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Abstract 
 
A common feature of the Hungarian, Irish, Spanish and Turkish higher education 

admission systems is that the students apply for programmes and they are ranked according 

to their scores. Students who apply for a programme with the same score are in a tie. Ties 

are broken by lottery in Ireland, by objective factors in Turkey (such as date of birth) and 

other precisely defined rules in Spain. In Hungary, however, an equal treatment policy is 

used, students applying for a programme with the same score are all accepted or rejected 

together. In such a situation there is only one question to decide, whether or not to admit 

the last group of applicants with the same score who are at the boundary of the quota. Both 

concepts can be described in terms of stable score-limits. The strict rejection of the last 

group with whom a quota would be violated corresponds to the concept of H-stable (i.e. 

higher-stable) score-limits that is currently used in Hungary. We call the other solutions 

based on the less strict admission policy as L-stable (i.e. lower-stable) score-limits. We show 

that the natural extensions of the Gale-Shapley algorithms produce stable score-limits, 

moreover, the applicant-oriented versions result in the lowest score-limits (thus optimal for 

students) and the college-oriented versions result in the highest score-limits with regard to 

each concept. When comparing the applicant-optimal H-stable and L-stable score-limits 

we prove that the former limits are always higher for every college. Furthermore, these two 

solutions provide upper and lower bounds for any solution arising from a tie-breaking 

strategy. Finally we show that both the H-stable and the L-stable applicant-proposing score-

limit algorithms are manipulable. 
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 Egyetemi felvételi stabil ponthatárokkal 

 
Biró Péter - Sofya Kiselgof 

 
 

Összefoglaló 

 

A magyar, az ír, a spanyol és a török felsőoktatási felvételik közös vonása, hogy a diákok 

szakokra jelentkeznek, és mindenhol pontszámaik alapján rangsorolják a jelentkezőket. Ha 

két diák pontosan ugyanakkora pontszámot ér el egy adott szakon, akkor azt mondjuk, hogy 

holtversenyben vannak. A holtversenyeket Írországban sorsolással, Törökországban a 

születési dátum szerint, Spanyolországban pedig egyéb finomított pontozási módszerrel 

döntik el. Magyarországon viszont az egyenlő elbánás elve érvényesül, a holtversenyben lévő 

diákokat vagy mind felveszik, vagy mind elutasítják. Ebben az esetben csak az a kérdés, 

hogy milyen döntés szülessen olyan holtversenyben lévő diákokról, akik felvételével az adott 

szak kvótája éppen sérülne. Mindkét lehetséges eset leírható a stabil ponthatárok 

modelljével. A kvóták szigorú betartását biztosító elv – amely esetén az utolsó csoport 

holtversenyes diákot mind elutasítják – az úgynevezett H-stabil ponthatárokkal írható le. 

Ezt a koncepciót használják Magyarországon is. A másik lehetőséghez tartózó megengedőbb 

eljárást – amelyben a kvóták csak puha korlátokat jelentenek – L-stabil ponthatárokkal 

írhatjuk le. Megmutatjuk, hogy a Gale–Shapley-algoritmus természetes általánosításai stabil 

ponthatárokhoz vezetnek, sőt, a diákok felől futtatott verzió a lehető legalacsonyabb 

pontszámokat, míg az egyetemek felől futtatott verzió a lehető legmagasabb pontszámokat 

eredményezi mindkét koncepció szerint. Továbbá, a H-stabil diákoptimális ponthatárok 

legalább olyan magasak, mint az L-stabil diákoptimális ponthatárok, és bármelyik 

holtverseny felbontásával kapott diákoptimális megoldás a két fenti megoldás közé esik. 

Végül megmutatjuk, hogy mind a H-stabil, mind az L-stabil diákok felől futtatott eljárás 

manipulálható. 

 

Tárgyszavak: egyetemi felvételi, stabil párosítás, mechanizmustervezés 

 

JEL kódok: C78, I21    
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Péter Biró∗
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Abstract

A common feature of the Hungarian, Irish, Spanish and Turkish higher education
admission systems is that the students apply for programmes and they are ranked
according to their scores. Students who apply for a programme with the same score
are in a tie. Ties are broken by lottery in Ireland, by objective factors in Turkey (such
as date of birth) and other precisely defined rules in Spain. In Hungary, however, an
equal treatment policy is used, students applying for a programme with the same score
are all accepted or rejected together. In such a situation there is only one question
to decide, whether or not to admit the last group of applicants with the same score
who are at the boundary of the quota. Both concepts can be described in terms of
stable score-limits. The strict rejection of the last group with whom a quota would be
violated corresponds to the concept of H-stable (i.e. higher-stable) score-limits that
is currently used in Hungary. We call the other solutions based on the less strict
admission policy as L-stable (i.e. lower-stable) score-limits. We show that the natural
extensions of the Gale-Shapley algorithms produce stable score-limits, moreover, the
applicant-oriented versions result in the lowest score-limits (thus optimal for students)
and the college-oriented versions result in the highest score-limits with regard to each
concept. When comparing the applicant-optimal H-stable and L-stable score-limits
we prove that the former limits are always higher for every college. Furthermore,
these two solutions provide upper and lower bounds for any solution arising from
a tie-breaking strategy. Finally we show that both the H-stable and the L-stable
applicant-proposing score-limit algorithms are manipulable.

Keywords: college admissions, stable matching, mechanism design
JEL classification: C78, I21

1 Introduction

Gale and Shapley [14] introduced a model and solution concept to solve the college ad-
missions problem fifty years ago1. In their model they suppose that the students submit

∗This work was supported by OTKA grant K69027 and by the Hungarian Academy of Sciences under
its Momemtum Programme (LD-004/2010).

†This work is partially supported by DecAN Laboratory NRU HSE.
1The 2012 Nobel-Prize in Economic Sciences has been awarded to Alvin Roth and Lloyd Shapley for

the theory of stable allocations and the practice of market design.
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preference lists containing the colleges they apply to, and each college ranks their ap-
plicants in a strict order and also provides an upper quota. Based on the submitted
preferences a central body computes a fair solution. The fairness criterion they proposed
is stability, which essentially means that if an application is rejected then it must be the
case that the college must have filled its quota with applicants better than the our ap-
plicant’s concerned. They gave an efficient method to find a stable matching and they
proved that it is actually optimal for the students in that sense that no student can be
admitted to a better college in another stable matching. The Gale-Shapley algorithm has
linear time implementation (see e.g. Knuth ), which means that the running time of the
algorithm is proportional to the number of applications. Another attractive property of
this matching mechanism, proved by Roth, that it is strategyproof for the students, i.e.,
no student can be admitted to any better college by submitting false preferences.

Later, it turned out (Roth [22]) that the algorithm proposed by Gale and Shapley had
already been implemented in 1952 in the National Resident Matching Program and has
been used since to coordinate junior doctor recruitment in the US. Moreover, the very
same method has been implemented recently in the Boston [4] and New York [3] high
school matching programs. However, college admissions are still organized in a completely
decentralized way in the US, with all its flaws, that is unraveling through early admissions
and the coordination problems caused by too many or not enough students admitted. See
some representative stories on American college admissions practices in the blog of Al
Roth [33].

There are many other countries where higher education admissions are more regulated,
but yet not centralized. In Russia, the common timetable of the admissions prevent the
unraveling and the use of ’original documents’ provide better coordination regarding the
number of students admitted, but yet the solution is far from being optimal.2 In the
UK, there is a common platform to manage the admissions by UCAS [34] but there is
no centralized matching mechanism, the decisions and actions of the users (students and
higher education institutions) are still decentralized.

Finally, there are some countries which do have centralized matching schemes for higher
education admissions. In particular, there are scientific papers on the Chinese [26, 27],
German [10, 25, 29], Hungarian [6, 7], Spanish [20], Turkish [5] schemes.3

The Chinese higher education admissions system is certainly the largest in the world,
with more that 20 million students enrolled in 2009 [27]. The system is based on a
centralized exam, called National College Entrance Examinations, which provides a score
assigned to each students and this induce a ranking of the students by universities. The
matching process (see [26]) is a kind of Boston-mechanism with some extra tweaks that
makes the system manipulable and controversial. The German clearinghouse for higher
education admissions deals only with a small segment of subjects (about 13,000 student
from the total 500,000, see [29]). The clearinghouse is a mixed system, in the first phase
the Boston-mechanism is used and in the second phase the college-proposing Gale-Shapley,
so the process is not incentive compatible [10, 25].

The Hungarian, Irish, Spanish and Turkish higher education matching schemes are all

2Each applicant applies to at most five universities, but does not inform universities about her pref-
erences among them. Universities rank students using results of Unified State Exams. Two ’admission
rounds’ are organized that are similar to the first two steps of a deferred acceptance procedure. After the
second step, universities that still have empty seats are allowed to organize additional admissions.

3However, we shall note that regrettably these scientific papers deal only with some special features
of these systems (as we also do in this paper) so not all the aspects of these schemes are described. But
luckily, there is a new European research network, called Matching in Practice [32], one of whose aim is to
collect and describe current matching practices in Europe. So hopefully we will have a better picture and
understanding on the current practices, at least in Europe.
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based on a centralized scoring system. The Irish system has not been described yet in a
scientific paper to the best of our knowledge.4 In the other three countries students are
assigned a score with regard to each programme they applied to, these scores are coming
mainly from their grades and entrance exams. The scores of a student may differ at two
programmes, since when calculating the score of a student for a particular programme
only those subjects are considered which are relevant for that programme. The solution of
the admission processes are represented by the so-called score-limits, which are referred to
as ’base scores’ in Turkey [5] and ’cutoff marks’ in Spain. The score-limit of a programme
means the lowest score that allows a student to be admitted to that programme. The score-
limits together with the preferences of the students naturally induce a matching, where
each student is admitted to the first place on her list where she achieved the score-limit.

In Turkey [5] the ties are broken according to the date of birth of the students and
the college-proposing Gale-Shapley algorithm is used. In Spain the scoring method is fine
enough (the admission marks are from 5 to 14 with 3 decimal fractions, and some further
priority rules are also used), so ties are very unlikely. They use the applicant-proposing
Gale-Shapley algorithm with the special feature of limiting the length of the preference
lists, a setting that creates strategic issues that were studied in detail by Romero-Medina
[20] and Calsamiglia et al. [11].

In fact, in most applications where ties may occur, the programme coordinators break
these ties. In the high school matching schemes in New York [3] and Boston [4] lottery
is used for breaking ties. However, this may lead to suboptimal solutions as Erdil and
Erkin [12] pointed out, but according to the study by Abdulkadiroglu et al [1] this is the
only way to keep the mechanism strategy-proof. In the Scottish Foundation Allocation
Scheme [31], where the junior doctors are matched to hospitals, the organizers attempt to
break the ties in such a way that in the resulted matching as many doctors are allocated
as possible (see Irving and Manlove [17]).5

In contrast, in the Hungarian higher education admission scheme [30] the ties are not
broken, therefore the students applying for a particular programme with equal scores are
either all accepted or all rejected. We call this an equal treatment policy.

In particular, the ties are handled in the following way in Hungary. No quota may be
violated, so the last group of students with the same score, with whom the quota would be
exceeded, are all rejected. There is however an alternative policy that could be followed
where the quotas may be exceeded by the admission of the last group of students with the
same score, but only if there were unfilled places left otherwise.

As we will show in Section 4, both concepts can lead to matchings that satisfy special
stability conditions based on score-limits that we formalize in Section 3. We refer to the
first, more restrictive solution as H-stable (i.e., higher-stable) score-limits and we call the
second, more permissive solution L-stable (i.e., lower-stable) score-limits. Note that these
stable score-limit concepts generalize the original notion of stability by Gale and Shapley,

4From the information published at the website of the Central Applications Office [28] it seems that
the college-proposing Gale-Shapley algorithm is used in Ireland with some special features. One is that
students can apply for ’level 8’ and ’level 7/6’ courses simultaneously, and these applications are processed
separately, so a student may receive more than one offer at a time. There are deadlines for accepting
offers and if offers are rejected then further offers are made by the higher education institutions, so the
mechanism is somewhat decentralized. The tie-breaking is based on ’random-numbers’ assigned to students
with regard to each programme they applied for, so the ties are broken differently for different programmes
involving perhaps the same applicants.

5In SFAS [31], applicants are ranked by NHS Education for Scotland in a so-called master list, in order
of score each applicant has a numerical score allocated partly on the basis of academic performance and
partly as a result of the assessment of their application form. The range of possible scores (approximately
40 100) is much smaller than the number of applicants (around 750 each year), so there are ties of
substantial length in the master list.
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since they are equivalent to that if no tie occurs. In Section 4, we show how one can
extend the Gale-Shapley algorithm to find H-stable and L-stable score-limits. Moreover,
in Section 5 we prove that the applicant-oriented versions provide the minimal stable
score-limits (therefore they are the best possible solutions for the applicants), whilst the
college-oriented versions provide maximal stable score-limits (therefore, they are the worst
possible solutions for the applicants). We note that the above results are deducible from
some general theorems on substitutable choice functions by Kelso and Crawford [18] and
Roth [21], as it was very recently demonstrated by Fleiner and Jankó [13]. We describe
these arguments in detail at the end of Section 5.

In Section 6 we show that comparing the H-stable and L-stable score-limits, the L-
stable score-limits are more favorable for the applicants as they are lower. In particular,
we show that no college can have a higher score-limit in the applicant-optimal L-stable
solution than in the applicant-optimal H-stable solution (and the same applies for the
applicant-pessimal solutions produced by the college-oriented versions). Interestingly, we
also show that the applicant-optimal solution produced after a tie-breaking is always
between these two kinds of solutions. Therefore the matchings corresponding to the H-
stable and L-stable score-limits may provide upper and lower bounds for every applicant
regarding her match in a scheme which uses any kind of tie-breaking strategy. Finally, in
Section 7 we give examples showing that neither the H-stable nor the L-stable version of
the applicant-oriented score-limit algorithm is strategy-proof. We conclude in Section 8.

2 Brief description of the application

In this section we briefly introduce the Hungarian higher education admission system. See
more at the website of the European research network on Matching in Practice [32].

Hungarian higher education admissions

In Hungary, higher education is free of charge in principle. There is, however, a quota for
state financed places and all students who cannot fit in this quota (or want to do more
than one study) have to pay some contribution. For indication on the numbers, in the last
main matching round in 2011 the total number of applicants was 140954 and 125735 of
them applied for state-financed places. The total number of students admitted was 98144
and 67035 of them got a state-financed place (thus around 31000 students were charged
fees for their studies at programmes starting in September 2011).

Admissions have been organized via a centralized matching scheme since 1985. In the
current system three matching rounds are conducted every year, starting from 2008. The
main round is in spring, finishing with the announcement of the score-limits in July. There
is an additional round at the end of the summer for unfilled programmes which start in
September, and the third matching round is conducted in the winter for students who
want to start their MSc studies in February. In 2011, the number of applicants in the
above three matching rounds were 140954, 13294 and 6418, respectively.

The matching scheme is based on a centralized scoring system. The students apply for
BSc or MSc programmes. Their scores are coming from their secondary school grades and
from their maturity exams. Regarding the latter, students can choose between normal
and high levels. Volunteering for high level exam may result in extra scores, but these are
more difficult to pass. A new governmental regulation proposes to make high level exams
compulsory in those subjects which are relevant for the programme the student applied for.
So exams are centralized, but a student may have different scores for different programmes,
as only the relevant subjects are considered (e.g. for computer science programmes the
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grades and exam scores in physics are counted, but for economics history is considered
instead, besides the main subjects - such as maths, Hungarian literature and grammar).
Extra scores can be obtained if the applicant has a certificate in some languages, or had
good results in national or international competitions (not just scientific, but also sports or
art), or because of social and medical conditions (e.g. young mothers and disabled people
get some priority). The final scores are integer numbers, currently limited to 480. Note
that the maximum score was 144 until 2007 which resulted massive ties.

Note that the scoring system was less centralized before 2000. For example universities
could even hold interviews. The reason for having a centralized scoring method based only
on common exams is the presence of national quotas which are set by the government in
each subject (e.g. in computer science only the best 3000 applicants can study for free
every year). So the performance of these students, who want to get state-financed places
in a subject, must be comparable even if they apply to different universities.

Students may apply for any number of programmes, although they are charged a fee
for every item (about 10 EUR) after the third application. Actually, this might be a
reason why the average length of the preference lists is 3.5 and not higher. The applicants
should also indicate whether they are willing to pay the contribution or whether they are
applying for a state-financed place regarding each programme in their lists.6 In other
words, students may be admitted to a programme under two kinds of contracts (either
they pay a contribution or not) and their preference lists are on possible contracts. For
simplicity, these contracts will be referred to as colleges interchangeably in the paper in
order to keep the original terminology of Gale and Shapley.

The quotas are set by the universities in agreement with the responsible Ministry for
each programme. A specificity of the Hungarian system is that universities can set also
lower quotas for each programme they offer and if the lower quota is not filled then the
programme is canceled. Besides the lower and upper quotas for each programme, which
apply for both the state-financed and privately-financed students, there are upper quotas
in each subject set by the government for the total number of students admitted for
state-financed studies.

The centralized matching is run by a non-profit governmental organization and as a
result they announce the score-limits for all programmes regarding both the state-financed
and privately-finances places. Each student is admitted to the first programme on her list
where she achieves the score-limit. Obviously, the score-limits for state-financed places are
higher than for privately-financed places, so those who are willing to pay a contribution
can get admitted more easily.7

The implemented algorithm was a generalized version of the college-oriented Gale-
Shapley algorithm until 2007, and since 2007 the core of the matching procedure has been
the applicant-oriented Gale-Shapley algorithm. There are at least four special features in
this scheme that required an extension of the original algorithm with some extra heuristics.

1. Ties can occur, since students applying for the same programme may have equal
scores. The attempted solutions are the so-called H-stable score-limits, which sat-
isfy the condition that we cannot decrease the score-limit of any over-demanded
programme without violating its quota. This means that the last group of stu-
dent applying to a programme with the same score, with whom the quota would be

6For example, the first choice of a student may be a state-financed place in an Economics BSc programme
at university A, her second choice might be another state-financed place at university B but her third choice
can be a privately-financed place in the Economics BSc programme again at university A and so on.

7An interesting by-product of the matching system is that the score-limits are actually very good
indicators of the quality and popularity of the programmes, and they highly correlate with the students’
preferences and also with the job market perspective of the graduates.
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exceeded, are all rejected. This special feature is the subject of our paper.

2. In addition to the upper quotas some colleges may have lower quotas as well. This
feature has been studied in [7]. The bad news is that for a reasonable stability
concept the existence of a stable solution is not guaranteed any more, and the related
problem is NP-hard.

3. Some sets of colleges may have common upper quotas. This feature has been studied
also in [7]. The presence of common quotas does not necessarily ruin the nice prop-
erties of the college admissions problem. In fact, when the set system is so-called
’nested’ then a stable solution is guaranteed to exist and a generalized Gale-Shapley
method finds a stable solution. This was the case in the Hungarian application un-
til 2007. Since then the corresponding set system is not nested any more, a stable
solution may not exist and the related problem is NP-hard.

4. Students can apply for pairs of teaching programmes (e.g. to become teachers in
both math and physics). This problem is closely related to a well-known problem of
resident allocations with couples where junior doctors may form couples and submit
joint applications for pair of positions. See a survey on the latter problem [8]. Note
that this feature also implies that a stable solution may not exist and makes the
related computational problem NP-hard.

Since the current model of the application embeds several NP-hard computational
problems because of three special features from the above four, it is reasonable to use
different heuristics in practice. The score-limit algorithm used by the central office is based
on the applicant-proposing Gale-Shapley mechanism, which we will present in detail in
the next sections.

3 The definition of stable score-limits

Let A = {a1, a2, . . . , an} be the set of applicants and C = {c1, c2, . . . , cm} be the set of
colleges, where qu denotes the quota of college cu. Let the ranking of the applicant ai
be given by a preference list P i, where cv >i cu denotes that cv precedes cu in the list,
i.e. the applicant ai prefers cv to cu. Let siu be ai’s final score at college cu. Final scores
are positive integers for all acceptable applicants, as in practice the students with scores
below a common minimum threshold are rejected automatically (currently this minimum
score is 240 in Hungary with a maximum score of 500, which applies for every study).

The score-limits of the colleges are represented with a non-negative integer mapping
l : C → N. An applicant ai is admitted to a college cu if she achieves the score-limit at
college cu, and that is the first such place in her list, i.e. when siu ≥ l(cu), and siv < l(cv)
for every college cv such that cv >i cu.

If the score-limits l imply that applicant ai is allocated to college cu, then we set the
Boolean variable xiu(l) = 1, and 0 otherwise. Let xu(l) =

∑
i x

i
u(l) be the number of

applicants allocated to cu under score-limits l.
Furthermore, let lu,t be defined as follows: lu,t(cu) = l(cu) + t and lu,t(cv) = l(cv) for

every v ̸= u. That is, we increase the score-limit of college cu by t (or decrease it if t is
negative), but we leave the other score-limits unchanged.

To introduce the H-stable and L-stable score-limits, first we define the corresponding
feasibility notions. Score-limits l are H-feasible if xu(l) ≤ qu for every college cu ∈ C. That
is, the number of applicants may not exceed the quota at any college. This means that
the last group of students with equal scores, with whom the quota would be exceeded, are
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all rejected. Score-limits l are L-feasible if for every college cu ∈ C such that xu(l) ≥ qu
it must be the case that xu(l

u,1) < q. So the quotas may be exceeded at any college, but
only with the worst group of students who are admitted there with equal scores.

We say that score-limits l are H-stable (resp. L-stable) if l are H-feasible (L-feasible)
and for each college cu either l(cu) = 0 or lu,−1 are not H-feasible (resp. L-feasible). Thus
H-stability means that we cannot decrease the score-limit of any college without violating
its quota assuming that the others do not change their limits. L-stability means that no
college cu can admit a student if at least qu of its current assignees have a higher score,
but otherwise the score limits must be as small as possible. H-stability is the concept that
is currently applied in the Hungarian higher education matching scheme.

We note that if no tie occurs (i.e. every pair of applicants have different scores at each
college), then the two feasibility and stability conditions are the same and they are both
equivalent to the original stability concept defined by Gale and Shapley. The correspon-
dence between stable score-limits and stable matchings in case of strict preferences was
first observed by Balinski and Sönmez [5] in relation with the Turkish college admissions
scheme (where ties do not occur due to a tie-breaking strategy based on the age of the
applicants). Furthermore Azevedo and Leshno [2] have also used this observation in a
general college admissions model involving continuum number of students.

4 Stable score-limit algorithms

Both the H-stable and L-stable score-limit algorithms are natural extensions of the Gale–
Shapley algorithm. The only difference is that now, the colleges cannot necessarily select
exactly as many best applicants as their quotas allow, since the applicants may have
equal scores. If the scores of the applicants are all different at each college then these
algorithms are equivalent to the original one. In this section we will present the applicant-
proposing and the college-proposing score-limit algorithms. For simplicity we describe
these algorithms with regard to the H-stability concepts only and we add some information
about the L-stable versions in brackets whenever they differ from the H-stable versions.

College-oriented algorithms:

In the first stage of the algorithm, let us set the score-limit at each college independently
to be the smallest value such that, when all applicants are considered, the number of
applicants offered places does not exceed its quota (resp. may exceed the quota but only
if without the last tie of these students the quota is unfilled). Let us denote these score-
limits by l1. Obviously, there can be some applicants who are offered places by several
colleges. These applicants keep their best offer, and reject all the less preferred ones,
moreover they also cancel their less preferred applications.

In the subsequent stages, the colleges check whether their score-limits can be further
decreased, since some of their offers may have been rejected in the previous stage, hence
they look for new students to fill the empty places. So each college sets its score-limit
independently to be the least possible that keeps the solution H-feasible (resp. L-feasible)
considering their actual applications. If an applicant gets a proposal from some new,
better college, then she accepts the best offer, at least temporarily, and rejects or cancels
her other, less preferred applications.

Formally, let lk be the score-limit after the k-th stage. In the subsequent stage, at
each college cu, the largest integer tu is chosen, such that tu ≤ lk(cu) and xu(l

u,−tu
k ) ≤ qu

(resp. if xu(l
u,−tu
k ) ≥ qu then xu(l

u,−tu+1
k ) < qu). That is, by decreasing its score-limit

by the largest score tu that keeps the solution H-feasible (resp. L-feasible), i.e., where the

7



number of applicants offered a place by cu does not exceed its quota (resp. may exceed the
quota but only if without the last tie of these students the quota is unfilled), by supposing
that all other score-limits remained the same. For each college cu let lk+1(cu) := lu,−tu

k (cu)
be the new score-limit. Again, some applicants can be offered a place by more than one
college, so xu(lk+1) ≤ xu(l

u,−tu
k ). Obviously, the new score-limits remain feasible.

Finally, if no college can decrease its score-limit then the algorithm stops. The H-
stability (resp. L-stability) of the final score-limits is obvious by definition. Let us denote
the corresponding solutions of the H-stable and L-stable versions by lHC and lLC , respectively.

Applicant-oriented algorithms:

Let each applicant propose to her first choice in her list. If a college receives more applica-
tions than its quota, then let its score-limit be the smallest value such that the number of
provisionally accepted applicants does not exceed its quota (resp. may exceed the quota
but only if without the last tie of these students the quota is unfilled). We set the other
score-limits to be 0.

Let the score-limits after the k-th stage be lk. If an applicant has been rejected in
the k-th stage, then let her apply to the subsequent college in her list, say cu, where she
achieves the actual score-limit lk(cu), if there remains such a college in her list. Some
colleges may receive new proposals, so if the number of provisionally accepted applicants
exceeds the quota at a college (resp. exceeds the quota and without the last tie of these
students the quota is still filled), then it sets a new, higher score-limit lk+1(cu).

Again, for each such college cu, this is the smallest score-limit such that the number
of applicants offered a place by cu does not exceed its quota (resp. may exceed the quota
but only if without the last tie of these students the quota is unfilled), by supposing that
all other score-limits remained the same. This means that cu rejects all those applicants
that do not achieve this new limit.

The algorithm stops if there is no new application. The final score-limits are obviously
H-feasible (resp. L-feasible). The solution is also H-stable (resp. L-stable), because after a
score-limit has increased for the last time at a college, the rejected applicants get less pre-
ferred offers during the algorithm. So if the score-limit in the final solution were decreased
by one for this college, then these applicants would accept the offer, and the solution
would not remain H-feasible (resp. L-feasible). Let us denote the corresponding solutions
by the H-stable and L-stable applicant-oriented versions by lHA and lLA, respectively. The
following result is therefore immediate.

Theorem 4.1. The score-limits lHC and lLC obtained by the college-oriented score-limit
algorithms are H-stable and L-stable, respectively. The score-limits lHA and lLA obtained by
the applicant-oriented score-limit algorithms are H-stable and L-stable, respectively.

5 Optimality of the outputs

It is easy to give an example to show that not only some applicants can be admitted by
preferred places in lHA as compared to lHC , but the number of admitted applicants can also
be larger in lHA (and the same applies for the L-stable setting). We say that score-limits
l are better than l∗ for the applicants if l ≤ l∗, i.e., if l(cu) ≤ l∗(cu) for every college
cu. In this case every applicant is admitted to the same or to a preferred college under
score-limits l than under l∗.

Theorem 5.1. Given a college admission problem with scores, lHC are the worst possible
and lHA are the best possible stable score-limits for the applicants, i.e. for any H-stable
score-limits l, lHA ≤ l ≤ lHC holds.
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Proof. Suppose first for a contradiction that there exists a H-stable score-limit l∗ and a
college cu such that l∗(cu) > lHC (cu). During the college-oriented algorithm there must be
two consecutive stages with score-limits lk and lk+1, such that l∗ ≤ lk and l∗(cu) > lk+1(cu)
for some college cu.

Obviously, lu,−tu
k (cu) = lk+1(cu) by definition. Also, xu(l

u,−tu
k ) ≤ qu < xu(l

u,−1
∗ ), where

the first inequality holds by definition of tu, as we choose the new limit for college cu such
a way that the number of temporarily admitted applicants does not exceed its quota. The
second inequality holds by the H-stability of l∗. So there must be an applicant, say a1,
who is admitted to cu at lu,−1

∗ but not admitted to cu at lu,−tu
k .

On the other hand, the indirect assumption implies that lu,−tu
k (cu) = lk+1(cu) ≤

l∗(cu) − 1 = lu,−1
∗ (cu). Applicant a1 has a score of at least lu,−tu

k (cu), which is enough

to be accepted to cu, so she must be admitted to some college cv under lu,−tu
k (cu) which

is preferred to cu. Obviously a1 must be also admitted to cv under lk. But the H-stability
of l∗ implies that l∗(cv) > lk(cv), a contradiction.

To prove the other direction, we suppose for a contradiction that there exists H-stable
score-limits l∗ and a college cu such that l∗(cu) < lHA (cu). During the applicant-oriented
algorithm there must be two consecutive stages with score-limits lk and lk+1, such that
l∗ ≥ lk and l∗(cu) < lk+1(cu) for some college cu. At this moment, the reason for the
incrementation is that more than qu students are applying for cu with a score of at least
l∗(cu). This implies that one of these students, say ai, is not admitted to cu under l∗
(however she has a score of at least l∗(cu) there). So, by the H-stability of l∗, she must be
admitted to a preferred college, say cv under l∗. Consequently, ai must have been rejected
by cv in a previous stage of the algorithm, and that is possible only if l∗(cv) < lk(cv), a
contradiction.

Theorem 5.2. Given a college admission problem with scores, lLC are the worst possible
and lLA are the best possible L-stable score-limits for the applicants, i.e. for any L-stable
score-limits l, lLA ≤ l ≤ lLC holds.

Proof. Suppose first for a contradiction that there exist stable score-limits l∗ and a college
cu such that l∗(cu) > lLC(cu). During the college-oriented algorithm there must be two
consecutive stages with score-limits lk and lk+1, such that l∗ ≤ lk and l∗(cu) > lk+1(cu)
for some college cu.

This assumptions imply that xu(l
u,−tu+1
k ) < qu ≤ xu(l∗). Here, the first inequality

holds by the L-feasibility of lk+1, and the second inequality by the L-stability of l∗. At the
same time, by our assumption, l∗(cu) > lk+1(cu), so l∗(cu) ≥ lk+1(cu) + 1 = lu,−tu+1

k (cu).
From the two above statements it follows that there must be an applicant, say a1, who

has a score su(a1) ≥ l∗(cu) and is admitted to cu under l∗, but is not admitted to cu under
lu,−tu+1
k . So a1 must have a seat at some college cv under lu,−tu+1

k such that cv >a1 cu.
Obviously, a1 is also admitted to cv under lk. But a1 is not admitted to cv under l∗,
therefore lk(cv) < l∗(cv), a contradiction.

To prove the other direction, we suppose for a contradiction that there exist stable
score-limits l∗ and a college cu such that l∗(cu) < lLA(cu). During the applicant-oriented
algorithm there must be two consecutive stages with score-limits lk and lk+1, such that
l∗ ≥ lk and l∗(cu) < lk+1(cu) for some college cu.

At this moment, the reason for the incrementation is that more than qu students are
applying for cu with score at least l∗, and cu can choose a new score-limit lk+1(cu) =
lu,−tu
k (cu), where tu > l∗(cu)− lk(cu).

This implies that one of those students, who are admitted by cu under lk+1, say a1, is
not admitted to cu under l∗. However she has a score higher than score-limit l∗(cu) there.
So, by the L-stability of l∗, she must be admitted to a preferred college, say cv, under l∗.
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Consequently, in the applicant-proposing procedure a1 must have been rejected by cv at
some previous stage, and that is possible only if l∗(cv) < lk(cv), a contradiction.

General arguments with choice functions

As we mentioned in the Introduction, our results presented in Sections 4 and 5 are de-
ducible from some general theorems on substitutable choice functions by Kelso and Craw-
ford [18] and Roth [21], as Fleiner and Jankó [13] pointed out. The selection of the colleges
can be described by their choice functions. For a college u and a set of applicants X, let
Chu(X) denote the set of selected applicants. A choice function Chu is substitutable (or
comonotone) if X ⊆ Y implies (X \Chu(X)) ⊆ (Y \Chu(Y )), which means that the set of
applicants rejected from a set Y must be also rejected from its subset X. This condition
holds with respect to both the L-stable and H-stable score limits. Kelso and Crawford
[18] showed that if the choice functions are substitutable on both sides of a many-to-one
markets then there always exists a stable matching, moreover there is one stable matching
that is optimal for the colleges. Roth [21] showed the existence of an applicant-optimal
matching for this model (and also for the more general many-to-many case).

Furthermore, Fleiner and Jankó [13] gave new results on the structure of stable match-
ings that applies for L-stable and H-stable score limits as well. They noticed that the choice
function of the colleges under L-stability satisfy the path-independence property, that is
for any set of applicants X ⊆ Y , Chu(Y ) ⊆ X ⊆ Y implies Chu(X) = Chu(Y ). There-
fore the theorem of Blair [9] implies that the set of stable matchings corresponding to
L-stable score-limits forms a lattice. However, the path-independence property does not
hold for the choice functions related to H-stable score-limits. Yet, the stable matchings
corresponding to H-stable score-limits form a lattice, as Fleiner and Jankó proved with
the use of new concept, called four-stability.

6 Comparison of the H-stable and L-stable versions

Intuitively it seems that the L-stable version of the algorithm is more applicant-friendly
than the H-stable version. It turns out that we can prove the following result.

Theorem 6.1. The score-limits obtained in the L-stable version of the applicants-oriented
procedure are always equal or lower than the score-limits obtained in the H-stable version
of the applicant-oriented procedure: i.e. lLA ≤ lHA .

Proof. Part I. Some colleges may have number of admitted students less than or equal
to their quota under lHA , i.e. qu − xu(l

H
A ) ≥ 0. Each college cu has a ”waiting” list of

applicants, who would prefer to be admitted to cu rather than to their currently assigned
colleges.

Let us apply some random tie-breaking to the original preference relation of the col-
leges. Each applicant ai will get a new score piu ≥ siu such that no two applicants will have
the same score at any college. Moreover, the new scores satisfy the following condition: if
sju < siu, then pju < siu. These piu scores are positive real numbers. For example, if there
are three applicants with scores s1u = s2u = 1, s3u = 2, the new scores might be p1u = 1,
p2u = 1.5, p3u = 2.

After that the following procedure is organized. If the number of applicants on cu
college’s waiting list is more than the number of empty seats then college cu sets it’s new
score-limit mH

A (cu) ≤ lHA (cu) equal to the score piu of the last admitted applicant in its
waiting list. Otherwise let mH

A (cu) = 0. Note that the new score-limits mH
A are non-

negative real numbers. This means that each college make offers to applicants from its
waiting list who fit the new score-limit.
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Some applicants may receive more than one proposal. Each applicant accepts one,
from the most preferred college, and rejects the others. If there remain any empty seat in
colleges then the second step is organized in the same manner and so on. Thus essentially
we run a college-proposing deferred-acceptance procedure with regard to the new scores.
At the end of this procedure some new score-limits mR are achieved such that mR ≤ lHA
by construction. These new score-limits mR and the corresponding matching µR are
stable (in the Gale-Shapley sense) according to new strict preferences of colleges, also by
construction.

Part II. For the strict preference profile and corresponding scores piu from Part I we
can organize applicant-proposing deferred acceptance procedure (which is, in case of strict
preferences, equivalent to both the H-stable and L-stable applicant-oriented algorithms).
The resulting matching µR

A is, of course, stable under strict preferences. Furthermore, we
can define score-limits mR

A that are equal to the score of the last accepted applicant if
college has no empty seats and to 0 otherwise. These score-limits mR

A must be the lowest
among all stable score-limits by the optimality theorem of Gale and Shapley. Therefore
mR

A ≤ mR in particular.
Part III. Now we deal with mR

A score-limits. Let us get back to the original weak order
preferences of the colleges and corresponding applicants’ scores siu. For each college with
xu(l

R
A) = qu we can construct a ”waiting” list of applicants, who prefer college cu to their

current matches under mR
A.

Let us now apply the L-feasibility concept. At the first stage each college sets it’s new
score-limit lRA(cu) ≤ mR

A(cu), that is the largest value, which allows to admit equal or more
than the quota under weak order preferences as L-feasibility prescribes. For example, if
there are two applicants with the same score siu, such that one of them is admitted to cu
under mR

A and the other is on the waiting list then we have to ’treat them equally’, so we
should lower the score-limit. Each college makes offers to these additional applicants.

Some applicants may receive more than one offer from colleges; in this case each
applicant chooses the most preferred college. After that if there is any college with number
of admitted applicants less than its quota then a new round starts. Each college chooses
new, lower, L-feasible limit, and so on. That is we run the college-proposing score-limit
procedure under L-stability. At the end, some new score-limits lL are achieved such that
lL ≤ mR

A by construction. These new score limits are L-feasible and L-stable, obviously.
Part IV. For each L-stable score-limit lL we know that lLA ≤ lL from Theorem 5.2,

where lLA are stable score-limits obtained by the L-stable applicant-oriented algorithm.
Now we can construct the following inequalities: lLA ≤ lL ≤ mR

A ≤ mR ≤ lHA . So
we can conclude that for any college admissions problem with score-limits the outcome
by the L-stable applicant-oriented algorithm is better for the applicants (i.e. yields lower
score-limits) than the outcome of the H-stable applicant-oriented algorithm.

Theorem 6.2. The score-limits obtained in the L-stable version of the college-oriented
procedure are always equal or lower than the score-limits obtained in the H-stable version
of the college-oriented procedure: i.e. lLC ≤ lHC .

Proof. Part I. Let us consider the lLC score-limits. Some colleges may have number of
admitted students more than or equal to their quota, xu(l

H
C ) ≥ qu.

Let us apply a random tie-breaking to the original preference relation of the colleges.
Each applicant ai gets a new score piu ≥ siu such that no two applicants have the same
score at any college, and these new scores do not contradict with the original ordering.
Moreover, if sju < siu, then pju < siu. These piu scores are positive real numbers.
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After that the following procedure is organized. At the first stage each college sets its
new score-limit mL

C(cu) ≥ lLC(cu) such that according to the new scores piu the number
of applicants who fit this score-limit would be exactly qu. The new score-limits mL

C are
non-negative real numbers. Let mL

C(cu) be equal to 0 if the number of students admitted
to cu is less than cu’s quota and otherwise let mL

C(cu) be equal to the lowest score piu of
any admitted student.

Some applicants are rejected from colleges they were assigned under lLC . Each rejected
applicant then applies to the subsequent college in her list. Colleges receive new applica-
tions and, if necessary, raise the limits so that number of accepted applicants are equal
to their quota. Some new applicants may be rejected, so a second round is organized in
the same manner and so on. Thus we run an applicant-proposing deferred-acceptance
procedure with respect to the perturbed strict preferences. At the end, some new score-
limits mR are obtained such that mR ≥ lLC by construction. These new score-limits are
stable (in the Gale-Shapley sense) according to the new strict preferences of colleges by
construction.

Part II. For strict preference profile and corresponding scores piu from Part I we can
organize a college-oriented deferred-acceptance procedure. The resulting score-limits mR

C

are, of course, stable according to these strict preferences. Furthermore, the corresponding
score-limits must be the lowest among all stable score-limits [14]. So, mR

C ≥ mR.
Part III. Now we deal with mR

C score-limits. For each college cu, xu(l
R
A) ≤ qu holds

under mR
C . Each college cu with number of assigned students lower than its quota has

score-limit lRA(cu) = 0. Now we get back to the original weak order preferences of the
colleges and original applicants’ scores siu.

Let us now apply the H-feasibility concept. For each college we can construct a list
of applicants, who prefer college cu to their current matches under mR

C . After that the
following deferred acceptance procedure is organized. At the first stage each college sets
it’s new score-limit lRC(cu) ≥ mR

C(cu) that is the smallest value, which allows to admit equal
or less than the quota under weak order preferences as H-feasibility prescribes. Therefore
some colleges may reject applicants. Each rejected applicant applies to the next college
in her list. Colleges receive new applications and, if necessary, raise their score-limits in
such a way that the number of accepted applicants is less than or equal to their quota.
Some applicants may be rejected and a second round is organized in the same manner and
so on. Thus we run an applicant-proposing deferred-acceptance procedure with regard
to H-stability. At the end, each applicant is either accepted to some college or rejected
by all acceptable colleges. Some new score-limits lH are achieved such that lH ≥ mR

C by
construction. These new score-limits are H-feasible and H-stable, obviously.

Part IV. For each H-stable score-limit lH we know that lHC ≥ lH from theorem 5.1,
where lHC is a H-stable score-limit obtained by the applicant-oriented score-limit algorithm.

Now we can construct the following inequalities: lLC ≤ mR ≤ mR
C ≤ lH ≤ lHC . So

we can conclude that for any college admissions problem with score-limits the outcome
by the L-stable college-oriented algorithm is better for the applicants (i.e. yields lower
score-limits) than the outcome of the H-stable college-oriented algorithm.

Corollary 6.1. Applicant-optimal H-stable and L-stable score-limits (lHA and lLA) are up-
per and lower bounds, respectively, for score-limits under any applicant-optimal stable
matching with random tie-breaking. Similar statement applies for the applicant-pessimal
score-limits (lHC and lLC).

Finally, we note that the proofs of Theorem 6 and 6.2 can be naturally extended to
get an implication that is slightly more general than the above Corollary. Suppose that
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the applicants could be strictly ranked by the colleges with exact scores e, but the scoring
method used in the scheme is not fine enough, which leads to rounded scores s with ties.
We say that scores f are refinements of scores s if f and s are not the same, and for
any pair of applicants ai and aj and college cu, f

i
u = f j

u implies siu = sju and siu < sju
implies f i

u < f j
u. Intuitively, if there exist exact scores e then a scoring method is finer

than another one if it produce scores closer to e.8

Corollary 6.2. Suppose that the applicants can be ranked with exact scores e by the
colleges, and the corresponding applicant-optimal stable score-limits are lA(e). Let s and f
be scores such that e are refinements of f and f are refinements of s. Let lHA (s) and lLA(s)
denote the applicant-optimal stable score-limits for scores s with respect to the H-stable
and L-stable concepts. Then lLA(s) ≤ lLA(f) ≤ lA(e) ≤ lHA (f) ≤ lHA (s) holds.

7 Strategic issues

Here we give two examples showing that neither of the above described score-limit algo-
rithms is strategy-proof. The manipulability from the applicants’ side is only interesting
in the case of applicant-oriented algorithms, as the applicants may successfully manipu-
late the college-oriented versions even for strict preferences (i.e., for scores with no ties).
Therefore we only consider the applicant-oriented versions in the examples below.

Example 1. Suppose that we have two colleges, cu and cv with one seat in each of them,
and two applicants s1 and s2 applying to both cu and cv with a preference towards cu and
with equal scores at both places. So the preference list of the colleges and students are as
follows.

a1 : cu, cv cu : (a1, a2)
a2 : cu, cv cv : (a1, a2)

Figure 1: An example for the manipulability of the H-stable applicant-proposing algorithm

Here the only stable solution is the empty matching (i.e., score-limits higher than the
scores of a1 and a2 at both colleges). However, if either of the students, say a1 withdraws
her application at cu then the unique H-stable solution (under falsified preferences) is
matching where a1 is allocated to cv and a2 is allocated to cu. So the manipulator (and
actually the other student also) would improve.

The following example is essentially the same as the one that Hatfield and Milgrom
[15] constructed in a different setting but for a similar purpose.

Example 2. Suppose that we have two colleges, cu and cv with one seat in each of them,
and three applicants a1, a2 and a3 applying to both cu and cv with the following scores,
s1u = 1, s2u = 1, s3u = 2, s1v = 3, s2v = 2 and s3v = 1. These can be described equivalently
with the preference lists below.

Here the only L-stable solution is the matching {(a1, cv), (a3, cu)} (i.e., with score-
limits l(cu) = 2 and l(cv) = 3). However, if a2 were to reverse her preferences with
regard to the two colleges then the L-stable applicant-oriented algorithm would produce
the matching {(a1, cu), (a2, cu), (a3, cv)}, where the manipulator (and actually both the two
other applicants) would improve.

8In Hungary the scoring method became finer in 2007. Until 2007 each written exam with a maximum
score of 100 had been rounded to an integer score between 0 and 15. Since 2007 the exact score of these
written exams are considered when calculating the final scores of the students. As a result the maximum
score increased from 144 to 480 and the ties became much smaller in the rankings of the colleges.
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a1 : cu, cv cu : a3, (a1, a2)
a2 : cv, cu cv : a1, a2, a3
a3 : cv, cu

Figure 2: An example for the manipulability of the L-stable applicant-proposing algorithm

8 Further notes

Regarding the Hungarian application, we would like to conduct an experiment with real
data and compute the four possible extreme stable score-limits, namely the applicant-
optimal and applicant-pessimal score-limits under H-stability and L-stability. It would be
also interesting to see how these concepts can be used in other settings, e.g. what could be
the corresponding solutions for the Boston and New York high school matching programs.

Regarding the theoretical problems, we would like to investigate whether there is any
structure behind the H-stable and L-stable score-limits. It would be also worth to study
further the relation of solutions satisfying equal treatment policy and those produced by
tie-breaking strategies.

Finally, some manipulable stable matching mechanisms turned out to be incentive
compatible in large markets [23, 16, 19]. Our question is whether either the applicant-
oriented stable score-limit algorithms is approximately strategyproof in large markets.
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