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SUMMARY

We describe a general method for finding a confidence region for a parameter vector that is
compatible with the decisions of a two-stage closed test procedure in an adaptive experiment.
The closed test procedure is characterized by the fact that rejection or nonrejection of a null
hypothesis may depend on the decisions for other hypotheses and the compatible confidence
region will, in general, have a complex, nonrectangular shape. We find the smallest cross-product
of simultaneous confidence intervals containing the region and provide computational shortcuts
for calculating the lower bounds on parameters corresponding to the rejected null hypotheses.
We illustrate the method with an adaptive phase II/III clinical trial.

Some key words: Closed testing principle; Combination test; Conditional error; Multiple comparisons; Simultaneous
inference.

1. INTRODUCTION

For experiments designed to make inference about a parameter vector θ = (θ1, . . . , θK ), it
is common to find confidence intervals for all of the individual θk such that the simultaneous
coverage probability is at least 1 − α. Sometimes, though, an experimenter will only attempt
to assert that an individual parameter exceeds a specific value, say θk > δk . If this cannot be
achieved in such a way that the probability of making at least one incorrect rejection in a family of
hypotheses Hk = {θk � δk} (k = 1, . . . , K ) is no greater than α, the experimenter will not assert
anything about θk . The latter method of inference is used in so-called closed test procedures
(Marcus et al., 1976), and its advantage is often greater power.

For experiments conducted in a single stage, Hayter & Hsu (1994) showed how simultaneous
100(1 − α)% confidence intervals can be constructed to be compatible with some commonly
used closed test procedures, in the sense that a null hypothesis Hk is rejected at familywise level
α if and only if the confidence interval for θk excludes all values for which Hk is true. Often,
these intervals are scarcely more informative than the test decisions. For example, for one-sided
problems where larger parameter values are more beneficial, no 100(1 − α)% lower confidence
bound for any individual θk can exceed δk unless all hypotheses H1, . . . , HK can be rejected at
familywise level α.
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In this article we derive confidence intervals for adaptive experiments. Our motivating exam-
ple is a seamless phase II/III clinical trial, although the method is not limited to this setting. Such
trials consist of a first stage in which K experimental treatments, indexed by T1 = {1, . . . , K },
are compared with a common control and, after an interim analysis, a second stage in which only
a subset of treatments, indexed by T2 ⊆ T1, are compared with the control. The state-of-the-art
methodology for this problem (Bauer & Kieser, 1999; Posch et al., 2005; Bretz et al., 2009) is
a hybrid of the closure principle of Marcus et al. (1976) and a p-value combination which goes
back to Fisher (1932). This methodology allows any subset of treatments to be chosen at interim,
based on all trial data and external factors. Other adaptations, such as sample size re-estimation,
are also possible. A serious concern, though, is that there is no established method for construct-
ing confidence intervals. As emphasized in the International Conference on Harmonisation’s E9
guideline (ICH E9 Expert Working Group, 1999, p. 1932), ‘Estimates of treatment effect should
be accompanied by confidence intervals, whenever possible, and the way in which these will be
calculated should be identified.’

Posch et al. (2005) proposed 100(1 − α)% simultaneous confidence intervals following such
a trial. Unfortunately, their intervals are not guaranteed to be compatible with the closed test pro-
cedure. Here, we construct intervals that are compatible. As in the one-stage case, an inevitable
shortcoming of these intervals is that they are not always substantially more informative than the
original test decisions. We will show that this problem is mitigated to some extent by the adaptive
nature of the experiment.

2. FUNDAMENTAL METHODOLOGY

2·1. Closure principle

The closure principle of Marcus et al. (1976) is a general method for multiple hypothesis test-
ing. A formal description is given in Finner & Strassburger (2002), and we adopt similar notation
here. Let P = {Pθ∗ : θ∗ ∈�} be a family of probability measures defined on a common sample
space (�,F), where � is a multi-dimensional parameter space. Suppose that we wish to test a
family of null hypotheses H= {Hi : i ∈ I}, where Hi ⊂� for each i in some index set I. Let
ψ = {ψi : i ∈ I} denote a multiple test of H, with each component ψi taking value 0 or 1 corre-
sponding to nonrejection or rejection of Hi , respectively. It is often desirable to ensure that

sup
θ∗∈�

Pθ∗

⎛
⎝ ⋃

i∈I (θ∗)
{ψi = 1}

⎞
⎠ � α, (1)

where I (θ∗)= {i ∈ I : θ∗ ∈ Hi } is the index set of true hypotheses under θ∗. In other words, the
probability of rejecting at least one true null hypothesis is bounded by α. This is known as strong
control of the familywise error rate. The closure principle can be used to ensure (1). We are
required to find, for each I ⊆ I such that HI = ⋂

i∈I Hi is nonempty, a local level-α test ϕI for
the intersection hypothesis HI ; that is, we require

sup
θ∗∈HI

Pθ∗(ϕI = 1)� α, (2)

where ϕI takes values in {0, 1} with the usual interpretation. If we define ψi =
minI :HI |= ∅,HI ⊆Hi (ϕI ), then (1) holds. This can be very useful, as in many applications it is
easy to find tests satisfying (2), whereas validating (1) directly is hard.
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2·2. Combination test

Fisher (1932) discussed combining independent p-values to test a single null hypothesis. For
convenience and brevity, we will only consider two-stage designs. We define a p-value combina-
tion function Q : [0, 1]2 �→ [0, 1] that is left-continuous and nondecreasing in both its arguments
and is uniformly distributed provided that both arguments are themselves independent and uni-
formly distributed. An example is

Q(u, v)= 1 −	
[
21/2

{
	−1(1 − u)+	−1(1 − v)

}]
, (3)

where 	 denotes the standard normal distribution function.
Such a combination function lends itself to a two-stage adaptive closed test, ψ , for a fam-

ily of null hypotheses, H. An important application, discussed in Bretz et al. (2009), is a
seamless phase II/III confirmatory clinical trial. We henceforth restrict attention to a parame-
ter θ = (θ1, . . . , θK ) taking values in parameter space �= RK and a family of null hypothe-
ses H= {Hk : k ∈ T1} where T1 = {1, . . . , K } and Hk = {θk � δk} (k ∈ T1) for some constants
δ1, . . . , δK ∈ R. The θk (k ∈ T1) might correspond to the mean effects of K different treatments,
for example. By defining local tests ϕI (I ⊆ T1) via a combination function Q, it is possible to
make data-dependent modifications to the trial design at an interim analysis (cf. Bauer & Kieser,
1999; Hommel, 2001; Brannath et al., 2002). For instance, attention can be focused on a subset
T2 ⊆ T1 of the initial hypotheses of interest; changes can be made to sample sizes, allocation
ratios, etc.

2·3. Two-stage closed test procedure

Assume that the full first-stage trial data are represented by a random vector X ∈ Rn with
distribution function G(x; θ). Prior to starting the trial, one must specify a combination func-
tion Q and, for each I ⊆ T1, a first-stage test of HI = ⋂

i∈I Hi with an associated p-value func-

tion p(1)I : Rn → [0, 1] that satisfies supθ∗∈HI

∫
{p(1)I (x)�u} dG(x; θ∗)� u for all u ∈ [0, 1]. The

second-stage design is unspecified.
At the interim analysis, the experimenter defines a second-stage design, d, by choosing a

subset of the original hypotheses, indexed by T2 ⊆ T1, to continue studying in the second stage,
along with second-stage sample sizes and, for each I ⊆ T1, a second-stage hypothesis test for
HI . See below for a proposal for choosing second-stage tests for HI where I � T2. We assume
that the design d is allowed to depend on the unblinded first-stage data x without prespecifying
an adaptation rule. Let Y denote the data collected at the second stage, taking values in Rm , and
let p(2)I,x,d(y) (I ⊆ T1) denote the p-value functions of the second-stage tests. Because the tests
used in the second stage depend on the first-stage data x and the chosen design d, the p-value
functions will in general depend on both.

Let Fx,d(y; θ) denote the distribution function of the second-stage data, given the chosen
design d and interim data x . We assume that for all x , d and I ⊆ T1, the second-stage p-values
p(2)I,x,d satisfy supθ∗∈HI

∫
{p(2)I,x,d (y)�u} dFx,d(y; θ∗)� u for all u ∈ [0, 1]. The distribution Fx,d is

assumed to be known, i.e., not merely specified up to a null set, for all x and d, a condition that
can be formalized by assuming an appropriate regression model (Brannath et al., 2012). See § 3·2
for a numerical example.

At the final analysis, for each I ⊆ T1, the test decision is ϕI = 1 if and only if
Q{p(1)I , p(2)I,x,d} � α. As shown in Brannath et al. (2012), this combination test for HI controls
the Type I error rate at level α.
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We assume that only data for the hypotheses indexed by T2 are collected in the second stage
and propose setting p(2)I = p(2)I∩T2

for I � T2, where we drop the indices x and d for simplicity

and set p(2)∅ = 1 by convention. Such second-stage p-values have the required distribution under
HI∩T2 and hence also under HI .

We emphasize that while Type I error control is guaranteed even if the second-stage design is
initially open-ended, in the design of actual clinical trials it is crucial to perform detailed planning
based on likely first-stage outcomes. The added flexibility is necessary because it is impossible
to foresee all eventualities in extremely complex areas such as clinical drug development.

3. CONFIDENCE REGIONS

3·1. Partitioning the parameter space

A standard approach to deriving a 100(1 − α)% confidence set for θ is to perform a level-α test
of each elementary hypothesis {θ = θ∗} (θ∗ ∈�) and include all θ∗ corresponding to nonrejected
hypotheses (see, e.g., Lehmann, 1986, p. 90). To ensure compatibility with closed testing, the key
idea (Stefansson et al., 1988; Hayter & Hsu, 1994; Finner & Strassburger, 2002) is to partition
the parameter space into disjoint regions

�I = {θ∗ ∈� : θ∗
i � δi , i ∈ I ; θ∗

i > δi , i ∈ T1 \ I } (I ⊆ T1)

and apply different tests in each of the disjoint �I . If, for each I ⊆ T1, we let {ϕI (θ
∗) : θ∗ ∈�}

denote a family of tests with

inf
θ∗∈�

Pθ∗{ϕI (θ
∗)= 0} � 1 − α, (4)

where ϕI (θ
∗) takes values in {0, 1} with the usual interpretation, we can apply the following

general result from Hsu (1996, p. 234).

LEMMA 1. A level-100(1 − α)% confidence set for θ is

C =
⋃

I⊆T1

[{θ∗ ∈� : ϕI (θ
∗)= 0} ∩�I

]
. (5)

Our aim is to find families of tests such that C is compatible with the two-stage closed test pro-
cedure. This requires us to augment our specification of p( j)

I∩Tj
( j = 1, 2; I ⊆ T1) with a family of

p-values {p( j)
I∩Tj

(θ∗) : θ∗ ∈�} where, under {θ = θ∗}, the distribution of p(1)I (θ∗) and p(2)I∩T2
(θ∗)

meet conditions as outlined for p(1)I and p(2)I∩T2
in § 2·3. Additionally, if we treat the data as fixed

and view each family as a function p( j)
I∩Tj

:�→ [0, 1], then unless I ∩ Tj = ∅, p( j)
I∩Tj

(θ∗) is
constant in all arguments θ∗

i such that i /∈ I ∩ Tj , and is left-continuous and nondecreasing in all

arguments θ∗
i such that i ∈ I ∩ Tj , with p( j)

I∩Tj
(θ∗)= p( j)

I∩Tj
for any θ∗ such that θ∗

i = δi for all
i ∈ I ∩ Tj . Furthermore, we assume that

lim
θ∗

i →∞, i∈T2

p(2)∅ (θ∗)= 1. (6)

PROPOSITION 1. Inserted into (5), the following families of hypothesis tests give rise to a
100(1 − α)% confidence set for θ , denoted by C, that is compatible with the two-stage closed
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test procedure, i.e., ψk = 1 if and only if Hk ∩ C = ∅: for ∅ |= I ⊆ T1 and θ∗ ∈�,

ϕI (θ
∗)=

{
1, Q{p(1)I (θ∗), p(2)I∩T2

(θ∗)} � α,

0, Q{p(1)I (θ∗), p(2)I∩T2
(θ∗)}>α,

(7)

and {ϕ∅(θ
∗) : θ∗ ∈�} is any family of tests satisfying (4).

Proof. See the Appendix. �

There will be no unique collection of families of p-values satisfying the aforementioned
distributional and monotonicity constraints. Rather, the families must be specified in a two-
stage procedure in an analogous way to the p-values in § 2·3. As will become clear from the
example below, for many commonly encountered scenarios and when I ∩ Tj |= ∅, the choice of
{p( j)

I∩Tj
(θ∗) : θ∗ ∈�} will be obvious from the choice of p( j)

I∩Tj
. As a simple example, suppose

that p( j)
{k} is the p-value from a one-sided z-test of the null hypothesis {θk � δk} using the stage- j

data only. Then the natural choice for p( j)
{k}(θ∗) is the one-sided p-value from a standard z-test of

{θk � θ∗
k } using the same stage- j data.

While for I ∩ Tj |= ∅ there will often be a natural choice for p( j)
I∩Tj

(θ∗), it is unclear how
ϕ∅(θ

∗) and p(2)∅ (θ∗) should be chosen. A reasonable suggestion is given below.

COROLLARY 1. Define p( j)
∅ (θ∗)= p( j)

Tj
(θ∗) for j = 1, 2. The following is a 100(1 − α)%

confidence region for θ that is compatible with the two-stage closed test procedure:

C1 =
⋃

I⊆T1

[
θ∗ ∈�I : Q

{
p(1)I (θ∗), p(2)I∩T2

(θ∗)
}
>α

]
. (8)

The properties of a region defined by (8) are best illustrated by a specific example.

3·2. Example

Posch et al. (2005) considered a clinical trial where three active treatments, indexed by
T1 = {A, B,C}, are compared with a placebo using a two-stage adaptive design. The individual
null hypotheses of interest are Hk = {θk � 0} (k ∈ T1), where θk = πk − π0 denotes the differ-
ence between the success probabilities of treatment k and placebo. Denote the observed success
rate of treatment k in stage j by π̂k, j (k ∈ T1 ∪ {0}; j = 1, 2), where treatment 0 corresponds to
a placebo.

At the design stage, the inverse normal combination function (3) is specified and
n1 = 140 first-stage patients are recruited to each treatment arm. Approximately, the θ̂k,1 =
π̂k,1 − π̂0,1 (k ∈ T1) are multivariate normal with E(θ̂k,1)= θk , var(θ̂k,1)= {π̂k,1(1 − π̂k,1)+
π̂0,1(1 − π̂0,1)}/n1 and positive correlations. Based on this assumption, Simes (1986) tests

are used for each intersection hypothesis; that is, p(1){k} = 1 −	[θ̂k,1{var(θ̂k,1)}−1/2] for k ∈ T1

and, for |I |> 1, p(1)I = mink∈I p(1){k}|I |/R(k, I ), where R(k, I ) denotes the rank of p(1){k}
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θC
* = 0

−0·05 0·00    0·05   0·10   0·15
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(a) (b)

Fig. 1. Cross-sections of confidence regions of the form (9) for making inference on the second-stage parameter of
interest, θB , in the example of § 3·2: (a) two cross-sections of the 97·5% confidence region; (b) two cross-sections

of the 95% confidence region.

among {p(1){i} : i ∈ I }. The natural way of augmenting these p-values is to define p(1){k}(θ∗)=
1 −	[(θ̂k,1 − θ∗

k ){var(θ̂k,1)}−1/2] for k ∈ T1 and p(1)I (θ∗)= mink∈I p(1){k}(θ∗)|I |/R(k, I, θ∗) for

|I |> 1, where R(k, I, θ∗) denotes the rank of p(1){k}(θ∗) among {p(1){i} (θ∗) : i ∈ I }.
Suppose that the unblinded first-stage results are π̂0,1 = 0·21, π̂A,1 = 0·22, π̂B,1 = 0·3 and

π̂C,1 = 0·36. The experimenter decides that treatments A and C are not to be considered in the
second stage owing to lack of efficacy and safety concerns, respectively. A further n2 = 140
patients are recruited to both treatment B and placebo. A family of p-values with p(2){B}(θ∗)=
1 −	[(θ̂B,2 − θ∗

B){var(θ̂B,2)}−1/2] is chosen, where θ̂B,2 = π̂B,2 − π̂0,2.
Now suppose that the second-stage results are π̂0,2 = 0·19 and π̂B,2 = 0·31. The p-

values from the elementary hypotheses are p(1){A} = 0·419, p(1){B} = 0·0412, p(1){C} = 0·00241

and p(2){B} = 0·00961. Therefore p(1){A,B,C} = 3p(1){C}, p(1){A,B} = 2p(1){B} and p(1){B,C} = 2p(1){C}. As

minI⊆T1,B∈I Q(p(1)I , p(2)B )� 0·025, HB can be rejected at familywise level 0·025. Both HA and

HC fail to be rejected, as Q{p(1){k}, 1} = 1 for k = A,C . A compatible 97·5% confidence region
for θ is given by ⋃

I⊆T1

{
θ∗ ∈�I : Q

{
p(1)I (θ∗), p(2)B (θ∗)

}
> 0·025

}
, (9)

where p(1)∅ (θ∗) is defined as p(1)T1
(θ∗) for all θ∗ ∈�.

The region (9) will have a complicated three-dimensional shape. However, in terms of making
inference on θB , its crucial features can be seen by taking two cross-sections, as displayed in
Fig. 1. As p(1)I (θ∗) is nondecreasing in θ∗

C for all I ⊆ T1, we know that for any γ ∈ (−∞, 0), the
cross-section at θ∗

C = γ is contained in the cross-section at θ∗
C = 0. Similarly, for any γ ∈ (0,∞),

the cross-section at θ∗
C = γ is contained in the limit of the cross-section of the region as θ∗

C → ∞.
One can see immediately from Fig. 1 that for any ε > 0, the 97·5% confidence region fails to
exclude all parameter vectors θ∗ such that θ∗

B � ε. In other words, the lower confidence bound
on θB provides no more information than the decision of the closed test procedure.

For confidence intervals that are compatible with single-stage closed test procedures
(Hayter & Hsu, 1994; Strassburger & Bretz, 2008; Guilbaud, 2008), a necessary condition for
obtaining informative lower confidence bounds for parameters corresponding to the rejected
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null hypotheses is that ψk = 1 for all k ∈ T1. In the adaptive setting, this is no longer a necessary
condition. For example, repeating the above test procedure at level α= 0·05, the compatible 95%
confidence region analogous to (9) is also summarized in Fig. 1. Here it appears, and indeed can
be verified by considering all values of θ∗

A, that there does exist some ε > 0 such that the con-
fidence region excludes all parameter vectors θ∗ for which θ∗

B � ε. We will show that for the
two-stage adaptive setting, a necessary condition for informative lower confidence bounds on
parameters corresponding to the rejected null hypotheses is that ψk = 1 for all k ∈ T2. However,
as can be seen from Fig. 1, this condition is not sufficient.

3·3. A two-stage, single-step confidence region

Posch et al. (2005) proposed the following 100(1 − α)% confidence region:

C2 =
{
θ∗ ∈� : Q

{
p(1)T1

(θ∗), p(2)T2
(θ∗)

}
>α

}
. (10)

They note that the resulting confidence intervals are not compatible with the closed test procedure
described in § 2·3 (Posch et al., 2005, p. 3702). Nevertheless, the region (10) can be used to
generate an alternative multiple test. More generally, any 1 − α confidence set C generates a
multiple test for a family of hypothesesH, whereby Hk ∈H is rejected if and only if Hk ∩ C = ∅.
This guarantees strong control of the familywise error rate (1). The multiple test generated by
(10) can be thought of as single-step in the sense that rejection or nonrejection of a null hypothesis
does not take into account the decision for any other hypothesis. If Hk is rejected, informative
lower bounds will be available for θk regardless of the test decisions for all other hypotheses.

4. COMPUTATION OF CONFIDENCE INTERVALS

4·1. Least-favourable parameter configurations

In the above example, marginal inference on θB was achieved by considering least-favourable
parameter configurations for θk , k ∈ T1 \ {B}. This idea can be generalized to find 100(1 − α)%
simultaneous confidence intervals containing (8) or (10).

DEFINITION 1. For j = 1, 2, k ∈ T1 and I ⊆ Tj , the locally least-favourable j th-stage p-value

function for Hk in �I , p( j)
k,I : R → [0, 1], is defined for I |= ∅ as p( j)

k,I (ϑ)= p( j)
I (ξ), where

ξ = (ξ1, . . . , ξK ) with ξi = δi for i |= k and ξk = ϑ . Additionally, for j = 1, 2,

p( j)
k,∅(ϑ)= lim

ξi →∞,i∈Tj \{k}
p( j)

Tj
(ξ) (ξk = ϑ). (11)

PROPOSITION 2. The smallest Cartesian product of intervals, ×k∈T1(lk,∞), that contains the
confidence region (8) has lk = minI⊆T1 lk,I , where for k ∈ I ,

lk,I =
{

∞ (ϕI = 1),

sup
{
ϑ : Q{p(1)k,I (ϑ), p(2)k,I∩T2

(ϑ)} � α
}

(ϕI = 0),
(12)

and for k /∈ I ,

lk,I = max
(
δk, sup

{
ϑ : Q{p(1)k,I (ϑ), p(2)k,I∩T2

(ϑ)} � α
})

. (13)

Furthermore, these intervals are compatible with the two-stage closed test procedure, i.e.,ψk = 1
if and only if Hk ∩ ×k∈T1(lk,∞)= ∅.
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Proof. See the Appendix. �

In general, to find each interval requires one-dimensional root finding for each I ⊆ T1, a calcu-
lation that is O(2K ). However, substantial shortcuts are available for reducing the computational
burden.

4·2. Efficient computation of confidence bounds

There are two possible scenarios at the end of the closed test procedure: either ψk = 1 for all
k ∈ T2, or at least one Hk (k ∈ T2) fails to be rejected. In the latter case, there exists some I ⊆ T1
with I ∩ T2 |= ∅ such that for any k ∈ T2,

α < Q
(

p(1)I , p(2)I∩T2

) = Q
{

p(1)k,I (δk), p(2)k,I∩T2
(δk)

}
and therefore lk � lk,I � δk . Due to the compatibility of the intervals with the closed test proce-
dure, if ψk = 1, then lk = δk ; if ψk = 0, then lk < δk .

If ψk = 1 for all k ∈ T2, then lk � δk for all k ∈ T2. Additionally, we can use the fact that for all
k ∈ T2 and I ⊆ T1 with I ∩ T2 |= ∅, we know from (12) and (13) that lk,I = ∞; so, when finding
lk = minI⊆T1 lk,I in Proposition 2, the minimum can be taken over a much smaller number of lk,I .
The following algorithm finds the lower bounds for all parameters corresponding to the rejected
hypotheses.

Step 1. Perform the closed test procedure. Ifψk′ = 0 for some k′ ∈ T2, then lk = δk forψk = 1
and lk < δk for ψk = 0. If ψk = 1 for all k ∈ T2, go to Step 2.

Step 2. Find pM = max∅ |= I⊆T1\T2 p(1)I . If T1 \ T2 = ∅, then pM = 0.

Step 3. For k ∈ T2,

lk = max
[
δk, sup

{
ϑ : Q

[
max{pM, p(1)k,∅(ϑ)}, p(2)k,∅(ϑ)

]
� α

}]
.

The cost of computing the intervals for θk (k ∈ T2) in Step 3 is linear in the number of parame-
ters. In general, Step 1 is O(2|T1|), but a shortcut of O(|T1|2) is given in Brannath & Bretz (2010).
Step 2 is O(2|T1\T2|), but a shortcut of size |T1 \ T2| is available, provided there exists an ordering
i1, . . . , ik of T1 \ T2 such that for each u ∈ {1, . . . , k}, p(1)J � p(1)L for all J ⊆ L ⊆ {iu, . . . , ik}
with iu ∈ J . This is because we only have to check p(1){iu ,...,ik} for u = 1, . . . , k. Many common
multiple test procedures, such as those based on Dunnett (1955) tests or weighted Bonferroni
tests, satisfy this condition, with the ordering i1, . . . , ik following the ordering of the univariate
test statistics or the weighted elementary p-values (Brannath & Bretz, 2010).

4·3. Lower bounds for parameters corresponding to retained hypotheses

Consider k ∈ T2 such that ψk = 0. We know that lk < δk , and therefore we need only consider
lk,I such that k ∈ I . However, since in general lk,I <∞, finding the minimum such lower bound
will still have a computational cost that is exponential in the number of parameters.

For k ∈ I ⊆ T1 \ T2, we have p(2)k,I∩T2
(ϑ)= p(2)k,∅(ϑ) and know from (11) and (6) that this is

equal to 1. Many commonly used combination functions, including (3), have the property that
v = 1 implies Q(u, v)= 1. In this case, lk = −∞ for all k ∈ T1 \ T2.
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4·4. Lower bounds for the two-stage single-step procedure

Posch et al. (2005) showed that the region (10) is contained in a rectangle, ×k∈T1(l̄k,∞), where

l̄k = sup
{
ϑ : Q

{
p(1)k,∅(ϑ), p(2)k,∅(ϑ)

}
� α

}
. (14)

The computation of each interval requires only a one-dimensional search for a root, and overall
computation will be linear in the number of parameters.

4·5. Example continued

Recall from § 3·2 that T2 = {B} and ψB = 1. Proceeding to Step 2 of the above algorithm,
pM = 0·419. In this case we need just one iteration in Step 3, because

Q
[
max

{
0·419, p(1)B,∅(0)

}
, p(2)B,∅(0)

]
= 0·0360> 0·025,

and therefore the 97·5% confidence interval for θB is (0,∞), consistent with Fig. 1. This example
emphasizes that there is a price to pay for the additional power of the closed test as opposed to
the single-step procedure of § 3·3 with, by (14),

l̄B = sup
{
ϑ : Q

{
p(1)B,∅(ϑ), p(2)B,∅(ϑ)

}
� 0·025

}
= 0·0159.

While this agrees with the assertion θB > 0 in this specific case, it is invalid to claim it as a 97·5%
lower confidence bound if the closed test procedure of § 2·3 had been planned. One can see that
for any α > 0·036, the 100(1 − α)% confidence interval for treatment B that is compatible with
the closed test procedure has a positive lower bound. For example, the 95% lower confidence
bound is lB = 0·0112, consistent with Fig. 1. Again, if the region (10) had been specified pre-
trial, the 95% lower confidence bound (14) would have been l̄B = 0·0252.

5. CONFIDENCE BOUNDS FOR CLOSED TESTS BASED ON THE CONDITIONAL ERROR RATE

Consider again the two-stage closed test procedure of § 2·3. As an alternative to combination
tests, Koenig et al. (2008) used the conditional error approach (Proschan & Hunsberger, 1995) to
derive local tests ϕI (I ⊆ T1). The only difference is that instead of prespecifying a combination
function Q and first-stage p-value p(1)I , one must prespecify a measurable conditional error
function AI : Rn → [0, 1] such that

sup
θ∗∈HI

∫
Rn

AI (x) dG(x; θ∗)� α

and, at the final analysis, ϕI = 1 if and only if p(2)I∩T2
� AI (x).

To produce a compatible 100(1 − α)% confidence region for θ , each AI (I ⊆ T1) must
be augmented with a family of conditional error functions {AI (θ

∗) : θ∗ ∈�} such that∫
Rn AI (θ

∗)(x) dG(x; θ∗)� α and, for fixed x ∈ Rn , AI (θ
∗) is constant in all arguments θ∗

i with
i /∈ I and is left-continuous and nonincreasing in all arguments θ∗

i with i ∈ I . Furthermore,

AI (θ
∗)= AI for all θ∗ ∈� such that θ∗

i = δi for i ∈ I . The second-stage p-values p(2)I∩T2
(I ⊆ T1)

must be augmented with a family {p(2)I∩T2
(θ∗) : θ∗ ∈�} as described in § 3·1.

Müller & Schäfer (2004) propose defining AI = supθ∗∈HI
Eθ∗(φI | X), where φI is a pre-

planned fixed sample level-α test for HI . In many situations the natural choice for AI (θ
∗) will
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be obvious from AI . For example, if φI is the decision function for a Dunnett (1955) test of
HI = ⋂

k∈I {θk � δk}, then it is natural to choose AI (θ
∗)= Eθ∗(φI,θ∗ | X)where φI,θ∗ is the deci-

sion function for a Dunnett test of
⋂

k∈I {θk � θ∗
k }, which can be derived via a corresponding

translation of the test statistics.
Using the arguments of Propositions 1 and 2, it can be shown that, analogously to (8), a com-

patible 100(1 − α)% confidence region for θ is

⋃
I⊆T1

{
θ∗ ∈�I : p(2)I∩T2

(θ∗) > AI (θ
∗)

}
,

where p(2)∅ (θ∗) and A∅(θ
∗) are set equal to p(2)T2

(θ∗) and AT1(θ
∗), respectively. Also, the largest

compatible 100(1 − α)% confidence lower bounds are lk = minI⊆T1 lk,I , where for k ∈ I ,

lk,I =
{

∞ (ϕI = 1),

sup{ϑ : p(2)k,I∩T2
(ϑ)� Ak,I (ϑ)} (ϕI = 0),

and for k /∈ I , lk,I = max[δk, sup{ϑ : p(2)k,I∩T2
(ϑ)� Ak,I (ϑ)}] with Ak,I (ϑ) defined analogously

to p(1)k,I (ϑ) (k ∈ T1; I ⊆ T1) in Definition 1.

6. CONCLUDING REMARKS

The lower confidence bounds (12)–(13) provide more information about the location of θ
than the decisions of the closed test procedure of § 2·3. The utility of this additional informa-
tion will depend strongly on the context. In practice, the primary concern will often be to find
lower bounds for the components of θ corresponding to the rejected null hypotheses. As this can
be achieved using an algorithm that is O(K 2), application to large-scale simultaneous inference
problems is, in principle, feasible. However, these lower bounds will only be informative if all
hypotheses considered in the second stage of testing are rejected, and even this may be insuffi-
cient. In practice, therefore, the lower bounds (12)–(13) are only likely to be useful in relatively
small-scale problems. Furthermore, in situations where informative lower confidence bounds are
deemed to be more important than the possibility of rejecting as many individual null hypothe-
ses as possible, it would be sensible to use the intervals (14) instead of applying the closed test
procedure. For large-scale simultaneous inference problems, an approach based on controlling
the false coverage-statement rate (Benjamini & Yekutieli, 2005) may be more appropriate than
aiming for a high simultaneous coverage probability.

Extensions to more than two stages and to allow early rejection of hypotheses are straightfor-
ward with an appropriate combination function in place of (3). An open question is how best to
choose ϕ∅(θ

∗) and p(2)∅ (θ∗). The tests we use in region (8) are a natural choice but may not be
the most powerful.
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APPENDIX

Proof of Proposition 1. With the assumptions in § 3·1, all tests of the form (7) satisfy condition (4),
and therefore C is a 100(1 − α)% confidence set for θ . By the monotonicity conditions imposed on the
p-values, we have p( j)

I∩Tj
(θ∗)� p( j)

I∩Tj
for all θ∗ ∈�I ( j = 1, 2; I |= ∅; I ⊆ T1), so that�I ∩ C = ∅ if and

only if Q(p(1)I , p(2)I∩T2
)� α. Therefore, ψ = 1 if and only if minI⊆T1,k∈I Q(p(1)I , p(2)I∩T2

)� α if and only if⋃
I⊆T1,k∈I �I ∩ C = ∅. Since

⋃
I⊆T1,k∈I �I = Hk , we have compatibility. �

Proof of Proposition 2. First, note the key property that p( j)
k,I∩Tj

(ϑ)� p( j)
I∩Tj

(θ∗) for all θ∗ ∈�I with
θ∗

k � ϑ (I ⊆ T1; k ∈ T1; j = 1, 2).
To show that C1 ⊆ ×k∈T1(lk,∞), consider any θ∗ ∈� \ ×k∈T1(lk,∞). We must have θ∗ ⊆�I for

some I ⊆ T1 and θ∗
k � lk for some k ∈ T1. If k ∈ I , then θ∗

k � min(δk, lk,I ), and (12) implies that α �
Q{p(1)k,I (θ

∗
k ), p(2)k,I∩T2

(θ∗
k )} � Q{p(1)I (θ

∗), p(2)I∩T2
(θ∗)}. The same inequality follows from lk,I � θ∗

k > δk and
(13) if k /∈ I . Therefore, θ∗ /∈ C1 and C1 ⊆ ×k∈T1(lk,∞).

To show that no smaller interval (lk + ε,∞) is possible for any ε > 0, we must find some θ∗ ∈ C1 with
θ∗

k ∈ (lk, lk + ε). Consider a subset I ⊆ T1 such that lk = lk,I and therefore Q{p(1)k,I (ϑ), p(2)k,I∩T2
(ϑ)}>α

for all ϑ > lk . If k ∈ I or, equivalently, lk < δk , take any θ∗
k ∈ (lk,min{δk, lk + ε}). If k /∈ I or, equivalently,

lk � δk , take any θ∗
k ∈ (lk, lk + ε). Now consider a parameter vector ξ I,k = (ξ

I,k
1 , . . . , ξ

I,k
K ), where ξ I,k

k = θ∗
k ,

ξ
I,k
i = δi for k |= i ∈ I , and ξ I,k

i > δi for i /∈ I ∪ {k}. All such parameter vectors ξ I,k are contained in�I , and

α < Q
{

p(1)k,I (θ
∗
k ), p(2)k,I∩T2

(θ∗
k )

}
= lim
ξ

I,k
i →∞,i /∈I∪{k}

Q
{

p(1)I (ξ
I,k), p(2)I∩T2

(ξ I,k)
}
.

Thus there exists some such ξ I,k ∈ C1, and hence C1 is not contained in this smaller product of intervals.
Finally, Hk ∩ ×k∈T1(lk,∞)= ∅ if and only if lk,I � δk for I ⊆ T1, if and only if Q{p(1)k,I (δk),

p(2)k,I∩T2
(δk)} = Q{p(1)I , p(2)I∩T2

} � α for I ⊆ T1 and k ∈ I , if and only if ψk = 1. �

REFERENCES

BAUER, P.&KIESER, M. (1999). Combining different phases in the development of medical treatments within a single
trial. Statist. Med. 18, 1833–48.

BENJAMINI, Y.& YEKUTIELI, Y. (2005). False discovery rate controlling confidence intervals for selected parameters.
J. Am. Statist. Assoc. 100, 71–80.

BRANNATH, W.& BRETZ, F. (2010). Shortcuts for locally consonant closed test procedures. J. Am. Statist. Assoc. 105,
660–9.

BRANNATH, W., GUTJAHR, G. & BAUER, P. (2012). Probabilistic foundation of confirmatory adaptive designs. J. Am.
Statist. Assoc. 107, 824–32.

BRANNATH, W., POSCH, M. & BAUER, P. (2002). Recursive combination tests. J. Am. Statist. Assoc. 97, 236–44.
BRETZ, F., KOENIG, F., BRANNATH, W., GLIMM, E. & POSCH, M. (2009). Adaptive designs for confirmatory clinical

trials. Statist. Med. 28, 1181–217.
DUNNETT, C. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Am. Statist.

Assoc. 50, 1096–121.
FINNER, H.& STRASSBURGER, K. (2002). The partitioning principle: a powerful tool in multiple decision theory. Ann.

Statist. 30, 1194–213.
FISHER, R. A. (1932). Statistical Methods for Research Workers. London: Oliver and Boyd, 4th ed.
GUILBAUD, O. (2008). Simultaneous confidence regions corresponding to Holm’s stepdown procedure and other

closed-testing procedures. Biomet. J. 50, 678–92.
HAYTER, A. J. & HSU, J. C. (1994). On the relationship between stepwise decision procedures and confidence sets.

J. Am. Statist. Assoc. 89, 128–36.
HOMMEL, G. (2001). Adaptive modifications of hypotheses after an interim analysis. Biomet. J. 43, 581–9.
HSU, J. C. (1996). Multiple Comparisons: Theory and Methods. London: Chapman and Hall.
ICH E9 EXPERT WORKING GROUP (1999). Statistical principles for clinical trials: ICH harmonized tripartite guideline.

Statist. Med. 18, 1905–42.
KOENIG, F., BRANNATH, W., BRETZ, F. & POSCH, M. (2008). Adaptive Dunnett tests for treatment selection. Statist.

Med. 27, 1612–25.
LEHMANN, E. L. (1986). Testing Statistical Hypotheses. New York: Wiley, 2nd ed.



12 D. MAGIRR, T. JAKI, M. POSCH AND F. KLINGLMUELLER

MARCUS, R., PERITZ, E. & GABRIEL, K. R. (1976). On closed testing procedures with special reference to ordered
analysis of variance. Biometrika 63, 655–60.
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