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Abstract—Hybrid cloud deployment can be an attractive option
for companies wanting to deploy software services on scalable
public clouds, while still assuming local control over sensitive
data resources. A hybrid deployment, despite providing better
control, is difficult to design since code must be partitioned
and distributed efficiently between public and private premises.
This paper describes our research into automated partitioning
of software services for hybrid clouds. We have identified two
specific shortfalls of existing partitioning research which are
important to a hybrid cloud setting: (i) inflexibility in placement
of software function execution between public/private hosts and
(ii) no support for making explicit tradeoffs between monetary
cost and performance. We propose a new software profiling and
partitioning framework (called MANTICORE) which addresses
these problems. Experiments on an open-source Web application
show that the new approach ensures better performance without
increasing costs.

I. Introduction

Pressure to assure data confidentiality, integrity, and au-
ditability in the cloud, as well as concerns on data lock-in,
have increased the interest in hybrid cloud architecture [1]. In
a hybrid deployment, software developers have control over
which components to place in the public cloud and which
to keep privately on premise. However, a hybrid deployment
is difficult to design since a service’s software implementa-
tion must be partitioned and distributed efficiently between
public and private hosts. Consequently, utilizing automated
techniques to help with analysis and deployment of service
implementation in a hybrid cloud is useful. Such techniques
have been explored for other domains and are referred to as ap-
plication partitioning. Unfortunately, existing techniques [2],
[3], [4] fail to capture certain software and business parameters
important to a hybrid cloud deployment.

Problem #1: Existing research on application partitioning
provides techniques to determine the optimal mapping of
software functions to network hosts (e.g. client or server) [2],
[3], [4]. This research only supports a simple one-to-one
mapping of functions to hosts. However, in our research we
have found this simple mapping to be inadequate because the
optimal placement of a function depends on the context in
which that function is used. In short, sometimes it is better to
execute a particular function in the public cloud and sometimes
it is better to execute it on premise. We call such distinction,
context-sensitive partitioning, and describe our solution to this
problem in this paper.

Problem #2: At its core, application partitioning is a method
for applying mathematical optimization to distributed software
development. The primary objectives for optimization are
performance, i.e. request processing latency, and the monetary
cost of deployment. However, previous work does not provide
a means for developers to explicitly make tradeoffs between
these two objectives. We provide a flexible cost modeling
technique which allows developers to make tradeoffs between
request latency and monetary cost.

In this paper, we discuss MANTICORE, a framework that
allows software developers to analyze a monolithic (i.e single
host) software service to make it suitable for hybrid cloud.
We provide a motivating example (Section II); discuss our
approach for modeling software behavior (Section III-A),
cost (Section III-B), and partitioning (Section III-B); provide
an evaluation (Section IV), related work (Section V); and
conclusion (Section VI).

II. Motivating Example
Consider a hypothetical company that wishes to deploy

a hybrid version of a stock trading service. As a running
example, we consider the Apache DayTrader [5] application.
DayTrader is a benchmark that simulates the operations of
a stock trading service and has been investigated in other
cloud computing research [6], [7]. DayTrader implements
seven service request types (i.e. operations) allowing users
to login (doLogin), view/update their account information
(doAccount & doAccountUpdate), view their portfolio
(doPortfolio), lookup stock quotes (doQuotes), and
buy/sell (doBuy & doSell) stock shares.

In this example, we suppose that the company wishes to
shield their sensitive data resources by keeping them on-
premise, while still making use of some public cloud com-
putational resources. The task of MANTICORE is to take
an application which was originally built to run in a single
location and partition it across a distributed hybrid setting.
This partitioning process - as illustrated in Figure 1 - works
as follows:

First, the original application is executed in a test envi-
ronment (or profiling capable production environment [8]),
collecting traces of resource usage for each function (top
of Figure 1). We use an application execution profiler (jip-
osgi [8], [9]) to instrument the bytecode for the application
with extra monitoring code. The outcome of profiling is then
captured as a dependency graph. This dependency graph is
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Fig. 1. Overview of the partitioning process: from monolithic software
service (top) to hybrid software service (bottom).

a high-level abstraction capturing the relationships between
functions relevant for partitioning.

Second, this graph model of an application and an objective
function are provided to a graph partitioning algorithm for
an optimized deployment to be decided upon (middle of
Figure 1). The output is a mapping of functions to network
hosts which optimizes for the objective.

Finally, a new system is deployed where the partitioned
code is executed on different hosts according to the mapping
provided by the algorithm. For functions mapped to the same
host, execution happens exactly as it had in the single host
version of the system. For function calls where caller and
callee have been mapped to different hosts, a remote procedure
call is injected into the system in place of the traditional
function call. This injection is achieved transparently through
binary instrumentation. While previous research has provided
a similar partitioning approach, it fails to address two spe-
cific problems which we describe here using the DayTrader
example.

Problem #1 as it applies to DayTrader (Context-Sensitive
Partitioning): The source code for DayTrader implements
basic functionality of a stock trading application. For example,
there is a function called getQuote which takes as an argu-
ment a stock name and returns the current market information
about that stock. As is normal practice for programming, this
function is called from many different places in the application
to reuse the function in the processing of different request
types. After inspecting this particular application in detail,
we realized that executing this function in the public cloud
for some request types but on the private premise for other
request types makes the overall execution of DayTrader more
efficient. We call this capability, context-sensitive partitioning.
This new approach is described in Section III-A and evaluated
in our experiments.

Problem #2 as it applies to DayTrader (Flexible Cost-
Modeling): There are often tradeoffs that need to be made
between the provision of lowest monetary cost deployment
and best performance in hybrid deployments. The essence of

this dilemma is that on one hand, companies may need to
keep control over (sensitive) data by keeping it on premise.
On the other hand, managing scalable software systems in the
public cloud is generally cheaper than serving up software
from your own private infrastructure. Some reports claim a
typical 80% savings using public cloud versus on-premise
private systems [10]. However, putting the code in the cloud
and the data on the premise introduces extra latency that
degrades the performance.

For example, in DayTrader, many of the functions in imple-
mentation code make heavy and repeated use of data resources
which would be kept on premise. From the simple perspective
of CPU cycles, it would be more cost efficient to lease CPU
resources for these functions from the public cloud. However,
since those particular functions are tightly bound to data,
moving them across the network may introduce unacceptable
request processing latency. The key point is that we cannot
simply improve upon request latency and cost simultaneously
by pushing all software to the cloud, but rather must trade
off the benefit of moving particular software functions to the
cloud with the negative effect the move has on the overall
end-to-end system execution. Our approach to this problem is
described in Section III-B and evaluated in our experiments.

III. Approach
In order to present the details of MANTICORE we organize

the discussion along the phases of the tool chain (Figure
1): dependency analysis (Section III-A), cost modeling (Sec-
tion III-B), and partitioning (Section III-C).

A. Application Dependency Analysis
In this section we introduce three different graph models of

application behavior. The first two models described here were
explored in previous research (presented for background and
used for a baseline comparison), whereas the third model is
our own context-sensitive model. Common to all three models
is the fact that vertices represent execution components in the
application with vertex weights corresponding to aggregated
CPU usage during the profiling of the application. Edges rep-
resent data-links with edge weights capturing latency and data
transfer. The models differ in how the notions of component
and data link are realized. For example, nodes might represent
low-level function definitions from source code - or - high-
level service request types. While both of these capture some
notion of an execution component, these different choices
have an important effect on what kind of optimization can be
achieved. In the next three paragraphs we will refer to Figure 2
to illustrate the details. This figure is simply a high-level
comparative mockup and does not correspond to the actual
models used by our tool. A real example of a dependency
model can be seen in Figure 3.

Request-based Model (RBM): In this model nodes represent
either request types or data objects (e.g. relational tables).
Edges are created between each request-node and all of the
data objects the request operates on [11], [12].

An illustration inspired by DayTrader is provided in Fig-
ure 2(a). Two request types doPortfolio and doBuy are



Fig. 2. Application Dependency Models: a) RBM, b) SSM, c) CSM. Circles
are application nodes and cylinders are database tables. The edge weights
represent number of edge traverses between nodes. For simplicity we do not
present the amount of data transferred on each link.

shown, each dependent on some tables from the DayTrader
database (the identity of the tables is not relevant for this
example). In a hybrid setting, the job of an application
partitioner is to decide whether the code for each request type
should be executed in the public cloud or the private premise.
The decision is based on the CPU demands of processing each
request type and the various data dependencies. Executing
code in the cloud will yield to higher CPU scalability at a
decreased cost as compared to manually administered private
CPU resources. However, separating request types from the
data they depend on could introduce too much additional la-
tency or bandwidth requirements. For example, in Figure 2(a),
we see that doPortfolio accesses the middle database table
an average of 15 times per request.

Static Structure Model (SSM): A drawback of the RBM
is that it does not separate request types into individual
programming language functions used in the implementation.
This means that a partitioner does not have the flexibility to
execute part of a request in the cloud and part of it on premise,
even if that would provide an advantage. Some other research
on application partitioning ([2], [3], [13]) deals with a more
implementation-level model of a service, we refer to as SSM.

In this model nodes in the graph represent the definition of a
function or the existence of some data object. By definition we
mean that a node corresponding to some function occurs only
once in the graph, regardless of how many times the function is
typically executed during the processing of a request. For data
objects, this distinction is not necessary (because data does
not execute). An edge between two nodes means that there
is at least one call between those functions. During execution
profiling, the execution time of each function call is aggregated
to compute a total weight for the corresponding node. Likewise
for edges, the weight corresponds to the total aggregate data
passed between the two functions as well as the number of
times the associated edge is traversed, for all calls between
the functions.

An illustration inspired by DayTrader is provided in Fig-
ure 2(b). Here we see doPortfolio and doBuy broken

down into the functions that implement them. Using this
model, the job of an application partitioner is to decide
whether each function should execute code in the public
cloud or the private premise. However, both request types
make use of the function getQuote. This causes the edge
weights induced by doPortfolio and doBuy to become
conflated, resulting in an overly abstract representation. We
found that having only one node representing functions such
as getQuote may over-constrain the partitioning optimizer
causing it to produce suboptimal code placement sugges-
tions. Referring back to Figure 2b, the conflated edge from
getQuote to the database table bears a weight of 16 for
which the profiler is not able to distinguish the weight induced
by doPortfolio and the weight induced by doBuy.

Context-Sensitive Model (CSM): In order to address the
problems of the previous two models we have built MAN-
TICORE on a context-sensitive model of software behavior. In
this model each node represents the execution of a function
in a distinct calling context. A calling context captures the
transitive set of callers to each function execution (aka. an
execution stack). Using the execution of a function rather
than a function’s static definition as the basis for MANTICORE
allows our runtime to execute the same function on premise or
in the public cloud depending on the situation. Note, however,
if we simply tried to apply automated optimization to a graph
which contained one node for each distinct function execution
in a captured execution profile, the graph would quickly
grow too large. Our intuition was that we can capture the
most important differences in each function execution by only
considering each execution different if it occurs in a different
calling context.

An illustration inspired by DayTrader is provided in Fig-
ure 2(c). Now we can see that two copies of getQuote
are created, one where it is in the context of getQuotes
and one where it is in the context of doBuy. Consider, as is
the case for DayTrader, that getQuotes calls getQuote
several times in a loop; an average of 15 times as indicated
by the edge weight. If getQuote was executed only on the
public cloud, this would cause a large number of round-trips
over the network, so in an optimal deployment it should be
placed on premise where it is close to the data. However, in
the context of doBuy, getQuote is only called once, so
for this case executing getQuote in the public cloud does
not incur extra latency, and yet we can take advantage of
the public cloud’s pricing benefits. Different from previous
research, MANTICORE’s approach provides this capability for
such context-sensitive partitioning.

B. Cost Modeling

Cost modeling involves associating quantifiable metrics to
the execution footprint of a given application. Since the overall
time of execution for an application directly contributes to the
cost of deployment, a simplistic optimization strategy would
be to only minimize the total time of execution. However,
this does not account for the costs billed by cloud providers.
To reflect the costs of a hybrid deployment we augment the



Fig. 3. CSM Visualization of partitioning results for the TradeServletAction:doLogin request type (root node of the tree) in the DayTrader example
provided by MANTICORE. Yellow nodes (alternatively light gray nodes) represent database tables and all the other nodes represent individual function
executions with dark gray nodes being chosen to be placed on premise and white nodes to be placed in the cloud. Note in this example that functions are
pulled to the private premise when there is more database access under the partitioned subgraph (although this is not always the case because it also depends
on other factors such as CPU usage of functions and size of data transferred).

dependency graphs from Section III-A with cost implications
of a hybrid deployment. This is done in two phases.

In the first phase, vertex weights and edge weights need to
be updated to reflect the overall time of application execution
when deployed across private premise and public cloud. For
a given vertex i in the dependency graph, we generate two
weights indicating the execution time of any corresponding
function on-premise and in the cloud (based on the CPU
capabilities of the host machines) by applying linear fitting
techniques [14] to its measured CPU usage cycles (tmeasuredi )
during the profiling phase:

texeci = tmeasuredi ×
CPUtarget
CPUsource

(1)

where CPUtarget represents CPU capabilities of the target
deployment host and CPUsource represents CPU capabilities
of the machine used during the profiling phase.

The edge weights are set to reflect the amount of time it
takes for data to be communicated between two components
i, j in the application when those components are split between
the cloud and the on-premise data center. We utilize a model
similar to the communication latency model suggested in [15]
as follows:

tcommi,j
=

 di,j
φ

(βφ )
2
− β×di,j

φ2

+
di,j
β

+ λ

 (2)

where di,j indicates the amount of data communicated on
the edge e, β is the communication bandwidth between the
premise and the cloud provider, and φ is the frequency of
sending d bytes of data between i and j in each time unit.
The first expression determines the queuing delay based on the
assumption that the requests for data transfer on the network
follow a Poisson distribution; di,j

β is the data transmission
time between the premise and the cloud; and λ is a constant
representing the communication latency for a given public
cloud.

In the second phase, we include implications of cloud
deployment. A realistic model starts by accounting for the
actual cost of deployment by applying cost schemes offered

by a cloud provider. We have encoded the pricing models
for several popular platforms in an XML format that is
provided as input to MANTICORE (center of Figure 1). Given
this information, MANTICORE updates vertex weights for the
graph model as follows:

costexeci = α× costexecunit
×
(
tmeasuredi

Tunit

)
× CPUtarget

CPUsource
(3)

where Tunit represents the time unit for which cloud charges
apply, costexecunit

indicates cloud charges for each Tunit,
and α is the cost ratio of running each function on a target
premise machine versus running it on the cloud machine. α
is configurable by the system architect. In our evaluations
we change it from 1 to 25 for varied premise deployment
costs, evaluating a 0 to 25 times cost saving for public cloud
deployment.

Next we model the monetary cost of communication be-
tween vertices i and j as follows:

costcommi,j = γ × costexecunit ×
(
tcommi,j

Tunit

)
+

di,j
Dunit

× costcommunit
(4)

The first part of the above equation accounts for charges due to
the latency introduced in the hybrid cloud deployment (i.e., by
introducing remote function calls), while the second part of the
equation accounts for charges directly related to transferring
data between functions deployed in the cloud and the ones
on premise. In the above formula, Dunit represents the data
unit for which cloud charges apply and costcommunit

indicates
cloud charges for each Dunit.

Finally, we introduce γ as a configurable parameter reflect-
ing the effect of latency on the cost of deployment. This
allows developers to use our cost model to make flexible
tradeoffs between monetary cost and latency. The larger a
developer chooses the value of γ, the algorithm will work
towards minimizing communication latency and improving the
round trip time; whereas a smaller γ diminishes the effect of
latency in searching for the optimal monetary deployment cost.



We can formulate γ in the equation below:

γ =
Tunit × costlatencyunit

costexecunit × Tlatencyunit

(5)

with costlatencyunit
being the monetary effect of having the

latency time (Tlatencyunit
) incurred during an end-to-end ex-

ecution of a request. The formulation of Equation 5 defines
γ in relation to Tunit and costexecunit , allowing for latency
costs to be tied into the cost measures given in a public
cloud provider’s cost schema. For example, given a system
with 100 req/sec and a latency of 10msec/req, there will be 1
second of latency for every second of system execution. If a
software developer defines a cost-to-latency policy indicating
that every hour of time wasted on latency (Tlatencyunit ) is
worth $0.16 (costlatencyunit

), and given costexecunit
is $0.32

per hour (Tunit), Equation 5 reveals the value of γ to be set
equal to 1 for the cost formulation to account for the overhead.

C. Partitioning

Integer programming (IP) is commonly leveraged as the
underlying optimization procedure for partitioning [4], [13],
[16]. We take the augmented dependency graph from Sec-
tion III-B and convert it to an IP. For every node i we consider
a variable xi in the IP formulation, where set s refers to
functions executed on premise and set t executed in the cloud.

xi ∈ {0, 1}
∀xi ∈ s, xi = 0 (6)
∀xi ∈ t, xi = 1

With the above constraints we have the following objective
defined (The quadratic expression in the objective function
can be relaxed by making the expansion suggested in [4]):

min
∑
i∈V

xicostexeci +
∑

(i,j)∈E

(xi − xj)2costcommi,j
(7)

Finally, with this information our partitioner provides an op-
timal mapping of function execution to hosts for each request
type (bottom of Figure 1) using guidance from developers
on their preference of γ. As a convenience to developers,
MANTICORE provides a visualization of the partitioned CSM;
an example of this for DayTrader is shown in Figure 3.

D. Implementation

MANTICORE is implemented in Java and consists of two
sub-components: i) The jip-osgi profiling framework [8], [9]
which combines profiling capabilities of the Java interactive
profiler (JiP) [17] with extra instrumentation capabilities for
measuring cross-method data transfer and data exchange with
database engines, and ii) The MANTICORE Analyzer [18]
which performs post-analysis of profiling data by generating
the dependency models, cost models, application partitioning
and distribution models. Implementation details of MANTI-
CORE can be found online [19].

IV. Evaluation
We performed experiments to test the validity of MANTI-

CORE using DayTrader as described in Section II. For our
public cloud machine we used a Large Amazon EC2 instance
from the US West region (Oregon), with 7.5 GB of memory,
and 4 EC2 Compute Units. For our premise machine we used a
3.5 GHz dual core machine with 4.0 GB of memory at our lab
in Vancouver. For our database server, we also setup MySQL
5.1 on a third premise machine with a 2.5 GHz dual core CPU,
4.0 GB of memory, also in Vancouver. All three machines were
running Ubuntu 11.10. The machines were connected with a
data link of 100 Mb/sec and we measured the latency to be
15 milliseconds between the cloud and the premise.

For all the experiments, unless otherwise stated, we set the
cost of execution on a cloud machine to be $0.32 per hour,
while the cost of data transfer is $0.12 per GByte when data is
going from the cloud to the premise and $0 per GByte when
data is going from premise to cloud1.

Throughout this section we refer to three types of deploy-
ments: i) premise: meaning all functions are executed on the
premise; ii) cloud: meaning all functions are executed in the
cloud with data on the premise; and iii) manticore-hybrid-
deployment (MHD): implying a deployment with cuts in the
execution such that some function execution takes place on
the premise and some in the cloud, with data on premise.

A. Cost Models vs Measured Deployments

In order to verify the accuracy of the cost models, we
compare the execution and data transfer measurements of mod-
els generated by MANTICORE to those of real deployments
for DayTrader. Since our profiling data was collected on the
premise machine, the models and the real deployment for
the machine on premise are identical. In a hybrid or a full
cloud deployment, the models are generated by applying linear
fitting techniques as described in Section III-B. We compared
the generated cost models with the real deployment of the
DayTrader application for settings where the deployment is
fully in the cloud or is MHD. Figure 4 compares the results
for MANTICORE generated models and practical deployments
for overall execution time. The results are averaged over 1000
requests to each request types.

As can be seen from Figure 4, the execution time for
the generated models in case of the MHD provides 81.3%
average estimation accuracy (σ=0.013) while models for full
cloud deployments provide 86.1% average estimation accuracy
( σ=0.0052) compared to a practical deployment. Similarly,
we compared the actual data transfer to the modeled data
transfer. For data transfer the MHD model provides 87.4%
average estimation accuracy compared to the real deployment
(σ=0.0061) while for a full cloud deployment we get 86.3%
average estimation accuracy (σ=0.0076). In the following sec-
tions, we discuss real deployments of DayTrader as suggested
by MANTICORE, and as results follow, we verify that using

1The cost scheme used for our evaluations is identical to the on-demand
cost scheme offered by Amazon EC2 [20].
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cost models of this accuracy can lead to real benefits in actual
deployments.

B. Evaluation of Context-Sensitive Modeling

Next, we evaluate the three dependency models from Sec-
tion III-A to see which one contributes to a more performant
deployment under varied premise cost and fixed cloud cost.
We used MANTICORE to decide about function placements
for DayTrader as the cost of deployment to a premise machine
linearly changes from $0.16 per hour to $2.5 under an expected
load of 100 requests per second. For each cost value, we took
the mapping of function executions suggested by MANTICORE
for each of the models and physically deployed it. We then
measured the average perceived latency across all the requests
to see how the partitioning affects the overall performance of
the system. Results are shown in Figure 5. The line at the top
of the graph shows the full deployment of the code to the cloud
whereas the bottom line indicates a full premise deployment.

We observe that SSM quickly yields to a full deployment
to the cloud (cf. Figure 5). This is mainly because this model
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Fig. 5. Comparison of latency adjustments for the SSM, RBM, and CSM
as the premise cost changes.

does not account for function replication and thus, separation
of code elements would imply cutting a lot of code dependency
links which would significantly increase the communication
latency to a bigger average value compared to a full cloud
deployment. To prevent this, upon premise cost increase, the
analysis framework quickly chooses to have all the code in
the cloud and only pay for the communication latency when
it comes to retrieving data from database tables.

For RBM, there is more freedom in choosing code placement
as the dependency model consists of subgraphs separated by
request types. Compared to the SSM, this model is more
tolerant of changes to the cost of deployment on premise
and compensates between cost and performance by gradually
pushing the code for different request types from premise to
the cloud to the point where all the code is in the cloud.

CSM provides the most performant choices for a hybrid de-
ployment. The fine level of granularity in the model allows for
replication of code while enabling the partitioning algorithms
to find the edges with the lowest performance overhead to be
cut. As a result, unlike SSM and RBM, cuts made in the CSM
do not solely separate code from data but also separate code
units with low communication overhead from one another thus
optimizing the deployment.

To summarize Figure 5, when cost of deployment to premise
is very cheap, all three models choose to have the code
deployed on premise. Similarly, when cost of deployment to
the premise is very expensive, all three models choose to
push all the code to the cloud. However, between these two
spectrums, CSM provides more latency aware deployments
by not only separating code from data but also by separating
code units with lower performance overhead from one another,
yielding to better performing deployments.

C. Evaluation of Flexible Cost Modeling
Performance degradation is one of the biggest concerns

when it comes to separation of code from data or code from
code for a distributed application deployment. The degradation
is mostly concerned with the extra latency added to the overall
execution process as a matter of having the data sent and
received over the network. In this section we show how by
changing γ from Equation 5, MANTICORE allows for latency
and cost to be traded for one another.

With a measured roundtrip communication latency of 15ms
between the cloud machine and our premise machine, we
gradually increased γ from 0.5 to 15 (i.e. ×30) to see how
it affects function placement decisions and the corresponding
deployment costs. To measure deployment costs, we set α = 5
representing 80% cost saving (cf. Equation 3). Table I shows
code placement decisions made by the partitioning framework
for different request types.

As shown in Table I, with γ = 0.5, the partitioning
algorithm chooses to have all functions in the cloud where the
deployment would be the cheapest (low γ favors monetary
cost over latency). As γ increases, the algorithm gradually
pushes more and more functionality to the premise in order
to accommodate a more performant deployment, either by
making a cut in the code (MHD) or by pushing the entire



code for a request type to the premise (premise). Figure 6
shows the increase in cost of deployment as the functions are
gradually pushed to the premise. As we already discussed in
Section IV-C, cost of deployment is increased as the partitioner
moves more code entities to the premise.

Fig. 6. Monetary cost of deploying requests of various type for DayTrader
with respect to changes in Gamma (γ)

Comparing each deployment with its predecessor and suc-
cessor deployments illustrates that changing γ for the parti-
tioning algorithm can balance between cost and performance
of the deployed application. For example, the deployment
when γ equals 5 is (on average) 50.9% more expensive than
the successor deployment suggested when γ equals 1.5, yet
its average performance is only 21.7% slower (performance
details are not shown in a graph, due to space limits). However,
the deployment suggested for when γ equals 5, compared to
its predecessor deployment when γ equals 15, is on average
24.6% slower but 2.6% more cost effective. As we showed
here, software developers are able to decide about the proper
value of γ for their distribution model based on the latency
and cost policies of their system.

D. Evaluation of Scalability
We also performed a scalability analysis for DayTrader to

see how different code placement choices affect application
throughput. DayTrader comes with a client workload genera-
tor that models user behaviors for browsing and purchasing
stocks. For the deployment tests, we used a range of 500

RequestType Deployment choice for varied Gamma (γ)
0.5 1.5 5 15

doLogin cloud MHD MHD premise
doBuy cloud MHD MHD premise
doPortfolio cloud premise premise premise
doAccount cloud cloud premise premise
doQuotes cloud cloud premise premise
doAccountUpdate cloud cloud premise premise
doSell cloud MHD MHD premise

TABLE I
CODE PLACEMENT FOR DIFFERENT REQUEST TYPES AS GAMMA (γ)

CHANGES FROM 0.5 TO 15.

to 4000 simulated clients over a period of 5 minutes and
measured throughput. Figure 7 shows the throughput of the
system under varied user load. As shown in the figure, the
machine on the premise starts to be the most efficient when
number of user threads sending requests is below 2500. Once
we passed this threshold, the premise machine got overloaded
and was unable to properly handle incoming requests.
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Fig. 7. Scalability tests for full premise, full cloud, and hybrid deployments

In contrast, for the MHD and the cloud deployment, the
extra latency introduced as a result of partitioning reduced the
overall system throughput compared to the premise deploy-
ment when the server was handling less than or equal to 2500
user threads. However, As more user threads were added those
deployments scaled better than a full premise deployment.

Finally, we notice that the hybrid and cloud deployment had
very similar scalability. However, as shown in Section IV-B a
hybrid deployment using our CSM provides better response
time when CPU is not a bottleneck. So for the DayTrader
case study we see clear advantage in using Manticore over
simple public cloud or private premise deployments.

V. Related Work
Application partitioning has been explored extensively for

client-server architectures in a variety of network settings: i) in
a wide-area setting [2], ii) within a LAN [3], or iii) across a
wireless network [4]. These client-server systems are different
from our setting since we are in essence working towards
partitioning between backend servers, not server and client.
At a low-level this difference manifests itself as different
optimization goals for partitioning. In client-server partitioning
the goal is to partition software by pushing code tightly
coupled to front-end interaction towards the client and pushing
the code that works on shared persistent data to the server.
In our hybrid cloud partitioning, our goals are driven by
maximizing the use of elastic public cloud infrastructure while
constraining the placement of private resources.

Partitioning for hybrid clouds differs in that extra constraints
on geographical placement of code, types of instances leased
from the cloud, and their associated charges in the public



cloud must be taken into consideration. Within the context
of cloud, Volley [11] increases performance and reduces data
center traffic by data relocation, yet it does not deal with
code partitioning. Efforts like Conductor [21] and HybrEx [22]
suggest hybrid deployments for cost optimizations or secu-
rity considerations in the cloud, but their main focus in on
Map/Reduce type of applications. Other approaches such as
CloudCmp [23], CiteSeerx [24], and the work by Truong
& Dustdar [25] look into cost savings of software service
deployment to the cloud by analyzing resource consumption;
yet their cost-considerations do not drive deployment decisions
using partitioning techniques.

CloneCloud [16] optimizes for high performance and mini-
mum resource usage for applications in mobile and embedded
devices by offloading the execution to the cloud; but opti-
mizing towards a cheaper deployment is not the focus for
CloneCloud. Cloudward Bound [13] and COPE [26] optimize
for cost of deployment in a hybrid setting, however there
are several differences between these approaches and MAN-
TICORE. For these approaches, partitioning and relocation of
components happens at the level of application servers (or
VMs) not the finer level of code entities (i.e. functions) as
is the case with MANTICORE. Furthermore, none of these
approaches supports context sensitivity. Finally, while COPE
does not account for latency, Cloudward Bound enforces the
accepted latency by defining an upper limit constraint, whereas
MANTICORE allows for software developers to decide about
their preferred cost-to-latency ratios.

VI. Conclusion and Future Work
In this work, we proposed an extension to existing applica-

tion partitioning techniques to provide for hybrid deployment
of software services. The evaluation on DayTrader showed that
the new approach can more effectively contribute towards an
optimized hybrid cloud deployment. In particular, it showed
that: the costs of a hybrid deployment extrapolated from mon-
itoring a single-host test version of the service were at least
81.3% accurate (Section IV-A); the context-sensitive modeling
of service behavior provided a better representation to optimize
placement of software function execution (Section IV-B);
our formulation of the objective function for optimization
allows developers to tune the tradeoff between end-to-end
round-trip time and deployment costs (Section IV-C); and
that a hybrid deployment using MANTICORE, while providing
similar scalability as a full cloud deployment, offers better
round-trip latency under comparable load (Section IV-D).

In the future, we have two specific plans to address some
limitations of the current research. First, our current framework
addresses the partitioning of code, but not the partitioning
of data, since we have focused on the scenario where data
is kept on premise. However, for some businesses it might
only be required that a subset of data be kept on premise.
In that case, it would be advantageous for MANTICORE to
guide the developer in the decision of which data entities
could be moved to the cloud without separating tightly cou-
pled data entities (e.g. database tables that are frequently

joined). Second, while our context-sensitive approach is better
at capturing the important dynamics of an implementation
compared to previous research, it is not completely adaptive
to dynamic fluctuations in workload. In the future it may
be possible to change partitioning decisions “just-in-time”
during the execution of the system in case workload differs
significantly from that observed during the use of our profiling
instrumentation.
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