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This paper discusses some asymptotic uniform linearity results of randomly
weighted empirical processes based on long range dependent random variables+
These results are subsequently used to linearize nonlinear regression quantiles in
a nonlinear regression model with long range dependent errors, where the design
variables can be either random or nonrandom+ These, in turn, yield the limiting
behavior of the nonlinear regression quantiles+ As a corollary, we obtain the lim-
iting behavior of the least absolute deviation estimator and the trimmed mean
estimator of the parameters of the nonlinear regression model+ Some of the lim-
iting properties are in striking contrast with the corresponding properties of a
nonlinear regression model under independent and identically distributed error
random variables+ The paper also discusses an extension of rank score statistic in
a nonlinear regression model+

1. INTRODUCTION

The least absolute deviation method of estimation appears to be older than the
least squares method of estimation in linear regression models, with origins
dating back to the middle of the eighteenth century+ Despite this, the asymp-
totic theory of the least absolute deviation estimator~LAD ! ~see~2+2!, which
follows, for the definition! has been developed only recently+ Koenker and Bas-
sett ~1978! considered a linear regression model with nonrandom regressors
and errors that are independent and identically distributed~i+i+d+! and defined
an ath regression quantile~RQ! ~see~2+2! with h~u,Xni ! 5 u'Xni for the defi-
nition!, which is a multidimensional analogue of the~ @na# 1 1!th-order statis-
tic+ They derived central limit theorems~CLT’s! for the RQ’s, which in particular
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established a CLT for the LAD+ It turned out that the LAD is asymptotically
more efficient than the least squares estimator~LSE! whenever the median is
asymptotically more efficient than the mean as an estimator of the location in
the one-sample location model+

Several ramifications of Koenker and Bassett’s work were developed by a
number of researchers during the past 20 years, either by assuming various kinds
of dependence structure on the error random variables or by imposing different
types of regularity conditions on the regressor variables+ Bloomfield and Steiger
~1983! and Pollard~1991! considered random regressors and the errors gener-
ated by stationary, ergodic, martingale differences to establish the CLT for the
LAD + Portnoy~1991! and Koul and Mukherjee~1994! obtained asymptotic rep-
resentations of RQ’s when the errors arem-dependent and long range depen-
dent~L+R+D+! ~see~3+1!, which follows, for the definition!, respectively, in linear
models with nonrandom regressors+

Another line of development, resulting from the attempt to extend the con-
cept of the LAD and RQ’s to nonlinear regression models, was carried out by
Oberhofer~1982!, Richardson and Bhattachariya~1987!,Weiss~1991!, and Ju-
rečková and Procházka~1994!, among others+ They obtained the asymptotic
normality of the LAD and nonlinear regression quantiles~see~2+2!! under var-
ious sets of regularity conditions on the design points with i+i+d+ errors+

There is an increasing interest in stationary time series that exhibit long range
dependence~characterized by hyperbolic decay of correlations!+ More specifi-
cally, L+R+D+ models with a regression trend to arise in many fundamental ap-
plications of econometrics, business, and environmental studies+ Asymptotic
theory for the classical best linear unbiased estimator and the LSE in linear
regression models with nonrandom regressor and L+R+D+ errors was developed
by Yajima ~1991!, and the corresponding theory for robust estimation proce-
dures was developed by Beran~1991!, Koul and Mukherjee~1993, 1994!, and
Mukherjee~1994, 1999b!, among others+ In view of the importance of random
regressors~say, a linear state-space model with long range dependence as in
Robinson, 1992! and the nonlinearity of the regression function, in this paper
we discuss the asymptotic behavior of nonlinear regression quantiles and rank
scores~see definitions~2+2! and~2+5!! in nonlinear regression models with ran-
dom regressors, when the errors are L+R+D+ Nonlinear quantiles and rank scores
are useful in both estimation and testing problems, and so their asymptotics
discussed in this paper pave the way for the statistical inference in these non-
linear models+ Also, an interesting order statistics property of nonlinear quan-
tiles is proved that shows that they are right analogues of the order statistics in
nonlinear regression models+

Some very intriguing phenomena regarding the asymptotic behavior of non-
linear regression quantiles are observed under the L+R+D+ errors setup+ They
are fundamentally different from what are generally observed under the i+i+d+
errors setup and the L+R+D+ errors setup with nonrandom regressors+ For exam-
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ple, the rates of convergence of the different estimators are influenced by the
nature of the randomness of the regressors and are not alwaysn102+ Also, de-
pending on the type of randomness, the rates of convergence for intercept and
slope parameters may turn out to be different+ Moreover, unlike the i+i+d+ errors
case, the limiting distributions, if they exist, are not always normal+ For details,
see Remarks 4+3–4+5+

There are several approaches to deriving the asymptotic distribution of the
RQ in linear regression models+ For example, in the case of the LAD, Amemiya
~1982! and Bloomfield and Steiger~1983, Theorem 2, p+ 44! used a smooth
approximation of a functionr102 ~defined following ~2+2!!, whereas Pollard
~1991! used some convexity properties+ Because of the nonlinearity of the re-
gression function and the dependence among errors, these approaches may not
work in our case+ However, we use a linearization result~Theorem A+1! of a
randomly weighted empirical processVh ~see the Appendix for definition! to
obtain a Taylor-type expansion of the statisticT~u,a! ~see Section 4 for defi-
nition! in Theorem 4+1~i!+ This expansion, coupled with a consistency assump-
tion ~4+1!, gives us the desired result+ This technique was used previously by
Jurečková~1984!, Portnoy~1991!, and Koul and Mukherjee~1994!, among oth-
ers, in similar but simpler situations+

The remainder of the paper is organized as follows+ The quantiles and rank
scores are defined in Section 2+ The error distributional assumptions are stated
in Section 3+ Section 4 contains the main results of the paper+ They are fol-
lowed by several remarks on the implications of these results+ Section 5 con-
tains some examples of the L+R+D+models with linear and nonlinear trends where
the results of Section 4 are applied+ Finally, the Appendix contains the proofs
of the linearization results of randomly weighted empirical processes and some
auxiliary results on the properties of nonlinear regression quantiles that are anal-
ogous to those of order statistics+

2. NONLINEAR REGRESSION QUANTILES, L-ESTIMATORS
AND RANK SCORES

Consider the nonlinear regression model where one observes an array of ran-
dom vectors$~Yn, i ,Xn, i !

' ;1 # i # n% satisfying

Yni 5 h~b,Xni ! 1 ei , 1 # i # n+ (2.1)

Hereb ' :5 ~b0, Db '! [ V is the unknown parameter whereV is an open subset
of R11d of the formV 5 R1 3 EV; h :V 3 Rp r R1 is a known function of the
form h$~u0,u1, + + + ,ud!, x% 5 u0 1 Dh$~u1, + + + ,ud!, x% such that for eachx [ Rp,
the functionh~{, x! is differentiable with vector of partial derivatives atu rep-
resented byĥ~u, x!; $Xni ;1 # i # n% is an array ofp-dimensional random vec-
tors representing regressor variables; and $ei ;1 # i # n% are the unobservable
error random variables+
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Following Jurecˇková and Procházka~1994!, anath nonlinear regression quan-
tile ~NLRQ! Zbn~a! in the model~2+1! is defined as

Zbn~a! :5 argminH(
i51

n

ra~Yni 2 h~u,Xni !!J , (2.2)

wherera~ y! :5 2~1 2 a!yI ~ y # 0! 1 ayI ~ y . 0!+ When a 5 1
2
_ , Zbn~ 1

2
_! is

called the LAD estimator and is denoted byZbLAD+ As is common to this kind
of implicit definition, in general there may not be any unique minimizer or any
minimizer at all in~2+2!, and thus the definition suffers from some kind of am-
biguity+ However, if the function h is sufficiently smooth, Koul ~1996b! has
shown that the LSE is consistent forb, and thus one can choose a minimizer in
~2+2!, which is closest to the LSE by, say, 10n, as estimator+ Koenker and Park
~1996! provided some sufficient conditions on the functionh for the existence
of minimizers+ They suggested an “interior point algorithm” that can be used
for computation+

Note that if Yni 2 h~u,Xni ! Þ 0 for all 1 # i # n, then u can not mini-
mize (i51

n ra~Yni 2 h~u,Xni !!+ Therefore, a minimizer Zbn~a! must satisfy
Yni 2 h~ Zbn~a!,Xni ! 5 0 for somei+ Define

Bn~a! :5 $i ;Yni 5 h~ Zbn~a!,Xni !%+

Let N, P, and Z denote the numbers of elements of the sets$ i ; Yni ,
h~ Zbn~a!,Xni!%, $i ;Yni . h~ Zbn~a!,Xni!%, andBn~a!, respectively+ Then, Assump-
tion ~h+0! of Section 4 and the continuity of the underlying random variables
~Assumption~M+3! of Section 3! imply that Z 5 1 1 d with probability one
and

N # na, P # n~12 a!+ (2.3)

For a proof, see Lemma A+4~i!+ Recall that ifY~ @na#11! denotes the~@na# 1 1!th-
order statistic of$Yn1, + + + ,Ynn% and N0, P0, and Z0 denote the numbers of ele-
ments of the sets$i ; Yni , Y~ @na#11!%, $i ;Yni . Y~ @na#11!%, and$i ;Yni 5 Y~ @na#11!%,
respectively, thenN0 # na, P0 # n~12 a!, andZ0 5 1+ In this sense, Zbn~a! is a
proper analogue of the~ @na# 1 1!th order statistic of$Yn1, + + + ,Ynn%+

In analogy to Koenker and Portnoy~1987!, we define anL-estimator ofb in
the model~2+1! as

ZbL :5E
0

1

Zbn~a!L~da!, (2.4)

where

~L +1! L is a finite signed measure on a compact subinterval of~0,1!, with
L$~0,1!% 5 1+

Note that Zb~a1,a2! 5 ZbL, corresponding to the probability measureL~da! 5
~a2 2 a1!21I ~a1 # a # a2!da; 0 , a1 , 1

2
_ , a2 , 1 is an analogue of the
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trimmed mean in the location model with 100a1% lower trimming and 100~12
a2!% upper trimming+

In the context of the linear regression model, Gutenbrunner and Jurecˇková
~1992, display ~3+11!! introduced regression rank score process~RRSP! as an
extension of Hájek and Sˇ idák’s definition of rank process~1967, Sect+ V+3+5! of
the location model+ RRSP and linear rank statistics based on RRSP are useful
in various hypothesis testing problems+ Following Mukherjee~1999a!, here we
give a definition of nonlinear rank score process~NLRSP! that is not an exten-
sion of RRSP but nevertheless has similar asymptotic properties+ Moreover, for
the one-sample location model, the definition of NLRSP reduces to Hájek and
Šidák’s definition of rank process+ Toward that end, fix any Zbn~a! and the cor-
responding index setBn~a!+ For i Ó Bn~a!, define

[ani ~a! 5 1 if Yni 2 h~ Zbn~a!,Xni ! . 0

5 0 if Yni 2 h~ Zbn~a!,Xni ! , 0+

Also for i [ Bn~a!, [ani~a! is defined as a solution of

(
i51

n

h~ Zbn~a!,Xni ! [ani ~a! 5 ~12 a! (
i51

n

h~ Zbn~a!,Xni !, (2.5)

with [ani~a! [ @0,1# +
Let $wni ;1 # i # n% be an array ofRr valued random vectors+ Then the se-

quence of NLRSP ZWn
w on ~0,1! is defined by

ZWn
w~a! :5 (

i51

n

wni [ani ~a!, 0 , a , 1+

Also, let Wn
ĥ stand forWn

w with wni 5 ĥni~b! andr 5 1 1 d+
Next, for a functionb : ~0,1! r R1 that is of bounded variation and constant

outside a compact subinterval of~0,1!, the i th score is defined as

Zbni :5E
0

1

[ani ~a!b~da!, 1 # i # n+

Gutenbrunner and Jurecˇková ~1992! showed that in the location model, $ Zbni %’s
reduce to familiar rank scores as discussed in Hájek and Sˇ idák ~1967!+ Based
on the NLRSP, a nonlinear rank statistic~NLRS! ZUn

w is defined as

ZUn
w :5 (

i51

n

wni Zbni 5E
0

1

ZWn
w~a!b~da!+

3. LONG RANGE DEPENDENCE, ERROR DISTRIBUTIONAL
ASSUMPTIONS, AND HERMITE RANK

Let $hi ; i $ 1% be a sequence of stationary random variables with a standard
normal marginal distribution and with correlation at “lag”k,

r~k! :5 correlation~h1,h11k! 5 L~k!0ku, k $ 1+ (3.1)
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Here 0, u , 1 andL is a positive~eventually! and slowly varying function at
infinity, i+e+, lim tr`L~tx!0L~t! 5 1, for all x . 0+ The long range dependence
among the error random variables$ei ;1 # i # n% is modeled by assuming the
following:

~M+1! ei 5 G~hi !, 1 # i # n, whereG :R1 r R1 is an unknown function+

L+R+D+ data are encountered in the fields of hydrology, economics, time series
analysis, and other sciences+ Existing statistical methodologies may exhibit very
different characteristics when applied to L+R+D+ data+ These facts are reflected
in the review paper by Beran~1992! and the references therein+ These are more
popularly known as long memory data among the economists+

Let F :5 $x;0 , F~x! , 1% be an open interval denoting the support of
the error random variables$G~hi !% with distribution functionF+ Let m be
the Hermite rank of the class of functions$I ~G~h1! # x!, x [ F % ~for the
definition, see Dehling and Taqqu, 1989!+ For x [ F, define Jm~x! :5
E @I ~G~h1! # x!Hm~h1!# ~which is nonzero for somex [ F ! and Jm

1~x! :5
E @I ~G~h1! # x!6Hm~h1!6# + We further assume the following:

~M+2! For eachn $ 1, the sigma fields generated by$Xni ;1 # i # n% and$ei ;1 # i #
n% are independent+

~M+3! The error distribution functionF has a continuous densityf that is positive
on F+

~M+4! The functionsJm andJm
1 are continuously differentiable onF+

For L andu as in~3+1!, assume thatm , u21 and define

tn :5 $2m!~12 mu!21~2 2 mu!21n12muLm~n!%102+ (3.2)

4. ASYMPTOTIC DISTRIBUTIONS OF NONLINEAR REGRESSION
QUANTILES AND RANK SCORE PROCESSES

In the following, let h~u,Xni ! and ĥ~u,Xni ! be denoted byhni~u! and ĥni~u!,
respectively+ Define T~u,a!, the almost everywhere derivative of

(i51
n ra~Yni 2 hni~u!!, as

T~u,a! :5 (
i51

n

ĥni ~u!$I ~Yni 2 hni ~u! # 0! 2 a%

5 (
i51

n

ĥni ~u!$I ~ei # hni ~u! 2 hni ~b!! 2 a%, u [ V, a [ ~0,1!+

To find out the asymptotic distribution ofZbn~a!, define the centering con-
stantb~a! :5 b 1 F21~a!e1, whereF21~a! :5 inf $x [ F;a # F~x!% and
ej :5 @0, + + + ,1, + + + ,0# ', a vector with one at thej th position and zeros at all other
positions, 1 # j # 1 1 d+ To proceed further, note that our aim is to approxi-
mateAn$ Zbn~a! 2 b~a!% by Bn

21T~b~a!,a!, for appropriate matricesAn andBn
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~see~h+0! and ~4+2!, which follow!+ Therefore, we must chooseBn in such a
way thatBn

21T~b~a!,a! 5 Op~1!+ In the i+i+d+ errors case, T~b~a!,a! is a sum
of i+i+d+ centered random variables, and hence the obvious choice forBn is n102+
By contrast, in the L+R+D+ case, the order ofBn depends on both$ĥ~b,Xni !%
and$I ~ei # F21~a!! 2 a%+ We shall discuss different choices ofBn in Remark
4+3 under different conditions on the underlying design and error random vari-
ables+ Accordingly, we make the following assumptions onh+

~h+0! For any set of 11 d equations, Ynij 5 h~u,Xnij !, 1 # j # 1 1 d, there is a unique
solution inu+ Let Ĥn denote ann 3 ~1 1 d! matrix with i th row ĥni~b!+ We
assume that the matrix̂Hn

' Ĥn is positive definite with probability one+ Also, let
Dn be a matrix such thatBn

21T~b~a!,a! 5 Op~1!, whereBn :5 tnDn+ Defining
An :5 Bn

21Ĥn
' Ĥn, we further assume that7An

217 5 op~1!+
~h+1! n max$E7Dn

21 ĥni ~b!72;1 # i # n% 5 O~1!

For b . 0, let Nb :5 $t [ R11d;7t 7 # b%+ The following assumptions hold
for eacht [ R11d andb . 0+

~h+2t! n max$E7Dn
21~ĥni ~b 1 An

21 t! 2 ĥni~b!!72;1 # i # n% 5 o~1!+

Moreover, for all 1 # j # 1 1 d,

0 , kj ~t! , ej
'EFDn

21 (
i51

n

ĥni ~b 1 An
21 t!ĥni

' ~b 1 An
21 t!Dn

21Gej ,

for some constantskj ~t!+

~h+1b! For everya . 0, there is ad . 0 such that

lim sup
nr`

PFsupHtn
21 (

i51

n

7Dn
21~ĥni ~b 1 An

21s! 2 ĥni ~b 1 An
21 t!!7;

s, t [ Nb, 7s2 t 7 # dJ , aG $ 1 2 a+

~h+2b! For everya . 0, there is ad . 0 such that

lim sup
nr`

PFsupHtn
21 (

i51

n

7Dn
21 ĥni ~b 1 An

21s!~hni ~b 1 An
21s! 2 hni ~b 1 An

21 t!!7;

s, t [ Nb, 7s2 t 7 # dJ , aG $ 1 2 a+

Remark 4+1+ Condition ~h+0! was assumed by Jurecˇková and Procházka
~1994!+ When specialized to linear models, it reduces to the condition that the
rank of the design matrix is 11 d+ Variants of ~h+0! and ~h+1! are standard
assumptions for the linear regression model with random design points as in
Pollard ~1991, Theorem 2!+ When Xni 5 Xi , say, ~free from n!, and Xi ’s are
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stationary random variables, conditions~h+1! and~h+2t! reduce to the following
two mild second moment conditions on the stationary distribution:

nE7Dn
21 ĥ~b,X1!72 5 O~1!,

and

nE7Dn
21$ĥ~b 1 An

21 t,X1! 2 ĥ~b,X1!%72 5 o~1!+

Also, ~h+0!, ~h+1!, and~h+2t! imply that for eacht,

max$6hni ~b 1 An
21 t! 2 hni ~b!6;1 # i # n% 5 op~1!

and

tn
21 (

i51

n

E6ej
'Dn

21 ĥni ~b 1 An
21 t!$hni ~b 1 An

21 t! 2 hni ~b!%6 5 O~1!+

When sup$7ĥni~u!7;1 # i # n, 7u 2 b7 # Dd% 5 Op~1! for some Dd . 0, simpler
sufficient conditions for~h+1b! and~h+2b! are the following+

~h+1*b! For everya . 0, there is ad . 0 such that

lim sup
nr`

PFtn
21 (

i51

n

sup$7Dn
21~ĥni ~b 1 An

21s! 2 ĥni ~b 1 An
21 t!!7;

s, t [ Nb, 7s2 t 7 # d% , aG $ 1 2 a+

~h+2*b! For everya . 0, there is ad . 0 such that

lim sup
nr`

PFtn
217Dn

217(
i51

n

sup$6hni ~b 1 An
21s! 2 hni ~b 1 An

21 t!6;

s, t [ Nb, 7s2 t 7 # d% , aG $ 1 2 a+

THEOREM 4+1+ Assume that in the model~2+1!, ~M+1!–~M+3!, ~h+0!, ~h+1!,
~h+2t!, ~h+1b!, and ~h+2b! hold+ Let q~a! 5 f ~F21~a!!+

~i! Then for eacha [ ~0,1! and b. 0,

sup$7Bn
21@T~b~a! 1 An

21 t,a! 2 T~b~a!,a!# 2 tq~a!7; t [ Nb% 5 op~1!+

~ii ! In addition, suppose there exists a sequence of minimizersZbn~a! in ~2+2! such
that

An $ Zbn~a! 2 b~a!% 5 Op~1!+ (4.1)
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Then,

An$ Zbn~a! 2 b~a!% 5 @2q~a!Bn#21T~b~a!,a! 1 op~1! (4.2)

5 @2q~a!Bnm!#21Jm~F21~a!!

3 (
i51

n

ĥni ~b!Hm~hi ! 1 op~1!+ (4.3)

~iii ! In particular, whena 5 1
2
_ and F has the median at0,

An~ ZbLAD 2 b! 5 @2f ~0!Bnm!#21 (
i51

n

ĥni ~b!HI ~ei # 0! 2
1

2J 1 op~1!

5 @2f ~0!Bnm!#21Jm~0! (
i51

n

ĥni ~b!Hm~hi ! 1 op~1!+

Proof+ It is easy to see thathni~b~a! 1 An
21 t! 5 F21~a! 1 hni~b 1 An

21 t!
and ĥni~b~a! 1 An

21 t! 5 ĥni~b 1 An
21 t!+ Also, the continuity ofF implies that

F~F21~a!! 5 a+ Using these

Bn
21@T~b~a! 1 An

21 t,a! 2 T~b~a!,a!# 2 tq~a!

5 Vh~F21~a!, t! 2 Vh~F21~a!,0! 2 tf ~F21~a!!

2 Bn
21 (

i51

n

$ĥni ~b 1 An
21 t! 2 ĥni ~b!%a,

and hence~i! follows from Theorem A+1~i!, which appears in the Appendix+
Now note that by~4+1! and~i!,

Bn
21@T~b~a! 1 An

21An$ Zbn~a! 2 b~a!%,a! 2 T~b~a!,a!#

2 An$ Zbn~a! 2 b~a!%q~a! 5 op~1!+

Also, by Lemma A+4~ii !, found in the Appendix, Bn
21T~ Zbn~a!,a! 5 op~1!+

Hence

An$ Zbn~a! 2 b~a!%q~a! 5 2Bn
21T~b~a!,a! 1 op~1!, (4.4)

and~4+2! follows+ Also, ~4+3! follows from ~4+2! by applying Lemma A+2~ii ! ~in
the Appendix! with gni equal to thekth coordinate ofDn

21 ĥni ~b!, 1 # k #
1 1 d+ n

Remark 4+2+ Following Koul ~1996a, Corollary 1+1!, a sufficient condition
for the existence of Zbn~a! satisfying~4+1! is as follows+

For everye,M . 0, there existn0 andb . 0 such that for alln $ n0,

P@ inf $7Bn
21T~b~a! 1 An

21 t,a!7; 7t 7 $ b% $ M # $ 1 2 e+

This condition, in turn, is implied by the following condition+
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For every e [ R11d with 7e7 5 1 and for all largen, e'Bn
21T~b~a! 1

An
21 re,a! is monotone inr [ ~0,`!, almost surely+
The preceding condition is satisfied, for example, wheneverh is linear in

parameters+

Remark 4+3+ Now we discuss the choice ofBn+ First consider the case when
$Xni %’s are nonrandom; limnr` n21 (i51

n ĥni ~b!ĥni
' ~b! exists and is positive

definite+ Then one can chooseBn 5 tn @(i51
n ĥni ~b!ĥni

' ~b!#102+ Here the rate of
convergence of Zbn~a! to b~a! is tn

21n102, which is slower than the typical
n102 rate of convergence+

Now consider the case whenXni 5 Xi and $Xi ; i $ 1%’s are i+i+d+ Denoting
ĥ~b,Xi ! by @1,ji

'# ', we also assume thatEj1 5 0 andEj1j1
' is positive definite+

BecauseT~b~a!,a! 5 @(i51
n $I ~ei # F21~a!! 2 a%,(i51

n ji
' $I ~ei # F21~a!! 2

a%# ', we can calculate itsL2 norm to see that

F~n102tn!21 (
i51

n

$I ~ei # F21~a!! 2 a%, n2102 (
i51

n

ji
' $I ~ei # F21~a!! 2 a%G '

5 Op~1!+

Hence, we may choose

Bn 5 Sn102tn 0

0 n102Id3d
D,

and in this case, the intercept parameter hastn
21n102 rate of convergence,

whereas the corresponding rate for each of the slope parameters isn102+
Therefore, i+i+d+ regressors overcome the effect of the dependence among er-
rors by retaining the traditional rate of convergence+

Finally, consider a case whenXni 5 Xi and ĥ~ b, Xni ! is of the form
@1,G*~hi1

* !, + + + ,G*~hid
* !# ', whereG* :R1 r R1 is a measurable function~pos-

sibly dependent onb! and$hi
* 5 @hi1

* , + + + ,hid
* # ' ; i $ 1% is a sequence of L+R+D+

normal vectors in the sense of~3+1! in Arcones~1994!+ Also $hi
*; i $ 1% and

$hi ; i $ 1% are independent+ If the Hermite rank~Arcones, 1994, Definition
2+2! of the functionZk~h

*,h! :5 G*~hk
*!$I ~G~h! # F21~a!! 2 a% is m* for

all a [ ~0,1! with m* $ m, then by Theorem 6 of Arcones~1994! we can
choose

Bn 5 Sn102tn 0

0 n102tn
* Id3d

D,
wheretn

* is tn in ~3+2! with m 5 m*+

Remark 4+4+ Note that under~h+1!, E7Bn
21 (i51

n ĥni ~b!Hm~hi !72 5 O~1!,
and hence the sequence@2q~a!Bnm!#21Jm~F21~a!!(i51

n ĥni ~b!Hm~hi ! of
random vectors in the right hand side of~4+3! is tight+ But unlike the i+i+d+ er-
rors case, this tight sequence of random vectors need not converge in distribu-
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tion, and even if it converges, no closed form expression for the limiting
distribution is available+ However, if either G is strictly monotone and contin-
uous function, or G is an odd function with the property that$x [ R1; G~x! #
0% equals either~2`,0# or @0,`!, then by Koul and Mukherjee~1993!, m 5 1
and Hm~hi ! 5 hi + In this case, if the conditional dispersion matrix ofSn :5
Bn

21 (i51
n ĥni ~b!hi given $Xni ;1 # i # n% converges in probability to a positive

definite matrixG, say, then using the convergence theorem of characteristic func-
tions, it can be shown thatSn converges in distribution to the normal random
vectorN11d @0,G# +

In the sequel, for a vector-valued stochastic process$Mn~a!;a [ ~0,1!%, 7Mn7a
denotes sup$7Mn~a!7;a # a # 1 2 a%, and we say thatMn~a! 5 Op

*~1!~op
*~1!!

if for every a [ ~0, 12_# , 7Mn7a 5 Op~1!~op~1!!+ The following theorem gives the
uniform asymptotic representation of the nonlinear regression quantile process
on compact subintervals of~0,1!+ The uniform representation is then used to
obtain the asymptotic representations ofL-estimators+

THEOREM 4+2+ Assume that in the model~2+1!, ~M+1!–~M+4!, ~h+0!, ~h+1!,
~h+2t!, ~h+1b!, and ~h+2b! hold+

~i! Then for every a [ ~0, 12_# ,

sup$7Bn
21@T~b~a! 1 An

21 t,a! 2 T~b~a!,a!# 2 tq~a!7;

~a, t! [ @a,12 a# 3 Nb% 5 op~1!+

~ii ! In addition, suppose there exists a sequence of minimizersZbn~a! of ~2+2! such
that

An $ Zbn~a! 2 b~a!% 5 Op
*~1!+ (4.5)

Then

An$ Zbn~a! 2 b~a!% 5 @2q~a!Bn#21T~b~a!,a! 1 op
*~1!

5 @2q~a!Bnm!#21Jm~F21~a!! (
i51

n

ĥni ~b!Hm~hi ! 1 op
*~1!+

~iii ! Consequently, if L satisfies~L+1!, then

AnH ZbL 2 b 2 e1E
0

1

F21~a!L~da!J
5 Bn

21 (
i51

n

ĥni ~b! E
0

1

2q21~a!$I ~ei # F21~a!! 2 a%L~da! 1 op~1! (4.6)

5 Bn
21 (

i51

n

ĥni ~b!Hm~hi !E
0

1

$2q~a!m!%21Jm~F21~a!!L~da! 1 op~1!+

(4.7)
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~iv! In particular, with L~da! :5 ~a2 2 a1!21I ~a1 # a # a2! da,

AnH Zb~a1,a2! 2 b 2 e1~a2 2 a1!21E
F21~a1!

F21~a2!

xF~dx!J
5 Bn

21 (
i51

n

ĥni ~b!Hm~hi !$2m!~a2 2 a1!%21E
F21~a1!

F21~a2!

Jm~x! dx1 op~1!+

Proof+ Relation~i! follows from Theorem A+1~ii ! in the same fashion as Theo-
rem 4+1~i! follows from Theorem A+1~i!+ The proofs of other assertions follow
similarly+ n

Remark 4+5 Comparison with Other Estimators+ Using the linearity results
of the Appendix, we can obtain the following asymptotic representations of some
robust estimators ofb in the model~2+1!+ With N̂hn~b! :5 n21 (i51

n ĥni ~b! and
Dnc :5 @(i51

n $ĥni ~b! 2 N̂hn~b!%$ĥni~b! 2 N̂hn~b!% '#102,

An~ ZbM 2 b! 5 Bn
21 (

i51

n

ĥni ~b!S2E f dcD21

c~ei ! 1 op~1!, (4.8)

and

tn
21Dnc~ ZbR 2 b!

5 tn
21Dnc

21 (
i51

n

$ĥni ~b! 2 N̂hn~b!%SE f df~F!D21

f~F~ei !! 1 op~1!,

(4.9)

where ZbM is an M-estimator based on a nondecreasing functionc with
E~c~e1!! 5 0 and ZbR is a rank estimator based on a nondecreasing function
f+ On the other hand, recall that

An$ Zbn~a! 2 b~a!% 5 Bn
21 (

i51

n

ĥni ~b! 3 $2q21~a!%$I ~ei # F21~a!! 2 a%

1 op~1!

and

AnH ZbL 2 b 2 e1E
0

1

F21~a!L~da!J
5 Bn

21 (
i51

n

ĥni ~b!E
0

1

2 q21~a!$I ~ei # F21~a!! 2 a%L~da! 1 op~1!+

These representations enable us to study and compare the asymptotic relation-
ships between the classes ofM-, R-, andL-estimators+ For example, the LAD is
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asymptotically more efficient than the LSE~ ZbM with c~x! [ x!, whenever the
same is true in the model~2+1! with i+i+d+ errors+ In particular, ZbLAD and Zb~a1,a2!
are asymptotically more robust~in the sense of asymptotic efficiency! than the
LSE for heavy tailedF+

Also, corresponding to anM-estimator with score functionc that is constant
outside a compact interval of the real line, there is an asymptotically equivalent
L-estimator given by

L~du! 5 HE
0

1

c '~F21~a!! daJ21

c '~F21~u!! du, u [ ~0,1!+

Similarly, corresponding to anR-estimator with a differentiable score function
f that is constant outside a closed interval of~0,1! and with N̂hn~b! 5 0, an
asymptotically equivalentL-estimator is given by

L~du! 5 HEf '~F~x!! f 2~x! dxJ21

f '~u! f ~F21~u!! du, u [ ~0,1!+

Recall that~4+3! and ~4+7! are typical Hermite expansions of~4+2! and ~4+6!,
respectively+ Under some regularity conditions, one can get Hermite expan-
sions of the random vectors in~4+8! and~4+9! in a similar fashion+ From these
expansions, it is easy to see that whenG~hi ! 5 hi , i+e+, when the errors are
L+R+D+ normal, the asymptotic distributions ofZbn~a!, ZbL, ZbM , and ZbR are same
irrespective ofa, L, c, andf+ This is in complete contrast with the i.i.d. errors
case.

To derive asymptotic representations ofZWn
w~{! and ZUn

w, we assume that the
coefficients$wni ;1 # i # n% satisfy the following conditions+

~W+0! For eachn $ 1, the sigma fields generated by$wni ; 1 # i # n% and$ei ; 1 # i #
n% are independent+ Also, letting Wn 5 an n 3 r matrix with i th row wni

' , we
assume that the matrixWn

'Wn is positive definite+ Moreover, define Aw :5
tn

21Dw andBw :5 tnDw, whereDw :5 @Wn
'Wn#102+

~W+1! n max$E7Dw
21wni72;1 # i # n% 5 O~1!+

Define an approximating sequence of processesWn
w by

Wn
w~a! :5 (

i51

n

wni I ~ei . F21~a!!, 0 , a , 1+

Let vni :5 Dw
21wni 2 Mn~Ĥn

' Ĥn!2102ĥni ~b!, where Mn :5 Dw
21Wn

'Ĥn 3
~Ĥn
' Ĥn!2102+ The following result is useful for testing problems concerningb

based on rank statistic+

Theorem 4+3+ In addition to the assumptions of Theorem4+2~ii !, assume
that ~W+0! and ~W+1! hold+ Then ZWn

w and ZUn
w admit the following asymptotic

representations:
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~i! Bw
21H ZWn

w~a! 2 (
i51

n

wni ~12 a!J
5 tn

21 (
i51

n

vni $I ~ei . F21~a!! 2 ~12 a!% 1 op
*~1!

5 ~2tnm!!21Jm~F21~a!! (
i51

n

vni Hm~hi ! 1 op
*~1!+

Consequently,

~ii ! Bw
21H ZUn

w 2 (
i51

n

wniE
0

1

~12 a!b~da!J
5 ~2tnm!!21 (

i51

n

vni Hm~hi !E
0

1

Jm~F21~a!!b~da! 1 op~1!+

Proof+ Write Zn~a! :5 An~ Zbn~a! 2 b~a!!+ Note that fori Ó Bn~a!,

[ani ~a! 5 I $ei . hni ~b~a! 1 An
21Zn~a!! 2 hni ~b!%

5 I $ei . F21~a! 1 hni ~b 1 An
21 Zn~a!! 2 hni ~b!%+

Also, for i [ Bn~a!, I $ei . hni~ Zbn~a!! 2 hni~b!% 5 0+ Hence,

Bw
21 ZWn

w~a! 5 Bw
21 (

i51

n

wni I $ei . F21~a! 1 hni ~b 1 An
21Zn~a!! 2 hni ~b!%

1 Bw
21 (

i[Bn~a!

wni [ani ~a!+ (4.10)

By ~W+1!, the last term in~4+10! is op~1!+ Next, applying Lemma A+2~v! r num-
ber of times on the first term withgni equals thekth ~1 # k # r ! entry of
Dw

21wni , jni 5 hni~b 1 An
21 t! 2 hni~b!, andy 5 F21~a! and then lettingt 5

Zn~a!, we get

Bw
21 ZWn

w~a! 5 Bw
21Wn

w~a!

2 Bw
21 (

i51

n

wni @F$F21~a! 1 hni ~b 1 An
21Zn~a!! 2 hni ~b!%

2 F~F21~a!!# 1 op
*~1!

5 Bw
21Wn

w~a! 2 Mn~Ĥn
' Ĥn!2102Dn Zn~a!q~a! 1 op

*~1!+
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But, from Theorem 4+2~ii !,

Zn~a!q~a! 5 Bn
21Wn

ĥ~a! 2 Bn
21 (

i51

n

ĥni ~b!~12 a! 1 op
*~1!,

and therefore~i! follows after centering byBw
21 (i51

n wni ~1 2 a!+ Moreover, ~ii !
follows from ~i! by integration with respect to the measure generated byb~{!+

n

5. EXAMPLES

Example 1.

A Linear Model with L+R+D+ Errors+ Consider the model~2+1! with h~b, xi ! 5
xi
'b wherexi ’s are assumed to be nonrandom+ Let X be the design matrix with

i th row xi
' , 1 # i # n+ In addition to~M+1!, ~M+3!, and~M+4!, suppose that the

following conditions hold:

~E+1! ~X 'X !21 exists+
~E+2! n max$xni

' ~X 'X !21xni ;1 # i # n% 5 O~1!+

Then by Lemma A+2~iii !, tn
21~X 'X !2102T~b~a!,a! 5 Op~1!, and hence we

can chooseDn 5 ~X 'X !102, Bn 5 tn~X 'X !102, and An 5 tn
21~X 'X !102+ Also,

ĥni~u! 5 xi for all u and i+ With these choices, it is easy to verify that~h+0!,
~h+1!, ~h+2t!, ~h+1b!, and ~h+2b! are satisfied+ Finally, to verify ~4+5!, fix a [
~0, 12_!+ Note that forM,h . 0

PF sup
a[@a,12a#

7An$ Zbn~a! 2 b~a!%7 $ MG
# PF sup

a[@a,12a#
7An$ Zbn~a! 2 b~a!%7$ M,

sup
a[@a,12a#

7Bn
21T~b~a! 1 An

21An$ Zbn~a! 2 b~a!%,a!7 # hG
1 PF sup

a[@a,12a#
7Bn

21T~ Zbn~a!,a!7$ hG
# PF inf

7u7$M
sup

a[@a,12a#
7Bn

21T~b~a! 1 An
21u,a!7# hG

1 PF sup
a[@a,12a#

7Bn
21T~ Zbn~a!,a!7$ hG

5 T1 1 T2,
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say+ Using the polar representation ofu and the Cauchy–Schwarz inequality,
we have

inf
7u7$M

sup
a[@a,12a#

7Bn
21T~b~a! 1 An

21u,a!7

5 inf
7b751, r$M

sup
a[@a,12a#

7Bn
21T~b~a! 1 An

21rb,a!7

$ inf
7b751, r$M

sup
a[@a,12a#

b'Bn
21T~b~a! 1 An

21rb,a!

5 inf
7b751

sup
a[@a,12a#

b'Bn
21T~b~a! 1 An

21Mb,a!

$ inf
7b751H sup

a[@a,12a#
Mq~a! 2 sup

a[@a,12a#
6b'Bn

21T~b~a!,a!6

2 sup
a[@a,12a#

6b' @Bn
21T~b~a! 1 An

21Mb,a!

2 Bn
21T~b~a!,a! 2 Mbq~a!#6J ,

where the second equality follows from the fact thatb'Bn
21T~b~a! 1 An

21rb,a!
is monotonically nondecreasing inr+ The last term in the last inequality isop~1!
by Theorem 4+2~i!, and the second term isOp~1! by the choice ofBn+ Therefore
T1 can be made arbitrarily small by choosing sufficiently largeM+ Also, T2 can
be made arbitrarily small by Lemma A+4~ii !, and thus~4+5! is verified+

Example 2.

A Long Memory Time Series Model with Nonlinear Trend Function+ Consider
the model~2+1! with d 5 1 5 p andh~b0,b1, x! 5 b0 1 ~b1 1 xi ! log~b1 1 x!
where thei th design pointxi 5 i, 1 # i # n+ In addition to~M+1!, ~M+3!, and
~M+4!, suppose thatb1 . 21+ Note thatĥni~u! 5 @1,1 1 log~u1 1 x!# ' for u 5
@u0,u1# '+ Let ĥni~b! 5 @1,ai #

' where ai 5 1 1 log~b1 1 i !+ Recall thatĤn

is the n 3 2 matrix of rank 2 with i th row ĥni ~b!, and we chooseDn 5
~Ĥn
' Ĥn!102+ Once we verify~h+1! with this choice ofDn, we can chooseBn 5

tn~Ĥn
' Ĥn!102 and An 5 tn

21~Ĥn
' Ĥn!102 because Lemma~A+2!~iii ! implies that

Bn
21T~b~a!,a! 5 Op~1!+
Verification of ~h+0! is trivial+ Assumptions~h+1! and ~h+2t! can be verified

by calculating the underlying quantities directly+ The calculations involve the
inversion of a square matrix of order 2 and showing that forj 5 1,2,

ej
'Dn

21 (
i51

n

$ĥni ~b 1 An
21 t!ĥni

' ~b 1 An
21 t! 2 ĥni ~b!ĥni

' ~b!%Dn
21ej 5 o~1!+
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Similar direct calculations are used to verify~h+1b! and ~h+2b!+ Consequently,
under~4+1!, the sequence of nonlinear quantiles has representations~4+2! and
~4+3!+
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APPENDIX: LINEARIZATION RESULTS OF
RANDOMLY WEIGHTED EMPIRICALS

Let $~gni ,jni !;1 # i # n% be an array of random variables and consider the following
processes forx [ F+

Vn~x! :5 tn
21 (

i51

n

gni I ~ei # x 1 jni !, mn~x! :5 tn
21 (

i51

n

gni F~x 1 jni !,

Vn
*~x! :5 tn

21 (
i51

n

gni I ~ei # x! and mn
*~x! :5 tn

21 (
i51

n

gni F~x!+

The proof of Theorem A+1 is based on Lemma A+2~v!, which can be viewed as the
uniform closeness of the randomly weighted perturbed empirical processVn~{! 2 mn~{!
to the unperturbed empirical processVn

*~{! 2 mn
*~{! on compact subintervalsFk where

for k . 0, Fk :5 F ù @2k, k# +
When$ei %’s are weakly dependent, and$~gni ,jni !;1 # i # n% are nonrandom, one can

first derive the pointwise convergence in probability to zero ofVn~{! 2 mn~{! 2 Vn
*~{! 1

mn
*~{! and then demonstrate the tightness of the processVn~{! 2 mn~{! 2 Vn

*~{! 1 mn
*~{!

to conclude its uniform convergence+ The tightness of the process generally follows from
the bound on~usually! the second or fourth moments of the product of two increment
processes over disjoint intervals by some power~more than unity! of the difference of
some monotonically increasing continuous function~Billingsley, 1968, Theorem 15+6!+
This technique was applied in Billingsley~1968, p+ 141! to exhibit the tightness of or-
dinary empirical processes and was adopted successfully by many other researchers in
suitable contexts+ See Koul~1992, Lemma 2+2a+1! and Jurecˇková and Sen~1996, Sects+
5+2, 5+3!, among others, for some examples of this technique+ Because Hermite expan-
sion is anL2 expansion, in the L+R+D+ context, we can compute bound on the second
moment of the increment process~see Lemma A+1!, which is the difference of mono-
tonically increasing continuous function with power unity only, and hence Billingsley’s
technique can not be used to prove Lemma A+2~v!+ To circumvent this, Dehling and
Taqqu~1989! came up with an ingenious chaining argument to obtain the uniform con-
vergence of the ordinary empirical process~Vn

*~{! 2 mn
*~{! with gni 5 n2102! to the pro-
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cessJm~{!Zm, whereZm is some random variable+ Koul and Mukherjee~1993, Theorem
1+1! used a similar chaining argument to obtain a variant of Lemma A+2 when the weights
$~gni ,jni !;1 # i # n% are nonrandom+ Because the proofs of Lemma A+1 and Lemma
A+2 of this paper are similar to the those of Lemma 2+1 and Theorem 1+1 of Koul and
Mukherjee, we present only brief outlines of the proofs here+ Note that the conclusion
of Lemma A+2~v! ~uniform convergence overFk! is weaker than the conclusion of Theo-
rem 1+1 of Koul and Mukherjee~uniform convergence overF ! because our~M+3! and
~M+4! are also weaker than the corresponding conditions~A+5! and ~A+6! of Koul and
Mukherjee+

Accordingly, for x [ F, define

Sn~x! :5 tn
21 (

i51

n

gni $I ~ei # x 1 jni ! 2 F~x 1 jni ! 2 ~m!!21Jm~x 1 jni !Hm~hi !%,

Sn
*~x! :5 tn

21 (
i51

n

gni $I ~ei # x! 2 F~x! 2 ~m!!21Jm~x!Hm~hi !%+

LEMMA A +1+ Suppose that~M+1! holds+ LetAn andBn denote the sigma fields gen-
erated by$~gni ,jni !;1 # i # n% and$ei ;1 # i # n%, respectively, satisfying the following+

~A+0! For each n$ 1, An andBn are independent+ Then

tn
2E @Sn~ y! 2 Sn~x!# 2 # (

i51

n

(
j51

n

E @6gni gnj 6 6$F~ y 1 jni ! 2 F~x 1 jni !%

3 $F~ y 1 jnj ! 2 F~x 1 jnj !%6102#6r~i 2 j !6~11m!+

Proof. Write E @Sn~ y! 2 Sn~x!# 2 5 E @E$@Sn~ y! 2 Sn~x!# 26An%# + Evaluate the con-
ditional expectation by its Hermite expansion as in Lemma 2+1 of Koul and Mukherjee
to obtain the result+ n

For the next result, consider the following assumptions:

~A+1! n max$Egni
2 ;1 # i # n% 5 O~1!+

~A+2! 0 , k1 , (i51
n Egni

2 , for some constantk1+
~A+3! max$6jni 6;1 # i # n% 5 op~1!+
~A+4! tn

21 (i51
n E6gni jni 6 5 O~1!+

LEMMA A +2+

~i! Under ~M+1!, ~M+3!, and ~A+0!–~A+3!, for each x[ Fk,

Vn~x! 2 mn~x! 2 Vn
*~x! 1 mn

*~x! 5 op~1!+

~ii ! Under ~M+1!, ~A+0!–~A+2!, sup$6Sn
*~x!6;x [ Fk% 5 op~1!+

~iii ! Under ~M+1!, ~A+0!, and ~A+1!, for each x[ Fk,

Vn
*~x! 2 mn

*~x! 5 Op~1!+
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~iv! Under ~M+1!, ~M+4!, ~A+0!, ~A+1!, and ~A+3!,

supHtn
21*(

i51

n

gni $Jm~x 1 jni ! 2 Jm~x!%~m!!21Hm~hi !*;x [ FkJ 5 op~1!+

~v! Under ~M+1!, ~M+3!, ~M+4!, and ~A+0!–~A+4!, sup$6Sn~x!6;x [ Fk% 5 op~1! and
hence

sup$6Vn~x! 2 mn~x! 2 Vn
*~x! 1 mn

*~x!6;x [ Fk% 5 op~1!+

Proof. Using theL2 convergence to zero, we can prove~i!+ For proving~ii ! and~v!,
construct a chain withk 5 @ log2$l~d!(i51

n E6gni 60~dtn!%# 1 1 as in Koul and Mukher-
jee ~display 9! and use Lemma 2+1 to proceed analogously+ Assertion~iii ! follows from
the fact thatE @Vn

*~x! 2 mn
*~x!# 2 5 O~1!+ For ~iv!, one can use an argument similar to

Koul and Mukherjee~display 21!+ n

Let $~gni~t!,jni~t!!;1 # i # n, t [ R11d% be an array of real valued stochastic pro-
cesses withjni~0! 5 0, for all 1 # i # n, and consider the following processes forx [
F, t [ R11d+

Vn~x, t! :5 tn
21 (

i51

n

gni ~t! I ~ei # x 1 jni ~t!!, mn~x, t! :5 tn
21 (

i51

n

gni ~t!F~x 1 jni ~t!!+

For the next result, suppose that the following conditions hold for each fixedt [ R11d

andb . 0+

~B+0! For eachn $ 1, the sigma fields generated by$gni~{!,jni~{!;1 # i # n% and
$ei ;1 # i # n% are independent+

~B+1! n max$Egni
2 ~0!;1 # i # n% 5 O~1!+

~B+2t! n max$E @gni~t! 2 gni~0!# 2;1 # i # n% 5 o~1! and 0, k1~t! , (i51
n Egni

2 ~t!
for some constantk1~t!+

~B+3t! max$6jni~t!6;1 # i # n% 5 op~1!+
~B+4t! tn

21 (i51
n E6gni ~t!jni ~t!6 5 O~1!+

~B+1b! For everya . 0, there is ad . 0 such that

lim sup
nr`

PFsupHtn
21 (

i51

n

6gni ~s! 2 gni ~t!6;s, t [ Nb, 7s2 t 7 # dJ , aG $ 1 2 a+

~B+2b! For everya . 0, there is ad . 0 such that

lim sup
nr`

PFsupHtn
21 (

i51

n

6gni ~s!7jni ~s! 2 jni ~t!6;s, t [ Nb, 7s2 t 7 # dJ , aG
$ 1 2 a+

LEMMA A +3+ Suppose that~M+1!, ~M+3!, ~B+0!, ~B+1!, ~B+2t!, ~B+3t!, ~B+1b!, and
~B+2b! hold for every t [ R11d and b. 0+

~i! Then for every x [ Fk,

sup$6Vn~x, t! 2 mn~x, t! 2 Vn~x,0! 1 mn~x,0!6; t [ Nb% 5 op~1!+
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~ii ! If, in addition, ~M+4! and ~B+4t! hold, then

sup$6Vn~x, t! 2 mn~x, t! 2 Vn~x,0! 1 mn~x,0!6;~x, t! [ Fk 3 Nb% 5 op~1!+

Proof. Write Vn~x, t! 2 mn~x, t! 2 Vn~x,0! 1 mn~x,0! 5 U1~x, t! 1 U2~x, t!, where

U1~x, t! :5 tn
21 (

i

$gni~t! 2 gni ~0!%$I ~ei # x! 2 F~x!%,

and

U2~x, t! :5 tn
21 (

i

gni ~t!$I ~ei # x 1 jni ~t!! 2 F~x 1 jni ~t!! 2 I ~ei # x! 1 F~x!%+

The pointwise convergence ofU1 follows by showing thatE @U1~x, t!#2 5 o~1!+ Tight-
ness ofU1 follows from ~B+1b!+ For U2, note that by Lemma A+2~v!, sup$7U2~x, t!7;x [
Fk% 5 op~1!+ Now the tightness of the process@tn

21 (i gni ~t!$I ~ei # x! 2 F~x!%# follows
from ~B+1b!, whereas that of@tn

21 (i gni ~t!$I ~ei # x 1 jni~t!! 2 F~x 1 jni~t!!%# follows
as in Koul~1996b, Lemma 3+2!+ n

Next, fix k,b . 0 and consider the following processes for~x, t! [ Fk 3 Nb+

Vn~x, t! :5 tn
21 (

i51

n

Dn
21 ĥni ~b 1 An

21 t! I $ei # x 1 hni ~b 1 An
21 t! 2 hni ~b!%,

and

mh~x, t! :5 tn
21 (

i51

n

Dn
21 ĥni ~b 1 An

21 t!F$x 1 hni ~b 1 An
21 t! 2 hni ~b!%+

THEOREM A+1+ Assume that~M+1!–~M+3!, ~h+0!, ~h+1!, ~h+2t!, ~h+1b!, and ~h+2b!
hold+ Then for each x[ Fk,

~i! sup$7Vh~x, t! 2 Vh~x,0! 2 mh~x, t! 1 mh~x,0!7; t [ Nb% 5 op~1! and consequently,

supH**Vh~x, t! 2 Vh~x,0! 2 tf ~x! 2 Bn
21 (

i51

n

$ĥni ~b 1 An
21 t! 2 ĥni ~b!%F~x!**;

t [ NbJ 5 op~1!+

~ii ! If, in addition, ~M+4! holds, then

sup$7Vh~x, t! 2 Vh~x,0! 2 mh~x, t! 1 mh~x,0!7;~x, t! [ Fk 3 Nb% 5 op~1!

and consequently,

supH**Vh~x, t! 2 Vh~x,0! 2 tf ~x! 2 Bn
21 (

i51

n

$ĥni ~b 1 An
21 t! 2 ĥni ~b!%F~x!**;

~x, t! [ Fk 3 NbJ 5 op~1!+
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Proof. Applying Lemma A+3 with gni~t! equal to thekth coordinate ofDn
21 ĥni ~b 1

An
21 t! and jni~t! equal tohni~b 1 An

21 t! 2 hni~b!, 1 # k # 1 1 d, and noting that
mh~x, t! 2 mh~x,0! 5 tf ~x! 1 Bn

21 (i51
n $ĥni ~b 1 An

21 t! 2 ĥni~b!%F~x! 1 op~1!, we
obtain the conclusions+ n

LEMMA A +4+

~i! Under ~h+0!, ~2+3! holds+
~ii ! Under ~h+0! and ~h+1!, Bn

21T~ Zbn~a!,a! 5 op~1!+

Proof. Becausera is a convex function andhni~u! is differentiable inu, all direc-
tional derivatives of(i51

n ra~Yni 2 hni~u!! exist and are positive at a minimumZbn~a!+
Let Di ~u,w! denote thew-directional derivative ofra~Yni 2 hni~u!! 5 ~hni~u! 2 Yni !
I ~hni~u! 2 Yni . 0! 2 a~hni~u! 2 Yni ! with respect tou [ V, wherew [ W :5 $u [
R11d;7u7 5 1%+ Then, using the chain rule for differentiation,

Di ~u,w! 5 w'ĥni ~u!~12 a!, if hni ~u! 2 Yni . 0,

5 w'ĥni ~u! 3 2a, if hni ~u! 2 Yni , 0,

5 w'ĥni ~u!~12 a!, if hni ~u! 2 Yni 5 0 and w'hni ~u! . 0,

5 w'ĥni ~u! 3 2a, if hni ~u! 2 Yni 5 0 and w'hni ~u! , 0+

Let ĥni~ Zbn~a!! be denoted bygni 5 @gni,1, + + + , gni,11d# ', 1 # i # n+ Then, for eachw [
W, we have with probability one,

0 , (
i51

n

Di ~ Zbn~a!,w!

5 w'F (
iÓBn~a!

gni $I ~Yni # hni ~ Zbn~a!!! 2 a%

1 (
i[Bn~a!;w'gni.0

gni ~12 a! 1 (
i[Bn~a!;w'gni,0

gni 3 2aG + (A.1)

Now, choosingw 5 ek :5 @0, + + + ,0,1,0, + + + ,0# , 1 # k # 1 1 d and applying~A+1! we get

(
iÓBn~a!

gni, k$I ~Yni # hni ~ Zbn~a!!! 2 a% 1 (
i[Bn~a!;gni, k.0

gni, k~12 a!

1 (
i[Bn~a!;gni, k,0

gni, k 3 2a . 0,

and hence,

(
iÓBn~a!

gni, k$I ~Yni # hni ~ Zbn~a!!! 2 a% . ~a 2 1! (
i[Bn~a!;gni, k.0

gni, k

1 a (
i[Bn~a!;gni, k,0

gni, k+ (A.2)
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Similarly, applying~A+1! once more withw 5 2ek, we get

~a 2 1! (
i[Bn~a!;gni, k,0

gni, k 1 a (
i[Bn~a!;gni, k.0

gni, k

. (
iÓBn~a!

gni, k$I ~Yni # hni ~ Zbn~a!!! 2 a%+ (A.3)

Puttingk 5 1 in ~A+2! and~A+3! and usinggni,1 5 1 for all 1 # i # n, we get

N~12 a! 1 P~0 2 a! . ~a 2 1!Z 1 a 3 0

and

~a 2 1! 3 0 1 aZ . N~12 a! 1 P~0 2 a!+

Now ~2+3! follows by usingn 5 N 1 P 1 Z+
For ~ii !, combining~A+2! and~A+3! we get that for all 1# k # 1 1 d,

(
i[Bn~a!;gni, k,0

gni, k 5 F~a 2 1! (
i[Bn~a!;gni, k.0

gni, k 1 a (
i[Bn~a!;gni, k,0

gni, kG
1 (

i[Bn~a!

gni, k$I ~Yni # hni ~ Zbn~a!!! 2 a%

, (
iÓBn~a!

gni, k$I ~Yni # hni ~ Zbn~a!!! 2 a% 1 (
i[Bn~a!

gni, k$I ~Yni # hni ~ Zbn~a!!! 2 a%

5 Tk~ Zbn~a!,a!

, ~a 2 1! (
i[Bn~a!;gni, k,0

gni, k 1 a (
i[Bn~a!;gni, k.0

gni, k

1 (
i[Bn~a!

gni, k$I ~Yni # hni ~ Zbn~a!!! 2 a% 5 (
i[Bn~a!;gni, k.0

gni, k,

where Tk~ Zbn~a!,a! is the kth ~1 # k # 1 1 d! coordinate ofT~ Zbn~a!,a!+ Now the
conclusion follows from~h+0! and~h+1!+ n
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