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Coherent quantum oscillations and echo measurements of a Si charge qubit
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Fast quantum oscillations of a charge qubit in a double quantum dot fabricated in a Si/SiGe heterostructure are
demonstrated and characterized experimentally. The measured inhomogeneous dephasing time T ∗

2 ranges from
127 ps to 2.1 ns; it depends substantially on how the energy difference of the two qubit states varies with external
voltages, consistent with a decoherence process that is dominated by detuning noise (charge noise that changes
the asymmetry of the qubit’s double-well potential). In the regime with the shortest T ∗

2 , applying a charge-echo
pulse sequence increases the measured inhomogeneous decoherence time from 127 to 760 ps, demonstrating that
low-frequency noise processes are an important dephasing mechanism.
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I. INTRODUCTION

Fast, coherent control of charge qubits has been demon-
strated in both superconducting circuits1,2 and III-V semi-
conductor quantum dots.3,4 Beyond its intrinsic interest,
understanding semiconductor charge qubit coherence is also
important for spin qubits: mixing spin with charge degrees of
freedom (either through spin-orbit coupling5 or the exchange
interaction6–11) enables faster spin manipulation than would
otherwise be possible. When this mechanism is used, charge
coherence can determine the ultimate fidelity of a spin qubit.11

Here, we present experimental measurements of fast coher-
ent quantum oscillations between the (2,1) and (1,2) charge
states of a qubit formed in a Si/SiGe double quantum dot. Given
the Bloch sphere12 with the ±z axes representing the (1,2) and
(2,1) states, rotations about the x axis, or Larmor oscillations,
are observed when the (2,1) and (1,2) states are energetically
degenerate, with a decoherence time T ∗

2 = 2.1 ns. Rotations
about the z axis are probed in the Ramsey fringe experiment
and are observed with a shorter coherence time, T ∗

2 = 127 ps.
The Ramsey fringes are measured when the charge qubit is
operated in a regime where the energy difference between
the qubit states depends strongly on detuning ε, the energy
difference between the (2,1) and (1,2) charge states, and so
is highly sensitive to charge noise in the local environment.
The significantly different coherence times are consistent with
the dominant dephasing mechanism arising from fluctuations
in ε, as has previously been observed in GaAs devices.4 We
also present measurements of charge echo in a semiconductor
quantum dot charge qubit, with the echo sequence yielding an
increase of the coherence time from 127 to 760 ps. The results
demonstrate control of a silicon charge qubit, and they show
that charge echo can be exploited to improve its coherence.

II. EXPERIMENT

The device measured in the experiment was fabricated in
a Si/SiGe heterostructure as described in Refs. 13 and 14; a
scanning electron microscope image of an identical device
is shown in Fig. 1(a). The quantum point contact on the
right side of the double dot is used as a charge sensor.
Using magnetospectroscopy measurements,15 we confirm the
valence charge occupation of the double dot is (2,1) or (1,2);

either or both dots may contain a closed shell beneath the
valence electrons, although if present such shells do not appear
to play a role in the work we report.

A. Larmor oscillations (x rotations)

Figure 1(b) shows an energy level diagram of the anticross-
ing between (2,1) and (1,2) as a function of detuning energy
ε. Near the charge degeneracy point (ε = 0) the system is
well-described by the Hamiltonian of a two-state system:

H =
(

ε/2 �

� −ε/2

)
. (1)

Coherent oscillations between the two charge states can be ob-
served when the detuning ε is changed abruptly. For example,
starting in a position eigenstate with charge occupation (2,1)
at large negative ε, after increasing the detuning suddenly to
ε = 0, as shown by the red horizontal arrow in Fig. 1(b), the
system Hamiltonian becomes H = �σx , where σx is the usual
Pauli matrix. Subsequently, the system oscillates between
(2,1) and (1,2) at the Larmor angular frequency 2�/h̄. More
generally, nonadiabatically increasing the detuning ε to a value
ε′ is expected to induce oscillations at the angular frequency
�R =

√
ε′2 + 4�2/h̄ about a tilted axis: as one moves away

from the polarization line at which ε = 0, the oscillations
increase in frequency and decrease in amplitude.

Figure 1(c) shows a number of Larmor oscillations between
the (2,1) and (1,2) charge states. Square pulses of duration tp
and amplitude Vp = 800 mV are applied to gate L at frequency
40 MHz. The transconductance GL = ∂IQPC/∂VL is plotted as
a function of tp and εp, the position in detuning of the peak of
the pulse. The connection between VL, tp, εp, and other details
can be found in Appendix A. Oscillations of the signal are
apparent out to more than three nanoseconds.

To enable comparison to theory, and to obtain quantitative
dephasing times from the experiment, we integrate the data
presented in Fig. 1(c) and extract the probability P(1,2) of
occupying the (1,2) charge state (see Appendix A for details).
Figure 1(e) presents the charge oscillation near zero detuning
from the integrated data of (c) as the solid red trace. By
fitting the amplitude of the oscillations to exponential decays,
we extract a dephasing time T ∗

2 = 2.1 ± 0.4 ns near εp = 0,
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FIG. 1. (Color online) Larmor oscillations. (a) SEM image of a device identical to the one used in the experiment. The current IQPC is used
for charge sensing through a measurement of its transconductance GL = ∂IQPC/∂VL, and voltage pulses are applied to gate L. (b) (Bottom)
Diagram of energy levels vs detuning ε, showing the anticrossing between (2,1) and (1,2) charge configurations. The red arrow represents
an applied voltage pulse with the dc level and amplitude of the pulse chosen to place the peak of the pulse at ε = 0. (Top) Example pulse
showing the pulse peak position εp, pulse duration tp, and the measurement phase. (c) Larmor oscillations between the (2,1) and (1,2) charge
configurations, as a function of pulse duration tp and pulse peak position εp. The Larmor oscillations that reflect rotations between the states with
(2,1) and (1,2) charge occupations are manifest near εp = 0. (d) Numerical simulation of the Larmor oscillations of (c), using an 80-ps-pulse
rise time and the energy level diagram in (b) with best fit parameter � = 10.8 μeV (�/h = 2.62 GHz). (e) Solid red: a horizontal cut taken
near zero detuning from the integrated data of (c), showing Larmor oscillations as a function of pulse duration. Dashed black: a corresponding
cut from the simulated charge occupation data.

marked by label B in Fig. 1(b). This dephasing time is relatively
long, because at the anticrossing the difference in energy
between the eigenstates is insensitive to detuning fluctuations.

Numerical simulations of the experiment were performed
based on the energy level diagram in Fig. 1(b). We model the
dynamical evolution of the density matrix ρ of the system as
a function of detuning εp and pulse duration tp using a master
equation:12,16

ρ̇ = − i

h̄
[H,ρ] + D, (2)

where D is a phenomenological term that describes pure
dephasing of the charge state under the assumption of
Markovian dynamics. D is given, in the {|(2,1)〉,|(1,2)〉} basis,
by

D = −
(

0 �0ρ12

�0ρ21 0

)
, (3)

where �0 = 0.48 GHz is the dephasing rate (1/T ∗
2 ) measured

near zero detuning. This dephasing can have contributions
both from the effect of charge noise on the tunnel coupling
and from second-order effects from detuning noise, since
the qubit is to first order insensitive to detuning noise at
the charge degeneracy point. The (2,1) and (1,2) occupation
probabilities are extracted at the end of the tp pulse and,
for the duration of the measurement phase, are allowed to
relax exponentially to the ground state (2,1) with a relaxation
time T1. The simulated charge occupation is determined by
averaging the charge state for the entire 25 ns pulse period.
Low-frequency fluctuations in the detuning ε are incorporated
following Ref. 4, by performing a convolution of the results at

each ε with a Gaussian in ε of width σε = 5 μeV. The best fit to
the data is found with a charge relaxation time T1 = 18 ns. The
results obtained using the tunneling amplitude � = 10.8 μeV
(�/h = 2.62 GHz), shown in Fig. 1(d), agree well with the
data. Figure 1(e) is a horizontal cut showing the measured and
simulated charge occupation data near ε = 0. Again, good
agreement between the data and the calculation is found.

B. Ramsey fringes (z rotations)

We now demonstrate coherent rotations of the charge qubit
about the z axis of the Bloch sphere by performing a Ramsey
fringe experiment,17,18 using the two-pulse sequence shown in
the inset to Fig. 2(a). Starting at a negative detuning in the
(2,1) state, the qubit is pulsed to the (2,1)-(1,2) anticrossing,
which causes the Bloch vector to rotate around the x-axis.
The duration of this first pulse is chosen [based on the data
in Fig. 1(c)] so that the Bloch vector is rotated around the x

axis by a nominal angle of 5π/2, taking it from being along z

to being in the x-y plane (we use a 5π/2 pulse of amplitude
600 mV and duration 280 ps instead of a π/2 pulse, because
of the difficulty of applying high-quality pulses shorter than
100 ps). After a variable free evolution time τ at the base level
of the detuning εb, during which the Bloch vector rotates about
the z axis, a second pulse is applied to rotate the state about
the x axis on the Bloch sphere by another 5π/2. The charge
measured at the end of this process oscillates as a function of
the time τ between the two pulses at a frequency determined
by the difference in energy of the states involved at the base
level of detuning.

Figure 2(a) shows the transconductance GL of the charge
sensor as a function of the base level detuning εb and the
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 (ps)

FIG. 2. (Color online) (a) Ramsey fringes: QPC transconductance GL as a function of the base level of detuning εb and the time τ between
two 5π/2 pulses, as shown in the inset. The oscillations observed in the region where τ > 280 ps reflect the rotation of the Bloch vector around
the z axis in the x-y plane. (b) Gray: a line cut of the integrated data of (a) after removal of a smooth background, as described in Appendix A.
Red: fit to the form A exp[−(τ − τ0)2/T ∗2

2 ] cos(ωt + φ) + C, which yields T ∗
2 = 127 ± 8 ps. (c) Charge echo: QPC transconductance GL as a

function of εb and δt for t = 640 ps. Oscillations are strongest near δt = 0, where equal free evolution times before and after the 3π x rotation
provide the best correction for slow inhomogeneous dephasing. Away from δt = 0, increasingly mismatched free evolution times provide less
correction, and the oscillations decay with characteristic time T ∗

2 . (Inset) Trace of the pulse sequence used to acquire these data. (d) Sequence
of pulses used to implement charge echo: a nominal 5π/2 x rotation into the x-y plane, free evolution for a time t/2 + δt , a 3π x rotation, free
evolution time t/2 − δt , and a 5π/2 x rotation out of the x-y plane. For this experiment, 5π/2 pulses have a duration of 280 ps and 3π pulses
have a duration of 330 ps. (e) Dark circles: charge oscillation amplitudes �P(1,2) as a function of the free evolution time t , extracted from data
sets with different t values. The echo amplitude decays as t increases. A fit of the decay to the Gaussian form y0 + A exp[−(t/T2)2] yields
T2 = 760 ± 190 ps, significantly longer than T ∗

2 . Thus the echo pulse sequence corrects for slow inhomogeneous dephasing and extends the
coherence time.

time τ , in the presence of the two-pulse pattern applied at a
repetition rate of 25 MHz. For very short τ , the 5π/2 pulses
overlap and one is essentially performing a Larmor oscillation
experiment. At τ � 280 ps, the time interval between the end
of the first 5π/2 pulse and the start of the second becomes
nonzero, and the observed oscillations correspond to a Ramsey
fringe measurement.

To analyze these data quantitatively, we again integrate
the data and extract P(1,2). Figure 2(b) shows a cut through
the integrated data at the value of detuning εb = −120 μeV
marked by the arrow labeled A in Fig. 1(b), after subtraction
of a smooth background (see Appendix A). These Ramsey
fringes oscillate at 28 GHz, which agrees with the energy
difference of the two charge states at that detuning value. We
fit these oscillations to the product of a cosine function and
a Gaussian.4 This procedure yields T ∗

2 = 127 ± 8 ps, much
shorter than T ∗

2 = 2.1 ns measured in the Larmor experiment.
As is clear from Fig. 1(b), at the large negative detuning
where the oscillations are being generated, the energy levels
diverge rapidly from each other as a function of ε, providing
no protection from charge noise. The dephasing time in this
Ramsey fringe experiment is nonetheless twice as long as the
value of 60 ps obtained by measuring Ramsey fringes for a
GaAs charge qubit and using a similar fitting procedure to
extract T ∗

2 .18 Calculations following the methods of Ref. 19
show that the charge dephasing rate in GaAs from polar optical
phonons may be of order 1 GHz, whereas similar calculations
for phonon-induced charge dephasing in Si yield values of
order 0.5 MHz. Thus, in both materials, and particularly in Si,

improvements may be possible through a reduction of excess
charge noise.

C. Charge-echo experiment

We now demonstrate that the effects of inhomogeneous
dephasing can be ameliorated using a charge-echo method.20

Charge echo is implemented by applying the voltage pulse
sequence shown in Fig. 2(d). When the tips of the pulses
reach the (2,1)-(1,2) anticrossing, the pulse sequence consists
of a 5π/2 pulse (which rotates the Bloch vector into the x-y
plane), a free evolution at the base detuning for a time t/2 + δt ,
a 3π pulse (which flips the Bloch vector to its mirror image
with respect to x-z plane), a second free evolution at the base
detuning for a time t/2 − δt , and a second 5π/2 pulse (which
rotates the Bloch vector about the x axis again). Figure 2(c)
shows the transconductance measured as a function of the
detuning εb and the time δt for t = 640 ps. The oscillations
are strongest around δt = 0, where the echo sequence best
corrects for inhomogeneous dephasing. As |δt | increases,
more time is spent performing an uncorrected z-rotation, and
the oscillation amplitude decays with characteristic time T ∗

2 ,
just as in the Ramsey fringe experiment. As the total free
evolution time t increases, the oscillation amplitude will decay
with characteristic time T2. To extract T2, we perform the
echo pulse sequence for multiple values of t . We convert
the transconductance data to charge occupation data and
extract the amplitude of the charge oscillation �P(1,2) (see
Appendix B). Figure 2(e) shows the extracted value of �P(1,2)
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for each data set, plotted as a function of t . The echo amplitude
clearly decays as t is made longer. A Gaussian fit of the
decay yields T2 = 760 ± 190 ps. The significant increase in
coherence time indicates that low-frequency noise processes
play an important role in limiting qubit coherence.

III. CONCLUSION

In summary, we have observed coherent quantum charge
oscillations in a qubit formed in a Si/SiGe double quantum
dot. The coherence time T ∗

2 is 2.1 ns for Larmor oscillations
or x rotations, at the charge degeneracy point, and is 127 ps
for Ramsey fringes that reflect rotations about the z axis of the
Bloch sphere. Implementation of a charge-echo pulse sequence
increases the decoherence time from 127 to 760 ps in the
regime where the energy difference between the two qubit
states depends substantially on detuning.

ACKNOWLEDGMENTS

We thank Sankar Das Sarma and Jason Petta for useful
discussions. This research was supported in part by the US
Army Research Office (W911NF-08-1-0482, W911NF-12-1-
0607), the NSF (DMR-0805045), and by the United States
Department of Defense. The views and conclusions contained
in this document are those of the authors and should not be
interpreted as representing the official policies, either expressly
or implied, of the US Government. This research utilized NSF-
supported shared facilities at the University of Wisconsin-
Madison.

APPENDIX A: MEASUREMENT DETAILS AND LINE CUTS
OF LARMOR AND RAMSEY OSCILLATIONS

The data shown in Fig. 1(c) of the main text are acquired
by sweeping the voltage on gate L and the pulse duration tp.
As tp increases, because of the high-pass filter in the bias-tee
for the high-frequency line, the time-averaged voltage on gate
L changes, resulting in a linear change in the relationship
between VL and detuning ε. Thus, to remove this offset,
before converting VL to ε, we shift each vertical scan line
by an amount δVL = Vp × tp × frep, where Vp is the pulse
amplitude and frep is the pulse repetition frequency. The
vertical axis in Fig. 1(c) then is converted to εp, the detuning
value at the peak of the pulse, by noting that the main, slowest
oscillation corresponds to εp = 0, and by fitting the change in
Larmor frequency as a function of VL for positive εp. For our
experimental conditions, 1 V applied to the high-frequency
coaxial line connected to gate L results in a change in gate
voltage of 6.6 mV on that gate.

To enable direct comparison between the simulation and
the data, we convert the simulated charge occupation to QPC
current using the measured QPC sensitivity of 18 pA/electron
and the measured cross talk between VL and the QPC current
8.87 nA/V. We then differentiate the current with respect to
VL to produce simulated transconductance data in Fig. 1(d).

The connection between VL and detuning ε is αL,ε =
−24 μeV/mV for the Larmor oscillation data and αL,ε =
−36 μeV/mV for the Ramsey fringe and charge-echo data
(these data sets were acquired at different gate voltage tunings
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FIG. 3. (Color online) Ramsey fringe analysis. (a) Integration
of the transconductance GL from Fig. 2(a) of the main text yields
the probability P(1,2) of occupying the (1,2) charge state in the
regime where the (2,1) charge state is the ground state. The data
are normalized by noting that the total charge transferred across the
polarization line is one electron. The red dashed box indicates the
location of the fringes. (b) Dark gray: line cut of the data in (a), at
the detuning ε = −120 μeV. Light gray: Smooth background that
is subtracted from the line cut before fitting the data to a damped
sinusoidal form. (c) [The same as Fig. 2(b) in the main text.] Gray:
the data from (b) after subtraction of the smooth background. Red: fit
to the form A exp[−(τ − τ0)2/T ∗2

2 ] cos(ωt + φ) + C, which yields
T ∗

2 = 127 ± 8 ps.

of the dots). The lever arm is determined by fitting the
Larmor oscillation frequency as a function of gate voltage
f =

√
αL,εVL

2 + 4�2/h.
Figure 3(a) shows the results of the integration of the data in

Fig. 2(a) in the main text, normalized to obtain the probability
P(1,2) of being in the (1,2) charge configuration when (2,1) is
the ground state. Figure 3(b) shows a line cut through the plot
in Fig. 3(a) at the value of ε = −120 μeV. Figure 3(c), which
is the same as Fig. 2(c) in the main text, shows the Ramsey
fringes after subtraction of the smooth background shown in
Fig. 3(b).

APPENDIX B: ANALYSIS OF CHARGE
ECHO EXPERIMENT

To extract T2 from the charge-echo data, we perform two
analyses. In the first, the oscillation amplitude is quantified at
a given value of the detuning by analyzing the fast Fourier
transform (FFT) of the probability P(1,2). In the second,
the oscillation amplitude is quantified at a given oscillation
frequency by analyzing the FFT of GL. As shown below, the
results from the two methods are consistent.
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FIG. 4. (Color online) Analysis of echo data for extraction of the decoherence time T2. (a)–(c) Transconductance GL as a function of the
base level of detuning εb and δt (defined in the main text) for total free evolution times of t = 390, 690, and 990 ps, respectively. (d)–(f) Fourier
transforms of the charge occupation P(1,2) as a function of detuning εb and oscillation frequency f for the data in (a)–(c), respectively. We obtain
P(1,2) (not shown here) by integrating the transconductance data in (a)–(c) and normalizing by noting that the total charge transferred across the
polarization line is one electron. Fast Fourier transforming the time-domain data of P(1,2) allows us to quantify the amplitude of the oscillations
visible near δt = 0. The oscillations of interest appear as weight in the FFT that moves to higher frequency at more negative detuning (farther
from the anticrossing). For an individual detuning energy, the FFT has nonzero weight for a nonzero bandwidth. (g) Echo amplitude as a
function of free evolution time t . The data points (dark circles) are obtained at εb = −120 μeV by integrating a horizontal line cut of the FFT
data over a bandwidth range of 46–72 GHz, then normalizing by the echo oscillation amplitude of the first data point, as described in the text.
The echo oscillation amplitudes, plotted for multiple free evolution times, decay with characteristic time T2 as the free evolution time t is made
longer. By fitting the decay to a Gaussian, we obtain T2 = 760 ± 190 ps. (h)–(j) Fourier transforms of the transconductance GL as a function
of εb and oscillation frequency f for (a)–(c), respectively. As t is increased the magnitude for oscillations at a given frequency decays with
characteristic time T2. We take the magnitude of the FFT at the point where the central feature (black line) intersects 65 GHz. (k) Measured
FFT magnitudes at 65 GHz for multiple free evolution times (dark circles) with a Gaussian fit (red line), which yields T2 = 620 ± 140 ps, in
reasonable agreement with the result shown in (g).

The results presented in Fig. 2 of the main text are
obtained by analyzing the oscillation amplitude of P(1,2) at
fixed detuning. To get P(1,2) as a function of detuning and
δt , we integrate the time-domain data [such as that shown
in Figs. 4(a)–4(c)] from top to bottom. After removing a
linear background, we normalize by noting that the total
charge transferred across the polarization line is one electron.
We perform an FFT (using IGOR PRO21), and to ensure that
the FFT magnitude is comparable for different values of t , we
use the same number of points (or equivalently, the same length
of time) from each data set by taking a 364 ps cut centered
about δt ≈ 0. The transforms are shown in Figs. 4(d)–4(f). The
oscillations of interest appear as spectral weight that moves to

higher frequency at more negative detuning (farther from the
anticrossing). Moreover, for each value of the detuning, the
FFT magnitude is nonzero over a certain range of frequencies.

To extract the charge oscillation amplitude from these
FFTs, we first take a horizontal trace from the FFT data at
ε = −120 μeV, where the pulse tip is around zero detuning.
We then integrate the trace over a bandwidth region from
46 to 72 GHz. Because for the shortest free evolution time
t the oscillations in P(1,2) can be extracted easily from the
untransformed data, we use that oscillation amplitude to
normalize each of the FFT integrations, allowing us to plot a
normalized oscillation amplitude as a function of t in Fig. 4(g).
The echo amplitude decays as the free evolution time t is made
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longer, with a characteristic time T2. Fitting a Gaussian to the
decay yields T2 = 0.76 ± 0.19 ns.

For comparison, we also extract T2 from an analysis of
the FFT of the unintegrated transconductance data at fixed
oscillation frequency. We perform an FFT with a square
window function on a 386 ps cut centered at δt ≈ 0 and plot the

magnitude as a function of detuning and frequency, as shown
in Figs. 4(h)–4(j). We take the magnitude at the point where
the central feature (black line) intersects 65 GHz and plot this
quantity as a function of t [see Fig. 4(k)]. Fitting to a Gaussian
decay yields T2 = 0.62 ± 0.14 ns. As Fig. 4 demonstrates, the
two approaches of extracting T2 yield similar results.
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