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The electronic density of states of the Ni—P amorphous system is calculated in a self-consistent way
from first principles, using a KKR Green’s-function method with a single perturbed muffin-tin potential
in a periodic lattice.

Aus den ersten Prinzipien wird die elektronische Zustandsdichte des amorphen Ni-P-Sytems
selbstkonsistent mit einer Green-Funktionen-KKR-Methode und einem einzigen gestdrten ,,muffin-
tin“-Potential in einem periodischen Gitter berechnet.

1. Introduction

Special interest has been focused more recently on nickel-phosphorus amorphous systems,
mainly on their wide range of industrial application. The basic physical problem is connected
with the electronic structure of these alloys, namely with the charge transfer, the possible
forms of the electronic hybridization of the components, the speciality of valence band, etc.
The results obtained by different theoretical methods are not at all consistent. According
to the rigid-band model [1] a massive charge transfer is expected from phosphorus to nickel,
filling up the empty states of the Ni 3d-band by 3p-electrons of P. At the same time, the
LCAO calculations resulted an opposite charge transfer: from Ni to P at about 0.5¢ (e is
the denotation of an electron) [2]. Moreover the results of LMTO calculations are entirely
different, showing a considerable (about 1.42¢) charge transfer from P to Ni [3]- Recently
the results obtained by other calculations as by the KKR-CPA method [4] and by cluster
calculation with the discrete variational method (DVM) [5] concluded to the impossibility
of the donor-like role of phosphorus in these systems. The experiments, on the other hand,
did not verify the rigid-band calculations, reporting a slight change only in Eg as well
as in the d-holes in the system Ni—P [6]. The absence of charge transfer was supported
by other experiments [7] as well, when no significant charge transfer was observable;
only the hybridization of s- and p-electronic states of phosphorus with Ni 3d-states was
dominant.

The various calculations have several disadvantages; the cluster calculations have
problems with the finite cluster size and with its extension, surfaces, etc. Similarly
the supercell calculations are problematic because, if a certain structure contains a defect,
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it will be repeated through the whole crystalline structure, invoking a periodically arranged
effect.

According to these earlier discussions the real electronic structure of the system NiP is
not clarified in details yet, and the questions related to it are relevant.

An ab-inito calculation applying the Kohn-Karringa-Rostocker Green’s function method
(KKR-GFM) is presented here.

We have worked out a new version of the method KKR-GFMT (KKR Green’s
function muffin-tin) in the frame of the approach LAPW for the electronic structure of
phosphorus in Ni matrix. The impurity is described by a single perturbed muffin-tin (MT)
potential in an infinite periodic lattice. The Green’s function method describes correctly a
single perturbation in an infinite crystal, and the condition of self-consistency can also be
met easily applying it. All of the disadvantages of other methods could be avoided by this
calculation since it supposes that the full spatial extent of the perturbed potential is
localized.

We try to discuss several problems of a system with small amount of phosphorus,
as an impurity in a Ni-matrix. We expect that upon dilution the interaction between
phosphorus atoms will be negligible and the density of electronic states [N(E)] will
be the same as in the processes of alloying for the more complicated concentrated systems.
The effect on N(E) by phosphorus as well as the more general behaviour of the impurity-like
states have been presented in our present paper. It is shown that all those relevant effects
on the electronic structure appear in these dilute alloys which are important in the
concentrated ones.

The calculation are based on the Green’s function of defect crystalline state constructed
by the linear augmented plane wave (LAPW) method [8].

2. The Method of Calculation

The method of Green’s function is well developed [9, 10] for the electronic structure
of defects in homogeneous matrices [11 to 15]. In many cases the KKR method [16] has
been applied. There are some difficulties connected with this method such as the
discontinuity of basic wave functions and the necessity of singularity on KKR structure
constants [9].

In the present paper the LAPW method has been used, which had been successfuly
applied in calculations of electronic structures and optical properties of various compounds
[17 to 20].

Let us start with the spectral form of the Green’s function [10],

G(r,r,E) =

Q
(7733 ; j Vi) Vi) (E — E)~ ' dk, (1)
" BZ

where r and #’ are radius vectors, Q, is the volume of the Wigner-Seitz cell, E, A, and k are
the energy, zone index, and wave vector, respectively; the integral is taken over the whole
Brillouin zone. ¥,,(r) and E, , are the wave function and self-energy as generally used in
the KKR method. Used the solution of Schrédinger’s equation in MT-sphere the G(r, ', E)
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function has been presented by a standard way [21 to 22],
G+ R ¥ + R"E) = —iS, 2. Ri(rp, E) Y (r) Hi(r>, E) Y. ()
L

+ LZL R(r, E) Y,(r) GEL(E) Ry (', B) YL.() ; @)

r. = max(r,r), ro = min (1, 1)
with the notations

Y, (r) spherical harmonics,

L = (I, m) orbital quantum numbers,

R" and R" atomic positions,

K = VE; HY(r; E) = R}(r, E) + iN{(r, E),

NU(r, E) nonregular solution of the radial Schrodinger equation,
' (E) energy-dependent coefficients of the Green’s function.

The solution of Schridinger’s equation for RY(r, E) and Hj(r, E) satisfies the following
conditions:

RMr, E) = j,(k,¥) — i)/ E }(E) y(k, r), 3)
Hi(r, E) = y(k, 1),

where j;(k, r) is the spherical Bessel function, t/(E) is the scattering matrix in the n-th
MT-sphere, which is calculated by the standard method, used the phase shifts of scattering
[9 to 10}, and hy(k, r) is a first order spherical Hankel function.

The perturbations caused by defects in a real crystal can be considered as a modification
of the ideal crystalline state (G?,.(E), [10]),

w.(E) = G + Gpi(E) At (E) GL/L(E) “

where At} is the change in the scattering of the matrix.
In the case of a distortion of the potential taken into account only in one MT-sphere

and only the s-, p- and d-phase shifts are used for calculations, then (4) has been reduced
to four scalar conditions,

GOnn(E)
" (E) = T 5)
1 — GY™(E) Atj (E)

Using the coefficients obtained, the density of electronic states in the MT-sphere becomes
[23] as follows:

N(E) = — % J Im G(r, #'; E) dr (6)

Vi
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and the corresponding electron density is
Ep
2
n(r) = — — Im G(r,r; E)dE. (7
T
A self-consistent iteration-process has been introduced for the calculation of the density of
electronic states. For the calculation of the bulk potential Vosko’s parametrization [24] has
been used. The charge transfer into the MT-sphere has been calculated by the density of

electronic states obtained before.
Within the LAPW method the representations of the wave function are

Yalr) = Z ag‘)-(/)ki(r) s

1
— exp (ikr) ; r> R,
o p (ikr)

o) = 42 ®)
L exp (k) Y ioh (k) Yo () YEGR) ;T <R,
L
0
dRS Es7 !
(pi(ki’ l‘) = aslfRsl(Esl; l‘) + lsli _%—.E—ﬂ 3

where a¥* is the solution of the secular equation in the LAPW method, k; = k + b;; b; is
the reciprocal vector, R, the radius of the s-type MT-sphere, 7, the position of the MT-sphere
in the elementary cell, ay; and by, are coefficients determined by fitting the wave vectors
on the surface of the MT-sphere, R (E, ) come from the solution of the radial Schrédinger
equation in the s-th MT-sphere with energy E;, normalized as

Ry

[ r*drRYE) =1. 9)

0

The function & (k;, r) depends indirectly on the energy through the wave vector k. The

direct substitution of @} (k; r) into (2) is not possible. By the substitution (8} into (1) and
used (2), after an integration, we obtain

Lot (B) o (E) = 10,00 ko' (E) locy'(E)|

“ORIREY. [ iTME - B ldk Y afal)

A BZ i, jRs
' Rs
x exp (i[l;R" — k;R")) | &5 (k;, r) Ri(r, E)r* dr
0

Rgr ) ,

x | @5k, r)RY(ry E)r? dr YE(K) Y (k) (10)
0

where
' Rs .
%5 (E) = | Ri(, E)R}(r, E)rdr. (11)
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Using the following approximation for R (r, E}:

dRy(Eg, ¥ S(E -2
RI(r E) = (Rs,(Esl, M)+ (E — Ey) ’éE ')> (1 " (E“”(E) N > (12
- Lt sl

where
Rs

dRy(Ee N\?
N, = J <_%’l> 2 dr.

0

finally we get
Im [GY.(E) |/ i (E) it (B)] = 0, dpk laff(E)| — 2RIRS

xY | 8(E — E) dki" Y ab(aiy
A BZ ij

xexp (i [k;R" — ij"’]) (ag; + (E — Eq) byiN) [1 + (E — Eg) Ng~'7?
X (agp; + (E — Epg) by jNyp) [1 + (E — Eer)* Noyl T2 YE(R) YL (k) (13)
In the concrete calculation performed for Ni the self-consistent potential calculated by
LAPW has been used, with the integrals in (13) approximated by a tetrahedral algorithm

with quadratic interpolation. In fact, the set of the basis functions calculated by this method
is not complete,

q’k,x(") = IS'FI(.).(") s (14)

where P is a projection operator applied to ¥, ,(r), which is the exact single electronic wave
function of the crystal. Any exact solution must satisfy the sum rule [25] and other a priori
conditions [26]. It is easy to prove that the better the sum rules are obeyed, the better is
the reliability of the Green function coefficients in (2). This is realized when the set of basic
functions is almost complete.

Consequently, we expect a small error only at the transition from the LAPW basis to the
KKR case [27, 28]. A further control of the feasible determination of the imaginary part of the
Green function is its comparison with the density of electronic states calculated by LAPW
in (5).

The real part of the Green’s function can be calculated by the Kramers-Kronig relation

+ o
, 1 Im G™ .(E) o (E) dE
Re GYL(E) i (E) = — — . 15
11 (E) o (E) nJ G B (15)

In order to carry out the calculation in an appropriate number as well as cut of energy
boundaries for the evaluation of the integral in (15) a lot of points in the energy space are
required. As a consequence, a regular calculation of Kramers-Kronig’s transition needs a
lot of computer time. To reduce the requirements, the real part of the Green’s function was
calculated by Gilber’s transformation [29] employing quick Fourier transformation.

One of the most important questions in our present work is the validity and limitations
of the presented approximation of a strongly localized model calculation (SLMC) of defects.
The real physical properties have to be investigated concretely, how they are approximated
when taking into consideration only the localized interactions between the impurity and
matrix atoms in their near vicinity. The case having larger and larger number of atoms
involved obviously offers better and better approximations to the real situation. The
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Table 1

Comparison of the total momentum of the cluster containing the impurity and its twelve
neighbours for some selected 3d-metal impurities in Cu

impurity calculations present experiments
[30] [31]
Cr 339 3.30 3.66 246 [32]
39 [33]
Mn 3.65 3.58 3.68 396 [37]
4.93 [34]
Fe 3.68 [35]
2.62 2.51 2.76 34 [36]
3.0 [37

difficulties of the technical computational problems generated by this condition are not
proportional with the value of the information reached by the procedure. There are a few
calculations for the magnetic defects (3d-metals) considering a large number of coordination
shells involved [30, 31] in copper matrix. These calculations for the total magnetic moment
are repeated by the present method for Cr, Mn, and Fe impurities in Cu. Our results, in
comparison to others, are given in Table 1.

Despite of our very simple calculation the correspondence with the other results is
satisfying, moreover the agreement with experimental data is better in our case. F urthermore,
using these principles for calculations of electric resistivity also is well fitting to experiments
[38]. There is another qualitative probe of the effectivity of SLMC, the comparison of the
charge of the impurity and an ideal matrix atom in the MT-spheres. For the 3d-impurities
(in paramagnetic state) there are the charge values in Cu matrix as follows: Sc — 0.52, Ti
— 045,V — 035, Cr — 0.25, Mn — 0.16, Fe — 0.08, Co — 0.01, Ni — (—0.04). These
values are so small that the localized considerations are not contradicting in this point. In
the case of phosphorus defects in Ni matrix we have no (calculated or measured) information,
but in this case the charge in the MT-sphere of P is also not large in comparison to the
charge of the Ni matrix in their MT-sphere. These are the charge transfers 0.32, 0.31 and
0.24 in the cases of Ni (fc.c.), Ni (b.c.c), and Ni (cub.) respectively. This small effect is also
giving reality to the localized approach of the system. The reasonable agreement between
cluster and band structure calculations for metall-metalloid systems [39] is also supporting
the validity of our present calculations.

3. Results and Their Discussion

The partial density of electronic states (PDOS) for pure f.c.c. Ni calculated by our method
is given in Fig. 1. In the vicinity of the Fermi energy the d-states are characteristic. The
d-zone has hole states which is a necessary condition for d-sp hybridization.

As deduced from experiments [7], the electronic structure of pure Ni changes but slightly
due to the phosphorus alloying. For understanding the role of P in Ni, we have calculated
the PDOS of P in Ni (f.c.c.) matrix (Fig. 2). In comparison with the PDOS of pure
Ni, the hybridization of sp-states of P with d- and p-states of Ni is well observable. While
p-states of P and d-states of Ni are overlapping, the PDOS of p-states of phosphorus at
the top of the valence band is small. The basic interaction appears between the hybridized
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* 02F B Fig. 1. PDOS of pure f.c.c. Ni
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sp-states of Ni and sp-states of phosphorus. In the region of 7 to 10eV below Ep the
impurity-states of P are clearly seen. Finally, antibonding states of P are formed 7 to 8 eV
above Ep, mainly consisting of p-states.

The main question is the direction and amount of the charge transfer, which can also
be calculated in our approximation. We have got about 0.32¢ charge transfer from P to
Ni, which is pretty small and not against the experiments [40]. For the more concentrated
alloys, the P—P interaction will further reduce this charge transfer value since it was
calculated for an isolated impurity.

In the formation of the amorphous state a number of different clusters (Ni,,P,) must aiso
be considered; so the influence of the nearest neighbourhood (with a given symmetry and
composition) on density of electronic states (DOS) would become important.

Based on these ideas various hypothetic structures (such as b.c.c. nickel, cubic nickel)
and the impurity states of P in them have been calculated by using the present method. In
the first step the pure hypothetic b.c.c. Ni and cub. Ni have been calculated (Fig.3). Contrary

" to the results for the fc.c. Ni calculation (Fig. 4) characteristic differences could be observed

%10 physica (b) 163/1
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T J  Fig. 2. PDOS of P in f.cc. Ni
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at he vicinity of Eg. In the case of the amorphous structure we can assume that short range
symmetries exist, and a mixed, weighted average of PDOS is seen in the PDOS of the
hypothetic amorpheous pure Ni, taking into consideration the requirement of equality of
Fermi energies, during the averaging. As a first approximation the common band can be
constructed by the rigid shift of the obtained DOS curves to an acceptable Er energy, very
close to Eg for f.c.c. Ni. In this shifted case several similarities between these DOS curves
belonging to different local symmetries become clear. The calculation has been made for
P impurity in the hypothetic b.c.c. and cubic symmetries.

The PDOS for P in b.c.c. Ni (Fig. 5) is very similar to the PDOS for P in f.c.c. Ni (see
Fig. 2). The result of calculations for N(E) is shown on Fig. 6. The calculated charge transfers
for f.c.c., b.c.c., and cubic structures are 0.32¢, 0.31e, and 0.24e, respectively. The s-states of
P are slightly changing in an interval of 7 to 10eV below Er and the change is more
considerable at the top of the valence band. This causes a larger sp-hybridization of P and
the interaction of sp-states of P with Ni d-states. Due to the relatively large density and
delocalization of P p-states the symmetry change is more effective for this state than for
others. On the other hand, the calculated N(E) for different hypothetical symmetries are

On the Elec

D05 (states /eVaforn)

Fig. 3. Hy
not so di
behaviou
and Ni s
11.65, and
? 6 —
'§ i
Bhr

S F

}) .

& (=

g L

% 2r

N

S L

Fig. 4. D¢

10*



V. S. STEPANYUK et al.

OS of P in fe.c. Ni

sume that short range

in the PDOS of the
irement of equality of
common band can be
ptable Er energy, very
sen these DOS curves
on has been made for

 for P in fc.c. Ni (see
1lated charge transfers
ctively. The s-states of
d the change is more
\ybridization of P and
sely large density and
for this state than for
1etical symmetries are

On the Electronic Structure of Phosphorus in Nickel

I
Ni(bc.c.)

>
I

S
LI T

N

T T 1

DO3 (states /eVatormn) ——m—

OO

Ni (simple cubic)

e T

5
Elelf) —

Fig. 3. Hypothetical DOS of Ni. a) B.c.c. structure, b) simple cubic structure

147

not so different from each other as far as their shape is regarded. It reflects the main
behaviour of the P impurities in Ni matrix, and accounts for various hybridizations of P
and Ni states. The energies of bonding states of P are changing only slightly with 12.2,
11.65, and 10.2 eV below Eg for f.c.c., b.c.c,, and cubic structures, respectively.
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Fig. 4. DOS of pure f.c.c. Ni
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010 l Fig. 5. PDOS of P in b.c.c. Ni
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Constructing the amorphous state an average can be assumed. Since the differences in N (E)
are not so large for different cases of symmetry, we can assume that the first coordination
sphere with its special short-range order and symmetry does not influence so much the elec-
tronic structure of the amorphous state as was expected. On the other hand, the electronic
structure has an important role in stabilizing the Ni—P system [41 to 43], so the effect of second
and further coordination spheres should be important as well. It means that in the case of this
system the medium-range order should be of basic importance, as has been discussed before
[44].

4. Conclusion

An LAPW method in the frames of the Green’s function formalism was developed for the
calculation of electronic structure of phosphorus impurity in hypothetic crystalline modifica-
tions of Ni. It was shown that only a small charge transfer from P to Ni appears in the
case of single P impurity, which becomes smaller at increasing phosphorus concentration.
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We could not observe any appreciable charge transfer in the Ni—P system. Less essential
differences were observed between the electronic structures of Ni-P systems with different
short-range symmetries. The evaluation of these facts leads to the conc'lusion, that the
medium-range symmetries have an important role in stabilizing the Ni—P amorphous
system. The investigation of this topic is in progress.
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