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ABSTRACT 

The research into the collection of data for use in simulation is lacking. This is rather unfortunate 

since data quality and availability are two of the most challenging issues in many simulation projects. 

We have conducted a pilot survey from simulation practitioners to understand the data collection 

process in simulation, its issues, solutions and impact on project outcomes. The result reveals 

interesting insights. Some of them confirm what we believe to be happening in practice. A few of 

them contradict what we may have assumed to be happening in practice. 
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INTRODUCTION 

In the current business world where competition has become tougher, there is high demand for 

effective and useable simulation models to aid business decisions. Researchers have identified 

factors that affect the success of a simulation project (for example Robinson and Pidd, 1998). It is 

widely accepted that one of the main issues that has affected many simulation projects is the 

inefficient data collection (Perera and Liyanage, 2000; Trybula, 1994; Hill and Onggo, 2012).  

This report presents the finding from our pilot survey that seeks to find out more about data 

problems faced by modellers in a simulation project, how they handle the issues and what the 

impact of data quality issues have on their projects.  

 

METHODOLOGY 

We used an on-line questionnaire to collect data from simulation modelers. After we designed the 

questionnaire, we tested the questionnaire in two stages. In the first stage, the questionnaire was 

tested by two PhD students who had been working in simulation modeling. The refined version was 

then tested by 10 simulation modelers. Based on the feedback, we constructed the final version of 

the questionnaire. 

The questions in the survey were divided into four parts: (1) characteristics of respondents, (2) 

characteristics of the models, (3) characteristics of the projects and project related issues and (4) 

data collection and data issues. The questionnaire is given in the appendix. 

 

SURVEY RESULT 

The questionnaire was constructed using Qualtrics™ and the link was distributed to a number of 

simulation practitioners (industry and academics) through personal contact and a limited number of 

LinkedIn groups. At this stage, we wanted to ascertain that the questionnaire could help us achieve 

our research objectives, i.e. to find out typical data problems faced by simulation modelers, how 

simulation modellers handled the data problems and what impact data problems had on their 

projects. Hence, we limited our data collection period to three weeks between February and March 

2012. We received 39 responses. After we validated the answers, we had to remove three invalid 

responses. 

  

The characteristics of respondents 

Practitioners from the industry and academics are represented equally in our survey (top chart in 

Figure 1). The majority of them develop simulation models for a client, either internally, externally or 

both (bottom chart in Figure 1). Most of them are experienced modellers with 11 years of 

experience on average. The distribution of the years of experience is shown in Figure 2. This is 

consistent with the number of models that they have developed (Figure 3). On average, each of 

them has been involved in 19 simulation projects. 
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Figure 1: Characteristics of respondents 

 

 

Figure 2: Years of experience of respondents  
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Figure 3: The number of models developed 

 

The characteristics of projects 

The projects in which our respondents have been involved are typically done in a team and the 

average team size is 3 or 4 people (Figure 4). The average project duration is around 8 months 

(Figure 5). If we look at the result further, the average project durations among industry 

practitioners and academics are 5 months and 10 months, respectively. There might be a number of 

reasons why the average project duration is shorter among industry practitioners. For example, 

many academics probably carry out consultation project outside their main duty at the university. 

However, we do not have any empirical data that explains the difference. 

 

  

Figure 4: The team size of typical simulation projects 
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Figure 5: The typical project durations 

 

The majority of the respondents (34 out of 36) have used discrete-event simulation in their projects 

(Figure 6). This indicates that most practitioners are familiar with discrete-event simulation. The 

result also shows that amongst 8 respondents who have developed agent-based simulation models, 

6 of them are academics. This may suggest that the adoption of agent-based simulation among 

industry practitioners is relatively low. Figure 7 shows that almost 70% of the respondents have used 

one simulation modelling paradigm only. It is interesting that 30% of the respondents have used two 

paradigms or more and they include both industry practitioners and academics. This result shows 

that it is not true that only academics have used two paradigms or more. 

 

  

Figure 6: Simulation paradigms used 
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Figure 7: Number of paradigms used 
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Figure 8: Model usage 
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actively involved in this project stage. As expected, clients’ are not usually involved in the model 

development stage. However, the clients are usually involved in the verification and validation of the 

model. Similarly, the clients are usually interested in the output analysis and experimentation. 

Hence, they are likely to be involved. 

 

Table 1: Client’s involvement in projects 

Stages None A little A lot Most of the 

work 

Problem definition and setting objectives 0 4 19 7 

Deciding model design and content 4 20 5 1 

Data collection and analysis 4 12 13 1 

Model development 17 9 4 0 

Model verification and validation 3 15 11 1 

Output analysis and experimentation 2 14 14 0 

 

 

Data collection in simulation projects 

We have dedicated one section in the questionnaire on data problems in simulation project. First, 

we ask the respondents if data problems are common in their simulation projects. Specifically, we 

ask them to rank five problems that we have experienced in our past projects with the most 

occurring problem taking rank 1. The average rank is shown in the second column of Table 2. Most 

respondents agree that data problems are the most common in simulation projects. This is followed 

by the high complexity of the systems being modelled and the lack of clear objectives which may 

lead to incorrect problem definition. It should be noted that most of our respondents are an 

experienced modeller; hence most of them agree that technical skill is not an issue in comparison to 

the other four problems. 

As expected, the respondents agree that the lack of clear objectives have the most significant impact 

on project performance (column 3 on Table 2). This is consistent with a well-known knowledge that 

mistakes in the early stage of a project are likely to be more costly than those found in the later 

stages. Interestingly, most respondents agree that the next problem that has a serious impact on 

project performance is data problems. It supports the motivation of our research into the data 

identification and collection in simulation because most respondents agree that data problems are 

common and they have a significant impact on project performance.  
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Table 2: Issues in simulation project – frequency and impact 

Stages Frequency Impact 

Data problems 2.1 2.4 

High system complexity 2.3 3.1 

Incorrect problem definition and lack of clear objectives 2.5 2.0 

Project management issues 3.6 3.6 

Technical skill of the project team 4.6 3.9 

 

  

Figure 9: Proportion of projects with serious data problems 

  

Figure 10: Proportion of projects with specific data problems 

 

12 

10 
9 

5 

3 

0

2

4

6

8

10

12

14

<20% [20%-40%) [40%-60%) [60%-80%) >=80%

N
u

m
b

e
r 

o
f 

re
sp

o
n

d
e

n
ts

 

Proportion of projects with serious data collection problems 

39% 

35% 

35% 

26% 

26% 

36% 

0% 5% 10% 15% 20% 25% 30% 35% 40%

Low quality data

Data cannot be validated

Some required data are not available

Key data is not identified until later stage

Collect or receive too much irrelevant data

Other

Proportion of projects suffer the following problems 



Onggo, Hill, Brooks - Pilot Survey on Data Identification and Collection in Simulation 
 

Page 9 of 13 
 

We ask our respondent how often they have experienced serious data problems. The result is shown 

in Figure 9. On average, 43% of the projects have had serious problems during the data identification 

and collection. From our experience, we have identified five common data problems: quality, 

availability, validation, relevance and late identification. Our respondents confirm that they have 

also experienced the same problems. Some respondents have also added problems such as clients 

changing the data several times, clients often not understanding their data and clients not giving 

enough priority to giving the data to modellers. The detailed result can be seen from Figure 10. 

Since data problems are common and have a significant impact on simulation projects, we are 

interested in understanding how modellers handle the data problems. First, we focus on projects 

that involve clients. Based on our experience we have identified a few actions that we have done in 

Table 3. We ask the respondents if they have done the same actions and let us know if they have 

other actions not listed in the table. One respondent mentions the possibility of finding data from 

published literature. The result shows that all respondents have done the listed actions. Some 

actions are done more often than others. For example, requesting more data from the client, 

editing/cleansing data, using client’s estimate and validating data with clients are done relatively 

more frequently than the remaining actions. 

 

Table 3: Actions in response to data problems (excluding model for own use) 

Actions in response to data problems Never Rarely Sometimes Often Most 

occasions 

Request more data from client 
0 3 9 11 

6 

Collect data yourself 
1 9 12 5 

3 

Edit or clean data 
0 1 5 16 

7 

Use client estimate 
1 6 9 11 

3 

Use modeller estimate 
3 4 15 7 

1 

Ask client to validate data 
1 3 12 10 

4 

Validate data yourself 
2 9 10 7 

2 

Validate data with client 
1 2 10 14 

3 

Other 
0 1 0 0 

1 

 

Although the number of respondents who develop model for personal use is very limited in our 

sample, it is still useful to gather initial information on how they handle data problems. The result is 

shown in Table 4. They often collect more data, edit/cleanse the data or use own estimate to deal 
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with the data problems. However, given the very limited number of samples, we cannot make any 

general conclusion from this result. 

 

Table 4: Actions in response to data problems when the model is for own use 

Actions in response to data problems Never Rarely Sometimes Often Most 

occasions 

Collect more data 0 1 3 2 0 

Edit or clean data 0 2 2 2 0 

Use own estimate 0 0 2 2 2 

Validate the data 1 0 0 0 0 

Other 0 0 0 0 0 

 

We are also interested to know the impact of data problems on simulation project. We have listed 

five possible consequences as shown in Figure 11. The respondents agree that data problems are 

likely to cause a project to be delayed. This is followed by the reduced confidence in the model and 

the limitations in carrying out experiments. It is interesting to know that some projects and models 

have to be abandoned due to the data problems. This may indicate the seriousness of the impact of 

data problems on simulation projects. 

 

 

Figure 11: Impact of data problems in simulation projects 
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Trybula (1994) stated that up to 40% of project time was spent on data gathering and data 

validation. We ask our respondents the percentage of time spent on data identification and 

collection in a typical simulation project. The distribution is shown in Figure 12. On average, the time 

spent on data identification and collection is 32%. The result is not significantly different from one 

reported in Trybula (1994) but our result shows that cases where more than 40% of project time is 

spent for data collection may happen more than what we expect.  

  

Figure 12: Distribution of project time spend on data identification and collection 
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Figure 13: Best practice document on data collection for simulation 
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Finally, on hindsight, close to 40% of our respondents think that they spent more time than 

necessary on data collection (Figure 14). For those who think they have spent more time than 

necessary, on average they think 20% of the project time have been wasted unnecessarily 

(presumably by unexpected serious data problems). 

  

Figure 14: Estimated time spent on data collection 

 

SUMMARY 

This survey has been designed as a pilot. Hence, it was aimed to get some feedback and initial 

understanding on simulation modelling practice from representative samples (the industry and 

academics with varying modelling experience). We have limited the number of samples with an 

intention to carry out a larger scale study later. Hence, some of the findings cannot be generalized 

for all practitioners. Nevertheless, our results have shown evidences that: 

 research into data collection in simulation is lacking 

 data problems is common and have a significant impact on project 

 data identification and collection requires a significant portion of project time 

 significant majority of modelers work as a team in a simulation project 

 most modelers have used discrete-event simulation 

 the number of modelers who use one simulation paradigm is significantly more than those 

who use two or more paradigms 

 it is not true that only academics have used two simulation paradigms or more 

 although significant number of models are used once, the number of models that are used 

more than once are significantly more; hence, it is not true that most simulation models are 

used only once 

The result of this survey is useful because the result gives us an insight into what has been 

happening in practice in relation to data collection in simulation and simulation projects in general. 

In the future, we plan to carry out a larger scale study on the same topic based on the feedback and 

knowledge obtained from this pilot survey. 
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