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Abstract This study explores the three-dimensional (3D)
wave configurations induced by 3D asymmetrical inter-
secting compression wedges in supersonic and hypersonic
inviscid flows. By using the “spatial dimension reduction”
approach, the problem of 3D steady shock/shock interaction
is converted to that of the interaction of two moving shock
waves in the characteristic two-dimensional (2D) plane.
Shock polar theory is used to analyze the shock config-
urations in asymmetrical situations. The results show that
various shock configurations exist in 3D asymmetrical shock
wave interactions, including regular interaction, transitioned
regular interaction, single Mach interaction, inverse single
Mach interaction, transitional double Mach interaction, weak
shock interaction, and weak single Mach interaction. All
of the above 3D steady shock/shock interactions have their
corresponding 2D moving shock/shock interaction configu-
rations. Numerical simulations are performed by solving the
3D inviscid Euler equations with the non-oscillatory, non-
free parameters, dissipative (NND) numerical scheme, and
good agreement with the theoretical analysis is obtained. Fur-
thermore, the comparison of results show that the concept
of the “virtual wall” in shock dynamics theory is help-
ful for understanding the mechanism of two-dimensional
shock/shock interactions.
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1 Introduction

The reflection and interaction of shock waves are fundamen-
tal problems in the field related to high-pressure explosions,
detonations, and shock waves. The reflection of a shock wave
usually means that a moving or steady shock wave impinges
on the surface of walls or other obstacles blocking its path.
Complex shock reflection phenomena exist, which greatly
depend on how an impinging shock wave encounters the
walls or obstacles. On the other hand, the problem of shock
interaction mostly deals with the situations in which two or
more shock waves interact with each other. Based on the
special features of shock wave reflection and interaction, the
research in this field has been developed to a separate direc-
tion in compressible gas dynamics.

There has been plenty of research work, including theo-
retical, experimental, and numerical investigations, on two-
dimensional (2D) reflection and interaction of shock waves
in the past hundred years due to its importance in inter-
preting the basic behavior. The most frequently encountered
configurations of shock reflection were clarified in seminal
publications like [1]. The book of Shock Wave Reflection
Phenomena [1] gives a good summary of the possible shock
wave configurations when a 2D shock wave reflects off a wall
surface, for either a steady shock wave or a pseudo-steady
shock wave.

This paper mainly concerns the three-dimensional (3D)
interaction of two planar shock waves induced by two inter-
secting wedges. The concepts of shock reflection and shock
interaction are defined separately here, although they can be
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analytically transformed to each other in many situations.
Shock reflection is defined as a shock impinging onto a wall
surface, and shock interaction is defined as two shock waves
in a 2D situation (or two planar shock waves in a 3D sit-
uation) interacting with each other. The 3D interaction of
shock waves is widely observed in engineering tasks related
to aerodynamics because a real aircraftis always three dimen-
sional. The research on 3D shock waves and their interaction
with boundary layer is an important topic of hypersonic aero-
dynamics, for example the 3D interaction of shock waves
and boundary layers in a hypersonic inlet and the interaction
region of hypersonic wing/rudder and body. In the hypersonic
3D inlet, multiple oblique shock waves interact with each
other and make the flow rather complex and non-uniform,
and they lead to a serious total pressure loss of the inlet flow.
In the interaction region of hypersonic wing/rudder and body,
3D shocked flow causes a complex heat flux distribution on
the surface of the aircraft. Until now, there is no commonly
accepted correlation method for the prediction of local heat
flux of hypersonic complex flow. It is clear that the interac-
tion of shock waves and boundary layers increases the local
gasdynamic heating in both 2D and 3D situations. For exam-
ple, the flow patterns of hypersonic shocked flow in which a
2D shock wave is impinging on a cylinder is classified into
six types [2], which have different effects on the local heat
flux to the surface of the cylinder. It has been concluded that
the type IV interaction of a 2D shock/boundary layer causes
a sharp increase in local heat flux. For the 3D interaction of
shock waves and boundary layers, the physical mechanisms
have not been fully revealed and the theoretical analysis of
this configuration is scarce.

It can be seen that the 3D interaction of shock waves
is a basic problem for studying the physical mechanisms
of 3D interaction of shock waves and boundary layers,
that is, the shock/shock interaction (SSI) of two planar
shock waves in three-dimensional situations. The earliest
approach for studying such shock/shock interaction (SSI)
in three-dimensional situations was experimental investi-
gations. Charwat and Redekeopp [3] conducted several
experiments to analyze the wave configurations and pressure
distribution of the surface along the corner of intersecting
wedges with both symmetrical and asymmetrical models.
Stainback and Weinstein [4] performed experimental studies
on aerodynamic heating in the vicinity of corners at Mach 8.
Watson and Weinstein [5] studied corner flow interaction at
Mach 20 in helium and found that the basic features of the
flow field previously observed at low Mach numbers also
occur at high Mach numbers. West and Korkegi [6] con-
ducted experimental investigations on supersonic interaction
at high Reynolds numbers and found that the flow structures
were conically invariant for turbulent boundary layers. Skews
and Naidoo et al. [7-9] carried out further research on corner
flows and discovered that the flow is no longer self-similar if
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the sharp corner is replaced by a camber. Most of the above
studies focused on the Mach reflection and used symmet-
rical models, while other complex wave configurations of
symmetrical and asymmetrical models were scarcely inves-
tigated due to the limitations imposed by the experimental
setups. Recently, Yang et al. [10-14] used a spatial dimen-
sion reduction approach to analyze the problem of steady
3D SSI. The basic idea is that one spatial dimension of the
steady 3D SSI is handled as a temporal dimension, and the
problem of the steady 3D SSI over 3D intersecting wedges
can be transformed into that of 2D SSI of two moving shock
waves on the cross sections normal to the intersecting line
of the incident shock waves. With such a new approach, the
wave configurations of asymmetrical steady 3D SSI could be
determined theoretically just by considering the 2D SSI of
two moving shock waves in a 2D plane.

The purpose of this study is to explore the 3D asymmetri-
cal wave configurations induced by two intersecting wedges
in supersonic or hypersonic flow. The method used includes
theoretical analysis and numerical simulation. The theoret-
ical work is very helpful for understanding the complex
mechanisms of 3D steady SSI and those complex phenomena
observed in recent and future experiments.

2 Analytical approach and numerical methods

The most commonly observed 3D regular interaction (RI)
and Mach interaction (MI) induced by two intersecting
wedges are depicted in Fig. 1, where A; and A, are the sweep
angles, 61 and 6, are the wedge angles, and v denotes the
angle between the two bottom planes of wedges. The dif-
ference between the two configurations is that, in the case
of MI, a surface of Mach stem OJK is necessary to satisfy
the pressure and deflection angle conditions. The coordinate
system used includes the y-coordinate, which indicates the
inflow direction and is aligned along the intersecting line of
the two bottom wedges. The x-coordinate is chosen in the
plane of the horizontal wedge and is normal to y, while the
third coordinate z is taken as normal to both x and y.

The detailed procedure of the “spatial dimension reduc-
tion” method has been published [12—14]. First, the relations
between the 3D steady problem and 2D unsteady problem
should be obtained. If the inflow condition and the geometric
parameters of two wedges are given, the two incident oblique
shock waves induced by the two wedges will inevitably inter-
act with each other in the corner. Here, we define the inflow
Mach number as My, 81 and B, as the shock angles on the
cross sections of wedges paralleled to the y-axis, and By, and
Bon as the shock angles induced by the wedges perpendicular
to OA and O_C> respectively. The direction of the interacting
lines of two shock planes (ﬁ is defined as the characteristic
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(a)

(b)

Fig. 2 a Schematic illustration of a 2D moving regular interaction in a characteristic plane and b schematic illustration of a 2D moving Mach

interaction in a characteristic plane

direction, and the planes perpendicular to (TB? are defined as
the characteristic planes. The velocities in the flow field can
be decomposed into two separate components in the charac-
teristic direction and in the characteristic planes. Thus, the
3D SSI is projected onto the 2D characteristic planes, and
the spatial dimension in the characteristic direction can be
treated as the temporal dimension. Accordingly, the problem
of steady 3D SSI can be dealt with as that of 2D SSI of two
moving shock waves in the characteristic planes with time
evolution (see Figs. 1, 2).

For the RI configuration, the trajectory of the reflection
point can be defined as a virtual wall, and the moving refer-
ence frame can be set on the reflection point (Fig. 2a). Such
a problem of 2D SSI can be analyzed theoretically by the
theory of 2D steady shock wave interaction. For the MI con-
figuration, the virtual wall is defined as a line perpendicular

to the Mach stem, and then, the frames of reference can be
attached to 77 and 7>, respectively (as shown in Fig. 2b) [8—
10]. The Mach number of the Mach stem My, and the angle
0, between the virtual wall and the horizontal line can be
obtained by solving the problem of Mach reflection at both
sides of the virtual wall [15].

Then, the wave configurations can be determined by using
the following equation:

£—1 M —1) = (& = 1)

yM2— (& — 1) Py

tanf =

ey

where M is the decomposed Mach number in the direction
of the reflection point, y is 1.4 for an ideal diatomic gas, and
& is the ratio of the pressures across the shock.
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Finally, the wave configurations can be determined by
shock polar analysis in the characteristic plane. Wave config-
urations and their determinations will be introduced in detail
in the following sections.

The governing equations of numerical simulation are the
3D Euler equations, and their discretization is done using the
second-order non-oscillatory, non-free parameters, dissipa-
tive (NND) scheme [16]. The computational mesh uses the
orthogonalized uniform structured mesh. Message passing
interface (MPI) parallel computation technology is adopted
in the numerical simulation to speed up the calculations.
Mesh independence tests are performed to ensure that all the
numerical results produced are independent of the type of
mesh chosen. The inlet boundary of the computational zone
is given the fixed supersonic inflow condition, the far-field
boundaries are given non-reflecting boundary conditions, and
the wall boundaries are given solid-slipping conditions. The
computations are conducted on an 8-core Dell computer.

3 Results and discussion

Charwat et al. [3,5,6] noted that the wave configurations of
3D SSI on cross sections are self-similar, so the schematic
illustration on a cross section can be used to show the whole
3D wave configuration. The coordinates x and z are scaled
with y so that they become conical, self-similar variables.
For the ideal gas, the initial conditions of pressure, density,
and temperature are non-dimensionalized to unit one.

In the following sections, various 3D asymmetrical wave
configurations will be discussed and analyzed. Also, theo-
retical results are compared with the results of numerical
simulations.

3.1 Regular interaction

For 2D supersonic and hypersonic flows, the wave config-
uration of RR often occurs for small sweep angles and low
wedge angles, and it consists of two shock waves, the inci-
dent wave and the reflected wave, which meet at the reflection
point. For the 3D corner flows induced by two intersecting
wedges, numerical simulations and theoretical analysis show
that the wave configuration of 3D RI often occurs in the case
of small sweep angles and low wedge angles (or sufficiently
small dihedral angles with large wedge angles) [17,18]. The
3D Rl includes two incident and two reflected wave planes,
which meet at the reflection line OB (Fig. 1a).

The shock polars for different dihedral angles are shown
in Fig. 3; the horizontal axis 6 is the flow deflection angle,
and the vertical axis & is the static pressure ratio. In the case
of My =3, v = 60°-90°, A1 = X =0°,60] =5°,6, = 3°,
shock polar analysis shows that the wave configuration is
RI (Fig. 3). With the increase in dihedral angle, the incident
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Fig. 3 Shock polar analysis in a characteristic plane for Mo =3, v =

60°—90°, 11 = Ay = 0°,6; = 5°,6, = 3°. Note I;, I;;—incident

polar, R;, Ri/—reflected polar. [i = 1 (v = 60°, dashed line), 2 (v =

70°, dotted line), 3 (v = 80°, long-dashed line), 4 (v = 90°, solid line)]

polar I and the reflected polar R grow smaller and move to
a lower starting point. The reflected polar of bottom wedge
R; and the reflected polar of upper wedge R; intersect at
two points, which match the same pressure and angle behind
the two reflected waves. If the principle of minimal entropy
generation is assumed, the lower point O with lower pressure
is physically possible. Also, the variation of dihedral angle
has little influence on the flow field near the reflection point.
By using the approach of spatial dimension reduction, all
the parameters near the reflection line in the 3D flow field
can be theoretically obtained. The theoretical solutions to the
moving Mach number of incident shock and reflected shock
are M; = 1.1786, Myy = 1.0959, M, = 1.1042, My =
1.1695, and they agree well with numerical results.

The numerical results of the wave configurations in the
characteristic planes are shown in Fig. 4, where the incident
shock and reflected shock can be clearly observed. However,
a special wave configuration, namely transitioned regular
interaction (TRI), occurs when the dihedral angle is suffi-
ciently small [16]. It is different from RI, even though the
analytical result is in the domain of regular reflection. The
TRI often takes place in an unsteady 2D flow and cannot be
observed in steady and pseudo-steady 2D flow. According to
the analytical flow pattern of a TRI, an internal bridge-shaped
shock 3 forms behind the reflection point, and the reflected
shock near the wall curves into a near-wall Mach shock 4 and
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Fig. 4 Numerical results of regular interaction in a characteristic plane
for Moy =3, 11 =X =0°6) =5°,0, =3°av=060°bv="70%
cv = 80°% dv = 90° Note 0,0'—wall, 1, I’—incident shock,

4’ (Fig. 4a—c). As the dihedral angle v increases, the inter-
nal bridge-shaped shock moves closer to the reflection point
and becomes shorter until it vanishes. The near-wall Mach
shock 4’ on the larger wedge (6; = 5°) is obviously longer
than the Mach shock 4 on the smaller wedge (6, = 3°). It is
an asymmetrical SSI configuration and very different from
the symmetrical configuration. For the TRI, the wall bound-
ary plays an important role in the formation of the internal
bridge-shaped shock. As the wall boundary is inviscid and
slips, the reflected shock in the vicinity of the wall is normal
to the wall boundary in order to match the boundary condi-
tion. At v = 80°-90°, the angle between the reflected shock
and the wall boundary is close to 90°, at which the reflected
shock impinges the wall, and no clear internal bridge-shaped
shock and near-wall Mach shock is formed. As the dihedral
angle decreases, the reflected shock near the wall curves into

zly
(b)

zly
(d)

2, 2'—reflected shock, 3—internal bridge-shaped shock, 4, 4 —near-
wall Mach shock, 5, 5'—contact discontinuity

a near-wall Mach shock to match the boundary condition,
and a clear internal bridge-shaped shock occurs (Fig. 4a, b).

3.2 Mach interaction

Mach reflection was first observed and recorded in studies
performed by Mach [19]. In the Mach reflection of a 2D shock
wave, a clear incident shock, reflected shock, Mach stem, and
slip line can be seen. Ben-Dor [1] systematically summa-
rized Mach reflection in a pseudo-steady flow in his book.
According to Ben-Dor, the Mach reflection can be further
divided into three types: single Mach reflection (SMR), tran-
sitional Mach reflection (TMR), discovered by Smith [18],
and double Mach reflection (DMR). For the SSI induced
by 3D symmetrical wedges, single Mach interaction (SMI),
transitional Mach interaction (TMI), and double Mach inter-
action (DMI) have been observed in numerical simulations
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and experiments. Until now, the research on asymmetrical
wave configurations for 3D asymmetrical SSI is very limited
due to its complexity.

The theoretical analysis and numerical results of the SMI
for Mp = 4,v =90°, A1 = 3° 1y = 10°6; = 6, = 10°
and My =5,v=90°, 11 = A =0°,6; = 10°,6, = 5° are
shown in Fig. 5a—d. There are two different SMIs here. For
the first SMI (Fig. 5a, b), the reflected polar of lower wedge
R and the reflected polar of upper wedge R, intersect with
I and I, respectively, and the intersecting points are on the
positive side and negative side of the 6-axis, respectively.
This indicates that the foot of the virtual wall originating
from the corner rib and the Mach stem is on the Mach stem.
For the second SMI (Fig. 5c, d), Ry and R intersect with /;
and I, respectively, and the intersecting points are both on
the positive side of the #-axis. This means that the foot of
the virtual wall and the Mach stem is on the extension line
of the Mach stem, which is called an inverse single Mach
interaction (ISMI).

For the 3D ISMI, the virtual wall perpendicular to the
Mach stem does not intersect with the Mach stem surface. If
the wedge angle is in the domain of the SMI, the ISMI often
occurs when the disparity of the wedge angle on both sides
is sufficiently large. For the case of My = 6, v =90°, A =
Az = 0°,6; = 20°,6, = 15°, the wave configuration is a
transitional double Mach interaction (TDMI) (Fig. Se, f). In
this situation, the wedge angles on both sides are sufficiently
large, so that the contact discontinuity originating from the
triple points rolls up into the spiral vortices 5, and the reflected
waves 2 and 0’ near the wedge become more concave in
shape. The bending of the reflected shock wave is due to the
action of compression waves from the walls 0 and 0'. A near-
wall shock wave 7 and a secondary reflected shock wave 6
are established to match the wall boundary condition. The
wave configuration on the side of the larger angle 6; = 20°
has no clear near-wall shock wave and secondary reflected
shock wave, whereas the side of the angle 6, = 15° has a
clear structure of double Mach reflection. The above wave
configurations are different from those in 3D symmetrical
situations. The larger the wedge angle, the more complex the
wave configuration is in 3D asymmetric situations.

3.3 Weak shock interaction

According to Ben-Dor [1], the weak shock reflection could
be divided into three types, depending on whether the
solution of non-standard three-shock theory is physical or
non-physical. If it is physical, the resulting reflection is either
a von Neumann reflection (vVNR) or a Guderley reflection
(GR) [1,20,21]. If it is non-physical, the resulting reflec-
tion could be a Vasilev reflection (VR) [22]. The major
difference between the GR and VR lies in whether the
flow after the Mach stem is supersonic or not. Tesdall and
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Hunter [23] indicated that an expansion fan originates at each
triple point according to their numerical results. Skews and
Ashworth [20] carried out experiments to demonstrate the
presence of expansion waves behind the reflected wave and
make the GR physical.

Earlier studies of the weak shock reflection focused on
2D cases, and the inflow Mach number was rather low. In
this section, the 3D weak shock interaction induced by two
intersecting wedges will be presented numerically and theo-
retically. In the case of My = 1.5,v = 90°, A1 = 0°, A2 =
1°,01 = 5°, 6, = 10°, specifically, two reflected polars, R
and R», are totally inside the incident polar, /1 and I, and it
means that the weak shock interaction (WSI) occurs (Fig. 6a).
The numerical simulations in Fig. 6b also show that the type
of 3D shock interaction is WSI, which is similar to the 2D
pseudo-steady shock reflection with a weak incident shock
wave and thin wedges. When the WSI occurs, one clear Mach
stem, two reflected waves and one Prandtl-Meyer expansion
fan can be observed. However, there are some differences
between the 3D weak shock wave interaction and the 2D
weak shock wave reflection. For example, in 2D pseudo-
steady flow the shock is sufficiently weak, whereas in the
3D steady flows with high Mach number and large sweep
angle the weak interaction of the shock wave may result in
a 3D effect (Fig. 6¢, d). Additionally, numerical simulations
show that the 3D effect depends largely on the change in the
sweep angle. With a larger sweep angle, the 3D effect is more
obvious and the weak shock wave interaction is more likely
to occur. Theoretical analysis reveals that the decomposed
Mach number in the cross-sectional planes is sufficiently
small to lead to the occurrence of the weak interaction of
shock waves in 3D steady flows.

In the case of My = 2,v = 90°, A1 = X = 0°,60; =
10°,6, = 2° and My = 4,v = 90°, A1 = 30°, X1, =
0°,60; = 5°,6, = 20°, shock polar analysis in the charac-
teristic planes indicates that one reflected polar, namely Rj,
intersects with the incident polar 71, while the other reflected
polar R; is totally inside the incident polar I, (Fig. 6e, f). This
means that the weak single Mach interaction (WSMI) occurs,
where the disparity of the wedge angle on both sides is suf-
ficiently large. However, the reflected polar R; in Fig. 6g is
different from the one in Fig. 6e. Specifically, the Mach num-
ber of the weak reflected wave (2) is 1.6, whereas it is below
1 in Fig. 6g, where the reflected polar collapses into a point.
For the WMSI, the wave structure on the side of the large
wedge angle is a weak shock interaction, where the reflected
shock reduces into an expansion fan [see (2') in Fig. 6f, h].
For small wedge angles, the SSI is a single Mach interac-
tion, where the reflected shock can be clearly seen [see (2)
in Fig. 6f, h].

For all the above weak shock configurations, the incident
shock is almost parallel to the Mach stem; in other words,
the Mach number of the incident shock and the Mach shock
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Fig. 6 Shock polar analysis
and numerical results in a
characteristic plane. a, b Weak
shock interaction for
My=1.5,v=90° 1 =
0°, 4 =1°,6) =5°,0, = 10°;
¢, d weak shock interaction for
My=3,v=90° 1 =

30°, Ay =25°,60) =6, =5°;
e, f weak single Mach
interaction for
My=2,v=90°, 11 =X =
0°,60; =10°,6, =2°;

g, h weak single Mach
interaction for My =4, v =
90°, A1 =30°, 1, =0°,6, =
5°, 60, = 20°. Note 0, 0'—wall,
1, I’—incident shock,
2—reflected wave,
2/—expansion waves, 3—Mach
stem
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are very similar. The flows passing through the Mach stem
and the incident wave experience similar changes across the
shocks, which results in the reflected shock reducing to an
expansion fan. For example, for My = 4,v = 90°, 11 =
30°, Ay = 0°,0; = 5°, 6, = 20°, the theoretical solutions
to the Mach stem and incident wave are 2.35 and 2.147,
respectively, which exhibits little discrepancy.

4 Concluding remarks

In this paper, an analytical solution termed ““spatial dimension
reduction” is used to determine the 3D wave configurations
over two asymmetrically intersecting wedges. Numerical
simulations with the NND scheme are conducted to vali-
date the theoretical analysis, and good agreement is obtained.
Several 3D wave configurations in asymmetrical situations
are studied theoretically and numerically. The results of this
study can be summarized as follows:

1. The 3D asymmetrical wave configuration can be deter-
mined by using the approach of ‘“spatial dimension
reduction” and shock polar analysis, such as RI, TRI,
SMI, ISMI, TDMI, WSI, and WSMI.

2. For the 3D regular interaction with a small sweep angle,
TRI occurs due to the interaction of the wall boundary
and the reflected wave.

3. For the 3D Mach interaction, an inverse Mach interaction
can occur in which there is a big difference between the
wedges on both sides. As the wedge angle increases, the
wave configuration becomes more complex.

4. If the inflow Mach number is low or the sweep angle
is large enough, a weak shock interaction often occurs.
For 3D WSI, there is little difference between the Mach
number of the Mach stem and that of the incident shock,
their properties are almost the same, and the reflected
shock will be reduced to an expansion fan.

Acknowledgements The project is supported by the National Natu-
ral Science Foundation of China (11372333). We would like to thank
Changtong Luo and Zongmin Hu of our group for their support in the
numerical simulations.

References

1. Ben-Dor, G.: Shock Wave Reflection Phenomena, 2nd edn.
Springer, Berlin (2007). doi:10.1007/978-3-540-71382- 1

2. Edney, B.E.: Effects of shock impingement on the heat transfer
around blunt bodies. AIAA J. 6(1), 15-21 (1968). doi:10.2514/3.
4435

3. Charwat, A.F., Redekeopp, L.G.: Supersonic interference flow
along the corner of intersecting wedges. AIAA J. 5(3), 480488
(1967). doi:10.2514/3.4004

4. Stainback, P.C., Weinstein, L.M.: Aerodynamic heating in the
vicinity of corners at hypersonic speeds. National Aeronautics and
Space Administration, NASA-TN-D-4130 (1967)

5. Watson, R., Weinstein, L.: A study of hypersonic corner flow inter-
actions. AIAA J. 9(7), 1280-1286 (1971). doi:10.2514/3.49937

6. West, J.E., Korkegi, R.H.: Supersonic interaction in the corner of
intersecting wedges at high Reynolds numbers. AIAA J. 10, 652—
656 (1972). doi:10.2514/3.50171

7. Skews, B.W., Mills, J.G., Quinn, P., Menon, N., Mohan, J.A.:
Supersonic corner flow with fillets, camber, sweep and dihedral.
In: 25th International Symposium on Shock Waves, Society for
Shock Wave Research IIS, pp. 83—88. Bangalore, India (2005)

8. Naidoo, P.: Supersonic and transonic viscous corner flows. PhD
Thesis, University of the Witwatersrand, Johannesburg (2011)

9. Naidoo, P., Skews, B.W.: Supersonic viscous corner flows. Proc.
Inst. Mech. Eng. Part G J. Aerosp. Eng. 8, 950-965 (2011). doi:10.
1177/0954410011416709

10. Yang, Y., Wang, C., Jiang, Z.L.: Analytical and numerical
investigations of the reflection of asymmetric nonstationary
shock waves. Shock Waves 22, 435-449 (2012). doi:10.1007/
s00193-012-0392-9

11. Yang, Y.: The investigations on complex flow of three dimensional
shock/shock interaction. PhD Thesis, Institute of Mechanics, Chi-
nese Academy of Sciences (2012) (in Chinese)

12. Xiang, G.X., Wang, C., Teng, H.H., Yang, Y., Jiang, Z.L.: Study
on Mach stem induced by interaction of planar shock waves on
two intersecting wedges. Acta. Mech. Sin. 32(3), 362-368 (2016).
doi:10.1007/s10409-015-0498-2

13. Xiang, G.X., Wang, C., Teng, H.H., Jiang, Z.L.: Investigations
of three-dimensional shock/shock interactions over symmetrical
intersecting wedges. AIAA J. 54(5), 1472-1481 (2016). doi:10.
2514/1.J054672

14. Xiang, G.X., Wang, C., Hu, Z.M., Li, X.D., Jiang, Z.L.: Theoretical
solutions to three-dimensional asymmetrical shock/shock interac-
tion. Sci. China Technol. Sci. 59(8), 1208-1216 (2016). doi:10.
1007/s11431-016-6036-z

15. Xie,P.,Han,Z.Y., Takayama, K.: A study of the interaction between
two triple points. Shock Waves 14(1), 29-36 (2005). doi:10.1007/
s00193-005-0245-x

16. Zhang, H.X.: A dissipaive difference scheme with non-oscillatory,
non-free-parameters. Acta Aerodynamica Sinica 6(2), 143-165
(1988) (in Chinese)

17. Ben-Dor, G., Glass, L.I.: Nonstationary oblique shock wave reflec-
tions: actual isopycnics and numerical experiments. AIAA J. 16,
1146-1153 (1978). doi:10.2514/3.61021

18. Smith, L.G.: Photographic investigation of the reflection of plane
shocks in air. Phys. Rev. 69(11-12), 678-678 (1946). doi:10.1103/
PhysRev.69.674.2

19. Mach, E.: Uber den Verlauf von Funkenwellen in der Ebene und
im Raume. Sitzungsbr. Akad. Wiss. Wien. 78, 819-838 (1878)

20. Skews, B.W., Ashworth, J.T.: The physical nature of weak shock
wave reflection. J. Fluid Mech. 542, 105-114 (2005). doi:10.1017/
S0022112005006543

21. Skews, B.W., Li, G., Paton, R.: Experiments on Guderley
Mach reflection. Shock Waves 19, 95-102 (2009). doi:10.1007/
s00193-009-0193-y

22. Vasilev, E.I, Elperin, T., Ben-Dor, G.: Analytical reconsideration
of the von Neumann paradox in the reflection of a shock wave
over a wedge. Phys. Fluids 20(4), 046101 (2008). doi:10.1063/1.
2896286

23. Tesdall, A.M., Hunter, J.K.: Self-similar solutions for weak shock
reflection. SIAM J. Appl. Math. 63, 42-61 (2002). doi:10.1137/
S0036139901383826

@ Springer


http://dx.doi.org/10.1007/978-3-540-71382-1
http://dx.doi.org/10.2514/3.4435
http://dx.doi.org/10.2514/3.4435
http://dx.doi.org/10.2514/3.4004
http://dx.doi.org/10.2514/3.49937
http://dx.doi.org/10.2514/3.50171
http://dx.doi.org/10.1177/0954410011416709
http://dx.doi.org/10.1177/0954410011416709
http://dx.doi.org/10.1007/s00193-012-0392-9
http://dx.doi.org/10.1007/s00193-012-0392-9
http://dx.doi.org/10.1007/s10409-015-0498-2
http://dx.doi.org/10.2514/1.J054672
http://dx.doi.org/10.2514/1.J054672
http://dx.doi.org/10.1007/s11431-016-6036-z
http://dx.doi.org/10.1007/s11431-016-6036-z
http://dx.doi.org/10.1007/s00193-005-0245-x
http://dx.doi.org/10.1007/s00193-005-0245-x
http://dx.doi.org/10.2514/3.61021
http://dx.doi.org/10.1103/PhysRev.69.674.2
http://dx.doi.org/10.1103/PhysRev.69.674.2
http://dx.doi.org/10.1017/S0022112005006543
http://dx.doi.org/10.1017/S0022112005006543
http://dx.doi.org/10.1007/s00193-009-0193-y
http://dx.doi.org/10.1007/s00193-009-0193-y
http://dx.doi.org/10.1063/1.2896286
http://dx.doi.org/10.1063/1.2896286
http://dx.doi.org/10.1137/S0036139901383826
http://dx.doi.org/10.1137/S0036139901383826

	Three-dimensional shock wave configurations induced by  two asymmetrical intersecting wedges in supersonic flow
	Abstract
	1 Introduction
	2 Analytical approach and numerical methods
	3 Results and discussion
	3.1 Regular interaction
	3.2 Mach interaction
	3.3 Weak shock interaction

	4 Concluding remarks
	Acknowledgements
	References




