up to
a certain confidence level—by grouping the outcomes of measurements into
two bins whereby any measurement x is attributed to %̂π

2
, 0 if x > 0 and to

%̂π
2
, π if x < 0.

basis, these projectors are given by

Π̂
ϑ=π/2,θ
H =


$0,0 $0,1 · · · $0,M

$1,0 $1,1 · · ·
...

...
...

. . .
...

$M,0 $M,1 · · · $M,M

 , (2.84)

where $n,m =
∫

∆(θ)〈x|n〉〈m|x〉 dx. M ∈ N is the maximum number of
photons inhabiting the measured mode and is set to M = 1 in the particular
case of single-photon qubits we are dealing with. The range of integration is
∆(θ = π) = (−∞, 0] for Π̂−H and ∆(θ = π) = [0,∞) for Π̂+

H . The rationale
for such matrices comes from the fact that %̂π

2
, 0 and %̂π

2
, π are most easily

discriminated in the x -quadrature basis if they are associated with positive
and negative quadrature points, respectively, as illustrated in Fig. 2.11.

For the sake of comparison, one can also devise the projectors that arise
from the adaptive feedback method. As shown in [16, 17], the phase readout
θ is obtained from a projector 〈θ| = 〈0|+ e−iθ〈1| with a probability density
equal to |〈θ|ψϕ, φ〉|2. Here, instead of thresholding on a quadrature readout
as in the homodyne case, we instead bin the phase readout into two ranges
∆(θ = 0) = [0, π2 ) ∪ [3π

2 , 2π) and ∆(θ = π) = [π2 ,
3π
2 ) for projecting onto

%̂π
2
, 0 and %̂π

2
, π, respectively. In complete analogy to the homodyne case, we
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therefore obtain the adaptive feedback projector

Π̂
ϑ=π/2,θ
A =


$0,0 $0,1 · · · $0,M

$1,0 $1,1 · · ·
...

...
...

. . .
...

$M,0 $M,1 · · · $M,M

 , (2.85)

where$n,m = 1
2π

∫
∆(θ)〈θ|n〉〈m|θ〉dθ. Note that the factor of 1

2π is introduced
to enforce the completeness of the projectors.

Ambiguity in qubit discrimination

As stated above, the ideal projector is expected to discriminate perfectly
between two orthogonal qubits. For example, if one were to discriminate

%± ≡ 1√
2

(|0〉 ± |1〉) with some projectors Π̂±, then ideally Tr
{

Π̂±%±
}

= 1

and Tr
{

Π̂∓%±
}

= 0. If instead Tr
{

Π̂±%±
}

= 1 − ε and Tr
{

Π̂∓%±
}

=

ε′ with ε, ε′ ∈ (0, 1), then the projectors are only approximative. This
can shown to be the case for both the homodyne and adaptive feedback
techniques, as illustrated by the projective probability onto any equatorial
qubit in Fig. 2.12. Because we already know that the qubits 1√

2
(|0〉 ± |1〉)

are to be discriminated, non-adpative homodyne detection outperforms the
adaptive feedback scheme: The two qubits can be confused for on another
with a 10.1% chance for the latter method, as opposed to 18.2% for the
latter. This increase in ambiguity in the adaptive feedback scheme can be
attributed to the fact that the set-up “wastes” quantum information seeking
the optimal local oscillator phase whereas it is already properly aligned in the
non-adaptive homodyning scheme from the outset. This confirms the fact
that adaptive schemes only offer an advantage over non-adaptive ones when
the optimal phase is initially unknown and therefore needs to be estimated
on the fly.
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Figure 2.12: Probability of projecting the qubit 1√
2

(
|0〉+ eiφ|1〉

)
onto Π̂+

(solid) and Π̂− (dotted) using the exact inner product (E), homodyning (H),
and adaptive feedback (A). The adaptive feedback is the worst method of
all three as it can only ascertain the detection of a qubit 1√

2
(|0〉 ± |1〉) with

an 81.8% confidence level, in contrast to 89.9% for homodyne thresholding.

2.5 Linear transformations and measurements with
Gaussian states and operations

In this section, we shall present the calculational tool we used for many of
our simulations, particularly in Chapter 5, where the quantum states and
operations involved are made up of Gaussian superpositions in the Wigner
picture. I.e., any state ρ̂ or measurement operator Π̂ can be written in the
Wigner picture as a function

W (x, p) =
∑
i

Gi(x, p), (2.86)

where G is a Gaussian function in both quadratures

G(x, p) = g0 exp
(
g1x

2 + g2x+ g3xp+ g4p
2 + g5p+ g6

)
(2.87)
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with constant coefficients gk ∈ C : k ∈ {0, · · · , 6} and g1, g4 ∈ R−. For
example, a coherent state superposition,

|κ±(γ)〉 =
1√

2± 2e−2|γ|2
(|γ〉 ± |−γ〉) , (2.88)

is made up of four such Gaussians

W|κ±(γ)〉(x, p) =
4∑
j=1

G(j)
κ±(x, p, γ), (2.89)

where

G(1)
κ±(x, p) = − e−x

2−p2+2
√

2iγp

2π
(
−e−2γ2 ∓ 1

) , (2.90a)

G(2)
κ±(x, p) = − e−x

2−p2−2
√

2iγp

2π
(
−e−2γ2 ∓ 1

) , (2.90b)

G(3)
κ±(x, p) =

e−x
2−p2+2

√
2γx−2γ2

2π
(
−e−2γ2 ∓ 1

) , (2.90c)

G(4)
κ±(x, p) =

e−x
2−p2−2

√
2γx−2γ2

2π
(
−e−2γ2 ∓ 1

) . (2.90d)

Similarly, the projection operation by an avalanche photodiode (APD) is
Π̂(APD) = Î− |0〉〈0| is made up of only two Gaussians

W
Π̂(APD)(x, p) =

2∑
j=1

G
Π̂(APD,j )(x, p) (2.91)

where

G
Π̂(APD,1)(x, p) =

1

2π
, (2.92a)

G
Π̂(APD,2)(x, p) = − 1

π
e−x

2−p2
. (2.92b)

If we now assume that all transformations underwent by the state ρ̂
prior to measurement are linear, then the generic Gaussian form (2.87) is
conserved and only the quadrature vector

~q = (x1, p1, · · · , xN , pN )T (2.93)
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of the N modes involved is transformed by a linear mapping

~q → A · ~q, (2.94)

where the 2N × 2N matrix A is determined by the linear assemblage of
passive elements making up the circuit, e.g., beam splitters, phase shifters,
squeezers, etc.

Consider the generic quantum circuit depicted in Fig. 2.13 where once
again we only have Gaussian states and operators as defined by (2.86-2.87).
The effect of a re-scaled quadrature space (2.94) on a given Wigner function
is equivalent to leaving the space unchanged while submitting the function
to the inverse transformation. We shall label the transformed multimode
Wigner function by a tilde such that the mapping (2.94) yields

W (~q)→W (A−1~q) = W̃ (~q). (2.95)

Figure 2.13: Sketch of a black box quantum circuit made up of N = 5 input
modes, M = 4 measurement modes, and N −M = 1 output modes. Each
state occupying mode k is represented by a Wigner function W (k). The input∏N
n W

(n)
in is mapped according to (2.95) into a linearly transformed state∏N

n W̃
(n)
in which is then projected onto a “measurement state”

∏M
m W

(m)

Π̂
.

If we now apply the measurement operators over M < N modes, the
output over the remaining N−M modes is given by

Wρ̂out =

∫∫
R

N∏
n

W̃
(n)
ρ̂in
·
M∏
m

W
(m)

Π̂
dxmdpm (2.96)

where the superscript denotes the kth mode.
Note that the number of output modes equals the number of input modes

N minus the number of measured modes M . If M = N , then there is no
output state and the inner product (2.96) leaves us with a scalar representing
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the success probability—or norm—of the projection of input states onto the
measurement operators. Alternatively, this number could be interpreted as
the fidelity between the overall states at either side of the diagram in Fig.
2.13.

The rationale for (2.96) is valid regardless of whether the Wigner func-
tions are Gaussian superpositions: From a mathematical standpoint, projec-
tive measurements are inner products between the measured state and the
measuring operator. In functional analysis, this translates to an integral of
the product of two states—the measured and the measuring state—over the
entire phase space of measurement. The simplicity that comes from using
(2.96) with Gaussian superpositions is due to the fact that products and
integrals of Gaussians are also still Gaussian.

2.6 Figures of merit

Three figures of merit are of ubiquitous use in quantum information: fi-
delity, success probability, and purity. Although each one of them tells of a
different aspect of quantum states, they all originate from same the mathe-
matical blueprint of overlap between quantum objects—cf. equation (2.72)
and Table 2.3.

• Fidelity is the measure of similarity between two quantum states WA

and WB. If at least one of them is pure,15 it is written

F (A,B) = 2π

∫∫
R

WA(x, p)WB(x, p) dx dp. (2.98)

• Purity can be thought of as the fidelity of a state with itself

P (A) = F (A,A) = 2π

∫∫
R

WA(x, p)WA(x, p) dx dp. (2.99)

In other words, given several copies of the state, how consistent, or
coherent, are all the instances with one another? Alternatively, how
much coherence do they contain and how well can they display quan-
tum interference? Recall the sketch in Fig. 2.1; the illustrated mixed

15The general expression is given for the fidelity between two (possibly mixed) states
ρ̂1 and ρ̂2 is [18]

F (ρ̂1, ρ̂2) = Tr

{√
ρ̂

1/2
1 ρ̂2 ρ̂

1/2
1

}
. (2.97)
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state instantiates into orthogonal states with equal probability and
hence has no coherence whatsoever. It is completely mixed and it’s
purity is zero.

• Success probability is the probability with which a given state WA

can be produced from an input state W measurement operations Π̂.
(This was expanded on in §2.5.) More generally, the success prob-
ability of any state WA, regardless of the process through which it
was obtain, is given by the its norm, i.e., it’s overlap with the unit
operator16

S(A) = F (Î, A) =
1

2π

∫∫
R

WA(x, p) dx dp. (2.100)

16The 1/2π factor emerges from the Weyl transform of the unit operator Î.



Chapter 3

Deterministic Bell
measurements: The hard
way

We outline a proof that teleportation with a single particle is in principle
just as reliable as with two particles. We thereby hope to dispel the skepti-
cism surrounding single-photon entanglement as a valid resource in quantum
information. A deterministic Bell state analyzer is proposed which uses only
classical resources, namely coherent states, a Kerr non-linearity, and a two-
level atom.

3.1 Introduction

Ever since Tan, Walls and Collett [19] articulated the notion of single-
particle nonlocality [20, 21], controversy has surrounded the ability of a
single particle to exhibit entanglement [22, 23, 24, 25, 26]. Proposals [27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38] and experiments [39, 40, 41] demon-
strating single photon entanglement, nonlocality, and entanglement purifi-
cation have been performed, but still, the prospect of teleportation using
single photon entanglement as the quantum resource has not been regarded
on equal footing with teleportation schemes involving “carrier” particles in
each of the entangled modes.

Most of the confusion over this issue can be blamed on semantics: By
“single-particle” entanglement, what is really meant is the quantum correla-
tion of two or more modes over which a single excitation (i.e., the particle)
is distributed. Regardless of the degree of freedom under consideration, one

47
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should therefore think of entanglement as occurring between modes rather
than between any particular excitations of those modes [42]. In fact, all that
is needed to enable entanglement is a system with an associated Hilbert space
whose dimension can be factored [43]. In light of the above, any reference
to single-photon nonlocality in the present chapter should be pictured with
field mode entanglement in mind.

Although single-photon teleportation has been discussed quite exten-
sively, and demonstrated experimentally [44], its success rate has been lim-
ited to at most 50%. This could be taken by the detractors of entanglement
with a single particle as an indication that the involvement of the vacuum
state as an agent of correlations bears with it a fundamental limitation.
We argue that this lack of determinism, however, is not due to an intrinsic
shortcoming of single-particle teleportation, but rather to the difficulty of
implementing a deterministic analyzer for the following Bell states:

|ψ±〉 =
1√
2

(|01〉 ± |10〉) (3.1)

|ϕ±〉 =
1√
2

(|00〉 ± |11〉) (3.2)

where, e.g., |01〉 ≡ |0〉A⊗|1〉B is the shorthand notation for vacuum in Alice’s
mode and a single photon in Bob’s.

If one is restricted to linear optics, it has been shown that this difficulty
is fundamental [1], and that the success rate appeared to be limited to the
above mentioned 50% . Recently, Pavičić demonstrated that this thereshold
can be raised asymptotically to 100% if one uses conditional dynamics on
the polarization degree of freedom of a two-photon Bell state [45]. How-
ever, his scheme does not lend itself to single photon Bell states because the
delocalization behavior of polarization at beam splitters is different for the
vacuum state than for a single photon state. E.g., the splitting of, say, a
vertically polarized photon |V 〉 on a beam splitter leads to a nonlocal super-
position 1√

2
(|V, 0〉+ |0, V 〉) whereas the vacuum remains separable |0〉⊗|0〉,

suggesting once again the alleged shortcoming of the vacuum.
However, what we wish to demonstrate in this paper is that fundamen-

tally, Nature makes no difference as to whether the entanglement needed to
perform teleportation is carried by one, or more than one, particle. Hence,
we will allow any classical resource, linear or non-linear, but no additional
quantum resources. The reader should be warned that although the scheme
we outline below is certainly experimentally implementable, it will not be
the most practical scheme to teleport a state. Our aim is simply to argue
that, at the fundamental level, any task that can be done by a multi-particle
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entangled state can also be achieved by the isomorphic state with the vac-
uum state and single-particle state as the basis. Specifically, we show that
deterministic teleportation can be achieved with such a state as the only
quantum resource.

In this chapter, we aim to assert the soundness of single-particle tele-
portation by outlining an experiment which, in principle, can identify any
of the four Bell states deterministically and with arbitrary accuracy. The
main challenge to this end is that the Bell states |ϕ±〉 are not energy (or
more generally, particle number) eigenstates. In particular, no linear-optical
scheme can deterministically resolve their phases [50]. We propose a way
around this by storing the photonic qubits in two-level atoms. Owing to
the two-dimensional Hilbert space of a two-level system, its stored qubits
can conveniently be rotated on the Bloch sphere via coherent excitations.
Once aligned with the energy eigenbasis of the atom, the orientation of the
initial qubit can easily be deduced due to the unitarity of the rotation. Be-
fore treating the two-mode case of |ϕ±〉, we first consider in Sec. 3.2 the
Hadamard rotation of the single-mode qubit 1√

2
(|0〉 ± 1) → {|0〉, |1〉}. We

then follow up in Sec. 3.3 with a description of the actual teleportation
setup and its two-stage Bell analyzer.

3.2 Hadamard rotation of a vacuum-photon su-
perposition

Consider a qubit made up of an equal superposition of the vacuum and a
single photon:

|Xθ〉 =
1√
2

(
|0〉+ eiθ|1〉

)
(3.3)

where θ is the equatorial angle on the Bloch sphere. Our first goal is to
devise a projector Π̂θ = |Xθ〉〈Xθ| which can resolve the phase θ. Note that
any projector Π̂θ can be implemented from any other Π̂β by interposing a
phase shift ∆θ = θ − β. We will show in 3.3.1 that such a projector, when
applied in parallel to the two modes of |ϕ±〉, will allow us to resolve the sign
of the superposition. We shall for now restrict ourselves to the single-mode
case and describe how |X0〉 can be distinguished from |Xπ〉.

Let’s define two initially separated Hilbert spaces pertaining to an atomic
and a photonic mode, respectively. Formally, the space under considera-
tion is H = Hatom ⊗ Hphoton where Hphoton = {|n〉 : n ∈ N} and Hatom =
{|g〉, |e〉}. Here, n denotes the number of photons, and |g〉 and |e〉 denote
the ground and excited atomic states, respectively. The interaction between
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the two modes is dictated by the Jaynes-Cummings (JC) Hamiltonian, ex-
pressed below in the rotating wave approximation:

Ĥ = ~γ
(
ŝ−â† + ŝ+â

)
(3.4)

where â (â†) is the photon annihilation (creation) operator, and ŝ+ (ŝ−)
is the atomic raising (lowering) operator. γ quantifies the strength of the
photon-atom coupling. The transformations undergone by any preparation
in H under the action of Ĥ are summarized in §3.2.1 and shall be used in
what follows.

The candidate qubits |X0〉 and |Xπ〉 to be measured are initially stored
in the photonic mode whereas the atom is prepared in the ground state.
Upon an interaction time τ = π

2γ , we obtain the transformation

1√
2
|g〉 ⊗ (|0〉 ± |1〉) τ−→ 1√

2
(|g〉 ∓ i|e〉)⊗ |0〉 (3.5)

whereby the photonic qubit has been transferred to the atomic mode and
the state is are once again separable. The atomic qubit at this stage is not
yet measurable in the energy eigenbasis. It can, however, be rotated so as
to align itself with the eigenstates of the atom by shining a strong coherent
beam |α〉 with |α| � 1. (This coherent state will incidentally serve as a
reference phase.) If one chooses an interaction time ts = π

4γ|α| the states

transforms to a very good approximation (see below) as


1√
2

(|g〉+ i|e〉)⊗ |α〉 ts−→ |g〉 ⊗ |α〉
1√
2

(|g〉 − i|e〉)⊗ |α〉 ts−→ |e〉 ⊗ |α〉
. (3.6)

If one now determines via, say, a fluorescence measurement that the final
state of the atom was the ground (excited) state then one can conclude that
the initial qubit was |Xπ〉 (|X0〉). A sketch of the physics underlying the
transformations (3.5) and (3.6) is shown in Fig. 3.1.
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Photon-to-atom storage of the qubit

|0 |1!± ! |0!
|e!

|g!

|e!

|g!

|e!

|g!

|α!

|e!

|g!

|e!

|g!

|0!

|1!

Hadamard rotation

|g |e!∓ !i

|g |e!± !i

|g!

|e!

|g!

τ

t
s {

Figure 3.1: Sketch of the two-stage implementation of the Π̂θ projector for
θ ∈ {0, π}. The photonic and atomic modes are colored in red and blue,
respectively. First, the photonic qubit is transfered to an atom initially in
the ground state (top). Second, a coherent π

2 -pulse is applied on the atom so
as to rotate the qubit into one of the energy basis vectors |g〉 or |e〉 (bottom).
The subsequent de-excitation of the atom (or lack thereof) will reveal that
the initial photonic qubit was |X0〉 (or |Xπ〉).

As derived in §3.2.1, however, an error in the correspondence between
initial and final states in (3.6) will arise for weaker coherent fields. This is
where the superselection rule kicks in, because it is clear that the left- and
the right hand side of (3.6) do not contain the same number of particles
on average. An exact analysis of the transformation, made in §3.2.1, shows
that the probability for such an error decreases with the strength |α| of the
coherent state. For example, the probability of erroneously identifying |X0〉
instead of |Xπ〉 is given by

Perr =
e−|α|

2

2

∞∑
n=0

|α|2n

n!

∣∣∣∣cos

(
π
√
n

4|α|

)
−
√
n

|α|
sin

(
π
√
n

4|α|

)∣∣∣∣2 . (3.7)

The fidelity of the Hadamard rotation is therefore contingent on the strength
of the coherent π

2 -pulses. The error probability is plotted in Fig. 3.2, and
it can be seen that already for |α|2 = 50, the error probability is at the 1%
level. This means that already for rather modest coherent state excitations,
the unitarity of the Hadamard operation in (3.6) is effectively achieved.
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Figure 3.2: The probability Perr of an erroneous projection as a function of
the coherent state average photon number.

3.2.1 Jaynes-Cummings model

We shall summarize here the mathematics behind the Hadamard rotation
treated in Sec. 3.2. This is based on an application of the Jaynes-Cummings
model whose Hamiltonian has already been presented in (3.4). The Schrödinger
equation corresponding to this system is solved by

|ψ(t)〉 =

∞∑
n=0

[ (
cecn cos(γt

√
n+ 1)− icgcn+1 sin(γt

√
n+ 1)

)
|e〉

+
(
cgcn cos(γt

√
n)− icecn−1 sin(γt

√
n)
)
|g〉
]
|n〉 (3.8)

where the initial state is given by

|ψ(0)〉 = |ψatom(0)〉 ⊗ |ψphoton(0)〉 = (cg|g〉+ ce|e〉)⊗
∞∑
n=0

cn|n〉, (3.9)

and cg, ce, and cn are complex. An in-depth derviation of (3.8) is given in
[124].

Three key transformations of the atom-photon eigenstates are of interest
to us, namely

|g, 0〉 → |g, 0〉, (3.10)

|g, n〉 → cos(γt
√
n)|g, n〉 − i sin(γt

√
n)|e, n− 1〉, (3.11)

|e, n〉 → cos(γt
√
n+ 1)|e, n〉 − i sin(γt

√
n+ 1)|g, n+ 1〉. (3.12)



3.2. HADAMARDROTATION OF A VACUUM-PHOTON SUPERPOSITION53

The transfer of the qubit from the photon to the atomic modes is thus
given by

|g〉 ⊗ 1√
2

(|0〉 ± |1〉) =
1√
2

(|g0〉 ± |g1〉)

→ 1√
2

(|g0〉 ∓ i sin(γt)|e0〉 ± cos(γt)|g1〉)

=

{
t = τ =

π

2γ

}
=

1√
2

(|g〉 ∓ i|e〉)⊗ |0〉 (3.13)

Now that the qubit is stored in the atomic mode, let’s derive how a
coherent excitation |α〉 performs the Hadamard rotation.

1√
2

(|g〉 ± i|e〉)⊗ |α〉 =
1√
2

(|g〉 ± i|e〉)⊗ e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉

=
e−
|α|2

2

√
2

∞∑
n=0

αn√
n!

(|gn〉 ± i|en〉)

→ e−
|α|2

2

√
2

∞∑
n=0

αn√
n!

[
cos(γt

√
n)|gn〉 − i sin(γt

√
n)|e, n− 1〉

±i cos(γt
√
n+ 1)|en〉 ± sin(γt

√
n+ 1)|g, n+ 1〉

]
=

e−
|α|2

2

√
2

∞∑
n=0

αn√
n!

[(
cos(γt

√
n)±

√
n

α
sin(γt

√
n)

)
|gn〉

+i

(
± cos(γt

√
n+ 1)− α√

n+ 1
sin(γt

√
n+ 1)

)
|en〉

]
=

{
t = ts =

π

4γ |α|

}

=
e−
|α|2

2

√
2

∞∑
n=0

αn√
n!

[(
cos

(
π
√
n

4 |α|

)
±
√
n

α
sin

(
π
√
n

4 |α|

))
|gn〉

+i

(
± cos

(
π
√
n+ 1

4 |α|

)
− α√

n+ 1
sin

(
π
√
n+ 1

4 |α|

))
|en〉

]
(3.14)

If we now assume that α ≈ n1/2, the cosine and sine function become ap-
proximately equal, thereby finalizing the Hadamard transformations (3.6).
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One needs however to keep track of the error arising from the approxima-
tion. For example, the probability of erroneously obtaining a final state |gn〉
instead of |en〉 will be given by any non-zero remnant in the factor of |gn〉:

Perr =
e−|α|

2

2

∞∑
n=0

|α|2n

n!

∣∣∣∣cos

(
π
√
n

4|α|

)
−
√
n

|α|
sin

(
π
√
n

4|α|

)∣∣∣∣2 . (3.15)

3.3 The Bell-state analyzer

The teleportation protocol is sketched in Fig. 3.3. It consists of an entangled
resource |ψ+〉 = 1√

2
(|01〉+ |10〉) linking Alice and Bob and an unknown

state |ξ〉 = a|0〉 + b|1〉 (where |a|2 + |b|2 = 1) to be teleported from Alice
to Bob. The overall tripartite state, with the first two modes belonging to
Alice and the last to Bob, reads

|Ψ〉 = |ξ〉 ⊗ |ψ+〉

=
1√
2

(a|001〉+ a|010〉+ b|101〉+ b|110〉)

=
1

2
|ϕ+〉 ⊗ (a|1〉+ b|0〉) +

1

2
|ϕ−〉 ⊗ (a|1〉 − b|0〉) +

1

2
|ψ+〉 ⊗ (a|0〉+ b|1〉) +

1

2
|ψ−〉 ⊗ (a|0〉 − b|1〉) .

Upon the detection of |ψ±〉 or |ϕ±〉, Alice can inform Bob via a classical
channel that he has in his possession a|0〉 ± b|1〉 or a|1〉 ± b|0〉, respectively.
Bob can then perform a local unitary operation of his qubit to recover |ξ〉
(Table 3.1).

Unknown
input

Bell analyzer

|φ
+
! |φ

-
! |ψ

+
! |ψ

-
!

|ξ!

Alice

EPR
source

Bit flip

|ξ!

Bob
Classical
channel

Figure 3.3: Teleportation protocol. (Here, the instance where Alice detects
|φ−〉 is highlighted.)

Let’s now focus on the Bell analyzer. We propose that it consist of two
steps: Alice first distinguishes |ψ±〉 from |ϕ±〉, and then she determines the
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Bell state Local operation

|ϕ+〉 a|1〉+ b|0〉 → transfer, flip→ |ξ〉
|ϕ−〉 a|1〉 − b|0〉 → shift, transfer, flip→ |ξ〉
|ψ+〉 a|0〉+ b|1〉 = |ξ〉
|ψ−〉 a|0〉 − b|1〉 → shift→ |ξ〉

Table 3.1: Table of the local operations to be performed by Bob based on
the four possible Bell states measured by Alice. In the case where Alice
measures |ψ+〉, no action need to be taken by Bob. In the other three cases,
he will have to apply a photonic π phase shift (abridged ‘shift’ below) and/or
transfer the photonic qubit to a two-level atom and then apply a coherent
π pulse (abridged ‘transfer, flip’).

signs of each superposition with separate setups. We discuss each step in
the two subsections below. A sketch of the Bell analyzer is shown in Fig.
3.4.

{
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Input |ξ!

TrBob{ }|ψ
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Figure 3.4: Conceptual sketch of the Bell analyzer. The first part consists
of a quantum non-demolition measurement which separates |ψ±〉 from |ϕ±〉
by inducing a phase shift in an auxiliary coherent field if |ψ±〉 was input.
Depending on the outcome of this first measurement, a double pole, double
throw (DPDT) switch forwards the state to either a balanced beam splitter
(for |ψ±〉), or a “dual-rail” extension of the projector discussed in Sec. 3.2
(for |ϕ±〉).

3.3.1 Discrimination between |ψ±〉 and |ϕ±〉

The main difference between |ψ±〉 and |ϕ±〉 is that the former are energy
eigenstates which are easily separable by a rotation in the energy basis (e.g.,
with a 50/50 beam splitter). The latter, however, are not energy or particle
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eigenstates and thus require a more elaborate treatment to reveal the sign of
their superposition by an energy (particle) counting detector. Our first task
is therefore to branch off |ψ±〉 and |ϕ±〉 so that each be forwarded to the
appropriate analyzer. We propose to achieve this sorting with a dual-rail
quantum non-demolition (QND) measurement, first proposed for quantum
error correction [51]. The idea behind this QND is to induce a phase shift
in an auxiliary coherent beam depending on whether the total number of
photons in the Bell state is odd (as in |ψ±〉) or even (as in |ϕ±〉). The
coherent probe remains separable all along so that no collapse is incurred
on the individual Bell states. The interaction Hamiltonian, which could be
implemented physically as a cross-Kerr effect [52], is written in the rotating
wave approximation as

Ĥint = ~κ
(
â†â+ b̂†b̂

)
ĉ†ĉ (3.16)

where κ is the strength of the interaction.

If we set the interaction time to τM = π
κ , the propagator becomes

e−iπ(â
†â+b̂†b̂)ĉ†ĉ and we are then faced with two possible scenarios. If the

Bell state is |ψ±〉, then the overall state |ψ±〉 ⊗ |α〉 transforms as follows:

|ψ±〉 ⊗ |α〉 =
e
|α|2

2

√
2

(|01〉 ± |10〉)⊗
∞∑
n=0

αn√
n!
|n〉

τM−→ e
|α|2

2

√
2

(|01〉 ± |10〉)⊗
∞∑
n=0

e−iπn
αn√
n!
|n〉

=
1√
2

(|01〉 ± |10〉)⊗ | − α〉

= |ψ±〉 ⊗ | − α〉. (3.17)

On the other hand, if we start with |ϕ±〉, a similar derivation leaves the
state unchanged:

|ϕ±〉 ⊗ |α〉
τM−→ |ϕ±〉 ⊗ |α〉. (3.18)

It can now be seen that the differentiation of |ψ±〉 and |ϕ±〉 can be
achieved be comparing the phases of the auxiliary coherent fields: Only
those coherent fields that have interacted with |ψ±〉 acquire a π phase shift,
those that interacted with |ϕ±〉 remain unchanged. The acquisition of the
π phase shift can be observed by a simple classical interference between the
probe beam and a reference coherent state on a balanced beam splitter.
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3.3.2 Discrimination between |ϕ+〉 and |ϕ−〉

Now that |ψ±〉 and |ϕ±〉 are branched off, there remain to determine the
signs at the superscript in either case. As already mentioned, the differen-
tiation between the triplet (ψ+) and singlet states (ψ−) can be done easily
by joining the two constituent modes on a balanced beam splitter. The out-
going modes become disentangled and the detection of the photon at either
output ports has a direct correspondence to the sign of the superposition.

A more complicated situation occurs when the QND announces the
states |ϕ±〉. The discrimination between the signs requires a two-mode ex-
tension to the single-mode projector described in Sec. 3.2. This is done by
placing a ground-state atom in the path of each of the incoming photonic
qubits. After an interaction time of τ = π

2γ , the evolution of the photon-
atom system will be the straightforward extension of (3.5), namely

|gg〉 ⊗ |ϕ±〉 =
1√
2
|gg〉 ⊗ (|00〉 ± |11〉)

τ−→ 1√
2

(|gg〉 ∓ |ee〉)⊗ |00〉. (3.19)

Now that the qubits have been completely transferred from the photonic
to the atomic modes, we can call upon the Hadamard transformation worked
out in (3.6). This rotation gives:

1√
2

(|gg〉 − |ee〉)⊗ |αα〉 ts−→ 1√
2

(|gg〉+ |ee〉)⊗ |αα〉
1√
2

(|gg〉+ |ee〉)⊗ |αα〉 ts−→ 1√
2

(|ge〉+ |eg〉)⊗ |αα〉
(3.20)

where once again ts = π
4γ|α| is the time it takes to apply a π

2 -coherent pulse.
The difference between the two final states lies in the parity of the energy

quanta stored in the atoms. An initial photonic state |ϕ−〉 corresponds to
a total energy of exactly one quantum: 1√

2
(|ge〉+ |eg〉). Conversely, |ϕ+〉

leads to either zero or two quanta: 1√
2

(|gg〉+ |ee〉). The efficiency of this

Hadamard rotation, as argued in Sec. 3.2, increases with the mean photon
number of the π

2 pulses and can thus be made asymptotically ideal for strong
coherent fields.

3.4 Deterministic quantum computing

We finally show that using the experimental techniques presented in this
paper, it is also possible to achieve deterministic quantum computing based
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on single photon entanglement. It has been shown by Lund and Ralph
[53] that nondeterministic quantum computing using the superposition of
vacuum and a single photon as a qubit can be obtained with linear optics
and photon counters. However, by allowing for non-linear operations, it is
possible to bring this idea into a deterministic setting.

A universal set of quantum gates could consist of the phase rotation gate,
the Hadamard gate and the control sign shift (CS) gate. The phase rotation
gate is easily implementable using a simple phase delay. A deterministic
Hadamard gate can be constructed using the JC interaction as outlined in
Sec. 3.2. The CS gate can be implemented by storing the input modes
(a|0〉 + b|1〉) ⊗ (c|0〉 + d|1〉) in a pair of atoms (via the JC interaction),
applying a π pulse and letting it decay:

(ac|00〉+ ad|01〉+ bc|10〉+ bd|11〉)⊗ |gg〉
τ−→ (ac|gg〉+ ad|ge〉+ bc|eg〉+ bd|ee〉)⊗ |00〉

2ts−→ (ac|gg〉+ ad|ge〉+ bc|eg〉 − bd|ee〉)⊗ |00〉
decay−→ (ac|00〉+ ad|01〉+ bc|10〉 − bd|11〉)⊗ |gg〉

Combining this CS gate with the above mentioned phase and Hadamard
gate, universal quantum computation based on qubits of the form (3.3) can
in principle be executed.

3.5 Conclusion

Our proposal is difficult to implement experimentally in that it requires
expertise in two separate and highly specialized areas, namely the generation
of single photons and the manipulation of light-matter interactions. We
believe however that our theoretical sketch will help bring some closure to
the debate that still surrounds the notion of single-particle nonlocality. The
root of this debate can be traced to the perception of the vacuum |0〉 as a
singular—if not pathological [24]—state whose similarity to the other Fock
states has little physical meaning beyond mathematical isomorphism. By
building on earlier discussions about mode entanglement and the nonlocality
of this state [20, 27, 47, 49], and by showing the full power of single-photon
teleportation with no additional quantum resources, we hope to have proved
the contrary.



Chapter 4

Hybrid Bell tests

4.1 Background and motivation

The emergence of quantum mechanics, with entanglement as its most no-
table manifestation, has brought about two conflicting views of physical real-
ity. The first and most intuitive is the local realistic view. It maintains that
physical observables are deterministic and therefore independent of measure-
ment. This view, endorsed by Einstein, Podolsky, and Rosen (EPR) [54] has
come to be known as the local hidden variables (LHV) model whereby pre-
determined variables, though possibly inaccessible to us, account for the
measured statistics of any correlated system. The competing view is known
as the Copenhagen interpretation. It is an orthodox reading of quantum
mechanics that considers any observable to be intrinsically uncertain un-
less resolved by measurement. One of the consequences of the Copenhagen
interpretation—quantum nonlocality—exhibits an apparent noncompliance
with relativity which led EPR to dismiss quantum mechanics as incomplete.
The debate between the LHV model and the Copenhagen interpretation was
confined to the philosophical realm until John Bell proposed an experimen-
tal framework for its resolution: By measuring entangled parties in different
bases, a linear combination of expectation values can be assembled into an
inequality which must be satisfied by any LHV theory. A violation of the
inequality is otherwise a vindication of quantum nonlocality [55, 56]. De-
spite experimental evidence in favor of quantum mechanics, the LHV model
has yet to be unequivocally ruled out. In order to do so, the measurements
on the entangled parties need to take place in non-overlapping light cones.
This ensures that the so-called communication loophole is closed so that
no classical signaling could account for the observed correlations. A second

59



60 CHAPTER 4. HYBRID BELL TESTS

challenge, the detection loophole, stems from inefficient measurements and
was identified as early as 1970 to be the prime obstacle to conclusive Bell
tests [57]. Inefficient detection weakens correlations and makes it harder
to distinguish the statistical predictions of quantum mechanics from those
of LHV theories. So far, each loophole has been closed separately: The
detection loophole has been closed in ionic systems [58] whereas the com-
munication loopole has been closed in all-optical setups [59, 60]. All-optical
schemes are most often concerned with tackling the detection loophole. In
doing so, it is usually one of two methods that is adopted. The first method
is based on direct photon detection and yields binary output depending on
whether at least one photon is detected. Despite reports of high efficien-
cies with some nontrivial setups [61], the overall efficiency, including the a
posteriori entanglement generation, is very low, thereby rendering Bell tests
inconclusive. The second method is to bypass photon counting altogether
and instead take advantage of the high efficiency of homodyne detection
[62, 63, 32, 64, 65, 66]. In this case, quadrature data are sorted into binary
outcomes depending on their amplitude. The successful implementation of
homodyning schemes has, however, been hampered by weak margins of vi-
olations and the complexity of preparing the required states.

John Bell’s discovery [55] opened up a whole subfield of research where
the name of the game is to achieve larger and more conclusive violations of
LHV-abiding inequalities. The initial formulations of Bell tests were statis-
tical in the sense that the correlations involved had to be evaluated from
ensemble measurements. A conceptual breakthrough was achieved when
Greenberger, Horne, and Zeilinger (GHZ) proved that a certain class of
states could achieve logical contradictions between measurement outcomes
modeled with a LHV theory and with quantum mechanics, respectively. This
came to be known as the “all-versus-nothing proof” of nonlocality [22, 67]
since, superficially, a single measurement suffices to obtain the contradictory
result. In reality, however, one also has to ascertain that the prepared state
also fulfills a set of deterministic correlations, thereby effectively making
the experimental tests of Bell inequalities and “all-versus-nothing proofs”
rather similar. Initially “all-versus-nothing” proofs were thought to be ex-
clusive to GHZ states, whereby N modes populated each by a single particle
are superposed to N vacuum modes (where N ≥ 3).

There exists another class of states consisting of a single particle symmet-
rically distributed over N modes, the so-called W states, which can neither
be transformed into, nor obtained from, a GHZ state via local operations
and classical communication. The most salient difference between the W
and the GHZ is that the former are far more robust to noise admixtures
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and are therefore of practical interest to quantum information protocols
[68, 69, 70]. It then came as good news that, in addition to being robust to
de-coherence, the W state also displays an effectively “all-versus-nothing”
nonlocality as the number N of delocalizations of the single particle goes up
[37] 1. Given the ease with which W states can be produced, this finding
puts them forth as promising candidates in the quest to close the detection
loophole that has plagued Bell tests, particularly in the optical regime. We
will show in this chapter, however, that the violation of locality by W states
does not scale as hoped for with larger N when one includes de-coherence or
detection inefficiencies. In other words, the “all-versus-nothing” violations
that seemed attractive at extreme delocalizations N � 2 are quickly offset
by a degradation of nonlocality under realistic conditions.

The outline of this chapter is as follows. We describe the W state in
Sec. 4.2.1 and derive its diluted form which will be needed to simulate
experimental imperfections such as losses and detection inefficiencies. We
then recapitulate the Bell inequality and its associated measurements in
Sec. 4.2.2. The measurement process is formalized in Sec. 4.3 with the
use of of optimal positive operator-valued measures (POVM). The opera-
tors we present are optimal in the sense that, notwithstanding losses and
detection inefficiencies, they perform the required projectors deterministi-
cally and accurately. Virtually no laboratory device can project optimally,
but we expressly choose this best-case scenario in our derivations to prove
that the “all-versus-nothing” behavior hoped-for in [37] is not possible with
any realistic measurement device. The results of our simulations are sum-
marized in Sec. 4.4 where we also briefly present what happens when one
uses hybrid Bell measurements involving photon counting and quadrature
binning.

1Note that the precedence of realism over locality, as suggested in [37], has been criti-
cized in [G. C. Ghirardi, e-print arXiv:1101.5252 (2011)]. This sublte yet crucial point was
emphasized by J. S. Bell himself in that locality is the sole assumption of his inequalities
[71].
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4.2 Realistic Bell test

4.2.1 The attenuated W state

The W state consists of a single particle that is symmetrically distributed
over N modes. In its pure form, it reads

|W 〉 =
1√
N

N∑
k=1

|γk〉, (4.1)

where |γk〉 ≡ |0〉⊗k−1 ⊗ |1〉 ⊗ |0〉⊗N−k represents a photon at the kth mode,
all other modes remaining empty. It is written in matrix notation as

ρ̂W =
1

N

N∑
i=1

N∑
j=1

|γi〉〈γj |. (4.2)

The above is a pure state which will inevitably suffer de-coherence under
realistic conditions. Not only will it undergo mixing and losses in prepara-
tion and transmission, but its very characterization will also incur detection
inefficiencies. All these “real-world” effects can be bundled together in a
generic de-coherence factor at each of the modes. We do this by simulating
a fictitious beam splitter of transmission η2

k at each mode k of the N -mode
system. η2

k can thus be interpreted as both the transmission efficiency of
mode k and the quantum efficiency of any measurement that is ultimately
performed on it. The initially pure W state (4.2) effectively turns into the
mixed state

ρ̂′W =
1

N

N∑
i=1

(
η2
i |γi〉〈γi|+

(
1− η2

i

)
|0〉⊗N 〈0|⊗N

)
+

1

N

N∑
i=1

ηi

N∑
j=i+1

ηj (|γi〉〈γj |+ |γj〉〈γi|) . (4.3)

In deriving the above state, we have only taken into account the attenu-
ating effect of the environment. A more thorough modeling of real-world ef-
fect would include dark counts in detection or incoherent photon admixtures
from thermal baths. Such noise sources shall be ignored without compromis-
ing the main objective of our paper, i.e., to prove that nonlocal components
of the W state are vulnerable to loss.

From an experimental point of view, it is worth highlighting the relative
ease with which W states can be prepared in comparison to, say, GHZ
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states. It indeed suffices to send a single photon into two beam splitters
with reflectivities of 1

3 and 1
2 , respectively (Fig. 4.1a). A remote preparation

can also be implemented in order to avoid transmitting the W state through
lossy channels (Fig. 4.1c) [72, 73].
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(c)
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{

Figure 4.1: Experimental setup for the tripartite example (N =
3). a, Conceptual setup for the preparation of the W state. A single
photon is fed into two consecutive beam splitters of reflectivities 1

3 and 1
2 ,

respectively. The generation of the input single photon can be achieved
by heralding one photon from the pair emitted via spontaneous parametric
down-conversion (SPDC). Any inefficiency of the heralding detector will not
affect the purity of the produced state, but will simply reduce its generation
rate. b, Measurement scheme. Each of the three modes that emerge are
randomly measured in either one of two ways: By a projection on Ẑ, or
by a projection on X̂. Fictitious beam splitters, drawn here in gray, are
merely used as mathematical models for inefficient detection. If one works
with optimal detectors, then the effectively measured state is given by (4.3).
c, Remote preparation of the W state. Three weak squeezers (labeled χ2)
produce a state p0|00〉 + p1|11〉 (with p0 � p1) where one mode from each
is sent “backwards” to the same beam splitter arrangement as in (a) for
entanglement with the other two. Upon detection of a single photon, the
remote modes collapse to a W state.

4.2.2 The Bell inequality

The Bell factor Ω pertaining to W states was initially derived in [74] and ex-
tended to the N -partite case in [37]. Any model that satisfies the inequality
Ω > 0 has a probability Ω of contradicting locality. For a permutationally-
symmetric state such as the W, a closed-form expression for the Bell factor
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is given by

Ω = N · P (z1 = −1, z2 = . . . = zN = +1)

−(N)2 · P (x1 = +1, x2 = −1, z3 = . . . = zN = +1)

−P (x1 = . . . = xN = +1)

−P (x1 = . . . = xN = −1) (4.4)

where (N)2 = N(N−1) is the number of permutations of any pair of modes
over a total of N . The function P is the probability of projecting the W state
on a set of Pauli operators X̂ or Ẑ so as to achieve the eigenvalues specified
as arguments. The subscript on the eigenvalues labels the measured mode.
In the Fock basis, the eigenvalue equations of the X̂ and Ẑ operators are{

Ẑ|0〉 = +1|0〉, Ẑ|1〉 = −1|1〉, and

X̂
[

1√
2

(|0〉 ± |1〉)
]

= ± 1√
2

(|0〉 ± |1〉) . (4.5)

We shall return to the formal representation of these operators in the next
section. For now, it can be seen that Ẑ is essentially a binary photon de-
tector which takes on eigenvalue +1 or −1 depending on whether a photon
is measured. X̂ is not an operator in the energy basis, it could however be
aligned with the Fock basis via a Hadamard rotation as proposed in [37].
That said, we shall abstract these operators from their physical implemen-
tation. Instead, we assume that optimal POVM’s exist for Ẑ and X̂ and
that one could in principle perform unambiguous projections reproducing
(4.5). Recall, however, that our use of optimal POVM’s does not dispense
us from detection inefficiencies; these have already be taken into account in
the derivation of the diluted state ρ̂′W above.

4.3 Optimal POVM

Consider a generic qubit consisting of an equal superposition of a single
photon and the vacuum

|ψθ,φ〉 = cos(θ)|0〉+ sin(θ)eiφ|1〉, (4.6)

where θ and φ are, respectively, the azimuthal and equatorial coordinates
on the Bloch sphere. From now on, we shall ignore the equatorial dimension
and only work on the circle spanned by θ. The POVM which optimally
projects on |ψθ〉 is represented in the Fock basis as

Π̂θ = |ψθ〉〈ψθ| =
[

cos2(θ) cos(θ) sin(θ)
sin(θ) cos(θ) sin2(θ)

]
. (4.7)
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The projective probability Pq,θ of any qubit ρ̂q on Π̂θ is therefore given by

Pq,θ = Tr
{

Π̂θ · ρ̂q
}
. (4.8)

Going back to the two projections of interest to us, the measurement
operators satisfying the eigenvalue equations (4.5) are

Π̂+
z = Π̂0 =

[
1 0
0 0

]
, Π̂−z = Π̂π

2
=

[
0 0
0 1

]
, and

Π̂+
x = Π̂π

4
=

[
1
2

1
2

1
2

1
2

]
, Π̂−x = Π̂ 7π

4
=

[
1
2 -1

2
-1

2
1
2

]
, (4.9)

where the superscript on Π̂ indicates the sign of the eigenvalue.

4.4 Results and discussion

4.4.1 Best-case scenario

With the POVM’s for Ẑ and X̂ projections at our disposal, the computa-
tion of Bell’s factor (4.4) is given by its constituent probabilities, which are
themselves N -mode extensions of (4.8):

P (z1 = −1, z2 = · · · = zN = +1) = Tr

{[
Π̂−z ⊗

(
Π̂+
z

)⊗N−1
]
· ρ̂′W

}
, (4.10)

P (x1 = +1, x2 = −1, z3 = · · · = zN = +1) = Tr

{[
Π̂+
x ⊗ Π̂−x ⊗

(
Π̂+
z

)⊗N−2
]
· ρ̂′W

}
,(4.11)

P (x1 = · · · = xN = ±1) = Tr

{[
Π̂±x

]⊗N
· ρ̂′W

}
. (4.12)
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Figure 4.2: Scaling of the Bell factor with the number N of delocalized
modes. Four scenarios are considered regarding the detection inefficiencies:
ideal detection (squares), 10% detection inefficiency in Ẑ (circles), 10% de-
tection inefficiency in X̂ (upward triangles), 10% detection inefficiency in
both Ẑ and X̂ (downward triangles). It is worth noting that inefficiencies
in Ẑ are more detrimental to the Bell factor than inefficiencies in X̂.

Evaluating the above probabilities yields the analytical expression

Ω(ηz, ηx) =
η2
z

2

(
3 +

N2

2
− 3

2
N

)
− 21−N − N2

4
+
N

4

+η2
x

(
N

2
+ 21−N − 21−NN − 1

2

)
, (4.13)

where η2
z and η2

x are the efficiencies of the Ẑ and X̂ measurements, respec-
tively.

In the ideal case, the Bell factor reduces to

Ω(ηz = ηx = 1) = 1− N

2N−1
. (4.14)

It is this expression (4.14) which prompted the optimism of Heaney et al.
[37] towards the W state and its potential to exhibit robust violations of
locality. However, as soon as one brings in non-unity detection efficiencies,
the scaling of the Bell factor with larger N eventually curves downwards to
ultimately dip beneath the locality bound. Four sample trends of the Bell
factor as a function of the number of modes N are shown in Fig. 4.2.

A further insight into the scaling of the Bell factor with the number
of modes N is obtained by looking at the minimum quantum efficiencies
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required if any violation of locality is to be witnessed. Fig. 4.3 shows the
trend in min(η2

z) and min(η2
x) for η2

x = 1 and η2
z = 1, respectively. The key

result is that any quantum efficiency of less than either 80% for Ẑ detection
(assuming perfect X̂) or 50% for X̂ detection (assuming perfect Ẑ) will
prohibit any display of nonlocality.

If, as suggested by Heaney et al. [37], the X̂ projection is achieved by
an ideal Hadamard rotation followed by a Ẑ detection, then the effect of η2

z

is felt on all N measurement sites. This is drawn as the upper curve on Fig.
4.3. The minimum quantum efficiency thus required by the scheme of [37] is
η2
z = 86.2% for N = 4. Any scaling to larger N will not help in decreasing

the minimum quantum efficiency.

2 4 6 8 10 12 14 16

0.6

0.8

1.0

M
in

im
um

 q
ua

nt
um

 e
ffi

ci
en

cy

Number of modes N

 min( z
2) for x

2 = 1

 min( x
2) for z

2 = 1

 min( z
2) via Hadamard

Figure 4.3: Minimum quantum efficiency for either Ẑ or X̂ as a function
of the number of modes. These plots are obtained by solving Ω = 0 in
(4.13) for η2

z (squares) and η2
x (circles) while maintaining η2

x = 1 and η2
z = 1,

respectively. The top curve traces the minimum quantum efficiency required
of photon detectors if one is to use a Hadamard rotation to perform X̂
measurements from Ẑ basis (triangles).

4.4.2 Realistic scenario: Hybrid measurements

It may be worthwhile at this point to use measurement projectors for which
there actually exists laboratory devices. One obvious choice for Ẑ is the
avalanche photodiode (APD) which, ignoring dark counts and inefficiencies,
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clicks when at least one photon is detected. For the X̂ operation, whose
Hamiltonian is not diagonal in the energy eigenbasis, one can resort to bin-
ning continuous variables acquired by a homodyne measurement. This hy-
brid method of detection has been propounded recently in [75] in the context
of N00N states but could conceivably be reused for other systems thanks to
the high efficiency offered by homodyning.

Figure 4.4: Quadrature probability distribution of the qubit cos(θ)|0〉 +
sin(θ)|1〉 for θ = π

4 and θ = 7π
4 .

Let’s look at how quadrature-binning can be used to implement an X̂-
measurement. The binning is motivated by the symmetry of the quadrature
probability distribution of |ψπ

4
〉 (i.e., x = +1) and |ψ 7π

4
〉 (i.e., x = −1)

about the zero in-phase quadrature (Fig. 4.4). We shall therefore bin our
quadrature measurements by assigning q < 0 to x = −1 and q > 0 to
x = +1. (Note that an ambiguity in this measurement process will arise from
the overlap of the quadrature distributions.) In the Fock representation, X̂
projections based on homodyne binning are given by

Π̂HD
θ =


χ0,0 χ0,1 · · · χ0,M

χ1,0 χ1,1 · · ·
...

...
...

. . .
...

χM,0 χM,1 · · · χM,M

 , (4.15)

where χn,m =
∫

∆(θ)φm(q)φn(q) dq and φk(q) = 〈q|k〉 is the quadrature prob-

ability distribution of a Fock state |n〉. M is the maximum number of
photons inhabiting the measured mode and is set to M = 1 in the particu-
lar case of single-photon qubits we are dealing with. Note the dependence
of the post-selection range ∆(θ) on the witness qubit angle θ. In analogy
to (4.8), the projective probabilities for a matrix element |n〉〈m| on the two
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possible eigenvectors of X̂ are

P|n〉〈m|, 7π
4

=

∫ 0

−∞
φm(q)φn(q) dq, (4.16)

P|n〉〈m|, π
4

=

∫ ∞
0

φm(q)φn(q) dq. (4.17)

With these projective probabilities in hand, an evaluation of the Bell
factor via Eqs. (4.10)-(4.12) yields

Ωhybrid(ηAPD, ηHD) =
η2

APD

4

(
N2 − 3N + 6

)
+
η2

HD

π

(
22−N +N − 22−NN − 1

)
+

1

4

(
N −N2 − 23−N) , (4.18)

where η2
z = η2

APD and η2
x = η2

HD are the quantum efficiencies of the APD and
homodyne detectors (HD), respectively.

Fig. 4.5 shows the scaling of the Bell factor with N. One predictable
observation is that the experimental evaluation of the Bell factor with this
hybrid scheme leads to much smaller violation margins than those obtained
by optimal POVM’s. Of particular relevance to the present chapter is the
fact that scaling to larger N is not monotonic: Even with unit efficiencies,
the Bell factor barely skims the nonlocality bound, peaks at max(Ωhybrid) ≈
0.09 for N = 4 then plunges back in the locality range for N ≥ 6. Physically,
this weak violation margin is explained by the fact that (4.15) is really an
approximate projector: The two orthogonal qubits |ψπ

4
〉 and |ψ 7π

4
〉 cannot be

perfectly resolved by homodyne measurements because of their overlapping
quadrature wave functions (cf. Fig. 4.4).
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Figure 4.5: Scaling of the Bell factor with the number N of delocalized
modes in the case of hybrid detection involving an APD for Ẑ and homo-
dyne thresholding for X̂. Four scenarios are considered regarding the de-
tection inefficiencies: ideal detection (squares), 90% quantum efficiency for
the APD (circles), 90% detection efficiency for the homodyne detector (up-
ward triangles), and 90% detection efficiency for both detectors (downward
triangles).

The scaling of the minimum quantum efficiencies required to violate
Bell’s inequality are shown in Fig. 4.6. The most salient result is that
nonlocality cannot be shown by the hybrid measurement scheme described
above for any system with N ≥ 6. Indeed, the “minimum quantum efficien-
cies” beyond N = 5 take on unphysical values above unity. The increase
of the violation margin with larger N has therefore been overwhelmingly
offset by a decrease in purity. The best result that can be achieved is for
N = 3 where the minimum quantum efficiencies required are 95% for the
APD (assuming ideal homodyning) or 79% for the the homodyne detector
(assuming ideal photon detection).
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Figure 4.6: Minimum quantum efficiency for either the APD or the homo-
dyne detector (HD) as a function of the number of modes. These plots are
obtained by solving Ωhybrid = 0 in (4.18) for η2

APD (squares) and η2
HD (circles)

while maintaining η2
HD = 1 and η2

APD = 1, respectively.

4.5 Conclusion

We have shown that in the context of demonstrating nonlocality with W
states, the transition from theory to experiment is not only quantitative,
but also qualitative. Both the Bell inequality and the “all-versus-nothing”
violation of locality which could effectively have been achieved by W states
for large N turns out to be invalidated by a minute amount of de-coherence,
even if the projective measurements were optimal. In practice, one would
have to make the unrealistic assumption that perfect Hadamard rotations
can be used on Fock state superpositions. Even then, the minimum quantum
efficiency for photon detection would have to be 86.2%. Such severe require-
ments can only be met by demanding detection setups (e.g., transition-edge
sensors [76]). The burden on quantum efficiency has therefore been shown
not to benefit in any appreciable way from large delocalizations of a single
quantum. The situation is predictably worse when one uses approximate
projectors to perform the Pauli projector X̂: A minimum quantum effi-
ciency of 95% is required of the photon counters if the Bell measurements
are performed with a hybrid scheme involving quadrature binning.

Note: It has come to our attention that similar work has very recently
been published by Chaves and Bohr Brask in [77]. The main difference with
our treatment lies in a slight variation of the inequality under considera-



72 CHAPTER 4. HYBRID BELL TESTS

tion: They include a positive term in their inequality which leads to higher
violations and therefore lowers the requirement on quantum efficiency.



Chapter 5

Amplification of cat states by
homodyne heralding

We present a scheme for the amplification of Schrödinger cats that collapses
two smaller states onto their constructive interference via a homodyne pro-
jection. We analyze the performance of the amplification in terms of fidelity
and success rate when the input consists of either exact coherent state super-
positions or of photon-subtracted squeezed vacua. The impact of imprecise
homodyne detection and of impure squeezing is quantified. We also assess
the scalability of iterated amplifications.

Coherent state superpositions, or optical Schrödinger cat states, are
widely recognized as promising resources in quantum information [78, 7,
79, 80, 13], quantum metrology [81, 82, 83], and fundamental tests [84, 85,
86, 87]. In the near-orthogonal basis of coherent states 〈γ|−γ〉 = e−2γ2

, two
particular instances for these states are

|κ±(γ)〉 =
1√

2± 2e−2|γ|2
(|γ〉 ± |−γ〉) , (5.1)

where the sign (±) of the superposition refers to the even and odd cat
state, respectively. These states exhibit quasi-probability distributions in
phase space which are distinctly non-classical. This makes them all the
more challenging to generate deterministically as that would require strong
Kerr-type non-linearities [88, 89, 90]. One has then to resort to heralding
techniques which, though probabilistic, need only linear optics and projec-
tive measurements [91]. These state-engineering schemes are nonetheless
approximative and present a limitation in the fidelity they produce with
ideal cat states. Photon-subtraction of squeezed vacuum, for example, is a

73
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well-established method to generate approximations of small amplitude cat
states, colloquially referred to as Schrödinger kittens [92, 93, 94, 14, 95].
Even in the best experimental conditions, the fidelity between the photon-
subtracted squeezed vacuum (PSSV) and an actual odd cat state |κ−(γ)〉
degrades markedly for γ ≥ 1.2 [96]. Yet, for these states to be reliable re-
sources in quantum computation, their fidelity with cat states at least as
large as γ = 1.2 need to be maintained at near-unit fidelity [79, 97].

Single-photon subtraction is only one example of several measurement-
induced schemes which have been proposed to generate kitten states [98,
99, 14, 100, 101, 102, 103]. However, none of these schemes can produce
arbitrarily large cats in a single run. Ways to get around this issue have
been devised using the recursive amplification of small, approximate cats
[104, 105]. For example, it was suggested in [106] to interfere a supply
of delocalized single photons followed by homodyne heralding to generate
large entangled cat states. These proposals have in common that they rely
on the coherent mixing of two small cats, whereupon a projective measure-
ment collapses one of the two outputs onto a constructive interference of
the inputs—hence the amplification. Here, we shall pursue the same idea
but make use solely of homodyne heralding for its relative simplicity and
high quantum efficiency. We also demonstrate that the acceptance window
of homodyne heralding can be widened to increase the success rate of the
amplification while at the same time maintaining a satisfactory fidelity at
the output.

The outline of this chapter is as follows. In Sec. 5.1 we review the gen-
eration of odd kitten states from squeezed vacuum. The output is compared
to the ideal odd cat state and the effects of impure squeezing are illustrated.
In Sec. 5 we present the amplification scheme in the case of ideal input cats
and model the effect of a wide homodyning window. Sec. 5.3 then considers
the amplification of the more realistic PSSV. The impact of both impure
squeezing and wide post-selection is illustrated. In 5.4, we return to the
idealized case of ideal homodyning and pure squeezing to consider how our
scheme scales with iterated amplifications.

5.1 Approximation of small odd cats

In this section, we shall briefly review the generation of odd kitten states
from the photon-subtraction of squeezed vacuum and analyze its perfor-
mance in the face of impure squeezing. The basic setup is depicted in Fig.
5.1. The original proposal of Dakna et al. [92] required that the photon
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subtraction be performed by photon-number resolving detectors. However,
as is done in most practical schemes [93, 95, 94], we shall assume that the
post-selection is a binary detection of either zero photons or at least one
photon, as would be allowed for by an avalanche photodiode (APD). The
modeling of such an “on-off” post-selection operation is presented in Sec.
2.5.

Quantum inefficiencies and dark counts are two nuisances inherent to
photodetection which should be reckoned with. Whereas the former merely
affects the success probability of the scheme, the latter contaminates the out-
put with a squeezed vacuum component which weakens the nonclassicality
of the output. An equally detrimental effect is the impurity of the squeezed
vacuum. We shall not treat quantum inefficiencies and dark counts here as
they have already been covered in [91] in the context of cat amplification.
We will however look at the fidelity response to the amplitude and impurity
of squeezing.

T

|0!

post-selection

χ
2

APD

Figure 5.1: Setup for the generation of approximate small odd cat states.
A squeezed vacuum, represented here by the pumping of a χ2 nonlinear
medium, is partially reflected onto an “on-off” photon detector such as an
avalanche photodiode (APD). Upon the reflection of at least one photon
from the squeezed vacuum, a state that likens the squeezed single photon is
prepared in the limit of unit transmission T → 1.

5.1.1 Fidelity of the output for pure squeezing

Let’s assume from now on that the squeezed vacuum is pure and anti-
squeezed in the x -quadrature. I.e., if we denote the squeezing relative to
the shot noise variance by ξ (in dB), then ξx = −ξp > 0, where the sub-
script labels the measured quadrature 1. The fidelity of the PSSV state with
an ideal cat state |κ−(α)〉 then depends on the squeezing ξ and the transmis-
sion T of the subtraction beam splitter 2. The effect of these parameters is

1For simplicity, we shall refer to both squeezing and anti-squeezing as squeezing ξ. The
difference between the two is only made by the sign of ξ

2The transmission of the subtraction beam splitter does not just affect the success
probability of the scheme, but also the fidelity of the output state. This is because we are
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illustrated in Fig. 5.2 where we can see that the fidelity is optimized for low
squeezing and near-unit beam splitter transmission T → 1. For any given
input squeezing, there corresponds a finite amplitude α of the target cat
with which the output has an maximized fidelity. For example, a squeezing
of, say, 3 dB is optimal for producing an approximation to a cat state of
size α = 1.0. A complementary investigation of PSSV states that looked at
nonclassicality as the main figure of merit (as opposed to fidelity) is given
by Kim et al. in [107].

Figure 5.2: Top: Contour plot of the fidelity of the PSSV state with |κ−(α)〉
given an input squeezing ξx between 0 and 15 dB. Bottom: Maximum achiev-
able fidelity of the PSSV with |κ−(α)〉 (black) and corresponding success
probability as a function of α (gray). In both cases, the transmission of the
subtraction beam splitter is 99%.

using an “on-off” post-selection where we assume that by setting T → 1, only one photon
will makes its way to the APD. A lower transmission would furthermore inflict higher loss
of the initial squeezed state.
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In order to assess the performance of the PSSV generation, it is most
instructive to restrict ourselves to the maximal fidelity achievable with any
target cat of size α. This fidelity optimum is traced by the ridge of Fig. 5.2
(top) and its α dependence is reproduced in Fig. 5.2 (bottom) along with
the corresponding success rate. For example, if one wants to produce an
approximate odd cat state of size α = 1.5, the required squeezing should be
ξ ≈ 5.2 dB for a fidelity of at most 95.4% and a success probability of 0.4%.

As far as the success probability is concerned, it can be increased at the
expense of fidelity by increasing the incidence of photons on the APD via
stronger squeezing or weaker beam splitter transmission.

5.1.2 Impact of impure squeezing

In any real world experiment, noise will inevitably inflate the variance of the
squeezed vacuum in either quadrature. This impurity has been explained
as stemming from losses or from multimode parametric down-conversion
[108] whereby the photons triggering the post-selection belong to a different
spatial or frequency mode than the heralded state. Impure squeezing may
originate in the down-converter itself or, more generally, at any point in the
setup where vacuum contamination or modal mismatch could take place,
including at the detectors (e.g., via quantum inefficiencies). Regardless of
its root causes, we shall wrap these impurities into a single parameter ε
relating the squeezing ξ in dB of the x - and p-quadratures,

ξx = −εξp, (5.2)

whereby pure squeezing corresponds to ε = 1. As derived below, the purity
of the squeezed vacuum is given by

P = 10−
1
20

(1−ε)ξp . (5.3)

Note that the Heisenberg uncertainty relation imposes that ε ≥ 1.

The impact of impurity on fidelity is plotted in Fig. 5.3 where we set
the squeezing at −3.0 dB and adjust the anti-squeezing according to four
different settings of purity. The immediate observation is that a decrease
of 10% in purity, from 100% to 90%—corresponding to an increase of anti-
squeezing to +3.9 dB from +3.0 dB, leads to a drop of the maximum fidelity
of nearly 32%.
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Figure 5.3: Fidelity between an ideal cat state |κ−(α)〉 and the kitten states
obtained from squeezed vacuum ξp = −3 dB at four squeezing purities P
(marked in decreasing darkness of gray): 100%, 90%, 80% , and 70%. The
Wigner functions of the PSSVs corresponding to these four purities are
shown at the top. As a reference of what the “ideal” output ought to
look like, the Wigner function of the state |κ−(1.06)〉, which has the highest
fidelity with the PSSV obtained from pure squeezing, is shown at the bottom.
The transmission of the subtraction beams splitter is set at 99%.

Purity of the squeezed vacuum. Let the variance of the vacuum
phase space distribution be labeled by V0. As is treated more formally in
§2.5, the squeezing operation along a quadrature q consists of a re-scaling of
phase space q → sqq where sq =

√
Vq/V0 such that the new variance along

q is Vq. The relationship between the dimensionless re-scaling factor sq and
the squeezing ξq (in decibels) is given by

ξq = 10 log10

Vq
V0

= 20 log10 sq ⇔ sq = 10ξq/20. (5.4)
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The purity of a state of Wigner function W is given by

P = 2π

∫∫
W 2 dxdp, (5.5)

and the Wigner function of a squeezed vacuum state Ŝ|0〉 is

WŜ|0〉(x, p) =
1

πsxsp
e−(x/sx)2−(p/sp)2

. (5.6)

The purity of squeezed vacuum can therefore be shown to be

P =
1

sxsp
= 10−

1
20

(ξx+ξp), (5.7)

hence equation (5.3).

5.2 Amplification of ideal odd cats

In Fig. 5.4 we present our amplification setup: Two identical cats are mixed
on a balanced beam splitter whereupon one of the ensuing modes heralds
the amplified output based on the measurement of x -quadratures around x
= 0. The scenario where the inputs are idealized cats of opposite parity has
been outlined by Takeoka and Sasaki in [105]. We will however look at the
more practical case where the input have identical parity.

Let’s briefly run through the evolution of the state in setup. We can
readily see that the state emerging from the first balanced beam splitter
contains an even cat of amplitude

√
2 times larger:

|κ±(α)〉 ⊗ |κ±(α)〉
→ |κ+(

√
2α)〉 ⊗ |0〉 ± |0〉 ⊗ |κ+(

√
2α)〉. (5.8)

If, by measuring one of the modes, we can post-select |0〉 from |κ+(
√

2α)〉,
then the other mode will collapse onto the desired amplified state |κ+(

√
2α)〉.

The accuracy of this discrimination is of course limited by the overlap of
vacuum with the cat 〈0|κ+(

√
2α)〉, which is however negligible for α � 0.

Based on the wave function profiles of the vacuum and the cat, we can see
that homodyne measurement of the x = 0 quadrature is indeed a good way
to discriminate the two states as it is where their overlap is minimized (cf.
inset of Fig. 5.4).
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Figure 5.4: Setup for the amplification of two ideal Schrödinger cats into a
larger even cat. The two inputs are mixed on a symmetric beam splitter
and one of the outputs is projected onto an x -quadrature window of width
∆Q around x0 = 0 by an otherwise ideal homodyne detector. Inset : Wave
functions 〈x|0〉 (solid curve) and 〈x|κ+(2)〉 (dashed curve) of the vacuum
and of an even cat state of size α = 2, respectively. The two functions are
best distinguished at x = 0 where their overlap is minimized.

Applying the homodyne projection |x2 = 0〉〈x2 = 0| on the second mode
of (5.8), we are left with

|ψout〉 =
eα

2

2
· |
√

2α〉+ |−
√

2α〉 ± 2e−2α2 |0〉√
cosh(2α2) + e−2α2 ± 2e−α2

. (5.9)

The fidelity of this state with an ideal even cat state of size β is

F = sech(β2) ·

∣∣∣cosh(
√

2αβ)± e−α2
∣∣∣2

cosh(2α2) + e−2α2 ± 2e−α2 . (5.10)

In practice, a valid output is heralded whenever the homodyne detector
records a state whose x -quadrature lies within a window ∆Q around x = 0
where ∆Q shall be expressed in shot noise units (SNUs) 3. We keep track
of such a post-selection window because no practical homodyning device
has enough resolution to truly project onto an exact quadrature |q0〉〈q0|.
Experimentally, such a precise projection would not be desirable either for
it would lead to very small success probabilities. A compromise is therefore
to allow a finite post-selection range. A full model of this realistic “wide”
homodyning is presented in Sec. 2.3.3.

A digression is in order at this point regarding the ambiguity of the
homodyne heralding. In other words, on needs to quantify the error in

3By shot noise unit, we mean the standard deviation of shot noise in phase space. By
setting ~ = 1, this implies SNU = 1√

2
(in absolute units of phase space quadrature).
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the discrimination between the vacuum and a cat state with a homodyne
projector. As mentioned above, the purpose of the homodyne measurement
is to collapse the output state onto an even cat upon the detection of vacuum;
cf. Eq. (5.8) and the inset of Fig. 5.4. The projector for this measurement
is

Π̂hd
|0〉 =

1
2

∆Q∫
− 1

2
∆Q

|x〉〈x| dx. (5.11)

Due to the intrinsic overlap of the wave functions of |0〉 and |κ+(α)〉, Π̂hd
|0〉

can only act as an approximate discriminator between them. In addition,
the finite width of the quadrature-selection window introduces an approxi-
mation of its own. The error in the discrimination, namely the probability
of mistaking an even cat for the vacuum is given by

Perr =
P (|κ+(β)〉)

P (|κ+(β)〉) + P (|0〉)
, (5.12)

where, P (|γ〉) = Tr
{

Π̂hd
|0〉|γ〉〈γ|

}
and |γ〉 ∈ {|0〉, |κ+(β)〉}. Fig. 5.5 shows

that the discrimination is best achieved for small ∆Q and large β. The
asymptotic convergence to Perr = 0.5 at large ∆Q or small β indicates a
complete lack of discrimination between the states: They become equally
likely to be inferred by the homodyne projector.

Let’s return the the amplification scheme. From now on, we shall only
consider odd cat inputs to the amplification setup. (The next section deals
with approximations to odd cat inputs, namely PSSVs.) A contour plot
of the fidelity between an even cat of size β and the amplified state from
two odd cats of size α is shown in Fig. 5.6 for a homodyning window
of 1 SNU. The

√
2 amplification factor that was also witnessed in earlier

schemes [104, 109, 105] is recognizable as the slope β
α where the fidelity

is optimized. The bend of this optimum crest for α ≤ 1 arises from the
vacuum component which “survives” the post-selection but vanishes from
the output state |ψout〉 for larger α. This feature is in a sense a manifestation
of the discreteness of photon numbers for weak coherent states. As can be
seen from (5.9), the output consists of an even cat minus a vacuum. For
α→ 0, this “subtraction” of the vacuum component yields a state whose 2-
photon component has a relatively higher weight than in any even cat of size
β � 1. The proportionality in amplitude between input and amplified cats
thus breaks down, and it is instead |β ≈ 1〉—of all even cats—that exhibits
the best fidelity with the output.
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Figure 5.5: Probability Perr of mistaking an even cat state of size β for a
vacuum state as a function of the quadrature acceptance window ∆Q.

Figure 5.6: Contour plot of the fidelity between an even cat of size β and
the amplification obtained from two odd cats of size α. The post-selection
window is set to 1 SNU.
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Just as in Fig. 5.2 for the PSSV state, it is informative to look at
the mapping between input and output parameters which optimizes fidelity.
This is shown in Fig. 5.7 where the optimal input state amplitude is plotted
as a function of the amplitude β of the target state |κ+(β)〉. For example,
if one wants to produce an even cat state of size β = 2, then an input
odd cat state of size α = 1.4 is required. The fidelity of the output with
|κ+(β = 2)〉 will be nearly 100% and the success probability of the operation
about 20%. As discussed above, the flat plateau for β ≤ 1 corresponds
to the range where the vacuum component that filtered through the post-
selection becomes predominant. The consequence is that the single-photon
“cat state”, |κ−(α→ 0)〉 ≈ |1〉, becomes the only input to optimize outputs
of target size β ∈ [0, 1].

Figure 5.7: Top: Maximum fidelity (black) and corresponding success prob-
ability (gray) of the amplified output with respect to an even cat state of
size β. Bottom: Amplitude α of the input required to obtain the maximum
fidelity of the output with an even cat state of size β. The dotted line marks
the
√

2 amplification factor. The homodyne post-selection window is 1 SNU
wide.

To assess the robustness of the amplification scheme to the homodyning
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width ∆Q, Fig. 5.8 plots the fidelity between the output produced from two
odd cats |κ−(α)〉 and an even cat |κ+(β =

√
2α)〉 given different homodyning

windows. The fidelity curve for exact homodyning ∆Q → 0 is also plotted
as a reference. It can be seen that the amplification is only vulnerable to
∆Q for small inputs. Beyond a target size of β ≈ 3.5, homodyning widths of
up to 8 SNUs hardly have any effect on the fidelity. From an experimental
point of view, this robustness of the homodyning post-selection allows one
to reach higher success probabilities without compromising fidelity. For
example, by sending in two odd cats of size α = 2.5, one every two homodyne
measurements will successfully herald an even cat of size β =

√
2×2.5 ≈ 3.5

with a fidelity of nearly 100%.

Figure 5.8: Solid curves: Fidelity between an even cat of size β =
√

2α and
the output of mixing two odd cats of size α for five homodyning widths ∆Q
(in SNUs). Dashed curves: Corresponding success probabilities. (The curve
for ∆Q→ 0 is zero throughout since the probability of picking out the exact
x = 0 quadrature is vanishingly small.) The shading of the curves is lightens
with larger homodyning windows.

For another perspective on the dependence of fidelity on homodyning
width, let’s consider the amplification of two odd cat states of a fixed size
α = 1. The decrease in fidelity of the output with an even cat of size β =

√
2

is traced in Fig. 5.9. Also shown are three sample Wigner profiles of the
output which display a clear degradation of the negativity as ∆Q increases.

The simulations presented above, as well as all other numerical results
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Figure 5.9: Fidelity of the state amplified from two cats of size α = 1 with
an even cat of size β =

√
2 for a homodyning window ∆Q ∈ ]0, 15] SNU. The

decrease in fidelity for wider homodyning windows is understandable from
the increased overlap between the vacuum and the cat state, as illustrated
in the inset of Fig. 5.4. The Wigner profile of the output is shown for three
sample values of ∆Q at 1, 5, and 10 SNUs, respectively.

in this chapter are arrived at by a generic method of simulating linear trans-
formation and projective measurements of states consisting of Gaussian su-
perpositions (see Sec. 2.5).

5.3 Amplification of approximate small cats

In this section, we consider the more realistic case where PSSVs are ampli-
fied, i.e., the inputs to Fig. 5.4 are the outputs of Fig. 5.1. In Fig. 5.10,
the fidelity profile with an even cat of size β is plotted with respect to the
input (pure) squeezing for ∆Q = 1 SNU and T = 95%. The contour lines
of PSSV generation are overlaid to visualize the amplification, i.e., the shift
of the high-fidelity area upwards to larger values of β—cf. Fig. 5.2.
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Figure 5.10: Contour plot of the fidelity between an even cat |κ−(β)〉 and
the amplified PSSV obtained from an anti-squeezing ξx between 0 and 15
dB. The transmission of the subtraction beam splitter is 95%. The contour
lines of PSSV generation fidelity are overlaid to better visualize the shift
in target amplitude β resulting from the amplification. The blank vertical
stripe for ξx ≤ 0.8 dB is a region where numeric underflow is too frequent
to produce reliable data. (This is because the normalization factor which
enters in the fidelity is itself inversly proportional to the success probability.
The latter tends to negligible values for small squeezing.)

In order to assess the performance of the amplification scheme, we shall
set a target even cat state of amplitude β and retrace the quantum circuit
to see what input squeezing is necessary to achieve the highest fidelity with
|κ+(β)〉 at the output. This is shown in Fig. 5.11, along with the dependence
of the success probability and fidelity on β, as well as the size α of the odd
cat that best matches the input PSSV. Let’s assume, for instance, that we
want to produce an even cat of size β = 1.5. The required squeezing for the
PSSV will then be around 2.9 dB, corresponding to a fidelity of 96.4% with
an odd cat state of size α ≈ 1.0. The output, however, will have a fidelity
of 92.6% with |κ+(β = 1.5)〉 and the success probability of the amplification
will be 20% (notwithstanding the success probability of 0.6% required to
produce the “offline” PSSV).
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Figure 5.11: Top: Dependence of the effective size α of the PSSV state
input on the target size β of the output such that the fidelity of the output
with |κ+(β)〉 is maximized. The dotted line marks the α

β = 1√
2

amplification

ratio. The subtraction beam splitter for the PSSV generation is set to 95%
and the homodyning window to 1 SNU. Middle: Pure squeezing required of
the input in order to achieve the maximal fidelity with an even cat of size
β. Bottom: Maximum fidelity obtainable at the output with an even cat of
size β (dashed black), along with the corresponding success probability of
the amplification (dashed gray). Also shown is the maximum fidelity of the
required input PSSV with an odd cat of size α (solid black), and the success
probability of the PSSV generation (gray black). (In all three graphs, the
finer dash-dotted lines refer to the results of Lund et al. in [104], with, in the
bottom graph, the black and gray shadings representing fidelity and success
probability, respectively.)
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Note that the solid curves in the first two plots of Fig. 5.11 only start
at β ≈ 1.2. This is because below that threshold, the optimal squeezing lies
in a numerically unstable region marked the blank band in Fig. 5.10.

A first-hand observation to be drawn from Fig. 5.11 is the similarity it
shows with Fig. 5.7 for small target cat sizes. Both scenarios with ideal
cats and PSSV inputs start out with a fidelity around 30-35% which then
increases to over 90% for targets cats of size β ≈ 1.5. Beyond this point,
however, the performance of PSSV amplification starts to degrade, whereas
that of ideal cats can be pursued to indefinitely large target sizes while
retaining unit fidelity. One conclusion is therefore that the approximation
of cat states from PSSVs can be used to generate amplified states of sizes
up to β = 1.5 with practically the same fidelity as if one used ideal odd
cat states as inputs. On the other hand, both Figs. 5.7 and 5.11 exhibit
the plateau in optimal input cat size—or in the case of PSSVs, effective cat
size—which we discussed in the previous section. In that region, β ∈ [0, 1],
the ideal input cat states or PSSVs cease to have any dependence on the
target size β and discrete states, namely single photons, become the optimal
input state.

In addition to simulating our own amplification scheme, we have over-
laid as finer dash-dotted curves the results of Lund et al., which we shall
refer to as the LJRK scheme [104]. Instead of using homodyning, they mix
the heralding arm with a coherent state on a balanced beam splitter such
that both emerging modes contain at least one photon if the heralded mode
is amplified. Contrary to the homodyne method, the LJRK projection is
unambiguous as it does not yield any residual vacuum component, unlike
in (5.9). This explains why the fidelity in the LJRK scheme remains quasi-
ideal for low target sizes β. Beyond β ≈ 1.5, however, both methods are
comparable in terms of fidelity and amplification factor. The homodyne
method offers nonetheless experimental advantages over the photon detec-
tion of LJRK in that it does not suffer as much of quantum inefficiency or
electronic noise. In particular, the need for coincident detection of photons
in LJRK suppresses the success probability by the square of the quantum
inefficiency. (The dash-dotted curve in Fig. 5.11 assumes ideal quantum
efficiency.)

If one assumes ideal quantum efficiencies at the detectors, the two main
nuisances to the performance of the amplification scheme are (i) the impurity
P of squeezing, and (ii) the width ∆Q of the homodyning detection. To
visualize the robustness of the scheme to these two factors, let’s choose an
optimal input squeezing with a target even cat of size, say, β = 1.5. From
Fig. 5.11, this corresponds to ξp = −2.9 dB for a fidelity of 92.6% and a
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success probability (assuming offline PSSVs) of 20%. From this reference
point, the trend of fidelity and success probability varying either P or ∆Q
is plotted in Fig. 5.12. Recall that, by convention, we model a decrease
of purity by an increase in anti-squeezing (ξx) while maintaining squeezing
proper (ξp) fixed.

Figure 5.12: Robustness of the PSSV amplification to squeezing impurity
(top) and homodyning width (bottom). The fidelity with an even cat of size
β = 1.5 and the success probability of the amplification (assuming offline
PSSVs) are plotted in black and gray, respectively. The transmission of
the subtraction beam splitter from which the kittens are generated is 95%
and the anti-squeezing in p is fixed ξp = −2.9. (This squeezing is chosen
such that the fidelity with |κ+(β = 1.5)〉 is maximized in the case of pure
squeezing and ∆Q = 1 SNU—cf. the middle plot of Fig. 5.11.)

5.4 Scalability

As was shown in the previous section, we are bound by a trade-off between
amplification and fidelity. I.e., if the output fidelity is to be kept high, one
has to work with smaller kittens to begin with, and thus cannot reach higher
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amplitudes (cf. Fig. 5.11). A high fidelity can however be achieved with
larger states if we cascade the setups into a complete binary tree. We shall
discuss the scalability of such a recursive amplification in the case of perfect
homodyning (∆Q → 0) and pure squeezing (ε = 1), both for ideal input
cats and for PSSVs inputs.

Let’s describe each iteration stage k as the amplification of two identical
wave functions ϕk(x1) and ϕk(x2) into a larger state ϕk+1(x1) where mode
2 has been post-selected by homodyning. This iteration step is given by

ϕk(x1) · ϕk(x2)

→ {50:50 beam splitting}

= ϕk

(
x1 − x2√

2

)
· ϕk

(
x1 + x2√

2

)
→ {projection on |x2 = 0〉〈x2 = 0|}

= ϕk

(
x1√

2

)
· ϕk

(
x1√

2

)
ϕk+1(x1) ∝ ϕ2

k

(
x1√

2

)
, (5.13)

where the initial wave function ϕ0 is that of the inputs. It can be obtained
from the 1-variable analog of (2.96). In the case of input PSSVs, this involves
the highly unbalanced mixing two vacua, one of which is squeezed, and—
ideally—a one-photon projector ϕ|1〉. I.e.,

ϕ0(x1) = lim
T→1

∫ ∞
−∞

ϕŜ|0〉

(√
Tx1 −

√
1− Tx2

)
·ϕ|0〉

(√
1− Tx1 +

√
Tx2

)
·ϕ∗|1〉(x2) dx2. (5.14)

Since we only want to investigate how scaling behaves, however, we shall
simplify the PSSV by a squeezed single photon,

lim
T→1

ϕ0(x) = 〈x|Ŝ|1〉 =

√
2

π1/4s3/2
xe−x

2/2s2 (5.15)

where s = 10ξ/20 is the factor by which the quadrature phase space is re-
scaled as a consequence of the pure squeezing (i.e., x→ sx and p→ p/s).

The wave function of the state at the kth iteration is given in closed-form
by

ϕk(x) =
1

N (k)
ϕ2k

0

(
2−k/2x

)
, (5.16)
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where

N (k) =

[∫ ∞
−∞

ϕ2k
0

(
2−k/2x

)
dx

] 1
2

(5.17)

is the normalization factor.

Fig. 5.13 tracks both the amplitude and the fidelity of the outputs as
a function of the number of iterations k. As already expected from (5.16),

the output amplitude grows as
√

2
k
. This does not imply however that

iterations could be carried out indefinitely. For the particular choice of
initial conditions plotted, α = 1 for the cat or 3 dB of squeezing for the
PSSV, the fidelity drops below 90% at the fifth iteration. This shortcoming
of recursive amplifications is due to the non-unitarity of the amplification in
the coherent state basis. Looking back at the idealized case of (5.9), we see
that the amplification is not a straightforward mapping of a cat state onto
a larger one, but instead introduces an extra vacuum term. This vacuum,
which arises from the intrinsic ambiguity of the homodyne projection, is also
amplified along with the cat. Even if one does start the first iteration with
an ideal cat, any subsequent iteration k will inherit this vacuum component,
which in turn will contaminate the following step k + 1 with additional terms
orthogonal to an even cat.

The success rate of iterated amplifications is the main issue facing scal-
ability. As shown in Fig. 5.14, the scheme exhibits a sharp drop in the
success probability with the increasing number k of iterations. Another
obvious overhead is the number of input states which grows as 2k.

5.5 Conclusion

We have presented an amplification protocol for cat states that is based
on imprecise homodyne measurement. The performance of the scheme was
assessed in terms of fidelity and success rate and illustrated by an optimized
relation between the target size β and the input size α of the cat states
involved. Given that ideal cat states are challenging to produce, we also
presented how the amplification behaves with approximations to cat states,
namely photon-subtracted squeezed vacuum. Here again, we determined the
optimal relation between the input squeezing and the effective size of the
output. The purity of squeezing at the input was determined to be crucial
in achieving a high fidelity at the output. The amplification was however
relatively robust to imprecise homodyne thresholding, thereby allowing an
increase in success probability.
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Figure 5.13: Maximum fidelity (squares) and corresponding effective size β
(disks) of the output as a function of the number of iterations. The inputs
to the first iteration are an ideal odd cat of size α = 1 (black) or a PSSV
squeezed by 3 dB (gray).

The recursive application of the amplification protocol is then simulated
in the idealized case of exact homodyning and pure squeezing. Although

the amplification factor does grow as as
√

2
k

with the number k of recur-
sions, the output fidelity eventually degrades due to the non-unitarity of the
amplification. One is therefore constrained to a finite number of recursions
where the state is amplified while at the same time retaining a high fidelity.

We saw in §5.3 that target cat sizes β = 1.5 can be reached with fidelities
up to 93% if one uses PSSVs obtained from a 5% tapped-off squeezed vac-
uum. (If one assumes ideally squeezed single photons, that fidelity can even
increase to 98%, cf. the first iteration in Fig. 5.13. For higher iterations of
the amplification, amplitudes of β ≈ 3 can be obtained while maintaining
fidelity around 98%.) Although such approximate states may not permit
fault-tolerant quantum computation, they nonetheless allow for proof-of-
principle experiments that require effective cat sizes larger than those of
basic PSSVs. For instance, our amplification protocol can find uses in tele-
portation [110] or some demonstrations of quantum gates [111, 13]. The
question of whether the amplified states can be harnessed for any particular
use in quantum information will require a feasibility study of its own that
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Figure 5.14: Success probability of iterated amplifications for an input cat
state |κ−(α = 1)〉 as well as for various input PSSVs with squeezing ξ ∈
{0.5, 1, 2, 3, 6, 9} dB.

pays particular attention to the tradeoff between target sizes and fidelities.
Let’s conclude with a final note on the practical challenges to our pro-

tocol. In addition to the issues proper to PSSV preparation (and already
discussed in [94, 14, 95, 98, 99]), the key challenge facing the amplification
protocol is phase stability. This arises because the pairs of interfering PSSVs
need to be synchronous, thereby leading to very small success rates. This
is to be factored on top of the already small success rate of an otherwise
ideal post-selection (Fig. 5.14). Small success rates are compensated for
by running the experiment over a larger batch of input states. However,
this in turns requires that the relative phases—of the two interfering PSSVs
and of the local oscillator—be kept stable for protracted periods using a
particularly reliable locking system.
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Chapter 6

Experimental trials

This chapter serves three purposes. The first is to illustrate some experimen-
tal devices that make up the theoretical toolbox presented in the Chapter 2.
The second is to describe the setup with which photon-subtracted squeezed
vacuum is prepared. Finally, the last section will serve as a repository for
the many bedeviling setbacks encountered in the laboratory in the course of
this PhD project.

One of the initial goals was to produce approximate coherent state su-
perpositions via photon subtraction of the squeezed vacuum. These ap-
proximate cat states were then supposed to be used as resources for more
elaborate schemes such as entanglement distillation [112], noise-free atten-
uation, and cat state amplification [113]. Small cat state superposition had
already been obtained from our setup and successfully harnessed by Tips-
mark et al. in a proof-of-principle implementation of a Hadamard gate [13].
However, the resource states used were exhibiting unsatisfactory purities for
more demanding applications. This required changing the down conversion
crystal and consequently re-adjusting the entire optical configuration from
which squeezing was to obtained. This has however lead to a dead end
where not only the squeezing, but also the classical de-amplification could
hardly be observed for a reason—or multitude of reasons—that have yet to
be tracked down. To further exacerbate matters, the pulsed laser driving
the entire experiment has been prone to severe noise contamination from the
cavity dumper. These issues will be highlighted at the end of this chapter.

95
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Optical frequency 829.7 nm
Spread in optical frequency 0.2 nm
Pulse duration 4.6 ps
Pulse repetition rate 816 kHz
Average pulse energy 83 nJ
Cavity frequency 82 MHz

Table 6.1: Specifications of the pulsed laser.

6.1 The pulsed laser

The laser light used in our laboratory is delivered as a train of optical pulses
[114]. The advantage of the pulsed operation is that the regular bursts of
light are of higher intensity than if their energy were spread as a continuous
flow. This higher intensity can fully arouse the non-linearity of the down-
conversion crystal without having to place it in a multi-pass configuration.
Additionally, the narrow time windows that the pulses represent allow for
a better timing of the detection events. As we shall see, the downside is
that the finite extent of the pulse inherently includes frequency components
foreign to the sharp optical frequency of the continuous-wave case. The
relatively high intensities can furthermore lead to beam profile distortions
in the crystal.

Figure 6.1: Generation of 4.6 ps pulses from a mode-locked laser. A
Ti:Sapphire source of 829.7 nm is confined to a cavity, represented here
as the two curved mirrors. An RF-driven acousto-optical modulator lets
the pulses build up in the cavity until the 100th iteration, at which point
it diverts the light out for use. A photodiode (PD) ensures that this cavity
dumping is synchronized with the 82 MHz frequency by feeding back to the
AOM driver. Given that the round-trip frequency in the cavity is 82 MHz,
we end up with a repetition rate of the pulses of 816 kHz.
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The laser system used is assembled as part of Time-Bandwidth’s TIGER
series1 and consists of a laser head, a control unit, a power supply from
LaserQuantum2, a cavity dumper driver from NEOS3, and a chiller from
Ferrotec4. Some key figures for the laser light are summarized in Tab. 6.1
and the main stages of the pulse generation are sketched in Fig. 6.1. The
lasing source at 829.7 nm is a titanium-doped sapphire (Ti:Sapphire) crystal
which is diode-pumped via frequency doubling of a neodymium-doped yt-
trium orthovanadate (Nd:YVO4) crystal. The generated pulses then bounce
in a cavity at a frequency 82 MHz. Such a repetition rate is too high to
be reliably resolved by the detection electronics [115]. By incorporating an
acousto-optical modulator (AOM), also known as Bragg cell, in the cavity,
the repetition rate can be divided by 100 to about 816 kHz. This process is
known as cavity dumping and has the advantage of conserving all the light
in the cavity as opposed to, say, throwing out 99 pulses only to keep the
100th [116].

Fourier-transform limit. The pulses generated by the laser were found
to be Fourier-transform limitedness by measuring their duration and band-
width with an auto-correlator. In other words, they satisfied the criterion
for Fourier-transform limited Gaussian pulses, namely

∆τFWHM∆νFWHM = 2
ln 2

π
. (6.1)

In addition to being chirp-free [117], Fourier-limited pulses have the ad-
vantage that their scattering into several different modes in the temporal
domain is minimized, thereby preserving the temporal purity of the state in
any single mode.

6.2 Parametric processes

The electromagnetic wave equation in a homogeneous and isotropic medium
is given by

∇2E − 1

c2
0

∂2E

∂t2
= µ0

∂2P

∂t2
, (6.2)

where P is the polarization density, and c0 and µ0 are the speed of light and
the permeability in vacuum, respectively.

1http://www.time-bandwidth.com
2http://www.laserquantum.com
3http://www.neostech.com
4http://www.ferrotec.com
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Most materials only exhibit a linear relationship between the dielectric
medium and the electric field. This is however only a weak-field approxima-
tion and certain materials dubbed nonlinear actually exhibit a higher order
dependence of the polarization on the electric field

P = ε0

(
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

)
. (6.3)

Let’s assume the driving electric field E is made up of a superposition of two
components of frequencies ω1 and ω2 of amplitude E1 and E2, respectively.
A quadratic response of the polarization density to such a field will then
contribute the following term to (6.2):

P (2) = ε◦χ
(2)E2

= ε◦χ
(2) (E1 cosω1t+ E2 cosω2t)

2

=
ε◦χ

(2)

2

(
E2

1 + E2
2 + E2

1 cos (2ω1t) + E2
2 cos (2ω2t)

+2E1E2 [cos (ω1 − ω2)t+ cos (ω1 + ω2)t]
)
. (6.4)

It can be seen that the quadratic response of the nonlinear medium produces
electric fields of frequencies other than those making up the incident light.
The last two terms of (6.4) show the components of the electric field where
the initial frequencies ω1 and ω2 are doubled, subtracted, and added. Which
one of these processes takes place depends on the momentum (i.e., phase)
and energy (i.e., frequency) of the incoming fields E1 and E2.

6.2.1 Phase-matching

A condition for parametric processes as in (6.4) to take place is that the
generated waves at the frequencies 2ω1,2 or |ω1 − ω2| maintain a consistent
phase relation with their fundamental fields E1 and E2 throughout the
nonlinear material. Such a regime, known as phase-matching, depends on
the incidence of the input fields onto the crystal as well as the orientation
of the crystal’s axes as specified by the second-order nonlinear susceptibility

tensor χ
(2)
xyz. The relevance of phase-matching comes from the fact that the

refractive index depends on the frequency of the light. The generated waves
thus invariably propagate ahead or behind the driving waves to ultimately
end up out of phase. This can be remedied by ensuring that the overall wave
vector is conserved throughout the crystal between the input and output
waves: kin = kout. For example, in the case of frequency doubling where
two waves of frequency ω = ω1 = ω2 combine to form a wave of frequency 2ω,
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we get k(2ω) = 2k(ω). Given the definition k = nω/c, we therefore get that
phase-matching is achieved provided the index of refraction through which
the 2ω output wave propagates equals that through which the driving fields
at ω travel. Such a configuration can be realized in birefringent crystals.
An alternative to birefringence is the periodic poling of the crystal along
the transversal direction of propagation whereby the nonlinear susceptibility
tensor flips sign at regular intervals. This periodic reversal of the nonlinear
coefficient cancels out any phase mismatch acquired over any one period
of the poling. It is this latter method which we used in our laboratory
with a periodically-poled potassium-titanyl-phosphate (PPKTP) crystal. As
opposed to the birefringence method where the input and output fields have
to have orthogonal polarizations to perceive different indices of refraction,
periodic poling can make use of a single polarization for all fields.

It should be noted that vector mismatch between the fields involved,
unless corrected by periodic poling or birefringence, accumulates along the
nonlinear crystal. I.e., the efficiency of the parametric process is increasingly
affected the more the fields propagate—it is only in the case of perfect phase-
matching that the nonlinearity increases indefinitely with the interaction
length. One has therefore to negotiate a tradeoff between the length of the
crystal and the cumulative effect of phase mismatch [118].

6.2.2 Mode-matching

In order to optimize a nonlinear interaction, the geometry of the beams
involved should be chosen such that the fundamental beam transfers as much
power as possible to the converted beams. The condition to achieve this is
called mode-matching. It is essentially similar to a visibility optimization
in interference setups where we now want to ensure that the spatial mode
to be converted is in “full view” of the fundamental (or pump) mode. Most
often, the plane wave approximation for the fields does not hold and one has
to consider Gaussian profiles for the beams. Boyd and Kleinman [119] have
theoretically demonstrated that in order to achieve the highest conversion
efficiency of up-conversion, the confocal parameter z0 of the fundamental
beam should relate to the length of the nonlinear crystal Lc as

Lc
2z0

= 2.84. (6.5)

The above optimization condition is equally valid in the case of spontaneous
parametric down-conversion since it can be considered in many regards as
the reverse process of down-conversion and therefore would be optimized
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by the same optical geometry. In principle, this means that the highest
classical gain of down-conversion is expected when the pump beam has the
same confocal parameter as some probing seed [120] from which we can
easily measure classical amplification. As quantum optics experiments have
become common place, it turned out that the Boyd-Kleinman prescription
(6.5) leads to too high focusings of the pump [121, 122]. Although a narrow
focusing should in theory maximize the nonlinear response of the crystal, it
also leads to thermal effects and other power-related distortions that affect
both the profile of the beam and the purity of the squeezing. One could of
course reduce the focusing, i.e. decrease the confocal length z0, while at the
same time increasing the length of the crystal Lc in (6.5), but the downside
of a lengthened crystal is that dispersion effects become more prominent.
In fact, the tradeoff between crystal length and focusing configuration has
proven to be the most challenging objective to attain. §6.5 elaborates further
on the many side effects of working with focused beams and presents some
of the many (inconclusive) data gathered in the process of optimizing the
down-conversion source.

Gaussian beam propagation. Beam profiles can be measured with
a beam profiler placed at different longitudinal positions z from an arbi-
trary reference point down the optical path. The data points, consisting
of beam radii—i.e. radial distances where the intensity reaches 1/e2 of its
maximum—, should then fit a nonlinear model given by

W = W0

√
1 +

λ2(z − δz)2

W 4
0 π

2
, (6.6)

where W0 is the radius of the beam at the waist [123]. The wavelength of
the light is λ, and δz is the position of the waist from the reference point.
The outcomes from the fit are the position of the waist δz as well as its
radius W0. The latter in turn yields the Rayleigh length

z0 =
W 2

0 π

λ
. (6.7)

If one wants to place the waist of a beam at the centre of the nonlinear
crystal, a series of lenses can be assembled into a transformation matrix M
to recreate a new waist at the desired position according to (6.6). This is
sketched in Fig. 6.2.
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Figure 6.2: Reshaping of a Gaussian beam. The initial beam has a waste

W
(i)
0 centered at position z(i) down the optical axis. If one wants a new

waist W
(f)
0 at position zf where, say, the nonlinear crystal is to be placed,

then one needs to find a combination of lenses that amount to the transfor-
mation matrix M according to the rules of the ABCD formalism [123]. The
positions z1 and z2 are only used as fiducials to mark where the first and
last transformation lenses are to be placed.

6.3 Detection

We have already seen in Chapter 2 how to model the DV and CV measure-
ments of photon counting and homodyning, respectively. This section will
briefly introduce some aspects of detection that are specific to the experi-
mental context.

6.3.1 Photon counters

Photon detection in our setup is limited to a binary outcome: We used
avalanche photodiodes (APDs) which only click if at least one photon im-
pinges on them.5 The dark count rate is around 20 false clicks per second
and the quantum efficiency is about 60% at 830 nm.

6.3.2 Homodyne detectors

The operation of homodyne detectors is thoroughly covered in the literature
[3, 124, 115]. Let’s nonethless re-emphasize the importance of balancing the
detector when it comes to acquiring quadrature data. The proper operation

5Perkin-Elmer SPCM-AQR-16-FC [http://www.perkinelmer.com/]
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of a homodyne detector requires that the signals recorded at the two pho-
todiodes balance out completely and that the shot noise power6 be propor-
tional to the power of the local oscillator. When proportionality is achieved,
the homodyne detector is said to be shot-noise limited. Not only does the
overall power need to balance out, but so should every of its frequency com-
ponents balance out individually. If this latter condition is not satisfied,
some classical noise peaks will emerge from the shot-noise background in
the frequency spectrum, even if power cancels out in time domain.7 The
quality of balancing of a homodyne detector can be characterized by graphs
as those sketched qualitatively in Fig. 6.3

Figure 6.3: Dependence of the shot noise power on the power of the local
oscillator in dimensionless units. A homodyne detector is balanced if, at
any given frequency, the shot noise power PS.N. is linear with the power of
the local oscillator PL.O.. Any divergence from this linearity is indicative of
either a saturation of the detector’s electronics or of classical noise filtering
through the signal. Note that the shot noise power lies on top of a back-
ground of electronic noise that is always present regardless of the incidence
of a local oscillator.

6Shot noise power is quantified as the variance of the difference in current between the
two photodiodes.

7The downside of time-domain homodyning is that it sums over all frequency compo-
nents which, because of pulsed operation, cannot in any trivial way be recovered from the
time trace via Fourier analysis.
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6.4 State engineering

The principal state we were interested in generating in the laboratory is
the photon-subtracted squeezed vacuum (PSSV) for its high fidelity with
small coherent state superpositions. In this section we shall describe the
main stages that come into its engineering. The most salient challenge we
faced—that of producing pure squeezed vacuum—will be highlighted.

6.4.1 Experimental setup

The idea of subtracting a photon from the vacuum dates back to the work
of Dakna et al. [92] and has been subsequently refined and simplified [91]
to be first implemented in 2006 in both the continuous wave [95] and pulsed
regimes [94]. The idea consists of sending a squeezed vacuum through a
highly-transmissive beam splitter. The reflected arm is monitored by a
photon detector, typically an avalanche photodiode (APD), which—upon
clicking—heralds a PSSV. This output state then can be characterized by
homodyne tomography using a local oscillator (L.O.) originating from the
same laser as that of the pump and the seed.8 The experimental setup is
sketched in Fig. 6.4.

8This assumes that no phase diffusion occurs between pump, seed, and L.O. This point
will be treated in further detail below.
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Figure 6.4: Experimental setup for the generation of PSSV. The laser beam
emerges in the vertical polarization and is split into three arms: The first
is for down-conversion via second harmonic generation; the second is for
the seed beam with which classical gain is visualized; and the third is the
local oscillator for homodyning. The pump is obtained by second harmonic
generation in a first crystal (SHG) and then focused onto an optical para-
metric amplifier (OPA). Sets of lenses, represented here by simple pairs, are
placed on all three arms so as to tune the profiles of the beams. If one is
only interested in measuring squeezing, the down-converted signal is sent
directly for time-domain or frequency-domain tomography via a homodyne
detector. If one wants instead to produce PSSVs, then part of the signal
is tapped-off onto an APD via a single-mode fibre (SMF) and Fabry-Perot
filter (FP) for spatial and frequency filtering, respectively. The beige areas
represent parts of the setup that are used for monitoring purposes only and
are removed when actual state production takes place. Two of the quantities
monitored are the “blue-blue” visibility between the up-converted seed and
the pump, and the classical gain of the pump. They are both modulated
by the piezoelectric mirror at the seed arm. A third monitoring PIN diode
is placed after the polarization mixing of the seed and local oscillator and
traces the visibility between them.
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6.4.2 Pre-measurement checklist

As touched upon in §6.2.2, the above assumes that the heralded, heralding,
and measured states all belong to the same mode which, to boot, should
initially be populated by a pure squeezed vacuum. Failing this requirement
of mode-matching, the purity of the heralded state will be severely affected.
One should therefore routinely go through the following pre-measurement
checklist:

1. Seed and pump visibility: Recall that the local oscillator defines
the mode that is probed by homodyne detection. The pump, from
which the down-converted signal originates, should therefore match
that mode. I.e., for being the ultimate source of light, the pump (415
nm) should populate a spatial mode that needs to be “visible” to the
local oscillator. To this end, a seed beam at half the optical frequency
of the pump (i.e., 830 nm) is sent through the parametric amplifier
for up-conversion. By maximizing the visibility9 between the two blue
beams—that merely transmitted from the pump and that resulting
from the up-conversion of the seed—we can have a benchmark of how
well the local oscillator will “see” any signal from the down-converted
pump provided the local oscillator and the seed are in turned aligned
with high visibility.

2. Seed and local oscillator visibility: Although we are ultimately
only interested in probing the squeezing with the local oscillator, the
alignment of the seed is still crucial in insuring, via step 1 above, that
the pump and the local oscillator pertain to the same spatial mode.
The assumption being made here is that the down converted signal
populates the same mode as that of the pump. A typical value for the
visibility between the seed and the local oscillator is typically between
92% and 95%.

3. Frequency mode-matching: The points above dealt with spatial
mode-matching where the seed served as an intermediary between the
pump and the local oscillator. However, the modes of the squeezed
vacuum and the local oscillator should also be matched in frequency.
There exists to this effect an entire theoretical body of work that
deals with how the nonlinear crystal can be engineered and the pump
configured such that the idler and signal beams are de-correlated in
frequency. [125, 126]. A de-correlation in frequency ensures that the

9This blue-blue interference was measured to be 95% [2012-09-26].
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heralding process at the APD does not induce a mixing of the fre-
quency modes in the reconstructed heralded state. A simpler alterna-
tive is to simply enforce that both the heralded and heralding modes
are the same by placing a Fabry-Perot filter in the heralding arm. By
doing so, the filter can be adjusted so as to only transmit light of the
same frequency as that of the local oscillator, thereby post-selecting
the squeezing which is degenerate at the selected in frequency and
hence de facto de-correlated.10

4. Homodyne balancing: The points above address spatial and fre-
quency mode-matching. Another type of mode-matching, which could
be regarded as temporal, is to ensure that the homodyne detector is
balanced both in the time and frequency domain and that the signal is
not infiltrated with classical noise. This has turned out to be a major
challenge as the laser we are using produces an unshakable noise at 70
kHz which is passed on as parasitic side bands around the repetition
rate of the pulses. Although the noise can be marginally alleviated by
tuning the settings of the cavity dumper driver, the best one could do
is simply to adjust the incidence on the arms of the homodyne detec-
tor such that its voltage is balanced both in time (via the oscilloscope)
and in frequency (via the electronic frequency analyzer). In particu-
lar, the distribution of the homodyne signal with shot noise is checked
for Gaussianity as any non-Gaussian distribution is indicative of poor
balancing.

5. Classical gain: Finally, in addition to mode-matching, there re-
mains the issue of phase-matching on which the efficiency of the down-
conversion process depends. One needs not to look directly at the
squeezing for this but simply at the classical gain, or factor of ampli-
fication and de-amplification of the seed in the presence of a pump.
The larger the classical gain the better is the quantum process—i.e.,
squeezing—expected to be. This is done by adjusting the relative posi-
tioning of the seed with the pump. Note that there may be a potential
contradiction between the optimization of classical gain and that of
pump-seed visibility from point 1 above as both procedures may have
different sweet spots.

10The central wavelength of the Fabry-Perot [FFP-TF-0830-022G1400 from Omicron
Optics] has a tendency to drift and needs to be regularly re-centred at the right frequency.
An electronic lock programmed in Arduino has been developed for this purpose by Jonas
Schou Neergaard-Nielsen.
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6.4.3 Measurement

We shall now describe some aspects of measuring the heralded states but
stop short of giving a description of the tomography process as it is al-
ready discussed in other sources [127, 115]. We shall instead focus on how
quadrature data are acquired and squeezing determined.

Every voltage recorded by the homodyne detector can be related to a
quadrature value. Because we are working in pulsed regime, the convention
we adopted is that the voltage of every pulse be integrated over a square
time-window that is synchronized by the cavity dumper to correspond to
the arrival of a pulse. The time-domain trace that one obtains by assem-
bling the integrated pulses is of no use unless mapped onto a quadrature vs.
local oscillator phase plot. Since we did not incorporate any phase locking
of the beams in our setup, the correspondence between the time axis and
the phase of the L.O. had to be inferred from the squeezed data itself: If we
take variance11 maxima to correspond to a given phase θ of the L.O. then
the minima will correspond to θ + π. The L.O. phase at any intermediate
point can then be determined by phase fitting methods, of which there exists
several variants such as (a) straightforward cosine fitting—which assume no
phase fluctuations—, (b) smoothing algorithms that average between neigh-
boring variance points, or (c) the more intelligent Savitzky-Golay smoothing
filter which does not affect the amplitude of the extrema [128]. An example
of homodyne trace and its various fits is reproduced in Fig. 6.5.

Aside: Correcting squeezing for losses

The squeezed states measured in an experimental setting suffer de-coherence
as they propagate from the down-conversion crystal to the homodyne de-
tector. To assess the actual performance of the down converter it may be
informative to reverse the losses incurred on the squeezed signal through
propagation or quantum inefficiencies of detection. These losses can be
modeled by a beam splitter of transmission η which will have the effect of
contaminating the an input quadrature q̂in with a vacuum component q̂vac

q̂out =
√
ηq̂in +

√
1− ηq̂vac. (6.8)

11Given the pulsed nature of the measurement, variance is determined by grouping sets
of data into bins. One has then to choose a tradeoff between the resolution of the variance
(for wide bins) and the resolution of the phase (for narrow bins).
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Figure 6.5: Top: Raw trace of integrated homodyne data consisting of a
sequence of about 64000 integrated voltage points. Bottom: By bunching
ten contiguous data points into bins, the variance can be estimated. A fit
can then be performed by iteratively averaging over neighbouring points
(blue), applying the Savitzky-Golay filter (green), or simply fitting to a
cosine (cyan). The flat red line is obtained from the variance of shot noise
and serves as the reference benchmark. It can be noticed that the anti-
squeezing is systematically higher than squeezing proper. This is indicative
of a non-ideal purity of squeezing.

The variance of the output can be shown to be

Vout = 〈q̂2
out〉 − 〈q̂out〉2

= {Eq. (6.8) and 〈q̂vac〉 = 0}
= ηVin + (1− η)Vvac (6.9)

Using (2.54), we can see that the measured squeezing ξout really corre-
sponds to a squeezing ξin coming out of the down converter according to

ξin = 10 log10

(
(10ξout/10 − 1)/η + 1

)
. (6.10)

Here, η encapsulates the combined effects of transmission and detection
efficiency up to the measurement of ξout. It can typically be broken down
as follows

η = ηtηvηdηe, (6.11)
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The various efficiencies are as follows. ηt is the transmission efficiency
through the optical circuit. ηv is the square of the visibility of the mea-
sured signal and basically quantifies how well we are probing the right signal
mode. ηd is the quantum efficiency of the detector. ηe is the efficiency with
which the detector distinguishes the truly quantum noise from the parasitic
electronic noise [129]. In this sense, quantum noise, also known as shot
noise, is really the signal we want to measure. The signal to noise ratio
(SNR), which is the ratio of variances of electronic to shot noise, therefore
enters this electronic efficiency as ηe = 1 − 10−SNR/10. Note that the SNR
is expressed in decibels. In our laboratory, approximate values for all these
components are ηt = 86%, ηv = 91%, ηd = 93%, and ηe = 98% (for an SNR
of about 17 dB) [126].

6.5 Nuisances and obstacles

In the course of 2012, the reliability of the setup as a squeezing source
decreased markedly to a point where no de-amplification at all could be ob-
served. Although no definite diagnostic as to why that is could be performed
by the time the experiment was terminated, two potential causes stand out.
The first is that the laser source had a history of carrying a parasitic fre-
quency around 68 kHz [126]. This implied that the signals detected at the
homodyne detector could not be satisfactorily balanced out at all frequen-
cies: The 68 kHz noise, which most likely originates from faulty circuitry in
the cavity dumper driver, infiltrated the optical signal as side bands around
the 815 kHz repetition rate. The second cause can be attributed to a very
poor mode- and phase-matching configuration for the down converter.

Some calculations in [126] indicate that shorter crystals are more desir-
able if one wants to attain high purities of squeezing. As will be explained
below, this is motivated by the fact that a shorter interaction length, though
offering a lesser conversion efficiency, also minimizes dispersion and beam
distortion effects. In view of this, we replaced the 3 mm crystal we ini-
tially had with a 1.5-mm crystal. This however implied searching from
scratch—and with little guidance from theory—for a new phase-matching
configuration. Such a configuration was never to be obtained as we were
stuck with a highly impure conversion process that exhibited only marginal,
if not completely absent, de-amplification.
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6.5.1 Laser noise

Let’s illustrate the noise of the laser with some measurements. Fig. 6.6
shows the radio frequency (RF) signal that comes out of the cavity dumper
driver to control the AOM. The higher peaks at 820 kHz are normal, since
they simply reflect the designated repetition rate. They are however sur-
rounded by conspicuous side bands at 68 kHz which, after consultation with
both the manufacturer and our in-house electronics engineer, has proved to
impossible to suppress.

Figure 6.6: Frequency spectrum of the RF signal delivered by the cavity
dumper driver to the AOM. The 820 kHz peaks corresponding to the repe-
tition rate are flanked by 68 kHz side bands.

The problem with the noise is that it is passed on to the optical signal
and once again detected as side bands to the repetition rate at the homodyne
detector. Fig. 6.7 displays the frequency spectrum at the homodyne detector
both for the case of complete unbalancing (blue) and maximal balancing
(yellow). Note that the side bands could not be totally removed.
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Figure 6.7: Frequency spectrum of the homodyne voltage for (nearly) bal-
anced (yellow) and completely unbalanced (blue) power in the homodyne
arms. Note that ideal balancing could never be achieved.

In addition to the noise, the laser also exhibited power fluctuations.
Given that any homodyne measurement for, say, squeezing measurements,
consisted of batches of 64000 consecutive pulses, any fluctuations that occur
during the capture will corrupt the shot noise reference. These fluctuations
are displayed in Fig. 6.8.
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Figure 6.8: Fluctuations of the shot noise power as detected by the homo-
dyne detector with 10 µW local oscillator. Left : Time-domain fluctuations
of the mean homodyne signal and its variance for 20 consecutive shot noise
traces of about 64000 pulses each. There is a delay of the order of 10 s be-
tween each capture. Right : Frequency-domain fluctuations of the 600-kHz
component of shot noise over 80 ms (yellow) about its mean value (blue).

6.5.2 Phase- and mode-matching

As discussed above, the amplitude and purity of squeezing depends on
whether the light-matter interaction within the crystal is optimized for the
conversion process. To achieve phase- and mode-matching, several factors
can be tuned such as the temperature and length of the crystal as well as
the focusing and incidence of the fundamental beams [130]. Two theoretical
prescriptions exist in this regard. The first one is equation (6.5) by Boyd
and Kleinman [119] which, for short crystals such as ours, implies a tight
focusing of the pump. However, the narrower the focusing of the pump,
the more prone does the signal become to distortions and therefore to un-
desirable mode-mixing [131, 121, 132, 126]. The second prescription, by La
Porta and Slusher [121], relates to the ratio of waists between the pump
and the seed so as to obtain the best alignment of wave fronts between the
fundamental and converted beams12. In particular, it states that the seed
beam should be at least

√
2 larger than the pump at the waist as that will

equate their confocal lengths z0:

z
(seed)
0 = z

(pump)
0 ⇔W

(seed)
0 =

√
2W

(pump)
0 , (6.12)

12Once again, the seed is supposed to act as the classical “impersonation” of the modes
that the down converted signal would take.
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where W0 are the waist diameters. (Here, the
√

2 factor comes from the fact
that frequency is halved by the down-conversion process.)

In contradiction to (6.12), experimental evidence in other pulsed, single-
pass configurations reports instead that it is the pump that should be

√
2

larger than the seed. This implies that for any given choice of seed, the
focusing of the pump should be weakened so as to resemble more closely
that of a plane wave all throughout the crystal [133, 98]. After several at-
tempts to modify the relative size of the pump and seed,13 only marginal de-
amplification could be observed whereas squeezing was simply nonexistent.
This dead-end state of affairs was most likely worsened by the persistent
noise contamination from the laser itself. Fig. 6.9 shows a very noisy and
extremely impure classical gain curve with essentially no de-amplification.

Figure 6.9: Time trace of the classical gain as a voltage detected by a photo
diode in the course of 1 s. The bottom line represents the average voltage
delivered by the seed. The sinusoidal line is the modulated seed with a pump
of about 5 mW.

The search for phase matching also lead us to look for an optimal temper-

13Note that the maximum blue-blue visibility that is required by the pre-measurement
checklist above (point 1) does not coincide with the maximum classical gain (point 3).
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ature of the down conversion crystal. Here again, only the classical amplifica-
tion was affected whereas de-amplification remained very small throughout
(Fig. 6.10).
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Figure 6.10: Classical amplification (M) and de-amplification(O) as a func-
tion of the crystal temperature. The product of amplification and de-
amplification (�) indicates the purity of classical gain whereby unit purity
corresponds to a product of 1.

Similarly, no dependence on pump power could be noticed as far as de-
amplification was concerned (Fig. 6.11).

In summary, our setup was affected by a parasitic classical signal at 68
kHz which may have had negative effects on the phase- or mode-matching
of the down-conversion process. The almost total absence of classical de-
amplification—and therefore of squeezing—could not be remedied by any of
our attempts to match the modes of the pump, seed, and local oscillators
despite visibilities all above 90%. This was made all the more puzzling
by the complete independence of de-amplification on either pump power or
crystal temperature. Although a defective crystal may have been at the
origin, other factors could have contributed in addition to the laser noise.
Among these nuisances, one can cite gain-induced diffraction due to a too
tight focusing of the pump [121], group-velocity dispersion whereby pulses
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Figure 6.11: Classical amplification (M) and de-amplification(O) as a func-
tion of the pump power. The product of amplification and de-amplification
(�) indicates the purity of classical gain whereby unit purity corresponds to
a product of 1.

reshaped as they traverse crystal [123], as well as thermal lensing [134] and
spatial distortions of laser modes [132, 131].
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Chapter 7

Conclusion and outlook

This dissertation is the collection of three seemingly disjointed topics: Tele-
portation, Bell tests, and the amplification of coherent state superpositions.
In all three cases, however, the main challenge can be reduced to a mea-
surement problem. Regardless of whether the measurement operation is an
end in itself—as in Bell tests—or part of a state engineering protocol—as
in teleportation and cat-state amplification—the experimentalist has tradi-
tionally had to make-do with either photon counting or homodyning. These
detection schemes correspond to two mindsets, namely the DV and CV
approaches, which have long been considered separately. Increasingly, how-
ever, hybrid schemes are used to harness the advantages of both DV and
CV detection in the same setup. This was illustrated in Chap. 5 where
the nonlinearity engendered by photon counting is used to produce small
nonclassical cat states. The subsequent amplification of these states, which
requires the discrimination of the vacuum from even cat states is on the
other hand more conveniently performed by the thresholding of continuous
variables. In the case of Bell tests (Chap. 4), the very nature of the mea-
surements is that they are either aligned with or diagonal to the energy
eigenbasis and thus call for DV and CV detection, respectively.

One could be tempted to think that in quantum mechanics, only quanta
matter and hence that DV measurements ought to be preferable. How-
ever, the superposition principle implies that orthogonal quanta can carry
relative phases which are continuous. Such continuous spectra are best ob-
tained by some sort of interference—as opposed to energy—measurement,
of which homodyning is the most prominent example. The downside with
continuous measurements obtained from homodyning is that quantumness
is inevitably blurred out and orthogonal states can only be distinguished up
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to a non-ideal confidence level. Depending on the desired goal, this inherent
ambiguity of CV measurement remains nonetheless an attractive compro-
mise. The alternative, if one were to stick with DV measurement bases, is
that superpositions such as |0〉 ± |1〉 can only be read out unambiguously
through very unwieldy transfers onto atomic systems, as shown in Chap. 3.
In all scenarios, the assessment of pros and cons for DV and CV schemes
always passes by a feasibility study which incorporates losses and quantum
inefficiencies. Only then can one make an informed choice as to photon
detection or homodyning is more reliable at discriminating different states.

If one is to venture any forecast on the trend in measurement techniques,
the future may very well lie with adaptive techniques such as those briefly
mentioned in §2.3.5. Just like hybrid measurements allow one to choose
freely between one of two measurement perspectives, say, between DV and
CV, adaptive measurements provide one additional freedom in that they
probe a continuum of perspectives with weak measurements. An intuitive
illustration of this point is shown in Fig. 7.1.
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Figure 7.1: Conceptual representation of adaptive measurements. Consider
two conjugate observables A and B for which there exists ideal projectors A
and B. For being complementary, either one of A and B has no access to
the perspective of the other. A tomography of the “quantum object” in this
case requires consecutive measurements of A and B, and hence two copies
of the quantum object. A conjunction of the possible candidates from each
measurement then identifies the object: (3sphere3cone3cylinder7cuboid)A ∧
(7sphere7cone3cylinder3cuboid)B = (7sphere7cone3cylinder7cuboid). But what if
one cannot perform consecutive measurement? In other words, what if one
only has one copy of the quantum object? Adaptive schemes can then be
considered as an array of weak measurements which slide between the or-
thogonal perspectives of A and B according to a given algorithm which
maximizes the garnered information about the state.
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[43] H. Heydari J. Söderholm G. Björk, P. Jonsson and B. Hessmo. Tbd.
Opt. Spectroscopy, 94, 2003.

[44] S. Popescu E. Lombardi, F. Sciarrino and F. De Martini. Teleportation
of a vacuum–one-photon qubit. Phys. Rev. Lett., 88, 2002.
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