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G. Vértesy
Research Institute for Materials Science, Hungarian Academy of Sciences, H - 1525, P.O.B. 49, Budapest, Hungary

~Received 1 February 1996!

Domain-wall ~DW! coercive field,HCW , which characterizes pinning of DW’s in soft magnetic materials,
decreases strongly with increasing value of gradient, G, of the effective local DW-position-restoring magnetic
field. Particular shapes of the dependence,HCW(G), can be calculated from the mean energy dissipation of the
DW moving over the particular profile of the DW pinning field,Hp . In this paper,HCW(G) is calculated from
a wall-pinning field,Hp , which is expressed as a stochastic function of the DW coordinate,xDW . The
wall-pinning field,Hp , is described as a Wiener-Le´vy stochastic process modified by two correlation lengths
in such a way thatHp is stationary for large DW displacements anddHp /dxDW is well defined for small DW
displacements. The computedHCW(G) is close to a hyperbolic decrease, but it approaches finite values if
G→0 and it decreases in a much steeper way than}1/G for high values ofG, which agrees with the
experimental observations. Experimentally, the dependenceHCW(G) was measured on close-packed arrays of
cylindrical bubble domains in two thin films of magnetic garnets, where the local field gradient,G, was
controlled within the range 109–1010 A/m2 by changing distances between neighboring DW’s. The DW
coercive field,HCW , extrapolated from the measured values forG→0 was close to 80 A/m for both samples,
while HCW(G'1010 A/m2) was several times smaller. Fitting the calculatedHCW(G) dependence to the
experimental data, we obtained values of the Wiener-Le´vy correlation lengths well comparable to the DW
width parameters.@S0163-1829~96!00941-1#

I. INTRODUCTION

Coercive properties of magnetic materials and the related
width of their magnetic hysteresis loops are caused by sev-
eral different magnetization mechanisms. The main ones are
sudden flips over or rotation of the magnetization vector in-
side magnetically saturated volumes~domains and/or grains!,
generation and annihilation of magnetic domains and domain
walls ~DW’s!, and movement of the already existing domain
walls through the nonuniform material. The latter process,
namely the pinning and depinning of domain walls during
their motion, is often dominant in soft magnetic materials.

The aim of the present work is to investigate the mecha-
nism of the hysteretic behavior of the moving domain walls.
In particular, we study the influence of nonuniform internal
effective fields and/or of nonuniform external real fields ap-
plied at the wall position on the hysteretic properties of the
wall pinning and depinning process. Both the experimental
study and the accompanying theory are carried out for such a
magnetic material, sample geometry and an applied field
range that ensures the whole investigated change of the
sample magnetic moment to be exclusively due to motion of
180o DW’s.

In our treatment, the internal DW position-restoring field,
Hi(xDW), experienced by the moving DW is described as

Hi~xDW!5GxDW1Hp~xDW!, ~1!

wherexDW is the DW position andHp is the wall-pinning
field expressed as a stochastic function of the DW position
xDW . The termGxDW is an odd function ofxDW , and it is
associated with the presence of some large-scale~compared
to the mean period of the wall-pinning fieldHp) parabolic
energy well, which controls the average response of the
DW’s to external fields. We will often refer to it as the mean
field gradient experienced by the DW. On the other hand, the
wall-pinning fieldHp(xDW) is a random function of the DW
position, describing the short-scale DW interaction with de-
fects and other sources of the structural disorder. In Fig. 1 we
see a schematic representation of the effective domain wall
energy and its derivative~i.e., of the internal DW position-
restoring fieldHi vs the domain-wall positionx), for low and
high field gradients. In the frame of this description, the field
gradientG and the wall-pinning fieldHp(xDW) are the only
physical quantities that determine the half-width,HCW, of
the quasistatic hysteresis loop generated by the DW motion,
which can be truly called the DW coercive field.

The calculation ofHCW is the basic problem in any de-
scription of the DW hysteresis and coercivity properties.1–3

In the literature, the large-scale wall-position-restoring forces
acting on the domain structure@analogous to the term

PHYSICAL REVIEW B 1 NOVEMBER 1996-IVOLUME 54, NUMBER 17

540163-1829/96/54~17!/12262~10!/$10.00 12 262 © 1996 The American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/16287773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


GxDW of Eq. ~1!# are readily recognized to determine the
permeability,m, of the system, but their possible influence
on the value of the DW coercive fieldHCW is rarely taken
into consideration as it was done, e.g., in Refs. 4–7. Yet, this
influence is by no means negligible and the principal aim of
the present work is to extend the latest considerations and to
give theoretical and experimental support to this statement.
The basic point is that the DW coercive fieldHCW is ex-
pected to be a decreasing function of the field gradientG.

The effect of the field gradientG on the DW coercivity
was measured directly by Grigorenkoet al.7 on thin films of
low magnetization magnetic garnets with large uniaxial an-
isotropy perpendicular to the film plane. A system of spe-
cially designed permanent magnets was applied for genera-
tion of the field gradient,G, around the position of a single
DW, the magnitude ofG being changed by positioning of
the pole pieces. An additional uniform field,Ha , was applied
to move the DW. The DW coercive fieldHCW was found to
decrease approximately linearly with the field gradientG up
toG'2.23109 A/m2. The measuredHCW was equal to zero
~within the experimental error! above this critical value, i.e.,
the observed DW moved without any measurable hysteresis
loss.

Calculations based on a simple schematic description of
the wall-pinning fieldHp led to the conclusion4,5,7 that the
DW coercive fieldHCW should be approximately a linear
function of the field gradientG, of the form HCW(G)
5HCW(0)2aG, with a being a suitable constant and
HCW(0) the coercive field of a DW free of any position-
restoring force.

Recently Pu˚st and Bertotti6 calculated the dependence

HCW(G) by a statistical approach, where the wall-pinning
field Hp(xDW) was described by a modified Ornstein-
Uhlenbeck process. They predicted the DW coercive field
HCW}1/G, with suitable cutoffs at low and high values of
the field gradientG. In the present work, this approach is
developed in full detail, and theHCW(G) dependence is de-
termined by analytical and numerical methods, as a function
of the statistical properties of theHp(xDW) stochastic pro-
cess. The theoretical predictions are compared with the ex-
perimentalHCW(G) dependence measured on two magnetic
garnet films with cylindrical bubble domain structure. In the
experiments, the field gradientG was changed in the range
109–1010 A/m2 by modifying the bubble size and density.
The comparison between the theory and the experiments
leads to a quantitative estimate of the typical wavelength of
the structural disorder space variations, which is in agree-
ment with what is expected for the investigated materials.

The problem addressed in this article is of a general na-
ture and it is at the heart of the hysteresis mechanisms. The
actual origin of the effective restoring force,GxDW , is not
important in determination of the coercivity reduction. It can
be due to an externally applied real nonuniform field~as
considered by Ref. 7!, or to the general rate of change of the
energy of the sample domain structure~as in the present
experiments! or to the sample geometry, or to other causes.
Only the magnitude of the field gradientG is important in
determining how much the DW pinning is suppressed in
comparison with a free DW (G 5 0! which exhibits the
largest value of the DW coercive fieldHCW(0). As aconse-
quence of this generality, theHCW(G) dependence is likely
to be responsible for such rather peculiar, not yet well de-
scribed effects, like theHCW dependence on domain struc-
ture subtle features or on the size and shape of the sample,
experimentally observed on various materials.8,9

II. MODEL

A. General considerations

In our model calculations, we consider a certain part of a
given sample, with just one rigid plane 180o DW, character-
ized by its position coordinate,xDW . We neglect any effect
related to the internal DW degrees of freedom~wall flexibil-
ity, internal deformation modes, etc.!. In this sense, all the
quantities introduced here are to be interpreted as averages
over the whole DW surface. We assume that the DW sweeps
the distance 2l ~with 2 l<xDW< l ) when the sample is
brought from saturation to saturation, which means that 2l is
of the order of the average magnetic domain size. Finally, we
assume the problem to have a scalar nature, with all fields
and magnetization vectors aligned along the same direction,
parallel to the DW surface.

In order to calculate the DW coercive field,HCW, we
have to evaluate the amount of energy dissipation during the
DW motion. This can be done if we know the equation gov-
erning the DW dynamics. The simplest assumption, sup-
ported by many experiments on various materials10,11 is that
the DW motion has a viscous character, and thus obeys an
equation of the form

FIG. 1. Schematic representation of the domain structure energy
~top! and of its derivative@i.e., of the related internal DW position-
restoring fieldsHi(x)# ~bottom! vs the dimensionless domain wall
position,x, for low ~left! and high~right! field gradient,b, respec-
tively. The energy and the effective fields consist of two compo-
nents: the short-range stochastic fluctuations due to the local wall
pinning and the long-range parabolic energy well. The magnitude of
the field gradient in the right figures is 15 times larger than in the
left figures. It is obvious that the range of quasiequilibrium DW
positions is much wider if domain wall is in low gradient~left! than
if it is in high gradient~right!. Therefore the hysteresis losses are
lower for domain walls constrained at their positions by higher field
gradients. Compare the corresponding Barkhausen jumps repre-
sented by the arrows in the bottom figures.
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~Gt!vDW5Ha~ t !2Hi~xDW!5Ha~ t !2GxDW2Hp~xDW!,
~2!

wherevDW5dxDW /dt is the DW velocity,Ha(t) is the ap-
plied field, assumed to be a known function of time, and
Hi(xDW) is the DW position-restoring field discussed in the
introduction @Eq. ~1!#. The damping coefficient multiplying
vDW in Eq. ~2! is determined by the dissipation mechanism
acting on the system. By expressing it as (Gt), we introduce
the characteristic time constantt of the process. In metallic
materials, where the dissipation takes place dominantly
through eddy currents, (Gt)52I ssgd, whereI s is the satu-
ration magnetization,s is the electric conductivity,d is the
sample thickness, andg is a numerical factor (g'0.1356 for
l@d ~Ref. 12!. In nonconducting systems, dissipation may
be due to other mechanisms, like spin relaxation, and (Gt)
generally attains much smaller values.

According to Eq.~2!, the set of the DW rest positions
(vDW 5 0!, which is described by the quasistatic magnetiza-
tion curve of the system, obeys the equation

Ha~ t !2GxDW2Hp~xDW!50 . ~3!

Since, as discussed below,Hp(xDW) values fluctuate
around zero, thexDW(Ha) dependence averaged over the sto-
chastic fluctuations is simplŷxDW&5Ha /G. This result
shows that the field gradient,G, is directly related to the
slope of the magnetization curve,m5I s /(Gl), averaged over
the stochastic fluctuations. Any individual magnetization
curve, however, will show irregular deviations from this av-
erage behavior, as a consequence of the random fluctuations
of the pinning fieldHp(xDW). Hp is proportional to the local
gradient of the DW energy,Hp(xDW)5@dsw(xDW)/dxDW]/
(2I s). Due to the nonuniformity of the sample~fluctuations
of anisotropy, exchange, defects, etc.! sw(xDW) fluctuates
randomly around some constant average value^sw(xDW)&.
This means, that the DW cannot store energy during its mo-
tion, and consequently that the wall-pinning fieldHp(xDW)
fluctuates around zero.

B. Energy losses and magnetic hysteresis

Given the viscouslike dynamics described by Eq.~2!,
where the DW velocity is proportional to the local magnetic
field, there is always a finite dynamic width of the hysteresis
loop, Hdyn, for a given finite rate of change of magnetiza-
tion, even without any static DW pinning12 (Hp50!:

Hdyn5^Ha2Hi&5~Gt!^vDW&. ~4!

However, if the random pinning field,Hp , is also present,
there is an additional contribution to dissipation, and a more
refined analysis is needed. In this case, an estimate of the
pertinent coercive field,HDW , can be obtained by comparing
two different expressions for the mean energy loss during the
DW motion. On one hand, we know that, given a DW hys-
teresis loop with the half-width,HDW , the mean rate
^dE/dt& of the energy dissipation per unit time and unit DW
area is

K dEdt L 52I sHDW^vDW&52I sHDW

dHa /dt

G
. ~5!

Equation ~5! is valid for constant rate of field sweep
dHa /dt. On the other hand, after taking into account that the
energy associated with the termGxDW is reversibly stored
and released and that the wall-pinning fieldHp is zero on the
average taken over the stochastic fluctuations, we obtain
from Eq. ~2!:

K dEdt L 52I s~Gt!^vDW
2 &. ~6!

By comparing these two expressions for the energy dissi-
pation rate, we obtain

HDW5~Gt!
^vDW

2 &

^vDW&
, ~7!

which links the value of the coercive fieldHDW to the sto-
chastic character of the DW velocityvDW . The quantity
HCW previously introduced is just the quasistatic limit of
HDW :

HCW5~Gt! lim
^vDW&→0

^vDW
2 &

^vDW&
. ~8!

In the numerical studies presented below, a small but nev-
ertheless finite DW mean velocity must be used. In this case,
the purely dynamic term~4! can give an additional contribu-
tion which alters the value of the DW coercive fieldHCW.
To avoid this spurious effect, the pure dynamic part was
always subtracted from the numerical estimates, i.e.,HCW
was evaluated as

HCW'~Gt!S ^vDW
2 &

^vDW&
2^vDW& D ~9!

for small DW velocityvDW .

C. Stochastic pinning field, Wiener-Lévy process

In the frame of the present description, the microstructural
properties of a given material determine the statistical prop-
erties of theHp(xDW) stochastic process, and we have to
make some explicit assumption on such properties before
being able to make any quantitative prediction for the sys-
tem. Investigations by several authors10,11 on picture-frame
single crystals containing a very simple domain structure
have shown that the statistical properties of the wall-pinning
field Hp are not far from those of a Wiener-Le´vy ~WL! pro-
cess, i.e.,

dHp

dxDW
5

dW

dxDW
, ~10!

where the WL processW(xDW) is characterized by indepen-
dent incrementsdW obeying the equation

^dW&50, ^udWu2&52~AH
2 /j2!dxDW , ~11!
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whereAH is a parameter with the dimension of field that
measures the WL process intensity andj2 is a proper corre-
lation length, used later in this section.

A WL process is self-similar on all scales, and this has
two important, but rather unphysical consequences:~1! the
processW(xDW) is nonstationary in such a way that the wall-
pinning field Hp can reach arbitrarily high values,~2! the
processW(xDW) is nondifferentiable at any point. The de-
rivative dW/dxDW used in ~10! is actually only a formal
notation to indicate a white noise process.

The fact thatW is nondifferentiable implies that the slope
dHp /dxDW cannot be defined no matter how small is the
DW displacement inxDW . On the contrary, we would expect
that, on the average,dHp /dxDW}(1/x i), where x i is the
initial susceptibility. In order to overcome these drawbacks,
we describe the stochastic behavior of the wall-pinning field
Hp(xDW) by including two finite correlation lengths,j1 and
j2 (j1<j2), into the WL process. The physical meaning of
the correlation lengths is following:~1! for DxDW@j2 the
pinning field Hp(xDW) becomes stationary and fluctuates
within a finite range; ~2! for DxDW!j1 the slope
dHp /dxDW attains a well-defined value related to the local
short-scale initial susceptibility of the DW at that position.
The short-scale susceptibility is given by local properties of
the wall-pinning fieldHp and it is in general very different
from the large-scale susceptibility,}1/G, corresponding to
the large-scale slope of the hysteresis loop.

These features are described by the set of coupled Lange-
vin equations

dHp

dxDW
1
Hp

j2
5S~xDW!,

dS

dxDW
1

S

j1
5

1

j1

dW

dxDW
, ~12!

where the WL processW(xDW) is characterized by Eq.~11!
andS(xDW) describes the slope ofHp .

It should be noted that Eq.~12! can be rewritten as

dW

dxDW
5
Hp

j2
1S 11

j1
j2

D dHp

dxDW
1j1

d2Hp

dxDW
2 , ~13!

which gives in the limit of lengthsj1→0 andj2→` just Eq.
~10!.

D. Dimensionless description

We can introduce a convenient dimensionless description
by normalizing the relevant quantities with respect to the
distancej2, time t, field AH , and gradientAH /j2 in the
following way: DW positionx5xDW /j2, time u5t/t, DW
velocity v5dx/du5tvDW /j2, magnetic fields ha(u)
5Ha(t)/AH , hp(x)5Hp(xDW)/AH , coercive field hCW
5HCW/AH , gradient b5Gj2 /AH , slope
s(x)5S(xDW)j2 /AH . The correlation lengths are character-
ized by their ratioa5j1 /j2, while the dimensionless WL
process isw5W/AH .

In terms of these quantities, the basic equation~2! takes
the form

bv5ha~u!2bx2hp~x!. ~14!

Equations~12! and ~11! become

dhp
dx

1hp5s~x!,
ds

dx
1
s

a
5
1

a

dw

dx
, ~15!

^dw&50, ^udwu2&52dx. ~16!

The dimensionless coercive field,hCW, can be expressed
similarly to Eqs.~8! and ~9! as

hCW5b lim
^v&→0

^v2&
^v&

, hCW'bS ^v2&
^v&

2^v& D , ~17!

where the equation to the right is valid for small DW veloc-
ity v. The evaluation of the coercive fieldhCW is thus re-
duced to the problem of the evaluation of^v2& and ^v&.

E. Pure WL process

As a first step, we calculate the DW coercive field for a
stochastic pinning field,Hp , following the pure WL process
@Eqs. ~10! and ~11!#, i.e., for correlation lengthsj1→0 and
j2→`, which impliesa→0. In such a simple case, when
a(ds/dx) is negligible in comparison todw/dx, so that
(dhp /dx)1hp5(dw/dx) according to Eq.~15!. In addition,
since the correlation lengthj2→`, we have to consider DW
displacementsDx!1, which implies that the wall-pinning
field is given just by the WL stochastic process,
hp(x)'w(x). In this case, by taking the time derivative of
Eq. ~14!, we obtain

dv
du

1~v2^v&!5
1

b

dw

du
, ^udwu2&52dx52vdu.

~18!

The stationary probability densityP0 for the values of the
DW velocity v at a generic timeu is obtained by solving the
stationary Fokker-Planck equation associated with Eq.~18!:

@~v2^v&!P0#1
1

b2

d@vP0#

dv
50, ~19!

which gives

P0~v !}vc21e2b2v, c5b2^v&. ~20!

In order to calculate the DW coercive fieldhCW, we need
to evaluatê v2& from the probability distributionP0 :

^v2&5E
0

`

v2P0~v !dv5^v&21
^v&
b2 5

1

b4 ~c21c!. ~21!

By substituting Eq.~21! into Eq. ~17! we obtain the DW
coercive field

hCW5
1

b
, HCW5

AH
2 /j2
G

. ~22!

It should be noted that this result is meaningful if the param-
eter of the WL processAH is chosen in such a way that the
ratio AH

2 /j2 remains finite for the correlation lengthj2→`.
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Equation~22! gives a hyperbolic decrease of the DW co-
ercive field HCW with increasing magnetic field gradient,
G, independent of̂ vDW&. The divergence inHCW for zero
gradient,G, is a consequence of the absence of any limit on
the correlation lengthj2. A more realistic situation is ob-
tained when finite correlation lengthsj2 and j1 ~i.e., finite
a5j1 /j2) are considered, as discussed in the following sub-
section.

F. Numerical solution for finite a

No simple analytic results could be obtained for finite
a, so that this case was studied by computer simulations. A
proper statistical ensemble of pinning field profiles was gen-
erated through Eqs.~15! and ~16!. On the basis of these
profiles, the behavior of the DW velocityv was numerically
generated from Eq.~14! and the DW coercive fieldhCW was
estimated by Eq.~17!. Calculations were performed as func-
tions of the field gradientb, for three different values of
a5 0.01, 0.1, and 1. All the simulations were performed
under sufficiently small mean dimensionless DW velocity
^v&, in order to avoid spurious dynamic effects. According to
Eq. ~20!, the quasistatic regime is attained when
c5b2^v&!1. All calculations were performed atc50.1. In
addition, the DW coercive fieldhCW was evaluated from the
approximate expression given in Eq.~17!, in order to correct
for any residual dynamic effect.

Results of these numerical simulations fora5 0.01, 0.1,
and 1 are plotted in Fig. 2. The dependence of the DW co-
ercive fieldhCW51/b, corresponding to the pure WL pro-
cess (a50) is also given. For finitea values where the
statistics of the pinning field is considerably affected, the
results clearly show a large departure ofhCW from the 1/b
dependence. In the low-gradient region (b!1), thehCW de-
pendence on the field gradientb is much weaker than the
1/b function, while in the opposite limit of very high gradi-
ents,b, the coercive field,hCW, decreases approximately

exponentially with the field gradientb, i.e. much more
strongly than 1/b. These numerical curves are the basis for
the interpretation of the experimental results presented in the
following section.

III. EXPERIMENT

DW hysteresis in samples of magnetic garnet films with
chemical composition~YSmCa! 3~FeGe! 5O12 ~sample no. 1!
and ~YSmCaLu! 3~FeGe! 5O12 ~sample no. 2! was measured
and the results compared with the above model.

Thin film samples of thickness,d, were grown by the
liquid phase epitaxy~LPE! method on~111! gadolinium gal-
lium garnet~GGG! substrates. Due to the growing conditions
of the preparation process they exhibited large uniaxial an-
isotropy,Ku , with the easy axis of magnetization perpen-
dicular to the film plane. The original cubic crystalline an-
isotropy of the garnet material was negligibly small with
respect to the induced uniaxial one. The saturation magneti-
zation, I s , inside all domains was perpendicular to the film
plane and the metastable close-packed bubble domain struc-
ture of the type shown in Fig. 3 was produced by magnetiz-
ing the samples up to the saturation in their planes and by a
subsequent slow decrease of the applied field down to zero.

The basic parameters of the samples chosen for the hys-
teresis experiments were determined at room temperature by
standard methods for bubble garnet film characterization13

and they are listed in Table I.
The low-frequency ~200 Hz! domain-wall oscillation

method based on the response of the domain system to a
small ac magnetic field perpendicular to the film plane14 was
used to determine the domain wall coercive field,HCW, of
the samples. The field,HCW, was measured in each sample
on a series of the bubble domain structures whose geometri-
cal parameters were changed step by step by an externally
applied static bias field,Ha , normal to the sample plane, see

FIG. 2. The dimensionless domain-wall coercive field,hCW ,
calculated numerically for finite correlation lengths,j1 andj2, for
constant ratioa5j1 /j25 1, 0.1, and 0.01 for a wide range of
values of the dimensionless field gradientb along with thehCW
}1/G dependence evaluated according to Eq.~22! for the pure WL
process~i.e., for a 5 0!. Asymptotic behavior for very small and
very largeb values~in the range not accessible by experiments! is
also clearly seen in this plot.

FIG. 3. Schematic plot of a hexagonal array of bubble domains
in a thin film with large uniaxial magnetic anisotropy perpendicular
to the sample plane. The bias field,Ha , applied parallel to the
magnetization vector inside bubbles makes the bubbles large, and
pushes DW’s close to one another. Consequently, the position of
DW’s is more restricted by the domain structure energy,«, i.e., the
local field gradient,G, experienced by DW’s is large and the mea-
sured DW coercive fieldHCW is low. Under theHa antiparallel to
the bubble magnetization, the bubbles are small and the DW’s are
far from one another. In this case the field gradientG is low and
HCW is high.
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Fig. 3. A typical result of the DW coercive fieldHCW(Ha)
measurement is shown in Fig. 4. While density of bubble
magnetic domains is constant, size of particular domains
changes significantly by application of bias magnetic field
Ha as indicated by insets in Fig. 4. While for small domains
with DW’s far from each other the gradientG of the effec-
tive local DW position-restoring magnetic field is small and
consequently the coercive fieldHCW is large ~right side of
Fig. 4!, in opposite bias field the DW’s of bubble domains
are close to each other,G is large, andHCW is small ~left
side of Fig. 4!.

Using the magnetic parameters of the samples and the
geometrical parameters of their domain structures at different
bias field values,Ha , the effective local field gradients,
G5G(Ha), were computed according to the formulas given
in Ref. 5. In dimensionless variables, the measured DW co-
ercive field,HCW, was normalized to the parameter of the
WL processAH and the gradient,G, computed in this way
was normalized toAH /j2. The normalization parameters
AH andAH /j2 were used as variable fitting parameters to fit

the dependence of the dimensionless experimental coercive
field, hCW5HCW/AH , on the dimensionless field gradient,
b5Gj2 /AH , to the computed dimensionlesshCW(b) de-
pendencies. The experimental data of both samples were fit-
ted to thehCW(b) curves, which were calculated indepen-
dently for the three values of the ratio of the correlation
lengthsa5j1 /j25 1, 0.1 and 0.01. The result is summa-
rized in Fig. 5 where all computed dimensionlesshCW(b)
dependencies are plotted along with the fitted experimental
data. Values of the fitting parameters are in Table II.

IV. DISCUSSION

A. Domain structures

Generally, there are several different contributions to the
quasistatic hysteresis losses which occur during any change
of the magnetization state. While the contribution due to sud-

FIG. 4. The dependence of the DW coercive field,HCW , mea-
sured on a hexagonal array of bubble domains in sample no. 1 at
various bias field,Ha , parallel ~negative, left! and antiparallel
~positive, right! to the magnetization vector inside the bubbles.
Computation of the eye-leading curve was based on a best fit third-
order polynom. Changes in domain structure~compare to Fig. 3! are
illustrated in two circular insets corresponding to large positive and
negative applied fieldHa , respectively: The period of the domain
structure keeps constant but the DW positions change~the bubble
domain diameter varies! from one experimental point to another.
HCW changes considerably with changing distance between neigh-
boring DW’s.

FIG. 5. Experimental dependence of the measured DW coercive
field, hCW , on the local magnetic field gradientb, evaluated from
domain structure modifications~see Fig. 4! of sample nos. 1 and 2.
The experimental data were fitted independently to the three curves
calculated for ratios of the correlation lengthsa5j1 /j25 1 ~full
circles!, 0.1 ~open circles!, and 0.01~squares!. The values of the
normalization parameters were used as the fitting parameters:
hCW5HCW /AH andb5G/(AH /j2) ~see Table II!. The quality of
fit is very comparable for all three values ofa and so it is not
possible to determine in this way the besta value. However, we
believe that the valuea 5 1 is probably the closest to the real
situation. The dashed line corresponds to the unrealistic pure WL
process (a 5 0!. The fits of the theoretical linear approximation
discussed in Ref. 5 are shown as the dotted curves for each of the
samples.

TABLE I. Parameters of the thin film samples: thicknessd,
saturation magnetizationI s , uniaxial anisotropy constantKu , char-
acteristic material lengthl, normalized to the sample thicknessd,
and the domain-wall width parameterdw5AA/Ku, where
A'2.05310212 J/m is the exchange constant of garnets.

Sample d Is Ku l dw

No. (mm! ~mT! ~J/m3) ~1! ~nm!

1 5.3 20.0 634 0.09 57
2 2.8 23.8 1510 0.30 37
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den flips over of the magnetization is mostly linked with
extreme material parameters and/or with extreme geometry
of the material grains, and while the contribution due to ro-
tation of the magnetization vector inside magnetic domains
or grains is generally negligible, the recorded quasistatic hys-
teresis losses are usually caused by generation and/or anni-
hilation of magnetic domains and domain walls and by trans-
lation of the already existing domain walls through the
nonuniform material. We study the latter process in this pa-
per, namely the pinning and depinning of domain walls in
soft magnetic materials. In order to investigate the coercive
fields caused by the pure DW pinning and depinning only,
we keep such experimental conditions and the DW geom-
etry, where contributions of any DW generation and annihi-
lation, and of any rotation of the magnetization vector can be
neglected.

The necessary condition for experimental verification
which describes the presented theoretical model of the rela-
tionship between the efficiency of pinning of the domain
walls by the sample random defects~i.e., the value of the
DW coercive field,HCW) and the magnitude of the large-
scale position stiffness of the domain walls within the do-
main structure of the sample~described by the effective local
field gradientG), is the requirement of uniformity of the
type, of the quality and of the identical local conditions of all
the domain walls involved. In other words it means that the
investigated domain structure in the sample should be regu-
lar and periodic. Such domain structures not only insure ob-
taining equivalent response to identical applied field excita-
tion of any of the walls but they also make it possible to
determine the total area of the walls, to express the total
energy of the domain structure in a reasonable analytical
shape, and to normalize the calculated values to unit DW
area. Uniaxial plane-parallel magnetic garnet films prepared
by liquid phase epitaxy support domain structures~e.g., a
system of parallel stripe domains magnetized alternatively
‘‘up’’ and ‘‘down’’ perpendicularly to the sample plane, or a
close-packed array of cylindrical bubble domains, see Fig. 2!
with the required regularity, periodicity and the mutual
equivalence of all the domain walls. The range of the local
field gradients at the DW positions reached by field modifi-
cations of the bubble domain structures is considerably wider
~by about one order of magnitude! than the range of the field
gradientG reached by similar modifications of the stripe
domains.5 Therefore, samples of the magnetic garnet films

with the cylindrical bubble domain structure were used in
our experiment and the relevant formulas from5 were used
for determination of the magnitude of the field gradientG in
bubble domain arrays with different diameters of bubbles.
An external uniform magnetic field,Ha , along the easy axis
of magnetization of the samples changed the bubble diameter
easily, see Fig. 3. By application ofHa , values of the field
gradientG were varied within the ratio of about 1:5.

B. Effective local field gradients

It was shown in Ref. 5 that pressures acting on the domain
walls in any domain structure originate from the shape of the
domain structure energy,«. They can be understood as being
due to presence of nonuniform effective internal fields,
Hi(xDW);(]«/]xDW), and the shape ofHi(xDW) close to
any equilibrium DW position can be described~up to a linear
approximation! with the aid of effective field gradients at the
wall sites,Hi(x)'GxDW . This approximation was subjected
to the statistical analysis of the present paper. The analysis
came to the conclusion that the larger is the field gradient
G, the more effectively it decreases the sensitivity of the DW
to feel presence of the wall pinning defects. This drop of the
wall sensitivity brings about a decrease of the sample DW
coercive field and of the static hysteresis losses. It is impor-
tant to emphasize at this point that the effective field gradi-
ent,G;(]2«/]xDW

2 ), is composed of at least three effective
field gradient contributions, expressed as the second deriva-
tives of the demagnetizing energy, of the domain-wall en-
ergy, and of the Zeeman energy, together, and it isnot iden-
tical with the real demagnetizing field gradients existing at
the sites of the walls. The real demagnetizing field gradients
existing at the DW positions are only one component of the
totalG value.

The effective local magnetic field gradients,G, can be
changed and controlled in various ways. In case of a single
domain wall a straightforward application of anexternal
magnetic gradient fieldcan be used.7 In periodic domain
structures, changes ofdimensions of domainsby application
of an external uniform field,Ha , is the easiest way of influ-
encing the field gradientG. Variation of dimensions of the
samplepresents another way of changingG.9

In the present model, energy dissipation and coercivity
are derived from the existence of DW Barkhausen jumps.
These jumps are due to the fluctuating character of the
internal DW position-restoring field,Hi(xDW)5GxDW
1Hp(xDW). A local position of the DW expressed by Eq.~3!
is stable if the slope (G1dHp /dxDW)xDW.0, and it is un-

stable if (G1dHp /dxDW)xDW,0. When the DW reaches a

local maximum, (G1dHp /dxDW)xDW50, it irreversibly
jumps to a new stable position and dissipates some energy.
The pinning fieldHp(xDW) has an equal proportion of re-
gions wheredHp /dxDW is positive and negative, but this
proportion is altered by the presence of the termGxDW ,
which favors local positive slopes. With increasingG the
system progressively becomes more stable, the average size
of Barkhausen jumps becomes smaller, and the associated
energy dissipation is reduced. This is the basic mechanism
responsible for the decrease of the DW coercive fieldHCW
with the field gradientG. In the case whenG is so large that

TABLE II. The parameterAH of the WL process and the corre-
lation lengthsj1 andj2 of the pinning field obtained from the fit of
the experimental data to the curves calculated for three different
assumed values ofa5j1 /j25 1, 0.1, and 0.01~see Fig. 5!. The
value ofAH

2 /j2 characterizing the WL process is also presented.

Sample a AH j1 j2 AH
2 /j2

No. ~1! ~A/m! ~nm! ~nm! ~1011 A 2/m3)

1 1 350 64 64 19
1 0.1 200 10 100 4
1 0.01 350 4.8 480 2.6
2 1 140 7.4 7.4 27
2 0.1 60 0.6 6 6
2 0.01 55 0.085 8.5 3.6
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it compensates any local negative slope inHp(xDW), we get
only positive slopes and the DW motion becomes fully re-
versible (HCW50). See the schematic illustration in the bot-
tom plots of Fig. 1.

To analyze the coercive pinning of DW under different
conditions in detail, we introduced three coercive fields de-
fined in the following way:~i! HDW is the half-width of the
total hysteresis loop at finite DW velocityvDW , ~ii ! Hdyn is
the half-width of the hysteresis loop caused only by the dy-
namic losses, and~iii ! the DW coercive fieldHCW is the
static DW pinning coercive field forvDW approaching zero
HCW5 lim^vDW&→0(HDW2Hdyn). @It should be noted that the

static DW pinning coercive field,HCW, can be expressed
also asHCW5 lim^vDW&→0HDW because lim̂vDW&→0Hdyn50,

but as the expression (HDW2Hdyn) is much less velocity-
dependent thanHDW , the former expression is more suitable
for physical considerations and numerical calculations.#

C. The theory and the experimental fit

While it is difficult to change the field gradientb experi-
mentally by more than 1 order of magnitude, the dimension-
less coercive field can be calculated for a very wide range of
field gradients. The general case of the coercive interaction
of DW with the pinning field given by the WL process modi-
fied by two finite correlation lengths,j1 andj2, was inves-
tigated by a numerical simulation for the dimensionless gra-
dient field,b, changing by more than 4 orders of magnitude
~see Fig. 2!. Such dependencies have a very specific shape.
While a simple but unrealistic hyperbolic dependence of the
dimensionless coercive field~the dashed straight line in Fig.
2! was obtained for the pinning field corresponding to the
pure Wiener-Le´vy process (a→0), thehCW(b) dependence
calculated for any finite ratio of the correlation lengths,a,
was close to the 1/b hyperbolic dependence between about
b 5 1 andb 5 a21/2 only. ThehCW(b) dependencies cal-
culated for different finite values ofa are to a large extent
similar to one another. The slope of the high-gradient tails
for a 5 0.1 and 0.01 can be approximated byhCW}b23.3 in
the rangeb!a21, and they are shifted with respect to each
other by a factor 2.3 on theb axis. In the low gradient range
(0.001,b,0.1) the coercive field varies withb only
slightly, with a slope ofhCW}b20.2. In other words, the DW
coercive fieldHCW tends to a finite value,HCW(0) as the
field gradientG approaches zero. Another realistic deviation
from the hyperbolic pure WL dependence takes place for
G@AH /Aj1j2, with the DW coercive fieldHCW rapidly ap-
proaching zero. These results are in good agreement with the
experimental findings and permit a quantitative description
of the measuredHCW vsG behavior.

This picture also makes the role of the correlation lengths
j1 and j2 more transparent. According to the theory of
Langevin equations,15 the processS(xDW) of Eq. ~12! takes
values whose mean square is of the order of the correlation
lengthj1 times the intensity of the white noise term, and it
controls the slopedHp /dx, so that dHp /dxDW;AH /
Aj1j2. This means that when the field gradient
G@AH /Aj1j2, i.e., b@a21/2, the process tends to become
fully reversible and the DW coercive fieldHCW quickly de-
cays to zero. This explains the behavior of the DW coercive

field HCW for largeG values in Fig. 2. On the other hand,
when the field gradientG is low, the DW coercive field
HCW is controlled by the local maxims of the wall-pinning
field Hp(xDW) only. These can be estimated from Eq.~12!,
by considering the limitj1→0 ~i.e., by neglecting the fine
slope details which are not important in determining the
Hp maxims!. Then, the equation for the wall-pinning field
Hp reduces to the standard Langevin equation and, by con-
siderations similar to the previous ones on the slope
S(xDW), we get the estimateHp;AH , independent of the
field gradientG and of ratioa5j1 /j2. This explains the low
G part of Fig. 2.

The numerical simulation according to Sec. II F enables
calculation of dimensionless coercive field,hCW, as a func-
tion of the dimensionless field gradient,b, for variousa.
Shape of the stochastic pinning field,Hp , is determined by
three parameters:AH , j1, andj2, which can be determined
in general by fitting of the experimentalHCW(G) dependen-
cies to the calculatedhCW(b) curves using the normalization
parameters of the field,AH , and of the field gradient,
AH /j2, as the fitting parameters. Both the parameter of the
WL processAH andj2 can be determined in this way. How-
ever, the dimensionlesshCW(b) curves calculated for differ-
enta5j1 /j2 have similar shape~they are mostly just shifted
with respect to each other!. The quality of the fit is therefore
nearly the same in all cases and we have to assume a par-
ticular value ofa to determine alsoj1. Moreover, the depen-
dence of the DW coercive fieldHCW(G) was measured in
much narrower range of the experimental values of the field
gradientG ~up to one order of magnitude! than the calcu-
lated hCW(b), where the range ofb covered more than 4
orders of magnitude. Therefore, in Fig. 5 and Table II we
present the fits of experimental data to the curves calculated
for all the three investigated finite values ofa 5 1, 0.1, and
0.01. By choosing a particular value ofa5j1 /j2 we deter-
mine the normalization parametersAH andj2 /AH , the field
hCW5HCW/AH , the gradientb5Gj2 /AH and j15aj2
from the fit. Their values for both samples are listed in Table
II.

Considering the limited range of the experimental data,
their scatter, and the smooth shape of the calculated curves,
there can be easily an error of about 50% in determination of
the parameter of the WL processAH , j1, andj2 from the fit.
The data of sample no. 1 fit the calculated curves in general
better than those measured on sample no. 2. The normaliza-
tion parameter of the magnetic field,AH , was found to fall
between 200 and 350 A/m for sample no. 1 and between 55
and 140 A/m for sample no. 2, for differenta. The shape of
the pinning field is given by the Wiener-Le´vy stochastic pro-
cess according to Eq.~11! as^udWu2&52(AH

2 /j2)dxDW . The
value ofAH

2 /j2 was found for both samples between 2.6 and
27 31011 A 2/m3. The values of the correlation lengths of
sample no. 1 are larger by about 1 order of magnitude than
for sample no. 2.

The correlation lengthsj1 and j2 were formally intro-
duced to be distances such that forDxDW!j1 the slope,
dHp /dxDW , attained a well defined value and for
DxDW@j2 the pinning fieldHp(xDW) becomes stationary.
Qualitatively speaking it means thatj1 characterizes the fin-
est profile of the pinning field experienced by DW, some-
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thing like an effective distance between relevant neighboring
pinning points, whereasj2 characterizes a critical distance
the wall has to be shifted in order to ‘‘forget’’ past local
pinning influences. Obviously, both such limits should be
related to the DW width: the DW cannot effectively interact
with any pinning field profile which is much finer than the
DW width, and any shift of the DW by a distance,DxDW ,
much larger than the DW width makes the DW forget its
history surely. Such considerations focus the experimentally
most relevant choice ofa to a51, i.e., to the choice of a
single correlation lengthj15j25j, with the expectation that
j will be of the order of the DW width parameter,
dw5AA/Ku, where A'2.05310212 J/m is the exchange
constant of garnets. The results of such a choice givej 5 64
nm,dw 5 57 nm for sample no. 1 andj 5 7.4 nm,dw 5 37
nm for sample no. 2. It is certainly a good agreement con-
sidering that the values ofj1 were obtained from the fit
without any a-priori assumptions about the DW and the ma-
terial structure.

D. Linear approximation and the rule of thumb

It is important to investigate as wide range of the field
gradientG values as possible, which is typically about one
order of magnitude5,7 in our experiments. A very consider-
able decrease of the DW coercive fieldHCW was observed
within such a range, yet to determine the exact shape of the
HCW(G) functional dependence is difficult. The DW coer-
cive fieldHCW(G) dependence was approximated in Refs. 5
and 7 by a linear function asHCW(G)5HCW(0)2aG,
whereHCW(0) was the coercive field of a free wall~not
subjected to any gradient in the sample! and a was a phe-
nomenological proportionality constant which was related to
the distribution of the coercivity-causing defects and to the
actual domain geometry. However, the result of the DW co-
ercive fieldHCW(G) computation carried out in our much
wider range of the field gradient valuesG as shown in Fig. 5,
is highly nonlinear. It is hyperbolic~22! in the limiting case
of the pure WL process (a50) or, more realistically it is
given by the shapes obtained from the numerical simulations
for finite a as described in Sec. II F in the present paper.
However, in the narrow experimental range of theG values,
x(G) can really be roughly approximated by a linear depen-
dence similarly to results of Ref. 5, see Fig. 5. It also quali-
tatively corresponds to the expectations of the simple analy-
sis published earlier in Ref. 4.

An experimental rule of thumb which connects the expec-
tations on the DW coercive fieldHCW values with the effec-
tive local field gradient,G, and with the sample domain
structure quality~density!, and which was pointed out in Ref.
5 follows also from the present results: The smaller the do-
main structure period~the larger the effective field gradient!,
the lower is the domain-wall coercive field~and the quasis-
tatic hysteresis losses!. This can be mathematically shown
for actual regular periodic domain structures but the message
is quite general and valid in any domain structure where the
notion of its period has a reasonable meaning. This may give
an important hint for tailoring soft magnetic devices towards
decrease of coercive hysteresis losses. However, the existing
inverse proportionality between the field gradientG and the
sample susceptibility implies also, that for achieving a de-

crease of the DW coercive fieldHCW by increasing of the
field gradientG, the material in question must be operated at
a decreased effective susceptibility and permeability. Evi-
dently, an optimum has to be chosen depending on the actual
technical task.

V. CONCLUSIONS

~1! The model proposed here gives a natural interpretation
of the coercivity effects associated with the DW motion sub-
jected to effective local field gradients,G, in a randomly
nonunifom material. It predicts the DW coercive field,
HCW, to be a decreasing function of the field gradientG,
which is in agreement with both experimental observation5,7

and with expectations from a simple model with a periodic
DW potential.4

~2! We applied a model description of the DW pinning
field, Hp , described by the Wiener-Le´vy stochastic process
for an analysis of the coercive pinning of DW’s in soft mag-
netic materials. The basic feature of the model is the descrip-
tion of the random DW pinning field,Hp(xDW), by a set of
coupled Langevin equations~12! containing two correlation
lengthsj1 andj2 such that~i! Hp(xDW) is stationary for the
DW displacementsDxDW@j2; ~ii ! the slopedHp /dxDW con-
trolling the DW susceptibility tends to be well defined when
DxDW!j1.

~3! Three coercive fields,HDW , Hdyn, andHCW, were
introduced. By a combination of analytical calculation meth-
ods and numerical simulation algorithms we estimated the
total dynamic DW coercive field,HDW , associated with the
given DW velocity averaged over the stochastic fluctuations,
^vDW&, and the static coercive field,HCW, representing the
part ofHDW that survives in the quasistatic limiting condi-
tion:HCW5 lim^vDW&→0(HDW2Hdyn). In all cases we consid-

ered the coercive fields caused by pure DW pinning and
depinning only, i.e., we worked with such a DW geometry,
where any DW generation and/or annihilation, and any rota-
tion of the magnetization vector within the domains could be
neglected.

~4! The case when the stochastic pinning field,
Hp(xDW), follows a pure WL process characterized by
^udHpu2&52(AH

2 /j2)dxDW ~i.e., for the correlation lengths
j1→0 andj2→`), can be solved analytically but it is not
very realistic. We obtained the simple hyperbolic relation
between the DW coercive field and the field gradient,HCW
}G21, which qualitatively reproduces the experimentally
observed decrease of the DW coercive fieldHCW with in-
creasing the field gradientG, but which yields an unrealistic
divergence ofHCW at G→0 and relatively large values of
HCW at large field gradients,G.

~5! The general case of finite values of the correlation
lengths,j1 and j2, was investigated by numerical simula-
tions. In contrast to the hyperbolic solution and in agreement
with the experimental observations, the DW coercive field
HCW was finite and approximately given byAH asG ap-
proached zero, andHCW decayed rapidly to zero for large
field gradients,G@AH /Aj1j2.

~6! The dependencies of the DW pinning field on the field
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gradientHCW(G) calculated for differenta5j1 /j2 are simi-
lar. Therefore fitting of the computedHCW(G) curves to any
valuea,1 cannot answer the question of the best choice of
a. However, qualitative considerations suggest to prefer
a51 and to expectj15j25j to be comparable with the
DW width parameter,dw5AA/Ku. The agreement between
j and dw was found satisfactory in the two investigated
samples. This result thus implies that the pinning field re-
sponsible for the DW coercivity in the investigated materials

has a very fine structure and its interaction with DW is lim-
ited by the finite DW width.
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