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Abstract

Quadratic Convex Reformulation (QCR) is a technique that was
originally proposed for quadratic 0-1 programs, and then extended to
various other problems. It is used to convert non-convex instances
into convex ones, in such a way that the bound obtained by solving
the continuous relaxation of the reformulated instance is as strong as
possible.

In this paper, we focus on the case of quadratically constrained
quadratic 0-1 programs. The variant of QCR previously proposed for
this case involves the addition of a quadratic number of auxiliary con-
tinuous variables. We show that, in fact, at most one additional vari-
able is needed. Some computational results are also presented.

Keywords: Combinatorial optimization, Semidefinite programming,
Quadratically constrained quadratic programming

1 Introduction

It has been known for some time that semidefinite programming (SDP)
can be used to derive strong convex relaxations of various hard quadratic
optimisation problems. This includes, for example, quadratic zero-one pro-
gramming (0-1 QP) [12, 16], non-convex quadratically constrained quadratic
programming (QCQP) [10, 17, 20] and 0-1 QCQP [8, 14, 18].

In a recent paper, Billionnet et al. [6] proposed to use SDP to reformulate
0-1 QP instances, rather than merely relax them. Their method, called
Quadratic Convex Reformulation (QCR), has two effects. First, it converts
non-convex instances into convex ones. Second, when applied to instances
that are already convex, it improves the bound obtained by solving the
continuous relaxation of the instance. Once QCR has been applied, the
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reformulated instance can be fed into any software package capable of solving
convex 0-1 QP instances.

Recently, Billionnet et al. [4, 5] have extended QCR to mixed-integer
quadratic programming (MIQP) and mixed-integer quadratically constrained
quadratic programming (MIQCQP). The purpose of the present paper is to
present a much simpler variant of QCR for the case of quadratically con-
strained quadratic 0-1 programming (0-1 QCQP).

The structure of the paper is as follows. In Section 2, we review the
relevant literature. In Section 3, we present our extension of QCR. In Section
4, we present some computational results and some concluding remarks.

2 Literature Review

We now review the relevant literature. We cover SDP and Lagrangian re-
laxations for non-convex QCQP in Subsection 2.1, their application to 0-1
QP in Subsection 2.2, and the QCR method in Subsection 2.3.

2.1 Relaxations of non-convex QCQP

A general instance of QCQP can be written in the following form:

inf xTQ0x+ c0 · x
s.t. xTQjx+ cj · x ≤ hj (j = 1, . . . ,m) (1)

x ∈ Rn,

where the Qj are symmetric matrices of order n, the cj are n-vectors and
the hj are scalars. (We write ‘inf’ rather than ‘min’ because it is possible
that the infimum is not attainable.)

Now suppose that at least one of the Qj is not positive semidefinite
(psd), so that the problem is not convex. We can derive a SDP relaxation
as follows [10, 17, 20]. We define the n×n matrix X = xxT , along with the
augmented matrix

Y =

(
1

x

)(
1

x

)T
=

(
1 xT

x X

)
.

Note that Y is symmetric and psd. The following SDP is therefore a relax-
ation of non-convex QCQP:

inf Q0 •X + c0 · x
s.t. Qj •X + cj · x ≤ hj (j = 1, . . . ,m)

Y � 0.

Here, Qj •X denotes
∑n

i=1

∑n
k=1Q

j
ikXik, and Y � 0 means that Y is sym-

metric and psd.
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There is a connection between SDP and Lagrangian relaxations of non-
convex QCQP [9, 10, 14, 16]. Suppose we relax the constraints (1) in La-
grangian fashion, using a vector λ ∈ Rm+ of Lagrangian multipliers. The
Lagrangian is:

f(x, λ) = xT

Q0 +
m∑
j=1

λjQ
j

x+

c0 +
m∑
j=1

λjc
j

 · x− m∑
j=1

λjhj .

The relaxed problem is:

inf {f(x, λ) : x ∈ Rn} ,

which is an unconstrained quadratic minimisation problem. The Lagrangian
dual is:

sup
λ∈Rm

+

inf
x∈Rn

f(x, λ).

As explained in [10, 14, 16], if the supremum is attainable by some multiplier
vector λ∗, then λ∗ must be an optimal dual solution to the SDP. If in addition
strong duality holds for the SDP, then the semidefinite and Lagrangian
bounds will be equal. An analogous result holds when quadratic equations,
rather than inequalities, are present.

2.2 Relaxations of 0-1 QP

An instance of 0-1 QP can be written in the following form:

min xTQx+ cTx

s.t. Ax = b (2)

Dx ≤ f (3)

x ∈ {0, 1}n,

where Q is again a symmetric square matrix and A, D, c, b and f are
matrices and vectors of appropriate dimension.

As observed by many authors (e.g., [11, 13, 14, 15, 16]), the condition
that x be binary is equivalent to the non-convex quadratic constraints

x2i − xi = 0 (i = 1, . . . , n).

That is, 0-1 QP can be regarded as a special case of non-convex QCQP. This
observation suggests immediately the following SDP relaxation:

inf
{
Q •X + cTx : (2), (3), x = diag(X), Y � 0

}
.

The SDP can be strengthened using some ideas presented in [15, 19].
Given a linear equation in the system (2), say aj · x = bj , and any variable,

3



say xk, the quadratic equation (aj · x)xk = bjxk is satisfied by all feasible
solutions. This implies that the equation

n∑
i=1

ajiXik − bjxk = 0 (4)

can be added to the SDP. In a similar way, any linear inequality in the
system (3) can be multiplied by either xk or 1− xk to yield valid quadratic
inequalities, which can also be converted into valid inequalities for the SDP.
For further ways of strengthening the SDP, see, e.g., [9, 12, 14, 16, 18].

It follows from the result mentioned in Subsection 2.1 that, for any SDP
relaxation of 0-1 QP, there is a corresponding Lagrangian relaxation. Ex-
amples of such relaxations appear, for example, in [10, 13, 14, 16].

2.3 The QCR method

The QCR method has its roots in an early paper by Hammer & Rubin [11].
They proposed to convert non-convex 0-1 QP instances into convex ones,
simply by subtracting

∑
1≤i≤n α(x2i − xi) from the objective, where α is the

minimum eigenvalue of Q. Note that this reformulation leaves the cost of
every feasible solution unchanged.

Billionnet & Elloumi [3] applied a similar idea to unconstrained 0-1 QP.
They perturbed the objective by adding terms of the form λi(x

2
i −xi), where

λ ∈ Rn, in such a way that (i) the resulting objective function is convex,
and (ii) the lower bound obtained by solving the continuous relaxation of
the instance is maximised.

Billionnet et al. [6] extended this approach to the case of equality-
constrained 0-1 QP. They perturbed the objective not only by adding terms
of the form λi(x

2
i−xi), but also by adding terms of the formMjk(a

j ·x−bj)xk,
for some constraint index j and variable index k. To do this, they proposed
to solve the SDP mentioned in the previous subsection, strengthened with
the constraints of the form (4), and then set λ and M to the optimal dual
values for the constraints diag(X) = x and (4), respectively. This is the
original version of QCR.

As mentioned in the introduction, Billionnet et al. [4, 5] extended QCR
to instances of MIQP and MIQCQP satisfying certain technical conditions.
For the sake of brevity, we do not go into further details. We remark however
that their approaches involve the addition of O(n2) variables. Our approach
to 0-1 QCQP works with the original n variables only.

We close this section with three remarks. First, some alternative heuris-
tics for selecting the multipliers λi appeared in [1]. They involve either
minimising the trace of the perturbed matrix, or minimising the maximum
eigenvalue. Second, some alternative approaches to MIQCQP were surveyed
in [8]. Finally, QCR was very recently extended to QP with linear comple-
mentarity constraints in [2].
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3 Theoretical Results

In this section, we show how to extend QCR to general a 0-1 QCQP instance
of the form:

min xTQ0x+ c0 · x (5)

s.t. x2i − xi = 0 (i = 1, . . . , n) (6)

xTQjx+ cj · x = hj (j = 1, . . . ,m). (7)

xTQjx+ cj · x ≤ hj (j = m+ 1, . . . ,m+ r). (8)

For simplicity of notation, we assume that any linear constraints, or any
additional valid quadratic constraints generated from them (as in Subsection
2.2), are already included in the systems (7) and (8).

It turns out that quadratic inequalities are harder to handle than quadratic
equations. We therefore deal with equations only in Subsection 3.1, before
moving on to the general case in Subsection 3.2.

3.1 The equality-constrained case

Consider an equality-constrained 0-1 QCQP instance of the form (5)-(7).
The continuous relaxation of this instance is obtained by replacing the binary
conditions (6) with the weaker conditions 0 ≤ xi ≤ 1 for all i.

We wish to ‘convexify’ the instance, which in this context means trans-
forming the instance into an equivalent 0-1 QCQP instance (which will turn
out to be inequality-constrained) that has the following four properties:

• The objective function is convex.

• The constraint functions are all convex.

• The set of feasible solutions is unchanged.

• The cost of each feasible solution is unchanged.

Ideally, we would like the lower-bound from the continuous relaxation of
the transformed instance to equal the lower bound from the following SDP
relaxation:

inf Q0 •X + c0 · x (9)

s.t. diag(X) = x (10)

Qj •X + cj · x = hj (j = 1, . . . ,m) (11)

Y � 0. (12)

Moreover, in contrast to Billionnet et al. [5], we would like to do this without
using additional variables.

Observe that, when perturbing the objective function, we can add terms
of the following two forms:

5



1. xTDiag(λ)x− λTx for some λ ∈ Rn

2. µj(x
TQjx+ cj · x− hj) for some µ ∈ Rm.

The following theorem shows that, using these two sources of perturbation,
the desired reformulation can be obtained:

Theorem 1 Let a 0-1 QCQP instance of the form (5)-(7) be given. Sup-
pose that strong duality holds for the SDP (9)–(12), and that a dual optimal
solution exists. Let (λ∗, µ∗) be such a solution, where λ and µ are the dual
variables for the constraints (10)–(11). Then, suppose we perform the fol-
lowing three operations:

• perturb the objective function of the 0-1 QCQP instance by adding
terms of the form xTDiag(λ∗)x− (λ∗)Tx and µ∗j (x

TQjx+ cj · x− hj)
for j = 1, . . . ,m;

• replace each of the quadratic equations (7) with two quadratic inequal-
ities of opposite sign;

• convexify the resulting quadratic inequalities using any desired method
(such as the minimum eigenvalue method).

Then the reformulated 0-1 QCQP instance will be convex, and the lower
bound from its continuous relaxation will equal the SDP lower bound.

Proof. From the equivalence of semidefinite and Lagrangian relaxations
described in Subsection 2.1, the lower bound from the SDP will be identical
to the lower bound from the Lagrangian dual under the stated conditions.
Moreover, the optimal Lagrangian multipliers for the constraints (6)–(7) will
be equal to λ∗ and µ∗, respectively. So, the lower bound from the Lagrangian
dual will be equal to:

min
{
xT Q̄x+ c̄ · x+ h̄ : x ∈ Rn

}
, (13)

where

Q̄ = Q0 + Diag(λ∗) +

m∑
j=1

µ∗jQ
j

c̄ = c0 − λ∗ +
m∑
j=1

µ∗jc
j

h̄ = −
m∑
j=1

µ∗jhj .

Now observe that the objective function of (13) is identical to the objective
function of the reformulated instance. Therefore, the lower bound from the
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continuous relaxation is at least as large as (13). The continuous relaxation
has some constraints that are not present in (13); namely, the convexified
quadratic inequalities and the constraint x ∈ [0, 1]n. But these constraints
cannot improve the bound, since they are convex and are implied by con-
straints that have already been incorporated into the objective function of
(13) with optimal multipliers.

It remains to be shown that the reformulated instance is convex. Since
λ∗ and µ∗ belong to a feasible dual solution, we have Q̄ � 0, and therefore
the objective function is convex. Moreover, the constraints are convex by
construction. 2

Notice that, for Theorem 1 to be applicable, strong duality must hold
and a dual optimal solution must exist. The following proposition implies
that strong duality does indeed hold:

Proposition 1 The dual of the SDP (9)-(12) satisfies the Slater condition
(i.e., is strictly feasible).

Proof. The dual can be written in the following form (see, e.g., [6, 14]):

sup t

s.t.

(
−h̄− t c̄T /2
c̄/2 Q̄

)
� 0

(λ, µ, t) ∈ Rn+m+1,

where Q̄, c̄ and h̄ are defined as above. (Here, t is the dual variable for the
constraint Y00 = 1, which is implicit in the definition of Y .) Given any µ,
we can ensure that the matrix(

−h̄− t c̄T /2
c̄/2 Q̄

)
is positive definite by decreasing t and increasing the components of λ by
large enough amounts. 2

Unfortunately, due to the unboundedness of the dual SDP, a dual optimal
solution is not guaranteed to exist (see also [9]). Fortunately, we have found
that such a solution can almost always be found in practice.

3.2 The inequality-constrained case

We now move on to the general case, in which inequalities may be present.
The SDP for this case is obtained simply by adding the following constraints
to (9)–(12):

Qj •X + cj · x ≤ hj (j = m+ 1, . . . ,m+ r). (14)
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It turns out, however, that we cannot always reformulate an inequality-
constrained 0-1 QCQP instance in such a way that the lower bound from
the continuous relaxation is equal to the SDP bound. In fact, the best possi-
ble lower bound can be much worse than the SDP bound. This is illustrated
by the following example:

Example: Consider the following 0-1 QCQP instance:

min −
∑n

i=1 xi

s.t. x2i − xi = 0 (i = 1, . . . , n) (15)

xixj ≤ 0 (1 ≤ i < j ≤ n). (16)

The optimal profit is −1, and the lower bounds from the primal and dual
SDPs are easily shown to be −1 as well. As for QCR, there is no point per-
turbing the objective function using the equations (15), since negative val-
ues for the multipliers λi would destroy convexity and positive values would
weaken the lower bound. On the other hand, the quadratic inequalities (16)
are non-convex, and therefore must be convexified using the equations (15).
By symmetry, there exists an optimal reformulation in which the inequalities
(16) are replaced by inequalities of the form:

α(x2i − xi) + α(x2j − xj) + xixj ≤ 0 (1 ≤ i < j ≤ n),

for some real α. For convexity, we require α ≥ 1/2. The best lower bound
is obtained when α = 1/2. Then, the optimal solution x∗ to the continuous
relaxation is (1/2, . . . , 1/2)T , yielding a lower bound of −n/2. 2

This example also illustrates the fact that, to find an optimal reformulation,
one needs to find an optimal perturbation of each quadratic inequality, and
the objective function, simultaneously. It can be shown that is possible to
find these perturbations by solving a large SDP, involving a matrix variable
of order (n + 1)r. We do not go into details, however, since we do not
recommend such an approach.

A natural alternative way to handle quadratic inequalities is to con-
vert them into equations, by adding (continuous and non-negative) slack
variables. One can then apply the reformulation scheme presented in the
previous subsection. It can be shown that, if this is done, the lower bound
for the resulting mixed 0-1 QCQP instance is equal to the SDP bound for the
original 0-1 QCQP instance. This does however mean that r new variables
have to be added.

In fact, it is possible to use just one slack variable, as shown in the
following proposition:

Proposition 2 Let a 0-1 QCQP instance of the form (5)-(8) be given, and
suppose as before that a dual optimal SDP solution (λ∗, µ∗, ν∗) exists. Then,
suppose we perform the following four operations:

8



• add the following constraint to the 0-1 QCQP instance:

m+r∑
j=m+1

ν∗j (xTQjx+ cj · x) + s =

m+r∑
j=m+1

ν∗j hj , (17)

where s is a new continuous and non-negative slack variable;

• perturb the objective function of the resulting mixed 0-1 QCQP in-
stance by adding the variable s, along with terms of the form xTDiag(λ∗)x−
(λ∗)Tx, µ∗j (x

TQjx+ cj · x− hj) for j = 1, . . . ,m, and ν∗j (xTQjx+ cj ·
x− hj) for j = m+ 1, . . . ,m+ r;

• replace each quadratic equation with two quadratic inequalities;

• convexify all quadratic inequalities using any desired method.

Then the reformulated mixed 0-1 QCQP instance will be convex, and the
lower bound from its continuous relaxation will be equal to the SDP bound
for the original 0-1 QCQP instance.

Proof. Observe that the equation (17) is obtained by multiplying each of
the r quadratic inequalities (8) by its corresponding ν∗ value, summing the
resulting inequalities together, and adding a slack variable. Since ν∗ is by
assumption part of a dual optimal solution, the SDP bound for the original
instance would remain unchanged if we replaced the r inequalities (8) with
the single equation (17). The rest of the proof is similar to that of Theorem
1. 2

4 Computational Results

We now present the results of some computational experiments. We created
six sets of random 0-1 QCQP instances of the following form:

max
{
c0 · x+ xTQ0x : cj · x+ xTQjx ≤ bj , x ∈ {0, 1}n j = 1 . . .m

}
,

where c0, cj , Q0 and Qj all have positive integer components, and bj is set
to: 1

2

n∑
i=1

cji +
1

4

n∑
i=1

n∑
j=1

Qjij

 .
Note that the optimal profit is guaranteed to be positive for such instances.

Each set of instances has n ∈ {5, 10, . . . , 30}, and is created by varying
three parameters: m, the number of constraints; ∆, the density of the con-
straint matrix (i.e., the percentage of non-zero entries), and r, the range of
the non-zero coefficients. See the first four columns of Table 1 for details.

For the instances with m = 1, we applied five reformulation schemes:
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Table 1: Gaps and computing times (in seconds) for five reformulation
schemes

Scheme1 Scheme2 Scheme3 Scheme4 Scheme5
n m ∆ r % gap time % gap time % gap time % gap time % gap time

5 1 100 [1,100] 133.96 0.00 116.98 0.01 119.36 0.00 116.98 0.00 44.37 0.00
10 1 100 [1,100] 82.43 0.00 74.90 0.01 76.13 0.00 74.90 0.01 18.34 0.00
15 1 100 [1,100] 59.20 0.01 52.99 0.01 54.59 0.01 52.99 0.01 5.53 0.01
20 1 100 [1,100] 69.29 0.02 64.65 0.03 66.19 0.02 64.65 0.02 5.03 0.02
25 1 100 [1,100] 64.65 0.02 62.34 0.03 63.53 0.02 62.34 0.02 6.77 0.02
30 1 100 [1,100] 66.03 0.03 63.02 0.03 63.65 0.03 63.01 0.03 3.57 0.03

5 1 100 [1,500] 136.60 0.00 129.54 0.01 130.86 0.01 129.54 0.01 47.73 0.01
10 1 100 [1,500] 62.98 0.01 56.96 0.01 59.03 0.01 56.88 0.01 15.03 0.01
15 1 100 [1,500] 49.91 0.03 45.62 0.03 46.77 0.01 45.62 0.02 9.38 0.01
20 1 100 [1,500] 55.47 0.03 52.94 0.03 54.08 0.02 52.93 0.03 3.04 0.01
25 1 100 [1,500] 68.82 0.03 65.57 0.03 66.77 0.02 65.57 0.03 4.95 0.02
30 1 100 [1,500] 65.77 0.04 64.15 0.04 64.64 0.03 64.15 0.05 4.09 0.02

5 1 50 [1,100] 106.52 0.00 81.65 0.01 92.25 0.01 81.59 0.01 63.04 0.01
10 1 50 [1,100] 43.60 0.01 28.87 0.01 36.12 0.01 28.78 0.01 8.35 0.01
15 1 50 [1,100] 38.09 0.03 33.39 0.01 36.02 0.01 32.69 0.02 7.92 0.01
20 1 50 [1,100] 32.59 0.03 25.96 0.03 31.58 0.02 25.62 0.02 4.96 0.02
25 1 50 [1,100] 46.07 0.03 39.62 0.03 43.55 0.02 39.50 0.04 6.09 0.02
30 1 50 [1,100] 55.87 0.05 48.99 0.03 54.67 0.03 48.98 0.05 6.41 0.03

5 5 100 [1,100] 97.01 0.01 86.06 0.01 95.87 0.01 - - 35.07 0.00
10 5 100 [1,100] 82.75 0.02 77.09 0.02 80.06 0.02 - - 11.94 0.01
15 5 100 [1,100] 87.86 0.02 83.00 0.02 84.94 0.03 - - 18.09 0.02
20 5 100 [1,100] 74.11 0.03 70.40 0.03 72.07 0.03 - - 6.01 0.04
25 5 100 [1,100] 79.09 0.06 75.80 0.05 77.22 0.04 - - 9.32 0.06
30 5 100 [1,100] 74.32 0.09 71.61 0.07 73.08 0.06 - - 3.19 0.06

5 5 50 [1,100] 217.57 0.00 182.08 0.00 196.57 0.00 - - 90.66 0.00
10 5 50 [1,100] 114.57 0.01 101.84 0.01 107.36 0.01 - - 33.49 0.01
15 5 50 [1,100] 99.86 0.01 94.75 0.01 96.94 0.01 - - 17.24 0.02
20 5 50 [1,100] 68.47 0.03 59.51 0.04 65.64 0.04 - - 12.30 0.04
25 5 50 [1,100] 71.06 0.06 63.56 0.05 68.96 0.08 - - 12.83 0.06
30 5 50 [1,100] 65.04 0.08 56.92 0.07 63.39 0.08 - - 7.11 0.08

5 10 50 [1,100] 460.40 0.01 325.88 0.00 363.92 0.02 - - 229.79 0.01
10 10 50 [1,100] 72.39 0.02 57.23 0.03 72.09 0.03 - - 21.16 0.01
15 10 50 [1,100] 81.53 0.04 73.31 0.06 79.00 0.06 - - 19.06 0.03
20 10 50 [1,100] 85.84 0.07 76.29 0.10 83.33 0.07 - - 21.39 0.08
25 10 50 [1,100] 72.33 0.20 64.29 0.19 69.60 0.20 - - 11.37 0.12
30 10 50 [1,100] 67.80 0.27 59.54 0.31 66.31 0.29 - - 7.22 0.23
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1. Convexify the objective and constraint independently, using the min-
imum eigenvalue method in [11].

2. As above, but using the minimum trace method in [1].

3. As above, but using the min-max eigenvalue method in [1].

4. Best reformulation without the slack variable (see Subsection 3.2).

5. Best reformulation with slack variable (see Subsection 3.2).

For the instances with m ∈ {5, 10}, we applied all reformulations except
the fourth, which turned out to be problematic due to the huge size of
the resulting SDP. The eigenvalues were computed using the C function
Jacobi Cyclic Method, which is available in the Mathematics Source Li-
brary at:

http://www.mymathlib.com/matrices/eigen/symmetric.html

The SDPs were solved using the routine CSDP, due to Borchers [7], which is
available as part of COIN-OR at:

http://projects.coin-or.org/Csdp

We also solved the instances to proven optimality using IBM CPLEX v. 12.5.
(On our machine, we were unable to solve larger instances to optimality.)

Table 1 shows, for each instance and each scheme, the gap between the
upper bound and the optimum, expressed as a percentage of the optimum,
and the corresponding time in seconds.

It is apparent that the ‘minimum trace’ bound is slightly better than
the ‘min-max-eigenvalue’ bound, which in turn is slightly better than the
‘minimum eigenvalue’ bound. Also, the best bound obtainable without a
slack variable is only very slightly better than the ‘minimum trace’ bound.
The bound obtained with the slack variable, on the other hand, is much
stronger. This is in accordance with the results in Subsection 3.2.

One also sees that the time taken to perform the reformulation was
negligible in all cases. We wanted also to record the time taken actually
to solve the reformulated instances via branch-and-bound. Unfortunately,
CPLEX seems to perform an internal reformulation scheme of its own prior
to applying branch-and-bound, which we were unable to deactivate. We
are sure, however, that the branch-and-bound times would be considerably
larger than the reformulation times (minutes or hours rather than fractions
of a second).

We leave to future research a full comparison between our scheme and
that of [5].

Acknowledgement: The second author was partially supported by the En-
gineering and Physical Sciences Research Council under grant EP/D072662/1.
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