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LINEARIZATION OF RANDOMLY
WEIGHTED EMPIRICALS UNDER
LONG RANGE DEPENDENCE WITH
APPLICATIONS TO NONLINEAR
REGRESSION QUANTILES

KANCHAN MUKHERJEE
National University of Singapore

This paper discusses some asymptotic uniform linearity results of randomly
weighted empirical processes based on long range dependent random variables
These results are subsequently used to linearize nonlinear regression quantiles in
a nonlinear regression model with long range dependent emtiere the design
variables can be either random or nonranddimese in turn, yield the limiting
behavior of the nonlinear regression quantikes a corollary we obtain the lim-

iting behavior of the least absolute deviation estimator and the trimmed mean
estimator of the parameters of the nonlinear regression m8dehe of the lim-

iting properties are in striking contrast with the corresponding properties of a
nonlinear regression model under independent and identically distributed error
random variablesThe paper also discusses an extension of rank score statistic in
a nonlinear regression model

1. INTRODUCTION

The least absolute deviation method of estimation appears to be older than the
least squares method of estimation in linear regression mowaéls origins
dating back to the middle of the eighteenth centigspite thisthe asymp-

totic theory of the least absolute deviation estimglohD) (see(2.2), which
follows, for the definition) has been developed only recenfpenker and Bas-

sett (1978 considered a linear regression model with nonrandom regressors
and errors that are independent and identically distribdited.) and defined

an ath regression quantileRQ) (see(2.2) with h(u, X)) = u’X,; for the defi-
nition), which is a multidimensional analogue of thigwa ] + 1)th-order statis-

tic. They derived central limit theorent€LT'’s) for the RQ’s which in particular
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established a CLT for the LADIt turned out that the LAD is asymptotically
more efficient than the least squares estimét@E) whenever the median is
asymptotically more efficient than the mean as an estimator of the location in
the one-sample location model

Several ramifications of Koenker and Bassett's work were developed by a
number of researchers during the past 20 yestiser by assuming various kinds
of dependence structure on the error random variables or by imposing different
types of regularity conditions on the regressor variatB¢somfield and Steiger
(1983 and Pollard(1991) considered random regressors and the errors gener-
ated by stationaryergodic martingale differences to establish the CLT for the
LAD. Portnoy(1991) and Koul and Mukherje€1994) obtained asymptotic rep-
resentations of RQ’s when the errors anedependent and long range depen-
dent(L.R.D.) (see(3.1), which follows for the definition, respectivelyin linear
models with nhonrandom regressors

Another line of developmentesulting from the attempt to extend the con-
cept of the LAD and RQ’s to nonlinear regression mogdelas carried out by
Oberhofer(1982, Richardson and Bhattachariyg987), Weiss(1991), and Ju-
retkova and Prochazk&l994), among othersThey obtained the asymptotic
normality of the LAD and nonlinear regression quantilese(2.2)) under var-
ious sets of regularity conditions on the design points witd.ierrors

There is an increasing interest in stationary time series that exhibit long range
dependencécharacterized by hyperbolic decay of correlatiomdore specifi-
cally, L.R.D. models with a regression trend to arise in many fundamental ap-
plications of econometrigsbusinessand environmental studiegsymptotic
theory for the classical best linear unbiased estimator and the LSE in linear
regression models with nonrandom regressor afdlb. errors was developed
by Yajima (1991, and the corresponding theory for robust estimation proce-
dures was developed by Ber&t091), Koul and Mukherjeg1993 1994, and
Mukherjee(1994 1999h, among othersln view of the importance of random
regressorgsay a linear state-space model with long range dependence as in
Robinson 1992 and the nonlinearity of the regression functiam this paper
we discuss the asymptotic behavior of nonlinear regression quantiles and rank
scoregsee definitiong2.2) and(2.5)) in nonlinear regression models with ran-
dom regressorsvhen the errors are.R.D. Nonlinear quantiles and rank scores
are useful in both estimation and testing problemsd so their asymptotics
discussed in this paper pave the way for the statistical inference in these non-
linear modelsAlso, an interesting order statistics property of nonlinear quan-
tiles is proved that shows that they are right analogues of the order statistics in
nonlinear regression models

Some very intriguing phenomena regarding the asymptotic behavior of non-
linear regression quantiles are observed under tiReDL errors setupThey
are fundamentally different from what are generally observed under.itde i
errors setup and the.R.D. errors setup with nonrandom regresséisr exam-
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ple, the rates of convergence of the different estimators are influenced by the
nature of the randomness of the regressors and are not aiw&y#\lso, de-
pending on the type of randomnesise rates of convergence for intercept and
slope parameters may turn out to be differévibreover unlike the ii.d. errors
casethe limiting distributionsif they exist are not always normakor details

see Remarks.3-45.

There are several approaches to deriving the asymptotic distribution of the
RQ in linear regression modelBor examplein the case of the LADAmemiya
(1982 and Bloomfield and Steigefl983 Theorem 2 p. 44) used a smooth
approximation of a functiorp,,, (defined following (2.2)), whereas Pollard
(1991 used some convexity propertidBecause of the nonlinearity of the re-
gression function and the dependence among erttoese approaches may not
work in our caseHowever we use a linearization resulTheorem Al) of a
randomly weighted empirical proce$s (see the Appendix for definitionto
obtain a Taylor-type expansion of the statisfitu,«) (see Section 4 for defi-
nition) in Theorem 41(i). This expansioncoupled with a consistency assump-
tion (4.1), gives us the desired resufhis technique was used previously by
Jure&ova (1984, Portnoy(1991), and Koul and Mukherje€l994, among oth-
ers in similar but simpler situations

The remainder of the paper is organized as folloWse quantiles and rank
scores are defined in Section®he error distributional assumptions are stated
in Section 3 Section 4 contains the main results of the paférey are fol-
lowed by several remarks on the implications of these res8kstion 5 con-
tains some examples of theR.D. models with linear and nonlinear trends where
the results of Section 4 are applideinally, the Appendix contains the proofs
of the linearization results of randomly weighted empirical processes and some
auxiliary results on the properties of nonlinear regression quantiles that are anal-
ogous to those of order statistics

2. NONLINEAR REGRESSION QUANTILES, L-ESTIMATORS
AND RANK SCORES

Consider the nonlinear regression model where one observes an array of ran-
dom vectors(Y, i, X,i)';1 = i = n} satisfying

Yo = h(B, Xyi) + €, l=si=n (2.1)

HereB' := (Bo,B') € Q is the unknown parameter whefkis an open subset
of R of the formQ = R* X Q; h: QO X RP — R is a known function of the
form h{(ug,Uy,...,Uq), X} = Ug + h{(uy,...,uq), X} such that for eaclk € RP,
the functionh(-, x) is differentiable with vector of partial derivatives atep-
resented byn(u, x); {Xni;1 =i = n} is an array ofp-dimensional random vec-
tors representing regressor variablasd{e¢;;1 = i = n} are the unobservable
error random variables
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Following Jurékova and Prochazkd 994, anath nonlinear regression quan-
tile (NLRQ) B, («) in the model(2.1) is defined as

Bnla) = argmin[%pa(Yni — h(u, Xm))}, (2.2)

wherep,(y) := —(1 — a)yl(y = 0) + ayl(y > 0). Whena = %, B.(3) is
called the LAD estimator and is denoted Byap. As is common to this kind
of implicit definition, in general there may not be any unique minimizer or any
minimizer at all in(2.2), and thus the definition suffers from some kind of am-
biguity. However if the functionh is sufficiently smooth Koul (19960 has
shown that the LSE is consistent {8y and thus one can choose a minimizer in
(2.2), which is closest to the LSE bgay 1/n, as estimatorKoenker and Park
(1996 provided some sufficient conditions on the functiofior the existence
of minimizers They suggested an “interior point algorithm” that can be used
for computation

Note that ifY,; — h(u,X,;) # 0 for all 1 =i = n, thenu can not mini-
mize 3" 1 p, (Yo — h(u,Xn)). Therefore a minimizer B,(a) must satisfy
Y. — h(Bn(@), X)) = 0 for somei. Define

Bn(a) = {i;Yni = h(:én(a),xni)}~

Let N, P, and Z denote the numbers of elements of the sftsY,; <
h(Bn(a), Xa)}, 1i:Yai > h(Bn(a), X4i)}, andB,(a), respectivelyThen Assump-
tion (h.0) of Section 4 and the continuity of the underlying random variables
(Assumption(M.3) of Section 3 imply thatZ = 1 + d with probability one
and

N = na, P=n(l-a). (2.3)

For a proof see Lemma A4(i). Recall that ifY(;n,}+1) denotes thé¢[ na] + 1)th-
order statistic ofYy,..., Y.t and Ny, Py, and Z, denote the numbers of ele-
ments of the setfi; Yo < Yinaj+nb {i5Yai > Yinar+n b @and{isYo = Yinai+)},
respectivelythenNy = na, Py = n(1 — «), andZy = 1. In this sensgB,(a) is a
proper analogue of thg na | + 1)th order statistic ofY,y, ..., Yan}-

In analogy to Koenker and Portn@$987), we define arlL-estimator of3 in
the model(2.1) as

By = fo Bn(a)A(da), (2.4)

where

(L.1) A is a finite signed measure on a compact subinterval(®@l), with
A{(0,1)} = 1.

Note thatB(ay,a,) = B,, corresponding to the probability measutéda) =
(ap — ay) Moy = a = ap)da; 0 < a; < 3 < a, < 1is an analogue of the
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trimmed mean in the location model with 18&®b6 lower trimming and 10 —
a,)% upper trimming

In the context of the linear regression madéutenbrunner and Juteava
(1992 display(3.11)) introduced regression rank score procéRRSH as an
extension of Hajek andiak’s definition of rank procesel967 Sect V.3.5) of
the location modelRRSP and linear rank statistics based on RRSP are useful
in various hypothesis testing problenfllowing Mukherjee(19993, here we
give a definition of nonlinear rank score procésdd RSP that is not an exten-
sion of RRSP but nevertheless has similar asymptotic propeMi@sover for
the one-sample location modéhe definition of NLRSP reduces to Hajek and
Sidak’s definition of rank procesJoward that endfix any Bn(a) and the cor-
responding index s, («). Fori & B,(«), define

éni(a) =1 if Yoi — h(Bn(a), Xni) >0
=0 |if Yni - h(:én(a)a xni) <.
Also fori € B,(«), 4, () is defined as a solution of

2 h(l;n(a), xni)éni(a) =(1-a) Z h(Bn(a), Xni)7 (2.5)

with &, (a) € [0,1].
Let{w,;1l =i SA”} be an array ofR" valued random vector§hen the se-
quence of NLRSPAVYY on (0,1) is defined by

an(a) = E W i (a), 0<a<l

i=1
Also, let Wnh stand forW" with wy,; = hy(8) andr =1 + d.

Next, for a functionb: (0,1) — R? that is of bounded variation and constant
outside a compact subinterval @,1), theith score is defined as

1
By = f ay(a)b(da), 1=i=n
0]

Gutenbrunner and Jutkeava (1992 showed that in the location modéb,,; }'s
reduce to familiar rank scores as discussed in Hajek adak31967). Based
on the NLRSPa nonlinear rank statistidNLRS) U, is defined as

n 1
UY:=> wyb, = J WY(a)b(da).
i=1 0

3. LONG RANGE DEPENDENCE, ERROR DISTRIBUTIONAL
ASSUMPTIONS, AND HERMITE RANK

Let {n;;i = 1} be a sequence of stationary random variables with a standard
normal marginal distribution and with correlation at “lakg”

p(K) := correlation(ny,m1.,) = L(K)/KE, k=1. 3.1)
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Here 0< # < 1 andL is a positive(eventually and slowly varying function at
infinity, i.e, lim_,, L(tx)/L(t) = 1, for all x > 0. The long range dependence
among the error random variablés;1 = i = n} is modeled by assuming the
following:

(M.1) ¢ = G(n;), 1=1i = n, whereG:R' — R* is an unknown function

L.R.D. data are encountered in the fields of hydrologgonomicstime series
analysis and other sciencegxisting statistical methodologies may exhibit very
different characteristics when applied tdR.D. data These facts are reflected
in the review paper by Beraid992 and the references thereifhese are more
popularly known as long memory data among the economists

Let 7 := {x;0 < F(x) < 1} be an open interval denoting the support of
the error random variable§G(%;)} with distribution functionF. Let m be
the Hermite rank of the class of functiogs(G(7,) = x),x € F} (for the
definition, see Dehling and Taqqul989. For x € F, define J,(x) =
E[1(G(n1) = X)Hm(n1)] (which is nonzero for som& € F) and J; (x) :=
E[1(G(91) = X)|Hn(n1)|]. We further assume the following

(M.2) For eachn = 1, the sigma fields generated b¥,;1 =i =n}and{e;l=i=
n} are independent

(M.3) The error distribution functior has a continuous densifythat is positive
onF.

(M.4) The functionsl,, andJ;, are continuously differentiable af.

ForL and@ as in(3.1), assume tham < 6! and define

7= {2mi(1— mo) 12 — me) " Inl m™Lm(n)} /2 (3.2)

4. ASYMPTOTIC DISTRIBUTIONS OF NONLINEAR REGRESSION
QUANTILES AND RANK SCORE PROCESSES

In the following let h(u, X,;) and h(u, X,;) be denoted by,;(u) and hy;(u),
respectively Define T(u,a), the almost everywhere derivative of

inzlpa(Yni — hni(u)), as

T(ua) = ;1 B (W (Yo = i (W) = 0) — o}

= 21 hy(W{l (6 =hg(u) —hy(B) —a}, u€EQ, ac(0l).

To find out the asymptotic distribution ¢8,(«), define the centering con-
stantB(a) := B + FY(a)e, whereF 1(a) := inf{x € F;a = F(x)} and
g :=[0,...,1,...,0]', a vector with one at thgth position and zeros at all other
positions 1 = j = 1 + d. To proceed furthemote that our aim is to approxi-
mateAn{Bn(a) — B(a)} by BT (8 (a),a), for appropriate matriced,, andB,
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(see(h.0) and (4.2), which follow). Therefore we must choosé, in such a
way thatB,'T(8(a),a) = Op(1). In the ii.d. errors caseT (B(a),a) is a sum

of i.i.d. centered random variablesnd hence the obvious choice By is n¥/2

By contrast in the LR.D. case the order ofB, depends on bothh(B, X,i)}
and{l (¢, = F %(a)) — a}. We shall discuss different choices Bf in Remark

4.3 under different conditions on the underlying design and error random vari-
ables Accordingly we make the following assumptions on

(h.0) For any setof &+ d equatlonsYn, h(u, Xui ),1=j=1+d, thereis a unique
solution inu. Let H, denote am X 1+ d) matrix with ith row hy,(B). We
assume that the matrik//H,, is positive definite with probability one\lso, let
D, be a matrix such tth;lT(,B(a),a) = Oy(1), whereBy, := 7,,D,. Defining
A, := By HH,, we further assume thd®\, 2| = o,(1).
(h.1) nmax{E|D;*hy(B)|*1=i=n}=0(1)

Forb > 0, let AV} := {t € R*9;|t| = b}. The following assumptions hold
for eacht € R**9 andb > 0.

(h.2) nmax{(E[D, *(hy (B + Att) — hn(B)%1 =i = n} = o(D).

Moreoverforall1=j=1+d,
0<k(t) < q’E{Dn‘l > hai(B+ ATHORG(B + Aﬁ)D;l]q,
i=1

for some constanti(t).

(h.1b) For everya > 0, there is a5 > 0 such that

lim SUPP[SUP{Tn ! E IDn (M (B + AL*s) — hyi(B + AP D)I

n—oo

St E M,ls—t] 55} <a} =1-a.

(h.2b) For everya > 0, there is a5 > 0 such that

lim supP[sup{Tn . Z IDR 0 (B + Agts) (g (B + Ats) — hy (B + ALPD)];

n—oo

St E M,[s—t] SB} <a] =1-a.

Remark 41. Condition (h.0) was assumed by Jutleava and Prochazka
(1994). When specialized to linear models reduces to the condition that the
rank of the design matrix is * d. Variants of (h.0) and (h.1) are standard
assumptions for the linear regression model with random design points as in
Pollard (1991, Theorem 2. When X, = X;, say (free fromn), and X;’s are
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stationary random variablgsonditions(h.1) and(h.2t) reduce to the following
two mild second moment conditions on the stationary distribution

nE|D, *h(B, Xy)? = O(D),

and

nE[D; H{h(B + A3t Xy) — h(B, X} = o(1).
Also, (h.0), (h.1), and(h.2t) imply that for each,
max{|hyi (8 + Aytt) —hy (B)l1 =i =n}=0,(1)

and

751_:21 Ele/ D, thy (B + At ){hy (B + ALtt) — hy (B)} = O(D).

When sug|hy(u);1 =i =n,|u— B| = &} = 0,(1) for somed > 0, simpler
sufficient conditions for(h.1b) and(h.2b) are the following

(h.1*b) For everya > 0, there is @ > 0 such that

lim supF’['rn1 Z sup{| D, *(hy (B + Ats) — hyi(B + AL D)5
i=1

n—oo
St E M,ls—t] 58}<a:| =1-a.

(h.2*b) For everya > 0, there is a5 > 0 such that

n—oo

lim SUDP[Tn1| Dyt 2 sup{lhyi (B + Agts) — hy (B + AL
i=1

s,te N, [s—t| s5}<a] =1—a.

THEOREM 41. Assume that in the mod&2.1), (M.1)—(M.3), (h.0), (h.1),
(h.2t), (h.1b), and (h.2b) hold. Let g(a) = f(F ().
(i) Then for eachw € (0,1) and b> 0,

sup{| B, H[T(B(a) + A tt,a) — T(B(a),a)] — ta(a)|;t € Ny} = 0,(D).

(i) In addition, suppose there exists a sequence of minimiggfa) in (2.2) such
that

An{Bn(a) - ,3(&')} = Op(l) (41)



NONLINEAR QUANTILES UNDER LONG RANGE DEPENDENCE 309

Then
An{Bn(e) = B(a)} = [~a(a)B,] *T(B(a),a) + 0,(1) (4.2)
= [-q(a)Bym] I, (F " (a))

X 2 hnl(B)Hm(n|) + Op(l)~ (43)
i=1
(iii) In particular, whena = $ and F has the median &,

A~ n . 1
An(BLAD_IB) = [—f(O)Bnm!]*l;hm(B){l (fi = O) - E} + Op(l)

= [_f(o) Bn m']il‘]m(o) Zl hn|(B)Hm(n|) + Op(l)-

Proof It is easy to see thai, (B(a) + Aj't) = F (@) + hyu(B + AMt)
andh,(B(a) + Att) = h, (B8 + A;t). Also, the continuity ofF implies that
F(F (a)) = a. Using these

B, [T(B(a) + Ar't,a) — T(B(a),a)] — ta(a)
= Vh(F Ha),t) = Vo(F " H(@),0) — tf (F " *(a))

- Bt 2 {hni (B + At — hy(B)la,
i=1

and hencéi) follows from Theorem AL(i), which appears in the Appendix
Now note that by4.1) and(i),

B T(B(a) + A *A Ba(@) — B(a)}a) — T(B(a),a)]
— Au{Bn(@) — B(a)}a(a) = 0,(D).

Also, by Lemma A4(ii), found in the AppendixB;1T(B3,(a),a) = 0p(1).
Hence

An{Bn(@) = B(a)tq(a) = =B T(B(a),a) + 0,(D), (4.4)

and(4.2) follows. Also, (4.3) follows from (4.2) by applying Lemma A2(ii) (in
the Appendix with y,; equal to thekth coordinate oD, *h,(B8), 1 = k =
1+ d. | |

Remark 42. Follqwing Koul (19963 Corollary 11), a sufficient condition
for the existence o, («) satisfying(4.1) is as follows
For everye, M > 0, there existn, andb > 0 such that for alh = n,

PLinf{IB,*T(B(a) + Aytta)[; [t =b} =M]=1-e.

This condition in turn, is implied by the following condition
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For everye € R**9 with |e| = 1 and for all largen, B, T(8(a) +
A, lre,a) is monotone inr € (0,00), almost surely

The preceding condition is satisfietbr example wheneverh is linear in
parameters

Remark 43. Now we discuss the choice &,. First consider the case when
{Xqi}'s are nonrandomlim,_,,. n"*>"  h,(B)h,(B) exists and is positive
definite Then one can chood®, = 7,,[ >, h,(B)h,(B)]Y2 Here the rate of
convergence of3n(«) to B(a) is 7, *n¥2 which is slower than the typical
n'/2 rate of convergence

Now consider the case whexX,, = X; and{X;;i = 1}'s are ii.d. Denoting
h(B, %) by [1,&/]’, we also assume th&, = 0 andEZ, £; is positive definite
Becausel (B(a),a) = [ZLi{l (e = F (@) — ah, L, &{l (¢ =F Ha)) —
a}]’, we can calculate its? norm to see that

{Wzrn)-l S {1(e = F )~ ahn 2 S éill e = F (@)~ a |
i=1 i=1

= 0,(1).

Hence we may choose

nY?r, 0
B, = ’
! 0 N2l gq

and in this casethe intercept parameter hagn%? rate of convergenge
whereas the corresponding rate for each of the slope parameter$2is
Therefore i.i.d. regressors overcome the effect of the dependence among er-
rors by retaining the traditional rate of convergence

Finally, consider a case wheX,; = X; and h(B, X)) is of the form
[LG*(miy),...,G* ()], whereG*: R? — R? is a measurable functiofpos-
sibly dependent o) and{n;" = [#1,...,my]’;i = 1} is a sequence of.R.D.
normal vectors in the sense @3.1) in Arcones(1994). Also {n*;i = 1} and
{mi;i = 1} are independentf the Hermite rank(Arcones 1994 Definition
2.2) of the functionZ,(n*n) = G*(){I(G(n) = F Ya)) — a} is m* for
all « € (0,1) with m* = m, then by Theorem 6 of Arcone994) we can
choose

N2, 0
B =
" 0 NY270 g ,

wherer is 7, in (3.2) with m = m*,

Remark 44. Note that underh.1), E|B,*>", h,i(B)Hm(m)? = O(1),
and hence the sequengeq(a)B,m!] 13, (F ()3, h,i(B)Hn(n;) of
random vectors in the right hand side (@f3) is tight But unlike the ii.d. er-
rors casethis tight sequence of random vectors need not converge in distribu-
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tion, and even if it convergesno closed form expression for the limiting
distribution is availableHowever if either G is strictly monotone and contin-
uous functiopor G is an odd function with the property thit € R'; G(x) =
0} equals eithef—o0,0] or [0,c0), then by Koul and Mukherje€1993, m=1
andH.(n;) = 7. In this caseif the conditional dispersion matrix o, :=
B, 1>, h,i(B)n; given{X,;;1 =i = n} converges in probability to a positive
definite matrixI", say then using the convergence theorem of characteristic func-
tions it can be shown tha§, converges in distribution to the normal random
vectorN;, 4[0,T].

In the sequelfor a vector-valued stochastic procédh,(a);a € (0,1)}, [My]a
denotes sufiM,(a)|;a = @ = 1 — a}, and we say tha,(a) = O;(1)(0;(1))
if for everya € (0,3],[|Mylla = Op(1)(0,(1)). The following theorem gives the
uniform asymptotic representation of the nonlinear regression quantile process
on compact subintervals @0,1). The uniform representation is then used to
obtain the asymptotic representationsLeéstimators

THEOREM 42. Assume that in the modé&2.1), (M.1)—(M.4), (h.0), (h.1),
(h.2t), (h.1b), and (h.2b) hold.

(i) Then for eery a€ (0,3],

supl| Ba H[T(B(a) + Aytt,e) — T(B(a),a)] — tq(a)];
(a,1) € [a,1—a] X N} = 0,(1).

(i) In addition suppose there exists a sequence of minimiggta) of (2.2) such
that

A{Bn(a) — Ba)} = O} (D). (4.5)
Then

An{Bn(@) = B(@)} = [-q(2)B,] ' T(B(a),a) + 05(1)
= [-q(a)Bym] "I (F H(a)) Z B (B)Him(m;) + 05 ().
(i) Consequentlyif A satisfies(L.1), then
B, — B — ' “a)A(da
An{IBA B elfo FH(a)A( )}
n . 1
=851§hni(ﬁ)fo—Q’l(a){l(eiSF’l(a))—a}A(daHOp(l) (4.6)

n 1
= B;l;hni(ﬁ)Hm(ni)L {=a(a)mi} 13 (F (@) A(de) + 0,(D).

(4.7)
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(iv) In particular, with A(da) := (as — @1) (a1 = a = a,) da,

~ F l(az)
A, {:3((117“2) —B—ela,— a1)71J - XF(dX)}
F 1(011)
no F M ap)
= By 3 (B Hm) i (ag = a)k ™ || (0 dx+ 0,(D).
i=1 "y

Proof Relation(i) follows from Theorem AL(ii) in the same fashion as Theo-
rem 41(i) follows from Theorem AL(i). The proofs of other assertions follow
similarly. [ |

Remark 45 Comparison with Other Estimator$Jsing the linearity results
of the Appendixwe can obtain the following asymptotic representations of some
robust estimators g8 in the model(2.1). With h,(8) := n"* X", h,(B) and

Dnc := [Z{_1{Mni (B) — ha(BHA(B) — ha(B)}' 1V,

An( B = B) = B,:lzlhmw)(— | fdw> (e) + 0p(D), (4.8)
and

7o *Dpe( Br— B)

= D {hu(B) - Fln(B)}< | fd¢<F>> B(F(&) + 0y(1)
. (4.9)

where 3, is an M-estimator based on a nondecreasing functjowith
E(¢(e1)) = 0 andBg is a rank estimator based on a nondecreasing function
¢. On the other handecall that

A{Bn(a) = B(a)} = Bﬁl__Zl hai (B) X {=q " (a)}{I (6 =F a)) — a}
+ 0,(1)

and
1
An{:éA -B- elJ;) Fl(oz)A(da)}

n 1
= Bnl_zZlﬁm(ﬁ)fo —q Ha){l(e =F (@) — atA(da) + 0y(D).

These representations enable us to study and compare the asymptotic relation-
ships between the classeshf, R-, andL-estimatorsFor examplethe LAD is
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asymptotically more efficient than the LSBy, with ¢ (x) = x), whenever the
same is true in the modé&2.1) with i.i.d. errors In parncula[BLAD andfB(ay, ay)
are asymptotically more robuéh the sense of asymptotic efficiencthan the
LSE for heavy tailed~.

Also, corresponding to aM-estimator with score functio# that is constant
outside a compact interval of the real litbere is an asymptotically equivalent
L-estimator given by

1 -1
A(du) = {fo o' (F 1 (a)) da} ' (F~H(u)) duy, ue (0,1).

Similarly, corresponding to aR-estimator with a differentiable score function
¢ that is constant outside a closed interval(6f1) and with h,(8) = 0, an
asymptotically equivalerit-estimator is given by

A(du) = {f¢’(F(x))f2(x)dx}_lqb’(u)f(F1(u))du, ue (0,1).

Recall that(4.3) and (4.7) are typical Hermite expansions 64.2) and (4.6),
respectively Under some regularity conditionsne can get Hermite expan-
sions of the random vectors {#.8) and(4.9) in a similar fashionFrom these
expansionsit is easy to see that whe@(n;) = u;, i.e., when the errors are
L.R.D. normal the asymptotic distributions ¢,(a), 8., Bum, andpBg are same
irrespective ofx, A, i, and¢. This is in complete contrast with the i.i.d. errors
case.

To derive asymptotic representations\W(-) andU,", we assume that the
coefficients{w,;1 = i = n} satisfy the following conditions

(W.0) For eac = 1, the sigma fields generated bw,,;; 1=i<n}and{e;; 1=i=
n} are independenAlso, letting YW, = ann X r matrix with ith row w;,;, we
assume that the matrixVWV, is positive definite Moreover define A, :=
771D, andB,, := 7,Dy, whereD,, := [WW,]Y2.

(W.1) nmax{E|Dy,*w,i[%;1 =i =n}=0().

Define an approximating sequence of procesagsby

n
Wr‘,"'(a) = Z Whi | (Ei > Fil(a))’ O<a<l

i=1
Le‘t Qni = Dv;lwni - Mn(Hth)il/zhni(ﬁ), where Mn = Dv;:LWr;Hn X
(H,H,) Y2 The following result is useful for testing problems concernghg
based on rank statistic

Theorem 43. In addition to thp assurpptions of Theoreh®(ii), assume
that (W.0) and (W.1) hold. ThenW)" and U, admit the following asymptotic
representations
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. n
) Bwl{WnW(a) = 2 Wyi(1- a)}
i=1

=7, 2 vnll (6 > F 7M@) = (1—a)} + 05(2)

=1

= (-, m!)il\]m(Fil(a)) 2 Uni Hm (i) + 0;(1)

i=1

Consequently
n 1
(it) Bwl{UnW -2 Wnij 1- a)b(da)}
i=1 0

= (—7,m)~* _évni Hm(ni)J; In(F~Ha))b(da) + 0,(2).
Proof Write Z,(a) := An(Bn(a) — B(a)). Note that fori & B,(a),
ayi(a) = e > hy(B(a) + AP Z,(a)) — hy(B)}
= He >F HNa) + hy(B+ AT Z,(a) — hy(B))

Also, for i € Bn(a), I{e; > hn(Bn(@)) — hyi(B)} = 0. Hence

B, "Wy(a) = Bv_vli Wy H{e; > F (@) + hy (B + A Zy(@)) — hyi(B)}

i=1

+ Byt X Wy (). (4.10)

ieB,(a)
By (W.1), the last term in4.10) is 0,(1). Next, applying Lemma A2(v) r num-
ber of times on the first term with,; equals thekth (1 = k = r) entry of
Du"Woi, &ni = hni(B + Aj't) — hy(B), andy = F~'(«) and then letting =
Z,(a), we get

By "W (a) = Byt W (a)
- Bv;l;wni [F{IF~Xa) + hy (B + Ay Z,(a)) — hy(B)}

— F(F Ha)] +05(D)

= B, 'Wy'(@) = Mp(H{H,) 2D, Zo (@) q(e) + 05(D).
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But, from Theorem £(ii),
Zy(@)a(a) = By*W'(a) = Byt 3 Ry (B)(1— @) + 05(D),

and thereforéi) follows after centering bB,,* > ; w,,; (1 — «). Moreover (ii)
follows from (i) by integration with respect to the measure generatet(by
[ |

5. EXAMPLES

Example 1.

A Linear Model with LR.D. Errors Consider the modd2.1) with h(3, x;) =
X B wherex;'s are assumed to be nonranddret X be the design matrix with
ithrowx/, 1 =i = n. In addition to(M.1), (M.3), and(M.4), suppose that the
following conditions hold

(E.1) (X'X)7! exists
(E.2) nmax{x.;(X'X) ;1 =i =n}=0(1).

Then by Lemma A2(iii), 7, *(X'X)"Y2T(B(a),a) = Oy(1), and hence we
can chooseD, = (X'X)¥2 B, = r(X'X)¥2 and A, = 7, 1(X'X)¥2 Also,
h.i(u) = x; for all u andi. With these choicesit is easy to verify thath.0),
(h.1), (h.2t), (h.1b), and (h.2b) are satisfiedFinally, to verify (4.5), fix a €
(0,3). Note that forM,n > 0

P[ sup |\An{/§n<a>—ﬁ<a>}||zm]
]

aEla,l-a

SP[ sup A Bn(a) — Bla)}| = M,

aclal—a]

sup |ByiT(B(a) + ArtA Ba(@) — B(a)}a)| = n]
aE€la,l-a]

- P[ sup ]\IBElT(ﬁn(a),a)ll = n]

acla,l-a

= P[ inf  sup |B;1T(B(a)+ Atua)| = 77]

[ul=M ye[a,1-a]

+P[ sup uBglnén(a),a)nzn]

acla,l-a]

= T1+T2,
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say Using the polar representation afand the Cauchy—Schwarz inequality
we have

inf  sup |B,1T(B(a)+ A tua)

[ul=M qela,1-a]

= inf sup BT (B(a)+ Astrb,a)|

[b[=1r=M we[a,1-a]

= inf sup b'B T(B(a) + A lrb,a)

[bl=1r=M se[a,1-a]

inf  sup Db'BT(B(a)+ A,'Mb,a)

Ibl=1 aela,1-a]

= inf{ sup Mg(a)— sup |b'B;iT(B(a),a)

[bl=1{ ac[a,1-a] a€la,1-a]

— sup |b'[B;iT(B(a)+ A,*Mb,a)

aEla,l1—a]
=B 'T(B(a),a) - Mbq(a)]l},

where the second equality follows from the fact thd®, 1 T(8(a) + A, rb,a)

is monotonically nondecreasing inThe last term in the last inequality @(1)

by Theorem 4£(i), and the second term 8,(1) by the choice oB,. Therefore
T, can be made arbitrarily small by choosing sufficiently lakgeAlso, T, can
be made arbitrarily small by Lemma4ii), and thug4.5) is verified

Example 2.

A Long Memory Time Series Model with Nonlinear Trend Functi@onsider
the model(2.1) with d = 1 = p andh(By,81,X) = By + (B1 + X;)log(B1 + X)
where theith design pointx; = i, 1 =i = n. In addition to(M.1), (M.3), and
(M.4), suppose thgB; > —1. Note thath,(u) = [1,1 + log(u; + x)]’ for u =
[Uo,ui]’. Let hyi(B) = [La] wherea, = 1 + log(B; + i). Recall that,,
is the n X 2 matrix of rank 2 withith row h,(8), and we choos®, =
(H,H,)¥2 Once we verify(h.1) with this choice ofD,, we can choos®, =
m(HH)Y? and A, = 7, Y (HH,,)Y? because LemmégA.2)(iii) implies that
B.1T(B(a),a) = Op(1).

Verification of (h.0) is trivial. Assumptiongh.1) and(h.2t) can be verified
by calculating the underlying quantities directlshe calculations involve the
inversion of a square matrix of order 2 and showing thafj ferl, 2,

§Dn" 2> {hni (B + AL TORG(B + AM) — Ry (B)RG(B)ID, Mg = 0(1).
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Similar direct calculations are used to verify.1b) and (h.2b). Consequently
under(4.1), the sequence of nonlinear quantiles has representao?isand
(4.3).

REFERENCES

Amemiya T. (1982 Two stage least absolute deviations estimatBconometricab0, 698-711

Arcones M. (1994 Limit theorems for nonlinear functionals of stationary Gaussian sequence of
vectors Annals of Probability22, 2242-2274

Beran J (1991 M-estimators of location for data with slowly decaying serial correlatidoarnal
of the American Statistical Associati@&®, 704—708

Beran J (1992 Statistical methods for data with long-range dependeBtatistical Sciencé,
404-427

Billingsley, P. (1968 Convergence of Probability Measurdsew York: Wiley.

Bloomfield, P. & W. Steiger(1983 Least Absolute Deviations: Theory, Applications, and Algo-
rithms. Boston Birkhauser

Dehling H. & M.S. Taqqu(1989 The empirical process of some long-range dependent sequences
with an application tdJ-statistic Annals of Statisticd7, 1767-1783

GutenbrunnerC. & J. Jurékova (1992 Regression rank scores and regression quanfliesals of
Statistics20, 305-329

Hajek 1 & Z. Sidak (1967) Theory of Rank Test®&lew York: Academic Press

Jurekovg J (19849 Regression quantiles and trimmed least squares estimator under a general de-
sign Kybernetika20, 345-357

Jurekovg J & B. Prochazka1994 Regression quantiles and trimmed least squares estimators in
nonlinear regression model®urnal of Nonparametric Statisticy 201-222

Jurekovg J & P.K. Sen(1996 Robust Statistical ProcedureSlew York: Wiley.

Koenker R. & G. Bassett(1978 Regression quantile&conometricad6, 33-50

Koenker R. & B. Park(1996 An interior point algorithm for nonlinear quantile regressidour-
nal of Econometric§1, 265-283

Koenker R. & S. Portnoy(1987) L-estimation for linear modelslournal of the American Statis-
tical Association82, 851-857

Koul, H.L. (1992 Weighted Empiricals and Linear ModelBVS Lecture Notes—Monograph Se-
ries vol. 21. Hayward California

Koul, H.L. (19962 Asymptotics of some estimators and sequential residual empiricals in nonlinear
time seriesAnnals of Statistic24, 380—404

Koul, H.L. (19960 Asymptotics ofM-estimators in non-linear regression with long range depen-
dent errorsin PM. Robinson & M Rosenblatfeds), Athens Conference on Applied Probability
and Time Seriesvol. 2, Springer Verlag Lecture Notes Series 1New York: Springer-Verlag

Koul, H.L. & K. Mukherjee(1993 Asymptotics ofR-, MD-, andLAD estimators in linear regres-
sion models with long range dependent err@m®bability Theory and Related Fiel®5, 535-553

Koul, H.L. & K. Mukherjee(1994 Regression quantiles and related processes under long range
dependent errorslournal of Multivariate Analysi$1, 318-337

Mukherjee K. (1994 Minimum distance estimation in linear models with long range dependent
errors Statistics and Probability Lettersl, 318—337

Mukherjee K. (19993 Asymptotics of quantiles and rank scores in nonlinear time sef@msnal
of Time Series Analysi20, 173-192

Mukherjee K. (1999h The asymptotic distribution of a class of L-estimators under long range
dependenceCanadian Journal of Statistic87, 345-360

Oberhofey W. (1982 The consistency of nonlinear regression minimizing ltr@orms Annals of
Statistics10, 316—319

Pollard D. (1991 Asymptotics for least absolute deviation regression estimafa@ometric Theory
7, 186-199



318 KANCHAN MUKHERJEE

Portnoy S. (1991) Asymptotic behavior of regression quantiles in non-stationary dependent cases
Journal of Multivariate Analysi88, 100-113

Richardson G.D. & B.B. Bhattachariya1987 Consistent_;-estimators in nonlinear regression
for noncompact parameter spa&ankhya A9, 46—68

Robinson PM. (1992 Semiparametric methods for time seri&s D. Brillinger et al (eds) New
Directions in Time Series Analysigart |, 315-326 New York: Springer-Verlag

Weiss A.A. (1991 Estimating nonlinear dynamic models using least absolute error estimation
Econometric Theory, 46—68

Yajima, Y. (1991 Asymptotic properties of the LSE in a linear regression model with long mem-
ory stationary errorsAnnals of Statisticd9, 158-177

APPENDIX: LINEARIZATION RESULTS OF
RANDOMLY WEIGHTED EMPIRICALS

Let {(yni,&ni);1 = i = n} be an array of random variables and consider the following
processes fox € F.

Vn(x) = TrTlE Ynil(ei =X+t gni)7 /-Ln(x) = TrTlE Vi F(X+ fni)y

-1 -1
n n

Vi () =1t Xyl (6 =% and pi(x) =71 v F(X).
i-1 =1

The proof of Theorem A is based on Lemma.&(v), which can be viewed as the
uniform closeness of the randomly weighted perturbed empirical praGe€9s— wn(-)
to the unperturbed empirical procegs(-) — ui(-) on compact subinterval®, where
fork > 0, A := FN[—kK].

When{e;}'s are weakly dependerdnd{(yni,&ni);1 =i = n} are nonrandopone can
first derive the pointwise convergence in probability to zerd&/gf) — wn(-) — Vi(-) +
wi(-) and then demonstrate the tightness of the provg6$ — wn(-) — Vi (+) + wi(-)
to conclude its uniform convergencEhe tightness of the process generally follows from
the bound or(usually the second or fourth moments of the product of two increment
processes over disjoint intervals by some powsore than unity of the difference of
some monotonically increasing continuous functi@&illingsley, 1968 Theorem 15%).
This technique was applied in Billingslg#968 p. 141) to exhibit the tightness of or-
dinary empirical processes and was adopted successfully by many other researchers in
suitable contextsSee Koul(1992 Lemma 22a1) and Jurékova and Seri1996 Sects
5.2, 5.3), among othersfor some examples of this techniqugecause Hermite expan-
sion is anL? expansionin the LR.D. context we can compute bound on the second
moment of the increment proceésee Lemma Al), which is the difference of mono-
tonically increasing continuous function with power unity grdnd hence Billingsley’s
technique can not be used to prove Lemma(®). To circumvent this Dehling and
Tagqu(1989 came up with an ingenious chaining argument to obtain the uniform con-
vergence of the ordinary empirical proces& (-) — ui(-) with v, = n=2) to the pro-
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cessIn(-)Zm, whereZ,, is some random variahl&oul and Mukherje€1993 Theorem
1.1) used a similar chaining argument to obtain a variant of Lemr2avhen the weights
{(vni»&ni);1 = i = n} are nonrandomBecause the proofs of LemmalAand Lemma
A.2 of this paper are similar to the those of Lemma and Theorem .1 of Koul and
Mukherjee we present only brief outlines of the proofs hekote that the conclusion
of Lemma A2(v) (uniform convergence oveF,) is weaker than the conclusion of Theo-
rem 11 of Koul and Mukherjeduniform convergence oveF) because ou(M.3) and
(M.4) are also weaker than the corresponding conditi@n$) and (A.6) of Koul and
Mukherjee

Accordingly for x € F, define

Sn(x) = Tn_lz 7ni{| (Ei =X+ fni) - F(X + é:ni) - (m!)_l‘]m(x + fni)Hm(ni )}7

Sn(x) = T{lz Yuill (& = X) = F(x) — (M) 3, (X) Hin (1))}

LEMMA A .1. Suppose thatM.1) holds Let A, and BB, denote the sigma fields gen
erated by{(yni,€ni);1 =i = n} and{e;;1 =i = n}, respectiely, satisfying the following

(A.0) For each n= 1, A, and B3, are independenfThen

7-nZE[Sn(Y) - ‘S‘n(x)]2 = %%E[‘Yniynjl|{':(y+ gni) - F(x+ fni)}
i=1j=

XAF(Y + €)= FOXCH EHV21p (0 — I,

Proof. Write E[S,(y) — Sa(X)]? = E[E{[Sn(Y) — Sn(X)]?|An}]. Evaluate the con-
ditional expectation by its Hermite expansion as in Lemmiadt Koul and Mukherjee
to obtain the result u

For the next resultconsider the following assumptions
(A.1) nmax{Ey2;1=i=n}=0().

(A.2) 0 <ky <X ;Ey2, for some constark;.

(A.3) max{|énil;1 =i = n} = 0y(1).

(A4) TrTlEinzlE"yni fni‘ = O(l)

LEMMA A .2.
(i) Under(M.1), (M.3), and (A.0)—(A.3), for each x& A,
Vn(X) - /'Ln(x) - Vn*(x) + /-L;(X) = Op(l)-

(if) Under(M.1), (A.0)—(A.2), sup{|S;(X)|;x € F} = 0p(1).
(iii) Under(M.1), (A.0), and (A.1), for each x€ F,

Vi (%) = ma(X) = Op(1).
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(iv) Under(M.1), (M.4), (A.0), (A.1), and (A.3),

SUp{Tnl 2 yni{‘]m(x + gni) - Jm(x)}(m!)ile(ni) IXE -7:k} = Op(l).

(v) Under(M.1), (M.3), (M.4), and (A.0)—(A.4), sup{|S.(X)|;x € KA} = 0,(1) and
hence

SUP{[Va(X) = pn(X) = Vi () + ui(X)[5X € At = 0,().

Proof. Using thelL? convergence to zerave can provei). For proving(ii) and(v),
construct a chain witlk = [log,{A(d) >, E|y.|/(67,)}] + 1 as in Koul and Mukher-
jee (display 9 and use Lemma.2 to proceed analogouslissertion(iii) follows from
the fact thatE[ V.’ (x) — u:(x)]2 = O(1). For (iv), one can use an argument similar to
Koul and Mukherjeddisplay 22. |

Let {(yni(t),&ni(1);1 = i = n,t € R} be an array of real valued stochastic pro-
cesses withf,;(0) = 0, for all 1 =i = n, and consider the following processes foe
Ft € R4,

Vn(X, t) = Tn_lZ 'yni(t)l (fi =X+t fni(t))y Mn(xy t) = Tn_lZ Yni(t)F(X + fni(t))-

For the next resultsuppose that the following conditions hold for each fixed R**¢
andb > 0.

(B.0) For eachn = 1, the sigma fields generated Hy,i(-),&ni(+);1 = i = n} and
{€;;1 =i = n} are independent

(B.1) nmax{Ey2(0);1 =i =n}=0(1).

(B.2t) n max{E[yni(t) — ymi(0)]%1=1i=n}=0(1) and 0< ky(t) < XL, Ey5(t)
for some constari(t).

(B.3t) max{|&ni(t);1 =i = n} = 0,(1).

(B.4) 7, ' ELLElyni(D&mi(D)] = O(D).

(B.1b) For everya > 0, there is a > 0 such that

n
lim supP sup{rn-lz Yai(S) — Y (D158 L E Ny s — 1] = a} <a|zl-a
L i=1

n—oo

(B.2b) For everya > 0, there is a > 0 such that

limsupP sup{fan [Yai (9 €ni(s) — (DS tE N, Is—t =61 < a]
n—oo | i=1

=1-a.

LEMMA A .3. Suppose thatM.1), (M.3), (B.0), (B.1), (B.2t), (B.3t), (B.1b), and
(B.2b) hold for every t € R**¢ and b> 0.

(i) Then for eery x€ F,

SUP{[Va(X, 1) = pn(X, 1) = Vi(%,0) + n(X,0)[;t € Ny} = 0p(1).
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(ii) If, in addition, (M.4) and (B.4t) hold, then
SUP{[Va(X, 1) = pn(X, 1) = Vi(%,0) + pn(X,0)[5(X, ) € F X Ny} = 0,().
Proof. Write Vi,(X,t) — wn(X,t) — Va(X,0) + wn(X,0) = Uy(X,t) + Ux(X,t), where

Uy (x,t) = 7512 {7ni (D) = v (OH1 (g = x) — F(X)},
and
Uy(x,t) == 7;12 i (DU (6 = X+ £ (1) — F(X+ &4i(1) — (g = x) + F(x)}.

The pointwise convergence bf; follows by showing thaE[U,(x, t)]? = o(1). Tight-
ness ofU; follows from (B.1b). For U,, note that by Lemma &(v), sup{||Ux(x, t)[;x €
F} = 0p(1). Now the tightness of the proceBs, * X v, (1){l (¢, = x) — F(x)}] follows
from (B.1b), whereas that o7, 2>, v, (){l (e = X + &ni(t)) — F(x + &ni(1))}] follows
as in Koul(1996h Lemma 32). u

Next, fix k,b > 0 and consider the following processes fart) € F X Np.

Vn(X, t) = 7'n_l é Dn_lhni(ﬁ + A;lt)l {Ei =X+t hni(B + A;lt) - hni(B)}?

i=1

and

/%UJ%=m‘iDﬁﬁMB+A#UFR+hMB+A#0—hMB»
i=1

THEOREM A1. Assume thatM.1)—(M.3), (h.0), (h.1), (h.2t), (h.1b), and (h.2b)
hold. Then for each = F,

(i) sup{[Va(X, t) = Va(%,0) — wn(X, 1) + un(X,0)[;t € My} = 05(1) and consequently

sup{‘

te Nb} = 0,(D).

’

Va(%, 1) = Vh(x,0) = tf (%) = By 2 {hy (B + Astt) — hy (B)}F (%)
i=1

(ii) If, in addition, (M.4) holds then
SUp{Vi (%, 1) = Vi(X,0) = pn(%, 1) + mn(X,0)[5(%, 1) € F X N} = 0(1)

and consequently

sup{’

(x,t) € Jka/\/b} = 0,(1).

)

Vh(X, 1) = Vi (x,0) — tf(x) — Bgl;{hni(ﬁ +AM) — hni(ﬁ)}F(X)
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Proof. Applying Lemma A3 with v, (t) equal to thekth coordinate oD, *h,,; (8 +
A, lt) and &,(t) equal toh, (B + At) — hai(B), 1=k =1+ d, and noting that
pn(% 1) = wa(x,0) = tf(x) + By ZiLi{hy (B + AMt) — hu(B)IF(X) + 05(1), we
obtain the conclusions u

LEMMA A 4.

(i) Under(h.0), (2.3) holds
(i) Under(h.0) and (h.1), B, 1T (B, (a),a) = 0y(1).

Proof. Becausep,, is a convex function anti,;(u) is differentiable inu, all girec-
tional derivatives o>, p,. (Y, — h,i(u)) exist and are positive at a minimug(«a).
Let D;(u,w) denote thew-directional derivative ofo, (Y, — hni(u)) = (hpi(u) — Yai)
I (hnpi(u) = Yni > 0) — a(hy(u) = Y,) with respect tou € Q, wherew € W := {u €
R4 |u| = 1}. Then using the chain rule for differentiation
D, (u,w) = why (u)(1— a), if hy(u)— Y, >0,

=why(u) X —a, if h;(u)—Y, <0,
=why,(wWl—a), if hy(w-Y,=0 and wh,(u) >0,
=why(u) X —a, if hy(u—Y,,=0 and why(u) <O.
Let Ay (Bn(a)) be denoted byn = [Gnit,---»Gni1:a]> 1 =i = n. Then for eachw €
W, we have with probability one
n A
0< > Di(By(a),w)
i=1

=w'[ S Gl (Y = hy(Ba(@) — o)

1€B,(a)

Y gi-ar S gm><a] (A1)

ieBy(a);w'gy, >0 iEB,(a);W'g,<0

Now, choosingw = g := [0,...,0,1,0,...,0], 1= k=1 + d and applying(A.1) we get

E gni,k{I (Yni = hni(:én(a))) - a} + 2 gni,k(lf 0()

i1€B(a) I€B,(a); gni, k>0

+ > Oni.k X —a >0,
1€B(@); Oni, k<0

and hencg

> Gnid (Y = hi(Bo(@) — a} > (@ — 1) > Oni, k

i€B(a) 1E€B(@); gni, k>0

ta X Gk (A.2)

1EBL(@); gni, k<0
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Similarly, applying (A.1) once more withw = —eg,, we get

(a—1) > Oni,kta > Ohi, k

1€B(@); Gni, k<0 1EB(@); Gni, k>0
> 2 Gl (Y = hi (Bn(@))) — . (A.3)
i1€B(a)

Puttingk = 1 in (A.2) and(A.3) and usinggn s = 1 for all 1=1i = n, we get
Nl—a)+PO0—-—a)>(a—1)Z+a X0

and

(a—=1)X0+aZ>N1—-a)+P0O-a).

Now (2.3) follows by usingn =N+ P + Z.
For (ii), combining(A.2) and(A.3) we get that forall =k =1+ d,

Ohi,k = [(01 -1 > Ohi,k T > gni,k:|

i€Bp(@); Gni, k<0 1€Bp(@); gni, k>0 i€Bp(@); Gni, k<0

+ 2 gni,k{I (Yni = hni(,én(a))) - a}

iEBn(a)

< 2 gni,k{I (Yni = hni(:én(a))) - a} + E gni,k{I (Yni = hni(:én(a))) - a}

i€Bn(a) i€Bn(a)

= Tu(Bn(@),a)

<(a-1 > Oni,k T @ > Ohi, k

iEB(@); gni k<0 i€Bp(@); gni k>0

+ 2 Oni i (Vi = hni(,én(a))) —a}= 2 Oni, ks

iEBL(a) 1EB,(a); Oni, k>0

where Ti(Bn(a), @) is thekth (1 = k = 1 + d) coordinate ofT(Bn(a),a). Now the
conclusion follows fromh.0) and(h.1). |



