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In X-ray diffraction experiments smearing effects due to instrumental resolution are appearing,
Correction of these effects is not simple because of the statistical disturbances and limited a-priori
informations. A recursive algorithm is produced from the Bayes estimation theory. The regularization
process is interpreted as a certain a-priori information on the degree of smoothness of the real diffraction
pattern. -

Bei Réntgenbeugungsexperimenten treten Verschmierungseflekte aufgrund der instrumentellen Auf-
l6sung auf. Die Korrektur dieser Effekte ist nicht einfach wegen der statistischen Stérungen und
begrenzten a-priori-Informationen. Es wird ein rekursiver Algorithmus aus der Bayes-Theorie abgeleitet.
Der RegularisierungsprozeB wird als eine gewisse a-priori-Information fiber den Grad der Glattheit
des realen Beugungsbildes interpretiert.

1. Introduction

The mechanical properties (strength, plasticity, etc.) depends on the grain structure of
polycrystalline metals. The polycrystalline structure is characterized by its dispersiveness
and microdistortions.

The line-profile investigations of the diffraction patterns are one of the powerful tools
for the determination of the polycrystalline structure. To obtain the original diffraction line,
the experimental errors have to be eliminated. Unfortunately the widely applied “reciprocal”
method [1 to 3] is mathematically incorrect [4].

Our aim in the present paper is to modify the method of statistical regularization to
facilitate the analysis of X-ray data without losing pertinent information. The results so
obtained are compared for W and Mo powders with those obtained by the direct
deconvolution method.

2. The Methods of Evaluation

‘A line-broadening analysis generally consists of three stages:

1. Measurement of X-ray line profiles and application of a special correction (regularized
Kalman filter [5]).

2. Separation of the structural broadening. This consists of the elimination of the
instrumental and spectral imperfections. This elimination can be done by using a breadth
measurement (Voigt deconvolution [6]) or — more exactly — using discrete Fourier
transformation (DFT) (Stokes deconvolution) {7, 8].
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3. Evaluation of the structural broadening. The structural broadening is usually subdivided
into broadening due to size effects and to the lattice distortions (microstrains) [9].

The structural broadening can be approximated with the single-line Voigt method [7, 8],
representing the shape of the structurally broadened profile by its integral breadth and
half-width. To separate size and strain broadening by this method assumptions have to be
made: the broadening caused by the crystallite size is described by a Lorentz function and
the microstrain broadening by a Gauss function [7].

Assuming only a size (or strain) effect in the sample we can determine the structural
broadening by the Warren-Averbach method, [6] based on the description of the structurally
broadened profile by its set of DFT values. To separate size and strain broadening by this
method we use a physical condition [7, 10] requiring at least two orders of reflections from
the same lattice plane for crystal-size broadening.

The analyses based on line breadths and DFT values yield different results: the single-line
Voigt method yields the volume average of the crystal size, while the Warren-Averbach
analysis yields an area (surface) average. The results so obtained should be considered
complementary, not contradictory.

Our modified method of statistical regularization gives a high accuracy and the possibility
of smoothing the anomalous overshoots as well. This method gives the highest accuracy
in the determination of mosaic sizes (D) [11, 12] by the determination of true X-ray
diffraction spectrum.

3. The Modification Suggested
We consider now the linear system of equations for X-ray diffraction as follows:
I,=Kp+ ¢, 0]

where K is the matrix of the X-ray diffraction pattern, I, the total X-ray diffraction
measurement vector, p the estimated vector of the unknown real diffraction, & the vector
of statistical (white) fluctuations and errors with a zero mean value in time average.
Moreover, let £ and p have an a-priori Gaussian distribution. In this case, the minimum
variance estimator and the maximum a-posteriori estimator are identical.
In order to obtain the maximum a-posteriori estimator py,,,, E[l,/p] (the mean value)
has to be calculated first. From (1) we have [10 to 12]

E[ly/p) = E{¢ = I, — K p}
= (2m)™"2 [det (&))" exp { =05 I, — KpI* &'} @
After some simple manipulation the Gaussian density N{M[ p], p} results for E[ p/I,] with
Prmap = M[p] = M{K"E™ Iy + M~1(0) M[p(0)]} 3)
M=[M10) + K'¢"'K]™*. (4)
In this case where no a-priori information is known about p, M(0) — co (3) yields
P, = MK™¢7 ', ®)

M = [KTET1K]L. (6)
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Equation (1) may be solved with respect to vector p using the statistical regularization
method [3, 11, 12],

P =[K'¢TIK + aR]7H KT¢7 M, 7

where £ is a matrix stabilizer [1], introduced to take into account the a-priori information
on the degree of smoothness of the solution sought for p,, « is a regularization parameter,
O<a< 1.

The Fourier coefficients can be written as [4, 8, 9]

N

Re [F(k)] =

P(S) cos 2mk/L) S;, ®)

m [F(k)] _i ) sin (2mk/L,) )]

where L, is the value of the experimental interval of expansion (for the pattern), and S; = 26,
where the 0 is the Bragg angle.

The argument is §; = S; + (i — 1) H,, where H,, is the step of discretization. Distance
L(k)in the crystal lattice has been connected with the number of Fourier coefficients as [7 to 9]

A
K
L,cos 9

L(k) = (10)

where 1 is the wavelength of the radiation, # the Bragg angle of the reflection (centre of
gravity of the pattern), the Fourier coefficients being normalized to F(0) = 1. The normalized
Fourier coefficient is given by

by = T
AP(k) = ok (11)

In order to correct the value of D, and considering the error arising from the inaccurate
determination of the background level, a linear regression of In 4P(L) versus L is plotted,

In AML) = <In AP(L)) + u(L — (L), (12)

where 4AP(L) are the normalized Fourier coefficients of the function of real physical spreading
from fine particle dispersity p,(s) [1 to 3],

L= f L/M, (13)

i=1

{In AP(L)) = <§1 In AD(L,~)>/M, (14)

M is the number of significant Fourier coefficients of the function p,(s).

Using the method of least squares the well-known Gaussian strategy minimizes the
differences between the experimental values (intensities, absorption values, etc.) and the
model function see (12). We obtain for the linear regression coefficient the following
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expression [13]:

i lln AP(Ly) — <In AP(L)D](L; — <L)
="t . . (15)
(L = <L)

i=1

-

0

To clarify the degree of linear relation we shall calculate a correlation coefficient for the
values In AP(L) and L [9],

M

; (In AP(L) — <In AP(LP](L; — <L)

¢= M M (16)
] 2, [In A°(L) — <In AP(L)P? 2 (L= <L)

and residual dispersion [13]
M

Epin = (1 — @%) Y, [In AP(L;) — (In AP(L)] (17
i=1
as criterion of the correctness of the hypothesis concerning the presence of a linear relation
[13] was used. The standard deviation of the linear regression is

T =o)/(M—2/1—¢%. (18)

Further, according to [13], for the critical points t, [13] the distributions were determined
for the criterion of the so-called significance level (18) which is equal to 0.001 and degree
of freedomis K = M — 2.

If the condition

IT| > ¢, (19)
is not fulfilled, then for all i = 1, 2, ... M the following condition should be checked [13]:
lIn AP(L) — (I AP(L)) — p(Li — <L) < /EqualM . (20)

Those In AP(L;) values for which the condition (20) is not fulfilled are excluded and all
calculations (13) to (20) are repeated until (19) is satisfied.

The value D is calculated by Doy = — 1/u. The number of significant Fourier coefficients
of the function p,(S) which provide a linear relation between In A°(L) and L are generally
between 8 and 10 when the spectral method is used.

In calculations applying the developed modified regularization method the number of
necessary Fourier coefficients was 25 to 30 at a discretization step depending upon the
lattice parameter in an interval which is equal to L = 1.5 to 2.5 nm.

4. The Model

For a “pure” spectral line such as K, or K,, of the unresolved K, doublet at low Bragg
angles, the real diffraction function may be represented by the Cauchy form [9 to 11],

B A
1+ 1/c3(S — W)?

P:(S) ; 1)
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where 4 is the amplitude of the function of the true physical broadening, C the half-width
of the true physical broadening, W the position of the maximum.

To separate size and strain broadening, we modify our statistical regularization method
with the following physical assumption: broadening due to the mosaic size is independent,
while microstrain broadening depends on the order of reflection,

This method is used on the following basic equation involving the Stokes-corrected
Fourier coefficients, A(k), of a harmonic number (number of the term in the Fourier
expansion) k {7, 9],

A(k) = AP(k) A%(k), (22)

where A°(k) is the microdistortion coefficient, 4°(k) the mosaic size coefficient.
The first-order reflection can be written by (22) as

A'(k) = AP\ (k) AS(k). (23)
The second-order of reflection can be written as

Ak) = APM(k) AS"(k) . (24)

5. Conclusion

Our results lead to the conclusion that the modified method of statistical regularization
developed by us can be successfully applied for the determination of microstrains and
mosaic sizes by X-ray line profile analysis in deformed polycrystals. The instrumental
broadening of the measured X-ray signals leads to the solution of Fredholm’s integral
equations of the first kind.
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